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 Covariance matrix, matrix of damping coefficients, state-space ࡯ 
matrix 

 Wavelet coefficients  ܥ 
 Measured data, matrix of damping coefficients  ࡰ 
 Damping coefficient  ܦ 
 (ݕ of signal) ௬௬ Random decrement auto signatureܦ 
 Noise ࢋ 
 Vector of natural excitation to system  ࡲ 
 ෠௞ Scaled FFT of measured data at FFT frequency ௞݂ ݂ Frequencyܨ 
 ௜݂  Natural frequency of the ݅-th mode 

୩݂  FFT frequency ࡴ Hankel matrix 
 ௞ Transfer matrix at FFT frequency ௞݂ࡴ 
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ℎ௜௞ Transfer function of the  ݅-th mode at FFT frequency ௞݂  ۷ Identity matrix 
 ݅, ݆ Index 
 j Imaginary unit (jଶ = −1) 
 Synchronizing power coefficient ܭ Matrix containing the synchronizing power coefficients ࡷ 
-Inertia coefficient ݉  Number of modes within selected frequency band ܰ Number of measured time instants (total number of samples col  ܯ Matrix containing the inertia coefficients ࡹ Negative log-likelihood function ܮ 

lected) 
 ௤ܰ  Fast Fourier transform (FFT) frequency index at Nyquist fre-

quency 

௙ܰ  Number of FFT frequencies in the selected frequency band ݊ Number of measured degrees of freedom 
 Left singular vector ࡼ 
 ୑ܲ  Turbine power 
 ୉ܲ Air gap power of a generator  
-Order of the MAR model, number of columns in the Hankel ma ݌ 

trix 
 Right singular vector  ࡽ  ௜௞ Scaled FFT of modal excitation at FFT frequency ௞݂݌ ௜ Modal excitation of the ݅-th mode݌ 
 ࢞ Covariance matrix of variable ࢞ࡾ 
 ܴ௫௬ Correlation function of variables ݔ and ݕ 
 Number of rows in the Hankel matrix, impulse response of the ݎ 

system 
 ௘ Power spectral density (PSD) of prediction errorࡿ PSD matrix of modal excitations ࡿ 
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 Sample number  ݏ ௜௝ Cross PSD between modal excitations of the ݅-th and ݆-th mode ࢙ Source signalsࡿ
 ୱܶ Sampling time 
 Time  ݐ 
 Unitary matrix ࢁ 
 Whitening matrix ࢃ 
 ࢞ Vector of states, observations, vector of rotor angles of system 
 ࢟ Vector of outputs, vector of impulse responses, signal part of the 
 observations 
 ࢟௞ Vector of measured data at time instant ݇ ݕ Ambient response (recorded data) 
 Whitened process ࢠ 
 
 Real part of the eigenvalue ߙ 
 Δݐ Sampling time interval ߜ  Rotor angle, posterior coefficient of variation of the damping ra-

tio 
 Noise ࢿ 
 Damping ratio ߞ ௞ Scaled FFT of prediction error at FFT frequency ௞݂ߝ 
 Bandwidth factor characterizing the usable bandwidth  ߢ Set of modal parameters to be identified ࣂ at FFT frequency ௞݂ (ݐ)௜ߟ ௜௞ Scaled FFT ofߟ ௜ Modal response of the  ݅-th modeߟ ௜ Damping ratio of the ݅-th modeߞ 
 Eigenvalue  ߣ 
 State matrix ࢰ 
 Matrix of singular values  ࢳ 
 ࣌  Vector consisting of the variance of the noise 
 



16 

 Standard deviation of a signal, singular value ߪ
 ߬ Time lag, length of a sample 
 ઴ Partial mode shape matrix of the measured DOFs  ߮௜ Partial mode shape of the ݅-th mode of the measured DOFs ߖ  Wavelet function ࣒௜ Mode shape vector of the  ݅-th mode with all DOFs ࣓  Vector of intercept terms 
 ߱ Angular frequency  
 ߱௜ Natural frequency of the ݅-th mode 
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1. Introduction 

1.1 Background and Motivation 

Electromechanical oscillations have been observed in electrical transmission 
systems as long as interconnected systems with several synchronous generators 
have existed [1]. The oscillations are an inherent property of power systems and 
they cannot be completely eliminated [2]. The oscillations are observable in sev-
eral different measurable quantities, such as the generator speeds, power flows 
in the grid, voltage magnitudes and angles. 

In some transmission systems (e.g., the Nordic power system) the damping of 
the oscillations is the limiting factor for the transmission capacity of certain 
transmission corridors, and thus, the thermal capacity of the lines cannot be 
fully utilized. Moreover, in the most severe situations, unstable oscillations may 
lead to local blackouts or even to the collapse of the entire system [3]. 

Electromechanical oscillations can be classified according to 
their interaction characteristics to inter-area mode oscillations, local plant 
mode oscillations, intraplant mode oscillations, torsional (subsynchronous) 
mode oscillations, and control mode oscillations [2]. Inter-area mode oscilla-
tions are typically most critical in terms of security of the entire system. Fur-
thermore, the oscillations can be classified with respect to the operating condi-
tion of the power system to ambient (spontaneous) oscillations, transient oscil-
lations, and forced oscillations [2]. 

Ambient oscillations are constantly present in power systems and they are ex-
cited mainly by loads, which are randomly varying by nature. Transient oscilla-
tions are caused for example by faults or certain switching events in the system. 
[2] Forced oscillations are typically associated with inadequate tuning of control 
systems [4]. Ambient oscillations, transient oscillations, and forced oscillations 
may also be present in power systems simultaneously, as illustrated for example 
in Publications V and VI of this thesis. Figure 1 shows example measurements 
of different types of electromechanical oscillations. 
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Figure 1. Example oscillation measurements: a) ambient oscillations, b) transient oscillation (be-
tween 12 – 22 s), and c) forced oscillations. The measurements are collected from the 
northern parts of the Nordic power system (i.e., Vajukoski and Ivalo substations, see 
Figure 15 for more details on the measurement locations). 

A traditional way to analyze the oscillatory stability of power systems is to con-
duct an extensive set of simulation studies. However, the simulations can be 
performed only for a limited set of operational situations of the system. Further-
more, many issues may cause differences between the simulation models and 
real dynamic behavior of the power system. Due to differences in the simulated 
and real dynamic behavior of the system, transmission system operators (TSO) 
usually maintain a specific margin between the allowed power transfer capacity 
and the simulated maximum capacity. 

Different types of oscillations may be sometimes observed in power systems 
even though the simulation models do not indicate their existence [5]. If these 
oscillations are poorly damped, they may threaten the security of the system. In 
addition, interaction or resonance effects between different modes [6] may 
cause large oscillations to the system, which might not be shown by the simula-
tion models. Consequently, measurement based approaches in the monitoring 
of the oscillatory modes can improve the operational security and enhance the 
situational awareness of power system operators. Furthermore, such ap-
proaches may yield important information for specialists to conduct different 
types of offline analyses, such as model validation, root cause analysis of certain 
events and identifying erroneously operating components. 

Due to reasons discussed above, it is important to monitor (in real-time) the 
oscillatory stability of power systems. The oscillatory stability can be monitored 
for example by using measurements from phasor measurement units (PMU).  
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The development of wide area monitoring systems (WAMS) consisting of sev-
eral PMUs has enabled the use of multiple synchronized measurement signals 
received from several locations in the power system to be used for the monitor-
ing and analysis of the oscillatory modes. To illustrate the use of WAMS systems, 
an example structure of such system is shown in Figure 2. 

 

 

Figure 2. Example structure of a WAMS system (PDC refers to Phasor Data Concentrator). 

Electromechanical oscillatory modes can be monitored by using modal iden-
tification methods and measurements collected from WAMS systems. In con-
tinuous monitoring of the modes, it is practical to use measurements from am-
bient power system conditions since ambient oscillations are constantly present 
in the system. Ambient modal analysis methods are often called mode-meters 
[7]. Another approach is to identify the modal characteristics from transients by 
using ringdown [7] methods, such as those discussed in [8]–[13]. However, us-
ing transients is not often practical in continuous monitoring of the modes since 
transients are rather seldom present in power system measurements. 

In the past, several methods have been proposed for identifying the modes 
from ambient measurements [14]–[41]. These methods can be classified into 
different categories in several ways, such as: parametric vs. non-parametric 
methods, univariate vs. multivariate methods, and methods that are based on 
fitting a specific model to the measurements vs. methods that use signal pro-
cessing instead of models. Figure 3 presents an example flow chart of a general 
ambient modal analysis method. 

 

 

Figure 3. Example flow chart of modal estimation from ambient data. 

Most of the ambient identification methods presented in the literature, such 
as [14]–[23], [30]–[40] are parametric – i.e. they require a set of parameters to 
be defined for the identification of the modes. There exist also certain non-par-
ametric methods, which do not require the selection of parameters and work 
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directly on the data [7], [24], [28]. However, the damping estimation capability 
of the non-parametric methods is often limited or does not exist [7], [28]. 

Certain methods, such as [2], [14]–[19], [29], [32], [35], [37]–[40] use only a 
single measurement (i.e., univariate) collected from the system to identify the 
modal parameters. However, using a single measurement signal does not always 
lead to the best observability of the oscillatory modes [20]. In addition, univari-
ate methods running in parallel based on different measurements may yield dif-
ferent results due to varying modal observability in separate measurements, and 
thus, interpreting the results may be difficult [20]. Using several measurements 
and multivariate methods may improve the observability of the oscillations, and 
consequently, the accuracy of the modal identification. 

Several methods, such as [14]–[21], [29], [30], [31], [35], [36], [38]–[40], are 
based on fitting a certain model to the measurements to represent the dynamics 
of the studied power system. Usually, a linear model is assumed since the power 
system is considered linear in the vicinity of the operating point (i.e., in ambient 
operation). The modal parameters of interest can be calculated from the identi-
fied linear model. On the other hand, certain methods [2], [22], [32] rely en-
tirely to signal processing techniques instead of a model. 

Even though several methods for identifying the modal characteristics from 
ambient measurements exist in the literature, there is still much room for de-
velopment of the methods. Developing new methods may, for example, improve 
the accuracy and reliability of the modal identification. Furthermore, new meth-
ods may often have highly different characteristics compared with the existing 
methods, and thus, they may be better suited for modal identification in certain 
power systems or operating conditions. 

Since several methods with very different characteristics are available for 
modal identification, it may be difficult for a TSO to select the most suitable 
method for its purposes. Thus, it is important for a TSO to obtain experiences 
regarding the application, performance and limitations of the methods. Based 
on extensive testing of different methods, TSOs can select the most appropriate 
methods for their applications. 

This thesis presents four new multivariate methods for the monitoring of 
modes from ambient measurements. The theoretical background of the meth-
ods is presented, the application of the methods to ambient power system data 
is illustrated, and the different characteristics of the methods are described. The 
performance of the methods is also analyzed using both simulated and real data 
sets. 

