
Anomaly detection in interception
proxies

Sami J. Lehtinen

School of Science

Thesis submitted for examination for the degree of
Master of Science in Technology.
Espoo 18.4.2017

Thesis supervisor

Professor Aristides Gionis

Thesis advisor

Lic.Sc. (Tech) Timo Lilja

aalto university
school of science

abstract of the
master’s thesis

master’s programme in computer, communication and information sciences

Author: Sami J. Lehtinen
Title: Anomaly detection in interception proxies
Date: 18.4.2017 Language: English Number of pages: 75

Major: Computer Science Code: SCI3042

Supervisor: Professor Aristides Gionis
Advisor: Lic.Sc. (Tech) Timo Lilja

Use of interception proxies is becoming more popular. They are used to
audit access and enforce policies and constraints to important servers or
whole network segments. The sheer amount of data captured with the
devices makes fully manual pruning of the data impractical. Methods to
analyze the gathered data to highlight possible attacks or problems would
be valuable in freeing up administrator time and resources.
This thesis investigates the use of clustering methods to identify anomalous
connections, either by identifying them as outliers or bundling them with
other connections which have raised alarm in the past.
The work shows that a practical approach can be implemented with a
DBSCAN-based clustering method, but concluded that an unsupervised
approach is not enough. As a semisupervised method the system can have
value in production environments.

Keywords: intrusion detection, clustering, unsupervised learning

aalto-yliopisto
perustieteiden korkeakoulu

Diplomityön
tiivistelmä

tieto-, tietoliikenne- ja informaatiotekniikan maisteriohjelma

Tekijä: Sami J. Lehtinen
Työn nimi: Poikkeamien havainnointi sieppausvälityspalvelimissa
Päivämäärä: 18.4.2017 Kieli: Englanti Sivumäärä: 75

Pääaine: Tietotekniikka Koodi: SCI3042

Työn valvoja: Professori Aristides Gionis
Työn ohjaaja: TkL Timo Lilja

Sieppausvälityspalvelimien käyttö on yleistymässä. Niitä käytetään
käytäntöjen ja rajoitusten täytäntöönpanossa sekä kriittisten palvelimien
ja verkon osien käytön valvomisessa. Laitteiden kaappaaman tiedon määrä
on niin valtava, että tiedon purkaminen manuaalisesti on epäkäytännöl-
listä. Menetelmät jotka analysoivat dataa mahdollisten hyökkäysten tai
ongelmien esiin nostamiseksi olisivat hyvin arvokkaita vapauttamaan jär-
jestelmänvalvojien aikaa ja resursseja.
Tässä työssä tutkitaan ryhmittelyalgoritmien käyttökelpoisuutta epätaval-
listen yhteyksien havainnoimisessa joko tunnistamalla ne poikkeaviksi,
koska ne eivät kuulu mihinkään ryhmään tai asettamalla ne samaan ryh-
mään sellaisen yhteyden kanssa joka on todettu hälyttäväksi aiemmin.
Työssä todetaan, että käytännöllinen sovellus järjestelmästä voidaan to-
teuttaa käyttäen DBSCAN-pohjaista ryhmittelyalgoritmia, mutta täysin
valvomattomalla lähestymistavalla ei saada riittävän hyvää tulosta. Osit-
tain valvottuna menetelmästä voi olla hyötyä tuotantojärjestelmien valvon-
nassa.

Avainsanat: hyökkäysten havaitseminen, ryhmittely, valvomaton op-
piminen

Acknowledgements

I would like to thank my supervisor, professor Aristides Gionis, and my
advisor, Timo Lilja, for their guidance, ideas, and council in creating this
work.

I would like to thank my former advisor, Antti Huima, for his guidance
at the beginning of this work. Antti passed away from a long-time illness
before seeing the completion. Rest in peace, Antti.

I thank SSH Communications Security Corporation for the chance to work
on this thesis. Discussions with insightful colleagues helped in the direction
of this work.

I owe special thanks for the efforts of Jussi Valkiainen, Jan Hlinovsky, and
Antti Kettunen for proofreading and validation of this work; they helped fix
a number of issues in the original manuscript.

Finally, I thank my wife, Daniela, for her patience and understanding. She
has also proofread this thesis and countless other texts while I have studied
in the then Helsinki University of Technology and now Aalto University.
Without her support and encouragement it is doubtful I would have ever
graduated.

Espoo, 15.4.2017

Sami J. Lehtinen

Contents

1 Problem definition 9
1.1 Introduction . 9
1.2 Classes of anomalies . 12
1.3 Approaches in intrusion detection 13
1.4 CryptoAuditor . 15

1.4.1 Secure Shell . 16
1.4.2 TLS . 18
1.4.3 RDP . 18

1.5 Universal SSH Key Manager 19
1.6 Scope of this work . 19
1.7 Structure of this thesis . 20

2 Implementation 21
2.1 Basics . 21
2.2 Gathering data . 22

2.2.1 Feature extraction . 23
2.2.2 Scaling . 30
2.2.3 Environment setup . 30

2.3 Performing the clustering . 31
2.3.1 Supervision . 33
2.3.2 DBSCAN . 33
2.3.3 k-means and k-means++ 36

2.4 Visualizing the data . 37
2.4.1 Principal component analysis (PCA) 37

5

2.5 Receiver operating characteristics (ROC) 37
2.6 System implementation . 39

2.6.1 Registering the keys 40

3 Results 42
3.1 Visualizing the clustering . 42

3.1.1 Covariance . 45
3.2 Clustering performance . 45
3.3 Validating the classification 45

3.3.1 Single tagged connection 50
3.3.2 Two tagged points . 51

3.4 Number of clusters as a function of connections 57
3.5 Comparison with k-means++ 57

4 Discussion 62
4.1 Problems . 62

4.1.1 Mimicry attacks . 62
4.1.2 Evasion . 63
4.1.3 Correlation between dimensions 63
4.1.4 Cluster density . 64
4.1.5 Mixed clusters . 64

4.2 Towards a production system 65
4.2.1 User interface for CryptoAuditor 66

4.3 Further work . 66
4.3.1 Host-based data . 67
4.3.2 Improving the system performance 67
4.3.3 Other classes of anomalies 69

4.4 Conclusion . 69

Bibliography 71

6

List of Figures

1.1 A typical CryptoAuditor deployment. 10
1.2 An example of connections that form a collective anomaly. . . 13
1.3 CryptoAuditor architecture. 17

2.1 Network setup for data gathering. 32
2.2 A sample clustering with outliers. 38

3.1 The cumulative connection distribution with ε = 0.3. 43
3.2 Five of the most populated clusters, projected with PCA. . . . 44
3.3 The experimental covariance. 46
3.4 The classification performance with different values for ε. . . 47
3.5 The clusters and outliers when ε is varied between 0.1 and 3.0. 48
3.6 The clusters and outliers when ε is varied between 0.3 and 1.5. 49
3.7 The ROC curve for different values of ε. 53
3.8 The ROC curve for ε in the range [1.35, 4]. 54
3.9 The ROC curve for different values of ε with two training points. 55
3.10 The ROC curve as a function of ε in the range [1.39, 4] with

two training points. 56
3.11 The number of clusters and outliers as a function of connections. 58
3.12 A visual comparison between k-means and DBSCAN. 61

4.1 An example of intermingling clusters in two dimensions. . . . 65

7

List of Tables

2.1 Extracted features from the connection data. 24

3.1 Selected values from the ROC analysis. 52
3.2 Interesting values for ε from the ROC analysis. 52
3.3 Notable values from DBSCAN with outliers treated as benign. 59
3.4 Notable values from k-means++. 59

4.1 Examples of running echo foo. 63

8

Chapter 1

Problem definition

1.1 Introduction

Interception proxies are systems for collecting auditing data about connec-
tions and the actions taken in them. The systems are typically installed in
network chokepoints to guard access to mission-critical servers. Intercep-
tion proxies can and have been used in illegitimate purposes and for spying;
the term “man-in-the-middle” (MITM) applies to interception proxies in the
cryptographical context. In a MITM attack, the attacker intercepts the pro-
tocol messages the participants are sending to each other, trying to fool the
parties into thinking they are talking directly with each other, but instead
they are communicating with the attacker. The attacker can either relay
the protocol messages as is or the messages can be dropped, replaced, or
modified.

In this work, we focus on the legitimate use case of interception proxies;
auditing access to servers or parts of the private networks that have been
walled off from the rest of the network. The auditing tool in question is
CryptoAuditor; a system created by SSH Communications Security Corpo-
ration. CryptoAuditor mostly just relays the messages between the clients
and servers; for access control purposes, it may respond with the appropriate
protocol messages to deny the use of some channels. CryptoAuditor can also
generate some messages; for example, in Remote Desktop Protocol (RDP),

9

Internet

Critical
servers

A B

C

M

D

Internal
Network

CryptoAuditor

Firewall

Figure 1.1: A typical CryptoAuditor deployment.

