Aalto University
School of Science
Degree Programme in Computer Science and Engineering

Antti Ahonen

Unit and Integration Testing of Java:

JVM Behavior-Driven Development testing frame-
works vs. JUnit

Master’s Thesis
Espoo, May 18, 2017

Supervisor: Professor Casper Lassenius, Aalto University
Advisor: Mikko Pohja D.Sc. (Tech.)

A' Aalto University
|
Aalto University

School of Science ABSTRACT OF
Degree Programme in Computer Science and Engineering MASTER’S THESIS

Author: Antti Ahonen

Title:
Unit and Integration Testing of Java: JVM Behavior-Driven Development testing
frameworks vs. JUnit

Date: May 18, 2017 Pages: vi 4 118
Major: Computer Science Code: SCI3042
Supervisor: Professor Casper Lassenius
Advisor: Mikko Pohja D.Sc. (Tech.)

This master’s thesis studied how do Behavior-Driven Development testing frame-
works change the testing of Java-code compared to JUnit. The research was done
as a case study. The case study was conducted in industry context at Vincit Plc,
were two projects changed new unit and integration tests classes to use a new
BDD-testing framework instead of JUnit. Before designing the study methods,
related research and their findings were reviewed to guide the study to inspect
problematic areas found in unit testing. Case study data collection methods
included surveys, interviews and test code analysis.

Case study provided promising results for problematic areas highlighted by ear-
lier research. To summarize the developer practice changes, the collected data
displayed an increase in unit test case granularity. Results also displayed unani-
mously that BDD-testing frameworks guide to write more self-documenting tests
than JUnit. The structure of BDD tests highlighted better the different parts of
the test. Study also revealed that the majority of participants had easier time un-
derstanding tests and removing repetition from test code. Developer perception
changes in testing included the majority of study participants enjoying writing of
tests more than with JUnit. The same majority also perceived that BDD-testing
frameworks promote in writing higher quality test code than JUnit. Generally
new test code was perceived more understandable and maintainable than tests
with JUnit, although this was not unanimous. Learning curve to be effective
varied between studied frameworks. Tool support of BDD-testing frameworks for
testing Java Spring Framework were found ranging from adequate to good.

In conclusion, this thesis results provide small scale evidence that BDD-testing
frameworks could potentially ease the maintainability and readability of unit and
integration tests while same time rising the enjoyment in testing.

Keywords: Test automation, Unit testing, Integration testing, Behavior-
Driven Development, JVM, Java, Spring Framework, JUnit,
Spock, Spectrum, RSpec

Language: English

i

A, , Aalto-yliopisto

Aalto-yliopisto

Perustieteiden korkeakoulu DIPLOMITYON
Tietotekniikan koulutusohjelma TIIVISTELMA
Tekija: Antti Ahonen

Tyon nimi:
Javan yksikko- ja integraatiotestaus: JVM:n kayttaytymisvetoiset testaustyokalut
vastaan JUnit

Paivays: 18. toukokuuta 2017 Sivumaara: vi + 118
Paaaine: Tietotekniikka Koodi: SCI3042
Valvoja: Professori Casper Lassenius

Ohjaaja: Tekniikan tohtori Mikko Pohja

Tassa diplomityossa tutkittiin, kuinka kayttaytymisvetoiset testisovelluskehyk-
set muuttavat Java-koodin testausta verrattuna JUnit:iin. Tutkimus suoritet-
tiin tapaustutkimuksen menetelmin Vincit Oy:ssa. Tutkimukseen valittiin
kaksi projektia, joissa uudet yksikko- ja integraatiotestausluokat kirjoitettiin
kayttaytymisvetoisilla testaussovelluskehyksilla JUnit:in sijaan. Tyohon liittyvéat
aiempien tutkimusten havainnot ohjasivat tyota tarkastelemaan néissa loydet-
tyja ongelmallisia alueita. Tiedonkeruukeinoina kaytettiin kyselyita, haastat-
teluita seka testikoodin analyysia.

Tyon tulokset osoittautuivat lupaaviksi ratkaisuksi aiemmin 16ydettyi-
hin ongelmallisiin seikkoihin. Kokonaisuudessaan sovelluskehittédjien tes-
tauskaytannoissa 16ytyi useita muutoksia. Yksikkotestien rakenne ohjau-
tui aiempaa hienojakoisemmaksi. Tulokset osoittivat myos yksimielisesti,
etta kayttaytymisvetoiset testaussovelluskehykset ohjaavat kirjoittamaan aiem-
paa paremmin itseansa dokumentoivia testeja. Myos testin eri loogiset osat
olivat uusien testien rakenteesta helpommin luettavissa. Suurimmalla osalla
tutkimukseen osallistuneista testit olivat aiempaa helpompia ymmartaéa seka ni-
ista oli helpompi poistaa toistoa. Suurin osa koki testien kirjoittamisen myos
alempaa nautittavampana. Valtaosa vastaajista koki uusien menetelmien oh-
jaavan kirjoittamaan laadukkampaa testikoodia kuin aiemmin. Yleisesti ottaen
uutta testikoodia pidettiin ymmarrettavampéana ja yllapidettavampana kuin JU-
nit testeja, tosin ei taysin yksimielisesti. Oppismiskayra uusien testauskehyksien
parissa vaihteli tutkittujen kehysten vélilla. Java Spring-sovelluskehyksen tes-
taustuki vaihteli riittavasta tuesta hyvaan tukeen.

Kokonaisuudessaan tyo tarjosi pienessda skaalassa nayttoa — siita,
etta kayttaytymisvetoiset testaussovelluskehykset voivat mahdollisesti helpottaa
yvksikko- ja integraatiotestien yllapidettavyytta, luettavuutta seka koettua
nautintoa naiden parissa.

Asiasanat: testiautomaatio, yksikkotestaus, integraatiotestaus,
kayttaytymisvetoinen kehitys, JVM, Java, Spring-
sovelluskehys, JUnit, Spock, Spectrum, RSpec

Kieli: Englanti

il

Abbreviations and Acronyms

JVM
BDD
TDD
RE
SQA
AQM
ATDD
TLD
V&V
GUI
IDE
DDT
DSL
AAA
COTM

CC
COA

COC
TMNWC

DDTM

Java Virtual Machine

Behavior-Driven Development

Test-Driven Development

Requirements Engineering

Software Quality Assurance

Alternative Quality Model

Acceptance Test-Driven Development

Test Last Development

Verification & Validation

Graphical User Interface

Integrated Development Environment

Data Driven Testing

Domain Specific Language

Arrange-Act-Assert; Way to structure JUnit test methods
Count of Test Methods; Study metric for average count
of test methods per tested class method

Code Coverage

Count of Assertions; Study metric for average count of
assertions per test method

Count of Comments; Study metric for average count of
comments per test method

Test Method Name Word Count; Study metric for average
count of words in test method name

Data Driven Test Methods; Study metric for ratio of data
driven test methods to standard unit and integration test
methods

v

Contents

Abbreviations and Acronyms

1 Introduction
1.1 Motivation
1.2 Problem statement L.
1.3 Structure of the thesis

2 Background
2.1 Java Virtual Machine L.
2.2 Software quality assurance L.
2.3 Automated testing
2.4 Test-Driven Development
2.5 Acceptance Test-Driven Development
2.6 Behavior-Driven Development
2.7 Relatedresearch oo

3 Environment
3.1 xUnit family testing frameworks
3.2 Implementation level BDD-testing frameworks for JVM

4 Methods
4.1 Research questions oL
4.2 Research hypotheses,
4.3 Empirical studyo
4.4 Validity and reliability 0L

5 BDD frameworks in selected projects
5.1 Project A
5.2 Project B

v

25
25
29

40
40
40
42
49

Results and discussion 61

6.1 First interview: demographics and projects 61
6.2 Surveys and BDD-testing framework feedback interviews analyzed . 63
6.3 Test codeanalysis. 87
Conclusions 95
7.1 Summary 95
7.2 Comparison of BDD-testing frameworks 96
7.3 Futurework 97
Interview questions 106
A.1 Interview for demographic purposes 106
Surveys 107
B.1 Survey regarding JUnit in automated low-level testing 107
B.2 Survey regarding BDD-testing framework in automated low-level
testing 111
Gradle build configurations 115

vi

Chapter 1

Introduction

1.1 Motivation

Software development nowadays is many times done with an incremental and iter-
ative agile process. Many agile methodologies aim to produce quality software that
is potentially ready to use in production when the iteration is done. There rarely
exists time inside the iteration for dedicated long periods of quality assurance and
manual testing. Instead, the quality is build within each increment. Defect free
software is one the important parts that define quality in software industry. To
achieve this quality in agile context, test automation is an important tool for the
developer to handle. [1]

Unit and integration testing are the testing activities that majority of agile
developers work on a daily or weekly basis. Although there exists previous research
studying aspects of unit testing amongst developers, they are directed towards
traditional unit testing with xUnit family testing frameworks. These frameworks
are the standard way of testing in many programming languages and they include
ones such as JUnit, NUnit and CppUnit [2].

Behavior-Driven Development (BDD) was originally intended as a solu-
tion to problems Test-Driven Development (TDD) practitioners faced [3]. From
there, BDD propagated to acceptance-level testing [3]. BDD in general can be de-
scribed as a test firsts agile methodology aiming to provide valuable and defect free
software [4]. Majority of the research regarding BDD is targeted at studying it be-
ing used as an requirements engineering (RE) tool. BDD-testing tools are also used
at the implementation level in various programming languages and frameworks.
There exists no hard statistics, but in many programming languages implementa-
tion level BDD testing tools like RSpec in Ruby and Jasmine in JavaScript are
very popular in practicing unit and integration testing. It is reasonable to suspect
that these frameworks are not always used in conjunction with the practice of

CHAPTER 1. INTRODUCTION 2

BDD but are actually used for testing purposes only.

This thesis studies these implementation level BDD-testing frameworks more
closely to see, how they compare to standard xUnit family testing frameworks
in automated unit and integration testing. Main point of interest is that if they
can help with the problems that earlier research had identified in traditional unit
testing frameworks. This thesis provides empirical research done in actual projects
in industry context. In these projects, automated testing with JUnit was changed
into implementation level BDD-testing framework during the project.

1.2 Problem statement

There exists research, where study participant developers declare spending ap-
proximately 40% of software development time writing new tests and debugging
or fixing the code [5]. During unit testing activities, multiple previous studies
have found problematic areas amongst developers. As testing, debugging and fix-
ing form so prominent part of the developer activities, its crucial to study if these
problematic areas could be alleviated. To highlight some of these problems, one
of the most important one is that only around 50% of developers enjoy working
with unit tests [5]. Lacking motivation in unit testing is a real problem amongst
practitioners [6]. Other important findings were ones such as difficulties in writing
and maintaining the tests [5]. These problematic areas are inspected in more detail
later in thesis.

The context of thesis is based in Java-projects and testing Java-code. Java
Virtual Machine (JVM) and its implementation in Java Runtime Environment
produces the environment for Java-projects [7]. Main motivation for choosing JVM
as the platform to study testing changes was my personal interest of wanting to
learn ways to enhance Java testing. Other reasons to choose JVM as the platform
for studying testing changes were JUnit and other programming languages avail-
able through it in addition to Java [7]. JUnit is a popular zUnit family testing
framework [2], and as such, many of the problematic areas highlighted by ear-
lier research surely affect it. The multiple programming languages through JVM
allowed more options in choosing alternative implementation level BDD-testing
frameworks. These frameworks could then be studied and compared against JU-
nit in different unit and integration testing aspects.

1.3 Structure of the thesis

First, chapter 2 introduces in more detail the background of JVM, the concept
of software quality and practices to achieve it. Especially automated testing with

CHAPTER 1. INTRODUCTION 3

agile methodologies built on top of it are examined thoroughly. Related research
to thesis topic is also examined in chapter 2. Chapter 3 studies the xUnit family
testing frameworks in detail together with various implementation level BDD-
testing frameworks. Chapter 4 introduces the research questions and research
hypotheses. It also explains the empirical study methods in detail. After methods,
chapter 5 introduces the projects and the practical use of BDD-testing frameworks
in them. Next, chapter 6 explores the study results and discussion related to earlier
research in detail. Finally chapter 7 summarizes the main findings of the thesis
and proposes ideas for possible future research on the thesis topic.

Chapter 2

Background

First in this section brief details of JVM are examined. Second, general concepts
of software quality and software quality assurance (SQA) are explained. Third,
SQA practice automated testing is inspected in more detail. After this, agile
methodologies Test-Driven Development, Acceptance Test-Driven Development
(ATDD) and Behavior-Driven Development are reviewed. For the last section in
this chapter, related research on the thesis study topic is presented.

2.1 Java Virtual Machine

JVM and its programming language Java was originally designed for building
software on networked devices [8]. From there, next major usage possibilities for
Java came in form of Web HTM[L-sites. Web-sites with Java embedded programs
first appeared in HotJava-browser [8]. From those days usage of Java has explored
new fields and JVM itself hosts nowadays many more programming languages than
just Java [7].

JVM is an abstract computing machine that provides instruction set and
different memory areas at runtime. Current implementations of JVM have brought
the environment to mobile, desktop and server devices, yet the JVM itself isn’t
tied to any specific technology. The basic information for JVM comes from class
files. These files include binary JVM bytecode instructions. Instead of having
Java code in class files, it compiles to these binary instructions that are run on
the JVM. Figure 2.1 illustrates the runtime memory areas and the class loader
system. JVM has support for primitive and reference types, from which latter
enables support for referencing JVM objects. [8]

JVM is interesting target for a vast amount of programming languages, thanks
to its maturity, ubiquity and performance [9]. These programming languages pass
as a valid JVM language if their functionality can be expressed in a valid class

CHAPTER 2. BACKGROUND)

file [7]. Programs written in ported dynamic languages such as Ruby (JRuby) or
Python (Jython) [9] can be run on the JVM. JVM also hosts an array of new
programming languages such as Scala, Clojure and Groovy [7].

The possibilities of these additional JVM programming languages are crucial
part of this thesis. Later on testing Java-code is examined with different imple-
mentation level BDD-testing frameworks from various JVM languages.

Class Loader

Subsystem «—— JVM Programming Language Classes

VM Native
M::J;:d Heap Language Re Pils:ters Method
Stacks & Stacks

JVM runtime data areas

Execution i Native Method

< Native Method
Engine Interface

Libraries

Figure 2.1: Overview of internal architecture of Java Virtual Machine

2.2 Software quality assurance

The standard definition of quality assurance states it to be: ”A planned and sys-
tematic pattern of all actions necessary to provide adequate confidence that the
item or product conforms to established technical requirements”. [10]

Although modern software quality assurance differs from the original standard
definition, it is still definitely found at the core of SQA. To fully understand SQA
and why it is important, first the software quality concept in itself is illustrated.
Motivation for practicing SQA is examined second and third, the overall activities
in SQA are explained briefly.

CHAPTER 2. BACKGROUND 6

2.2.1 Definitions of quality

Quality in software development is a multifaceted entity that has had many view-
points for a long time. Some of these earlier views include product, transcenden-
tal, user, manufacturing and value based view [11]. Because there exists so many
viewpoints to what software quality is, it makes the measuring of quality hard [11].
Business goals and their priorities should determine the needed level of software
quality [11] so therefore quality in itself is not set in stone, but it can alter between
software services and products to fit the purpose. This can be easily demonstrated
with an example of software inside a missile defence system or an online dating
application. Two different systems with different goals and consequences of use,
and therefore obviously different standards for needed quality.

Alternative Quality Model

Six user levels of software quality assessment
Software delights

Software produces no negative consequences
Software fits environment

Software fulfills all basic promises

O RN W o

Some trust, begrudging use, cynical satisfac-
tion
-1 No trust

Table 2.1: Alternative Quality Model [12]

New alternative view on software quality by Denning [12] includes user expe-
rience directly in the core of quality. This view is called the alternative quality
model (AQM) and it defines quality software as software that delights the end
user [12]. Table 2.1 displays the full scale of AQM. While this research is mainly
interested in aspects of producing traditional defect free quality software, later on
in this chapter BDD is examined in detail. BDD can be seen to directly try to
increase software quality on the AQM, providing value for end users and other
stakeholders while at the same time minimizing defects [4].

2.2.2 Motivation for SQA

Many software projects fail but also many of them are successful. Success and
failure in this context have multidimensional meaning with technical, economic,
behavioral, psychological and political aspects [13]. Aggressive schedule can be
usually seen as one of the primary causes for software project failure [14]. This

CHAPTER 2. BACKGROUND 7

can cause problems on many of the projects multidimensional axis, for instance in
technical- and economical aspects. Projects might go over the budget, schedule,
not meet the user needs and eventually be released with low quality [14]. Although
many of the problems are related to requirements engineering, a lot of them are
fixes or rework needed after launch [15]. If quality is measured on the AQM,
then both RE and SQA are intertwined in the concept of software quality and
SQA-work is essential for the success of software project. Even if software quality
is only limited to mean defect free software, SQA has major role in preventing
project failures.

2.2.3 Activities in SQA

Quality assurance practices and activities differ greatly in rhythm and also to
a lesser degree in practices used in traditional waterfall-model software projects
vs. agile projects [16]. Waterfall-projects have a rule set of their own for quality
assurance, but for the topic of thesis agile methodologies and their SQA-practices
are more relevant. SQA-practices can be generally categorized to defect detection,
code enhancement, verification & validation (VEV) of artifacts, and collaboration
& communication between stakeholders.

Defect detection can be split into two categories: explicit and implicit de-
fect detection activities [17]. Implicit defect detection means finding defects as a
secondary result when the goal was to perform another activity, such as demo pre-
sentation or giving training about the software use [17]. Explicit defect detection
activities hold ones such as testing and artifact inspection, but they are found to
have a lower defect detection rate than implicit ones [17]. Continuous integration
can also be seen as a explicit defect detection as it illustrates integration defects
and problems with frequent integration cycle [16].

Code enhancement activities aim to produce better design and maintainability
of the codebase, and these include practices like pair programming, refactoring [16]
and code reviews [18]. Although code reviews are also a form of inspection and
explicit defect detection, one of their primary uses in modern code review is to
share knowledge between team members [17, 18].

Verification & Validation aims to guarantee the quality of product or interme-
diate products. It can be used for example for design and requirement artifacts.
It is a static method, which involves stakeholder(s) inspecting the artifact. It is
more of a traditional waterfall software project activity, but agile practices such
as code reviews can be categorized as a V&V activity. [16]

Collaboration and communication between stakeholders are used in agile method-
ologies frequently, being one of the cornerstones of agile practices in general [16].
Frequent customer collaboration with on-site customer [16] is an agile SQA-practice
that establishes a foundation for many agile practices. It is essential in delivering

CHAPTER 2. BACKGROUND 8

quality on the AQM.
There are many more specific SQA practices that have their foundations on
the activities mentioned in this section. Next in this thesis, testing is examined

in detail through automated testing as it provides a base for agile SQA practices
TDD, ATDD and BDD.

2.3 Automated testing

First in this section different levels of test automation are explored. Second, lower
levels of test automation are explained in more detail and third, overall benefits
and drawbacks of test automation are discussed.

2.3.1 Levels of automation

Design level Level of
automation
Requirements —> Acceptance testing
Functional specification = == System testing
Architecture design —> Integration testing
Component design =—> Unit testing

U 1
Code

Table 2.2: Test last development regarding system and its design

Test automation comes at many levels of granularity regarding the system and
its requirements. The four main levels for functional testing are unit, integration,
system and acceptance testing. Table 2.2 illustrates how different levels of design
relate to levels of test automation in traditional Test Last Development (TLD).
At the bottom of table 2.2 there is code, which is the result of design and foundation
(in traditional automated testing) for different testing levels. Different levels of
design guide the automated tests at the specified level. [19]

The introduced test automation levels are a part of functional testing. There
exists also different non-functional requirements for software projects that can be
automatically tested, such as performance and security testing [20]. These are not

CHAPTER 2. BACKGROUND 9

in the scope of this study, instead the functional testing levels of automated unit
and integration testing are the main topic of interest.

2.3.2 Low-level testing explained

Low-level testing in the scope of this thesis means automated unit and integra-
tion level testing. They both have separate definitions and usages inside software
projects, but the distinction between the two can be found confusing by many de-
velopers [21]. Table 2.2 illustrates how unit testing adheres to component design
and integration testing to architecture design [19].

Unit test has many similar definitions, which all agree that it tests individual
unit or collection of these units working as one [6, 22]. Unit test also has the prop-
erty of being isolated from the rest of the system [22]. Unit testing can in a sense
also be seen as an intersection of design, coding and debugging [23]. Dedicated
practitioner of unit testing, Osherove [21], has identified important aspects of a
good unit test: trustworthiness, maintainability, readability, isolated, has single
concern and contains minimal repetition.

Isolation is an important part of unit testing. This means in practice using test
doubles also known as mocks. Using mocks in unit tests means substituting real
objects with limited functionality provided by mocks. Mocks can be configured to
behave always in a specified manner. This configured behavior of mocks is called
stubbing, in which output result of mock object can be injected from the test code.
Traditional uses of mocks are for instance using them to make progress without
implementing dependencies (used in TDD/BDD), isolating unit under test from
dependencies or nondeterminism. [4]

Integration testing is the second, higher level of automated testing in the
low-level testing scope of thesis. The definitions of integration testing state that
it is a testing activity which involves multiple components [21, 22]. Osherove [21]
defines integration testing as testing a unit of work with real dependencies in place:
for instance database and networking. Integration tests are not usually as fasts as
unit tests [21]. Many times this results from including full context of the system
through dependency injection container, such as Spring Framework or Guice [24].

CHAPTER 2. BACKGROUND 10

2.3.3 Benefits and drawbacks

Benefits Drawbacks
Rapid feedback [1] Can’t replace manual testing [25]

Improved product quality [25, 26] Maintaining difficulty [6, 25]
Increased test coverage [25] Lack of skilled people [6, 25]

Increased developer confidence [25] Hard to select correct testing
strategies [25, 27]

Reduced testing time [25] Brittle tests [27]

Shorter release cycle [27] More development time [26]

Increased testability design [27] Cost versus value [6]

Act as documentation [4, 23, 24] Unmaintaned tests can lose all
value [27]

Continuous regression [26]

Table 2.3: Automated Testing Benefits & Drawbacks

Agile methodologies do not prefer or deny separate testers inside a project, but for
a modern quality centered development separate testers might hinder the experi-
ence [1]. Teams without separate testers have one aspect in common, they rely
heavily on test automation as the core of quality. One of the most important prop-
erties in these kind of teams is the rapid and direct feedback that test automation
can provide [1]. Overall the task of test automation doesn’t come with benefits
only, but it has also its drawbacks.

Benefits of test automation are vast. Systematic literature review by Rafi et
al. [25] has found many of them through various sources. Some of them can be
highlighted: improved product quality, test coverage increase, increase in developer
confidence and reduced testing time.

Automated testing was found also to allow shorter release cycles. This is a
result of tests executed more often, and therefore allowing defects to be detected
earlier with reduced cost to fix. Quality and depth of test cases also increased with
automation, as less time is needed for executing them and more time is available
to design the test cases. Another benefit of automated testing is the more layered,
testable design of the software. To achieve the benefits, test automation strategy
needs to combine different approaches and testing levels. [27]

Automated test cases can also help to understand the system. This is en-
abled by writing information how the production code should behave into the test
cases and test methods. [4, 23, 24]

CHAPTER 2. BACKGROUND 11

At unit testing level, benefits of test automation was found to include over 20%
decrease in test defects [26]. Also the defects found by largely increased customer
base in first 2 years of use was decreased by introducing unit testing practices [26].
Another strength of automated unit testing is also the continuous regression suite
it provides [6].

Test automation isn’t only beneficial compared to manual testing. In the ear-
lier mentioned review by Rafi et al. [25], some of the limitations include for
instance: automation can’t replace manual testing, difficulty in maintaining and
lack of skilled people for test automation. Usually the lack of skilled people tends
to result in projects as inapporiate test automation strategies [25, 27]. These kind
of projects usually automate testing at wrong levels, for instance automatically
testing through Graphical User Interface (GUI). This can lead to brittle tests
that are hard to maintain as the GUI changes [27]. Neglecting automated testing
maintenance can lead to knowledge diminishing and tests that lose totally their
capability to run [27]. Altogether testware maintenance is hard and this can be
many times seen as tests that are not engineered with the same attention to detail
as actual production code [27].

At unit testing level, drawbacks of test automation include approximately 30%
more development time compared to manual testing [26]. Runeson [6] also found
unit testing drawbacks similar to the afore mentioned automated testing problems
by other studies. These include wunit testing of GUI, competency of developers
working with unit tests and unit test maintenance [6] . Also the cost of unit test
versus the value it provides was found problematic amongst unit testing practi-
tioners [6].

The next sections agile methodologies TDD, ATDD and BDD are all build on
top of automated testing practices, operating on different levels of automation.

2.4 Test-Driven Development

2.4.1 Definition

Kent Beck [28] defines TDD as techniques aimed to produce clean code that works.
This is done by driving development with automated tests: Test-Driven Develop-
ment. TDD consists of two basic rules: write new production code only when
automated test fails and eliminate duplicated code. These two rules are the base
for Red-Green cycle of TDD:

1. Red: Design and write a small simple test. Run it and see it fail.

2. Green: Add code sufficient to make the earlier written test pass.

CHAPTER 2. BACKGROUND 12

3. Refactor: Refactor for clean code. Improve the structure of the production
code and test code. Run all tests to ensure refactoring didn’t break anything.

4. Repeat: Repeat the cycle to add more functionality.

Design level Level of
automation
Component design < Unit testing

M

Code

Table 2.4: TDD related to system design

The tests written in TDD cycle are unit tests, providing incremental func-
tionality to small pieces of software at a time [29]. Beck [30] also defines test-first
principle to be much more than just testing. He states that TDD is also a software
design technique. Table 2.4 illustrates how component design and unit testing are
now in a relation where both can affect each other. Code is produced only through
design captured in unit tests.

2.4.2 Benefits and drawbacks

Benefits Drawbacks
Increased external quality [29, 31] Increased

development time [26, 29, 31]
Increased test coverage [29] Requires high discipline [32]
Tests executed more [26] Can lead to brittle tests [4, 33, 34]
More precise test cases [26]

Table 2.5: TDD Benefits & Drawbacks

Benefits of TDD are not totally clear and exact. On earlier systematic literature
review by Kollanus [31] in 2010, there was found weak evidence regarding better
external software quality with TDD and even less evidence for better inter-
nal software quality with TDD. In any case, there was still results pointing to

CHAPTER 2. BACKGROUND 13

better quality, even though evidence was not uniform. External quality was mea-
sured with two methods, passing acceptance tests done by researchers and number
of defects found before reported by the customer. Internal quality had multiple
metrics, such as code coverage, number of test cases, method size, cyclomatic com-
plexity and so on. The metrics was found at times contradicting and consensus of
internal quality was left unclear.

In 2016 systematic literature review of TDD by Bissi et al. [29], the benefits of
TDD was found more uniform and quite promising. 88% of studies showed signif-
icant increase in external software quality and 76% of studies identified significant
increase in internal software quality. This time external quality was measured
only with acceptance tests and compared to TLD approach. Internal quality was
inspected with the only common metric found in the literature: code coverage. It
could be argued how good of a metric code coverage is for internal quality, but at
least the production code has more instructions tested with fast and repeatable
automated tests when comparing TDD to TLD.

Some of the more specific benetifs of TDD was found by Williams et al. [26]
to include developers creating more tests that are executed more frequently. This
seems to correlate with earlier mentioned increased internal quality measured by
test coverage. TDD was also shown to promote more precise and accurate test
cases than TLD [26].