Furthermore, the thesis presents experiences of using ambient modal analysis 
methods for the monitoring of real modes. The thesis also illustrates supporting 
analysis tools that can be used to support the modal identification in real power 
systems. TSOs may utilize the results of this thesis when designing and config-
uring tools for the real-time monitoring and offline analyses of electromechan-
ical modes. 
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1.2 Scope and Objectives 

This thesis focuses on continuous monitoring and identification of electrome-
chanical modes from ambient measurements, where mainly normal load varia-
tions excite the oscillations. Detecting the modes from transients with ringdown 
methods, nonlinear analysis methods, use of simulation model based ap-
proaches or external probing signals are not considered. The main focus is on 
identifying the frequencies and damping ratios of the electromechanical modes 
since these quantities give an insight on the oscillatory stability, and thus, the 
security of the system. 

The main objective of this thesis is to develop novel multivariate methods for 
the monitoring of electromechanical modes and show that they are functional 
for identifying the modes from ambient measurements. The thesis aims to in-
vestigate the performance of the new methods extensively using both simulated 
data as well as real measured PMU data and illustrate the different characteris-
tics of the methods. 

Another objective is to present experiences in using ambient modal identifi-
cation methods for the monitoring of real modes. Furthermore, the goal is to 
show how supporting analysis tools (i.e., spectral analyses) can be used in the 
interpretation and visualization of the identification results given by different 
modal identification methods. 

1.3 Contribution of the Thesis 

The main contribution of this thesis is to propose four new multivariate ambient 
modal identification methods for the monitoring of electromechanical modes. 
These methods are: 

 Multivariate autoregressive model (MAR) method (Publica-
tions I, V and VI). The MAR method is a multivariate method, which 
is based on fitting a MAR model to the ambient measurements col-
lected from the studied power system. The modal parameters (i.e., fre-
quency and damping ratio of the modes) are calculated from the eigen-
values of the estimated MAR model. In addition, the confidence inter-
vals for the modal parameters can be calculated by the method, thus 
providing information on the accuracy of the estimates. 

 Natural Excitation Technique – Eigensystem Realization Al-
gorithm (NExT-ERA) method (Publications II, V and VI). The 
NExT technique estimates the impulse responses of the studied power 
system from ambient PMU measurements. The ERA is used to identify 
a state-space model of the power system using the impulse responses 
estimated with the NExT. The modal parameters are calculated from 
the eigenvalues of the identified state-space model. The NExT-ERA 
method is also able to utilize unsynchronized (i.e., relay recorder) 
measurements with certain limitations. 

 Second Order Blind Identification (SOBI) based method 
(Publication III). The SOBI algorithm is used to extract the modal 
responses from ambient PMU measurements. After extracting the 
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modal responses, the Random Decrement (RD) technique is used to 
calculate the single mode impulse response for each extracted mode. 
The state-space representation concerning each mode separately is 
then obtained using the ERA and the modal parameters are calculated 
from the eigenvalues of the identified state-space model. 

 Bayesian approach (Publication IV). In the Bayesian approach, 
the identification information about the parameters are expressed us-
ing the Bayes Theorem in terms of a probability distribution condi-
tional on the data and modeling assumptions. The Bayesian approach 
to system identification recognizes the fact that it is philosophically 
impossible to identify exactly the values of the modal parameters, be-
cause of limited amount of available data, measurement noise, model-
ing error, etc. Thus, the Bayesian approach identifies the most proba-
ble values for the modal parameters, and also, yields information re-
garding the uncertainty of the parameters. 

In addition to the presentation of the new methods, the contribution of this 
thesis includes: 

 Presentation of experiences and comparisons of using differ-
ent modal identification methods for the monitoring of real 
power systems (Publications V and VI).  

 Presentation of experiences in using additional analysis tools 
(spectral analysis) that can be utilized in the visualization and inter-
pretation of the modal identification results (Publication VI). 

1.4 Dissertation Structure 

This thesis is structured as follows. Chapter 2 provides a detailed description of 
the MAR, NExT-ERA, SOBI and Bayesian approaches, in the respective order. 
Chapter 3 presents results to validate and analyze the performance of the meth-
ods. Chapter 4 presents experiences in using modal analysis methods for the 
monitoring and analysis of real power systems and illustrates the use of sup-
porting analysis tools in the interpretation of the modal identification results. 
Chapter 5 summarizes the publications included in this thesis, discusses the 
main findings and reflects recommendations for future research work. 
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2. Modal Analysis Methods for Ambient 
Data 

This chapter presents four new measurement based ambient modal analysis 
methods for the analysis of electromechanical modes: MAR, NExT-ERA, SOBI 
and Bayesian methods. The theoretical background of the methods is presented 
and their application to ambient power system data is illustrated. In addition, 
characteristics and parameter selection of the methods are discussed. 

2.1 Multivariate Autoregressive Model (MAR)  

2.1.1 Introduction 

The MAR model (also called VAR, Vector Autoregressive model) is a time series 
model that has been widely used in various applications in several different 
fields of research [42]. Previously, it has been used for ambient modal analysis 
of oscillating structures in the field of civil engineering [43]. This thesis and 
Publications II, V-VI show that the MAR model is also applicable for modal 
analysis of electromechanical oscillations, and thus, suitable for wide area mon-
itoring of power systems. 

The MAR model utilizes data, which are synchronously measured from several 
locations in the power system through a WAMS. The MAR model can be fitted 
to the collected ambient measurement data and the modal characteristics of the 
studied system can be calculated from the parameters of the model. 

Previously used univariate AR models [14]–[19] utilize only a single measure-
ment signal to model the entire system, whereas a MAR model contains not only 
a model of each signal but also a model of the relationships between the signals. 
Even though univariate AR models can be used to deal with multivariate meas-
urement data [21], the relationships between the signals (and consequently, in-
formation regarding the process) are still left unmodeled. 

MAR model of any order can be decomposed into eigenvalues with character-
istic oscillation frequencies and damping ratios [44]. In a power system, these 
eigenvalues correspond to the electromechanical modes, and therefore, the 
modal parameters (frequency and damping ratio) can be calculated from the 
eigendecomposition of the MAR model. Uncertainty information (i.e., confi-
dence intervals) can be also calculated from the estimated parameters of the 
MAR model. Confidence intervals give an insight on the achieved estimation 
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accuracy of the modal parameters and they can be utilized for example in inter-
pretation of the received modal identification results. 

2.1.2 Theoretical Background 

Consecutive measurements of a time series contain information regarding the 
process that generated them. An autoregressive model identifies this underlying 
process by modeling the current value of the series as a weighted linear sum of 
its previous values. In a MAR model, the current values of all variables in a mul-
tivariate time series are modeled as a linear sum of their previous values. Fur-
thermore, the relationships between the individual time series are included in 
the model. 

A MAR model of order ݌ for an ݉-variate stationary time series ࢟௞, observed 
at equally spaced instants ݇, can be defined by 

 ࢟௞ = ࣓ + ∑ ௟࢟௞ି௟࡭ + ௞௣௟ୀଵࢿ ௞ࢿ           = noise(࡯)  (1) 
 
where the matrices ࡭ଵ, … , ݉ ௣ are࡭ × ݉ dimensional coefficient matrices of the 
MAR model. The parameter vector ࣓ is a ݉ × 1 dimensional vector of intercept 
terms that may be included to consider a nonzero mean of the time series. The ݉ × 1 dimensional vectors ࢿ௞ representing white noise are random vectors with 
mean zero and ݉ × ݉ dimensional covariance matrix ࡯. 

The unknown model parameters  ࡭ଵ, … ,  can be estimated using ࡯ ௣, ࣓ and࡭
several different algorithms [42], [44]–[48]. In Publications I, V and VI of this 
thesis, the least squares algorithm [44], [47] is used. However, other algorithms 
such as the Yule-Walker algorithm [46] can be also used in the estimation of the 
electromechanical modes, as presented in [48]. 

When the coefficient matrices ࡭ଵ, … ,  have ݌ ௣ of the MAR model of order࡭
been estimated, the modal parameters can be calculated as follows. Firstly, the 
coefficient matrices are positioned into the following state matrix: 

 

ࢰ = ⎣⎢⎢
⎢⎡ ଵ࡭ ଶ࡭ ࡵ⋯ ૙ ⋯૙ ࡵ ⋯⋯ ⋯  ⋱  ૙   ૙    ⋯

௣ିଵ࡭ ௣૙࡭ ૙૙ ૙  ⋯    ⋯     ࡵ     ૙ ⎦⎥⎥
⎥⎤
    (2) 

 
Secondly, the eigendecomposition of the state matrix is calculated: 

 

ࢰ = ࡸ ⎣⎢⎢⎢
⎡ ଵݑ 0 00 ଶݑ 00 0 ⋱ 00⋮    0   0 … ⎥⎥⎥⎦௠௣ݑ

⎤  ଵ    (3)ିࡸ

 
Thirdly, the poles of the system ߣଵ …  ௠௣ representing the oscillatory modes canߣ
be calculated by: 
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௜ߣ = ୪୬(௨೔)౩்  ,             (4) 

 
where ୱܶ is the sampling time of the observed signals. The angular frequency ߱௜ 
and damping ratio ζ௜ of the oscillatory mode ݅ can be calculated as follows: 

௜ߣ  = ௜ߙ + j߱௜      (5) 
               ζ௜ = ିఈ೔ටఈ೔మାఠ೔మ         (6)         

 
In addition, the confidence intervals for the estimated modal parameters can be 
calculated by utilizing the approach presented in [44]. 
 

2.1.3 Application to Power System Data and Selection of Method  
Parameters 

Figure 4 presents the flow chart of the MAR method when applied to data col-
lected from a power system. The MAR method requires selection of certain pa-
rameters, which are also shown in Figure 4. The selection of the parameters is 
discussed below. 

 

 

Figure 4. Flow chart of the MAR model when applied to power system data. 

Data Preprocessing 
Prior to analyzing real PMU data, the measurement data have to be usually pre-
processed (however, data preprocessing is often not required for analysis of sim-
ulated data). The mean values or slow trends of the measurement signals should 
be removed and data downsampling may be needed, depending on the sampling 
rate of the original data. In addition, the signals have to be filtered. 

In Publications I, V and VI the data have been downsampled to 10 Hz sampling 
frequency (if the original sampling frequency of the data has been higher). The 
required sampling frequency depends on the frequency of the studied mode, but 
often 10 Hz is sufficient, and there are no benefits in using higher sampling fre-
quencies in the analyses. 
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In Publications I, V, VI and in this thesis, low order high-pass or low order 
band-pass filters have been used for the data preprocessing. The goal is not to 
distort the original data significantly with filtering. The cut-off frequencies of 
the filters should be selected such that they remove the low frequency compo-
nents situated outside the range of interest, and if band-pass filters are used, the 
high frequency noise can be removed as well. 