CryptoAuditor can fabricate a protocol exchange to the client to enable ad-
ditional authentication messages.

The aim of this work is to find a method to help auditors and administra-
tors using CryptoAuditor in their work; to highlight “interesting”, problem-
atic or otherwise novel connections which are not common in the gathered
data. Administrators should be able to flag existing connections as benign or
malicious and have similar connections classified accordingly. From a large
number of connections, administrators should be able to review just a small
handful of representative connections.

The chosen focus was unsupervised and semi-supervised methods. It is
generally assumed, and also it has been observed first-hand, that different
organizations use a wide variety of tools to help in automated administration,
file transfer, provisioning, and other tasks. A supervised classifier would
probably not be able to help a sufficiently large subset of the system’s users.

A typical CryptoAuditor installation is shown in Figure 1.1. In the figure,
machines A, B, and C in the internal network and D coming from the Internet
can only access mission-critical machine M going through CryptoAuditor.

10

CryptoAuditor can enforce policies, audit all commands executed by the users
accessing the machines, and apply an additional layer of authentication by
enforcing multi-factor authentication, just to list a few of the more ordinary
use cases. CryptoAuditor is just one of the several products in this market
segment.

Currently, CryptoAuditor and similar products are mainly used for access
control and for later forensics of connections after an incident, as they have
few capabilities to automatically tag connections as “good” or “anomalous”.
The problem is hard because of many factors, including:

lack of real data Actual data from production systems is extremely sensi-
tive, and customers are very unlikely to just hand over the data. Even
with access to the production data, it is unlikely that the data set
contains actual anomalous connections and even less likely that those
connections would be labeled as such.

false positives If the system produces a lot of false positives, the number
of alerts from the system will cause the administrators to ignore the
alerts from the system or turn it off.

false negatives Failure to detect actual attacks. Categorizing many attacks
of the same type as normal connections can also make the system actu-
ally harmful, as it can instill the administrators using the system with
a false sense of security.

computational complexity Because the number of connections in the sys-
tem may become very large, in the order of hundreds of thousands,
the algorithms applied need to be computationally quite frugal. A
quadratic algorithm, where the parameter is the number of connec-
tions, will take too much time to be of use in a production system.

Instead of just allowing post-mortem forensics analysis after a breach
has happened, the system should be able to detect anomalous connections
as they happen and notify the system administrators of such. A successful
implementation reduces the workload of the auditors. In this work, we use a

11

clustering approach for outlier detection. Clustering has been used with some
success in research of intrusion detection (see, for example, Leung and Leckie
(2005)). An additional goal was to create a system capable of detecting
an automated attack against the target servers, and as such pure outlier
detection from clustering would have not been enough; our approach is a
semi-supervised system with administrator review built in. The clustering
algorithm used most in this work is DBSCAN, a time-tested density-based
method, which is described in more detail in Section 2.3.2.

The approaches to the problem should allow extending the solution to
encompass more protocols in the future. An example of such protocol is
Remote Desktop Protocol, or RDP, which is discussed in Section 1.4.3.

This work relied heavily on the scikit-learn software package, de-
scribed in Pedregosa et al. (2011). scikit-learn is a machine-learning
toolkit, written for the Python language, which contains implementations
for a large selection of algorithms used in the field with a consistent inter-
face.

1.2 Classes of anomalies

Chandola et al. (2009) divide anomalies to the following three classes: point
anomalies, context anomalies, and collective anomalies. In the context of the
SSH protocol, and CryptoAuditor in particular for this project, the following
examples apply:

Point anomalies The connection is anomalous by itself. For example, the
connection transported a malware binary uuencoded1 (The IEEE and
The Open Group, 2016) in the terminal stream. This is something that
never happens in normal connections.

Contextual anomalies The connection would otherwise appear normal,
except when examined in context with other connections. An admin

1A process where binary data is encoded to a suitable format to be transferred as text.
The word stems from “Unix-to-Unix encoding”.

12

Collective anomaly

Figure 1.2: An example of connections that form a collective anomaly. The
anomalous connections are highlighted.

login from a machine in the middle of a weekend night would be con-
sidered anomalous.

Collective anomalies A single connection is not anomalous but a set of
connections together are. For example, a situation where a success-
ful password authentication is preceded by a thousand failed attempts
against the same username, with varying passwords and millisecond
intervals.

It should be noted that the different categories outlined above are not
disjoint and an anomalous connection may belong to several categories.

With a clustering approach, point anomalies and contextual anomalies
should stand out as outliers or as clusters of problematic connections. Collec-
tive anomalies are not the focus of this work, and clustering offers no obvious
benefits in uncovering collective anomalies. Collective anomalies can cluster
well and blend in with benign connections but together they exfiltrate data
or perform malicious activities. An invented example of connections that are
collectively anomalous is given in Figure 1.2.

13

1.3 Approaches in intrusion detection

In machine learning, classification algorithms are generally divided into su-
pervised and unsupervised methods. In unsupervised learning, training data
is not necessarily required, and the input data does not have classification
labels. In supervised learning, training data with the correct labels is pro-
vided, with which a model is created, and data is then classified using the
created model. (Leskovec et al., 2014, p. 439)

In semi-supervised learning, we have a few labeled samples, which we can
use to help in dealing with the unclassified samples.

Supervised systems are taught with labeled training data. Because such
data can be very expensive, and in this case not comprehensive, these meth-
ods were not considered for this work. Intuitively, the chosen example of
attack connections would be easily classifiable by supervised methods, even
by using a simple naive Bayes classifier. The problem here is that in a real-
life scenario, we would not be able to train the model with the sample data
ahead of time, as the attack connections represent a novel attack against
the system. Examples include support-vector machines, decision trees, and
Bayesian classifiers.

Unsupervised methods are better in situations where the sample distribu-
tion may change over time. For example, real-life intrusion detection systems
(IDS) relying on fingerprints of attacks need to be updated as new attacks or
variations of old attacks are encountered. A company may introduce a new
software system for backing up hosts in the environment, replacing an older
system. The organization may introduce some new system for automated
system administration, which has previously been handled manually. An ex-
ample particularly worth mentioning here about the latter is Universal SSH
Key Manager – the periodic host scans and key activity scans occur over
SSH, as do all the management actions. Any classification system should
be able to cope with this dynamic nature of connections with as little extra
work for the administrators as possible.

Among other unsupervised methods, alternatives such as self-organizing
maps (SOM) could be used. For example, Zanero and Savaresi (2004) use a

14

SOM-based method for intrusion detection at the TCP-packet level.
Portnoy et al. (2001) introduced an unsupervised system for anomaly

detection using clustering; they used a filtered version of the 1999 KDD Cup
data set (SIGKDD, 1999) instead of the full set.

Leung and Leckie (2005) again used the 1999 KDD Cup data set in cre-
ating a grid and density based clustering algorithm for outlier detection.

One problem that is encountered with unsupervised methods in general,
including clustering methods, is that if the attacks form a large part of the
data, they show up as the “normal” data over some benign connections.
For example, when gathering data for this work, an automated attack run
created clusters instead of outliers, even with a relatively small value for the
parameter ε for DBSCAN. It is a safe assumption that automated attacks
getting audited with CryptoAuditor can create clusters, while some will be
outliers. This problem is dealt with in Section 2.3.1, which essentially makes
the approach semi-supervised.

Our approach in this work will flag all outliers and a sampling from the de-
tected clusters for administrator review, and labeled connections from these
samples will be the basis of the classification system.

1.4 CryptoAuditor

CryptoAuditor is an interception proxy; it acts as a man-in-the-middle for
decrypting the connections for a variety of protocols, namely SSH, TLS, and
RDP. As outlined in Section 1.1 and in Figure 1.1, the main use case for
CryptoAuditor is protecting a smaller set of business-critical hosts, access to
which is monitored by CryptoAuditor. Access can be restricted in many ways;
a lighter approach is configuring the target servers to allow connections only
through CryptoAuditor and enforcing the connecting IP address and user
credentials to ones contained in the CryptoAuditor Vault. A much more
restrictive approach is routing or bridging the traffic through CryptoAuditor
and dropping all other network traffic to the hosts; this allows permitting only
those connections that match a certain policy and is thus the most secure
option. The downside here is that if CryptoAuditor becomes unavailable,

15

no connections to the target servers are possible. (SSH Communications
Security Corp, 2017a)

As the client can and should perform server authentication during the
key exchange, introducing CryptoAuditor to the network will usually require
configuration for the clients to allow it to intercept connections. If this is
not done, well-behaving clients of cryptographic protocols should deny the
connections. The user should explicitly allow or force the connections to
proceed while the security risks associated with such an action are displayed.