Drawbacks of TDD was found unanimously to include increase in development
time [26, 29, 31]. For example in the study done by Williams et al. [26] the increase
was ranging from 15% to 35%. As earlier mentioned, Beck [30] defined TDD to
be also a design technique. This aspect could make TDD too demanding practice
for junior level developers [35].

TDD requires discipline, that even senior level developers seem to lack when
using it. This is shown for example as frequent deviation from the basic rule of
starting the process with the simplest test. Also the refactoring of test code is
frequently omitted by developers of all experience levels. [32]

BDD literature frequently states that TDD can have a tendency to shift view-
point in testing to verifying system state rather than behavior of it. This can lead
to brittle tests that are tightly coupled to what the object is, instead of what the
object does. [4, 33, 34]

In conclusion, it could be said that TDD is not the silver bullet for software
development that solves all the quality problems. The two systematic reviews
mentioned provide somewhat conflicting results. Nevertheless, it could be argued
that in the right context benefits of TDD outweigh the drawbacks of it.

CHAPTER 2. BACKGROUND 14

2.5 Acceptance Test-Driven Development

ATDD is an agile practice that has many forms and names: Specification by Fxam-
ple, Agile Acceptance Testing, Story Testing and obviously Acceptance Test-Driven
Development [36]. BDD contains also ATDD [36], but as later is discovered, it is
actually a superset of it.

ATDD is an collaboration tool for stakeholders of the project [36, 37]. It means
driving the development with features specified with executable acceptance level
tests [36, 37]. ATDD can have many formats, such as Gherkin, Keyword-driven
testing and tabular formats [36].

Instead of traditional automated testing, ATDD can be seen as a mixture of
documentation centric traditional RE and communication focused agile RE [37].
The key is the communication and collaboration between stakeholders [37]. The
executable automated tests are a very useful byproduct. Although the name of
ATDD holds the word acceptance in it, passing tests doesn’t mean that the system
works perfectly [36]. Instead it is only a starting point for more quality assurance
work; the system is stable enough to be manually tested further [38].

2.5.1 Benefits and drawbacks

Benefits Drawbacks
Frequent collaboration [37] Demands frequent collabora-
tion [37]

Less ambiquity, noise and over- Needs active customer [37]
specification in requirements [37]

Faster feedback [37] High upfront cost [37]

Increased requirement traceabil- Works bad with constantly chang-
ity [39] ing requirements [37]

Increased trust [37] Learning curve [37]

Increased test coverage [37] Not for all contextes [37]

Faster start for new team mem- Requires high discipline [37]
bers [37]

Table 2.6: ATDD Benefits & Drawbacks

One of the major benefits of ATDD is the frequent collaboration & communi-
cation between the development team and other stakeholders. This improves the

CHAPTER 2. BACKGROUND 15

understanding of requirements [37] between all people involved. ATDD can po-
tentially reduce the ambiquity, noise and over-specification [37] in requirements
through the use of shared language. ATDD also promotes faster feedback loop [37]
and traceability from requirements to code [39)].

Eventually the use of ATDD seems to promote high trust between stakeholders
involved, although this is an incremental process taking time. ATDD also promotes
better coverage for testing and reduces overhead for new people starting to work
with the project. [37]

Drawbacks of ATDD include usually the needed frequent collaboration of
stakeholders in it. Customers might not have the time and effort needed for low
response times of ATDD. ATDD was also found to have a high upfront cost, that
should scale better overtime. This is not always the case if the requirements change
all the time. [37]

ATDD has learning curve for both the development team and customers, and
especially the learning curve for customers could be found too high to take the
method in to use. ATDD is not for all contextes and doesn’t work well for all
features. ATDD as its counterpart TDD are both demanding practices that require
disclipline to use properly. [37]

Next section explores Behavior-Driven Development in detail to see how it
relates to TDD and ATDD and how it combines the two approaches.

CHAPTER 2. BACKGROUND 16

2.6 Behavior-Driven Development

This section will first examine the history behind BDD. Second, BDD definition
is explained. Third, the BDD process and different levels in it are examined,
together with tools to support them. Finally the benefits and drawbacks of BDD
are discussed.

2.6.1 History

BDD is an fairly new practice from the start of 21st century with groundwork by
Dan North and Dave Astels. North [3] originally introduced BDD as a solution to
problems that new practitioners of TDD faced. These included aspects such as not
knowing what to test, where to start and how to name tests. The big shift was to
change the language used in testing; replacing the word test with should. This
helped to make the test method names more expressive and enabled developers to
start thinking more about object behavior in testing. Later on North extended his
work in changing how testing is used to accommodate also acceptance level testing
to BDD with JBehave.

Astels [33] continued with North’s ideas, resulting in creation of RSpec. As-
tels had also found out that the used language in testing was crucial and the
testing language changed from test-centric vocabulary to behavior oriented. He
introduced more granular way of testing, the idea of one assert per test method
to produce behavior documentation of code. The vocabulary was also changed in
test condition checking from assertions to expectations.

2.6.2 Definition

BDD is seen as an evolution of TDD and ATDD [40]. It expands on the idea of
driving system design with tests. North [3] brought in the concept of ubiquitous
language to acceptance level BDD from Domain Driven Design. This ubiqui-
tous language is used throughout the development lifecycle [40] and it should be
executable [3]. The main reason for ubiquitous language is to build a common
understanding between stakeholders [40] through continuous communication and
collaboration. Domain Driven Design aspect of BDD is also visible through imple-
menting the software by describing its behavior from the stakeholder perspectives
in the domain context [4].

BDD is a second generation agile methodology [4], as it incorporates into exist-
ing agile practices such as Eztreme Programming, Scrum or Kanban [41]. Tt is also
used iteratively & incrementally and the behavior of system should be derived from
business outcomes [40]. No clear definition of BDD exists [42], but it can be seen
as describing behavior of the system at all levels of granularity [4]. In addition to

CHAPTER 2. BACKGROUND 17

these, one of the core values of BDD is "enough is enough”; the minimal sufficient
amount of effort should be given to planning, analysis, design and automation [4].
This means doing activities just enough to incrementally provide small pieces of
value, but not with the expense of quality.

2.6.3 Process

The driving factor of BDD is the analysis process through user stories and their
format [43]:

As a {user}
I want {feature}
so that {value}

The full cycle of BDD starts with outside-in approach. First, purpose of the
project is defined and after that, business outcomes or goals for stakeholders are
identified. After this feature sets are described. Individual features are analyzed
for feature sets. [4]

Business outcomes

U

U 5
8
o . . ~
3 Requirements < User stories g
~ Functional specification =~ <= Scenarios)
= . . . =
0 Architecture design < Integration specs f'
n
L Component design <= Unit specs _O
=) P & 1%
)
3
=

Code

Table 2.7: BDD related to system development

Value is the driving force to start the progress with features. To be imple-
mented, feature must have business value related to business outcomes [3]. From
there, through different levels of system, implementation is driven with tests first
to specify behavior [4]. This all correlates well with quality measured by the ear-
lier introduced alternative quality model. BDD process aims to provide features

CHAPTER 2. BACKGROUND 18

with value in use and high internal & external software quality. This happens
through collaboration, incremental delivery and wvast € repeatable automated test
suites [4, 41]. The outcome should be quality that delights the end user, thus
performing well on the AQM [12]. Table 2.7 visualizes how business outcomes
and the value derived from them drive the process from outside-in through test
automation levels to code.

To fully understand the different levels of automated specification illustrated
in table 2.7, the whole automation level BDD cycle [4] needs to be explained:

i, 1) Create feature file with story
—_— :: 2 } Implement part of acceptance criteria as ?
Repeat until =" scenario 2
feature passes =
~—»¢ 3 j Generate and implement scenario step E
==" mapping method m
{ 4) Run step for failure
;o
1 r
I From acceptance level to
1 i __implementation
¢ 5) Implement specification example .E-. I
& - le for fail *
! 6 | Run example for failure
ﬁ P E Repeat
EL i} until
+ 7 1 Implement related code E step
Taal = | passes
8 | Run example for success E
19) Refa??:_:r
_ .
Repeat until . 10 | Step passing
scenario "nz- ! | e
passes . Bt
| 11',1 Refactor

Figure 2.2: Automated BDD cycle

Figure 2.2 shows the BDD-cycle that can be automated with BDD tools. Steps 1
through 4 relate to acceptance level and steps from 5 to 9 are for implementation
level. Step 11 is the refactoring of acceptance level code. Implementation level
steps can be seen as the earlier introduced red-green cycle of TDD, preferably
done with behavior-driven implementation level testing frameworks [41]. There

CHAPTER 2. BACKGROUND 19

exists also the outer red-green cycle, which is the outside-in aspect of BDD. The
development is started with failing acceptance level, which passes later when the
BDD cycle has progresses through all levels of behavior definition and its imple-
menting code [4]. By repeating the steps, the end result will be a working feature
providing value related to business outcomes [4].

2.6.4 Levels of specification

The first automation level is acceptance level testing [4, 40-42]. This level can
be seen as a form of ATDD [36]. As earlier explained, BDD also includes the
ubiquitous language [3] from Domain Driven Design and thus all ATDD does not
pass as acceptance level BDD.

At acceptance level, features will be written down as feature files (exact nam-
ing depends on the used framework), where they are expressed as user stories [4].
Acceptance criteria is presented as executable scenarios [3], that usually follow pre-
determined ubiquitous language Gherkin [42]. Gherkin will be studied in more
detail in the next chapter when testing framework Spock is examined. Table 2.7
shows how these stories and scenarios relate to system design. The stakeholder au-
dience for acceptance level BDD include all stakeholders interested in development
of the product [41].

Some of the BDD acceptance level tools for JVM include Cucumber-JVM, Con-
cordion and JBehave [42]. Other environments have also BDD tools for this level,
for instance SpecFlow for .NET and Behave for Python [41]. Main characteristic
of acceptance level tools is business readable plain text input that is expressed
with the earlier mentioned user stories and their scenarios [42].

The second automated level in BDD is implementation level testing [4, 40—
42]. Implementation level can be seen as testing, where behavior of objects and
components are described with examples [4]. This means the earlier mentioned
unit and integration testing done with a new point of view. BDD is not limited to
acceptancel level only, as one of the core values in it is: "it’s all behavior” [4]. Every
level can be broken down to examples describing behavior. Table 2.7 illustrates
how these implementation level specifications relate to system design. Figure 2.2
shows how the two explained automation levels in BDD work together in a cycle.

Implementation level BDD can be seen to follow the principles of TDD, like the
earlier mentioned red-green cycle driving the design [41]. The tests produced by
BDD differ from TDD tests; they are more granular pieces of describing examples
of used code [33]. They help to shift the viewpoint from test centric approach by
changing the often found 1-1 mappings between test cases and test methods to
classes and their methods with more descriptive naming [33].

The outcome from implementation level BDD specifications is readable, be-
havior oriented living documentation aimed for developers [4, 41]. Although im-

CHAPTER 2. BACKGROUND 20

plementation level BDD can be done with traditional xUnit tools, there exists
dedicated BDD tools for writing easily more concise and more expressive low-
level specifications [41]. These implementation level BDD tools provide the base
for research work in this thesis, therefore they will be examined in more detail
later with reviewing testing frameworks RSpec, Spock and Spectrum.

2.6.5 Benefits and drawbacks

Benefits Drawbacks
Frequent collaboration® [37] Demands frequent collabora-
tion™* [37]

Less ambiquity, noise and over-
specification in requirements* [37]

Faster feedback* [37]

Increased
ity™* [39]

Increased trust® [37]

Increased test coverage® [37]

requirement traceabil-

Needs active customer™® [37]

High upfront cost™ [37]

Works bad with constantly chang-
ing requirements*® [37]

Learning curve* [37]

Not for all contextes™ [37]

Faster start for new team mem-
bers* [37]

Ubiquitous language can help in
testing right aspects [42]

Requires high discipline* [37]

Can reduce futile feature develop-
ment [41]

Table 2.8: Acceptance Level BDD Benefits & Drawbacks

* = No actual source, based on implications

Benefits (and drawbacks) of acceptance level BDD are almost fully the same
as in ATDD. This is the result of acceptance level BDD being a form of ATDD [36].
Compared to ATDD, Acceptance level BDD introduces the ubiquitous language
and it can have the effect of changing all stakeholders to think about testing to
describe behavior instead of internal structures of the system [42]. The emphasis
on providing value with features can also reduce production of features that are
not used [41]. Drawbacks of acceptance level BDD are identical to the earlier
mentioned ones of ATDD.

CHAPTER 2. BACKGROUND 21

Benefits Drawbacks

Increased external quality* [29, 31] Increased
development time* [26, 29, 31]
Increased internal quality™ [29] Requires high discipline [41]

Helps to test right aspects of com-
ponent [4, 33, 34]

More granular test cases [4, 33|
Can help in maintenance [41]

Table 2.9: Implementation Level BDD Benefits & Drawbacks

* = No actual source, based on implications

Benefits of implementation level BDD share the same characteristics of
TDD. Although there exists no research on how the external and internal quality
of software changes with BDD, it should share the same traits as described earlier
with benefits of TDD. This is a result of implementation level BDD being an
evolution of TDD [33]. As mentioned before, compared to TDD, BDD should
help to focus on verifying the right aspects regarding the component. This means
verifying the behavior of the component instead its structure [4, 33, 34].

Implementation level BDD aims to produce more granular and descriptive test
methods and test cases than TDD [4, 33]. These test cases are also describing
the behavior of production code by examples [4]. This can help the system main-
tenance, providing up-to-date documentation for future developers or even the
original developer later on in the future [41].

Drawbacks of implementation level BDD are not clear, as empirical research
on the topic is nonexistent. Because of the close relation to TDD, practicing
it should introduce a growth in development time [26, 29, 31]. BDD as whole
needs discipline [41], therefore it might not be a good fit for all projects and their
stakeholders. It was also found that BDD is most beneficial when it is used as
a holistic approach [40]. This means including both levels of specification and
accommodating working practices to fully support it.

As the research on this implementation level of BDD is very limited, this thesis
focuses on tools used in it. The main topic of interest is how well they could
replace traditional xUnit testing family even without tests first principle. Before
inspecting these JVM testing frameworks in detail, related research about low-level
testing practices are reviewed.

CHAPTER 2. BACKGROUND 22

2.7 Related research

Although BDD and BDD-testing frameworks have been around over a decade,
empirical research made on the topic is limited. BDD-testing frameworks are in
heavy use in certain programming languages and frameworks, such as RSpec in
Ruby on Rails testing [44], Jasmine in JavaScript testing [34] and Spock [45] in
Groovy testing. There exists no exact research on how popular practicing BDD
is on the mentioned environments, but the reality probably is that these BDD
implementation level frameworks are used largely only for testing purposes, not
practicing BDD. The scope of this thesis is to study the changes in low-level
testing from introducing BDD implementation level testing frameworks without
the practice of BDD. Therefore, the previous findings in studies done on low-level
testing are the most important ones regarding this thesis.

Daka and Fraser [5] studied practitioners of unit testing for used practices
and problems in unit testing with a survey. They found out that developers are
mainly trying to find realistic scenarios on what to test. They made important
findings of developer perception towards unit testing, such as:

e Developers finding isolating of unit under test hard

e Understanding code is bigger problem than understanding test code
e Only half of the survey respondents enjoy writing unit tests

e Maintaining unit tests was found harder than writing them

They state that good automated unit tests could help understanding the produc-
tion code. The finding of low enjoyment of practicing unit testing in developers
can be seen as troublesome; Daka and Fraser notice that there exists a need for
tools that rise developer enjoyment in unit testing. They also note that there is
potential for unit testing research to help developers produce better tests for easier
debugging and fixing of found defects. It was also discovered that there exists a
need for easier maintaining of unit tests.

Li et al. [46] studied unit testing practices with a developer survey. They
specialized in studying the documentation of unit testing practices. One general
major problem they found out was that around 60% of practitioners found under-
standing of unit tests ranging from moderately difficult to very hard. Relevant
findings with unit testing documention practices were:

e Developers find updated documentation and comments in test cases useful

e Writing comments to unit tests is rarely or never done

CHAPTER 2. BACKGROUND 23

e Developers feel that tests should be self-documenting without comments

Li et al. state that for effecting maintaining of test cases, it is important for
developers to understand the impact and functionality of the test case. They also
observed that 89.15% percent of developers agree or strongly agree that maintain-
ing of test cases impacts the quality of software system. They conclude that tools
for supporting maintaining of unit tests could benefit unit test practitioners.

Runeson [6] studied unit testing practices in companies to define unit testing
and to evaluate it. He states that companies with unclear definition for unit testing
face the risk to do bad or inconsistent testing. Runeson also found out that unit
testing strategies are usually emerging from developers own ambitions, instead of
management policies. Related to problems in unit tests, it was found out that
maintaining of unit tests takes much effort. Other major problem was developer
motivation, which seemed low when working with unit tests.

Runeson also surveyed developers about documenting practices in unit testing.
He found out that unit tests are documented preferably in test code rather than in
text. He states that motivation to do unit testing in agile projects could include
test suites functioning as specification.

Williams et al. [26] studied effectiviness of unit test automation at Microsoft.
They also surveyed developers about perception towards unit testing. Around
90% of developers agree or strongly agree that unit tests are useful for regression
testing. Around same percentage of developers see unit tests helpful in aiding
them to produce higher quality code. 60-70% of developers find unit tests helpful
in understanding other peoples code and unit tests also helped them to debug
found problems.

Berner et al. [27] report observations from their own and team members
experiences of automated testing in general. In their experience, test cases at all
levels get corrupted easily if they are not run frequently. They become inconsistent
and difficult to understand. Neglecting test case maintenance effort can result in
test cases that lose their information value running capability. The cost to restore
this type of test cases is very high. Berner et al. state that inappropriate testware
architecture can cause the observed problems.

In master’s thesis by Laplante [47], where she studied differences of TDD
and BDD taken into use, she found out through a survey that practitioners per-
ceive BDD specifications to produce more readable tests than TDD counterparts
practiced with xUnit family testing frameworks. Laplante also states as interest-
ing future work studying the use of dynamic languages, such as JRuby, for Java
testing on the JVM-platform.

In conclusion, unit testing was found to have many problematic areas from
developers perspective. These include aspects such as readability, maintainability
and enjoyment in practicing unit tests. Many unit testing practitioners also feel

CHAPTER 2. BACKGROUND 24

the need for test code to be self-documenting. Implementation level BDD-testing
tools are advertised to help in creating living documentation for the code and
also in providing features to help maintaining the test cases [41]. Main topic of
interest in later chapters of this thesis is in studying implementation level BDD-
testing frameworks and if they can help with the unit test practitioner problems
illustrated in this section.

Next chapter starts with first examining zUnit family testing tools. These
tools are the traditional testing tools in use for the related research explained
in this section. After that, implementation level BDD-testing frameworks are
demonstrated in detail with examples to see how they differ from the xUnit family.

Chapter 3

Environment

This chapter demonstrates few of the different options available for low-level au-
tomated testing in Java-projects. First, xUnit family testing frameworks are
explained with JUnit as an example of them. Second, implementation level
BDD-testing frameworks running on top of JVM programming languages are
demonstrated as an alternative for automated low-level Java-code testing.

3.1 xUnit family testing frameworks

xUnit family of testing frameworks are free, open source software for various pro-
gramming languages that all share the same basic architecture. The first imple-
mentation of a xUnit test framework was SUnit for Smalltalk in 1999. From there
the same idea was ported for Java and thus JUnit was born. There exists also
many other xUnit family members, for instance Cpp Unit for C++, NUnit for NET
languages and PyUnit for Python. These unit testing frameworks are extensible
with different types of extensions. Extensions can add for example integration
testing capabilities for different domains. [2]

This thesis is interested in developer practices with JUnit and their perception
towards it, therefore next the xUnit family architecture is examined with JUnit.

3.1.1 JUnit

JUnit acts as the reference implementation of the xUnit family and it is also the
most popular instance of them [2]. It is used for Java-code testing and it can be
extended for many domains in Java testing [2]. Current stable version of JUnit is
JUnit4 [48], but JUnit5 is scheduled to release in Q5 of 2017 [49], providing many
new features for Java testing. The examples of JUnit and empirical research in
this thesis are all based on JUnit4.

25

CHAPTER 3. ENVIRONMENT 26

i Legend i
TestRunner i |
| Class | |Interface | Method i
Runs
®
Collects
Results . .
TestResult ® Test TestFixture Assertion

Implements Implements Init & Teardown Creates isolated Check conditions

\/ with context with
TestSuite ——"9% "3 TestCase ——9% " ot Method

or many ar many

Figure 3.1: JUnit architecture

The basic architecture close to reference implementation of xUnit family [2] is
explained with JUnit3. The architecture of JUnit3 consists of classes TestCase,
TestRunner, TestFixture, TestSuite and TestResult. TestCase is the unit test base
class, that holds runnable test methods. It implements the interface Test and
its run()-method. Test methods use assertions inside them to evaluate test con-
ditions. TestRunner class is for extending JUnit and running multiple test cases
at once and reporting them. TestFixture class is used to ensure test isolation and
creating a separate test environment for each test method. TestFixtures provide a
common shared context for test methods, where the environment is created from
scratch for each test. This is enabled by providing the test case with common setup
and teardown functionality for class and method level. TestSuite is a class made
for grouping TestCases and it also implements Test. TestSuite makes it possible
to run multiple TestCases and can be used with TestRunner. TestResult class
is used to collect test method outcomes from TestSuites and TestCases. Figure
3.1 visualizes the relationships between the core classes, interfaces and methods of
JUnit architecture. [2]

Uk W N =

N O U

[0¢]

CHAPTER 3. ENVIRONMENT 27

JUnit is a "Spartan” test framework, it contains only the mandatory features
and has to use additional libraries to provide additional testing features such as as
mocking or Data Driven Testing (DDT) [24]. In the next section, example is
provided of a JUnit4 test case extended for integration testing of Spring Framework
domain.

3.1.2 Extending Junit for Spring Framework domain

Spring is a framework for Java, described as: “core support for dependency injec-
tion, transaction management, web applications, data access, messaging, testing
and more.” [50] It is targeted for Java enterprise applications, providing teams
with a framework that allows them to primarily focus on application’s business
logic [50]. Spring framework ships with a lot modules and features that needs to
be configured for the project [51]. Spring Boot is convention-over-configuration
solution composed of the Spring Framework components, that enables rapid ap-
plication development with minimal effort to get started [51].

Spring Framework integration testing can be done by extending JUnit with
custom Spring JUnit runner class or by using Spring JUnit class and method
rules. Runner class and the Spring JUnit rules both provide standard Spring
test context for integration tests with features such as dependency injection and
transactional test method execution. [52]

O@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest
public class GameServicelntegrationTest {
QAutowired
private GameService gameService;

QAutowired
private GameRepository gameRepository;

Figure 3.2: JUnit extended for Spring integration testing

Figure 3.2 shows example of a Spring Boot JUnit integration test, where the
context and its configuration are loaded with lines 1 and 2. Line #2 is an example
of extending JUnit with custom runner. Lines 4-5 and 7-8 show examples of
injected dependency via Spring Framework.

Figure 3.3 displays the usage of fixture and two test methods. At lines
4-8, the fixture method inits separately before each test method run two common
variables used in both tests. Lines 10-11 and 19-20 display two test method defini-
tions with the @Test-annotation from JUnit4. When used, it marks the following
method as a runnable test method. Both test methods contain assertions. As-

16

19
20
21
22
23
24
25
26
27

CHAPTER 3. ENVIRONMENT 28

sertions in use at lines 14-16 and 26 are Hamcrest matchers [53], that allows more
readable descriptions for used assertions than traditional JUnit assertions.

private GameDifficulty gameDifficulty;
private String playerName;

@Before

public void initGameValues() {
gameDifficulty = GameDifficulty.NORMAL;
playerName = "Player";

}

Q@Test
public void testStartGameWithNormalDifficulty() {
Game createdGame = gameService.startGame(playerName, gameDifficulty);

assertThat (createdGame, is(notNullValue()));

assertThat (createdGame.getPlayerName(), equalTo(playerName)) ;

assertThat (createdGame.getDifficultyLevel(), equalTo(gameDifficulty));
}

QTest
public void testStartGamePersistsToDB() {
Integer gameCountBeforeStartGame = gameRepository.findAl1l().size();

gameService.startGame (playerName, gameDifficulty);

Integer gameCountAfterStartGame = gameRepository.findAl1().size();
assertThat (gameCountAfterStartGame, is(greaterThan(gameCountBeforeStartGame)));

Figure 3.3: JUnit Spring Framework integration tests

Figure 3.4 shows the result of the test case run. Even though the example test
methods start with the word test, JUnit4 allows free format naming of the test
methods that don’t need to start with test. This also allows to use JUnit as a
tool for practicing implementation level BDD with some added verbosity in test
method naming [41].

av GameServicelntegrationTest (fi.aalto.ekanban.services)
& testStartGameWwithNormalDifficulty 130ms
= LestStartGamePersistsToDB 77ms

Figure 3.4: JUnit test run results

Build configuration of JUnit/ used in examples can be found in Appendix C
figure C.1. Used build tool is Groovy-based Gradle [54]. JUnit and its extensions

CHAPTER 3. ENVIRONMENT 29

provide a base for automated low-level testing of Java-code. In the next section
alternatives for Java-code testing are presented with implementation level BDD-
testing frameworks from various JVM programming languages.

3.2 Implementation level BDD-testing frameworks
for JVM

As this thesis is interested in testing Java-code, the scope of implementation level
BDD is limited to testing frameworks found from JVM programming languages.
As stated before, these languages hold ones such as Ruby, Groovy, Python, Clojure
and Scala. Through all these languages, there exists many alternatives for both im-
plementation and acceptance-level BDD-testing frameworks. For implementation-
level, there exists two alternative approaches for practicing BDD: xSpec fam-
ily [40] and Gherkin family testing frameworks.

3.2.1 xSpec family

zSpec family testing frameworks are restricted to implementation level [40]. xSpec
style testing is examined in more detail in this section through RSpec via JRuby,
but it also demonstrated with Java 8 -based Spectrum. There exists also other
possibilities for xSpec family testing in JVM enviroment, one of them being for
example Scala-based FunSpec [55] for ScalaTest, but it is not examined in detail.

3.2.1.1 RSpec

Ruby community has been for a long time a steady advocate of TDD [44]. It
is also the birth place of the first implementation level BDD-testing framework:
RSpec [33]. Whereas first BDD framework JBehave [3] was aimed for acceptance
level and all stakeholders, RSpec brought the behavior-driven thinking for devel-
oper audience [33].

RSpec is the founding framework in zSpec family of testing. In its current
version 3.5, it is a mature holistic testing framework including expectations library
(assertions), mocking capabilities, integrations to Ruby frameworks and the core
runner [56]. Later on in this section, RSpec usage for testing Java-code both at
unit and integration level for Spring framework are reviewed. Before this, the core
concepts of RSpec are illustrated.

The main functionality of RSpec comes from the rspec-core library [56]. It
includes the code example groups that can hold runnable specification code
examples [4]. These examples and groups are created into a spec file [4]. Example
groups can be initialized with keywords describe and context, which both are aliases

W N =

-3

o ©

CHAPTER 3. ENVIRONMENT 30

for each other [57]. Example groups can inherit each other nested in a single file,
creating nested context groups [57]. This can help on removing repetition from
the test code and achieving easily readable test outputs [4]. This is enabled by
lifecycle hooks, such as before, after and around [4]. These lifecycle hooks can
be used to run separately for each example, or just once for all examples in the
example group.

