
PUBLICATION P7

M. Honkala, P. Cesar, and P. Vuorimaa. A device independent XML user
agent for multimedia terminals. In Proceedings of the 6st IEEE Interna-
tional Symposium on Multimedia Software Engineering,
IEEE-MSE2004, Florida, Miami, December 13–15, 2004, pages 116-123.
IEEE.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of Helsinki
University of Technology's products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

A Device Independent XML User Agent for Multimedia Terminals

Mikko Honkala
 Telecommunications Software

and Multimedia Laboratory
Helsinki University of

Technology
 P. O. Box 5400,
FIN-02015 HUT

Tel. +358-9-451 4794
honkkis@tml.hut.fi

Pablo Cesar
 Telecommunications Software

and Multimedia Laboratory
 Helsinki University of

Technology
 P. O. Box 5400,
FIN-02015 HUT

Tel. +358-9-451 4794
pcesar@tml.hut.fi

Petri Vuorimaa
 Telecommunications Software

and Multimedia Laboratory
 Helsinki University of

Technology
 P. O. Box 5400,
FIN-02015 HUT

Tel. +358-9-451 4794
petri.vuorimaa@hut.fi

Abstract

Interactive multimedia software capable of running
on different devices, such as smartphones or digital
television receivers, will be a consumer expectation in
the near future. Supporting each device individually is
too expensive. Therefore a common platform is needed.
In this paper, a device independent platform for
multimedia applications is presented. It is based on XML
and Java and takes into account the varying features of
the targeted devices. The platform consists of an XML
based language profile, capable of supporting networked
multimedia applications. The language profile is based
on Synchronized Markup Integration Language (SMIL)
and XForms. For instance, minimal interaction
multimedia presentations can be developed using SMIL,
whereas a hybrid SMIL and XForms document could
provide real interactive multimedia services that allow
connection to a server side process. The platform is
written in Java and includes a user interface
compatibility layer, which can be run on top of different
graphics Java Application Programming Interfaces
(APIs) depending on the targeted platform.

1 Introduction

One of the biggest current challenges in software
engineering is to develop cross-platform applications.
This does not only mean software, which can be run on
different Operating Systems, but one that can also be
used on different end-user terminals [1]. As Myers has
stated [2]: “We are at the dawn of an era where user
interfaces are about to break out of the desktop” . Not so
long ago, the Personal Computer (PC) desktop was the
only platform software developers had in mind.

Nowadays, the number of targeted devices is increasing
(e.g., mobile phones and digital television receivers).

The best alternative for the distribution of device
independent multimedia applications is to use higher
abstraction level tools. For example, platform
independent services can be developed using eXtensible
Markup Language (XML) based languages. In this case,
the selection of an appropriate language profile to
develop multimedia applications becomes an essential
issue. This language profile should permit, at least, to
handle user interaction, and to synchronise and present
multimedia objects. Different multimedia languages,
including SMIL, XHTML, XMT (MPEG-4), Flash, and
MHEG have been studied extensively in [3][4].

After defining a valid language profile for
developing multimedia services, the next step is to
provide the needed cross-platform XML user agent (i.e.,
browser) for it. Each of the new multimedia platforms
differs in their physical characteristics (e.g., input
methods, processor, screen resolution) and in their
graphics libraries. In this paper, all consumer devices are
assumed to support Java, which is the most interoperable
option available at the moment [5].

Current advances in Java technology are addressing
its characteristic drawbacks: performance and size. For
example, Project Monty1, optimised K Virtual Machine
(KVM) by applying the techniques used in HotSpot,
promises a fast Java VM fitting in less than 1MB. Other
relevant products include Savaje2 and Nokia
Communicator3 hand-held device. The former is a Java
based Operating System for advanced mobile phones,
while the latter includes support for (Mobile Information
Device Profile) MIDP and Personal Profile.

1http://www.jlocationservices.com/LBSArticles/Sun.ProjectMontyWhite
Paper.pdf
2http://www.savaje.com
3http://press.nokia.com/PR/200402/935462_5.html

© 2004 IEEE. Reprinted, with permission, from Proceedings of
the International Symposium on Multimedia Software Engineering,

Miami, Florida, USA, December 13-15, 2004, pp. 116-123.