CryptoAuditor architecture is depicted in Figure 1.3. It is noteworthy
that in the current architecture the user interface (UI) and the Vault are
always in the same machine instance, that is, a single UI governs over a
single Vault, and as of this writing, there is only one Vault per CryptoAuditor
installation. In the figure, IDS stands for intrusion detection system and DLP
for data loss prevention system. The M and N stand for the arbitrary number
of Hounds and Vaults in the three-tier architecture; a single Vault can have
more than one Hound serving under it.

The Hound is the component performing the interception of the connec-
tions. It defers in policy decisions to the configurations in the Vault, either
by querying it online or using a cached configuration. The Vault stores the
connection trails and can run post-processing of the connections, for exam-
ple, to classify the connections and alert the administrators of anomalous
occurrences.

In the following sections, we describe the most important protocols au-
dited by CryptoAuditor.

1.4.1 Secure Shell

Secure Shell, or SSH for short, is a protocol and software suite created orig-
inally for securing remote terminal access to university Unix machines. The
SSH use case has traditionally been around command line and administration
of remote systems; however, using graphical user interfaces tunneled over a
secure SSH connection has always been popular, either with X11 or to lesser
extent RDP. SSH allows the use of a multitude of authentication back ends,

16

UI
Config
storage

Governor

Policy
engineSecure storage

(Audit trails, etc.)

Vault

To/from
client

Hound

Interceptor Protocol workers
(SSH, TLS, RPD)

To/from
server

IDSDLP

Identity management
(AD, LDAP)

M

N

Audit trails,
connection
statistics

Configuration,
active connection

management
(disconnect on

request)

Restart via
SSH Search queries,

configuration,
signals to Hounds

Search results,
statistics

DLP

IDS

Figure 1.3: CryptoAuditor architecture.

17

from the standard password authentication to the popular non-interactive use
of public key, along with others, such as multi-factor authentication mecha-
nisms and Kerberos.

SSH allows multiple channels over the encrypted link, multiplexing the
traffic. The same connections may be used to transfer files, pass communica-
tions over terminal or graphical user interfaces, and allow passing public-key
authentication tokens towards other hosts from the target server, that is,
allow SSH to be used as a single sign-on facility.

SSH software suite has traditionally also contained secure file transfer
utilities. As SSH has a facility to tunnel arbitrary traffic, file transfer can
be done in many other ways as well, such as directing tar output over SSH
using command-line pipes or using rsync options to enable transport over
SSH.

The protocol is an Internet Engineering Task Force (IETF) standard, de-
scribed in Ylönen and Lonvick (2006a), Ylönen and Lonvick (2006b), Ylönen
and Lonvick (2006c), Ylönen and Lonvick (2006d), and Lehtinen and Lonvick
(2006).

1.4.2 TLS

TLS, or Transport Layer Security, is a communications protocol allowing two
parties to communicate securely over the Internet. TLS is the current version
of the protocol that originated as SSL, or Secure Sockets Layer, by Netscape.
SSL 3.0 is sufficiently broken to have been formally deprecated by the IETF,
with the rationale and method documented in Barnes et al. (2015). SSL 2.0,
even more insecure, was deprecated earlier, with the process described in
Turner and Polk (2011).

SSH and TLS have similar security characteristics. There are some dif-
ferences, channel architecture and end-user authentication being the most
notable examples. TLS is used as a security layer for application protocols,
like HTTPS, whereas SSH also contains a full application protocol for remote
administration.

The current version of the protocol, TLS 1.2, is described in Dierks and

18

Rescorla (2008).

1.4.3 RDP

RDP, or Remote Desktop Protocol, is a protocol typically used in adminis-
tration of hosts with the Windows operating system. There are also other
applications for the protocol; for example, the VirtualBox hypervisor (Ora-
cle Corporation, 2017) can be managed with RDP. In RDP, a graphical user
interface is exposed to the user instead of a command line. A drawback with
the use of this protocol is that the text seen on the screen consists mostly of
bitmaps rendered in the server side, as described in Microsoft Corporation
(2016a)[Section 1.3.6, Basic Server Output]. Therefore, when this protocol
is used, optical character recognition (OCR) techniques are required to be
able to search through the audited textual screen contents. For encrypt-
ing the protocol, older versions of RDP used a proprietary scheme, while
new versions are secured with TLS, documented by Microsoft Corporation
(2016a)[Sections 5.3, Standard RDP Security and 5.4, Enhanced RDP Secu-
rity]. RDP security has improved over the recent years, and current versions
are secure by default, with good measures for mutual authentication.

1.5 Universal SSH Key Manager

Universal SSH Key Manager is a system management tool designed to help
large organizations deal with the key-management problem. (SSH Commu-
nications Security Corp, 2017b)

This problem arises from a widespread use of SSH public keys, which
can still be used to access accounts after the access is no longer needed; for
example, after an employee has left the company or the application use in
the target server has ended. (Ylönen et al., 2015)

UKM is comprised of a front end, one or multiple back end servers, and
possible agents running in the target servers. In “agentless mode”, UKM con-
nects the target hosts using privileged access credentials to run commands
directly on the hosts using SSH. This mode is used when Unix machines are

19

monitored and managed by UKM. For Windows hosts, a separate manage-
ment agent is run in the target server.

The bulk of the connection data used in this work was generated with
UKM by adding and managing hosts.

1.6 Scope of this work

In this work, we focus on the SSH protocol, but the methodology would be
very similar for other protocols as well.

The implementation details are described in the following chapter.

1.7 Structure of this thesis

This thesis follows a conventional structure. In this chapter, we introduced
the anomaly detection problem and the aim of this study. Next, in Chapter
2, we go through the specifics of the implementation and used algorithms.
In Chapter 3, we go through the results and compare the used methods.
Finally, in Chapter 4, we introduce further work and the conclusions.

20

Chapter 2

Implementation

In this chapter, we go through the details of how CryptoAuditor and Univer-
sal SSH Key Manager were integrated for data collection and what features
were extracted from the gathered connection data. We take a closer look
at the selected clustering algorithms and the methods to visualize the data.
We introduce Receiver-Operating Characteristics (ROC), the tool we used
to analyze classification performance.

2.1 Basics

CryptoAuditor, and specifically a component called Hound, is a termination
point for the connection between the client and server; it acts as a server
to the client application and as a client to the server side. The Hound
component therefore acts as the interception proxy in this context. See Figure
1.3 for details of Hound position in the CryptoAuditor architecture.

The connection data used in classifying the connection are extracted as
features from the captured connection trails and the connection metadata.

A connection trail comprises the application data produced by the con-
nection and associated metadata. It contains timestamps when activities
have occurred in the connection, so that the connection can later be re-
played exactly. Typically, the trail will contain a full protocol dump, with
some unnecessary or risky data omitted. The password the user input in

21

authenticating against the system is an example of such omission. Storing
it would only increase the damage should the trail be compromised, without
any benefit.

The connection metadata includes connection attributes such as the user-
name in the server, authentication method used, source IP address, destina-
tion IP address, and number of channels.

2.2 Gathering data

Considering the use case for CryptoAuditor, where it is likely that the most
sensitive data of the organization is accessed through it, it is very hard to
obtain data from actual production environments. However, even with a
weaker data set it should be possible to use unsupervised and semi-supervised
methods to create something that generalizes to a production environment.
A weak data set in this sense is one generated automatically from a set of
parameters or one obtained by using existing tools to generate connections
in a small number of known classes.

Only successfully authenticated connections are considered for this work;
the focus is on using the connection features to detect anomalous user be-
havior. Using clustering for intrusion detection against network level attacks
has been considered by Portnoy et al. (2001); in this work we take advantage
of the stored trails.

Much of the intrusion detection research uses the 1999 KDD Cup data set
(SIGKDD, 1999), as good real-life data is hard to come by. As that data set
is very much centered on the network level traffic instead of the application
level, and CryptoAuditor is about monitoring the application traffic, we cre-
ated a sample data set using a CryptoAuditor installation to monitor a set
of hosts that were administered with Universal SSH Key Manager. All of the
data is from captured connections, that is, the data rows are not artificially
generated. We also considered generating data rows artificially from shell
.history files and similar; however, just running ssh towards the hosts was
fast and convenient enough, and artificial generation was abandoned.

The bulk of the connection data was generated using Universal SSH Key

22

Manager. The tool administers hosts registered to it and generates a lot of
automated traffic with varying commands checking SSH activity logs, chang-
ing authorizations, modifying configurations, and performing other related
activities. Some of the connections are “passive” in nature; they just collect
data and read logs, while others modify the managed system by changing
the SSH server configuration or syslog configuration, for example. An un-
supervised clustering approach should be able to classify these connections
into different groups.

Administration traffic was generated by logging in to the systems manu-
ally and also by using the Fabric software package’s fab tool (Forcier, 2017).
In real-life production environments, fab and similar tools are used in larger
environments due to the amount of manual work otherwise involved. Ad-
ministrative or monitoring commands may be initiated also completely au-
tomatically by an administration system.