Selecting the Model Order  
The selection of the model order, has a clear effect on the modal estimates, as 
shown for example in [48]. In Publications V and VI, a fixed model order was 
used. There are also different algorithms [43], [44] for selecting the model order 
automatically. In Publication I, the Schwarz Bayesian criterion (SBC) was used 
in conjunction with a rather low upper limit for the model order. However, 
based on practical experience, a fixed order (i.e., in the range of 20–24 for data 
with 10 Hz sampling frequency) is often suitable for modal identification with 
MAR. In future research, automated algorithms for model order selection 
should be further investigated. 

2.2 Natural Excitation Technique – Eigensystem Realization  
Algorithm (NExT-ERA) 

2.2.1 Introduction 

The NExT-ERA method has been widely utilized for the modal analysis of oscil-
lating structures, such as buildings and bridges [49]–[53]. However, prior to 
this thesis and Publications II and VI, the method has not been applied for the 
modal analysis of power systems. Publications II, VI and this thesis show that 
the method is functional for analyzing the electromechanical modes in power 
systems and formulate the equations in the NExT technique to deal with anal-
yses of electromechanical modes. 

The NExT-ERA is a multivariate method utilizing data that are measured from 
several locations in the power grid. The method is capable of utilizing synchro-
nously measured data from a WAMS as well as unsynchronized measurements, 
such as measurements of individual relays’ recorders. Using unsynchronized 
measurements can further improve the observability of the oscillations and im-
prove the estimation accuracy in certain cases. According to the author's 
knowledge, other existing ambient modal analysis methods have not been 
shown to be capable of simultaneously utilizing both synchronized and unsyn-
chronized measurements for the analysis of electromechanical modes. 

In the NExT technique, cross-correlation functions calculated using measure-
ments collected from the studied system are utilized to estimate the impulse re-
sponses of the system. Based on the estimated impulse responses, the ERA es-
timates a linear state-space model to determine the system dynamics. The 
modal parameters (frequency and damping ratio) can be calculated from the 
eigenvalues of the estimated state-space model. 
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2.2.2 Theoretical Background 

NExT 
The starting point in deriving the equations for the NExT technique is the well-
known swing equation describing the oscillatory motion of the rotor of a single 
generator: 

ܯ  ୢమఋୢ௧మ = ୑ܲ − ୉ܲ − ܦ ୢఋୢ௧      (7) 

 
where ܯ denotes the inertia coefficient, ୑ܲ the turbine power, ୉ܲ the air gap 
power of the generator, ܦ the damping coefficient, and ߜ the rotor angle. Mod-
eling the generator using a classical generator model with a constant flux link-
age, and linearizing (7) in the vicinity of the operation point, yields 
ܯ  ୢమ∆ఋୢ௧మ + ܦ ୢ∆ఋୢ௧ + ߜ∆ܭ = 0    (8)  
where ܭ is the synchronizing power coefficient and ∆ߜ denotes the rotor angle 
deviation around the equilibribrium point. [54] 

Let all the generators in the electrical power system be modeled with classical 
generator models. Consequently, ܦ ,ܯ, and ܭ in (8) transform into diagonal 
matrices, containing the inertia coefficients, damping coefficients, and the syn-
chronizing power coefficients of each generator, respectively. Furthermore, in 
actual power systems, each generator is constantly exposed to a random accel-
erating power – the natural excitation of the system. The main causes of the 
natural excitation are the loads, which are randomly varying by nature. In addi-
tion, minor transients such as minor changes in production, minor switching 
events, or minor faults can be considered as the natural excitation of the system 
[2]. By taking the natural excitation into consideration, (8) can be extended to 
describe the oscillatory behavior of each generator in the power system: 

̈(ݐ)ࢾ∆ࡹ  + ̇(ݐ)ࢾ∆ࡰ + (ݐ)ࢾ∆ࡷ =   (9)   , (ݐ)ࡲ
 
where ∆(ݐ)ࢾ is the angle displacement vector,  (ݐ)ࡲ the excitation vector, and (∙) 
indicates the derivative with respect to time. Post-multiplying (9) by a reference 
angle displacement, ∆ߜ୰(ݏ), and taking the expected value of each side yields 

 
̈(ݐ)ࢾ∆ൣܧࡹ  ൧(ݏ)୰ߜ∆ + ̇(ݐ)ࢾ∆ൣܧࡰ ൧(ݏ)୰ߜ∆ + = [(ݏ)୰ߜ∆(ݐ)ࢾ∆]ܧࡷ   (10)     [(ݏ)୰ߜ∆(ݐ)ࡲ]ܧ

where ܧ[∙] denotes the expected value. Equation (10) can be written  
,ݐ)ఋ౨∆ࢾ̈∆ࡾࡹ  (ݏ + ,ݐ)ఋ౨∆ࢾ̇∆ࡾࡰ (ݏ + ,ݐ)ఋ౨∆ࢾ∆ࡾࡷ (ݏ = ,ݐ)ఋ౨∆ࡲࡾ  (11)  , (ݏ

 
where ࡾ(∙) denotes a vector of correlation functions. 

Assuming that (ݐ)ܣ and (ݏ)ܤ are stationary processes, the following yields: 
 ܴ஺(೘)஻(߬) = ܴ஺஻(௠)(߬) ,    (12) 
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where ߬ = ݐ −  (ݐ)ܣ denotes the ݉th derivative of the random process(௠)ܣ and ݏ
with respect to time and ܴ ஺஻(௠) denotes the ݉ th derivative of the correlation func-
tion ܴ஺஻(߬) with respect to ߬. [49], [55] 

The reference angle displacement ∆ߜ୰(ݏ) is uncorrelated to the natural excita-
tion of the system (ݐ)ࡲ for  ߬ > 0 if the excitation is assumed to be a white noise 
process (i.e., the past values of ∆ߜ୰(ݏ) do not correlate with the future values of (ݐ)ࡲ). Thus, ࡲࡾ∆ఋ౨(ݐ, (ݏ = 0 yields for  ߬ > 0. In addition, assuming that the rotor 
angle displacements ∆(ݐ)ࢾ̈ ̇(ݐ)ࢾ∆ ,  ,are stationary processes (ݏ)୰ߜ∆ and ,(ݐ)ࢾ∆ ,
(11) can be written 

(߬)ఋ౨∆ࢾ∆ࡾ̈ࡹ  + (߬)ఋ౨∆ࢾ∆ࡾ̇ࡰ + (߬)ఋ౨∆ࢾ∆ࡾࡷ = 0 ,  ߬ > 0 , (13) 
 
Thus, the vector of rotor angle displacement correlation functions, ࢾ∆ࡾ∆ఋ౨(߬), 

satisfy the homogeneous differential equations describing the oscillatory behav-
ior of each generator. Consequently, the correlation functions yield an estimate 
of the impulse responses of the power system. In the vicinity of the operating 
point, the generator rotor angles have a linear coupling to other variables of the 
grid, such as power flows, voltages, and voltage angles. Thus, the impulse re-
sponses of the system can be estimated also from the correlation functions of 
the respective variables. This enables the use of cross-correlation functions cal-
culated between PMU measurements to be used to estimate the oscillatory be-
havior of the complete power system. 

Application of NExT to Unsynchronized Data 
If the measurements received from the power system are not time synchronized 
(i.e., relay measurements), a time synchronization error ݐ୉ is introduced in the 
estimated cross-correlation functions. Consequently, the correlation function ܴ∆ఋు∆ఋ౨(ݐ − ,୉ݐ -୰ does not satisfy (8). However, by seߜ∆ ୉ and the reference measurementߜ∆ of an unsynchronized rotor angle displacement measurement (ݏ
lecting ߬୉ = ݐ − ୉ݐ − ݏ = ݐ) − (ݏ − ୉ݐ = ߬ −  ୉, the correlation function can beݐ
written: 

 ܴ∆ఋు∆ఋ౨(߬୉) = ܴ∆ఋు∆ఋ౨(߬ −  ୉)   .   (14)ݐ
 
As shown by (14), the correlation function of the unsynchronized measure-

ments is shifted by ݐ୉ compared with the correlation function of the synchro-
nized measurements. An example of the correlation functions of synchronized 
and unsynchronized measurements from an underdamped oscillating system is 
shown in Figure 5. 
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Figure 5. A schematic example of cross-correlation functions of a) two synchronized and b) two 
unsynchronized measurements from an underdamped oscillating system. 

In the context of oscillation analysis, the part of (14), where ߬୉ < -୉, has negݐ
ative damping even though the studied system would be stable in reality [56]. 
This phenomenon can be observed in Figure 5 b). Thus, the impulse responses 
of the system cannot be directly estimated from the unsynchronized measure-
ments (i.e., the unsynchronized correlation functions shown by (14) do not sat-
isfy (8)). However, the part ߬୉ ≥ -୉ of (14) corresponds to the synchronized corݐ
relation functions described by (13), and can be utilized to estimate the impulse 
responses of the system. 

If the part, where ߬ ୉ < -୉ is truncated from (14), the resulting correlation funcݐ
tion satisfies (8), and thus, yields an estimate of the impulse response of the 
power system. Since the part ߬୉ < ୉ of (14), has negative damping, and the part ߬୉ݐ ≥  ୉ has positive damping (assuming that the studied power system is stableݐ
and the analyzed measurements are stationary), the time synchronization error ݐ୉ can be approximated from the following equation: 

 ܴ∆ఋు∆ఋ౨(ݐ୉) ≈ maxఛు  หܴ∆ఋు∆ఋ౨(߬୉)ห .   (15) 

 
This enables the use of truncated cross-correlation functions of unsynchro-

nized measurements to be used to estimate the impulse responses of the power 
system. Thus, measurements from unsynchronized devices, such as relays’ re-
corders, can be utilized for the modal analysis with the NExT. 

ERA 
The ERA was originally introduced by Juang and Pappa [57]. The goal of the 
ERA is to find the minimum realization to obtain a state-space representation 
of the studied system. ERA is based on the following state-space representation 
of the studied system: 

 ࢞(݇ + 1) = (݇)࢞࡭ + (݇)࢟    (݇)࢛࡮ =  (16)    (݇)࢞࡯
 
where ࢞(݇) is the vector of states, ࢛(݇) is the vector of system inputs and ࢟(݇) 
is the vector of system outputs at the ݇th step, and ࡮ ,࡭, and ࡯ are the discrete-
time state-space matrices [57]. 