ISBN: 0-7659-2217-3 © 2004 IEEE

Java allows the porting of software to different
devices, but even in this environment, the actual
Application Program Interfaces (APIs) used for user
interface development differ between multimedia
terminals. While digital television receivers use Home
Audio Video Interoperability (HAVi)4 Level 2 User
Interface, advanced mobile phones directly use Abstract
Windowing Toolkit (AWT) as defined in Java 2 Micro
Edition Personal Profile, and PC desktops computers
normally use Swing.

Developing different versions of applications for
each device is not feasible. Hence, in order to cope with
different user interface graphics libraries, a generic or
abstract graphical user interface library must be built.
This implies an amount of effort in the development of
the generic toolkit, but then porting only consists of
providing once a correct back-end.

Fig. 1 depicts the studied concepts and proposed
solutions in this paper. First, at the application layer we
study how XML presentation and processing languages
can be used to develop interactive applications. Since we
are especially interested in interactive multimedia, we
propose the use of Synchronized Multimedia Integration
Language (SMIL) (i.e., presentation) and XForms (i.e.,
interaction) hybrid documents. Second, the proposed
platform layer includes an interoperable XML user agent
implementing the SMIL+XForms language profile. In
order to support different device configurations, it has an
interface between XML languages and underlying
graphics toolkits by implementing a generic graphics user
library (i.e., UI Compatibility Layer).

4 http://www.havi.org

The paper is structured as follows. First, Section 2
identifies the requirements that a multimedia language
profile and the underlying platform should meet (e.g.,
temporal dimension, spatial layout, continuous media
support, and interaction). Then, Section 3 presents the
experiences of developing an XML user agent for
multimedia platforms meeting those requirements and its
integration into an ongoing digital television receiver
prototype platform. Next, Section 4 shows a case study,
an interactive distance education portal that includes
synchronised audio, video, and slides implemented
completely in a declarative manner (i.e., no scripting is
used) running on the platform, thus showing the benefits
of the proposed solution. Finally, Section 5 presents the
conclusions and future work.

2 Requirements Study

The problem studied in this paper can bedivided into
two subproblems: definition of a valid language profile
for implementing interactive multimedia web
applications and characterization of a device-independent
platform supporting such language profile. First, the
requirements related to the language profile and the
platform support, respectively, are studied in more
detail. Certain technology solutions are proposed
analysing their benefits and limitations. Finally, this
Section ends with a summary of the requirements in the
form of a table.

2.1 Language Profile

The first task in providing XML based support for
multimedia applications is to define a suitable XML
language profile. For networked multimedia services
there are at least the following requirements:

1. Temporal dimension: synchronization between the
multimedia objects of the presentation.

2. Spatial Layout: defines where the multimedia
objects in a presentation should be placed.

3. Multimedia Objects Support:
a) Continuous Media: such as video, audio, and

animations.
b) Discrete Media: such as text, graphics, and

images.
4. User Interaction:

a) Links: selection of a path.
b) Validated Entry: an user input to be validated.

For example, the input could be a text,
boolean, or a selection of one or more options.
Simple calculations should also be supported.

c) Submission: provide user entry to server-side
process.

Fig. 1. Application and Platform Layers.

Multimedia
Objects

XML doc Multimedia
Objects

XML doc

HAVi

Basic AWT

Underlying
Software

Application Layer

Platform Layer

Application 1

XML User Agent

Application 2

XML Language Profile Implementation

UI Compatibility Layer

Digital Television
Configuration

PC
Configuration Configuration

Underlying
Software

Swing

AWT Underlying
Software

Connected Device

AWT

ISBN: 0-7659-2217-3 © 2004 IEEE

All requirements, but Validated Entry and
Submission are fullfilled by SMIL 2.0 basic profile. Its
main limitation is Spacial Layout, namely lack of flow
layout, which could be solved by embedding eXtensible
Hypertext Markup Language (XHTML). Other
alternative for providing Temporal dimension, which is
not further discussed in this paper, would be the use of
Timesheets [6]. XForms, on the other hand, fits all of the
other user interaction requirements. Since XForms is not
intended as a self-standing document type, a host
language is needed to provide the document layout.
SMIL, for example, can act as host language. Given the
previous requirements, it was decided to use
SMIL+XForms as the language profile.