Attack connections were represented by running fab against a set of hosts,
copying a local root exploit binary to them, and running said binary in the
hosts. In this attack scenario, a user’s credentials have been compromised,
for example, by eavesdropping or by a disclosed password file, which has then
been brute forced. A vulnerability in the system is then exploited to elevate
the stolen account privileges to those of the administrator user, gaining total
control of the affected systems. This represents a whole class of attacks,
and the chosen approach to highlight these connections is not sensitive to
fingerprinting a particular exploit binary or vulnerability; the unsupervised
approach should highlight the connection as an outlier if there are few of
these connections or bundle them in a cluster if there are many connections
using the same technique.

2.2.1 Feature extraction

Using CryptoAuditor, it is possible to capture the connection fully or in part,
so that all the activity is stored in the system. To make it computationally
feasible to classify these connections, a set of features should be generated
from the data instead of just using the connection data as a bag-of-words or

23

similar representation.
In addition to normal connection metadata, the possible features we can

extract from the trail data include: number of commands, minimum time
between commands, average time between commands, command modifies
users, command modifies SSH configuration, command modifies SSH keys,
command downloads software, command lists system users, and command
uses privileged access (sudo, su). The full list of features extracted from the
connection trails is given in Table 2.1.

Extracting features from the channel data sidesteps the issue we would
have in treating the packets in a channel as a time series; just studying
individual packets would lose the information of the effect the packets have
as a whole. We can avoid treating the connection’s packets as a time series,
as all packets in the channel are tightly linked. This is an advantage in
the level where the interception proxy is in the network over a network-level
intrusion detection system, where the inter-packet correlation needs to be
considered (for example, the rolling packet window in Zanero and Savaresi
(2004)). Also, while attacks that are spread over multiple connections and
channels certainly exist, usually an attack against a server using SSH or RDP
is carried out in a single connection.

If the connections have stored trails, the feature extraction step can be
done later or redone if the system is modified to accommodate for new fea-
tures. Even without the trail storage, the feature extraction can be performed
online; the features just cannot be updated later.

The Vault component has a mechanism to post-process the audit trails,
which can also access the channel’s attributes. This can be used to add
the features as attributes, which can later be dumped for analysis with, for
example, a CSV dump of the audit trails.

Table 2.1: Extracted features from the connection data.

Feature Type Description
has_shell boolean The channel is a shell session.
has_sftp boolean The channel is an SFTP session.

Continued on next page

24

Table 2.1 – continued from previous page
Feature Type Description

has_exec boolean The channel executes a command.
has_tty boolean The channel allocates a pseudo-terminal.

has_agent boolean The session channel includes an agent au-
thentication tunnel.

has_x11 boolean The session channel includes an X11 tunnel.
has_root boolean The user is very likely a privileged user.
duration float The time duration the channel existed.

exit_status int Exit status of the command, or -1 if not re-
ceived.

exit_signal boolean Whether the executed command resulted in
a signal to be sent.

time_of_day int Time in seconds after midnight for the chan-
nel start.

weekday int Day of week for the channel start.
min_inter_packet_duration float Minimum time between channel packets.
max_inter_packet_duration float Maximum time between channel packets.
avg_inter_packet_duration float Average time between channel packets.

median_inter_packet_duration float Median time between channel packets.
min_packet_size int Minimum channel packet size.
max_packet_size int Maximum channel packet size.
avg_packet_size float Average channel packet size.

median_packet_size int Median channel packet size.
num_input_packets int Number of input packets.

num_output_packets int Number of output packets.
bytes_received int Bytes received for the channel.

bytes_sent int Bytes sent for the channel.
target_port int Connection target port (usually 22).

num_conn_log_messages int Number of connection-specific log messages
received.

Continued on next page

25

Table 2.1 – continued from previous page
Feature Type Description

num_chan_log_messages int Number of channel-specific log messages re-
ceived.

num_streams int Number of streams, usually two or three.
File transfer specific dimensions. These are set to 0 if the channel is not a file-transfer
channel.

num_files float Number of files transferred.
min_file_sent_bytes float Minimum bytes sent per file.
max_file_sent_bytes float Maximum bytes sent per file.
avg_file_sent_bytes float Average bytes sent per file.

median_file_sent_bytes float Median bytes sent per file.
min_file_received_bytes float Minimum bytes received per file.
max_file_received_bytes float Maximum bytes received per file.
avg_file_received_bytes float Average bytes received per file.

median_file_received_bytes float Median bytes received per file.
Command execution specific dimensions. These are set to 0 if the channel is not a
shell or exec channel.

num_commands int Number of commands executed on the chan-
nel. For shell sessions, this is calculated
with a terminal emulation heuristic, which
assumes one command per line.

has_sudo boolean Whether sudo was used on the connection.
Obtained with a string-search heuristic.

has_su boolean Whether su was used on the connection. Ob-
tained with a string-search heuristic.

Connections versus channels

A connection in general terms is something where the server and client com-
municate over a reliable link, usually TCP/IP, and authenticate each other
in some way. A connection typically multiplexes multiple channels, which
may be of different types. This applies to both SSH and RDP connections.

26

In the SSH protocol, the commonly used channels can be categorized to
three main hierarchies: execution, file transfer, and tunnels. In an execution
channel, the client requests the server to execute something, a command or
a shell, possibly with an attached pseudo-terminal (tty). The I/O is then
passed between the server and client in the channel.

File transfers are a special case of execution; a file-transfer program re-
quests the execution of a file-transfer server binary on the server. The file
transfer is usually carried out with the SFTP protocol, the SCP1 protocol, or
just transferring rsync or tar traffic over the channel. In file transfers, the
amount of data transferred is generally larger than the execution channels,
and a pseudo-terminal is not used. The SFTP protocol, a popular version
being described in Ylönen and Lehtinen (2001), is recognized natively by
CryptoAuditor. Other means of data transfer can be supported, but they
would require additional heuristics.

Tunnels are typically used to pass data between applications and happen
more in the background for the user. The different channel types indicate
capabilities and requirements for the endpoints; an X11 channel typically
requires that the client has an X11 server which is used to open a window
by the X11 application launched at the server. The two sides communicate
using the tunnel created by the SSH endpoints.

Agent and X11 connections are highly unusual in connections without
shell session channels, as normally the endpoints are not accessible without
one – the DISPLAY and SSH_AUTH_SOCK environment variables indicate the
socket addresses for the tunnels.

Bundling all the channels in one will not allow distinguishing between
different usage patterns – the same user will be creating three connections
with one SSH client (OpenSSH) and one connection with three channels
with another (Tectia), while performing exactly the same actions. Also, for
example, with Tectia SSH Client, it is possible to perform multiple command
executions in the context of the same connection.

To deal with the problem, execution channels, notably SFTP and shell,
are dealt with as (connection_id, channel_id) tuples. These are treated as
“virtual connections” by the classifier, with connection-specific dimensions

27

being identical for the two channels. This way, multiple terminals in the
same session and multiple terminals in separate sessions can be handled by
the system identically.

While RDP connections were not used in this work, it is worth noting
that also the RDP protocol has different channels, for example, for clipboard,
audio, and file access. The channel handling is more specialized than in
SSH, and in RDP, separating channels from the connections does not have
the same advantages as with SSH. An exception here is the file handling in
RDP (Microsoft Corporation, 2016b), which could warrant similar handling
to SFTP channels.

Categorical data

Much of the data that is interesting in differentiating the connections is in
textual form or does not allow distance comparison efficiently. This cate-
gorical data includes source and destination IP addresses, usernames, group
names, matched connection rules, and the like. Categorical data are not nec-
essarily strings; for example, the color names “red”, “green”, and “blue” could
be described with the enumeration RED = 1, GREEN = 2, and BLUE = 3,
and the fundamental property of categories would remain. In this work, the
used metric between data rows, or distance, is Euclidian. With categori-
cal data, using an arbitrary integer to represent a category would cause a
distortion; with the above assignments for the labels, the distance between
BLUE and RED would be different from the distance between BLUE and
GREEN, which is not correct. With categorical data, the distance is usually
either zero when the categories are the same or one when the categories are
different.

It would be interesting to take into account the usernames and other
categorical data used in the connection. Compared to numerical data, it
is harder to use this information as the distance function needs extra care.
Using some statistic about the username might help; for example, we could
use the frequency of a username in place of the string. Similar considerations
apply to the source and target IP addresses and the rule used in auditing the

28

connection, among others.
When testing the clustering, adding an explicit distance function made

the classification much too slow with the amount of gathered data – effec-
tively the computation did not end. This was probably due to the function
call overhead and the number of calls to the 100000+ channels it generates;
effectively each cell in the “virtual sparse matrix” results in a call to the dis-
tance function, making the classification actually quadratic, O(n2), in time.
The scikit-learn package DBSCAN, using a fast spatial index, should have
a computational complexity of O(n log(n)) in time, see Section 2.3.2.