Specification code examples can be created with the keywords t, specify and
example [57]. These examples create executable pieces of behavior of the code
under specification [4]. Code examples contain expectations, which specify the
expected behavior of the given example [4]. Expectations can be seen as asser-
tions from xUnit family, but the reason for changing the language is to support
better communication between stakeholders, in this case developers [4]. As BDD
is an evolution of TDD, expectations was created to establish a better language
for what the code to be developed should do, instead of verifying it with asser-
tions [33]. The guideline for the code examples is to hold only one expectation
per example [4]. This allows separate info about failing situations [4] and provides
a rule one assert per test method for living specification [33]. This rule was
originally created by Astels [33] to help TDD practitioners to change viewpoint
from 1-1 relationship between test classes and methods to production classes and
methods. The following table shows the relationships between RSpec testing terms
compared to xUnit architecture components [4]:

Expectations — Assertions
Code Example = Test Method
Example Group — Test Case
Spec File = Test Suite
Lifecycle Hook —> Test Fixture

describe GameService do

before(:all) do
Q@gameInitService = Mockito.mock(GameInitService.java_class)
@playerService = Mockito.mock(PlayerService.java_class)
Q@gameOptionService = Mockito.mock(GameOptionService.java_class)
@gameRepository = Mockito.mock(GameRepository.java_class)
Qgame_service = GameService.new(@gameInitService, @playerService,
Q@gameOptionService, @gameRepository)
end

Figure 3.5: RSpec unit test spec file initializing

Figure 3.5 displays the creation of a spec file. The spec file example is created
for unit testing of GameService Java-class. Line #1 shows the creation of example

U W N

= = = e
B WNhFE OO0 U

ot

16
17
18
19
20
21
22
23
24
25
26
27
28

CHAPTER 3. ENVIRONMENT 31

group with the keyword describe. Lines from 3 to 10 show the lifecycle hook
before, that is used once before all code examples in the example group. In the
before hook, BDD Gherkin inspired Java mocking library Mockito [58] is used
for creating test double objects that replace the dependencies of GameService.

Figure 3.6 illustrates use of nested example groups that contain two examples
in the second level nested example group. Line #1 is the first example group, that
is created with keyword describe. The second level nested example group starts
at line #9 and it is initialized with the keyword context. The context of example
method is a combined from the lifecycle hooks and variable declarations of the
nested example group structure.

describe ’startGame()’ do
let(:player_name) {"Player"}
let(:game_difficulty) {GameDifficulty::NORMAL}
let(:new_game) {GameBuilder.aGame().
with_player_name(player_name) .
with_difficulty_level(game_difficulty).
build O}

context ’with normal difficulty’ do

before(:each) do
Mockito.when(@gameInitService.getInitializedGame (
Mockito.any(GameDifficulty.java_class), Mockito.anyString)) .thenReturn(new_game)
Mockito.when(@gameRepository.save(new_game)) .thenReturn(new_game)
end

subject (:created_game) { @game_service.start_game(player_name, game_difficulty) }

it ’should create game with the given name’ do
expect (created_game.player_name) .to eq player_name
end

it ’should create game with the given game difficulty’ do
expect (created_game.difficulty_level).to eq game_difficulty
end

end
end

Figure 3.6: RSpec nested example groups with code examples

RSpec lets to define the action of the example group with the keyword sub-
ject [59]. Example of used subject is at line #17. The two code examples are
at lines 19-21 and 23-25. Both examples show expectations given with keyword
expect at lines 20 and 24. The two expectations are separated from each other
following the one assert per test method to create more granular documentation of
behavior. As mentioned earlier, this separation also allows independently failing
code examples.

19

CHAPTER 3. ENVIRONMENT 32

v D Java:FiRaltoEkanbanServices::CameService

& startGame() 74ms
@ with normal difficulty 74ms

@ should create game with the given name 63ms

@ should create game with the given game difficulty 11ms

Figure 3.7: RSpec code example run output

Figure 3.7 shows the output of code examples run in Integrated Development
Environment (IDE) Intellij Idea [60]. The nested structure of example groups is
seen with accordion elements. At the leaf of the nested tree structure is the code
example and its run result. In reporting, the output of the first code example is
formatted as:

Java::FiAaltoEkanbanServices:: GameService startGame() with normal difficulty
should create game with given name

Extending RSpec for Spring Framework domain integration testing needs to
be done different route than with JUnit. RSpec runner can’t use custom JUnit
Spring runner or JUnit Spring context rules. Example group also can’t be anno-
tated with Spring configuration. Configuration annotation can be used with other
demonstrated testing frameworks in this chapter. Figure 3.8 displays the config-
uration that enables Spring Framework context for RSpec testing. At line #6, it
scans the given package for dependencies. At lines 7-9 test specific configuration
is registered for the test context. Lines 17-19 display how to retrieve web server
port for integration testing.

class SpringContext
include Singleton

def initialize
Q@ctx = AnnotationConfigEmbeddedWebApplicationContext.new
@ctx.scan("fi.aalto.ekanban")
Q@ctx.getEnvironment.setActiveProfiles("test")
Qctx.register (MongoConfiguration. java_class)
Qctx.register(PortConfiguration. java_class)
Q@ctx.refresh

end

def spring_ctx
Qctx
end

def spring_port
Qctx.getEmbeddedServletContainer.getPort
end
end

Figure 3.8: RSpec extension for Spring Framework integration testing

Y Uk W N =

CHAPTER 3. ENVIRONMENT 33

Figure 3.9 illustrates how-to inject dependencies for RSpec integration test-
ing through Spring Framework dependency injection container. At line #13 the
Spring Framework test context is created, and at line #14 additional dependency
is retrieved through the initialized singleton integration test context object.

describe GameService do

before(:all) do
Qctx = SpringContext.instance.spring_ctx
O@gameRepository = Q@ctx.getBean "gameRepository"
end

Figure 3.9: Spring Framework dependency injection example for RSpec

To be included in the build process, getting JRuby-based RSpec in use for
testing Java-code needs more setup than other testing frameworks reviewed in
this chapter. Appendix C figure C.4 displays the full build configuration needed
to make RSpec a part of a Gradle build. To be able to run the tests in IDE Intellij
Idea, JRuby environment with the needed ruby gems [61] (dependencies) installed
is required.

3.2.1.2 Spectrum

Spectrum is a Java 8 -based BDD-style test runner for JUnit4. It is influenced
by BDD implementation level testing frameworks Jasmine and RSpec. It is used
via custom runner for JUnit, and thus has good support for IDEs and reporting
tools that are used with JUnit. Version 1.1.0 of Spectrum supports both zSpec fam-
ily specification style and Gherkin family structure. This thesis inspects Spectrum
more closely as a RSpec alternative for zSpec family style testing of Java-code. [62]

Spectrum used in examples and later on in project is version 1.0.2. It supports
nested example groups initialized with the keyword describe and code exam-
ples with keyword it. Both the example groups and their code examples are build
with Java 8 lambda-blocks. It has also support for lifecycle hooks before and
after. [63]

Figure 3.10 displays the exact same Java-based specification as the JRuby
RSpec one in figure 3.6. The main difference is the added verbosity from Java
compared to Ruby. Otherwise the used example groups and their code examples
match one to one. Exceptions in used terminology are missing keywords context
and subject. Deviation from RSpec is also the usage of assertions with Hamcrest
matchers instead of expectations. Figure 3.11 displays the output of code example
runs in IDE Intellij Idea.

16

19
20
21
22
23
24
25
26
27

29
30
31

CHAPTER 3. ENVIRONMENT 34

describe("startGame", () -> {

final Supplier<GameDifficulty> gameDifficulty = let(() -> GameDifficulty.NORMAL);

final Supplier<String> playerName = let(() -> "Player");

final Supplier<Game> newGame = let(() -> GameBuilder.aGame ()
.withPlayerName (playerName.get ())
.withDifficultyLevel (gameDifficulty.get())
.build());

describe("with normal difficulty", () -> {

beforeEach(() -> {
Mockito.when(gameInitService.getInitializedGame (
Mockito.any(GameDifficulty.class),
Mockito.any(String.class))) .thenReturn(newGame.get());
Mockito.when(gameRepository.save(Mockito.any(Game.class))) .thenReturn(newGame.get());

B

final Supplier<Game> createdGame = let(() ->
gameService.startGame (playerName.get (), gameDifficulty.get()));

it("should create game with the given name", () -> {
assertThat (createdGame.get () .getPlayerName(), equalTo(playerName.get()));
B;

it("should create game with the given game difficulty", () -> {
assertThat (createdGame.get () .getDifficultyLevel(), equalTo(gameDifficulty.get()));
B

b
B

Figure 3.10: Spectrum nested example groups with code examples

sy GameServiceSpec (fi.aalto.ekanban.services)

= GameService 315ms
= startGame 315ms

a8 with normal difficulty 315ms

= should create game with the given name 315ms

= should create game with the given game difficulty 0ms

Figure 3.11: Spectrum code example run output

Extending Spectrum 1.0.2 for Spring Framework domain integration testing
happens with context configuration and imperative creation of test context. At
line 21 in Figure 3.12, JUnit is extended with custom Spectrum-runner. This
enables the usage of example groups and code examples. Line #2 shows the
annotation based configuration of the Spring Boot test context. As mentioned in

CHAPTER 3. ENVIRONMENT 35

section 3.1.2 about extending JUnit for Spring Framework, the normal extending
for Spring Framework would happen with custom JUnit Spring runner or JUnit
rules. Neither of these options work with the Spectrum version in use, but line
#13 displays alternative imperative way of loading test context. Lines 5-6 and 8-9
display the dependency injection feature of Spring Framework.

ORunWith(Spectrum.class)
@SpringBootTest
public class GameServicelntegrationSpec {

QAutowired
private GameService gameService;

QAutowired
private GameRepository gameRepository;

{
beforeAll(() —-> {
new TestContextManager (getClass()) .prepareTestInstance(this);

B;

Figure 3.12: Spectrum extension for Spring Framework integration testing

Build configuration for shown examples can be found in Appendix C figure
C.2. The used build tool is Gradle.

Essentially Spectrum is a Java-based implementation of a subset of features
present in RSpec. It is at early version, and is not yet mature or widely used
framework. Still, it can be considered as a fully working instance of a xSpec family
testing framework. Next section examines the alternative implementation level
BDD-testing approach: Gherkin famaily.

3.2.2 Gherkin family

Gherkin family is a term defined in this thesis, containing BDD-testing frame-
works that use predetermined ubiquitous language Gherkin [64]. There exists re-
search related to usage of Gherkin in BDD-testing frameworks [42]. Gherkin family
frameworks exists for both acceptance and implementation testing level [42]. For
Java-code testing at implementation level with Gherkin, JVM offers for example
Spock [45] via Groovy, Java 8 -based Spectrum [62], JRuby-based RSpec-given [65]
for RSpec and Scala-based FeatureSpec [66] for ScalaTest. Spock will be used as an
example for inspecting implementation level testing with a Gherkin family frame-
work.

CHAPTER 3. ENVIRONMENT 36

3.2.2.1 Spock

Spock is a BDD-testing framework for JVM programming language Groovy [24].
It supports testing both Java and Groovy code and it can be considered a superset
of JUnit, as it extends the JUnit runner [45]. As a result of this, it is considered
"enterprise ready” with support for IDFEs, JUnit rules, external tools that use
JUnit runner and easy build tool integrations [24].

Spock is capable of testing the whole automated BDD cycle from acceptance
level to unit level [24]. It holds unit test support with integrated mocking and stub-
bing capabilities [45]. Spock can also be extended for integration testing of different
domains [24]. Spring Framework domain extension is done with spock-spring de-
pendency, that can be configured with the @ContertConfiguration-annotation of
Spring [52].

Spock also supports DDT with tabular format readable domain specific lan-
guage (DSL) [45]. DDT can drastically remove repetition from test code and makes
it easier to test different parameter variations [24]. Figure 3.13 displays console
debugger of Spock related to condition checking. This display of objects and their
values and the assertion checks straight in the console can reduce the need for
explicit debugging [24].

Condition not satisfied:

createdGame.difficultylevel != gameDifficulty
| | ||

| MORMAL | NORMAL

| false
fi.aalto.ekanban.models.db.games.Game@98dd843e

Figure 3.13: Spock console debugger

As stated earlier, Spock is a BDD-testing framework with Gherkin support.
Full functionality of Gherkin includes feature and scenario information described
with Given-When-Then steps in plain text test input [64]. This makes it eas-
ier for stakeholder collaboration and is aimed at acceptance testing level. Spock
supports full Gherkin through additional library Pease, but the support for it is
deprecated [67]. Although Spock can be configured to use plain text Gherkin, its
normal usage is aimed for developer audience at implementation level with test
code and Gherkin descriptions mixed in together [42].

Spock terminology consists of specification files containing feature methods
and Given-When-Then blocks inside them [45]. Figure 3.14 displays initialization

CHAPTER 3. ENVIRONMENT 37

class GameServiceSpockSpec extends Specification {

@Shared GameService gameService
O@Shared GamelInitService gameInitService
@Shared GameRepository gameRepository

def setup() {
gameInitService = Mock(GameInitService)
gameRepository = Mock(GameRepository)
def playerService = Mock(PlayerService)
def gameOptionService = Mock(GameOptionService)
gameService = new GameService(gameInitService, playerService,
gameOptionService, gameRepository)

Figure 3.14: Spock specification file initialization

of a Spock specification file. At line #1 the specification class is created by ex-
tending the class Spock.lang.Specification. Lines 3-5 show use of @Shared-variables,
which are used for long lived objects shared between feature methods [45]. Lines 7
to 14 show the use of setup-fixture for creating a shared, isolated context for each
feature method [45]. The fixture setup is used for initializing unit testing context,
where the use of Mock-objects can be seen. Class under test GameService has its
dependencies replaced with test doubles.

Spock makes heavy use of Gherkin’s Given-When-Then with runnable code
blocks for each steps, that can contain textual description [24]:

e Given is a code block used to initialize the context of test
e When is a code block used to trigger the action, stimulus of the test
e Then is a code block containing assertions to verify conditions

JUnit testing literature also states to use this kind of structure with Arrange-
Act-Assert (AAA), where different parts are separated from each other with
space between them [23]. As this structure is not enforced in JUnit, there is the
considerable possibility that it will not be used [24].

Figure 3.15 illustrates the contents of a feature method and the use of Given-
When-Then blocks. Block definitions are at lines 4, 10, 13, 17, 20 and 23 together
with optional textual descriptions [45]. Lines 4-8 form a Setup-block, which is an
alias for Given-block [45]. Lines 17 and 20 display the creating of And-block, which
can be used as an alias for the previously occurred main block (Given-When-Then)
for more readable structure [24].

16

19
20
21
22
23
24
25
26
27

CHAPTER 3. ENVIRONMENT 38

@Unroll
def "GameService startGame() with playerName #playerName and difficulty #gameDifficulty"() {

setup:
def newGame = GameBuilder.aGame ()
.withPlayerName (playerName)
.withDifficultyLevel (gameDifficulty)
.build)

when: "startGame() is called with playerName and gameDifficulty"
def createdGame = gameService.startGame(playerName, gameDifficulty)

then: "game should be initialized and persisted"
1 * gameInitService.getInitializedGame (gameDifficulty, playerName) >> newGame
1 * gameRepository.save(newGame) >> newGame

and: "game has been created with given name"
createdGame.playerName == playerName

and: "game has been created with given gameDifficulty"
createdGame.difficultyLevel !'= gameDifficulty

where:
playerName | gameDifficulty
"Player" | GameDifficulty.NORMAL
"Pelaaja" | GameDifficulty.NORMAL

Figure 3.15: Spock feature method

Lines 14-15 display the verifying of mock object actions and stubbing capabil-
ities. For example, at line 14

1 * gamelnitService.getInitialized Game(gameDifficulty, playerName)

verifies that the mock object method is called exactly one time with exact defined
parameters gameDifficulty and playerName. The latter part after the verifying,
”>> newGame”, is used to stub the return value for the called mock object action.

DDT can be seen with lines 1 and 23-26. Line #1 @Unroll creates a separate
test run for each parameter variation defined in the Where-block (lines 23-26).
Line #24 defines the parameter names and lines 25-26 are separate situations that
creates an individual feature method run. Finally the line #27 holds the definition
of the feature method. The name of feature method can be inserted as a string
description, allowing more easily to write information in it [24]. In the example,
name holds test run output information with the embedded parameters inside it.
The result of feature method run on the IDE Intellij Idea can be seen in the figure
3.16 as two separate test runs through the DDT.

To get Spock integrated into Gradle build cycle with full mocking capabilities,
Spring Framework support and BDD styled HTML-reporting, it needs quite a few
dependencies. The build configuration can be found in Appendix C figure C.3.

CHAPTER 3. ENVIRONMENT 39

Y CameServiceSpockSpec (fi.aalto.ekanban.services)
U GameService startGame() with playerMame Player and difficulty NORMAL 386ms
U GameService startGame() with playerMame Pelaaja and difficulty NORMAL — smis

Figure 3.16: Spock feature method output

All the examples displayed in the figures are of Spock used for testing Java-
code. Although at first glance the test code might look like Java, the programming
language used is Groovy. Groovy is aimed to resemble Java with dynamic pro-
gramming language capabilities and less verbose syntax [24]. In the given test
code examples, Java production code classes are used directly from Groovy.

Next chapter explains the research around testing Java-code with different
testing possibilities explained in this environment chapter. Chapter 4 will first
explain what the empicical research focuses on and then how it does it.

Chapter 4

Methods

This chapter discusses the design of the study. First, research questions are in-
troduced. Second, research hypothesis is made based on the reviewed practices
& related research findings introduced in the chapter 2, together with features of
studied testing frameworks explained in chapter 3. Third, the empirical study and
its methodology are explained in detail.

4.1 Research questions

This thesis studies low-level testing done with xUnit family testing framework JU-
nit and how it changes after putting an implementation level BDD-testing frame-
work into operation. The scope in research is testing Java-code. The following
research questions are aimed to highlight the change in low-level testing after the
testing framework change:

RQ1: How do BDD-testing frameworks change developer practices working
with automated low-level testing compared to JUnit framework?

RQ2: How do BDD-testing frameworks change developer perception of work-
ing with automated low-level testing compared to JUnit framework?

RQ3: How do BDD-testing frameworks change written low-level test cases and
test code coverage compared to JUnit framework?

4.2 Research hypotheses

The following hypotheses are derived from the mentioned benefits of BDD litera-
ture in chapter 2 and features of BDD testing frameworks illustrated in previous

40

CHAPTER 4. METHODS 41

chapter. These hypotheses adhere directly to most common problems found in
unit testing practitioner research mentioned in section 2.7 in chapter 2: readibil-
ity of unit tests is not optimal, maintainability of unit tests is problematic and
enjoyment in practicing unit testing is low.

Hypothesis 1 (H1): Developers will write more granular test cases

As has been noted before in benefits of implementation level behavior-driven devel-
opment, BDD-testing frameworks operating on this level aim to produce granular
test cases with descriptive named test methods [4, 24, 33]. For example RSpec was
originally intended to help the shifting of viewpoint from 1-1 relationship between
test-code and only one test method per function to more granular test cases [33].
Compared to earlier average in the project, hypothesis should be visible in test
cases through more measured test methods per method of component under test.
In addition, the phenomena is also studied with a participant survey.

Hypothesis 2 (H2): Developers will find it easier to understand test cases

As stated earlier, implementation level BDD-testing frameworks should produce
test cases of the component under test, that describe behavior with exam-
ples [4, 33, 34]. The close to natural language DSL used to create these behavior
specifying tests with BDD-testing frameworks should have a natural tendency to
"force” developers to write more descriptive tests. This is provided for exam-
ple with xSpec family keywords describe & it and with Gherkin family Given,
When € Then-steps. The context, stimulus and assertions of the tests should be
more visible with these mentioned structures and the test output should be more
understandable [41]. Master’s thesis by Laplante had also studied that BDD speci-
fications was perceived by developers to produce more readable tests than the ones
written with xUnit testing family tools [47]. Hypothesis is measured with surveys,
interview and with data from the test code analysis.

Hypothesis 3 (H3): Developers will find it easier to maintain code

Implementation level BDD specifications should produce up-to-date living docu-
mentation, which can help in overall maintenance of the the system [41]. Especially
the maintaining of test cases should be easier with repetition reducing techniques
provided by these BDD-testing frameworks [4, 24]. zSpec family nested group ex-
amples and lifecycle hooks should allow efficient repetition removal compared to
traditional zUnit family testing frameworks. Data-Driven Testing DSL of Spock
testing framework should allow to more easily test parameter variations and re-
move the need for separate test methods, therefore making it easier to maintain
the test case. Hypothesis is measured with surveys and interview.

Hypothesis 4 (H4): Developers will perceive working with low-level automated

CHAPTER 4. METHODS 42

testing more enjoyable.

This hypothesis is a combination of the three earlier hypotheses. By changing the
used practices and language in low-level testing, the overall result should appear
as more enjoyable low-level testing for developers. Especially the hypotheses 2 and
3, easier understanding and maintaining of test cases should affect how automated
low-level testing is perceived. Hypothesis is measured with surveys.

4.3 Empirical study

First in this section the type of study is determined, together with rationale and
objectives of it. Second, the case selection is explained with process for selecting
teams and developers. Third, the data selection methods of this empirical study
are explained. Finally, validity and reliability of this study are reviewed.

4.3.1 Type of study and purpose

This section explains the design of the empirical case study collecting evidence
from multiple sources with methodological triangulation. The data was collected
from multiple projects and participants with surveys and interviews. Case study
data collecting was enriched with observations from multiple projects and their
test code changes. Survey data can be categorized as quantative, interview data
as qualitative and observation data as quantative. This study follows the pattern
of deductive research, starting with background theory and hypothesis followed by
observations and confirmation. This is visible through combined practices from
experimental research with identified problems and predicted answer to found
problems in the form of hypothesis. Case study methodology was build with
suggested best practices for empirical research in software engineering [68] and
case study research [69].

Rationale of this case study was to improve existing traditional low-level
automated testing practices research with studying relevant technologies used in
the industry. At the same time, this case study could act as a starting point for
future research on the differences of traditional xUnit family testing frameworks
and implementation level BDD-testing frameworks for larger scale studies.

Objective of the study was to compare traditional zUnit family testing frame-
works and implementation level BDD-testing frameworks and how they change
the developer practices and perception towards low-level automated testing. The
change was also measured with changes in written test code. As this thesis is
done at industry context, the purpose was also to determine how well these new
testing frameworks in JVM context could work for future use in Java projects in
the studied company.

CHAPTER 4. METHODS 43

4.3.2 Process for selecting teams and developers

The study was conducted in industry context at I'T-consulting software firm Vincit
Plc, Helsinki Mikonkatu 15 office. Related to objective of studying the automated
low-level testing differences, context for the development environment was chosen
as JVM. JVM provides interesting possibilities through various programming lan-
guages in use for low-level automated testing. For the selection of teams, there was
limitations; team should be implementing a Java-based Spring Framework project
with prior JUnit unit and integration testing in place. Limiting factor in team
selection was also the amount of effort available, as my intention was to graduate
in the current spring semester of 2017. This filtered out projects that could not
start the study before April.

With these constraints, two projects and their teams were chosen to be studied.
The teams were first introduced to implementation level BDD-testing frameworks.
Both teams were presented with RSpec, Spock and Spectrum, from which they
chose one technology to take into use in the projects for new created unit and
integration test cases. This process is explained in more detail in chapter 5. Two
months after the initial introduction and time in use for the selected BDD-testing
framework, the data collecting was ended. The two months time was chosen to see,
how the early adoption of new technologies had gone. The limited time available
was also a practical constraint that resulted to study only for two months time.
All the participants in this study were restricted to developers, as the purpose was
to study developer testing practices. The projects A and B are explained in more
detail in chapter 6.

4.3.3 Data collection

Selection of data included filtering of participants in the project. Participants
were filtered to backend developers whom were developing with the Java Spring
Framework and thus using JUnit for low-level testing purposes.

Data collection from projects is done with methodological triangulation using
first degree study participant interviews, second degree participant surveys and
third degree quantative test code analysis. The main tool is the second degree
surveys. First, the interview for demographic purposes is explained. Second,
the two surveys used to answer RQ1 and RQ2 are examined. In addition to
surveys for RQ1 and RQ2, an interview was conducted at the end with partici-
pants to learn more about general thoughts on the new testing frameworks used.
Third, test code analysis, aimed to help answering RQ3, is defined.

CHAPTER 4. METHODS 44

4.3.3.1 Interview for demographic purposes

Participant demographics were studied with recorded semi-structured interviews [70].
The interview was constructed following the guidelines of suggested best prac-
tices [68]. The results of interviews and the analyzed demographics are shown
in the chapter 6. The questions of the interview can be found from Appendix A
section A.1.

4.3.3.2 JUnit survey

An online survey about JUnit was built to gather base information for RQ1 and
RQ2, that was later on used as a reference to answer about changes in automated
low-level testing practices and perception. Although the participants of the survey
where currently working with JUnit in particular projects, they were asked to
answer in more broader context of using JUnit through the years in different
projects. The survey was designed and built using LimeSurvey [71]. The reason
to use survey as the main tool for data collection was the related unit testing
research surveys [5, 26, 46]. Some of the survey questions were interesting starting
points for the built survey in this study. As there were many survey questions
to begin with, it was logical to conduct the identifying of the baseline for low-
level testing practices and perception with a survey. Additional motivation to use
survey was to quantify results, and to provide a more specific survey question set
to study problematic areas risen from related research problems.

Copied survey questions were used as close to their original form as possible.
The question scales were unchanged, ranging from 1 to 5 and 1 to 7 point Likert
scale questions to one summing percentage question. The changed part was some
of the words in few questions. Changed words were from “unit” to “low-level”,
resulting in questions that take into consideration both unit and integration level
testing.

Questions created for this research were mainly 1 to 7 point Likert scale ques-
tions. The reason to use 7 point Likert scale was to increase the discriminating
power of the questions [72]. At the end of the survey Network Promoter Score
(NPS) [73] was used to see how enthuastic and ”loyal” the participants were at
the beginning of the study to low-level automated testing in general and in more
specific to JUnit. The survey questions and how they are related to research survey
questions and related research can be found in Appendix B section B.1.

4.3.3.3 BDD-testing frameworks survey

Second survey was built to directly get insight on RQ1 and RQ2 about automated
low-level testing and it was conducted two months after new implementation level

CHAPTER 4. METHODS 45

BDD-testing framework was taken into use. The second survey used all the ques-
tions (with modifications) from the first survey regarding JUnit testing practices
and also added couple additional questions related to selected BDD-testing frame-
work. The survey was built using LimeSurvey. Modifications to questions include
changing the question setup to a direct comparison of JUnit. For example, figure
4.1 displays the original 5 point scale Likert question used in JUnit survey and
figure 4.2 shows the comparison question used in Spectrum survey.

How often do you add/write documentation comments to low level test cases?

O Choose one of the following answers

Never
Rarely
Sometimes
Fairly often

Always

Figure 4.1: JUnit survey 5 point scale Likert question

Compared to JUnit, how often do you add/write documentation comments to low level test cases?

O Choose one of the following answers

Alot less

Less

Slightly less

The same amount
Slightly more
More

Alot more

Figure 4.2: Spectrum survey 7 point scale Likert comparison question

The reason to change the questions was to provide direct comparison between
the test frameworks. If the same question set was repeated to gather insight on
the new BDD-testing framework, there exists the risk that the participant doesn’t

CHAPTER 4. METHODS 46

remember what he or she answered the last time. It could result in choosing the
same answer option, despite the slight change in practice or perception in testing.