2.2 Platform

The requirements identified under platform support
can be divided into the following:

5. Different Libraries: Today, Java is available in all
the multimedia terminals listed above. The Java
environments (e.g., Swing, AWT, and HAVi) are
different in each terminal, though.

6. Different Input Mechanisms: the way the user
interact with the system depends on the device at
hand (e.g., digital television receivers use remote
control).

7. Different Output Devices: each multimedia
terminal includes a graphical display, but their
actual characteristics (e.g., resolution and size) are
particular of the device.

8. Different Capabilities: the configuration of each of
the devices differ (e.g., processing power and
power consumption). For example, devices such
as low-end digital television receivers are unlikely
to include a video player supporting other formats
than MPEG-2. In some cases, video should even
be replaced with still images.

In this paper, the platform is implemented in Java,
since it is the most interoperable option at the moment. In
addition, a UI compatibility layer was implemented to
meet the requirements of different libraries and different
input mechanism. Possible solutions for supporting
different output devices include the use of Cascading
Style Sheets (CSS) Media Queries, XSL Transformations
(XSLT), or automated content adaptation tools. These
approaches require the utilization of declarative
languages. An extensive study on the topic can be found
in [7]. The Different Capabilities requirement has been
researched in [8], although in somesimple cases CSS and
XSLT are viable alternatives [3].

2.3 Summary

In order to provide a better visual understanding of

this section, Table 1 summarises the technological
decision taken for each identified requirement.

Table 1 . Requirements List and their
Technology Solutions.

Requirements Technology

Language Profile

Temporal dimension SMIL

Spatial Layout SMIL (no flow layout)

Multimedia Object Support

Continuous Media SMIL

Discrete Media SMIL

User Interaction

Links SMIL

Validated Entry XForms Controls

Submission XForms Controls

Platform

Different Libraries Java + UI
Compatibility layer

Different Input Mechanisms Java + UI
Compatibility layer

Different Output Devices CSS, XSL
Transformations, or
automated content
adaptation

Different Capabilities CSS, XSL
Transformations, or
automated content
adaptation

3 Implementation

In this Section, the implementation of the language
profile and the platform is presented. The first author has
done the XForms implementation, and the UI
Compatibility Layer (i.e., ComponentFactory) presented
in this paper. Additionally, he has actively participated in
the W3C XForms Working Group. The XForms
implementation was one of the reference
implementations that enabled the Working Draft to
become a Recommendation. The second author has
implemented the digital television platform (i.e., Ubik)
presented in this paper. He has also implemented the
digital television graphical user interface toolkit, based
on the HAVi specifications, completely. The integration
of SMIL+XForms is based on the research reported in [9]

ISBN: 0-7659-2217-3 © 2004 IEEE

and [10]. The SMIL implementation used in this work is
also based on previous work [11] . It is based on the
SMIL 2.0 Basic Profile, but extends it with couple of
modules, such as animation. Since SMIL in its basic form
does not support CSS layout, some XForms features
requiring flow layout were left out of this
implementation. These are repeat, switch, and group.
These three modules are described in the XForms 1.0
recommendation in chapters 9.1, 9.2, and 9.3,
respectively [12]. Otherwise, the whole XForms
specification is supported in our SMIL+XForms language
profile. In the profile, XForms elements can be inserted
into the SMIL host document in any place where content
objects (e.g., image, video) are allowed. Some SMIL
attributes, such as @region, are supported within the
XForms elements.

The implementation is based on the X-Smiles
browser [13], and therefore the core of the X-Smiles was
ported to the different environments. Since all supported
graphical user interface libraries are based on AWT in
JDK 1.1.8 (or later), this porting meant removing all non-
AWT (mostly Swing) and Java 2 dependencies from the
browser.