The ERA starts with forming the following Hankel matrix [57], [49]: 
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݇)ࡴ − 1) = ൦ ࢟(݇)࢟(݇ + 1)⋮࢟(݇ + (ݎ
࢟(݇ + 1)⋱ ⋯ ࢟(݇ + ݇)࢟⋮(݌ + ݎ +  ൪ , (17)(݌

 
where ࢟(݇) is the vector of the measured impulse responses of the system at 
time ݇. When used in conjunction with the NExT, ࢟(݇) is the vector of correla-
tion functions calculated with the NExT. The parameters ݌ and ݎ correspond to 
the number of columns and rows in the Hankel matrix. 

Next step in the ERA is to perform the singular value decomposition of (0)ࡴ 
[57], [49]: 

(0)ࡴ  =  ୘ ,     (18)ࡽࢳࡼ
 

where ࡼ and ࡽ are left and right singular-vectors of (0)ࡴ, respectively, and ࢳ is 
the diagonal  matrix  of  singular  values. Relatively small singular values along 
the diagonal of ࢳ correspond to computational or noise modes [49]. The rows 
and columns associated with computational modes are eliminated to form con-
densed matrices ࢳୡ, ࡼୡ, and ࡽୡ. 

The final step in the ERA is to estimate the state-space matrices of the studied 
system. By using the condensed matrices, the estimates of the discrete-time 
state-space matrices can be calculated as follows [57], [49]: 

෡࡭  = ୡିࢳ ଵ ଶ⁄ ୡିࢳୡࡽ(1)ࡴୡ୘ࡼ ଵ ଶ⁄       (19) 
෡࡮  = ୡିࢳ ଵ ଶ⁄  ୡ୘[۷  ૙]୘       (20)ࡽ
෡࡯  = [۷  ૙]ࡼୡࢳୡି ଵ ଶ⁄  .    (21) 
 

For the modal estimation, the estimated state-space matrices are transformed 
into continuous time. After the transformation, the modal estimates (frequen-
cies and damping ratios of the modes) can be calculated from the eigenvalues of ࡭෡. 

 

2.2.3 Application to Power System Data and Selection of Method  
Parameters 

Figure 6 presents the flow chart of the NExT-ERA method when applied to data 
collected from a power system. Certain steps and characteristics of the NExT-
ERA method that are important in its practical application are discussed below. 
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Figure 6. Flow chart of the NExT-ERA method when applied to power system data. 

Data Preprocessing 
Data preprocessing (filtering etc.) for the NExT-ERA method is similar to the 
MAR method (see Section 2.1.3). 

 
Selecting the Reference Signal for NExT 
The NExT requires the selection of a reference variable (e.g., the reference rotor 
angle displacement ∆ߜ୰ in (13)) for the calculation of the cross-correlation func-
tions. When the NExT is applied to power systems, the reference variable should 
be a PMU measurement having a high observability of the mode of interest, and 
high signal-to-noise ratio. In this thesis and Publication II, the power spectral 
densities from the available measurements were calculated and the reference 
variable was selected to be the measurement having the highest peak in the 
power spectrum at the frequency of the mode of interest. However, if a certain 
measurement is known to typically have a high observability of the mode of in-
terest, such measurement may be constantly used as a reference measurement. 
 
Selecting the Parameters of ERA 
The parameters of the ERA include the dimensions ݌ and ݎ of the Hankel matrix  ࡴ and the model order. ݌ and ݎ describe how many samples of the estimated 
correlation functions (using the NExT) are used in the estimation of the state 
space representation of the system. There are different methods for selecting ݌ 
and [58] ݎ. In this thesis and Publications II and VI, ݌ and ݎ are selected as fol-
lows:  ݌ is 10 times the number of expected poles (i.e., 20 times the number of 
frequencies) and ݎ is 2 times ݌ (this approach is also recommended in [57]). 
Another commonly used approach to select the dimensions is based on the qual-
ity of the free responses (i.e., correlation functions). In such an approach, the 
Hankel matrix is built using the whole length of the decaying signal provided 
the signal-to-noise ratio is high [58]. 

The model order of the estimated state-space model can be selected for exam-
ple based on the singular values along the diagonal of matrix ࢳ in (18). Relatively 
small singular values correspond to computational or noise modes and they can 
be neglected [58]. In this thesis and Publication II, the singular values that were 
smaller than 0.1 ∙  ୫ୟ୶ is the largest singular value, were assumedߪ ୫ୟ୶, whereߪ



 

36 

to correspond computational modes (noise modes). Thus, the model order is 
selected according to the number of singular values larger than 0.1 ∙ -୫ୟ୶. Howߪ
ever, the model order can be also selected based on apriori knowledge of the 
studied system (i.e., a constant model order can be used in some cases). 

2.3 Second Order Blind Identification (SOBI) 

2.3.1 Introduction 

SOBI is a Blind Source Separation (BSS) technique. The fundamental objective 
of BSS is to retrieve unobserved source signals from their observed mixtures. 
[59] A well-known example of BSS is the cocktail party problem, where the in-
dividual speech signals of several people speaking simultaneously in a room are 
retrieved utilizing only the signals recorded by a set of microphones located in 
the room. In the field of modal analysis, BSS has been widely applied for ana-
lyzing oscillating structures [60]. Recently, a BSS technique called Independent 
Component Analysis (ICA) was also applied to analyze the electromechanical 
modes in power systems [22]. The SOBI technique, however, has not been used 
in the field of analyzing electromechanical oscillations prior to this thesis and 
Publication III. This thesis and Publication III show that the SOBI algorithm, 
along with the Random Decrement (RD) technique and the ERA, is applicable 
for analyzing the electromechanical modes of power systems. 

The goal of the SOBI, in the context of analyzing electromechanical modes, is 
to recover the oscillatory signals from noisy ambient measurement data col-
lected from power systems. The SOBI algorithm identifies and separates the 
blind sources (i.e., electromechanical modes) utilizing their temporal structure.  
The SOBI relies entirely on second order statistics, whereas for example ICA 
techniques are based on higher order statistics (non-Gaussianity of the sources). 
Therefore, the SOBI has an advantage compared to ICA techniques since the 
calculation of higher-order statistics is laborious, and also difficult in the case of 
scarce data [61]. 

After processing the signals with the SOBI, the impulse response of the system 
is estimated with the RD technique [62], [63]. The impulse responses can be 
estimated for each mode separately, since single-mode ambient responses have 
been recovered from the original data with the SOBI. The modal parameters 
(modal frequency and damping ratio) are identified with the ERA [57]. The use 
of the SOBI-RD-ERA method to measurement data received from a power sys-
tem is illustrated in the block diagram of Figure 7. 
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Figure 7. A block diagram of the SOBI-RD-ERA method. 

2.3.2 Theoretical Background 

SOBI 
The model used in the SOBI algorithm assumes that the observations ࢞(ݐ) gath-
ered from the studied system consist of mixed independent source signals (ݐ)ܛ 
and additive noise (ݐ)ࢋ. The goal of the algorithm is to recover the unobserved 
source signals ࢙(ݐ) from the observed mixtures of the source signals and noise. 
The model used in the SOBI can be written 

(ݐ)࢞  = (ݐ)࢟ + (ݐ)ࢋ = (ݐ)࢙࡭ +  (22)   , (ݐ)ࢋ
 

where ࢟(ݐ) is the signal part of the observations, and ࡭ is referred to as the mix-
ing matrix [64], [61]. 

In the SOBI algorithm, the sources are assumed to be mutually uncorrelated 
and stationary. If the sources are scaled to have a unit variance, their covariance 
matrix is 

(0)࢙ࡾ  = [(ݐ)∗࢙(ݐ)࢙]ܧ = ۷ ,   (23) 
 

where * denotes the conjugate transpose of a vector. The covariance matrix of 
the observations is 

(0)࢞ࡾ  = [(ݐ)∗࢞(ݐ)࢞]ܧ = ୌ࡭࡭ + [(ݐ)∗࣌(ݐ)࣌] = ୌ࡭࡭ + ࣌ଶ۷ ,  (24) 
 

where ࣌ is a vector consisting of the variance of the noise, and H denotes the 
complex conjugate transpose of a matrix. [64], [61]. 

The first step of SOBI consists of whitening the signal part ࢟(ݐ) of the obser-
vation such that 

[ୌࢃ(ݐ)∗࢟(ݐ)࢟ࢃ]ܧ  = ୌࢃୌ࡭࡭ࢃ = ۷     (25) 
 
From (25), it follows that for any whitening matrix ࢃ, there exists a unitary 

matrix ࢁ such that ࡭ࢃ = (ݐ)࢞ If .ࢁ ≠ -i.e., noise is present in the observa) (ݐ)࢟
tions), the whitened process (ݐ)ࢠ =  :yields (ݐ)࢞ࢃ

 
[(ݐ)∗ࢠ(ݐ)ࢠ]ܧ   = [ୌࢃ(ݐ)∗࢞(ݐ)࢞ࢃ]ܧ = ୌࢃୌ࡭࡭ࢃ +  ୌࢃଶ࣌ࢃ
(0)࢞ࡾ)ࢃ = − ࣌ଶ۷)ࢃୌ + ୌࢃଶ࣌ࢃ =  ୌ   (26)ࢃ(0)࢞ࡾࢃ 
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Consequently, the whitening matrix ࢃ can be determined from the covariance 
matrix (0)࢞ࡾ of the observations (more details are presented in [64]). 

The second step of SOBI is finding the unitary matrix ࢁ. To determine ࢁ, spa-
tially whitened time lagged covariance matrices ࢃࡾ,࢞(߬) are considered: 

(߬)࢞,ࢃࡾ  = ݐ)ࢠ]ܧ + [(ݐ)∗ࢠ(߬ = ݐ)࢞]ܧࢃ + =   ୌࢃ[(ݐ)∗࢞(߬ ݐ)࢙]ܧ࡭ࢃ + ୌࢃୌ࡭[(ݐ)∗࢙(߬ = ߬∀     ୌࢁ(߬)࢙ࡾࢁ ≠ 0    (27) 
 
Since ࢁ is unitary and ࢙ࡾ(߬) is diagonal, (27) shows that any whitened covari-

ance matrix ࢃࡾ,࢞(߬) can be diagonalized with the unitary transform ࢁ. Conse-
quently, the matrix ࢁ can be determined through the eigenvalue decomposition 
of the time-lagged whitened covariance matrices. After determining ࢁ, the mix-
ing matrix ࡭, and the sources ࢙(ݐ) can be directly calculated since ࢁ = (ݐ)࢞ and ,࡭ࢃ =  [61] ,[64] .(ݐ)࢙࡭

To estimate the unitary matrix ࢁ, the SOBI algorithm jointly diagonalizes sev-
eral whitened covariance matrices ࢃࡾ,࢞(߬) with different time lags. The simul-
taneous diagonalization of the covariance matrices is carried out to improve the 
robustness of the algorithm (i.e., several time lags are considered instead of a 
single time lag, and thus, a poor choice for the lag is less probable). The diago-
nalization is carried out using an extension of the Jacobi technique [64]. 