The used question types were mostly 1 to 7 point Likert scale questions for the
direct comparisons, combined with a few NPS questions for determining developer
loyalty towards low-level automated testing in general and also towards the new
BDD-testing framework. A few other type of questions were also added. The
survey questions and how they are related to research survey questions and related
research can be found in Appendix B section B.2.

4.3.3.4 Interview about benefits and drawbacks of new BDD-testing
framework

At the end of the two month data collecting period, a loosely structured semi-
structured interview was conducted with the participants to get more input on the
change period. The interview holds only three basic questions to start with:

1. What were the main benefits of the new testing framework X over JUnit?
2. What were the main drawbacks of the new testing framework X over JUnit?
3. How long was the learning curve to feel effective with framework X?

The idea to practice these questions with a interview, instead of survey questions,
was to lead the discussion to possible new topics on the subject if they rose upon
interviewing. Also some clarifications were asked to interesting answers on the
second survey questions. Framework X part of the question relates to chosen
BDD-testing framework in the project, as it was not the same for both projects.

4.3.3.5 Test code analysis

Research question 3 is answered with test code analysis done with observation
metrics from actual test data of the projects. First the baseline is calculated
from existing automated low-level tests with JUnit. Second, the same values are
calculated after the two months period of using an implementation level BDD-
testing framework. These metric values are then compared against each other, to
see how the following aspects of test code have changed:

CHAPTER 4. METHODS 47

Automated unit testing level metrics

1. Count of test methods (COTM): Average count of test methods per class
method (COTM) is defined at unit level. This is calculated through the sum
of unit test methods (UTM) divided by sum of class methods under test
(CMUT). Data driven test methods add to sum of UTM as many separate
methods as the the runner produces from it, for instance one data driven
test method can produce 20 methods to UTM sum.

n

UTM,;

P CMUT, where UT'M; > 1 and CMUT; =1

2. Code coverage (CC): Measured code coverage for unit tests is done with
JaCoCo [74]. The code coverage is measured with instruction coverage
and branch coverage percentages [75]. Instruction coverage counts the
percentage of hit-and-miss for Java byte code instructions by unit tests.
Branch coverage calculates the number of executed or missed if and switch
statements by unit tests.

Automated unit & integration testing level metrics

3. Code coverage (CC): Measured code coverage for low-level tests is done with
JaCoCo in the same manner as described earlier in unit level code coverage
definition. It includes both unit and integration level test coverage.

4. Count of Assertions (COA): Average count of assertions per test method
(COA) is defined for low-level test methods. This is calculated with the
sum of assertions (A) in low-level test methods divided by the total sum of
low-level test methods (LLTM).

; LLTM, where A; > 0 and LLTM; =1

5. Count of Comments (COC): Average count of comments per test method
(COCQC) is defined for low-level test methods. This is calculated with the

sum of comments (C) in low-level test methods divided by the total sum
of low-level test methods (LLTM). Comments include both inner and outer

CHAPTER 4. METHODS 48

comments. Inner comments are inside the test method and outer comments
preceding the test method.

- C;
. > .=
E TITI, where C; > 0 and LLTM,; =1

1=

6. Test method name word count (TMNWC): Average test method name
word count (TMNWC) is counted differently for different testing frameworks.

For JUnit low-level test method name words are gathered through splitting
the CamelCase [76] method name into separate words. For instance, example
test method definition at line 36 in figure 3.3:

public void testStartGameWithNormalDifficulty()

is parsed into a 6 word test method name:

test Start Game With Normal Difficulty

For xSpec family, low-level test method name is counted starting from the
first code example group description string, concatenating nested example
group string descriptions and ending in the code example description string.
For example from the figure 3.6, the first concatenated code example name
(with word count of 11) is:

Java::FiAaltoEkanbanServices::GameService startGame() with normal
difficulty should create game with given name

For Spock low-level test method name is counted from feature method string
name. For example, DDT feature method name at line #27 in figure 3.15:

GameService startGame() with playerName #playerName and difficulty
#gameDifficulty

contains 8 words.

For each testing frameworks, TMNWC is calculated through the sum of test
method name words (TMNW) divided by total sum of low-level test methods
(LLTM).

n

TMNW;
Z—

> L —
LLTM, where TMNW; > 1 and LLTM, =1

=1

CHAPTER 4. METHODS 49

7. Data driven test methods (DDTM): DDTM, Ratio of data driven low-level
test methods (DDLLTM) to low-level test methods (LLTM) is calculated by
dividing the sum of DDLLTM by LLTM.

S DDLLTM,
S LLT M,

4.4 Validity and reliability

In this section, the different categories of validity together with reliability are
analyzed with mitigated risks and remaining threats. Validity is categorized by
aspects recommended by Runeson et al. [69]. Relevant threat categories in this
research include construct, internal € external validity and reliability of the study.
First, construct validity is analyzed. Second, internal validity is examined. Third,
external validity is studied and finally reliability is discussed.

4.4.1 Construct validity

The construct validity reflects how well the studied aspects represent the original
intention of the researcher [69]. Threats to construct validity include the threats
to validity of the used study methods. Mitigations used for this risk in study were:

e Data collection used methodological triangulation with surveys, inter-
views and test code analysis. Quantative and qualitative data was used.

e Large parts of survey regarding the developer practices and perception to-
wards JUnit were well-founded by using previous research survey questions
as the starting base directly.

e Code analysis metrics such as COTM or COA were defined clearly.

e Risk in understanding of surveys was mitigated by providing support avail-
able for the participants during the answering of the survey to avoid misun-
derstood questions.

However, there is still a probability that the survey question was not interpreted
the same way as it was intended to study the aspects of testing. Interview questions
were understood seemingly correct, as the interview situations and discussions gave
better insight to developer answers.

CHAPTER 4. METHODS 20

4.4.2 Internal validity

Internal validity examines the causal relations of the study [69], the presence of
bias in the study [68]. To mitigate respondent bias, prolonged involvement [69)]
was used in studying participants of the study. During the conducting of the study,
I was employed in the studied company. This enabled the access to project source
code for test code analysis and also providing a trustful relationship with the study
participants.

Internal validity threat includes the unexpected sources of bias [68]. The before
mentioned prolonged involvement could lead to researcher bias. Another source
of unwanted bias comes from the process of finding relevant projects and teams
for the study. I first had the task of convincing participants to take a new BDD-
testing framework into use in the middle of the project. This process is explained in
detail in chapter 5, but it can be summerized as an enthusiastic selling of the BDD-
testing frameworks and their features. This can cause some unwanted response
bias influenced by a presence of a ”champion” [68] driving the change and initial
impressions.

4.4.3 External validity

External validity reflects how well the findings in the study can be generalized
and how they could interest other people outside the study [69]. To mitigate the
risks to external validity, there was kept attention in studying the BDD-testing
tools in relevant industrial context in actual project settings. Study participants
were also selected from senior developers with same degree experience level. Data
triangulation was also used to study the applicability of BDD tools in different
projects with multiple participant data sources.

External validity threats are related to threats that hinder the possibility to
generalize the findings from this study [69]. The demographics which the study
was applied can be found in section 6.1. Major threat to generalizing the findings
is the limited number of participants involved through the projects A and B.
Projects are demonstrated in detail in section 6.1, but in brief, the participant
number in total in them was only 3. As the sample size is small, the results
can’t be generalized with certainty to all industrial developers. For example the
survey regarding practices and perception towards JUnit can only offer insight
to participant working practices, but can’t be used to state a generalizations of
unit and integration testing practices amongst majority of developers. The survey
regarding changes in low-level testing after introduction of the implementation
level BDD framework in project acts as a valuable developer experience report
with its direct comparison questions, but isn’t statistically relevant.

Another problem in generalization is the fact that the study was conducted

CHAPTER 4. METHODS o1

within Java-projects and JVM-environment, thus this study is specific to the
studied environment. Thus generalizations to other environments can’t be made
directly. Additional threats to external validity were the short limited two months
period of time were the study was conducted and the limited amount of new
test cases studied in the test code analysis part of the research.

4.4.4 Reliability

Reliability of this study is the aspect of the study being dependent on the re-
searcher [69]. The study research methods and especially data collection methods
are explained in detail and thus they should be able to be replicated by other re-
searchers. Also the source code for enabling needed build configurations and test
framework extensions are provided.

One aspect that hinders the reliability is the provided refactoring of JUnit
tests to BDD-testing framework examples explained in chapter 5. This step is
hard to reproduce by other research on a larger scale, as it involves time and
effort not possibly available. This example providing can also cause bias in the
studying by shifting the written new tests to a certain structure that supports the
research hypothesis. Although providing examples of good practices should only
help to produce test code closer to as originally intended by the authors of these
BDD-testing framework creators.

This chapter discussed the case study details; what was studied and how it
was done. Before chapter 6 and case study results, the next chapter illustrates
how selected project teams chose their new implementation level BDD-testing
framework to take in use.

Chapter 5

BDD frameworks in selected projects

This chapter illustrates how studied projects teams chose their implementation
level BDD-testing framework to take in use for the project. The process is ex-
plained in detail with examples of JUnit tests refactored into example tests in
different BDD-testing frameworks.

Projects are denoted as A and B. Full description of projects can be found
in section 6.1 in the interview results. In brief, they both can be categorized as
Spring Framework projects. Project A is a Spring Boot project, where most of the
needed dependencies are bundled under Spring Boot configuration. Project B is
a conventional Spring Framework project, where needed dependencies are added
individually into build configuration.

Both projects and their teams were first introduced to built proof of concept
examples of RSpec, Spock and Spectrum in use for an example Java Spring
Framework project. Some of these used examples can be found in chapter 3.
All my subjective pros and cons of these BDD-testing frameworks versus JUnit
were demonstrated. RSpec was stripped from the potential candidates from both
projects first, as it included a more complicated development and build environ-
ment configuration. Also the support in IDE’s for debugging JRuby and Java code
at the same time was not present. Project A developers had seemingly negative
attitude towards changes in testing at first. Therefore I promised refactored ex-
amples of old JUnit tests to Spectrum and Spock, and tried to convince the team
to switch testing framework for new tests. Project B developer had heard of Spock
before, and thus, it was chosen as the framework to provide refactored examples
in the project. First in this chapter, project A and its examples are reviewed.
Second, project B and its refactored test examples are examined.

52

N =

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39

CHAPTER 5. BDD FRAMEWORKS IN SELECTED PROJECTS 53

5.1 Project A

Prior the starting of study, project A had 49 test cases/files with 187 test methods
of combined automated unit and integration level tests done with JUnit. I chose
a few example test cases, which would benefit from repetition reducing techniques
and better readability of the test methods. There were many more test methods
and even test cases refactored, but here is provided an example of originally two
JUnit test methods refactored into DDT feature method in Spock and four code
examples in Spectrum with custom DDT technique.

QTest

public void testDogTrainingEvent() {
Application application = new Application();
application.setType (ApplicationType.SHORT_TERM_RENTAL) ;
application.setKind(ApplicationKind.DOG_TRAINING_EVENT) ;
application.setStartTime (ZonedDateTime.parse("2016-11-07T06:00:00+02:00")) ;
application.setEndTime(ZonedDateTime.parse("2016-12-10T05:59:59+02:00"));
Applicant applicant = new Applicant();
applicant.setName ("Hakija");
applicant.setType (ApplicantType.ASSOCIATION) ;
application.setApplicantId(applicantDao.insert(applicant).getId());
// association -> 50 EUR /applicationExtension
checkPrice(application, 5000);

applicant.setType(ApplicantType.COMPANY) ;
application.setApplicantId(applicantDao.insert(applicant).getId());
// Company -> 100 EUR /applicationExtension
checkPrice(application, 10000);

}

Q@Test

public void testDogTrainingField() {
Application application = new Application();
application.setType (ApplicationType.SHORT_TERM_RENTAL) ;
application.setKind(ApplicationKind.DOG_TRAINING_FIELD) ;
application.setStartTime(ZonedDateTime.parse("2016-11-07T06:00:00+02:00")) ;
application.setEndTime (ZonedDateTime.parse("2018-12-10T05:59:59+02:00"));
Applicant applicant = new Applicant();
applicant.setName ("Hakija");
applicant.setType (ApplicantType.ASSOCIATION) ;
application.setApplicantId(applicantDao.insert(applicant).getId());
// association -> 100 EUR /year -> 300 EUR total
checkPrice(application, 30000) ;

applicant.setType(ApplicantType.COMPANY) ;
application.setApplicantId(applicantDao.insert(applicant).getId());
// Company -> 200 EUR /year -> 600 EUR total
checkPrice(application, 60000) ;

Figure 5.1: JUnit test methods to be refactored

19

26
27
28
29
30
31

33

CHAPTER 5. BDD FRAMEWORKS IN SELECTED PROJECTS o4

Figure 5.1 displays the example JUnit test methods. Their test run output is
displayed in the figure 5.2. When closely inspected, it was evident that the two test
methods both actually included two tests inside one method, which were separated
by space between them. For example test method testDog TrainingFEvent() contains
the first test within lines 3-13 and lines 15-18 are using the same contezt of the test
with modifications for a new test. Both of these test methods share mostly the
same test method code. Therefore, figures 5.3 and 5.5 display them refactored into
tests with Spock and Spectrum that produce separate test runs with minimized
repeated code.

= PricingServiceTest
= festDogTrainingEvent 15 79ms
= testDogTrainingField 31ms

Figure 5.2: JUnit test method run outputs

QUnroll("getCalculatedPrice() with kind of #kind, rental time of #rentTime and applicant is
#applicantType should amount to #euroAmount euros")
def "Application getCalculatedPrice() with applicant"() {

given: "application with kind #kind and rent time of #rentTime"
def startTime = "2016-11-07T06:00:00+02:00"
initApplicationWithGivenProperties(kind, startTime, endTime)

and: "application has an applicant of type #applicantType"
def applicant = new Applicant()
applicant.setName("Hakija")
applicant.setType(applicantType)
application.setApplicantId(applicantDao.insert(applicant).getId())

when: "price is updated for the given application"
pricingService.updatePrice(application, invoiceRows)

then: "calculated price should be #euroAmount euros"

application.getCalculatedPrice() .intValue() == intAmount

where:
kind | rentTime | euroAmount | intAmount | applicantType |_
DOG_TRAINING_EVENT | "33 days" | "50" | 5000 | ASSOCIATION I
DOG_TRAINING_EVENT | "33 days" | "100" | 10000 | COMPANY I
DOG_TRAINING_FIELD | "3 years" | "300" | 30000 | ASSOCIATION I_
DOG_TRAINING_FIELD | "3 years" | "600" | 60000 | COMPANY I

endTime [
"2016-12-10T05:59:59+02:00",
"2016-12-10T05:59:59+02:00",
"2018-12-10T05:59:59+02:00",
"2018-12-10T05:59:59+02:00"

Figure 5.3: Figure 5.1 tests refactored into Spock DDT feature method

12
13
14

15

16
17
18
19
20
21
22
23
24

25

26

CHAPTER 5. BDD FRAMEWORKS IN SELECTED PROJECTS 55

In figure 5.3, lines 20-32 together with line #1 display the data driven part of
a Spock feature method. This results in a total of 4 separate test runs. Result of
these runs in IDE can be seen in figure 5.4. The example shows also the use of
Given-When-Then -blocks to structure the feature method for context, stimulus
and assertions together with description comments.

=i PricingServiceSpec
@ getCalculatedPrice() with kind of DOG_TRAINING_EVENT, rental time of 33 days and applicant is ASSOCIATION should amount to 50 euros 7s 184ms
@ getCalculatedPrice() with kind of DOG_TRAINING_EVENT, rental time of 33 days and applicant is COMPANY should amount to 100 euros 13ms
@ getCalculatedPrice() with kind of DOG_TRAINING_FIELD, rental time of 3 years and applicant is ASSOCIATION should amount to 300 euros 19ms
@ getCalculatedPrice() with kind of DOG_TRAINING_FIELD, rental time of 3 years and applicant is COMPANY should amount to 600 euros 13ms

Figure 5.4: Spock refactored example test run output

describe("application getCalculatedPrice", () -> {

beforeAll(() -> {
startTime = "2017-06-15T08:30:00+02:00";
B;

describe("when application has applicant set", () -> {
describe("when application kind is dog training event and rent time is 33 days", (O -> {
beforeEach(() -> {
endTime = "2017-07-17T08:30:00+02:00";
initApplicationWithGivenProperties(ApplicationKind.DOG_TRAINING_EVENT, startTime,
endTime) ;
b
Arrays.asList (makePair (ApplicantType.ASSOCIATION, 5000),
makePair (ApplicantType.COMPANY,10000)) .forEach(applicant -> {
it ("should return updated price of intValue "+applicant.getValue()+ " for
applicant "+applicant.getKey(), OO -> {
updateApplicationPriceForGivenApplicantType (applicant.getKey());
updatedPrice = application.getCalculatedPrice();
assertEquals(updatedPrice, applicant.getValue());
b;
b
b
describe("when application kind is dog training field and rent time is 3 years", () -> {
beforeEach(() -> {
endTime = "2019-10-15T08:30:00+02:00";
initApplicationWithGivenProperties(ApplicationKind.DOG_TRAINING_FIELD, startTime,
endTime) ;
b
Arrays.asList (makePair (ApplicantType.ASSOCIATION, 30000),
makePair (ApplicantType.COMPANY,60000)) .forEach(applicant -> {
it ("should return updated price of intValue "+applicant.getValue()+ " for
applicant "+applicant.getKey(), () -> {
updateApplicationPriceForGivenApplicantType (applicant.getKey());
updatedPrice = application.getCalculatedPrice();
assertEquals(updatedPrice, applicant.getValue());
b;
b
b
b
b

Figure 5.5: Figure 5.1 tests refactored into Spectrum code examples

CHAPTER 5. BDD FRAMEWORKS IN SELECTED PROJECTS 56

Figure 5.5 illustrates how the JUnit test methods can be refactored into Spec-
trum nested code example groups and code examples. The structure displayed
in the figure produces 4 separate code examples. At lines 13-20 and 27-34 a custom
data driven setup is made for code examples with Java 8 lambda expressions. All
the description info from describe and it -blocks are concanated into test output
that can be seen in figure 5.6.

¥ @ PricingService JavaSpec 9s 31ms

= application getCalculatedPrice 95 31ms
= when application has applicant set 95 31ms

= when application kind is dog training event and rent time is 33 days 85 962ms

= should return updated price of intValue 5000 For applicant ASSOCIATION 25 212ms

= should return updated price of intValue 10000 For applicant COMPAMNY 50ms

= when application kind is dog training field and rent time is 3 years 69ms

= should return updated price of intValue 30000 for applicant ASSOCIATION — 34ms

2 should return updated price of intValue 60000 For applicant COMPANY 35ms

Figure 5.6: Spectrum refactored examples test run output

Altogether, the given refactored examples fit flawlessly into DDT of Spock.
Spectrum test code isn’t as concise in the shown example, but there were some
other examples were Spectrum produced much less repetition than Spock for the
refactored JUnit test methods. Both BDD-testing frameworks produced separate
tests for all situations, more info on run output and less repetition in test code.
After the reviewing of all refactored examples and possible positive changes against
JUnit testing, project A developers chose to take Spectrum in use for new unit and
integration test classes. Spectrum being a Java library was one the main reasons
why developers chose it over Spock.

During the observed two months time of use, Spectrum had couple problems
that later on was found to affect parts of the research results. First, the test
run output with Maven-build tool [77] didn’t show the code ezample group and
code example descriptions if the test failed. Only the assertions were showing,
therefore it hindered pinpointing the problematic test at failure. Second problem
was the 1.1.0 version of Spectrum, which added support for a lot of new features,
but resulted in test run output structure breaking in IDE in certain situations.
Therefore during the study, the version used of Spectrum was 1.0.2, which didn’t
have this problem.

SIIGU O

CHAPTER 5. BDD FRAMEWORKS IN SELECTED PROJECTS 57

5.2 Project B

Prior the starting of study, project B had 80 test cases/files with 465 test methods
of combined automated unit and integration level tests done with JUnit. Current
backend developer of project B had a particular DDT JUnit test case in mind that
he wanted to see as a refactored example for Spock.

ORunWith(Parameterized.class)
public class NameValidatorTest {
static final int MAX_CHARACTERS = 300;

SO U

U Y
Tk W N =

N ==
[esBNolNe IR He)

NN NN Db
CUR W N =

oW

N
oo

static final String MSG_VALID = "";

static
static
static

final String MSG_INVALID_LENGTH = "invalidLength";
final String MSG_INVALID_FIRST_CHAR = "invalidFirstChar";
final String MSG_INVALID_CHAR = "invalidChar";

private String name;
private boolean isValid;
private String message;

public NameValidatorTest(String name, boolean isValid, String message) {
this.name = name;
this.isValid = isValid;
this.message = message;

}

QParameters(name = "{index}: name: \"{O0}\"")

public static Collection<Object[]> generateData() {
char[] maxLength = new char [MAX_CHARACTERS];
char[] tooLong = new char [MAX_CHARACTERS + 1];
Arrays.fill(maxLength, ’a’);
Arrays.fill(toolong, ’a’);
Object[I[] values = new Object[][1{

{null, false, MSG_INVALID_LENGTH},

{"", false, MSG_INVALID_LENGTH},

{"Valid name", true, MSG_VALID},

{"Invalid character!", false, MSG_INVALID_CHAR},

{"- is invalid start character", false, MSG_INVALID_FIRST_CHAR},
{". is invalid start character", false, MSG_INVALID_FIRST_CHAR},
{"\\ is invalid start character", false, MSG_INVALID_FIRST_CHAR},
{"/ is invalid start character", false, MSG_INVALID_FIRST_CHAR},
{"(is invalid start character", false, MSG_INVALID_FIRST_CHAR},
{") is invalid start character", false, MSG_INVALID_FIRST_CHAR},
{"& is invalid start character", false, MSG_INVALID_FIRST_CHAR},
{"\’ is invalid start character", false, MSG_INVALID_FIRST_CHAR},
{"+ is invalid start character", false, MSG_INVALID_FIRST_CHAR},
{"a ok but ~ is invalid character", false, MSG_INVALID_CHAR},
{"@ ok but ? is invalid character", false, MSG_INVALID_CHAR},
{"@ Should work", true, MSG_VALID},

{"1 Should work", true, MSG_VALID},

{"aa", true, MSG_VALID},

{"a", false, MSG_INVALID_LENGTH},

{new String(maxLength), true, MSG_VALID},

{new String(tooLong), false, MSG_INVALID_LENGTH},

};

return Arrays.asList(values);
}
QTest

public void testNames() throws Exception {
NameValidator validator = new NameValidator();

assertEquals(validator.isValid(name, null), isValid);
assertEquals(validator.getErrorMessage(), message);

Figure 5.7: JUnit DDT example

CHAPTER 5. BDD FRAMEWORKS IN SELECTED PROJECTS 58

Figure 5.7 displays the chosen JUnit test case for refactoring. At line #1,
JUnit is extended with Parameterized custom runner [78], which adds the DDT
support for JUnit. Lines 14-18 and 20-51 display the creation of DDT test case
setup in this JUnit example. At lines 53-59 is test method which uses this DDT
setup. The result of running the test case can be seen in figure 5.8.

v @ NameVvalidatorTest 35ms

@ [0: name: "null"] 14ms
@ [1: name: "] oms
@ [2: name: "Valid name"] oms
@ [3: name: "Invalid character!"] oms
@ [4: name: "-is invalid start character"] oms
@ [5: name: ". is invalid start character"] Oms
@ [6: name: "\ is invalid start character"] 2ms
@ [7: name: "/ is invalid start character"] Oms
@ [8: name: "(is invalid start character"] oms

9: name: "} is invalid start character"] oms
:name: "&is invalid start character"] oms
:name: "' is invalid start character"] oms
:name: "+is invalid start character"] oms
:name: "a ok but ~is invalid character"] oms
:name: "@ ok but 7 is invalid character"] Oms
:name: "@ Should work"] 19ms
: name: "1 Should work"] oms
: name: "Valid special chars 3434860 -@./\()&'+1"] oms
:name: "aa" Oms
:name: "a" Oms
: Nname: "aaaaaaaaaaaaaalaaaaanaanasdadaaaaaaaaaaaaaaaaaa: Oms
: name: "aaaaaaaaaaaaaaaaaaaadaanaadaaaaaaaaaaaaaaaaaaaai Oms

— bk
W P o= O

P b md ok
oD 00 =

ECEEEEEEEEEEEECE
v

P
—

Figure 5.8: JUnit DDT example test run output

Figure 5.9 displays the example JUnit test case refactored into Spock DDT
feature method. Spock’s data driven DSL allows to pack the same functionality
into readable concise form. At lines 31-54 the DDT table format is defined with
where-block and at line #18 the output of individual DDT run is defined with
@Unroll-annotation. The data driven parameters are used partly to add test
output info into the feature method run. The output of feature method run can

1
2
3
5

6
7
S
9
10

CHAPTER 5. BDD FRAMEWORKS IN SELECTED PROJECTS 59

be seen in figure 5.10.

class NameValidatorSpec extends Specification {
static final int MAX_CHARACTERS = 300

static final String MSG_VALID = "'

static final String MSG_INVALID_LENGTH = "invalidLength"

static final String MSG_INVALID_FIRST_CHAR = "invalidFirstChar"
static final String MSG_INVALID_CHAR = "invalidChar"

@Shared char[] maxLength
©Shared char[] tooLong

def setupSpec() {
maxLength = ["a"]*MAX_CHARACTERS
tooLong = ["a"]*(MAX_CHARACTERS+1)
}

QUnroll("validating name ’#name’ should be #result as valid")
def "name validator" () {
given: "a new name validator"
def nameValidator = new NameValidator();

when: "given #name name is validated"
def namelsValid = nameValidator.isValid(name, null)

then: "name should be #result as valid"

namelIsValid == resultBoolean
and: "validator should have produced #message error message #actualMessage"

nameValidator.errorMessage == actualMessage
where:
name | result | resultBoolean | message | actualMessage
"Valid name" | "accepted" | true | "no" | MSG_VALID
"@ Should work" | "accepted" | true | Tl | MSG_VALID
"1 Should work" | "accepted" | true | "no" | MSG_VALID
new String(maxLength) | "accepted" | true | "no" | MSG_VALID
D@ | "accepted" | true | "no" | MSG_VALID
"Valid special chars ﬂﬁﬂﬂﬁﬂﬁ_ -@./\\(" | "accepted" | true | "no" | MSG_VALID
null | "rejected" | false | "one" | MSG_INVALID_LENGTH
" | "rejected" | false | "one" | MSG_INVALID_LENGTH
DD | "rejected" | false | "one" | MSG_INVALID_LENGTH
new String(tooLong) | "rejected" | false | "one" | MSG_INVALID_LENGTH
"Invalid character!" | "rejected" | false | "one" | MSG_INVALID_CHAR
"a ok but " is invalid character" | "rejected" | false | "one" | MSG_INVALID_CHAR
"Q@ ok but ? is invalid character" | "rejected" | false | "one" | MSG_INVALID_CHAR
"- is invalid start character" | "rejected" | false | "one" | MSG_INVALID_FIRST_CHAR
", is invalid start character" | "rejected" | false | "one" | MSG_INVALID_FIRST_CHAR
"\\ is invalid start character" | "rejected" | false | "one" | MSG_INVALID_FIRST_CHAR
"/ is invalid start character" | "rejected" | false | "one" | MSG_INVALID_FIRST_CHAR
"(is invalid start character" | "rejected" | false | "one" | MSG_INVALID_FIRST_CHAR
") is invalid start character" | "rejected" | false | "one" | MSG_INVALID_FIRST_CHAR
"% is invalid start character" | "rejected" | false | "one" | MSG_INVALID_FIRST_CHAR
"\’ is invalid start character" | "rejected" | false | "one" | MSG_INVALID_FIRST_CHAR
"+ is invalid start character" | "rejected" | false | "one" | MSG_INVALID_FIRST_CHAR

Figure 5.9: Figure 5.7 JUnit example refactored into Spock DDT feature method

CHAPTER 5. BDD FRAMEWORKS IN SELECTED PROJECTS 60

v @ NameValidatorSpec 81ms

i@ validating name "valid name' should be accepted as valid 60ms
@ validating name '@ Should work' should be accepted as valid 1ms
i@ validating name "1 Should work' should be accepted as valid Oms
i@ validating name 'aaaaaaaaaaaaaaaaasaaaaaaaaaaaaadaaasaaaaaaaaaaaaaaa Oms
i@ validating name "aa' should be accepted as valid Oms
@ validating name 'Valid special chars 3A3A80 _-@./\()&'+1' should be accepte oms
i@ validating name "'null’ should be rejected as valid 1ms
i@ validating name " should be rejected as valid 10ms
i@ validating name 'a’ should be rejected as valid 1ms
i@ validating name 'aaaaaaaaaaaaaaaaaaaaaaaaaanaaaaaaaaaaaaaaaaaaaaaa 0ms
@ validating name 'Invalid character!" should be rejected as valid Oms

i@ validating name "a ok but * is invalid character’ should be rejected as valid oms
i@ validating name '@ ok but 2 is invalid character' should be rejected as valid 1ms

i@ validating name '- is invalid start character' should be rejected as valid 1ms
i@ validating name . is invalid start character' should be rejected as valid Oms
i@ validating name "\ is invalid start character’ should be rejected as valid 3ms
i@ validating name '/ is invalid start character' should be rejected as valid oms
i@ validating name '(is invalid start character' should be rejected as valid oms
i@ validating name ") is invalid start character' should be rejected as valid 1ms
@ validating name & is invalid start character' should be rejected as valid Oms
@ validating name " is invalid start character' should be rejected as valid 1ms
i@ validating name "+ is invalid start character' should be rejected as valid 1ms

Figure 5.10: Spock DDT feature method run output

Compared to JUnit, Spock and its DDT feature enabled more readable and
concise test structure together with more information containing run output. At
the time of research, project B had only one developer working with JUnit testing
and he was convinced to take Spock into use after the illustrated refactored DDT
example. Spock was used in new unit and integration level test classes while
keeping the old JUnit tests intact. This happened without any major problems
with the used build tool Maven.