Tags and other administrator-assigned values

Some connections are assigned one or several tags. These are direct user
input and as such can be very valuable, as they can be considered the human
classification of the connections. On the other hand, some tags might be
applied automatically or by a mass assign, which is less precise. In practice,
the tags should be used by a mechanism assigning a classification, not as
input dimensions for clustering, as it is not a natural property of the con-
nection data itself but an arbitrary manually added feature; a similarity of
connections from these should be considered coincidental.

Timestamps

Plain timestamps are not very interesting, as they are strictly increasing,
and scaling them will not help. Relevant information that can be used to
compare connections can be extracted from the timestamps, such as the time
of the day and the day of the week a login occurred. It is anomalous if there
are normally no file transfers on weekdays, and then one occurs.

Recognizing commands

Commands are searched from both the input and the output of the channel.
Using the output is more reliable if echo has not been turned off, as the
server’s pseudo-terminal handles the incoming key sequences and performs
the necessary operations, such as moving the cursor, clearing the screen, or

29

inserting characters according to the application – a character code for “j”,
for example, can be a starting character for the command “jobs” or, if the
terminal is in a vi-like mode, cause the cursor to move down.

On the other hand, it is trivial to turn command echoing off with “stty
-echo”, which will cause the input to be missing from the output altogether,
so relying on the output only is not wise. Universal SSH Key Manager runs
all of its commands without echoing.

2.2.2 Scaling

Scaling or normalization is required to eliminate the bias between the data
dimensions. The columns should a priori have equal weight in the clustering –
a data dimension with only boolean values, ones and zeroes, should contribute
as much as bytes transferred in the channel, which can have values from zero
to gigabytes. For this purpose, the dimensions are scaled to have a zero mean
and unit variance. A detailed method is described in Portnoy et al. (2001);
in this work, we used the StandardScaler from the scikit-learn software
package, which achieves the same result.

We used principal component analysis (PCA) to visualize the data, de-
scribed in Section 2.4.1. Scaling makes the first principal component of the
PCA more meaningful. Without scaling the first principal component would
be very large and would look like it explained most of the variance in the
data.

2.2.3 Environment setup

Universal SSH Key Manager (UKM) manages and monitors hosts. To gather
realistic data, a large enough set of hosts was needed. FreeBSD jails (Kamp
and Watson, 2000) are a lightweight virtualization alternative allowing thou-
sands of guests with relatively small memory requirements. We ran more
than 1000 jail instances in a FreeBSD virtual machine, for which 10 GB of
memory was given. The host FreeBSD, itself a guest in VirtualBox, needed to
be tweaked with respect to the maximum number of open processes and open
file descriptors to allow the jails to run with the required processes: sshd and

30

syslogd were required for this experiment, sshd to allow administering by
the UKM, and syslogd to gather the activity which is then disseminated by
the UKM.

The network topology of the setup is depicted in Figure 2.1. All traffic to
the potty0, ..., potty1015 jail instances from UKM was routed through the
CryptoAuditor installation in-between.

Universal SSH Key Manager performs a management-key setup on its
first connection to the administered hosts. As transparent public-key au-
thentication is impossible with the standard SSH protocol without access to
the private key in CryptoAuditor, additional steps were necessary to be able
to manage the hosts with UKM. The details of the procedure are described in
Section 2.6. After the key setup was done, the management traffic between
the hosts and UKM could be captured by CryptoAuditor.

Universal SSH Key Manager was used to perform administration tasks on
the hosts, like changing the SSH configuration. UKM does periodic scans of
the hosts, where the key activities to the hosts are checked by scanning the
system logs, and the contents of the users’ .ssh/authorized_keys files are
checked for modifications. All of these activities occur over the SSH protocol
and were routed through CryptoAuditor, where the connections were stored.

2.3 Performing the clustering

Investigating the projected data, a sample of which can be seen in Figure
2.2, led to the working assumption that a density-based approach, such as
DBSCAN, would work better in practice than, for example, k-means++, a
cluster centroid based method. A density-based approach allows us to forego
specifying the number of clusters, which is a key benefit over k-means++.
This is discussed more in Section 3.5.

The scikit-learn software package implements both DBSCAN and k-
means++ with roughly the same interface, making experimenting easier.

The algorithm for DBSCAN is described in Section 2.3.2, and k-means++
is discussed in Section 2.3.3.

31

Universal SSH Key Manager

Jailer

potty0

potty1

potty2

potty1013

potty1014

potty1015

CryptoAuditor

Figure 2.1: Network setup for data gathering.

32

2.3.1 Supervision

The whole point in automating anomaly and intrusion detection is to reduce
the workload of the administrators. Using clustering to highlight the emer-
gent structure in the audited connections and being able to check just a few
connections from a cluster of thousands have real benefits for the system
administrators.

In this work, we assume that automated attacks with similar connection
profiles will get clustered together and that outliers outside of previously
categorized connections are dissimilar enough to warrant scrutiny.

Clusters of connections that belong to clusters not already categorized
should be checked by the administrator with a sampling from the cluster. The
administrator can use the samples to verify the accuracy of the clustering and
possibly mark the connections as malicious or benign. Further connections
that get assigned to the same clusters as a previous classification will get
the same class. A cluster that has connections classified both as benign and
malicious should be treated as malicious, so a new connection being assigned
to it should be flagged.

As a practical implementation note, new connections flagged by the sys-
tem as possibly malicious should be raised to the administrators’ attention.

The supervision is simulated in this work by flagging a small number of
the malicious connections and observing what connections lie in the same
clusters.

2.3.2 DBSCAN

In this work, we principally used DBSCAN (Density Based Spatial Clustering
of Applications with Noise), originally described in Ester et al. (1996). DB-
SCAN is a robust algorithm, which received the 2014 SIGKDD Test of Time
Award (SIGKDD, 2014). The algorithm is outlined in Algorithm 1, with the
most important auxiliary function ExpandCluster shown in Algorithm 2.

The algorithm has two parameters, minPts and ε. minPts indicates how
many points are needed to start a new cluster. The distance parameter ε is
used to find neighbors in existing clusters, in which case the point is added to

33

the cluster, or if enough points are within ε, a new cluster is formed from the
point and its neighbors. In this work, minPts was kept static at the default,
that is, four points. The choice of minPts will mostly affect the number of
outliers, so it does not affect the comparison between DBSCAN and k-means,
described in Section 3.5.

As is evident from the linear nature of DBSCAN, given n points, the
algorithm needs to perform at most n region queries. If the region query has
a linear time complexity, the clustering algorithm will be quadratic, O(n2),
in time complexity. As discussed in Ester et al. (1996), using an R*-tree
has an average time complexity of O(log n), given that the ε-neighborhood
of the points is small compared to the whole data-space. A k-d-tree similarly
allows a time complexity of O(log n) when the number of dimensions k is
small compared to the number of data points n, as described in Friedman
et al. (1977).

If the data cannot be accessed with a spatial index and the distance matrix
needs to be computed, the algorithm will necessarily be quadratic. This is
too slow for the number of connections seen in practice with CryptoAuditor.
scikit-learn allowed a choice; in this work, we used the k-d-tree structure.
scikit-learn does not implement the R*-tree structure, so it could not be
tested for this work.

Algorithm 1 DBSCAN
procedure DBSCAN(setOfPoints, ε, minPts)

cId ← nextId(NOISE)
for all point ∈ setOfPoints do

if point.cId = UNCLASSIFIED then
if ExpandCluster(setOfPoints, point, cId, ε, minPts) then

cId ← nextId(cId)
end if

end if
end for

end procedure

34

Algorithm 2 ExpandCluster
function ExpandCluster(setOfPoints, point, clusterId, ε, minPts) .

initially all points have cluster id UNCLASSIFIED
seeds ← setOfPoints.regionQuery(point, ε)
if |seeds| < minPts then

point.cId ← NOISE
else

for all pt ∈ seeds do
pt.cId ← clusterId . seeds are density-reachable from point

end for
seeds ← seeds \ {point}
while |seeds| > 0 do

curPoint ← choose one ∈ seeds
seeds ← seeds \{ curPoint }
neighbors ← setOfPoints.regionQuery(curPoint, ε)
if |neighbors| ≥ minPts then

for all pt ∈ neighbors do
if pt.cId = UNCLASSIFIED then

seeds ← seeds ∪{ pt }
end if
if pt.cId ∈ {UNCLASSIFIED, NOISE} then

pt.cId ← clusterId
end if

end for
end if

end while
end if

end function

35

2.3.3 k-means and k-means++

In k-means, the execution begins by selecting k starting cluster centroids.
The points in the data closest to the cluster centroids are assigned to those
clusters, and the centroids are updated accordingly. The algorithm termi-
nates when the point assignments no longer change.