3.1 SMIL implementation

The SMIL player used in the platform is based on the
SMIL implementation of the X-Smiles browser. The
player is designed so that it is possible to run it in various
devices. The implementation architecture is depicted in
Fig. 2.

The player is divided into three layers. The Core
Logic is the heart of the SMIL player. It handles timing,
decides the layout of the presentation, resolves
hyperlinks, etc. When a SMIL document is opened, it is

parsed with an XML parser, which constructs a
Document Object Model (DOM) tree. Each element in
the tree knows its own behaviour, taking care of timing
and layout. The Core Logic is completely GUI
independent, making it possible to run it in any Java
environment with any GUI framework.

The Core Logic layer utilises the Viewer layer to
draw media on the screen according to the timing
information. Various devices, e.g., desktop computer,
digital televisions, and mobile phones use different kind
of GUI frameworks. A viewer can be implemented for
any possible GUI framework. So far, a viewer has been
created for Swing, AWT, and HAVi. [11].

3.2 XForms implementation

The XForms implementation was developed for the
X-Smiles browser by one of the authors [14] and it is
included in the open source distribution of X-Smiles5.
The implementation is not described in detail in this
paper, but rather we concentrate on those features that
enable its usage in different platforms and host
languages.

Fig. 3 depicts the architecture of the XForms
implementation. There are three layers: the XForms
model, Meta UI, and the User Interface. The lowest
level, the XForms model, uses Apaches Xalan and
Xerces packages for XPath and XML Schema
implementations, respectively. It also includes a
calculation engine and the implementation of the instance
data. The middle layer, Meta UI, has implementations of
repeating user interface constructs (i.e., dynamic lists,
enumerations, and tables), and switching parts of the user
interface on and off dynamically.

Finally, the top layer, user interface, contains both
high and low level implementations of all form controls
in the XForms specification, such as select and textarea.
The high level implementation contains the logic part and
maps the form control into a specific user interface
widget, which is implemented in the low level part. The
high-level part is not aware of the details of the control's
graphical representation, but rather receives and sends
events from and to the object representing the control.

The lower-level part of the user interface is
implemented by creating a factory interface
ComponentFactory, along with interfaces for different
types of widgets. Then, for each Java component toolkit,
such as Swing, an implementation of the
ComponentFactory along with the implementations of
each of the widgets is provided. This requires quite many
classes, but since these classes are just wrappers for the

5 http://www.x-smiles.org/

Fig. 2. The SMIL Player Architecture [11].

SMIL-DOM Timing

Hyperlinking Layout

Havi AWT Swing

C
or

e
Lo

gi
c

P
la

ye
rs

Havi
Viewer

AWT
Viewer

Swing
Viewer

T
ex

t

Im
ag

e

JM
F

T
ex

t

Im
ag

e

JM
F

T
ex

t

Im
ag

e

JM
F

ISBN: 0-7659-2217-3 © 2004 IEEE

real widget implementations, there is not that much
programming involved.

Fig. 4. depicts the class relationships between the
factory and widget interfaces and their implementing
classes. ComponentFactory is an interface that
HaviComponentFactory and SwingComponentFactory
implement. There is also other interfaces for the widgets
themselves, such as XInput and XSelectOne. All of these
interfaces are implemented by the corresponding
component toolkit wrapper. Each of the implementing
classes, such as HaviInput use internally some
component from the underlying component toolkit to
provide the functionality. For events, AWT event classes
and listeners are used where possible, thus removing the
need for defining extra event classes.

As a conclusion, we have a prototype
implementation of XForms controls for several back
ends: AWT, Swing, and HAVi. Table 2 shows the
mapping between the controls and the actual used
widgets.

Table 2 . Mapping of the user interface elements.