Figure 8 illustrates the application of the SOBI algorithm to mixtures of three 
sinusoidal signals. As shown in the figure, the SOBI is able to separate different 
sinusoidal signals with high accuracy. 

 

 

Figure 8. a) Mixtures of three sinusoidal signals (frequencies 0.3 Hz, 0.5 Hz and 0.8 Hz) and b) 
the identified source signals. 

RD Technique 
The Random Decrement (RD) (introduced in [62], [63]) is a univariate time do-
main averaging technique. The goal of the technique is to estimate the impulse 
response of the studied system from ambient observations collected from the 
system. When used in conjunction with the SOBI, the RD technique is applied 
to the source signals identified by the SOBI algorithm. 
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If the studied system is assumed to be linear and the excitation (i.e., disturb-
ance) of the system is Gaussian distributed random variation, the RD auto sig-
nature ܦ୷୷(߬) yields an estimate of the impulse response of the system [65]. The 
above-mentioned assumptions are justified during the ambient operation of 
power systems [2]. The RD estimate of the impulse response of the system (ݐ)ݎ 
is 

(ݐ)ݎ  = (߬)௬௬ܦ = ଵே ∑ :௦ݐ)ݕ ௦ݐ + ߬)ே௦ୀଵ  ,    (28) 

 
where ܰ is the total number of samples collected with a selected threshold, ݏ is 
the sample number,  ݐ௦ is the time instance when the ambient response (ݐ)ݕ 
crosses the selected threshold, and ߬ is the length of each sample [2]. The use of 
the RD technique is presented in Figure 9. 

 

 

Figure 9. Example of the random decrement technique: a) the ambient response, b) the collected 
samples, and c) the averaged samples. 

ERA in Conjunction with SOBI 
The complete ERA algorithm is described in Section 2.2.2. When used in con-
junction with the SOBI, the ERA algorithm can be used similarly as described 
in Section 2.2.2, with following simplifications: 

 The impulse responses received from the RD technique contain only 
one mode since the modes are separated using the SOBI. Thus, in this 
thesis, the parameters to form the Hankel matrix (17) are selected as 
follows: ݌ = 20 and ݎ = 40. (See Section 2.2.3 for more information) 
However, according to [58], another approach is to build the Hankel 
matrix using the whole length of the decaying signal provided the sig-
nal-to-noise ratio is high. 

 The identified state matrix ࡭෡ contains only one mode, and thus, is of 
dimensions 2 × 2. Consequently, the model order of the ERA can be 
limited to 2. 
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2.3.3 Application to Power System Data and Selection of Method  
Parameters 

Figure 10 shows the application of the SOBI to ambient power system data. Cer-
tain steps and properties of the method that are important in its practical appli-
cation are also discussed below. 

 

  

Figure 10. Flow chart of the SOBI-RD-ERA method. 

Data Preprocessing 
Data preprocessing for the SOBI-RD-ERA method is similar to the MAR method 
(see Section 2.1.3). 

 
Selecting the Number of Sources 
The SOBI algorithm requires the selection of the number of sources to be iden-
tified from the ambient data. Usually, the number of sources corresponds to the 
number of modes to be identified. Thus, the user of the algorithm should select 
the number of sources to be equal to the number of the modes expected to be 
present in the analyzed data. If other periodic signals exist in the data, these 
signals can be also considered source signals. 
 
Selecting the Parameters for the RD Technique 
Using the RD technique requires the selection of two parameters: the length of 
the sample and the threshold value. In this paper, the parameters were selected 
according to the recommendation of [2]: the length of the sample is 6 oscillation 
periods of the analyzed mode and the threshold is 1.4 times the standard devia-
tion of the ambient response. 

2.4 Bayesian Approach 

2.4.1 Introduction 

The Bayesian approach has been previously used for ambient modal analysis in 
the field of civil engineering. Originally, the approach was developed by S. K. Au 
et al. [66]–[69] and it has been found to be highly effective in identifying the 
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oscillatory dynamics of civil and mechanical structures with quantifiable iden-
tification precision. Prior to Publication IV and this thesis, however, the Bayes-
ian approach has not been used for identifying electromechanical modes. 

Unlike several previously published methods, the Bayesian approach does not 
use statistical proxies (e.g., correlation function, sample power spectral densi-
ties) calculated from the measurement data for modal identification. Rather, the 
identification information about the parameters are fundamentally expressed 
using Bayes Theorem in terms of a probability distribution conditional on the 
data and modeling assumptions. 

The Bayesian method identifies the modes based on the Fast Fourier Trans-
form (FFT) information on a selected frequency band. This significantly simpli-
fies the identification model and reduces modeling error in other unmodeled 
frequency bands, and therefore, improves the robustness of the method. The 
ambient excitation source and measurement noise differ in order of magnitude 
and characteristics over different frequency regimes.  Using a time domain ap-
proach, it might be difficult to have a simple model that accounts for the various 
frequency characteristics. However, using a frequency domain approach, only 
the FFTs within the selected band are used for making inference. The frequency 
characteristics that are irrelevant or difficult to model are ignored by simply ex-
cluding the FFTs in their band. In addition, this does not require any band-pass 
filtering. Since the raw FFT is used and no averaging is involved, distortion ef-
fects due to leakage or smearing is significantly reduced compared with conven-
tional methods involving sample spectral estimates [70]. 

For close modes, the identified mode shape vectors of the Bayesian method 
are the real ones and they need not be orthogonal. This is in contrast with exist-
ing methods, which can only yield the “operational deflection shape” (from ei-
genvector decomposition) that are necessarily orthogonal. 

The Bayesian method also allows the uncertainty of modal parameters (i.e., 
frequency, damping ratio, modal excitation) to be calculated. This is fundamen-
tally in terms of a posterior distribution that is a function of measured data ra-
ther than confidence intervals (in non-Bayesian methods) that are only esti-
mates of “inherent uncertainty” associated with conceptually repeated experi-
ments under small perturbations. The uncertainty information provides a basis 
for power system operators and analysts to design appropriate configurations 
for reliable identification and proper interpretation of the modal identification 
results. 

2.4.2 Theoretical Background 

Bayesian Approach 
Let ࣂ denote the set of parameters to be identified from a set of measured data ࡰ. A Bayesian approach to system identification recognizes the fact that it is 
philosophically impossible to identify the value of ࣂ exactly because of limited 
amount of available data, measurement noise, modeling error, etc. Instead, all 
information that can be extracted from ࡰ on ࣂ is encapsulated in the “posterior” 
(i.e., given data) probability density function (PDF) (ࡰ|ࣂ) . Using Bayes’ Theo-
rem, the posterior PDF is given by 
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(ࡰ|ࣂ)݌  = (ࣂ)݌(ࣂ|ࡰ)݌ ⁄(ࡰ)݌          (29) 
 
Strictly speaking, all the terms in (29) are conditional on modeling assump-

tions but the latter have been omitted to simplify notations. In (29), for a given 
model assumed in identification, (ࡰ)݌ is a constant, and thus, it does not affect 
the shape of the PDF; (ࣂ)݌ is often called the “prior PDF” (i.e., before data is 
incorporated) and (ࣂ|ࡰ)݌ the “likelihood function”, which gives the PDF of the 
data for a given ࣂ and must be derived based on modeling assumptions that 
relate ࣂ to ࡰ. The spread of (ࣂ)݌  reflects one’s knowledge on parameters in the 
absence of data while the spread of (ࣂ|ࡰ)݌ reflects how sensitive the likelihood 
of data is to parameters. Sensitivity in (ࣂ|ࡰ)݌, which is a joint distribution of 
data, increases with sample size and so for sufficiently large sample size (which 
is the case in modal identification) the variation of (ࣂ|ࡰ)݌ dominates that of (ࣂ)݌ . Thus, practically it can be assumed 

(ࡰ|ࣂ)݌  ∝  (30)    (ࣂ|ࡰ)݌
 

Ambient Modal Identification 
As described in Section 2.2.2, in small signal analysis (i.e. in the vicinity of the 
current operating point) the oscillatory behavior of each generator in the power 
system can be described by: 
(ݐ)̈࢞ࡹ  + (ݐ)ܠ̇࡯ + (ݐ)࢞ࡷ =  (31)   (ݐ)ࡲ

 
where ࡯ ,ࡹ and ࡷ are diagonalizable matrices containing the inertia coeffi-
cients, damping coefficients and synchronizing power coefficients of each gen-
erator, respectively. Here, ࢞(ݐ) is a vector containing the rotor angle deviations 
of the generators around their equilibrium points and ࡲ is the vector of the nat-
ural excitation of the system. 

As ࡯ ,ࡹ and ࡷ are diagonalizable, the solution of ࢞(ݐ) can be expressed as a 
sum of modal contributions: 

(ݐ)࢞  = ∑ ࣒௜ߟ௜(ݐ)௜      (32) 
 

where ࣒௜   (݅ = 1,2, … ) are the mode shape vectors of the system satisfying the 
generalized eigenvalue problem 

௜࣒ࡷ  = ߱௜ଶ࣒ࡹ௜      (33) 
 
In (32), ߟ௜ is the scalar modal response satisfying the uncoupled equation of 

motion: 
(ݐ)௜ߟ̈  + (ݐ)௜ߟ௜߱௜ߞ2 + ߱௜ଶߟ௜(ݐ) =  (34)          (ݐ)௜݌
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where ߱௜ = ߨ2 ௜݂; ௜݂ and ߞ௜ are the natural frequency (Hz) and damping ratio of 
the mode, respectively, and  

(ݐ)௜݌  =  ࣒೔೅ࡲ(௧)࣒೔೅࣒ࡹ೔           (35) 

 
is the modal excitation. 

Let {ෝ࢟௜ ∈ ܴ௡}௜ୀ଴ேିଵ, be a set of discrete time history at ݊ measured degrees of 
freedom (DOFs) of the system under ambient condition. Given the data, the goal 
is to identify the system modal properties primarily consisting of the natural 
frequencies, damping ratios and mode shapes. In the context of the Bayesian 
approach, it is required to formulate the likelihood function (ࣂ|ࡰ)݌. 

Processing the ambient (unfiltered) measurements directly would require a 
model that explains all the modes in the sampling bandwidth (from zero to the 
Nyquist frequency). In addition, the measurements can contain frequency com-
ponents from unknown system dynamics, which the theoretical model cannot 
explain. Thus, in the Bayesian approach, it is preferable to operate in the fre-
quency domain and use the FFT of time history on a selected frequency band 
around the modes of interest as data ࡰ for Bayesian inference. This significantly 
reduces the complexity of the model as it only needs to account for the dynamics 
of the modes in the selected frequency band. 