Chapter 6

Results and discussion

This chapter covers the results and analysis of the case study with discussion
to related research. First the results of interview for demographic purposes are
presented. Second, survey and interview results regarding JUnit compared to
Spock and Spectrum are analyzed. Third, the test code analysis is presented.

6.1 First interview: demographics and projects

First interview was conducted to study about the demographics of participants
and projects under research. The demographics of participants are displayed in
table 6.1. To summarize the participants, all can be categorized as senior software
developers with many years of working with xUnit family testing frameworks. Only
participant C has a fair amount of prior experience working with BDD-testing

frameworks.

Participant attribute

Participant A Participant B Participant C

Project Project A Project A Project B
Software development experience 17 years 15 years 8 years
Java development experience 14 years 1 year 5-6 years
Spring Framework experience 7 years 1 year 5-6 years
Automated unit testing experience 14 years; 10 years; 3-4 years;

with frameworks JUnit CPPUnit, JUnit JUnit, TestNG
Automated integration testing 14 years; Hardly at all; 5-6 years;

experience
with frameworks

JUnit, Some Robot
Framework with

JUnit

JUnit, TestNG

Selenium
BDD-testing framework experience < 1 year; - 2-3 years;
with frameworks Jasmine, Mocha JBehave

Table 6.1: Participant demographics

61

CHAPTER 6. RESULTS AND DISCUSSION 62

The projects under study can both be categorized as web application projects
with Java Spring Framework backend technology. They both have an agile de-
velopment process. Project A is a customer project in public administration
context. Project B is an in-house project. They are both on the medium scale in
code size, but financially project A can be categorized as medium to large category.

Project A has two developers, participants A and B, working with Spring
Framework backend, where there is automated low-level testing in place with JU-
nit. Project B has only one backend developer, participant C, working with
Spring Framework . As Project B was developed in larger scale from 2012 to 2013
and published originally in 2013, it has some of the automated low-level testing
with JUnit done by others than participant C. Still most of this kind of test work

is done by participant C. Table 6.2 displays the details of projects A and B.

Project attribute

Project A

Project B

Description Web application for area manage- Wep application for working
ment, replacing existing system hours tracking & reporting
Context Public administration, develop- In-house develoment

ment for customer

Development process

Agile development with cus-
tomized Scrum

Agile with loosely defined process

Size & development team

Medium - large project;
3 developers for approximately
1,5 years

Small - medium project;
Published 2013, now 2 develop-
ers maintaining & further devel-
opment

Architecture Client rendered single-page Server MVC with some client ren-
application dered views
Technologies Java Spring Boot & Angular 2 Java Spring Framework & JSP,

Backbone.js

Quality assurance process

Automated unit & integration
testing, code reviews, continuous
integration, no dedicated tester

Automated unit, integration &
acceptance testing, code reviews,
continuous integration, no dedi-
cated tester

Used unit testing framework

JUnit

JUnit

Used integration testing framework

JUnit extended for Spring Frame-
work

JUnit extended for Spring Frame-
work

Chosen BDD-testing framework

Spectrum

Spock

Table 6.2: Project details

CHAPTER 6. RESULTS AND DISCUSSION 63

6.2 Surveys and BDD-testing framework feed-
back interviews analyzed

This section covers the results analyzed for both JUnit and BDD framework sur-
veys together with participant BDD framework feedback interviews. First the
developer practices and their changes are answered with the data. Second, devel-
oper perception of low-level testing and its changes are illustrated. Together these
sections answer RQ1 & and RQ2.

The baseline for answers was conducted with the survey described in detail in
Appendix B section B.1. These questions related to JUnit low-level testing are
displayed with Q1, Q2, Q3 and so on. Their counterparts, questions aimed to
study the changes in low-level testing with new BDD implementation level testing
framework are marked as Q1’°, Q2’, Q3’ and so on. Details of BDD surveys can
be found in Appendix B section B.2. Participants whom answered the surveys
were A, B and [€. The color coding of participants is visible throughout the
result tables for easier highlighting of answers.

6.2.1 Automated low-level testing developer practices

This section answer the RQ1: How does behavior-driven testing frameworks change
developer practices working with automated low-level testing compared to JUnit
framework? This is studied through multiple aspects, which all display results
and analysis individually. First, the developer software development & testing
time and effort usage is analyzed. Second, low-level test optimizing targets are
inspected. Third, test understandability and informativiness is under study. After
that, test refactoring techniques and commenting practices are analyzed. Finally,
unit testing practices are studied in more detail before summarizing the answers
to RQ1 and the changes in low-level testing developer practices.

6.2.1.1 Software development & testing time and effort usage

First studied aspect of developer practices was time usage. Figure 6.1 displays
the developer software development time usage in original study [5] and in this
thesis. Table 6.3 display the participant values also individually and the changes in
time usage after the introduction of a new BDD framework. In the original study,
writing new code is the dominating activity in time usage with 33.04% share. At
the beginning of this study when studying JUnit practices, participants used most
of their software development time in debugging or fizing activities with 26.67%
time usage share. Writing new code (25.00%) and refactoring (23.33%) were close
by in time usage. The participants in this study had quite much variance in their

CHAPTER 6. RESULTS AND DISCUSSION 64

@ Writing new code @ Vvriting new code
@ Debugging/fixing @ Debugging/fixing
@ Refactoring @ Refactoring
@ Writing new tests 25.00% @ Writing new tests
15.80% @ Other @ Other
((a)) Results in original study [5] ((b)) Results in this study

Figure 6.1: Developer software development time usage

answers for time usage, but writing new tests was uniformly higher in time usage
than in the original study results. Participants A and C were closely together in
their answers for time usage, whereas participant B had more emphasis on initial
writing of new code and less time spent on refactoring.

Question Answer
options

Q1: How do you spend your software de- Participant Participant Participant Average

velopment time (in percentages) A B

1. Writing new code 20% 40% 15% 25%

2. Writing new tests 20% 25% 20% 21.67%

3. Debugging/fixing 30% 25% 25% 26.67%

4. Refactoring 20% 10% 30% 23.33%

5. Other 10% 0% 10% 6.67%

Q1’: Compared to JUnit, How do you A lot less Lesstime Slightly The Slightly More A lot

spend your software development time? time less time ~ Same more time more
amount time time
of time

1. Writing new code A B .

2. Writing new tests . A B

3. Debugging/fixing A B[C

4. Refactoring [| A B

5. Other A BIC

Table 6.3: Development time usage and changes in it

Changes in software development time were studied with the Q1’: Compared to
JUnit, How do you spend your software development time? Results are displayed in
table 6.3. Participant A didn’t see any changes in the overall software development
time usages after introduction of Spectrum. This has to be taken with a grain of
salt, as the next questions shows increase in testing efforts when comparing JUnit

CHAPTER 6. RESULTS AND DISCUSSION 65

and Spectrum. Participant B noticed a slight increase in time used to write new
tests with Spectrum, whereas other time usages remained the same. On the other
hand, participant C said to use less time writing new tests and slightly less time
refactoring the code with Spock. These testing time usages are analyzed in detail
with Q2’.

Questions Q2 and Q2’ further analyze the time usage, now focusing in auto-
mated testing. Their results are shown in table 6.4. All participants answered
to use approximately 30 minutes of time in single test case. The averages show
that about one third (28.33%) of initial effort goes to thinking about the test case
without actual implementation. About two thirds (71.67%) of initial effort goes
to implementation of the test case. Refactoring takes about one third (28.33%) of
the overall testing effort.

Participants had highly varying answers in initial thinking and implementation
effort and also in overall testing refactoring effort. Participants B and C had same
kind of profile in initial efforts, where about one fifth of it goes to initial thinking
of test case and four fifths to implementation. Participant A had the initial effort
going in half between the two aspects. In overall effort, refactoring of test code
took 50% of effort for participant A. Participant B hardly at all refactored test
code (5%) and participant C used around one third of overall testing effort to
refactoring (30%).

Question Answer
options
Q2: How do you spend your low-level au- Participant Participant Participant Average
tomated testing time A B C
1. How much approximately you use time per 30 min 30 min 30 min 30 min
test case (minutes)?
2. How much of your initial effort goes to think- 50% 20% 15% 28.33%
ing about test case content without implemen-
tation?
3. How much of your initial effort goes to initial 50% 80% 85% 71.67%
test case structuring and implementation?
4. How much of your overall testing effort goes 50% 5% 30% 28.33%
to refactoring test code (percentage)?
Q2': Compared to JUnit, How do you A lotless Less Slightly The Slightly More A lot
spend your low-level automated testing less Same more more
time? amount
1. Do you use more or less time per test case? C A B
2. Do you use more or less of initial effort think- C A B
ing about test case content?
3. Do you use more or less of initial effort to C B A
test case structuring and implementation?
4. Do you use more or less of overall testing C A B

effort to refactoring test code?

Table 6.4: Development & testing time and effort usage and changes in them

CHAPTER 6. RESULTS AND DISCUSSION 66

Changes in automated testing time and effort were studied with Q2’: Compared
to JUnit, How do you spend your low-level automated testing time? Participant
A answered to use around the same time per test case with Spectrum, but also
answered to use slightly more effort in initial thinking of test case and more effort in
test case implementation. The overall test refactoring effort was the same amount.
All effort changes combined, it might be feasible to think that the time per test case
might have increased. In the feedback interview of Spectrum with participant A,
he said that the implementation and how to effectively structure the usage of Java
8 lambdas and Spectrum variables in them took extra time compared to JUnit.
Participant B answered to use slightly more time with Spectrum on all aspects of
low-level testing. In the followed interview, this was found out to be caused by
in general the new testing framework and especially the lambda structure of tests
with it. Participant C answered to use less time per test case with slightly less
effort on test refactoring. In the following interview, participant C answered that
it was quick to feel effective with Spock and especially its DDT allowed to easily
test out different situations.

In conclusion, Spectrum seems to have a longer learning curve than Spock.
Participants A and B both said in interview that it still feels like there is learning
to do to be effective with Spectrum . Participant C had previously used JBehave
which also uses the same Gherkin-structure as Spock, therefore it might have eased
the introduction of Spock for him. Survey results also support this. After two
months, testing with Spectrum seems to take more effort and time than with

JUnit.

CHAPTER 6. RESULTS AND DISCUSSION 67

6.2.1.2 Test optimizing targets

B Not at all

impartance

execuion speca | I O O s sy

important

Il Moderately

I very important

impaortant

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 6.2: Original study [5] unit test optimizing target percentages amongst
developers

Original study by Daka and Fraser [5] studied unit testing optimizing targets
for tests. Figure 6.2 displays the results from original study. All the studied
aspects had at least over 60% of developers finding them ranging from moderately
important to extremely important. Realistic test scenario was the most important
optimizing target amongst original study survey participants.

Regarding JUnit low-level testing, participants in this study had varying im-
portance in studied aspects. Full answers are displayed in table 6.5 with Q3: How
important are the following aspects for you when you write new low-level tests?
Participants A and B answered the most alike, whereas participant C had slightly
different optimizing profile. Code coverage was a neutral optimizing target for
all participants. Additional question, original to this study, was the capturing of
behavior as optimizing target. Participants A and B found it neutral and slightly
important, but participant C had it as a very important optimizing target. An-
other interesting target was execution speed, where participants A and B had it
at least moderately important, but participant C answered it as low importance
optimizing target. How realistic the test scenario is was very important to opti-
mize for participant C. This was also the most important target amongst original
study survey participants. For participants A and B, realistic test scenario was
only slightly important. These kind of variations in optimizing targets are quite
natural when studying this low participant count. The original study figure 6.2

CHAPTER 6. RESULTS AND DISCUSSION 68

displays how all the targets are quite close to each other with larger sampling.

Question Answer
options
Q3: How important are the following as- Not at all Low Slightly Neutral Moderately Very Extremely
pects for you when you write new low-level importance important important important important
tests?
1. Code coverage A B C
2. Capturing all behavior of unit/feature with B A C
tests or assertions
3. Execution speed C B A
4. Robustness against code changes (i.e., test A B C
does not break easily)
5. How realistic the test scenario is A B C
6. How easily faults can be localised /debugged B AC
if the test fails
7. How easily the test can be updated when C A B
the underlying code changes
8. Sensitivity against code changes (i.e., test A B C

should detect even small code changes)

Q3': Compared to JUnit, How important A lot less Less im- Slightly As impor- Slightly More im- A lot
are the following aspects for you when you important portant less tant as more portant more
write new low-level tests? important before important important
1. Code coverage A B C

2. Capturing all behavior of unit/feature with B|C A

tests or assertions

3. Execution speed A B C

4. Robustness against code changes (i.e., test A B C

does not break easily)

5. How realistic the test scenario is AB C
6. How easily faults can be localised /debugged B AC

if the test fails

7. How easily the test can be updated when A B C

the underlying code changes

8. Sensitivity against code changes (i.e., test A B C

should detect even small code changes)

Table 6.5: Optimizing targets in low-level tests and changes in them

The changes in low-level testing optimizing targets were studied with Q3’:
Compared to JUnit, how important are the following aspects for you when you
write new low-level tests? Participant A compared the changes from JUnit to
Spectrum and find most of the targets as important as before. Capturing behavior
of tested subject in tests was slightly more important than before. Also fault
localization was slightly more important target than before. These two targets and
their higher importance seem natural for a xSpec family testing framework, as it
aims to promote more granular and more natural language description information
holding test cases than JUnit. Participant B didn’t feel there to be any optimizing
target changes. In the interview he stated that none of the targets really changed
one way or another for him when using Spectrum instead of JUnit.

CHAPTER 6. RESULTS AND DISCUSSION 69

Participant C found realistic test scenario to be more important with Spock
than it was with JUnit. Realistic test scenario was already very important for him
with JUnit and with Spock, it is even more important. He also answered easy fault
localization to be slightly more important than before. In the interview it was
found out that these aspects had more importance because of the BDD-style of
writing the tests with Spock. For participant C, capturing behavior with tests was
already very important with JUnit and it was interesting that Spock didn’t change
this. The COTM-metric with JUnit in test code analysis section shows support
for already granular unit test cases in project B. This might act as an indicator of
already behaviorally described test methods.

To conclude, its hard to see any pattern in test optimizing target changes.
Altogether, the changes were quite mild. Easier fault localization was the only
common nominator that was found slightly more important with two out of three
participants. Therefore it might be feasible to say, that test optimizing targets
aren’t too tied to the testing framework in this study context. This might show
different results with larger sampling repeating the same kind of study. The results
might be different especially when using these implementation level BDD-testing
frameworks for actual practicing of BDD. Then the optimizing targets might be
much different than with zUnit family testing.

6.2.1.3 Test understandability and informativeness

@ very easy

® Easy
Moderate

@ Hard

@ very hard

Figure 6.3: Original study [46] unit test understandability

The difficulty of developers understanding unit tests was studied by Li et al. [46].
Over 60% of survey participants found it at least moderately difficulty. Figure 6.3
illustrates the total survey answer regarding unit test understandability. This ques-
tion was chosen to be replicated in this study to see, if the research hypothesis of

CHAPTER 6. RESULTS AND DISCUSSION 70

developers finding it easier to understand test cases with BDD-testing frameworks
will hold true.

Table 6.6 summarizes this study participant answers. First, Q4 studied how
difficult understanding of low-level tests with JUnit was. The results mirrored
quite well the original study findings, as participants B and C find the understand-
ability to be moderately difficult and participant A found it hard to understand a
low-level test.

Question Answer

options

Very easy Easy Moderate Hard Very hard
Q4: How difficult is it for you to under- BIC A

stand a low-level test?

A lot less Less diffi- Slightly As diffi- Slightly More dif- A lot

difficult cult less cult as more ficult more
difficult before difficult difficult
Q4’: Compared to JUnit, how difficult is |[C A B

it for you to understand a low-level test?

Table 6.6: Understandability of low-level tests and changes in it

The changes in low-level test understandability were studied with Q4’: Com-
pared to JUnit, how difficult is it for you to understand a low-level test? Partici-
pant A found it less difficult to understand a low-level test after the introduction
of Spectrum. Participant B find it slightly more difficult to understand a low-level
test. This was further analyzed with interview, where he says that the divided
nested structure of Spectrum files make it slightly harder to understand individual
tests as whole. Compared to JUnit, Participant C found it a lot less difficult to
understand Spock tests. In the interview this was further inspected and he states
that its much more easier to write information to Spock feature methods compared
to JUnit test methods.

Summing up, participant surveys and interviews seem to support partially the
H2: 7"Developers will find it easier to understand test cases”. Although, par-
ticipant B find it slightly harder to understand low-level tests at times, there is
still more evidence for easier undestanding. H2 is further studied with following
questions in this section.

Table 6.7 displays questions Q5 & Q5’ and their results. Q5 was chosen to
see how easily the JUnit test methods can be structured and understood to
hold different parts of the test. JUnit testing literature states that the structure
should be done with Arrange-Act-Assert [23], but it is not enforced and thus can
lead to poorly structured tests which are hard to understand [24]. Qb studies if
this does hold true.

CHAPTER 6. RESULTS AND DISCUSSION 71

All the participants had different parts of test structure with ranging diffi-
culties in structuring and understanding. Participant A could be categorized to
hold almost all parts of structuring the test somewhat difficult, with the excep-
tion of finding it easy to structure information to context of tests. Reading tests
and understanding their structure was found at least from slightly hard to hard.
Participant B find writing information to assertions of test easy, but otherwise
structuring the test was found from moderately difficult to slightly hard. Reading
the test structure parts for information was equivalent to writing and structuring
of tests. Participant C found it somewhat difficult to produce information to tests,
but reading the test structure was found to be slightly easy. These ranging results
are not too surprising, as JUnit does not promote a certain structure for tests. It
seems to result in hard to produce stucture that is not too easy to understand.

Question Answer
options
Q5: In low-level testing, how difficult is it Very easy Easy Slightly Moderate Slightly Hard Very hard
for you to easy hard
1. Structure and write information to context A B C
of test?
2. Structure and write information to stimulus A B C
of test?
3. Structure and write information to assertions B C A
of test?
4. Read test case structure for information C B A
about context of test?
5. Read test case structure for information C B A
about stimulus of test?
6. Read test case structure for information B C A

about assertions of test?

Q5': Compared to JUnit in low-level test- A lot less Less diffi- Slightly As diffi- Slightly More dif- A lot

ing, how difficult is it for you to difficult cult less cult as more ficult more
difficult before difficult difficult

1. Structure and write information to context A [C B

of test?

2. Structure and write information to stimulus AC B

of test?

3. Structure and write information to assertions C A B

of test?

4. Read test case structure for information |[C A B

about context of test?

5. Read test case structure for information AC B

about stimulus of test?

6. Read test case structure for information C A B

about assertions of test?

Table 6.7: Low-level test structure informativiness and changes in it

Q5" displays the changes in structuring and reading of tests for information.
Participant A found Spectrum on all occasions easier to structure information to

CHAPTER 6. RESULTS AND DISCUSSION 72

tests and also to read it from tests. Structuring information to tests could be
categorized as quite much easier. Reading the tests for information was found
somewhat easier than with JUnit. Participant B found the changes in structuring
of tests with Spectrum to range from slightly less difficult to slightly more difficult,
but the reading of test case structure could be summed up to be somewhat more
easier than with JUnit. In the interview he said that the main benefits of Spectrum
was the easier spotting of different parts of test. Participant C found it ranging
from less to a lot less difficult structuring and reading the tests.

In conclusion, the results show that structuring and reading of the different
parts of tests was found almost unanimously more easier with BDD-testing
frameworks than with JUnit. This finding supports the H2, but for more evi-
dence, the next questions Q6 and Q6’ need to be analyzed.

Table 6.8 displays questions Q6 & Q6’ with results. First Q6 studies how
informative participants found JUnit test output. Participant A find the output
hardly informative, whereas participants B and C found the output ranging from
somewhat informative to moderately informative. These answers could be a result
from typical JUnit test method naming, which doesn’t tend hold that many words.
Section 6.3.2 displays that the average word count in test methods in projects were
ranging from approximately 5 to 6. This amount of words can’t hold naturally too
much information in total.

Question Answer
options
Not at all Hardly in- Slightly Somewhat Moderately Very in- Extremely
formative informa- informa- informa- formative informa-
tive tive tive tive
Q6: How informative you usually find the A C B

test output?

A lot less Less in- Slightly As infor- Slightly More in- A lot

informa- formative less infor- mative as more in- formative more in-
tive mative before formative formative
Q6’: Compared to JUnit, how informative B A C

you usually find the test output?

Table 6.8: Low-level test output informativeness and changes in it

Q6’ studied the change of test output informativeness after the introduction of
new BDD-testing framework. Participant A found a slight increase in informative-
ness of output. Participant B found the output as informative as before, whereas
participant C found it more informative. As the xSpec family testing frameworks
allow free text description to their code example groups and code examples, the
answer of participant B was further studied in interview. He stated that he usually
only checks from the output whether test passes or fails and as such doesn’t see

CHAPTER 6. RESULTS AND DISCUSSION 73

any improvement when comparing Spectrum and JUnit.

On the whole, it seems that H2: ”Developers will find it easier to understand
test cases” has strong evidence to support it. However, the results of questions
Q4’-Q6’ are not clear-cut unanimous and especially the nested structure of xSpec
family code example groups might not be so clear at the beginning. In any case,
it can be concluded that BDD-testing frameworks allow to structure the tests
for separate parts, which helps in identifying context, action and assertions more
explicitly from tests.

6.2.1.4 Test code repetition reducing techniques

Table 6.9 displays the usage of different repetition reducing techniques. First
Q7: How much are the following repetition reducing techniques used in your low-
level testing? studies how much a set of common refactoring techniques stated in
unit testing literature [21] are used in projects.

Most common used refactoring techniques amongst survey participants were
extract method and lifecycle hook before -each. These two techniques were in use
frequently or very frequently within participant testing. Lifecycle hook before -
class was also in use at least occasionally. Automatic test generation through DDT
was found very rarely or rarely used with participants A and B. Section 6.3.2 shows
that in project A it was not used at all, where data-driven test method ratio to
standard low level test methods was 0. Participant C answered to use occasionally
DDT and the test code analysis data in section 6.3.2 supported this. Common
test initializer class inheritance was a practice very rarely or rarely used amongst
all participants. During interview, participant A even stated test class inheritance
to be "a practice to avoid, it’s devil’s work”.

Question Answer

options
Q7: How much are the following repeti- Never Very Rarely OccasionallyFrequently Very Always
tion reducing techniques used in your low- rarely frequently

level testing?

1. Extract method (custom helper methods) A B C

2. Lifecycle hooks Before/After (class) C A B

3. Lifecycle hooks Before/After (each) A B C

4. Automatic test generation via test method A B C

parametrization

5. Common test initializer class inheritance AC B

Q7’: Compared to JUnit, how much are A lot less Less Slightly The same Slightly More A lot
the following repetition reducing tech- less amount more more

niques used in your low-level testing?

1. Extract method (custom helper methods) B A
2. Lifecycle hooks Before/After (class/all) A
3. Lifecycle hooks Before/After (each) B
4. Automatic test generation via test method A
parametrization

5. Common test initializer class inheritance A B C

Table 6.9: Used repetition reducing techniques for low-level testing and changes
in their use

CHAPTER 6. RESULTS AND DISCUSSION 74

Q7 Compared to JUnit, how much are the following repetition reducing tech-
niques used in your low-level testing? studies how techniques are used differently
with the new BDD-testing framework to reduce repetition. Participant A said to
use techniques the same amount as before, with the exception of lifecycle hook
before -each being used more. In the feedback interview, participant A stated that
there was some confusion when to use before -all lifecycle hook and therefore hook
before -each was mainly used. The increased use of before -each is explained by
the nested code example groups, which each support their own separate lifecycle
hooks. Participant B used the repetition reducing techniques the same amount,
except for slightly less used extract method. Participant C answered to use au-
tomatic test generation via test method parametrization (DDT) a lot more than
before. Test code analysis in section 6.3.2 supports this claim.

In conclusion, both BDD-testing frameworks allow new ways to reduce rep-
etition in test code. How much they are used seems to be independent on the
developer. Later is studied how much more maintainable these techniques make
the test code in eyes of the participants.

6.2.1.5 Test commenting practices

@ Never @ Never
® Rarely @ Rarely
i Sometimes
19.34% Sometimes .
@ Fairly often @ Fairly often
Alwar
18.40% ® Aiways ® Always
33.49%
((a)) Comment adding ((b)) Comment updating

Figure 6.4: Original study [46] unit testing commenting practices

Test commenting and comment updating was found beneficial, but also a
practice rarely done by most of the developers [46]. Figure 6.4 shows the original
study results regarding test commenting practices. Participants in this study seem
to divide with commenting practices. Table 6.10 displays the participant JUnit
commenting practice results with Q8 and Q9. Project A and its participants A
and B answer fairly often to add and update comments in low-level test cases.
Participant C rarely practices test commenting or updating. Test data analysis in

CHAPTER 6. RESULTS AND DISCUSSION 75

6.3.2 correlates with participant answers, as project A had quite much commenting
in test methods and project B very little.