XForms
Control

AWT Widget Swing
Widget

HAVi
Widget

select1 &
select

List JList HListGroup

trigger Button JButton HTextButton

submit Button JButton HTextButton

label TextField JTextField HStaticText

textarea TextArea JTextArea HText

input +
xsd:string

TextField JTextField HSingleLine
Entry

input +
xsd:date

TextField JCalendar6 HSingleLine
Entry

input +
xsd:boolean

CheckBox JCheckBox Htoggle
Button

secret SecretField JPassword
Field

Not
implemented
yet

3.3 Platform Implementation

In previous work, the implementation of a cross-
platform SMIL player [11] and its possible uses in a real
digital television broadcast environment, called Otadigi7

[15], have been presented. Even though multimedia
presentations can be easily developed as a SMIL
document, the main restriction was the lack of real user
interaction (i.e., interaction was only provided by the
internal links). For that reason, extending support for
other XML languages, such as XForms, was essential in
order to develop more complex applications.

Ubik is a graphics system framework prototype for
digital television receivers [16]. Specifically, our research
consists of the study of different user interface tools
alternatives for digital television applications. The basic
assumption being that there is not a best option, but the
selected tool depends on the application at hand (e.g., a
3D graphics game will not be developed using the same
tool as a web site). Ubik graphics system, as depicted in
Fig. 5, implements the digital television configuration
defined in Fig. 1. It provides graphics support for
Multimedia Home Platform8 (MHP) applications, the
middleware API defined in Europe as standard for digital
television receivers. It includes a basic AWT package
and a Java graphical user interface framework following
HAVi specifications, called Future TV (FTV) [17]. In
addition, the XML User Agent has been integrated in

6http://www.toedter.com/en/jcalendar
7http://www.otadigi.tv
8http://www.mhp.org

Fig. 3. XForms Implementation Architecture.

Fig. 4. ComponentFactory is Used to Hide the
Concrete Details of the Created Widgets.

ISBN: 0-7659-2217-3 © 2004 IEEE

Ubik, so it now supports as well hybrid SMIL and
XForms documents.

FTV includes, apart from a digital television oriented
widgets, all the graphical user interface functionality
required for developing interactive applications (e.g.,
graphical context and events). Fig. 6 shows an UML
diagram of some of the widgets included in the package.
The visible widgets, which extend AWT's Component
Class, are actually the base of all widgets. Navigable
components are those, which can be navigated using the
remote control. Whereas actionable components are
those, which change the state of the application (e.g.,
buttons). These widgets have been successfully tested in
real MHP applications transmitted in Otadigi [18].

4 Case Study

In order to demonstrate the concepts presented in this
paper, an interactive Distance Education portal was
developed for this paper. The portal contains lectures
from the Helsinki University of Technology.

The author of the lectures is either a teacher or an
assistant. Note, that the author is not a programmer, so
the system should be as easy to author as possible. The
user of the portal is a student who wants to reach the
lectures ubiquitously using different kind of devices. The
portal should contain the lectures in an attractive
multimedia form, while still giving the user the
possibility to navigate within the lectures in her own
pace. Additionally, there should be short "exams"
between or within the lectures. Passing the exam is
required from the user in order to move to the next part.

Fig. 7 depicts the timeline of a lecture set in the
application. First, a welcome screen is splashed. Next, the
user is presented with the list of available lectures. The
user selects the lecture she wants to attend. The lecture
contains video and audio recording from a real lecture. At
the same time, the slides of the teacher are shown in a
synchronised fashion. The user may jump to different
parts of the lecture using an outline that is always
present. Some parts may require that the user has
successfully responded to a short "exam". The exam has
few multiple-choice questions that are quick to answer,
but require the user to follow the lecture. Someselections
in the outline are activated when the user answers
correctly enough to the questions. For example, she has
to get 75 % of the answers right.

The requirements of the demo can be mapped to the
features of the platform presented in this paper. Timing
and multimedia is possible by utilizing SMIL as the host
language for the lectures. Interaction and the calculation
of the results of the exam in real time can be achieved
with XForms. The lectures are easy to author and do not
require any programming, since the documents are

Fig. 5. Ubik Graphics Architecture.

Fig. 7. Timeline of the Distance Education demo.

Selection

Part 1

Topic 1
Background

Background

Link Topic 1

Link Topic 2

Link Topic 3

Link Part 1
Link Part 2
Link Part 3

Video+audio

Slide

<Interactivity

by SMIL links>

Intro
Slide Slide . . .