Define the scaled FFT of ൛ෝ࢟௝ ∈ ܴ௡ൟ௝ୀ଴ேିଵ
 by 

෡௞ࡲ  = ට∆௧ே ∑ ෝ࢟௝݁ିଶ୨௝௞/ேேିଵ௝ୀ଴     ݇ = 0, … , ܰ − 1 (36) 

 
where t  is the sampling interval in seconds and jଶ = −1. For ݇ ≤ ୯ܰ, where ୯ܰ 
(index at Nyquist frequency) is the integer part of ܰ 2⁄ -෡௞ corresponds to freࡲ ,
quency ௞݂ = ݇ ⁄ݐ∆ܰ . The FFT in (36) is scaled by the factorඥ∆ݐ ܰ⁄   so that ࡲൣܧ෡௞ࡲ෡௞∗൧ is equal to the power spectral density (PSD) matrix of the data process. 

Let ࡰ = ൛ࡲ෡௞ൟ denote the collection of FFTs within the selected frequency band 
for the modal identification. To formulate the likelihood function (ࣂ|ࡰ)݌, it is 
necessary to derive the joint distribution of ࡲ෡௞ for a given set of modal parame-
ters ࣂ. Not only does ࣂ need to contain the parameters of interest (e.g., natural 
frequencies and damping ratios of the electromechanical modes) but also those 
that together can allow (ࣂ|ࡰ)݌ to be derived explicitly. Within the selected fre-
quency band ࡲ෡௞ can be modeled as 

෡௞ࡲ  = ∑ ࣐௜௜ ௜௞ߟ +  ௞    (37)ߝ
 

where the sum is over the modes in the selected frequency band only; ߟ௜௞ de-
notes the scaled FFT of ߟ௜(ݐ); and ߝ௞ is the scaled FFT of the ‘prediction error’ 
(e.g., measurement noise). It is assumed that the prediction errors at different 
channels are independent and identically distributed (i.i.d.) with a constant PSD 
of ࡿ௘ within the selected frequency band. Taking the scaled FFT on (34) yields 
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௜௞ߟ = ℎ௜௞݌௜௞    (38) 
 

where 
 ℎ௜௞ = ߨ2) ௞݂)ିଶൣ൫ߚ௜௞ଶ − 1൯ + j(2ߞ௜ߚ௜௞)൧ିଵ

  (39) 
 

is the transfer function and ߚ௜௞ = ௜݂ ௞݂⁄  is the ratio of the natural frequency ௜݂ to 
the FFT frequency ௞݂. In (38), ݌௜௞ is the scaled FFT of the modal excitation ݌௜(ݐ), 
which can be assumed to have a constant PSD matrix of ࡿ in the selected fre-
quency band. The above context is sufficient for deriving the joint PDF of ൛ࡲ෡௞ൟ , 
where ࣂ consists of, for the modes in the selected frequency band, the natural 
frequencies { ௜݂} , damping ratios {ߞ௜}, the mode shapes (confined to the meas-
ured DOFs) ࣐, the parameters characterizing the modal excitation PSD matrix ࡿ and the prediction error PSD ࡿ௘ . 

The likelihood function (ࣂ|ࡰ)݌ =  ൯  can be derived using asymptoticࣂ෡௞ൟ หࡲ൫൛݌
results of FFTs of stationary processes for long data lengths [71]. Essentially, it 
can be shown that ൛ࡲ෡௞ൟ  at different frequencies (݇’s) are asymptotically inde-
pendent. In addition, Re ࡲ෡௞  and Im ࡲ෡௞ are jointly Gaussian and their covariance 
matrix can be expressed in terms of ࣂ. Consequently, it can be shown that [66] 

(ࣂ|ࡰ)݌  = ݁ି௅(ࣂ)    (40) 
 

where 
(ࣂ)ܮ  = ݊ ௙ܰ ln ߨ + ∑ ln det (ࣂ)௞ࡱ + ∑ ෡௞ ௞௞ࡲଵି(ࣂ)௞ࡱ∗෡௞ࡲ  (41) 
 

is the “negative log-likelihood function” (NLLF); 
(ࣂ)௞ࡱ  = ઴ࡴ௞઴୘ +  ௡    (42)ࡵ௘ࡿ
 

is the theoretical PSD matrix of the measured data; 
 ઴ = [࣐ଵ, … , ࣐௠] ∈ ܴ௡×௠    (43) 

 
is the mode shape matrix; ࡵ௡ denotes the identity matrix of dimension ݊;  ࡴ௞ ∈ ,݅) ௠×௠ is a transfer matrix whoseܥ ݆)-entry is given by 

,݅)௞ࡴ  ݆) = ௜ܵ௝ℎ௜௞ℎ௝௞∗     (44) 
 

and ௜ܵ௝ is the (݅, ݆)-entry of the modal excitation PSD matrix ࡿ. 

Computation of Posterior Statistics 
The statistical properties of ࣂ can be extracted from the posterior PDF or equiv-
alently the NLLF in (41), which is essentially a computational problem. For 
modal identification problems with sufficient data, the posterior PDF has a sin-
gle peak, say ࣂ෡. This is the “most probable value” (MPV) as it has the highest 
probability density according to the posterior PDF. With a second order Taylor 
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expansion of the NLLF around ࣂ෡, the posterior PDF can be approximated by a 
Gaussian PDF centered at the MPV. It can be shown that the covariance matrix 
is then given by the inverse of the Hessian of the NLLF [66]. 

Computing the MPV by brute-force optimization with the NLLF is not feasible 
because in practical problems the number of parameters is large. Efficient algo-
rithms have been developed in various cases, including, e.g., well-separated 
modes [66] and close modes [67]. Essentially, it is found that the MPV of the 
mode shape vector can be found almost analytically, in such a way that the full 
set of modal parameters can be found iteratively by optimizing each individual 
group in turn until convergence. A more thorough review with applications in 
civil engineering can be found in [68]. Analytical expressions for the Hessian of 
the NLLF have also been derived so that the covariance matrix of the modal pa-
rameters can be calculated efficiently and accurately without resorting to a finite 
difference method. 

Uncertainty Laws 
In addition to the modal identification algorithm, closed form expressions have 
also been derived for the identification uncertainty of the modal parameters un-
der asymptotic situations of long data and low damping [69]. They are collec-
tively called “uncertainty laws”. In particular, assuming that the selected band-
width is ݂(1 ±  is the damping ߞ ,where  ݂ is the natural frequency (in Hz) (ߞߢ
ratio and ߢ is a dimensionless bandwidth factor characterizing the usable band-
width, it can be shown [69] that the posterior coefficient of variation (c.o.v. = 
standard deviation/mean) of the damping ratio is asymptotically given by 

(ߢ)ܤߞߨ2]~ߜ  ௖ܰ]ିଵ ଶ⁄     (45) 
 

where ௖ܰ is the data duration expressed as a multiple of the natural period; and  
(ߢ)ܤ  = ଶగ ൤tanିଵ ߢ + ఑఑మାଵ − ଶ൫୲ୟ୬షభ ఑൯మ఑ ൨   (46) 

 
is the “data length factor” being a monotonic increasing function of ߢ, which 
reflects the effect of widening the usable band on identification precision. This 
equation can be used for assessing and planning the measurement configura-
tion required to achieve a specified identification accuracy in the modal param-
eters.  For example, with 1 % damping, about 300 natural periods are required 
to achieve a c.o.v. of 30 % in the damping ratio. Uncertainty laws for other modal 
parameters are also available [69]. 

2.4.3 Application to Power System Data and Selection of Method  
Parameters 

Figure 11 shows the application of the Bayesian approach to ambient power sys-
tem data. Certain steps and properties of the Bayesian approach that are im-
portant in its practical application are also discussed below. 
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Figure 11. Flow chart of the Bayesian method. 

Selecting the Number of Modes and Their Frequency Ranges 
The Bayesian approach requires the selection of the number of modes to be 
identified from the used ambient data set. The number of modes can be selected 
for example based on apriori knowledge of the analyzed system or utilizing 
spectral analyses of the data (use of spectral analysis to assist modal identifica-
tion is further discussed in Chapter 4). 

To illustrate the selection of the frequency ranges for the identification of the 
modes, Figure 12 shows the power spectrum of an example PMU measurement 
collected from the Nordic power system. In the measurement, the mode of in-
terest is around 1 Hz. There are activities of different nature over the whole sam-
pling band up to Nyquist frequency (here 25 Hz). As shown by the figure, the 
frequency range should be selected such that the mode of interest is well ob-
served there and, if possible, no other significant activities are in the selected 
range. 

 

 

Figure 12. Power spectrum of an example data set collected from the Nordic power system and 
the selection of the frequency range for modal identification. 
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3. Validation of the Methods with  
Simulated and Measured Data 

Various test systems and measurement data sets have been used in Publications 
I–VI to analyze the performance of the ambient modal analysis methods pre-
sented in Chapter 2. In this chapter, the functionality of the methods is validated 
using synthetic data generated with a simple linear test model as well as real 
measurement data collected from the Nordic power system. The purpose of this 
chapter, however, is not to present a thorough comparison of the methods. 

 

3.1 Used Data 

3.1.1 Synthetic Data Generated with a Linear Model 

The performance of the ambient modal analysis methods is first tested here us-
ing synthetic data produced with a simple linear simulation model based on 
transfer functions. The transfer functions were selected such that there were two 
modes present in the model: 0.3 Hz mode and 0.8 Hz mode. These modes had 
damping ratios 3 % and 5 %, respectively. Figure 13 presents the model. 

As Figure 13 shows, data containing four output signals were created with the 
model. Gaussian random inputs were used to excite the transfer function 
modes. The obtained responses of the transfer functions were multiplied by the 
coefficients presented in Figure 13 and then summed. The goal of this approach 
was to create data, where the two studied modes are mixed with different ob-
servability in different measurements. A sample excerpt of the output data is 
shown in Figure 14. 



 

48 

 

Figure 13. Test model based on transfer functions (ζ1=0.03, ω1=1.8850, ζ2=0.05, ω2=5.0265). 

 

 

Figure 14. A sample excerpt of the data generated with the model based on transfer functions. 

In practical situations, the PMU measurements can contain a certain meas-
urement noise. To analyze the effect of the measurement noise, the synthetic 
measurements were perturbed with additive white noise. The variance of the 
noise was adjusted such that the signal-to-noise ratio (SNR) was infinite, 10 and 
5. SNR levels of actual PMU measurements are typically higher than 5. The SNR 
was calculated by: 

 SNR = ቀఙ౩౟ౝ౤౗ౢఙ౤౥౟౩౛ ቁଶ
  ,    (47) 

 
where ߪୱ୧୥୬ୟ୪ and ߪ୬୭୧ୱୣ are the signal and noise standard deviation, respectively. 
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3.1.2 PMU Measurement Data 

In addition to the simulated data, real measured PMU data are used in this the-
sis to test the performance of the methods. The data were recorded using three 
PMUs installed in the transmission system of Northern Finland. Figure 15 
shows the grid map of the area and the measurement locations. 
 