Formally, in k-means, given a set of points X , we are trying to find a set
of cluster centroids C to minimize

φ = Σx∈X min
c∈C
‖x− c‖2

With any stochastic initialization method for k-means we can rerun the
algorithm multiple times and choose the clustering that results in the smallest
value for φ.

The k-means algorithm is very sensitive to the initial assignment of the
cluster centroids. scikit-learn implements the k-means++ initialization,
which is more efficient than a random assignment (Arthur and Vassilvitskii,
2007).

k-means++ initialization is also stochastic but weights the probability of
choosing a point by the distances to already selected centroids. Let D(x) be
the distance to the closest centroid from point x ∈ X . The first centroid is
chosen uniformly at random from X , the rest k − 1 centroids will be chosen
with probability D(x)2/Σx∈XD(x)2. The probabilities are updated each time
a new centroid is selected.

The k-means algorithm proceeds in the following way.

1. Initialize set C of cluster centroids either by selecting uniformly at ran-
dom, using k-means++, or using some other means.

2. Update cluster assignments Ci for every i ∈ {1, . . . , k} to be the set of
points that are closer to ci than they are to cj for all j 6= i.

3. Update ci for every i ∈ {1, . . . , k} to be in the center of points in Ci,
so ci = 1

|Ci|Σx∈Ci
x.

4. Repeat steps 2 and 3 until the cluster centroids no longer change. (Arthur
and Vassilvitskii, 2007)

36

2.4 Visualizing the data

Visualizing the data is important; it allows to quickly verify whether the
method being verified is working at all and allows detecting possible im-
provements or problem points. Visualizing data with high dimensionality is
hard, especially when the visualization should work also on the surface of
the paper of this thesis. One method is simply to reduce the number of di-
mensions in the data while still retaining as much of the explanatory power,
or variance, of the data as possible. A good tool for this is the principal
component analysis.

2.4.1 Principal component analysis (PCA)

PCA is a very popular dimensionality reduction technique. The assumption
is that the data dimensions are correlated and there exists a coordinate sys-
tem with smaller number dimensions that can represent a large portion of
the variance in the data.

The computational complexity of the eigen decomposition of the covari-
ance matrix is O(D3), where D is the number of dimensions in the data,
and although this is not particularly efficient in computational complexity,
it is not a problem as long as D � n, where n is the number of connections.
The projection operation is linear in time and space after the decomposi-
tion. (Barber, 2012)[Section 15.2]

An example of visualizing a clustering result is in Figure 2.2.

2.5 Receiver operating characteristics (ROC)

Given our data, where the number of normal connections greatly outnumbers
the anomalous connections, a classifier labeling everything as benign would
have a reasonably good accuracy. It is therefore important to be able to
observe classifier performance in a more holistic fashion. A practical test
for analyzing classifier performance is the ROC curve. (Zweig and Campbell,
1993)

37

13 clusters with 885 members and 115 outliers

Figure 2.2: A sample clustering with outliers.

38

In this work, the curves were plotted as a function of the used parameter:
ε for DBSCAN and the number of clusters k for k-means. In the y-axis, we
plot the detection rate, that is, the TP/(TP + FN) ratio, where TP denotes
the true positives and FN the false negatives, or detection failures. In the
x-axis, we plot the false positive rate, which is the ratio FP/(FP + TN),
where FP denotes the false positives and TN the true negatives.

The best behaving classifier would have no false positives and zero detec-
tion failures, that is, a detection rate of 100% and a false positive rate of 0%.
In the ROC curve this is the top left corner. When interpreting the ROC
curves, we are trying to find parameters where we minimize the number of
the false positives while trying to maximize the detection rate.

2.6 System implementation

In this section, we discuss implementing a clustering-based anomaly detec-
tor for CryptoAuditor. The work included integrating CryptoAuditor with
Universal SSH Key Manager to gather data from the UKM-generated con-
nections. Even though the functionality implemented here is not core to this
work as such, the integration work was large enough to warrant a description.

The mission was to audit the Universal SSH Key Manager (UKM) traffic
by CryptoAuditor. Auditing the traffic might not be very interesting for
most customers, but it might be necessary to set up UKM to work through
CryptoAuditor because of network topology reasons. Also, a company policy
might enforce the auditing of the traffic.

CryptoAuditor can only transparently support password and keyboard-
interactive authentications. Later in the text, these will be referred col-
lectively as password authentication, as that is the main use case also for
keyboard-interactive. All the challenges and responses are sent through the
encrypted channel in clear text and thus allow for transparent relaying in
CryptoAuditor.

Public-key authentication cannot be transparently relayed, as the chal-
lenge signed with the user’s private key contains information on the initial
key exchange, the session ID. The session ID is unique for each key exchange,

39

at least with Diffie-Hellman, and cannot be reproduced, even if the server
host’s private key was known. This is because the key exchange includes
information, a random nonce, from both ends of the negotiation, which is
mixed in when the session ID is created. As the man-in-the-middle can only
control one side of this to each direction, the session ID will be different for
each session.

UKM only uses password authentication on the initial connection to
added hosts. During that, the management keys are created. Each host
will get its own set of asymmetric keys; thus the problem cannot be solved
by just importing one private key to CryptoAuditor. UKM also supports a
feature to replace the current management keys, in which case the private
key in CryptoAuditor needs to be updated.

2.6.1 Registering the keys

During the discovery phase, the host connection is performed using pass-
word authentication, which can be relayed. UKM then creates a manage-
ment key pair, as usual, and registers the private key to CryptoAuditor with
information about the target host. This is done by running a management
command in CryptoAuditor and is performed using a secure channel from
Universal SSH Key Manager to CryptoAuditor – in practice, this is achieved
by a manually set up public-key authentication. After this, the private key
can be used to login to the Hound with public-key authentication, and the
connection from the Hound to the target server is performed using public-key
authentication with the registered private key. Two approaches in Crypto-
Auditor to handle the public keys were implemented, described in the fol-
lowing sections: through the configuration mechanism and direct storage to
the Vault.

Through configuration mechanism

The first attempt was to configure the admin users with the UI configuration
mechanism, where a configuration is created for the Hound component. All
the public keys were authorized for the user, so that the Hound allowed login

40

to the admin account. Login to the server host was then done with the user
mapping mechanism in CryptoAuditor – the mapping was chosen based on
the target server, and the uploaded private key was used to authenticate.

This approach was scrapped, because the configuration update mecha-
nism was not meant to scale to thousands of automatic configuration up-
dates. The configuration update was designed to work through the web UI,
and database locking created problems when done from the automatic job;
as a worst case, the UI would be unresponsive when the transaction was
ongoing. The tested implementation did not fully employ transactions for
the configuration updates and it caused problems when running the system
with hundreds of end servers concurrently. Even if these problems had been
fixed, more work would have been needed in UKM to support the updates
in batch, as otherwise the host addition would need to progress one host at
a time, disabling any possibility for parallel runs in UKM. This is because
the job in UKM that updates the key requires the key to be used in the
subsequent authentication to the server, which is done immediately after the
key insertion in the same job.

Incoming users stored in the Vault

A working version of the system stores the user mapping information in the
storage module, that is, the Vault. The information is inserted and updated
without going through the UI configuration version mechanism.

The versioning allows to track and possibly revert changes in the config-
uration, in a manner similar to the ones used in source code version control
systems. The benefit of not using the versioning is scalability, but the version
information is lost. This was not considered to be a large problem, as the
user information is something that does not necessarily require versioning.
The user groups and rules are still versioned, individual users being more
dynamic in nature.

41

Chapter 3

Results

In this chapter, we show how the connection data was visualized in this work,
how the connections were classified based on the clustering with different
starting parameters, and how the computational performance of the system
behaved under different conditions.

3.1 Visualizing the clustering

An early clustering with a number of connections generated with Univer-
sal SSH Key Manager was used to initially validate the effectiveness of the
method.

The obtained cluster distribution with ε = 0.3 is depicted in Figure 3.1.
Over half of the connections are in six clusters. Over 90% of the connections
are contained in 25 clusters. Outliers are excluded from the figure.

The five largest clusters are shown in Figure 3.2, with clusters 3 and 11, as
well as 9 and 16 being very close to each other. Closer inspection of clusters 3
and 11 indicates that they are Universal SSH Key Manager key-activity scan
connections, where the command is cat /var/log/auth.log \| grep ’
sshd\[.*\]: ’ \| grep ’Found matching .* key: \|Accepted publickey’.

PCA eigenvalues indicated that a 2-dimensional projection explained around
43% of the variation in the data, and a 3D projection explained around 53%.

42

0 50 100 150 200 250
Number of clusters

0

2000

4000

6000

8000

10000

12000

N
u
m

b
e
r

o
f

co
n
n
e
ct

io
n
s

p
e
r

cl
u
st

e
r

6 -> 56.98%
12 -> 76.86%

17 -> 85.24%
25 -> 90.35%

47 -> 95.01%

Connection distribution to clusters

Figure 3.1: The cumulative connection distribution with ε = 0.3. Plotted
here are the cluster populations with decreasing sizes. Six of the most popular
clusters contain over half of the connections.