Question Answer

options

Never Rarely Sometimes Fairly of- Always

ten

Q8: How often do you add/write doc- C A B
umentation comments to low-level test
cases?

A lot less Less Slightly The same Slightly More A lot

less amount more more

Q8': Compared to JUnit, how often do B C A
you add/write documentation comments
to low-level test cases?

Never Rarely Sometimes Fairly of- Always

ten

Q9: When you make changes to low-level C AB
tests, how often do you comment the
changes (or update existing comments)?

A lot less Less Slightly The same Slightly More A lot

less amount more more

Q9': Compared to JUnit when you make B C A

changes to low-level tests, how often do
you comment the changes (or update ex-
isting comments)?

Table 6.10: Documentation practices in low-level testing and changes in them

Questions Q8’ and Q9’ in table 6.10 study the changes in commenting with
new BDD-testing framework. Participant A answers to add more comments with
Spectrum to low-level test cases than before and also to update the comments
slightly more. Here the test code analysis data in section 6.3.2 doesn’t support
this directly, as pure comments in test methods have decreased drastically. But
overall the test contains more textual description in use with code example group
and code example descriptions, which can be seen as increased test method name
word count. Participant B answered that he adds and updates the comments with
Spectrum the same amount as before. This is also in contradiction with the test
code analysis COC-metric change in project A. Participant C said to add and
update the comments with Spock the same amount as before. Test code analysis
supports this.

In conclusion, there seems to be a high possibility that Q8 and Q9" were not
understood by all participants in the manner that their original intent was. The
actual changes in commenting practices are examined in more detail in test code

CHAPTER 6. RESULTS AND DISCUSSION 76

analysis section 6.3.2.

6.2.1.6 Unit testing practices

Pure unit testing practices were also studied with the participant surveys. First
the granularity of unit tests were studied with questions Q10 and Q10’ displayed
in table 6.11. Participants A and B answered to write approximately two to three
tests methods per class method that contain few assertions inside them each.
Participant C answered to produce more granular test cases, where there exists
four to five test methods per class method. Also the assertion count was stated
to be higher, 4-5 assertions per test method. Test data analysis in section 6.3.1
seems to support quite well all these participant answers, although the assertion
count per test method calculated in section 6.3.2 for project B was slightly lower
than the answered four to five assertions per test method.

Question Answer
options
Q10: In unit testing, how many 1 2-3 4-5 6-7 8-9 10 or
more
1. Test methods do you usually write per class A B C
method?
2. Assertions do you usually write per test A B C
method?
Q10’: Compared to JUnit in unit testing A lot less Less Slightly The same Slightly More A lot
less amount more more
1. Do you write more or less test methods per B AC
class method?
2. Do you write more or less assertions per test A B C
method?

Table 6.11: Unit testing practices and changes in them

Changes in unit testing granularity, after the introduction of BDD-testing
framework, were studied with Q10’. Participant A answered that with Spectrum
he wrote more test methods per class method with less assertion inside individual
test methods. Participant B used also Spectrum and he felt that he wrote slightly
more test methods per class method and these test methods contained slightly less
assertions in them. Participant C answered the question for Spock. He felt that
he wrote more test methods per class method with same amount of assertions in
them. In the interviews, both participants A and B said that Spectrum promotes
to write more granular tests. Participant A also felt that this is one of the main
benefits of Spectrum over JUnit.

Summing up, it can be said that developers feel that they write more granular
unit test cases with more test methods in them. Test code analysis in sections

CHAPTER 6. RESULTS AND DISCUSSION 7

6.3.1 and 6.3.2 are quite good in sync with the participant answers. Results from
Q10 & Q10" and interviews support the H1: Developer will write more granular
test cases.

Next studied unit testing practice is isolation. In related research, survey
participant developers found unit test isolation to be a demanding practice [5].
Therefore questions Q11, Q11°, Q12 and Q12’ displayed in table 6.12 are aimed
to learn more about isolation in unit testing. First survey question Q11 asks what
mocking library is normally used in JUnit unit test isolation. After that, Q12
studies wich aspects of isolating are find hard.

Usually unit test isolation was done with Mockito by all participants. Partic-
ipant C is the only one that found all aspects of unit test isolation to be easy
or slightly easy. Participant A found isolation usually slightly easy with verifying
of mock object actions being moderate in difficulty. Participant B found most
of isolation easy, but stubbing was considered slightly hard. Altogether, isola-
tion activities in JUnit unit testing wasn’t found too demanding by any of the
participants.

Question Answer

options

Mockito jMock Powermock Easymock Other
Q11: In unit testing, what mocking library [A B|C
do you normally use?

Mockito jMock Powermock Easymock Spock’s Other

internal
mocking
Q11’: In unit testing with Spec- A B C
trum/Spock, what mocking library do you
normally use?
Q12: In unit testing, how difficult you find Very easy Easy Slightly Moderate Slightly Hard Very hard
it to easy hard
1. Mock objects? B C A
2. Stub method calls? AC B
3. Verify mock object actions? B C A
Q12': Compared to JUnit in unit testing, A lot eas- Easier Slightly As diffi- Slightly Harder A lot
how difficult you find it to ier easier cult as harder harder
before

1. Mock objects? B|C A
2. Stub method calls? B C A
3. Verify mock object actions? B C A

Table 6.12: Unit testing practices and changes in them

After the introduction of Spectrum in project A, the mocking library stayed
intact, as Spectrum is a Java-based custom runner for JUnit. Although the mock-

CHAPTER 6. RESULTS AND DISCUSSION 78

ing library was the same, participant A found all aspects on unit test isolation
slightly harder than before. This was further analyzed in interview with partici-
pant, where he states that the usage of Mockito-functions inside lifecycle hooks
and block lambdas was not as straightforward as with JUnit tests. Participant
B didn’t feel any change in difficulty of usage of Mockito when using it with Spec-
trum instead of JUnit. Participant C answered to still use Mockito with Spock
and this was interesting. Later when analyzing the test code, I found out that
due to low number of new unit tests, no mocking was needed in them. As seen
in earlier chapters, Spock provides its internal mocking. Unfortunately within this
time period of study, no comparison could be made between Mockito and Spock’s
internal mocking. In brief, it could be said that for unit test isolation, there might
exist a learning curve with Spectrum and usage of Mockito with it.

Question Answer
options
Before During After
implemen- implemen- implemen-
tation tation tation
Q13: When do you add automated unit tests for developed code B C A
with JUnit?
Before During After
implemen- implemen- implemen-
tation tation tation
Q13’: When do you add automated unit tests for developed code B C A

with Spectrum/Spock?

Table 6.13: Unit testing practices and changes in them

Questions Q13 and Q13 were aimed to study when are unit tests add for code
with JUnit and the new BDD-testing framework. The main idea was to see, does
the introduction of BDD-testing framework by itself promote test first -principle
without additional changes in testing. For participant A there was no change, as
the unit tests were added after the implementation with both JUnit and Spectrum.
Participants B and C experienced also no change in when the tests are added for
code. Both said to add unit tests during implementation.

It seems that although implementation level BDD-testing frameworks were
originally designed to help with test first -principle, they don’t seem to promote
this in study context. Still, these frameworks do seem to work quite well within
the studied aspects of low-level testing without the use of BDD.

CHAPTER 6. RESULTS AND DISCUSSION

6.2.1.7 Change summary

79

Benefit Participants agreeing
Writing more granular test cases A B, C
Less time used in testing C
Easier to understand test A C
Easier to structure test for different parts A C
Easier to read test for different parts A B, C
More informative test output A C
Less repetition through lifecycle hooks A
Easier data-driven testing C
Drawback

More time and effort used in testing A B
Slightly harder to understand test B
Slightly harder to isolate unit tests A

Table 6.14: Developer changes in low-level testing practices

To answer RQ1, table 6.14 displays the summary of changes in low-level testing
practices with new BDD test frameworks. There were lot of practices where at
least two out of third participants felt improvement over JUnit. Some parts of
studied aspects of low-level testing remained unchanged after the introduction of
BDD-testing framework. There were only few parts where practice changes with
BDD-testing frameworks resulted in drawbacks compared to JUnit. More specific,
only Spectrum was found problematic at times. Main findings to RQ1 are:

In low level testing, BDD-testing frameworks change developers to write more
granular test cases. Test context, action and assertions are easier to identify
from the test than before. There is also evidence supporting overall easier un-
derstanding of tests with more informative test output. Repetition can also
potentially be reduced more easily through different framework features.

Changing to xSpec family test framework Spectrum introduces a steeper learn-
ing curve than Gherkin family Spock. At the beginning, unit test isolation and
understanding of tests can potentially be harder with Spectrum than with JUnat.

CHAPTER 6. RESULTS AND DISCUSSION 80

6.2.2 Developer perception towards automated low-level
testing

This section answer the RQ2: How does behavior-driven testing frameworks change
developer perception of working with automated low-level testing compared to JU-
nit framework? First, developer perception of automated low-level testing and
changes in it are analyzed with survey and interviews. Second, developer loyalty
towards low-level automated testing and specific testing frameworks are studied
with NPS survey questions and separate interviews.

6.2.2.1 Developer perception of low-level testing

I strongly
Il Disagree

Somewhat

I neutral
I somewhat

B Agree

I strongly agree

0% 10% 20% 30% 40% S50% 60% 70% 80% 909 100%

Figure 6.5: Original study [5] developer perception of unit testing

Daka and Fraser [5] have studied developer perception towards traditional unit
testing. Interesting points that are further studied for low-level testing in this
study are shown in figure 6.5. Some aspects to highlight are the facts that only
about 50% of survey responders enjoy writing unit tests to some degree. Unit
testing motivation was also found problematic in practitioner survey research by
Runeson [6]. One of the hypothesis in this study was that implementation level
BDD-testing frameworks should increase low-level testing enjoyment. Another
interesting aspect is the difficulty in maintaining unit tests, where around 55%
of study participants feel maintaining at least somewhat difficult. Runeson also
discovered this same difficulty amongst survey participants [6]. One of the study
hypothesis was that BDD-testing frameworks should make it less difficult to main-
tain code and especially the test code. Table 6.15 displays the Q14, which studies

CHAPTER 6. RESULTS AND DISCUSSION 81

the developer perception towards low-level testing using Daka and Fraser’s survey
question as a base.

Q15a in table 6.15 studies the developer perception aspect further. Its ques-
tions have originally been used individually in two different studies [26, 46]. The
original questions and their answers are displayed in figure 6.6. Interesting fact was
that over 90% of original survey respondents feel that unit tests help in producing
higher quality code than without them [26]. Around same 90% of different study
participants feel that maintaining unit tests is important for system quality [46].

Meutral @ Strongly disagree
® Agree @ Disagree
@ Strongly agree Neutral
@ Agree

@ Strongly agree

((a)) Unit tests help in producing higher qual- ((b)) Maintaining unit tests is important for
ity code [26] the quality of the system [46]

Figure 6.6: Developer perception of unit testing in original studies

Participants in this study, based on their perception towards low-level auto-
mated testing with JUnit, can be divided into two categories. Participants A and
B are close to each other, they feel that writing low-level tests is somewhat dif-
ficult, enjoyment in writing is neutral or negative and maintaining of low-level
tests is seen at least somewhat difficult. They both still have trust that low-level
testing is helpful in finding defects, but don’t feel that JUnit promotes to write
high quality test code. Participants A and B seem to fall into same category as
majority of respondents in the original research.

Participant C could be categorized into a testing oriented developer when in-
specting perception towards low-level testing. He enjoys writing low-level tests
and doesn’t find it that difficult. He also doesn’t find maintaining low-level tests
too difficult. He thinks that low-level tests that he has written with JUnit will help
others understanding the implemented production code. Like other participants,
participant C also trusts that low-level tests will help in finding defects, but he
doesn’t feel that JUnit promotes him to write high quality test code.

Although all study participants feel that JUnit doesn’t promote in writing
higher quality test code, all of them still believe that low-level tests help in pro-
ducing higher quality code. They all feel that maintaining low-level tests and their

CHAPTER 6. RESULTS AND DISCUSSION 82

documentation is important for the system quality. All of the participants seem to
follow the majority of developers in previous researches regarding test helping in
quality and test maintaining importance. Table 6.15 displays the detailed answers
of participants.

Question Answer
options
Q14: Please indicate your level of agree- Strongly Disagree Somewhat Neither Somewhat Agree Strongly
ment with the following statements disagree disagree agree nor agree agree
disagree
1. Writing low-level tests is difficult C A B
2. | enjoy writing low-level tests B A C
3. I would like to have more tool support when B A C
writing low-level tests
4. | would like to have more low-level tests A B C
5. Maintaining low-level tests is difficult C B A
6. | think my low-level tests will help other B A C

developers to understand the implemented

unit/feature better

7. Low-level automated testing helps me find B C A
defects in the code before other quality assur-

ance phases

8. JUnit promotes me to write high quality test AC B

code

Q15a: Please indicate your level of agree- Strongly Disagree Neutral Agree Strongly
ment with the following statements disagree agree

1. Overall, low-level tests help me produce B AC
higher quality code

2. Maintaining good low-level test cases and AB C

their documentations is important to the qual-
ity of a system

Table 6.15: Developer perception of low-level testing with JUnat

Table 6.16 display questions Q14’ and Q15a’ together with their results. With
Spectrum there exists some controversial and interesting results. Participant A
somewhat agrees that writing and maintaining of low-level tests with Spectrum
is more difficult than with JUnit. Writing difficulty was further analyzed in the
interview, where he states that the learning curve how to structure code example
groups and code examples was still ongoing. Also what to write in describe-blocks
was somewhat difficult. Slight increase in difficulty in maintaining low-level tests
with Spectrum comes from the use of example groups properly, as participant A
feels that it isn’t always straightforward. In spite of slightly harder maintenance
in total, he feels that it is easier to reduce repetition with Spectrum ’s lifecycle
hooks.

Although writing and maintenance were found slightly harder, participant A
somewhat agrees that he enjoys writing low-level tests with Spectrum more than

CHAPTER 6. RESULTS AND DISCUSSION 83

with JUnit. He also thinks that Spectrum allows other developers to understand
the production code better than earlier with JUnit. Participant A feels that Spec-
trum promotes him to write higher quality test code than JUnit. In addition, he
felt that maintaining of Spectrum tests was somewhat more important for system
quality, but didn’t see Spectrum helping in producing higher quality production
code.

Question Answer
options
Q14’&Q15a’: Please indicate your level of Strongly Disagree =~ Somewhat Neither Somewhat Agree Strongly
agreement with the following statements disagree disagree agree nor agree agree
disagree
1. Writing low-level tests with Spec- C A B
trum/Spock is more difficult than with JUnit
2. | enjoy writing low-level tests with Spec- B A C
trum/Spock more than | do with JUnit
3. | would like to have more tool support for C B A
Spectrum/Spock when writing low-level tests
4. | would like to have more low-level tests with B AC
Spectrum/Spock
5. Maintaining low-level tests with Spec- C B A
trum/Spock is more difficult than with JUnit
6. | think my low-level tests with Spec- B AC

trum/Spock will help other developers to un-

derstand the implemented unit/feature better

than earlier tests with JUnit

7. Low-level automated testing with Spec- A B C

trum/Spock helps me find defects in the code

before other quality assurance phases better

than earlier tests with JUnit

8. Spectrum/Spock promotes me to write B AC
higher quality test code than with JUnit

9. Overall, low-level tests with Spec- B A C
trum/Spock help me produce higher quality

code than with JUnit

10. Maintaining good low-level test cases and B AC
their documentation with Spectrum/Spock is

more important for system quality than main-

taining JUnit test cases

Table 6.16: Developer perception changes in low-level testing with Spectrum/Spock

Participant B finds writing of low-level tests with Spectrum more difficult than
with JUnit. This was further studied in the interview, where he said that quite
much of the trouble in writing came from Java features used to write Spectrum
tests, but also one cause was the more difficult structuring of tests. Both partic-
ipants A and B agree or strongly agree that they would like to have more tool
support for Spectrum. This was studied in following interviews, where both would
like to see more IDE support. For most of the statements, participant B neither
agrees nor disagrees. He disagrees with the statement that Spectrum promotes to

CHAPTER 6. RESULTS AND DISCUSSION 84

write higher quality test code than JUnit. This was further discussed in the inter-
view, where he says that he feels that the test case structure with Spectrum is more
complex than with JUnit. Participant B disagreed with statements that Spectrum
helps producing higher quality production code than JUnit or that maintaining
Spectrum tests would be more important for system quality.

Participant C disagreed that writing and maintaining of low-level tests with
Spock is more difficult than with JUnit. In the following interview, he stated that
writing tests was quick to learn and they could be more easily divided into logical
parts with Given-When-Then blocks. It is interesting to see that participant C
initially already enjoyed writing low-level tests with JUnit and agreed to enjoy
even more low-level testing with Spock. With Spock, he also feels that other de-
velopers will understand the implemented unit or feature better than with JUnit.
Participant C agrees that all in all Spock promotes him to write higher quality test
code. In total, participant C seemed to perceive Spock well, as he also somewhat
agrees that Spock helps to produce overall higher quality code and that maintaining
of Spock tests is more important for system quality.

Table 6.17 displays question Q15b and its answers. Q15b holds two sub-
question statements that the participant can answer if they feel the same way
or not. Sub-question 1 relates directly to hypothesis 2 and sub-question 2 to
hypothesis 3. Participant A and C feel that they write both more understandable
and more maintainable low-level tests with Spectrum and Spock than with JUnit.
Participant B on the other hand feels neither sub-question statements to be true.
In the feedback interview, these questions were further studied. Participant B feels
that Spectrum has just a different way of doing things than JUnit and both have
their areas where they perform better than the other.

Question Answer

options
Q15b: | would say that | write more Yes Uncertain No
1. Understandable low-level tests with Spectrum/Spock than with JUnit? AC B
2. Maintainable low-level tests with Spectrum/Spock than with JUnit? AC B

Table 6.17: Developer perception towards Spectrum/Spock

Many of the made hypotheses get support from the results in this section.
H2: "Developers will find it easier to understand test cases” seems to have more
evidence as two out of three participants find test cases more understandable.
H3: "Developers will find it easier to maintain code” has some results supporting
it. Only Spock tests were perceived as easier to maintain than JUnit ones, but
both Spectrum and Spock had developers that felt new tests with BDD-testing
frameworks would act as easier to understand documentation for the production

CHAPTER 6. RESULTS AND DISCUSSION 85

code. This living documentation is one the claims of BDD literature [41] and it
seems to have merit. In total, H3 seems to hold true to an extent. H4: ”Developers
will percerve working with low-level automated testing more enjoyable” has two out
of three developers agreeing with the statement. This could be interesting to study
in a larger scale, as low enjoyment [5] and motivation [6] in unit testing was found
problematic in earlier researches. With the results from this study, it can’t be
said with certainty that BDD-testing frameworks are the answer for enjoyment
problem. Although there is more evidence to support H4 than not.

Summing up, participants A and C could be grouped closer together regarding
developer perception changes with BDD-testing frameworks. This is somewhat
interesting, as they use different frameworks. In total, the changes in their per-
ception could be categorized to be on the positive side. Participant B could be
categorized to perceive the change as indifferent or negative. Its interesting to see
that participants A and B have same kind of experience as developers and they
perceive low-level testing with JUnit the same, but the difference in perceiving the
Spectrum changes was quite different.

6.2.2.2 Developer loyalty towards low-level testing

Question Answer options

Not at all likely Extremely likely
Q16: How likely are you to 0 1 2 3 4 5 6 7 8 9 10
1. Recommend low-level automated testing for colleague B AC
as a software development practice?
2. Recommend testing framework JUnit for future Spring C B A
projects where you take part in existing project?
3. Take testing framework JUnit in use for future Spring C B A
projects where you have technical lead role in a new starting
project?

Not at all likely Extremely likely
Q16’: How likely are you to 0 1 2 3 4 5 6 7 8 9 10
1. Recommend low-level automated testing for colleague B AC
as a software development practice?
2. Recommend testing framework Spectrum/Spock for fu- B A C
ture Spring projects where you take part in existing project?
3. Take testing framework Spectrum/Spock in use for fu- B A C

ture Spring projects where you have technical lead role in
a new starting project?

Table 6.18: NPS questions related to JUnit and Spectrum/Spock

Developer loyalty towards low-level testing is measured with NPS survey ques-
tions. As the participant count is so low, it is not sensible to calculate the NPS

CHAPTER 6. RESULTS AND DISCUSSION 86

directly. The information what can be used, is that for every sub-question in
questions Q16 and Q16’ values from zero to six are called detractors, seven to
eight passives and nine to ten promoters [73]. The interesting part here is to see,
whether the participant has gained loyalty enough towards testing framework to
be called a promoter.

Table 6.18 displays all the NPS survey questions with answers. Participants A
and C can be categorized as promoters of low-level testing in general before and
after the introduction of new BDD-testing framework. Participant B remains as a
passive before and after the change.

Before the introduction of Spectrum, participant A is also a steady promoter
of JUnit both as a technical lead in new project or taking part in existing project.
After using Spectrum for two months, participant can be categorized as a detrac-
tor in loyalty towards Spectrum in Spring Framework context. This was further
analyzed in interview where participant states that the found bugs in 1.1.0 ver-
sion of Spectrum in IDE test output and build test output lower the score. He
also states that Spring Framework support is not optimal yet and for these rea-
sons he hesitates to fully get on board with Spectrum. The same effect is visible
with participant B, as he was first a promoter of JUnit, but can later be catego-
rized as a detractor for Spectrum NPS. In the interview he says that the lacking
Spring Framework support is the main reason for not recommending Spectrum.
Participant C remains as a passive both with JUnit and Spock, although he states
in following interview that he would more probably use Spock in a new Spring
Framework project than JUnat.

6.2.2.3 Change summary

Benefit Participants agreeing
Enjoy writing tests more A C
Tests help to understand production code better A C
Promotes to write higher quality test code A C
More understandable tests A C
More maintainable tests A C
Maintaining is easier C
Easier to write tests C
Drawback

More difficult to write tests A B
Would like to have more tool support A B

Would not recommend to use with Spring Framework A, B

Slightly more difficult to maintain tests A

Table 6.19: Developer perception changes of low-level testing

CHAPTER 6. RESULTS AND DISCUSSION 87

Table 6.19 summarizes results for RQ3 - the perception changes towards low-
level testing in Spring Framework context. The results can be categorized into two
parts. First, participants A and C are close to each other in perceiving beneficial
aspects in changing from JUnit to BDD-testing framework. Participant B could
be categorized to be either neutral to changes or perceiving some drawbacks in
BDD-testing compared to JUnit. Second, changing from JUnit to Spectrum is
perceived to have more negative consequences than changing to Spock. The main

findings for RQ3 are:

In low level testing, there is evidence to support that BDD-testing frameworks
could rise enjoyment in testing. Results also show that BDD tests could help to
understand implemented production code better while producing tests that are
perceived as more understandable and maintanable. There is indication that
BDD-testing frameworks can potentially promote to write higher quality test
code than JUnit.

Spectrum was perceiwed to have more negative change consequenses than Spock.
Whereas Spock tests were perceived as more easily writable and maintainable,
this was not directly so with Spectrum. Spectrum was also seen as an early and
unstable framework that needs more tool support.

6.3 Test code analysis

Test code analysis was done to answer RQ3 with metrics defined in chapter 4
section 4.3.3.5. Test code analysis was done with master branches of projects
A and B, before and after the introduction of new BDD-testing framework, to
related low-level tests and their affected components. First, the unit testing level
changes are inspected with projects A and B. After this, the low-level testing
metrics and changes in them are demonstrated with both projects. Finally, the
findings are summarized.

6.3.1 Automated unit testing level

At automated unit testing level, two metrics were used to study the changes in
unit testing: average count of test methods per tested class methods and code
coverage. Table 6.20 displays these values before the introduction of new BDD-
testing framework and after. In COTM, before values were calculated for JUnit
unit tests only and after values only for new unit tests done with the selected BDD-
testing framework. In CC, before values are for the whole project at unit level

CHAPTER 6. RESULTS AND DISCUSSION 88

with JUnit. After values are unit testing coverage for JUnit and new BDD-testing
framework combined.

Metric Project A Project A Project B Project B
JUnit Spectrum JUnit Spock

COTM 1.44 5.63 3.49 25.5

Sum of tested class methods 61 8 93 4

Sum of unit test methods 88 45 325 (294)* 102 (7)*

Instruction CC 25% 24% 20% 19%

Total number of instructions 31,425 44,427 49,895 53,211

Branch CC 24% 26% 20% 21%

Total number of branches 724 1,107 2,195 2,316

Table 6.20: Unit level testing metrics in projects and their change

* = Value in parenthesis is without calculating data-driven tests sum

RQ3: How does behavior-driven testing frameworks change written low-level
test cases and test code coverage compared to JUnit framework? is first studied
with data from unit testing metrics displayed in table 6.20. Figure 6.7 visualizes
the change in COTM. Both projects display a drastic change in number of unit
test methods per tested class method. With JUnit, project A had around one to
two unit test methods per class method, but with Spectrum the average is from 5
to 6 test methods per class method. The change is around 4 times more granular
use of test methods than before. The change in COTM in project A seems to
correlate well with the original claims of Astels [33]: zSpec family testing helps
in producing more granular tests without the tight one-to-one mapping of test
methods to class methods.

At the starting point with JUnit, project B had first a fair amount of around 3
to 4 test methods per tested class method. With Spock, the average count of unit
test methods per tested class method is at staggering 25 to 26 methods. In total
there were 7 unit level feature methods with Spock, but all of them were data-
driven tests. This resulted in 102 automatically generated separate test runs. As
the number of study participants with Spock is low, this COTM-value might be an
anomaly. Still, together with the later studied DD TM-metric, the analysis displays
a significant growth in use DDT. The advertisement of Spock’s easy automatic test
generation with DSL for data-driven testing [24] seems to have merit.

CHAPTER 6. RESULTS AND DISCUSSION 89

30 I COTM
Before
I COTM After
225
15
7.5
1.44
]
Project A Project B

Figure 6.7: Average count of unit test methods per tested class method in projects

Both of studied BDD-testing frameworks showed an increase in test case gran-
ularity with test code analysis and participant practice survey. With the given
study sample, H1: ”Dewvelopers will write more granular test cases” holds true.
This results in separately passing or failing test runs. In the original situation, less
granular test cases could hold potentially multiple assertion errors at single test
method run, but the first one halts the run of that test method. More granular
test cases including more separate test methods with behavior describing naming
should help in finding the erroneous situation faster. This could also potentially
promote the test cases to act better as documentation for the tested production
code. Documentation aspect of unit tests was identified in earlier as potential
benefit in agile projects [6].

Code coverage didn’t show almost any changes at unit level in either project.
As participants earlier answered in the survey, none of them had code coverage
as an optimizing target for low-level tests. This could explain the low coverage
percentage seen in table 6.20. Although the test case granularity has risen a lot in
both projects, it doesn’t show up in test coverage one way or another. As such,
it seems that CC is a poor metric to analyze changes in actual test code. This is
further confirmed in next section with low-level test coverage examination.

6.3.2 Automated unit & integration testing levels

At automated low-level testing level there were 5 inspected metrics: code cov-
erage, average count of assertions per test method, average count of com-
ments per test method, average test method name word count and ratio of

CHAPTER 6. RESULTS AND DISCUSSION 90

data driven test methods to all low-level test methods. CC was measured
as combined JUnit and new BDD framework coverage. All other metrics were
measured first from existing low-level JUnit tests and after from new BDD-testing
framework specifications. Table 6.21 dislays the values of these metrics in projects
A and B, before and after introduction of BDD-testing framework.