<Interactivity
by SMIL links>

Exam 1

. . .

wrong right

<Interactivity
by XForms>

time

XForms + SMIL Support

MHP

ComponentFactory
User Agent

HAVi (FTV)

Basic AWT

Platform Layer (Ubik)

Underlying Software

Fig. 6. java.awt.Component and HAVi (FTV)
Widgets UML Class Diagram.

Basic AWT

(FTV)
HAVi

HComponent

HVisible

java.awt.Component

HText

HTextButton

HTextInput HIcon HList

HImageButton

Visible
Components

Navigable
Components

Components
Actionable

ISBN: 0-7659-2217-3 © 2004 IEEE

completely declarative and no scripting is used. Our
proposed platform provides device independence since it
supports many graphical environments.

The application is developed completely using SMIL
and XForms, and it runs on the basic Java Component
Toolkits: Swing (PC desktops), AWT (high-end
handhelds), and HAVi (digital television receivers). Fig.
8 contains the screenshots of the application. Screenshots
a) and b) show a small timed introduction and a lecture
selection. The lecture is shown in screenshot c),
containing audio and video and a slideset that is
synchronised to it. The mid-term exam is depicted in
screenshot d).

Applications, such as the one presented here, require
advanced timing and sychronization of media, which is
not feasible using HTML. Also, the conditional timeline
changes based on the selections and answers from the
user can be done declaratively, while they usually require
programming or scripting. Using our platform, it is
possible, also for non-programmers, to create advanced
multimedia content and applications. Table 3 shows the
approximate number of lines of the application presented
on this paper, illustrating the easiness and quickness of
developing interactive multimedia applications in our
environment.

Table 3 . Number of Lines per Module of the
Distance Education Application.
Module Number of Lines

Whole Application 256

Intro 38

Video and Slides 104

Exam 114

5 Conclusions

In this paper, we have presented a device
independent XML based user interface model. Interactive
services can be developed using hybrid SMIL and
XForms documents, where the presentation is provided
by the host SMIL language and the interaction is handled
by the XForms controls. Furthermore, the graphical
support for these XML languages is provided by a
general graphical user interface framework, called
ComponentFactory API, which includes specific backs-
ends such as Swing and HAVi. Thus, the problem of
platform independence is solved avoiding the creation of
different software for different devices. Moreover, the
ComponentFactory can be easily extended in order to
support other Java graphics libraries. Since the
applications are completely declarative, the presentation
layout problem in different devices can be solved by the
use of CSS Media Queries and XSL Transformations, or
even automated content adaptation tools.

Three main contributions can be found in this paper.
The first one is the definition of a valid XML alternative
(i.e., SMIL + XForms documents) to develop interactive
multimedia applications. The second one is an
implementation supporting these languages for a variety
of devices. The final one is the inclusion of hybrid XML
languages into the Ubik environment, an ongoing digital
television prototype platform, which studies the use of
different user interface development tools.

The future work includes the generation of a single
layout model that would suit SMIL as well as CSS based
languages, such as XHTML, which will increase the
value of the prototype. First, because the mismatch
between the layout models in the XForms and SMIL
implementations that we used, there were some advanced
XForms functionality that could not be implemented yet.
These removed XForms language modules were listed in
Section 3. Second, because the integration of XML
languages will become easier.

Fig. 8. (a/b/c/d) Screenshots of the Distance Education Application.

ISBN: 0-7659-2217-3 © 2004 IEEE

Acknowledgements

The authors Mikko Honkala and Pablo Cesar would
like to thank to Nokia Oyj Foundation for providing
support during the research. The research was funded by
the Go-MM, BROCOM, and XML Devices projects to
whose partners the authors would like to express their
gratitude. Finally, the authors would like to thank the
original developer of the SMIL player, Kari Pihkala.

References

[1] D. R. Olsen, Interacting in chaos, Interactions, Volume: 6,
Issue: 6, September-October 1999, pp. 42-54.