 

Figure 15. The transmission system in Northern Finland and Northern Norway. The red lines 
show the possible disconnection points of the grid. The blue arrows illustrate the mode 
shapes of the 0.8 Hz electromechanical mode when the grid is in ring operation (i.e. 
not separated in the disconnection points). The red circles show the locations of the 
PMUs. 

The Northern Finland transmission system is characterized by long transmis-
sion distances, large amounts of hydro power production, and small consump-
tion. When power transmission is from North to South, the power transfer ca-
pacity of the grid is limited by the damping of electromechanical oscillations. 

The Northern Finland and Northern Norway transmission system can be op-
erated in different switching conditions, which significantly affect the modal 
characteristics of the system. Often, the grid is used in ring operation (i.e., there 
is a direct connection from Northern Finland to the western part of Norway 
through the grid of Northern Norway). However, the grid is occasionally sepa-
rated at different locations, which are shown in Figure 15. 

Often, the dominant electromechanical mode in the area is observed around 
the frequency of 0.8 Hz. When exposed to this mode, the generators in Northern 
Finland and Northern Norway oscillate against the rest of the Nordic system. 

The collected measurement data used for testing the performance of the meth-
ods contain 24 hours of active power flow from two 220 kV transmission lines 
situated in Northern Finland. Figure 16 presents a sample excerpt of a measure-
ment. 
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Figure 16. Sample excerpt of a PMU measurement from Northern Finland (active power flow 
from a 220 kV line). 

In addition to the ambient power flow data, the collected measurement data 
set contains some small transients. These transients were caused by minor 
changes (i.e., small switching events) in the grid. One of the transients is shown 
in Figure 17. To obtain reference values for the frequency and damping ratio of 
the dominant mode, two transients (one in the beginning of the data set and one 
in the end part of the data set) were analyzed using Prony analysis. The results 
of the Prony analysis were as follows: 

 Transient at 34 minutes (near the beginning of the data set): ݂ ≈ 0.93 Hz, ߞ ≈ 5% 
 Transient at 20 hours 7 minutes (near the end of the data set):  ݂ ≈ 0.88 Hz, ߞ ≈ 5% 

 

 

Figure 17. An example transient in the analyzed data set. 

3.2 Performance Analysis of the Methods 

3.2.1 Modal Analysis of Synthetic Data 

The different modal analysis algorithms presented in Chapter 2 were applied to 
the synthetic measurement data created with the model based on transfer func-
tions (Figure 13). The frequency and damping ratio of the 0.3 and 0.8 Hz modes 
were analyzed with different analysis window lengths and signal-to-noise ratios. 
The length of the analysis window was increased by 10 second intervals starting 
from 1 minute until 15 minutes. Figure 18 shows the results of the analysis. 
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Figure 18. Modal analysis results of the data generated with the linear model with different SNRs. 

The results in Figure 18 indicate that the MAR, NExT-ERA, SOBI and Bayes-
ian methods are capable of identifying the frequency and damping ratio of the 
two modes present in the data generated with the linear model. The identifica-
tion results for the modal frequency are rather accurate for each method even if 
the length of the analysis window is short. To achieve more accurate identifica-
tion results for the damping ratio, slightly longer analysis window lengths 
(around five minutes) are required in this case. 

Actual modes
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As more noise is introduced in the measurements, variance of the estimates 
increases slightly. However, a realistic level of measurement noise does not dis-
turb the modal identification results significantly as long as sufficiently long 
analysis windows are used. However, Figure 18 only shows the effect of the noise 
incorporated to the synthetic measurement signals, and the effect of the process 
noise or the noise from other measurement instrumentation (such as voltage 
and current transformers) are not shown here and could be a topic of future 
research. 

3.2.2 Modal Analysis of PMU Data 

Figure 19 shows the modal identification results for the 24-hour data set  (Sec-
tion 3.1.2) collected from the Nordic power system using the methods presented 
in Chapter 2. Modal identification is performed at a 1-minute interval, each time 
using a 10-minute moving analysis window. The goal is to identify the 0.8 Hz 
mode observed in Northern Finland and Northern Norway. 

 

Figure 19. Modal analysis results of the 24-hour data set collected from the grid of Northern Fin-
land and Norway. The blue dots show the results of the Prony analysis of the transi-
ents (i.e., reference values for frequency and damping, Section 3.1.2). 

The results in Figure 19 indicate that the frequency of the dominant mode re-
mains rather constant during the analyzed period. The damping ratio has 
slightly higher variations than the frequency. This is rather typical for the trans-
mission system of Northern Finland and Northern Norway. In addition, the re-
sults in Figure 19 show that the modal identification results are consistent with 
the results of the Prony analysis of the transients (presented in Section 3.1.2). 
This indicates that each method gives rather accurate and consistent results for 
the analyzed data set. 

 
 

 

Prony analysis of the transients
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4. Towards Practical Applications 

Experiences in using ambient modal analysis methods for monitoring real 
power systems have not been widely reported in the literature. However, ob-
taining practical experiences in using modal identification methods is of high 
importance for TSOs. This chapter presents observations and practical experi-
ences in using certain ambient modal identification methods for monitoring real 
power systems. 

4.1 Experiences in Using Two Different Modal Analysis Methods 
for Real-Time Oscillation Monitoring 

4.1.1 Used Methods 

Publication V shows experiences in using two ambient modal identification 
methods for the monitoring of electromechanical modes in the Nordic power 
system: MAR method and a Wavelet based method. The MAR method is de-
scribed in Section 2.1 and the Wavelet method (proposed by J. Turunen et al 
[2], [26], [27]) is briefly described below. 

The Wavelet method [2], [26], [27] is a univariate method. It is based on the 
Continuous Wavelet Transform (CWT) and Random Decrement Technique 
(RDT). The method is schematically presented in Figure 20. CWT is an effective 
method of extracting information of a signal in both the time and frequency do-
main. The CWT of a signal (ݐ)ݕ is calculated by computing the wavelet coeffi-
cients ܥ(ܽ, ܾ) at different scales ܽ and positions ܾ: 

,ܽ)ܥ  ܾ) = ∫ (ݐ)ݕ ଵ√௔ஶିஶ ∗ߖ  ቀ௧ି௕௔ ቁ  (48)   ݐ݀

 
where ߖ is a real wavelet function in case of the real CWT and a complex wavelet 
function in case of the complex CWT. 
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Figure 20. Block diagram of the damping estimation method based on wavelet transform and 
random decrement. CWT is continuous wavelet transform and RDT is random decre-
ment technique. Input (ݐ)ݕ is the analyzed signal, and outputs ୫݂ and ߞ୫ are the esti-
mated mode frequency and damping, respectively. [2] 

The CWT is used in the mode frequency estimation and extraction of the mode 
from the measured signal. The RD technique is then applied to the extracted 
single-mode ambient response to produce the approximate single-mode im-
pulse response of the system. The damping estimate is finally calculated from 
the approximate impulse response by first wavelet transforming it and calculat-
ing the damping from the decay of the wavelet coefficient. Complete details of 
the method, including selection of parameters and wavelet types are available 
in [2]. 

4.1.2 Analysis of Different Measurement Cases 

In this section, two different data sets are used to analyze the performance of 
the Wavelet and MAR methods. The used data sets are both 24 hours long and 
they consist of two voltage angle difference measurements collected from 
Northern Finland (The measurement locations are presented in Figure 15 in 
Section 3.1.2. However, the measurement cases are different from the measure-
ments used in Section 3.1.2 and 3.2.2.). The first measurement, where the ana-
lyzed oscillations are clearly observable, is used as an input to the Wavelet 
method (univariate), and both measurements are used as inputs to the MAR 
method (multivariate). The analysis is performed using a 15-minute sliding es-
timation window that is updated in 1-minute intervals. The analysis approach 
corresponds to real-time analysis of the data. 

Measurement Case 1 
In the first measurement case, ambient PMU data from normal operating con-
ditions of the Northern Finland Northern Norway grid are used to analyze the 
performance of the Wavelet and MAR methods. Figure 21 presents the modal 
identification results for the data. The dominant electromechanical mode is ra-
ther well observable in the analyzed data set and the grid topology remains the 
same during the analyzed period. The analyzed mode is the 0.8 Hz electrome-
chanical mode, where the generators of Northern Finland and Northern Norway 
oscillate against the rest of the Nordic system (more information regarding the 
0.8 Hz mode is presented in Section 3.1.2). 
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Figure 21. a) Oscillation frequency estimates and b) damping ratio estimates of the Measurement 
Case 1 (real-time ambient data set) using a sliding analysis window. 

As Figure 21 shows, the oscillation frequency and damping ratio estimates of 
the Wavelet and MAR methods are rather coherent during the analyzed 24-hour 
period. Both methods indicate that the frequency of the dominant oscillatory 
mode remains around 0.9 Hz (this is rather typical for the analyzed mode). The 
damping ratio estimates vary in the range of 3–10 % and there is also a clear 
correlation between the damping ratio estimates given by the two methods. 
Thus, both methods yield consistent results in this measurement case, where 
the analyzed mode is clearly observable. 

Measurement Case 2 
In the second case, the Wavelet and MAR methods are applied to analyze an 
ambient PMU data set measured during a period when the system topology 
changed significantly two times. These changes in the topology and operating 
conditions have a significant effect on the modal properties of the system. Fig-
ure 22 presents the results of the analysis. Similarly as in Measurement Case 1, 
the analyzed electromechanical mode is the 0.8 Hz mode, but in addition to this 
mode, there are also certain forced oscillatory modes present in the data. 

 

 

Figure 22. a) Oscillation frequency estimates and b) damping ratio estimates of the Measurement 
Case 2 (real-time ambient data set with two changes in the grid operating conditions) 
using a sliding analysis window. The operating conditions of the grid change at around 
23:00 and 09:00. 
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Figure 22 shows that the oscillation frequency estimates given by the Wavelet 
and MAR methods are rather coherent during the analyzed period. However, 
there are some differences in the estimates especially in the end part of the anal-
ysis. Correspondingly, the damping ratio estimates have a clear correlation at 
the beginning of the analysis, but the correlation decreases in the end of the 
analysis. To investigate the reasons for the differences between the estimates 
given by the two methods, Fourier spectrums were calculated from the begin-
ning, central, and end part of the data set, and they are presented in Figure 23. 

 

 

Figure 23. Spectrum of the first angle difference signal (in radians) at the a) beginning of the data 
set (around 18:00), b) central part of the data set (around 03:00) and c) end of the 
data set (around 12:00). 

As Figure 23 indicates, the electromechanical mode around 0.8–0.9 Hz is 
dominating the spectrum in the beginning part of the analyzed data set. In the 
central part, the observability of electromechanical modes becomes poor. In-
stead, there is a forced mode around 1.1 Hz (the sharp peaks in the spectrum 
correspond to forced modes). In the end part, there is a strong forced mode at 1 
Hz, and poorly observed electromechanical modes. 