Metric Project A Project A Project B Project B
JUnit Spectrum JUnit Spock
Instruction CC 59% 58% 47% 46%
Total number of instructions 31,425 44,427 49,895 53,211
Branch CC 54% 54% 39% 40%
Total number of branches 724 1,107 2,195 2,316
COA 2.64 2.07 2.82 2.46
Sum of assertions 493 174 1,311 32
Sum of test methods 187 84 465 13
coc 1.17 0.08 0.04 0.07
Sum of comments 218 7 20 1
Sum of test methods 187 84 465 13
TMNWC 4.66 11.29 5.61 8.08
Total words in test method names 872 948 2,607 105
Sum of test methods 187 84 465 13
DDTM 0 0 0.02 0.54
Sum of data driven test methods 0 0 8 7
Sum of test methods 187 84 465 13

Table 6.21: Low-level testing metrics in projects and their change

RQ3 can be further analyzed for low-level testing with metrics displayed in
table 6.21. First studied metric is CC. With combined JUnit unit and integration
tests, the instruction and branch coverage rises in both projects to around 50%.
After the introduction of BDD-testing frameworks in projects, the combined CC
for JUnit and new BDD tests remain virtually identical. It can be concluded,
that although other studied metrics show quite significant changes, CC remains
unchanged.

Figure 6.8 part a. displays the change in COA after the introduction of BDD-
testing frameworks. Both of projects had closer to three than two assertions per
test method with JUnit. With Spectrum, project A displayed a drop to approx-
imately two assertions per test method. This is natural reaction to the more
granular test cases - now there are more test methods that contain less assertions
per method than before. The total count of assertions show an upward trend to
earlier, as the total of 84 low-level test methods are a sum from far less test files
(14 pcs.) than before (53 pes. with JUnit).

CHAPTER 6. RESULTS AND DISCUSSION 91

Project B displayed smaller change in COA after the introduction of Spock. It is
hard to say whether there would be a significant change in this with larger sample
of test files to analyze. The structure of Spock, having assertions in Then-blocks, do
not separate assertions to individual feature methods, instead one method can hold
multiple blocks [45]. How this would affect COA in the long run, remains uncertain
from these results.

0.9
0.6

0.3

0.08 0.04 0.07
o o
Project A Project B Project A Project B
Il COA Before [l COA After I COC Before MMl COC After
((a)) Average count of assertions per test ((b)) Average count of comments per test

method method

Figure 6.8: Test assertions and comments in projects

Figure 6.8 part b. shows the change in COC in projects. Commenting test cases
and updating those comments was a practice that was found rarely done in earlier
research [46]. Compared to this, project A showed to be an exception earlier with
JUnit, as there was approximately at least one comment per test method. After the
introduction of Spectrum, there was interesting change in test method commenting.
The count of actual comments in tests dropped drastically to almost average zero
comments per test method. When inspecting the change in TMNWC displayed
in figure 6.9 part a, there seems to be a correlation with the drastic change in test
commenting practices and the test naming practices. Info that was earlier inserted
as pure comments, seem to be now a part of test naming with describe and it blocks.
This also allows that info to be a part of test output, so for instance the failing test
output could help the developer to grasp the test situation faster.

Project B with Spock showed virtually no change in commenting practices. There
wasn’t lot of commenting before and there still isn’t commenting in place in tests
with Spock. Interesting to see, is that also the possible textual descriptions of Given-
When-Then blocks were missing. The change in TMNWC in project B was about
50% increase in test method name words, but as the block descriptions are optional,
it is interesting to ponder how much more Spock actually promotes to write textual

CHAPTER 6. RESULTS AND DISCUSSION 92

info into tests than JUnit. Unfortunately now, only one participant’s Spock testing
habbits were studied.

Earlier study [46] had identified developers preferring the tests to be self-document-
ing without commenting. Together with COC and TMNWC from both projects,
there seems to be evidence to say that both BDD-testing frameworks promote this
aspect better than JUnit. The text descriptions as part of test method naming seems
to promote this self-documenting aspect of low-level tests. This is potentially more
evidence for H2: ”Developers will find it easier to understand test cases”, at least
there exists less need for commenting of test methods and the test names hold more
information through more words in them. Together with earlier survey and interview
results, it can be concluded that H2 seems to hold true to an extent.

045
0.3

0.15

Project A Project B Project B
B TMNWC Before [l TMNWC After I DDTM Before [l DDTM After
((a)) Average test method name word count ((b)) Ratio of data-driven tests to standard

low-level test methods

Figure 6.9: Test method naming and DDT in projects

TMNWUC changes are displayed in figure 6.9 part a. The relation between com-
menting practices and TMNWC was already discussed, but it’s still good to highlight
that in project A with Spectrum, there is on average almost 2.5 times words in test
method names. The nested example groups and their code examples features in xz:Spec
family testing seem to promote much better information on test method names than
JUnit. In project B, Spock displayed a 50% increase in TMNWC. Tester habbits
might be one of the reasons, but also the single line text description for test method
naming could be a reason for a milder increase in words than observed Spectrum-tests.

DDTM metrics can be seen in figure 6.9 part b. Project A didn’t have any DDT
with JUnit at the start, nor did it have after the introduction of Spectrum. Spectrum
and Java 8-lambdas allow automatic test method generation with usage through the
language features, but the framework doesn’t support this with a DSL. Earlier with
JUnit, Project B had about 2% of all low-level test methods as data-driven. After

CHAPTER 6. RESULTS AND DISCUSSION 93

the introduction of Spock, there was a drastic change: 54% of all feature methods
were data-driven. Spock seems to promote DDT really well with its DSL and
thus, at least maintaining of low-level tests with different test conditions should
be easier.

6.3.3 Change summary

Metric Project A Project B
CcCOTM 4F= +++

ccC stagnant stagnant
COA - -

cocC --- stagnant
TMNWC +++ +

DDTM stagnant +++

Table 6.22: Test code analysis metrics change in projects

+ = Increase amount, - = Decrease amount

BDD-testing frameworks introduced changes to almost all of the studied testing
metrics. COTM displayed a drastic change in both projects and especially with
Spock and its data-driven testing. Both frameworks promote a lot more granular
test cases than JUnit.

Code coverage remained virtually unchanged after the introduction of BDD-
testing frameworks. In hindsight, it was fairly uninteresting metric to study this
kind of testing transformation. It might have had different kind of results if actual
BDD was practiced during the study.

C'OA had decreased in both projects. With project B, the amount of test files
to study was fairly low, and thus, it is hard to draw real conclucions. Project A
on the other hand displayed slightly more decrease in COA. This seems natural to
the more granular use of test methods.

C'OC showed a significant change in project A test commenting practices. Ear-
lier with JUnit, test commenting was an often used practice. After the introduction
of Spectrum, this practice appeared to be substantially less used. Project B didn’t
have regular test commenting practices with JUnit. Spock didn’t change the fact
and test commenting remained a practice that was seldom used.

TMNWC changed in both projects. Project A had almost 2.5 times increased
test method name word count with Spectrum. In project B, there was around

CHAPTER 6. RESULTS AND DISCUSSION 94

50% increase in TMNWC. Both BDD-testing families seem to promote more in-
formation on test names than JUnit. Spectrum and its internal structure seems
to promote this even more than Spock. Together with the changes in test method
naming and commenting, compared to JUnit, BDD-testing frameworks should
produce more self-documenting test cases.

Data-driven testing was only in place in project B. Before with JUnit, DDT
was used only a few times in total of low-level testing. With Spock, DDTM-metric
increased tenfolds. Around half of the new tests with Spock were data-driven. It
can be concluded that Spock promotes the use of data-driven testing much more
than JUnat.

Table 6.22 summarises the results for RQ3 - the changes in written low-level
test and code coverage. The main findings are:

In low-level testing, BDD-testing frameworks produce more granular and self-
documenting test cases than JUnit. Spock promotes the use of DDT more than
JUnit.

Chapter 7

Conclusions

First in this chapter, the summary of case study and its results are presented.
Second, the results are presented from the viewpoint of comparing studied im-
plementation level BDD-testing frameworks. Third, possible directions for future
work on the studied topic are discussed.

7.1 Summary

With today’s trends in software development, agile practices are used more and
more in producing software. What these practices usually have in common, is the
incrementally built quality, where automated testing done by developers plays a
crucial role. Traditionally developers use xUnit family testing frameworks for low-
level automated testing. Although easy to get started, research has shown multiple
possible problematic areas in the practice of unit testing with the said frameworks.
This thesis studied alternative ways for low-level testing in the JVM context for
testing Java-code. This was conducted as a case study in multi-project industry
context. Idea was to see whether implementation level BDD-testing frameworks
could help in problematic testing areas and how they change the practices and
perception of low-level testing Java-code in general.

Practice changes in low-level testing with BDD-testing frameworks included
developers writing more granular and self-documenting test cases. Especially the
analyzed test code changes provided strong evidence for these changes. Other
changes included developers feeling that it was easier to identify separate test parts
than before with JUnit. There was also evidence to support easier understanding of
tests, more informative test output and possibly easier ways to remove repetition
from test code. Practice changes with BDD-testing frameworks were not only
positive, as studied framework Spectrum displayed a somewhat steep learning curve
compared to JUnit, with more time and effort needed in low-level testing.

95

CHAPTER 7. CONCLUSIONS 96

Perception changes in low-level testing with BDD-testing frameworks dis-
played some rise in enjoyment in testing. There was also change in perception
where two out of three practitioners perceived test done with BDD-testing frame-
works more understandable and maintanable than before. Amongst the same
participants, this was also accompanied together with the perception that BDD-
testing frameworks promote to write higher quality test code than JUnit. One of
the participants perceived changes in testing as neutral or slightly negative during
the study period.

In conclusion, these results are quite promising as possible solutions to common
problems found in unit testing, such as low enjoyment in testing together with hard
readability and maintainability of tests. Future work section discusses in more
detail how the use of implementation level BDD-testing frameworks in low-level
testing could be studied further. Before that, next section summarizes the test
changes as a comparison between used BDD-testing frameworks.

7.2 Comparison of BDD-testing frameworks

Studied aspect Spectrum Spock
Learning curve Slow Fast
More granular test cases Yes Yes
Easier to structure tests Potentially Yes
Easier to understand tests Potentially Yes
More enjoyable to test code Potentially Yes
More informative test output Yes Yes
More maintainable tests Potentially Yes
More self-documenting tests Yes Yes
Framework and tool support Adequate Good

Table 7.1: Summary of studied aspects of low-level testing with BDD frameworks

Table 7.1 summarizes the most important findings in this study from the viewpoint
of the BDD-testing frameworks. There are two keypoints when comparing the
alternatives: Spock offers more mature and easier to begin starting point for Spring
Framework low-level testing than Spectrum.

Both produce more granular test cases than JUnit, where Spock achieves this
with DDT and Given-When-Then blocks. Spectrum does this with more individ-
ually separated code examples describing behavior. Spock and its DDT should

CHAPTER 7. CONCLUSIONS 97

promote more easily maintainable tests, whereas Spectrum way of writing tests
promotes individually passing or failing test conditions. Spectrum and its nested
example groups with lifecycle hooks can be used for removing repetition from the
code.

There is evidence to support that both can potentially allow more easily to
structure and understand tests than JUnit. Although, the structure of Spock
doesn’t contain nesting, and as such might allow more easily to understand indi-
vidual tests. With Spectrum, there exists a longer learning curve to learn how
to structure and understand the nested structure properly. Especially the Java
lambda-features used to structure Spectrum tests were found troublesome within
the two months study time. Both BDD frameworks promote to write more self-
documenting test cases than before. This is especially visible with Spectrum, where
it can reduce the need for explicit commenting with test info embedded into test
descriptive naming. This self-documenting aspect of tests is also visible in more
information displayed in test output.

Summed up, these changes make both BDD frameworks good candidates to rise
enjoyment in low-level testing compared to traditional JUnit testing. Although
with Spectrum, the rise in enjoyment was not perceived unanimously. Spock could
potentially rise enjoyment in low-level testing more quickly than Spectrum. Spock’s
structure seems easier to learn when switching from JUnit and thus resulting more
quickly in well structured tests.

7.3 Future work

Due to the limited scope of this study, together with constraints of master thesis,
this case study has acted as preliminary research on the topic of comparing tra-
ditional unit testing framework JUnit against implementation level BDD-testing
frameworks. This was conducted in an environment where BDD-testing frame-
works were used as an alternative for JUnit in automated unit and integration
testing, without the practice of BDD. There exists interesting possible research
to continue on the topic of studying the use of implementation level BDD-testing
frameworks for low-level testing.

Potential future work on the topic could include replicating this study on a
larger scale on the JVM enviroment. This kind of study could also possibly be
conducted in different environment, such as the .NET environment. With larger
projects and number of study participants, it would be interesting to see whether
the larger scale results follow the same trend as results gathered in this study. As
many of the zSpec family drawbacks in this study was found out to come from the
Java language features used in Spectrum, it could be one possible change in future
studies to use alternative xSpec family framework. For example, framework from a

CHAPTER 7. CONCLUSIONS 98

dynamic programming language could be used, such as earlier demonstrated RSpec
from JRuby.

Another future work possibility could be to further explore the studied aspects
of this research in multiple isolated settings. This means using the same kind of
survey that was used in this thesis to study for example long time Java developers
using JUnit, Ruby developers using RSpec and Groovy developers using Spock.
This kind of research could be done with a large number of participants and the
results could be used to compare xUnit family, xSpec family and Gherkin family
in low-level testing on a grand scale. It would offer insight on low-level testing
practices and perception towards it, without the possible resistance to change that
can surface in replicating exact same study as in this thesis. The test code analysis
could also be done on a grand scale, for example mining public GitHub repositories
and their JUnit, RSpec or Spock tests to calculate different metrics.

Bibliography

1]

L. Prechelt, H. Schmeisky, and F. Zieris, “Quality experience: a grounded
theory of successful agile projects without dedicated testers,” in Proceedings
of the 38th International Conference on Software Engineering, pp. 1017-1027,
ACM, 2016.

P. Hamill, Unit Test Frameworks: Tools for High-Quality Software Develop-
ment. 7 O’Reilly Media, Inc.”, 2004.

D. North, “Introducing bdd.” https://dannorth.net/introducing-bdd/,
2006. [Online; accessed 24-March-2017].

D. Chelimsky, D. Astels, Z. Dennis, A. Hellesgy, B. Helmkamp, and D. North,
The RSpec Book: Behaviour-driven Development with RSpec, Cucumber, and
Friends. Pragmatic Bookshelf Series, Pragmatic Bookshelf, 2010.

E. Daka and G. Fraser, “A survey on unit testing practices and problems,”
in Software Reliability Engineering (ISSRE), 2014 IEEE 25th International
Symposium on, pp. 201-211, IEEE, 2014.

P. Runeson, “A survey of unit testing practices,” IEEFE software, vol. 23, no. 4,
pp- 22-29, 2006.

Wikipedia, “Java virtual machine — wikipedia, the free encyclopedia.”
https://en.wikipedia.org/w/index.php?title=Java_virtual_machine&
01did=767900023, 2017. [Online; accessed 21-March-2017].

T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java virtual machine
specification: Java SE 8 Edition. Oracle America, 2015.

A. Sarimbekov, A. Podzimek, L. Bulej, Y. Zheng, N. Ricci, and W. Binder,
“Characteristics of dynamic jvm languages,” in Proceedings of the 7th ACM

workshop on Virtual machines and intermediate languages, pp. 11-20, ACM,
2013.

99

https://dannorth.net/introducing-bdd/
https://en.wikipedia.org/w/index.php?title=Java_virtual_machine&oldid=767900023
https://en.wikipedia.org/w/index.php?title=Java_virtual_machine&oldid=767900023

BIBLIOGRAPHY 100

[10]

[11]

[12]

[13]

[14]

[15]

[18]

[19]

[20]

[21]

2

F. Buckley, “A standard for software quality assurance plans,” Computer,

vol. 12, no. 8, 1978.

B. Kitchenham and S. L. Pfleeger, “Software quality: the elusive target [spe-
cial issues section],” IEEFE Software, vol. 13, pp. 12-21, Jan 1996.

P. J. Denning, “Software quality,” Commun. ACM, vol. 59, pp. 23-25, Aug
2016.

L. McLeod and S. G. MacDonell, “Factors that affect software systems devel-
opment project outcomes: A survey of research,” ACM Computing Surveys
(CSUR), vol. 43, no. 4, p. 24, 2011.

N. Cerpa and J. M. Verner, “Why did your project fail?,” Communications
of the ACM, vol. 52, no. 12, pp. 130-134, 2009.

R. Charette and J. Romero, “Lessons from a decade of it failures.” http://
spectrum.ieee.org/static/lessons-from-a-decade-of-it-failures, 2015.

[Online; accessed 15-March-2017].

M. Huo, J. Verner, L. Zhu, and M. A. Babar, “Software quality and agile meth-
ods,” in Computer Software and Applications Conference, 2004. COMPSAC
2004. Proceedings of the 28th Annual International, pp. 520-525, IEEE, 2004.

M. V. Méntyla and J. Itkonen, “How are software defects found? the role
of implicit defect detection, individual responsibility, documents, and knowl-
edge,” Information and Software Technology, vol. 56, no. 12, pp. 1597-1612,
2014.

P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pp. 202-212, ACM, 2013.

J. Itkonen, “Lecture: Building quality in modern software development,” Oc-
tober 2016.

L. Crispin and J. Gregory, Agile testing: A practical guide for testers and
agile teams. Pearson Education, 2009.

R. Osherove, The Art of Unit Testing, Second Edition. Manning Publications
Company, 2013.

J. A. Whittaker, “What is software testing? and why is it so hard?,” IEFFE
software, vol. 17, no. 1, pp. 70-79, 2000.

http://spectrum.ieee.org/static/lessons-from-a-decade-of-it-failures
http://spectrum.ieee.org/static/lessons-from-a-decade-of-it-failures

BIBLIOGRAPHY 101

[23]

[24]
[25]

[30]

[31]

[32]

J. Langr, A. Hunt, and D. Thomas, Pragmatic Unit Testing in Java 8 with
JUnit. Pragmatic Bookshelf, 2015.

K. Kapelonis, Java Testing with Spock. Manning Publications Company, 2016.

D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Mantyld, “Benefits
and limitations of automated software testing: Systematic literature review

and practitioner survey,” in Proceedings of the 7th International Workshop on
Automation of Software Test, pp. 36-42, IEEE Press, 2012.

L. Williams, G. Kudrjavets, and N. Nagappan, “On the effectiveness of unit
test automation at microsoft.,” in ISSRE, pp. 81-89, 2009.

S. Berner, R. Weber, and R. K. Keller, “Observations and lessons learned from
automated testing,” in Software Engineering, 2005. ICSE 2005. Proceedings.
27th International Conference on, pp. 571-579, IEEE, 2005.

K. Beck, Test-driven development: by example. Addison-Wesley Professional,
2003.

W. Bissi, A. G. S. S. Neto, and M. C. F. P. Emer, “The effects of test driven
development on internal quality, external quality and productivity: A sys-
tematic review,” Information and Software Technology, vol. 74, pp. 45-54,
2016.

K. Beck, “Aim, fire [test-first coding],” IEEFE Software, vol. 18, no. 5, pp. 87—
89, 2001.

S. Kollanus, “Test-driven development-still a promising approach?,” in Qual-
ity of Information and Communications Technology (QUATIC), 2010 Seventh
International Conference on the, pp. 403—408, IEEE, 2010.

M. F. Aniche and M. A. Gerosa, “Most common mistakes in test-driven devel-
opment practice: Results from an online survey with developers,” in Software
Testing, Verification, and Validation Workshops (ICSTW), 2010 Third Inter-
national Conference on, pp. 469478, IEEE, 2010.

D. Astels, “A new look at test-driven development,” http://blog. daveastels.
com/files/BDD_Intro. pdf; Acessado em, vol. 12, p. 2013, 2006.

E. Amodeo, Learning Behavior-driven Development with JavaScript. Com-
munity Experience Distilled, Packt Publishing, 2015.

BIBLIOGRAPHY 102

[35]

[40]

[41]

[42]

S. Hammond and D. Umphress, “Test driven development: the state of the
practice,” in Proceedings of the 50th Annual Southeast Regional Conference,
pp. 158-163, ACM, 2012.

M. Gartner, ATDD by example: a practical guide to acceptance test-driven
development. Addison-Wesley, 2012.

B. Haugset and T. Stalhane, “Automated acceptance testing as an agile
requirements engineering practice,” in System Science (HICSS), 2012 45th
Hawaii International Conference on, pp. 5289-5298, IEEE, 2012.

DevelopSense, “Blog: Acceptance tests: Letas change
the title, t00.” http://www.developsense.com/blog/2010/08/
acceptance-tests-lets-change-the-title-too/, 2010. [Online; accessed
24-March-2017].

J. H. Hayes, A. Dekhtyar, and D. S. Janzen, “Towards traceable test-driven
development,” in Traceability in Emerging Forms of Software Engineering,
2009. TEFSE’09. ICSE Workshop on, pp. 26-30, IEEE, 2009.

C. Solis and X. Wang, “A study of the characteristics of behaviour driven
development,” in Software Engineering and Advanced Applications (SEAA),
2011 37th EUROMICRO Conference on, pp. 383-387, IEEE, 2011.

J. Smart, BDD in Action: Behavior-Driven Development for the Whole Soft-
ware Lifecycle. Manning Publications Company, 2014.

A. Okolnychyi and K. Fogen, “A study of tools for behavior-driven develop-
ment,” Full-scale Software Engineering/Current Trends in Release Engineer-
ing, p. 7, 2016.

Wikipedia, “User story — wikipedia, the free encyclopedia.” https://en.
wikipedia.org/w/index.php?title=User_story&oldid=775339969, 2017. [On-
line; accessed 2-May-2017].

R. M. Lerner, “At the forge: Rspec,” Linux Journal, vol. 2009, no. 186, 2009.

P. Niederwieser, “Spock framework reference documentation.” http://
spockframework.org/spock/docs/1.1-rc-3/all_in_one.html, 2017. [Online;
accessed 28-March-2017].

B. Li, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk, and N. A. Kraft,
“Automatically documenting unit test cases,” in Software Testing, Verifica-
tion and Validation (ICST), 2016 IEEE International Conference on, pp. 341—
352, IEEE, 2016.

http://www.developsense.com/blog/2010/08/acceptance-tests-lets-change-the-title-too/
http://www.developsense.com/blog/2010/08/acceptance-tests-lets-change-the-title-too/
https://en.wikipedia.org/w/index.php?title=User_story&oldid=775339969
https://en.wikipedia.org/w/index.php?title=User_story&oldid=775339969
http://spockframework.org/spock/docs/1.1-rc-3/all_in_one.html
http://spockframework.org/spock/docs/1.1-rc-3/all_in_one.html

BIBLIOGRAPHY 103

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

L. Chantal and S. Regina, “Towards and empirical evaluation of behavior-
driven development,” 2009.

JUnit, “Junit - about.” http://junit.org/junit4/, 2017. [Online; accessed
22-March-2017].

Github, “Roadmap - junit-team/junit5 wiki - github.” https://github.com/
junit-team/junit5/wiki/Roadmap, 2017. [Online; accessed 22-March-2017].

P. Software, “Spring framework.” https://projects.spring.io/
spring-framework/, 2017. [Online; accessed 22-March-2017].

Wikipedia, “Spring framework — wikipedia, the free encyclopedia.” https://
en.wikipedia.org/w/index.php?title=Spring_Framework&oldid=770621263,
2017. [Online; accessed 22-March-2017].

7

P. Software, “Spring integration testing.
docs/current/spring-framework-reference/html/integration-testing.

html, 2017. [Online; accessed 22-March-2017].

https://docs.spring.io/spring/

G. C. Archive, “The hamcrest tutorial.” https://code.google.com/archive/
p/hamcrest/wikis/Tutorial.wiki, 2017. [Online; accessed 04-April-2017].

G. Inc, “Gradle build tool.” https://gradle.org/, 2017. [Online; accessed
30-March-2017].

2

Artima, “Scalatest - getting started with funspec.
org/getting_started_with_fun_spec, 2017. [Online; accessed 27-March-
2017].

http://www.scalatest.

7

RSpec, “Rspec documentation.
[Online; accessed 28-March-2017].

http://rspec.info/documentation/, 2017.

RSpec, “rspec-core.” http://rspec.info/documentation/3.5/rspec-core/,
2017. [Online; accessed 28-March-2017].

Mockito, “Mockito framework site.” http://site.mockito.org/, 2017. [On-
line; accessed 30-March-2017].

RSpec, “Explicit subject - subject - rspec core - rspec - relish.” https://www.
relishapp.com/rspec/rspec-core/v/3-5/docs/subject/explicit-subject,
2017. [Online; accessed 28-March-2017].

2

JetBrains, “Intellij idea the java ide.
2017. [Online; accessed 30-March-2017].

https://www.jetbrains.com/idea/,

http://junit.org/junit4/
https://github.com/junit-team/junit5/wiki/Roadmap
https://github.com/junit-team/junit5/wiki/Roadmap
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://en.wikipedia.org/w/index.php?title=Spring_Framework&oldid=770621263
https://en.wikipedia.org/w/index.php?title=Spring_Framework&oldid=770621263
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/integration-testing.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/integration-testing.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/integration-testing.html
https://code.google.com/archive/p/hamcrest/wikis/Tutorial.wiki
https://code.google.com/archive/p/hamcrest/wikis/Tutorial.wiki
https://gradle.org/
http://www.scalatest.org/getting_started_with_fun_spec
http://www.scalatest.org/getting_started_with_fun_spec
http://rspec.info/documentation/
http://rspec.info/documentation/3.5/rspec-core/
http://site.mockito.org/
https://www.relishapp.com/rspec/rspec-core/v/3-5/docs/subject/explicit-subject
https://www.relishapp.com/rspec/rspec-core/v/3-5/docs/subject/explicit-subject
https://www.jetbrains.com/idea/

BIBLIOGRAPHY 104

[61]

[62]

[63]

RubyGems, “What is a gem? - rubygems guides.” http://guides.rubygemns.
org/what-is-a-gem/, 2017. [Online; accessed 30-March-2017].

Github, “greghaskins/spectrum: A bdd-style test runner for java 8. in-
spired by jasmine, rspec, and cucumber.” https://github.com/greghaskins/
spectrum/, 2017. [Online; accessed 27-March-2017].

Github, “greghaskins/spectrum: A bdd-style test runner for java 8. in-
spired by jasmine, rspec, and cucumber.” https://github.com/greghaskins/
spectrum/tree/1.0.2, 2017. [Online; accessed 27-March-2017].

Github, “Gherkin.” https://github.com/cucumber/cucumber/wiki/Gherkin,
2017. [Online; accessed 28-March-2017].

Github, “jimweirich/rspec-given: Given/when/then keywords for rspec spec-
ifications.” https://github.com/jimweirich/rspec-given, 2017. [Online; ac-
cessed 28-March-2017].

Artima, “Scalatest - getting started with featurespec.” http://www.

scalatest.org/getting_started_with_feature_spec, 2017. [Online; accessed
28-March-2017].

Github, “Pease.” http://pease.github.io/, 2017. [Online; accessed 28-
March-2017].

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin,
K. El Emam, and J. Rosenberg, “Preliminary guidelines for empirical research
in software engineering,” IEEE Transactions on software engineering, vol. 28,
no. 8, pp. 721-734, 2002.

P. Runeson, M. Host, A. Rainer, and B. Regnell, Case study research in
software engineering: Guidelines and examples. John Wiley & Sons, 2012.