[2] B. A. Myers, S. E. Hudson, and R. Paush, Past Present,
and Future of User Interface Software Tools, ACM
Transactions on Computer-Human Interaction. Volume:
7, Issue: 1, 2000, pp. 3-28.

[3] K. Pihkala, Extensions to the SMIL Multimedia Language,
PhD Thesis, Helsinki University of Technology, Finland,
2003.

[4] S. Boll, ZYX, Towards Flexible Multimedia Document
Models for Reuse and Adaptation, PhD Thesis,
University of Vienna, Austria, 2001.

[5] K. Sakamura, A Java-enabled revolution, IEEE Micro,
Volume: 21, Issue: 4, July-Aug. 2001, pp. 2-3.

[6] W. ten Kate, P. Deunhouwer, and R. Clout, Timesheets –
Integrating Timing in XML, in Proc. WWW2000
Workshop: Multimedia on the Web, Amsterdam,
Netherlands, May 15, 2000.

[7] J. V. Ossenbruggen, L. Hardman, J. Geurts, and L.
Rutledge, Towards a Multimedia Formatting Vocabulary,
in Proc. WWW2003, Budapest, Hungary, May 20-24,
2003, pp. 384-393.

[8] J. Smith, R. Mohan, and C.-S. Li, Scalable
Multimedia Delivery for Pervasive Computing, in Proc.
7th ACM International Conference on Multimedia (Part 1),
Orlando, Florida, USA, Oct. 30-Nov. 4, 1999, pp. 131-
140.

[9] K. Pihkala, M. Honkala, and P. Vuorimaa, Multimedia
web forms, in Proc. Synchronised Multimedia Integration
Language European Conference, SMIL Europe 2003,
Paris, Feb. 12-14, 2003.

[10] K. Pihkala, M. Honkala, and P. Vuorimaa, A browser
framework for hybrid XML documents, in Proc. 6th

IASTED International Conference on Internet and
Multimedia Systems and Applications, IMSA 2002, Kauai,
Hawaii, USA, August 12-14, 2002, pp. 164-169.

[11] K. Pihkala, P. Cesar, and P. Vuorimaa, Cross-Platform
SMIL player, in Proc. 1st IASTED International
Conference On Communications, Internet, and
Information Technology, CIIT 2002, St. Thomas, US
Virgin Islands, November 18-21, 2002, pp. 48-53.

[12] M. Dubinko et al., XForms 1.0, W3C Recommendation, 14
October 2003.

[13] P. Vuorimaa, T. Ropponen, N. von Knorring, and M.
Honkala, A Java based XML browser for consumer
devices, in Proc. 17th ACM Symposium on Applied
Computing, Madrid, Spain, March 10-13, 2002.

[14] M. Honkala and P. Vuorimaa, XForms in X-Smiles,
Journal of World Wide Web, Internet and Web
Information Systems, Kluwer, 2001, Vol. 4, No. 3, pp.
151-166.

[15] J.L. Lamadon, P. Cesar, C. Herrero, and P. Vuorimaa,
Usages of a SMIL player in a digital television broadcast
system, in Proc. 7th IASTED International Conference on
Internet and Multimedia Systems and Applications,
IMSA2003, Honolulu, Hawaii, August 13-15, 2003, pp.
579-584.

[16] P. Cesar, J. Vierinen, and P. Vuorimaa, Open graphical
framework for interactive TV, in Proc. 5th International
Symposium on Multimedia Software Engineering,
MSE2003, Taichung, Taiwan, December 10-12, 2003, pp.
21-28.

[17] P. Cesar and P. Vuorimaa, A graphical user interface
framework for digital television, in Proc. 10th

International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision,
WSCG'2002, 2002, posters, pp. 1-4.

[18] C. Herrero, P. Cesar, and P. Vuorimaa, Delivering MHP
applications into a real DVB-T network, Otadigi, in Proc.
6th International Conference on Telecommunications in
Modern Satellite, Cable and Broadcasting Services,
TELSIKS2003, Nis, Serbia and Montenegro, October 1-4,
2003, pp. 231-234.

ISBN: 0-7659-2217-3 © 2004 IEEE