43

5 clusters with 57172 members

Figure 3.2: Five of the most populated clusters, projected with PCA.

44

3.1.1 Covariance

The covariance between the dimensions was measured from the data using
scikit-learn ExperimentalCovariance; a visualization of the resultant
matrix is shown in Figure 3.3. From the figure, it can be seen that some
dimensions have a strong positive covariance (darker color), such as with
has_shell and has_tty. There are dimensions with a strong negative co-
variance as shown by the very light color when comparing has_shell and
has_exec. Both of these are as to be expected. From the figure, it can also be
noticed that some dimensions do not seem to correlate even with themselves;
that is an indication that there is no actual data along that dimension. For
example, no files from the hosts have been downloaded, which is indicated by
all zeroes in a dimension like received_bytes and as the dimension showing
a zero covariance throughout in the matrix.

3.2 Clustering performance

Time-measurements during the data collection for this work indicate a quadratic
time complexity for the scikit-learn DBSCAN implementation. A simi-
lar effect was encountered with smaller and larger values for ε, depicted in
Figure 3.4. This result was disappointing, as the algorithms should allow for
O(n log n) time complexity, where n is the number of connections.

3.3 Validating the classification

Running the classification with different values for ε gives a wide range for the
numbers of clusters and outliers; not surprisingly, the two correlate heavily.
The numbers are shown in Figure 3.5 as a function of ε.

Only the attack connections are really true positives, all the rest are con-
sidered benign. As there were few attack connections, all of them, excluding
the samples used to mark clusters, were used to validate the classification.
The data contains lots of singular connections, file transfers, manual com-
mand invocations, and the like, a large portion of which do not cluster and

45

m
in

_f
ile

_r
e
ce

iv
e
d
_b

y
te

s
h
a
s_

x
1

1
e
x
it

_s
ta

tu
s

m
in

_p
a
ck

e
t_

si
ze

m
in

_i
n
te

r_
p
a
ck

e
t_

d
u
ra

ti
o
n

h
a
s_

sh
e
ll

n
u
m

_c
o
m

m
a
n
d
s

d
u
ra

ti
o
n

m
e
d
ia

n
_p

a
ck

e
t_

si
ze

b
y
te

s_
re

ce
iv

e
d

a
v
g
_f

ile
_s

e
n
t_

b
y
te

s
a
v
g
_p

a
ck

e
t_

si
ze

h
a
s_

sf
tp

n
u
m

_s
tr

e
a
m

s
h
a
s_

su
n
u
m

_c
o
n
n
_l

o
g
_m

e
ss

a
g
e
s

e
x
it

_s
ig

n
a
l

ti
m

e
_o

f_
d
a
y

m
e
d
ia

n
_i

n
te

r_
p
a
ck

e
t_

d
u
ra

ti
o
n

n
u
m

_i
n
p
u
t_

p
a
ck

e
ts

ro
o
t_

u
se

r
a
v
g
_f

ile
_r

e
ce

iv
e
d
_b

y
te

s
h
a
s_

e
x
e
c

a
v
g
_i

n
te

r_
p
a
ck

e
t_

d
u
ra

ti
o
n

m
a
x
_i

n
te

r_
p
a
ck

e
t_

d
u
ra

ti
o
n

m
in

_f
ile

_s
e
n
t_

b
y
te

s
ta

rg
e
t_

p
o
rt

m
e
d
ia

n
_f

ile
_s

e
n
t_

b
y
te

s
m

a
x
_p

a
ck

e
t_

si
ze

m
e
d
ia

n
_f

ile
_r

e
ce

iv
e
d
_b

y
te

s
h
a
s_

su
d
o

h
a
s_

tt
y

b
y
te

s_
se

n
t

m
a
x
_f

ile
_r

e
ce

iv
e
d
_b

y
te

s
n
u
m

_f
ile

s
m

a
x
_f

ile
_s

e
n
t_

b
y
te

s
w

e
e
kd

a
y

n
u
m

_o
u
tp

u
t_

p
a
ck

e
ts

n
u
m

_c
h
a
n
_l

o
g
_m

e
ss

a
g
e
s

h
a
s_

a
g
e
n
t

min_file_received_bytes
has_x11

exit_status
min_packet_size

min_inter_packet_duration
has_shell

num_commands
duration

median_packet_size
bytes_received

avg_file_sent_bytes
avg_packet_size

has_sftp
num_streams

has_su
num_conn_log_messages

exit_signal
time_of_day

median_inter_packet_duration
num_input_packets

root_user
avg_file_received_bytes

has_exec
avg_inter_packet_duration

max_inter_packet_duration
min_file_sent_bytes

target_port
median_file_sent_bytes

max_packet_size
median_file_received_bytes

has_sudo
has_tty

bytes_sent
max_file_received_bytes

num_files
max_file_sent_bytes

weekday
num_output_packets

num_chan_log_messages
has_agent

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 3.3: The experimental covariance. A lighter color indicates a negative
covariance, whereas a darker color indicates a positive covariance. Some
dimensions do not seem to correlate even with themselves; indicating that
there is no actual data along those dimensions.

46

0 20000 40000 60000 80000 100000 120000
Number of connections

0

100

200

300

400

500

600

700

800

C
la

ss
if
ic

a
ti

o
n
 t

im
e

Classification times

ε = 1.378
ε = 0.3

Figure 3.4: The classification performance with different values for ε.

47

0.0 0.5 1.0 1.5 2.0 2.5 3.0
epsilon

0

100

200

300

400

500

600

700

800

900

cl
u
st

e
rs

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

o
u
tl

ie
rs

Number of clusters and outliers as a function of ε

clusters

outliers

Figure 3.5: The clusters and outliers when ε is varied between 0.1 and 3.0.
The highlighted area of interest is shown in Figure 3.6. Notice that the right
axes get scaled differently between the images.

will be outliers from the clustering and therefore considered false positives.
The sweet spot seems to be somewhere between ε = 0.3 and ε = 1.5,

shown in Figure 3.6. Here the number of clusters and outliers starts to
decline less rapidly with increasing value for ε.

As all the attack connections should be clustered to one or two clusters,
we can treat the rest of the clusters as benign connections. For validation,
we know the attack connections, and having tagged one, we should find the
rest. Any attacks not in clusters with the tagged one are detection failures
or in other words, false negatives.

48

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
epsilon

50

100

150

200

250

cl
u
st

e
rs

0

500

1000

1500

2000

2500

o
u
tl

ie
rs

Number of clusters and outliers as a function of ε

clusters

outliers

Figure 3.6: The clusters and outliers when ε is varied between 0.3 and 1.5.
This is a more detailed view from Figure 3.5.

49

The administrators should always take a closer look at detected outliers.
Some of the outliers detected in this work are connections which legitimately
should belong to a cluster; those should be treated as false positives. Others
are singular events; especially at the early stages of data gathering, sessions
were created that failed because of misconfigurations and other such errors. If
a unique connection has been successfully authenticated, it should be treated
as an anomaly and not as a false positive.

Intuitively, as we increase the value for ε, the detection rate increases
and the number of outliers goes down; however, also more and more be-
nign connections get grouped in the same clusters as the identified attack
connections.

When validating classifiers using supervised learning, the classifier perfor-
mance can be checked by cross-validating the classifier results; with clustering
we do not train a model, and cross-validation is not so useful. Our data con-
tains relatively few attack connections, keeping in line with the assumption
that normal traffic greatly outnumbers malicious traffic — in the order of
a hundred to one. In these circumstances, as pointed out in Portnoy et al.
(2001), a classifier marking everything as normal would have an accuracy of
99%, making it almost useless as a distinguishing metric in our case.

A more interesting metric is how the false positive rate behaves when
compared to the detection rate. For this, we use the receiver operating
characteristics (ROC) curve, described in Section 2.5. The detection rate
is also known as the true positive rate, sensitivity, and recall. The false
positive rate is equivalent to 1 − specificity. The specificity is also known
as the true negative rate, which in this case would mean the rate that the
benign connections are correctly identified as benign.

Having chosen a good value for ε by studying the ROC curve, we can
calculate the accuracy and compare it with the accuracy from other methods.

3.3.1 Single tagged connection

The results in this section were obtained with a single point as training data.
As an example, one of the attack connections, 57646, was picked out.

50

Ideally, all of the attack connections would be contained in the two clusters
that the connection is a part of. There are two connections instead of one
because the SSH connection created with the fab tool will have two SSH
channels: one for the file transfer, another for the command execution. These
act to represent an automated attack.

The ROC curve showing the detection rate (DR) against the false positive
rate (FPR) is shown in Figure 3.7. Some values from the ROC analysis are
shown in Table 3.1, including the detected accuracy (ACC).