D. Cohen and B. Crabtree, “Qualitative research guidelines project.”
http://www.sswn.info/sites/default/files/reference_attachments/
COHEN%202006%20Semistructured’20Interview.pdf, 2006. [Online; accessed
06-April-2017].

LimeSurvey, “Limesurvey: the online survey tool - open source suryeys.”
https://www.limesurvey.org/, 2017. [Online; accessed 06-April-2017].

R. A. Cummins and E. Gullone, “Why we should not use 5-point likert scales:
The case for subjective quality of life measurement,” in Proceedings, second
international conference on quality of life in cities, pp. 74-93, 2000.

http://guides.rubygems.org/what-is-a-gem/
http://guides.rubygems.org/what-is-a-gem/
https://github.com/greghaskins/spectrum/
https://github.com/greghaskins/spectrum/
https://github.com/greghaskins/spectrum/tree/1.0.2
https://github.com/greghaskins/spectrum/tree/1.0.2
https://github.com/cucumber/cucumber/wiki/Gherkin
https://github.com/jimweirich/rspec-given
http://www.scalatest.org/getting_started_with_feature_spec
http://www.scalatest.org/getting_started_with_feature_spec
http://pease.github.io/
http://www.sswm.info/sites/default/files/reference_attachments/COHEN%202006%20Semistructured%20Interview.pdf
http://www.sswm.info/sites/default/files/reference_attachments/COHEN%202006%20Semistructured%20Interview.pdf
https://www.limesurvey.org/

BIBLIOGRAPHY 105

[73]

[74]

[75]

F. F. Reichheld, “The one number you need to grow,” Harvard business re-
view, vol. 81, no. 12, pp. 46-55, 2003.

EclEmma, “Eclemma jacoco java code coverage library.” http://www.
eclemma.org/jacoco/, 2017. [Online; accessed 07-April-2017].

M. G. . C. KG and Contributors, “Jacoco coverage counter.” http://www.

jacoco.org/jacoco/trunk/doc/counters.html, 2017. [Online; accessed 07-
April-2017].

Wikipedia, “Camel case — wikipedia, the free encyclopedia.” https://en.
wikipedia.org/w/index.php?title=Camel_case&oldid=773178217, 2017. [On-
line; accessed 07-April-2017].

T. A. S. Foundatation, “Maven 2013; introduction.” https://maven.apache.
org/what-is-maven.html, 2017. [Online; accessed 18-April-2017].

Github, “Parameterized tests - junit-team/junit4 wiki.” https://github.com/
junit-team/junit4/wiki/parameterized-tests, 2017. [Online; accessed 12-

April-2017].

http://www.eclemma.org/jacoco
http://www.eclemma.org/jacoco
http://www.jacoco.org/jacoco/trunk/doc/counters.html
http://www.jacoco.org/jacoco/trunk/doc/counters.html
https://en.wikipedia.org/w/index.php?title=Camel_case&oldid=773178217
https://en.wikipedia.org/w/index.php?title=Camel_case&oldid=773178217
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://github.com/junit-team/junit4/wiki/parameterized-tests
https://github.com/junit-team/junit4/wiki/parameterized-tests

Appendix A

Interview questions

A.1 Interview for demographic purposes

1. How long have you worked as a software developer?
2. How long have you worked as a Java developer?

(a) How long in the Spring Framework context?
3. What is the project you are working on now?

(a) What is the context of project?

i. Industry branch or government related?
ii. What is the nature of software development?

(b) Does the project use agile or traditional process?
(c) What is the size of the project?

e) How would you describe the project’s software architecture?

(
(

(g) What is the used automated testing framework for

)
)
(d) What is the size of development team?
)
f) What practices are in the used quality assurance process?
)

1. Unit-level?

ii. Integration-level?
4. How much experience do you have with automated

(a) Unit testing and with what frameworks?

(b) Integration testing and with what frameworks?

5. How much experience do you have with automated behavior-driven develop-
ment testing frameworks before this experiment?

106

Appendix B

Surveys

This appendix explains in detail the two surveys used in this case study: their
questions and relationship to related research surveys & found problems. First,
the survey regarding JUnit is examined, followed by the inspection of BDD-testing
framework survey.

B.1 Survey regarding JUnit in automated low-
level testing

Survey regarding JUnit contains base questions from multiple previous research
studies [5, 26, 46]. They were used as base to see how the participants in this study
are positioned related to other studied practitioners. Related research in chapter
2 section 2.7 highlighted findings from previous studies. This survey is aimed to
study about the participants practices and perception related to common problems
and other findings found in earlier research. Table B.1 displays how JUnit survey
questions are related to previous studies and to which research questions they will
later help answering:

Related research Survey questions Related research findings

questions

RQ1 Q3 Developers are mainly trying to find realistic sce-
narios on what to test [5]

RQ1 Q11, Q12 Developers finding isolating of unit under test
hard [5]

RQ2 Q14 Only half of the survey respondents enjoy writing
unit tests [5, 6]

RQ1, RQ2 Q2, Q7, Q14, Q15 Maintaining unit tests was found hard [5, 6]

RQ1 Q4, Q5, Q6 For 60.38% of developers, understanding unit tests
is at least moderately difficult [46]

RQ1 Q8, Q9 Developers find updated documentation and com-

ments in test cases useful, but writing comments
to unit tests is rarely or never done [46]

RQ2 Q14, Q15 Majority of developers find unit tests helpful in
producing higher quality code [26]

RQ2 Q14 Majority of developers find unit tests helpful in
understanding other peoples code [26]

RQ1 Q1, Q10

RQ2 Q16

Table B.1: JUnit survey questions related to research questions and earlier studies

107

APPENDIX B. SURVEYS 108

Tables B.2, B.3 and B.4 display all the questions in the JUnit survey. They
contain multiple copied questions from other studies. All the copied questions
originally had the word "unit” in them instead of “low-level’. This change was made
to accompany both unit and integration testing into the survey of this study.

First copied questions are questions Q1: How do you spend your software
development time? and Q3: How tmportant are the following aspects for you
when you write new low-level tests? [5]. These questions were copied to study as a
base how the development time is used and what aspects are priortized in low-level
testing. Q3 Sub-questions 1 and 3-8 are originals. Q3 Sub-question 2 is added to
this survey to study the initial attitude towards describing behavior in tests.

Third copied question is Q4: How difficult is it for you usually to understand a
low-level test? [46]. This question was added to survey to get a general concensus
about understandability of the low-level testing within participants. Fourth and
fifth copied questions are Q8: How often do you add/write documentation com-
ments to low-level test cases? and Q9: When you make changes to low-level tests,
how often do you comment the changes (or update existing comments)? [46]. These
questions were copied to study the low-level testing documentation practices.

Sixth and seven copied questions are Q14 & Q15: Please indicate your level of
agreement with the following statements. Q14 and its sub-questions 1-5 are copied
from 7A survey on unit testing practices and problems” by Daka and Fraser [5].
Sub-questions 6-8 are original questions defined in this thesis. Q15 sub-question
1 is copied from a unit test practitioner survey done at Microsoft [26] and sub-
question 2 is copied from unit test documentation practices survey by Li et al. [46].
Questions Q14 & Q15 were copied to gather developer perception towards low-level
testing.

APPENDIX B. SURVEYS

109

Question

Answer
options

Q1: How do you spend your software development time (in percentages)

. Writing new code
Writing new tests
. Debugging/fixing
. Refactoring
Other

aswN e

0-100%

Q2: How do you spend your low-level automated testing time

1. How much approximately you use time per test case (minutes)?

2. How much of your initial effort goes to thinking about test case content without implementation (percentage)?
3. How much of your initial effort goes to initial test case structuring and implementation (percentage)?

4. How much of your overall testing effort goes to refactoring test code (percentage)?

minutes
0-100%

Q3: How important are the following aspects for you when you write new low-level tests?

. Code coverage

. Capturing all behavior of unit/feature with tests or assertions

. Execution speed

Robustness against code changes (i.e., test does not break easily)

How realistic the test scenario is

. How easily faults can be localised /debugged if the test fails

. How easily the test can be updated when the underlying code changes

. Sensitivity against code changes (i.e., test should detect even small code changes)

NG A WN

Not at all

Low

importance

Slightly im-
portant

Neutral

Moderately
important

Very
important

Extremely
important

Q4: How difficult is it for you to understand a low-level test?

Very easy

Easy

Moderate

Hard

Very hard

Q5: In low-level testing, how difficult is it for you to

. Structure and write information to context of test?

. Structure and write information to stimulus of test?

. Structure and write information to assertions of test?

Read test case structure for information about context of test?

. Read test case structure for information about stimulus of test?

. Read test case structure for information about assertions of test?

oo s wWwN

Very easy

Easy

Slightly
easy

Moderate

Slightly
hard

Hard

Very hard

Q6: How informative you usually find the test output?

Not at all

Hardly

informative

Slightly in-
formative

Somewhat
informative

Moderately
informative

Very infor-
mative

Extremely
informative

Q7: How much are the following repetition reducing techniques used in your low-level testing?

. Extract method (custom helper methods)

. Lifecycle hooks Before/After -class

. Lifecycle hooks Before/After (each)

. Automatic test generation via test method parametrization
. Common test initializer class inheritance

G wN e

Never

Very rarely

Rarely

Occasionally Frequently

Very
frequently

Always

Q8: How often do you add/write documentation comments to low-level test cases?

Never

Rarely

Moderate

Hard

Very hard

Q9: When you make changes to low-level tests, how often do you comment the changes (or update
existing comments)?

Never

Rarely

Moderate

Hard

Very hard

Q10: In unit testing, how many

1. Test methods do you usually write per class method?
2. Assertions do you usually write per test method?

2-3

45

10 or more

Q11: In unit testing, what mocking library do you normally use?

Mockito

jMock

Powermock

Easymock

Other

Q12: In unit testing, how difficult you find it to

1. Mock objects?
2. Stub method calls?
3. Verify mock object actions?

Very easy

Easy

Slightly
easy

Moderate

Slightly
hard

Hard

Very hard

Q13: When do you add automated unit tests for developed code?

Before
implemen-
tation

During
implemen-
tation

After
implemen-
tation

Table B.2: JUnit developer low-level testing practice questions

APPENDIX B. SURVEYS

110

Question Answer
options
Q14: Please indicate your level of agr: with the following statements
Strongly Disagree Somewhat Neither Somewhat Agree Strongly
disagree disagree agree nor agree agree
disagree
1. Writing low-level tests is difficult
2. | enjoy writing low-level tests
3. I would like to have more tool support when writing low-level tests
4. 1 would like to have more low-level tests
5. Maintaining low-level tests is difficult
6. | think my low-level tests will help other developers to understand the implemented unit/feature better
7. Low-level automated testing helps me find defects in the code before other quality assurance phases
8. JUnit promotes me to write high quality test code
Q15: Please indicate your level of agr with the following statements
Strongly Disagree Neutral Agree Strongly
disagree agree
1. Overall, low-level tests help me produce higher quality code
2. Maintaining good low-level test cases and their documentations is important to the quality of a system
Table B.3: Likert scale questions of developer perception towards JUnit
Question Answer
options
Q16: How likely are you to
0 1 2 3 4 5 6 7 8 10

1. Recommend low-level automated testing for colleague as a software development practice?

2. Recommend testing framework JUnit for future Spring projects where you take part in existing
project?

3. Take testing framework JUnit in use for future Spring projects where you have technical lead role
in a new starting project?

Table B.4: NPS questions of developer loyalty towards low-level automated testing with JUnit

APPENDIX B. SURVEYS 111

B.2 Survey regarding BDD-testing framework in
automated low-level testing

Survey regarding BDD-testing framework was aimed for the projects A and B
explained in chapter 5. This means that for project A, the survey was aimed at
to study the differences between JUnit and xSpec family testing done with Spec-
trum. For project B, survey was targeted to study the change from JUnit to
Gherkin family Spock testing framework. BDD-testing framework survey ques-
tions, together with base JUnit survey questions, are used to answer to researh
questions RQ1 and RQ2. Table B.5 demonstrates how BDD-testing framework
survey questions are related to previous research findings and research questions
in this thesis:

Related research Survey questions Related research findings

questions

RQ1 Q3 Developers are mainly trying to find realistic sce-
narios on what to test [5]

RQ1 Q11’, Q12’ Developers finding isolating of unit under test
hard [5]

RQ2 *Q14 Only half of the survey respondents enjoy writing
unit tests [5, 6]

RQ1, RQ2 Q2’, Q7, *Q14’, Q15 Maintaining unit tests was found hard [5, 6]

RQ1 Q4’, Q5’, Q6’, Q15 For 60.38% of developers, understanding unit tests
is at least moderately difficult [46]

RQ1 Q8’, QY Developers find updated documentation and com-

ments in test cases useful, but writing comments
to unit tests is rarely or never done [46]

RQ2 *Q14 Majority of developers find unit tests helpful in
producing higher quality code [26]

RQ2 *Q14’, Q15 Majority of developers find unit tests helpful in
understanding other peoples code [26]

RQ1 Q1, Q10

RQ2 Q16

Table B.5: JUnit survey questions related to research questions and earlier studies

* = Q14 contains direct comparison to JUnit survey questions Q14 and Q15

Questions marked with ’-character are direct comparison questions to question
with same number in JUnit survey displayed in section B.1. For example original
question Q2 in JUnit survey: "How do you spend your low-level automated testing
time?” has its direct comparison question Q2’: ”Compared to JUnit, How do you

APPENDIX B. SURVEYS 112

spend your low-level automated testing time?”. Although there were individual
surveys used for each Spock and Spectrum, their questions are both displayed in
same tables. The only change is in the words Spectrum/Spock, which are marked
in questions. Full questions used in BDD surveys are displayed in tables B.6, B.7,
B.8 and B.9.

APPENDIX B. SURVEYS

113

Question Answer
options

Q1’: Compared to JUnit, How do you spend your software development time?

A lot less time Less time Slightly less The same Slightly more More time A lot more
time amount time time
1. Writing new code
2. Writing new tests
3. Debugging/fixing
4. Refactoring
5. Other
Q2': Compared to JUnit, How do you spend your low-level automated testing time?
A lot less Less Slightly less The same Slightly more ~ More A lot more
amount
1. Do you use more or less time per test case?
2. Do you use more or less of initial effort thinking about test case content? (no implementation)
3. Do you use more or less of initial effort to test case structuring and implementation?
4. Do you use more or less of overall testing effort to refactoring test code?
Q3': Compared to JUnit, How important are the following aspects for you when you write
new low-level tests?
A lot less im- Less impor- Slightly less As important Slightly more More impor- A lot more
portant tant important as before important tant important
1. Code coverage
2. Capturing all behavior of unit/feature with tests or assertions
3. Execution speed
4. Robustness against code changes (i.e., test does not break easily)
5. How realistic the test scenario is
6. How easily faults can be localised/debugged if the test fails
7. How easily the test can be updated when the underlying code changes
8. Sensitivity against code changes (i.e., test should detect even small code changes)
A lot less dif- Less difficult ~ Slightly less As difficult as Slightly more More difficult A lot more
ficult difficult before difficult difficult
Q4’: Compared to JUnit, how difficult is it for you to understand a low-level test?
Q5': Compared to JUnit in low-level testing, how difficult is it for you to.
A lot less dif- Less difficult ~ Slightly less As difficult as Slightly more More difficult A lot more
ficult difficult before difficult difficult
1. Structure and write information to context of test?
2. Structure and write information to stimulus of test?
3. Structure and write information to assertions of test?
4. Read test case structure for information about context of test?
5. Read test case structure for information about stimulus of test?
6. Read test case structure for information about assertions of test?
A lot less in- Less informa- Slightly less As infor- Slightly more More infor- A lot more in-
formative tive informative mative as informative mative formative
before
Q6’: Compared to JUnit, how informative you usually find the test output?
Q7’: Compared to JUnit, how much are the following repetition reducing techniques used in
your low-level testing?
A lot less Less Slightly less The same Slightly more More A lot more
amount
1. Extract method (custom helper methods)
2. Lifecycle hooks Before/After -class
3. Lifecycle hooks Before/After (each)
4. Automatic test generation via test method parametrization
5. Common test initializer class inheritance
A lot less Less Slightly less The same Slightly more More A lot more
amount
Q8’: Compared to JUnit, how often do you add/write documentation comments to low-level
test cases?
A lot less Less Slightly less The same Slightly more ~ More A lot more
amount
Q9': Compared to JUnit when you make changes to low-level tests, how often do you comment
the changes (or update existing comments)?
Q10’: Compared to JUnit in unit testing
A lot less Less Slightly less The same Slightly more ~ More A lot more
amount
1. Do you write more or less test methods per class method?
2. Do you write more or less assertions per test method?
Mockito jMock Powermock Easymock Other Spock’s inter-
nal mocking
Q11’: In unit testing with Spectrum/Spock, what mocking library do you normally use?
Q12’: Compered to JUnit in unit testing, how difficult you find it to
A lot easier Easier Slightly easier ~As difficult as Slightly Harder A lot harder
before harder
1. Mock objects?
2. Stub method calls?
3. Verify mock object actions?
Before imple- During imple- After imple-
mentation mentation mentation
Q13’: When do you add automated unit tests for developed code?
Table B.6: Spectrum/Spock developer low-level testing practice questions

APPENDIX B. SURVEYS 114

Question Answer
options

Q14’: Please indicate your level of ag with the following statements
Strongly Disagree Somewhat Neither Somewhat ~ Agree Strongly
disagree disagree agree nor agree agree

disagree
1. Writing low-level tests with Spectrum/Spock is more difficult than with JUnit
2. | enjoy writing low-level tests with Spectrum/Spock more than | do with JUnit
3. | would like to have more tool support for Spectrum/Spock when writing low-level tests
4. | would like to have more low-level tests with Spectrum/Spock
5. Maintaining low-level tests with Spectrum/Spock is more difficult than with JUnit
6. | think my low-level tests with Spectrum/Spock will help other developers to understand the implemented unit/fea-
ture better than earlier tests with JUnit
7. Low-level automated testing with Spectrum/Spock helps me find defects in the code before other quality assurance
phases better than earlier tests with JUnit
8. Spectrum/Spock promotes me to write higher quality test code than with JUnit
9. Overall, low-level tests with Spectrum/Spock help me produce higher quality code than with JUnit
10. Maintaining good low-level test cases and their documentation with Spectrum/Spock is more important for
system quality than maintaining JUnit test cases

Table B.7: Likert scale questions of developer perception towards Spectrum/Spock

Question Answer
options

Q15: | would say that | write more

Yes Uncertain No
1. Understandable low-level tests with Spectrum/Spock than with JUnit?
2. Maintainable low-level tests with Spectrum/Spock than with JUnit?

Table B.8: Questions of developer perception towards Spectrum/Spock

Question Answer
options

Q16’: How likely are you to
0 1 2 3 4 5 6 7 8 9 10
1. Recommend low-level automated testing for colleague as a software development practice?
2. Recommend testing framework Spectrum/Spock for future Spring projects where you take part
in existing project?
3. Take testing framework Spectrum/Spock in use for future Spring projects where you have
technical lead role in a new starting project?

Table B.9: NPS questions of developer loyalty towards low-level automated testing with Spec-
trum/Spock

Appendix C

Gradle build configurations

1 //integration test compile task

2 configurations {

3 integrationTestCompile.extendsFrom testCompile
1 integrationTestRuntime.extendsFrom testRuntime
)

{ }

6

7 dependencies {

8 testCompile ’junit:junit:’ + junitVersion

9 testCompile ’org.hamcrest:hamcrest-all:’ + hamcrestVersion //hamcrest-matchers

10 testCompile ’org.mockito:mockito-core:’ + mockitoVersion //mockito for test isolation

11 testCompile ’io.rest-assured:rest-assured:’ + restAVersion //integration-testing REST
12 //spring domain extension

13 integrationTestCompile ’org.springframework.boot:spring-boot-starter-test’
14 }

15

16 //add integration test sources

17 sourceSets {

18 integrationTest {

19 java {

20 compileClasspath += main.output + test.output

21 runtimeClasspath += main.output + test.output

22 srcDir file(’src/integration-test/java’)

23 }

24 resources.srcDir file(’src/integration-test/resources’)

25 }

26 }

27

28 //add integration test task

29 task integrationTest(type: Test) {

30 testClassesDir = sourceSets.integrationTest.output.classesDir

31 classpath = sourceSets.integrationTest.runtimeClasspath

32 outputs.upToDateWhen { false }

33 }

34

35 check.dependsOn test // gradle build runs unit tests

36 check.dependsOn integrationTest // gradle build runs integration tests
37 integrationTest.mustRunAfter test // integration tests are run after unit tests

Figure C.1: Relevant parts of JUnit Gradle build configuration

115

APPENDIX C. GRADLE BUILD CONFIGURATIONS 116

1 //integration test compile task

2 configurations {

3 integrationTestCompile.extendsFrom testCompile
1 integrationTestRuntime.extendsFrom testRuntime
5

}

dependencies {

8 testCompile ’junit:junit:’ + junitVersion
9 testCompile ’org.hamcrest:hamcrest-all:’ + hamcrestVersion //hamcrest-matchers
10 testCompile ’org.mockito:mockito-core:’ + mockitoVersion //mockito for test isolation
11 testCompile ’io.rest-assured:rest-assured:’ + restAVersion //integration-testing REST
12 testCompile ’com.greghaskins:spectrum:’ + spectrumVersion //spectrum junit-runner
13 //spring domain extension
14 integrationTestCompile ’org.springframework.boot:spring-boot-starter-test’
15 }
16
17 //add integration test sources
18 sourceSets {
19 integrationTest {
20 java {
21 compileClasspath += main.output + test.output
22 runtimeClasspath += main.output + test.output
23 srcDir file(’src/integration-test/java’)
24 }
25 resources.srcDir file(’src/integration-test/resources’)
26 }
27 }
28
29 //add integration test task
30 task integrationTest(type: Test) {
31 testClassesDir = sourceSets.integrationTest.output.classesDir
32 classpath = sourceSets.integrationTest.runtimeClasspath
33 include ’**/*Spec.java’
34 outputs.upToDateWhen { false }
35 ¥
36
37 check.dependsOn test // gradle build runs unit tests
38 check.dependsOn integrationTest // gradle build runs integration tests
39 integrationTest.mustRunAfter test // integration tests are run after unit tests

Figure C.2: Relevant parts of Spectrum Gradle build configuration

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
I
43
44

APPENDIX C. GRADLE BUILD CONFIGURATIONS

117

//integration test compile task

configurations {
integrationTestCompile.extendsFrom testCompile
integrationTestRuntime.extendsFrom testRuntime

}

dependencies {
//groovy rest-client
testCompile ’org.codehaus.groovy.modules.http-builder:http-builder:0.6’
testCompile ’org.codehaus.groovy:groovy-all:2.4.4° //groovy
testCompile ’org.spockframework:spock-core:1.1-groovy-2.4-rc-3’ //spock
testCompile ’cglib:cglib-nodep:3.2.4° // stubbing java classes
//bdd html reports
testCompile (’com.athaydes:spock-reports:1.2.13%) {
transitive = false // this avoids affecting your version of Groovy/Spock
b
//mockito InjectMocks type mocking (not recommended)
testCompile ’com.blogspot.toomuchcoding:spock-subjects-collaborators-extension:1.2.1’
//spring extension for spock
integrationTestCompile ’org.spockframework:spock-spring:1.1-groovy-2.4-rc-3’

}

//add integration test sources for Spock
sourceSets {
integrationTest {
groovy {
compileClasspath += main.output + test.output
runtimeClasspath += main.output + test.output
srcDir file(’src/integration-test/groovy’)
}

resources.srcDir file(’src/integration-test/resources’)

//add integration test task

task integrationTest(type: Test) {
testClassesDir = sourceSets.integrationTest.output.classesDir
classpath = sourceSets.integrationTest.runtimeClasspath
include ’#**/*Spec.*’
outputs.upToDateWhen { false }

}

check.dependsOn test // gradle build runs unit tests
check.dependsOn integrationTest // gradle build runs integration tests
integrationTest.mustRunAfter test // integration tests are run after unit tests

Figure C.3: Relevant parts of Spock Gradle build configuration

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

41
5
43
44
45
46
47
48
49
50

wr Ut

[SAESIRICENC R

v Ut Ot

APPENDIX C. GRADLE BUILD CONFIGURATIONS

118

configurations { rspec }
dependencies {
//ruby
rspec ’org.jruby:jruby-complete:’ + jRubyVersion

}

//install bundler for handling ruby gems
task(bundler, type: JavaExec) {
main = ’org.jruby.Main’
classpath = configurations.rspec
args = [’-S’, ’gem’, ’install’, ’bundler’]
environment [’GEM_PATH’] = file(’build/gems’).path
environment [’GEM_HOME’] = file(’build/gems’).path
}

//install gems from gemfile with bundler
task(gems, dependsOn: ["bundler"], type: JavaExec) {
main = ’org.jruby.Main’
classpath = configurations.rspec
args = [’-S’, ’bundle’, ’install’]
environment [’GEM_PATH’] = file(’build/gems’).path
environment [’GEM_HOME’] = file(’build/gems’).path
}

//run all or single unit spec(s)
task(spec, dependsOn: ["classes"], type: JavaExec) {
main = ’org.jruby.Main’
classpath = sourceSets.test.runtimeClasspath + configurations.rspec
if (project.hasProperty("file")) {
args = [’-S’, ’build/gems/bin/rspec’, ’src/spec/unit/’+file]
} else {
args = [’-S’, ’build/gems/bin/rspec’, ’src/spec/unit’]
}
environment [’GEM_HOME’] = file(’build/gems’).path
environment [’GEM_PATH’] = file(’build/gems’).path
environment [’ENV’] = "test"

}

//run all or single integration spec(s)
task(integrationSpec, dependsOn: ["classes"], type: JavaExec) {
main = ’org.jruby.Main’
classpath = sourceSets.test.runtimeClasspath + configurations.rspec
if (project.hasProperty("file")) {
args = [’-S’, ’build/gems/bin/rspec’, ’src/spec/api/’+filel
} else {
args = [’-S’, ’build/gems/bin/rspec’, ’src/spec/api’]
}
environment [’GEM_HOME’] = file(’build/gems’).path
environment [’GEM_PATH’] = file(’build/gems’).path
environment [’ENV’] = "integration-test"

}

check.dependsOn spec // gradle build runs unit specs
check.dependsOn integrationSpec // gradle build runs integration specs
integrationSpec.mustRunAfter spec // integration specs are run after unit specs

Figure C.4: Relevant parts of RSpec Gradle build configuration

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Structure of the thesis

	2 Background
	2.1 Java Virtual Machine
	2.2 Software quality assurance
	2.3 Automated testing
	2.4 Test-Driven Development
	2.5 Acceptance Test-Driven Development
	2.6 Behavior-Driven Development
	2.7 Related research

	3 Environment
	3.1 xUnit family testing frameworks
	3.2 Implementation level BDD-testing frameworks for JVM

	4 Methods
	4.1 Research questions
	4.2 Research hypotheses
	4.3 Empirical study
	4.4 Validity and reliability

	5 BDD frameworks in selected projects
	5.1 Project A
	5.2 Project B

	6 Results and discussion
	6.1 First interview: demographics and projects
	6.2 Surveys and BDD-testing framework feedback interviews analyzed
	6.3 Test code analysis

	7 Conclusions
	7.1 Summary
	7.2 Comparison of BDD-testing frameworks
	7.3 Future work

	A Interview questions
	A.1 Interview for demographic purposes

	B Surveys
	B.1 Survey regarding JUnit in automated low-level testing
	B.2 Survey regarding BDD-testing framework in automated low-level testing

	C Gradle build configurations