Figure 23 gives an explanation to the behavior of the modal estimates given 
by the Wavelet and MAR methods. In the first part of the analyzed data, the 
electromechanical mode is clearly observable and both methods are able to es-
timate it accurately. Instead, especially in the end part of the data set, the MAR 
method mainly estimates the modal properties of the forced mode, whereas the 
Wavelet method gives estimates at frequencies between the forced mode and 
the electromechanical mode. 
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4.2  Using Supporting Methods in the Modal Analysis 

4.2.1 Introduction 

As shown in Section 4.1.2, real measured quantities from a power system may 
often include several modes (i.e., inter-area modes, local modes or forced 
modes) and the modal characteristics of the system may change rather quickly 
in certain cases. Modal identification methods often try to identify a certain 
mode continuously even though the mode might occasionally vanish or reap-
pear in the system or its characteristics might change significantly. Under such 
conditions, the power system operators may have difficulties in interpreting the 
modal identification results and supporting methods may be needed to help in 
the interpretation of the results. 

Publication V and VI show that spectral analysis methods can be used as diag-
nostic tools for interpreting the results given by the modal identification meth-
ods, and thus, identifying the oscillatory properties of the system and their var-
iation as a function of time. For example, a spectrogram can reveal and visualize 
when the system has oscillations and clearly show the frequencies of the differ-
ent modes as presented in Publication VI. Spectrograms can be also used in as-
sessing the accuracy of the modal identification methods and their other prop-
erties, for example how quickly the methods detect new oscillatory states. This 
section presents experiences in using spectrograms as supporting tools to ana-
lyze electromechanical modes. 

4.2.2 Using Spectrograms Together with Ambient Modal Identification 
Methods 

A spectrogram is an intuitive and visual way of representing oscillations in the 
signals at different frequencies and time instances. It often includes three-di-
mensional information with time at x-axis, frequency at y-axis, and amplitude 
represented by a color. The spectrogram is based on the Short Time Fourier 
Transform (STFT). More details regarding the use of spectrograms are pre-
sented in Publication VI and [5]. 

This section analyses the dynamic characteristics of the 
power system in Northern Norway and Northern Finland in two cases, where 
the operating conditions of the grid are significantly different. Similarly as in 
Section 4.1.2, voltage angle difference measurements from the locations shown 
in Figure 15 are used for the analysis. In both cases, spectrograms are used to 
explain variations in frequency and damping estimates of the modal identifica-
tion methods. 

In this section, the modal estimates are calculated using three methods: Wave-
let (described in Section 4.1.1), MAR (Section 2.1) and NExT-ERA (Section 2.2). 
The presented modal estimates (frequency and damping ratio) are finally com-
puted as median of the estimates given by the three modal identification meth-
ods. 



 

58 

Case A 
In Case A, the grid of Northern Norway and Northern Finland is in ring opera-
tion as explained in Section 3.1.2 and the power flow is from Northern Norway 
to Northern Finland. As discussed in Section 3.1.2, in such operating conditions, 
the generators in Northern Norway and Northern Finland typically oscillate 
against the rest of the Nordic power system at around 0.8 Hz frequency and the 
0.8 Hz mode is often rather well observable. 

Case A represents an operating situation where the mode frequency decreases 
slightly and the mode becomes slightly more observable as a function of time. A 
spectrogram of this case is presented in Figure 24 a), together with the corre-
sponding frequency estimate (median of the Wavelet, MAR and NExT-ERA).  
Figure 24 b) presents the corresponding damping ratio estimate (median of the 
Wavelet, MAR and NExT-ERA). 

 

 

Figure 24. a) Spectrogram for Case A with the median frequency estimate from the three modal 
identification methods added (the green line). PSD = Power Spectral Density. Unit of 
the PSD, and thus, the color scale is rad2/Hz. b) Damping ratio estimate (median of 
the three methods). 

As presented in Figure 24 a, the estimated frequency follows the change in the 
modal frequency accurately, which indicates that the methods are able to iden-
tify the correct system mode. This also gives more certainty in the damping ratio 
estimation. In addition to the electromechanical system mode at 0.8–0.9 Hz, 
there is a forced oscillatory mode in the grid at approximately 0.6 Hz. The meth-
ods, however, are not disturbed by this mode since it is situated at clearly lower 
frequencies than the estimated electromechanical mode. Figure 24 b) shows 
that the identified damping ratio of the electromechanical mode varies in the 
range of 3–8 %. 
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Case B 
In Case B, the 220 kV grid (see Section 3.1.2 for more details) is initially in ring 
operation and, as in Case A, the power flow is from Northern Norway to North-
ern Finland. The ring is opened at a time instant around 360 minutes and the 
Northern Finland grid is separated from the Northern Norway grid. At around 
960 minutes, the ring is reconnected but now the direction of the power flow is 
from Finland to Norway. 

The spectrogram together with the corresponding frequency 
estimate is presented in Figure 25 a). Furthermore, Figure 25 b) presents the 
corresponding damping ratio estimate. The frequency and damping ratio esti-
mates are calculated as median of the estimates given by the Wavelet, MAR and 
NExT-ERA methods (similarly to Case A). 

 

 

Figure 25. a) Spectrogram for Case B with the median frequency estimate from the three modal 
identification methods added (the green line). PSD = Power Spectral Density. The unit 
of the PSD, and thus, the color scale is rad2/Hz. b) Damping ratio estimate (median of 
the three methods). 

Again, the estimated mode frequency tracks the changes in the oscillation fre-
quency very well. At the beginning (in the ring operation, 0–360 minutes) the 
estimators discover the 0.8 Hz system mode, after the disconnection (360–960 
minutes) they identify weak oscillations at around 1.15 Hz, and after the recon-
nection into the ring operation (960–1200 minutes) they see the rather strong 
oscillations at 1 Hz. In general, the spectrogram clearly shows how the oscilla-
tions almost vanish from the system when the connection between the grids in 
Northern Finland and Northern Norway is disconnected and illustrates how the 
oscillations reappear after reconnecting the ring. Furthermore, Figure 25 b) 
shows clear variation in the damping ratio of the estimated mode. Thus, the op-
erating conditions of the system have a very significant effect on the damping 
ratio as well as the frequency of the mode. 
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5. Summary 

5.1 Conclusions 

The research work presented in this thesis can be roughly divided in two re-
search directions. The first is the development of new ambient modal identifi-
cation methods for the monitoring of electromechanical modes. The second di-
rection is the presentation of experiences and comparisons of using different 
methods including additional tools for analyzing real modes. The main contri-
bution lies in the development of new modal identification methods. The pro-
posed methods are: Multivariate autoregressive model (MAR) method, Natural 
Excitation Technique – Eigensystem Realization Algorithm (NExT-ERA) 
method, Second Order Blind Identification (SOBI) based method and Bayesian 
method. The proposed methods are multivariate (i.e., they use several measure-
ment signals collected from the power system for the modal identification) and 
they aim to identify the modal characteristics of the studied power system from 
ambient measurements. 

 This thesis showed that the proposed methods are functional for real-time 
monitoring as well as offline analyses of the modes. The performance and char-
acteristics of the methods were studied using different simulated data sets as 
well as real measured data from the Nordic power system. Each method has 
certain benefits, and thus, the most suitable method can be selected for a par-
ticular application. 

Furthermore, the thesis showed that different modal analysis methods often 
yield similar modal identification results when the identified modes are well ob-
servable in the measurements. However, if the observability of the modes is 
poor, or there are for example forced modes present in the data, different meth-
ods may produce conflicting estimates. Also, if the characteristics of the studied 
system change rapidly, the estimates given by the methods may not be coherent. 
Thus, in certain cases, the interpretation of the modal analysis results might be 
difficult. 

Due to reasons discussed above, the thesis also highlighted the need of using 
additional tools, such as spectral analyses, which might significantly help the 
interpretation of modal identification results. Spectrograms, for example, can 
illustrate how changes in the system conditions affect the oscillation character-
istics and reveal the presence of forced modes. By combining spectral infor-
mation with damping and frequency information given by modal identification 
methods, abnormal system conditions can be detected more reliably and the 
system operators warned of these conditions. 
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The methods presented in this thesis can be used as building blocks for TSOs 
to create functional applications for real-time and offline modal analysis of 
power systems. Modal identification methods can be applied to several different 
purposes, such as real-time monitoring and offline analyses of the modes, vali-
dation of simulation models, identifying components and operating conditions 
that have an effect on the modal characteristics, detecting power system events, 
and finding the root causes of certain events and phenomena in the system. In 
general, real-time monitoring and offline analyses of the modes can improve the 
situational awareness and enhance the knowledge of the system dynamic char-
acteristics. Consequently, such information may improve the security and reli-
ability of power systems of the future. 

5.2 Discussion and Future Work 

As shown by the results of this thesis, the presented modal identification meth-
ods are functional for identifying electromechanical modes from ambient data. 
However, before taking the methods to real-time use in power system control 
centers it is important to test their characteristics with real data collected from 
the power system. It is recommended to use large data sets (i.e., several months) 
to investigate the performance of the methods in various different operating 
conditions. During such tests, it is useful to compare the performance of several 
methods running in parallel and investigate the different characteristics of the 
methods. It may be also beneficial to keep multiple instances of a specific 
method with different parameters running in parallel to find out the effect of 
different parameters to the method's performance. 

Before taking modal identification methods to real-time use, it is also im-
portant to organize training sessions for system operators, where different char-
acteristics and limitations of the methods are discussed. It is recommended to 
use additional tools, such as spectrograms, to help the interpretation and visu-
alization of the modal identification results. 

In the future, it is important to create functional applications, where modal 
identification methods are combined with additional tools. It is paramount that 
the modal identification results can be presented in a clear context so that the 
interpretation of the results is easy and the results can be considered reliable. 
Reliability of the identification results can be improved for example by using 
several identification methods in parallel. Utilizing the uncertainty information 
of the modal properties given by certain methods is also beneficial in improving 
the reliability of the modal identification. 

Indeed, if transmission system operators plan to take actions based on the 
modal identification results, it is highly important that the results are reliable. 
Thus, the future work should focus on making modal identification methods 
more reliable in all operating conditions and robust for special situations, such 
as PMU malfunctions or communication system failures. Furthermore, the fu-
ture research should investigate, how the uncertainty information of the modal 
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properties can be incorporated in interpretation of the modal identification re-
sults, and consequently, the decision-making processes of the power system op-
erators. 

The methods presented in the thesis, as well as most existing methods, assume 
time-invariant properties of the power system during the analysis period. How-
ever, as shown in the thesis, the properties of the system might occasionally 
change rapidly and rather unpredictably. Use of methods that can deal with 
time-varying models, could be beneficial in such conditions. Thus, the future 
research should also focus on developing methods that are able to assume time-
varying models in modal identification. 
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