A highlighted segment of the ROC curve with the best values for the
false positive rate is shown in Figure 3.8. The turning points in the curve,
which we can use to decide on the value of ε, depending on how we value the
detection rate against the false positive rate, are shown in Table 3.2.

With the gathered data, the false positive rate continues to decrease until
there are only a few clusters left. Apparently this is because the “normal”
connections generated by Universal SSH Key Manager are so different from
the attack connections. From Figure 3.5 it can be extrapolated that eventu-
ally the clusters would be coalesced and the amount of false positives would
therefore be approximately equal to the number of connections N as N � m,
where m is the number of true positives, that is, the number of attack con-
nections. The experimental validation of this claim was unsuccessful because
with such large values of ε the clustering allocates so much memory that the
program is killed by the operating system 1.

3.3.2 Two tagged points

When two points of administrator-classified connections are allowed, the de-
tection rate is much better with very low values of ε, as expected. For
comparison, the full ROC plot is shown in Figure 3.9, and a drill-down plot
of the most pertinent ε range is presented in Figure 3.10.

1macOS Sierra (10.12.3) running on MacBook Pro, Mid 2015, with 16 GB of RAM.

51

ε DR FPR ACC
0.1 0.475,490 0.142,012 0.857,332

0.2 0.500,000 0.038,254 0.960,953

1.365 0.500,000 0.002,816 0.996,330

1.37 0.500,000 0.002,808 0.996,339

1.375 0.500,000 0.002,808 0.996,339

1.376 0.500,000 0.002,808 0.996,339

1.377 0.500,000 0.002,766 0.996,381

1.378 0.720,588 0.003,592 0.995,935

1.379 0.720,588 0.003,592 0.995,935

1.38 0.720,588 0.003,592 0.995,935

1.9 0.720,588 0.005,885 0.993,645

2.0 0.720,588 0.005,792 0.993,738

2.1 0.941,176 0.005,691 0.994,218

2.2 0.941,176 0.005,489 0.994,420

2.94 0.941,176 0.004,857 0.995,051

2.96 0.941,176 0.004,857 0.995,051

2.98 1.000,000 0.004,848 0.995,160

3.0 1.000,000 0.004,848 0.995,160

3.29 1.000,000 0.004,671 0.995,337

3.295 1.000,000 0.004,671 0.995,337

3.3 1.000,000 0.004,671 0.995,337

3.305 1.000,000 0.004,671 0.995,337

Table 3.1: Selected values from the ROC analysis.

ε DR FPR
1.377 0.500 0.002,766

1.378 0.721 0.003,592

2.98 1.000 0.004,848

3.285 1.000 0.004,671

Table 3.2: Interesting values for ε from the ROC analysis.

52

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
False positive rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
e
te

ct
io

n
 r

a
te

ROC

Figure 3.7: The ROC curve for different values of ε. This is a parameterized
curve as a function of ε; interesting points are the ones where the curve turns.
A highlight of this plot is shown in Figure 3.8.

53

0.0025 0.0030 0.0035 0.0040 0.0045 0.0050 0.0055 0.0060 0.0065 0.0070
False positive rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
e
te

ct
io

n
 r

a
te

ROC

Figure 3.8: The ROC curve for ε in the range [1.35, 4]. This plot is a highlight
of the plot shown in Figure 3.7.

54

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
False positive rate

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

D
e
te

ct
io

n
 r

a
te

ROC

Figure 3.9: The ROC curve for different values of ε with two training points.
A highlight of this plot is shown in Figure 3.10.

55

0.0035 0.0040 0.0045 0.0050 0.0055 0.0060 0.0065 0.0070
False positive rate

0.94

0.95

0.96

0.97

0.98

0.99

1.00

D
e
te

ct
io

n
 r

a
te

ROC

Figure 3.10: The ROC curve as a function of ε in the range [1.39, 4] with two
training points. This is a highlight of the ROC curve shown in Figure 3.9.

56

3.4 Number of clusters as a function of con-
nections

Intuitively, it would be beneficial if the number of clusters and outliers in-
creased more slowly than the number of connections – with the assumption
that the clusters contain almost exclusively certain kinds of connections and
that misclassifications are rare, low numbers of clusters and outliers mean
that the administrators need to do less inspections of the results as time
passes.

In Figure 3.11, the number of clusters and outliers has been plotted as
functions of incoming channels with different values for ε. The growth on
the number of clusters is manageable, almost linear, whereas the number
of outliers remains constant after an initial bump. This is an encouraging
result.

3.5 Comparison with k-means++

We measured the performance of the clustering against k-means++. The
results are shown in Tables 3.3 and 3.4. The best accuracy (ACC) reported
for k-means++ was 0.996 with 12 clusters, whereas for DBSCAN it was 0.999
with, for example, ε = 0.2 and ε = 1.0.

As k-means++ requires the number of clusters as a parameter, it is not
very suitable to our overall use case. The number of clusters should be
connected to the number of different types of possible connections in the data,
and thus it is something that can change over time. It can be very different
depending on which organization has installed the interception proxy and
at what point of the network. It is therefore just the kind of parameter
that should be detected from the data instead of needing to be fed to the
device. Nevertheless, the algorithm was easily accessible in the scikit-
learn package, and because the algorithm is fast, the experiments could be
performed swiftly.

The k-means++ algorithm does not output outliers, and in the compar-

57

0 20000 40000 60000 80000 100000 120000
Number of connections

0

50

100

150

200

250

N
u
m

b
e
r

o
f

cl
u
st

e
rs

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

o
f

o
u
tl

ie
rs

Number of clusters and outliers

C, ε = 0.3

O, ε = 0.3

C, ε = 1.378

O, ε = 1.378

Figure 3.11: The number of clusters and outliers as a function of connections.
In the figure legend, “# C, ε = 0.3” should be read as “the number of clusters
when ε equals 0.3”.

58

ε DR FPR ACC
0.2 0.500,000 0.000,000 0.999,141

1.0 0.500,000 0.000,051 0.999,091

1.4 0.720,588 0.000,877 0.998,645

3.0 1.000,000 0.004,115 0.995,892

Table 3.3: Notable values from DBSCAN with outliers treated as benign.

clusters DR FPR ACC
2 1.0 0.559,868 0.441,094

3 1.0 0.559,868 0.441,094

4 1.0 0.334,309 0.666,265

5 1.0 0.312,513 0.688,023

6 1.0 0.312,471 0.688,066

7 1.0 0.309,309 0.691,222

8 1.0 0.312,513 0.688,023

9 1.0 0.004,123 0.995,884

10 1.0 0.043,119 0.956,955

11 1.0 0.305,810 0.694,715

12 1.0 0.004,123 0.995,884

Table 3.4: Notable values from k-means++.

ison the outliers detected by DBSCAN were considered benign connections,
as if they were in a cluster of their own.

The k-means++ algorithm worked surprisingly well when compared to
DBSCAN, but because of the stochastic nature of the initialization in k-
means++, the cluster assignment occasionally caused the detection rate to
drop and the false positive rate to soar.

In this particular case, k-means++ fared very well all things considered;
the algorithm was faster, the false positive rate was comparable, and all
attack connections were detected. However, the unstable nature of the clus-
tering should not be overlooked. In DBSCAN, two runs to cluster a set of

59

points will result in practically the same clusters, with the possible exclusion
of border points between two clusters (Ester et al., 1996)[Section 4.2, Section
3, Lemmas 1 and 2]. Also, adding points to the data set will not change the
clustering, except by causing the merging of clusters, providing that a dense
enough set of points connects two clusters. DBSCAN is thus more consistent
than k-means++.

The parameter k for k-means++, the number of clusters, intuitively seems
more sensitive than ε in DBSCAN, as discussed in Section 2.3.3. Choosing
a conservative value for ε will just cause us to have more clusters in the
result, increasing the screening work of the administrators; if this was the
case, ε could be increased, even by the end-user administrators, as long as
care was taken that the clustering was still explicit enough. If completely
different kinds of connections started to be clustered together, it would be
an indication that ε was too large.

A visualization of the differences between the algorithms is depicted in
Figure 3.12.

60

.01s

MiniBatchKMeans

.01s

DBSCAN

.01s .01s

.01s .02s

.01s .01s

Figure 3.12: A visual comparison between k-means and DBSCAN.

61

Chapter 4

Discussion

In this chapter, we go through the problems raised during the implementation
and data analysis of this work. We discuss some of the future work with
anomaly detection in interception proxies in general and CryptoAuditor in
particular. We lay out ideas on how to proceed in creating a production-
ready system with a detector of anomalous connections for CryptoAuditor.
Finally, we present our conclusion.

4.1 Problems

In this section, we discuss some unresolved issues in the approach used in
this work. Evasion and mimicry attacks are problems for any method and
are largely unresolved in general; existing systems can fight them by obfus-
cating what they actually measure and keeping the algorithms trade secrets,
but these measures require constant updates as the attackers evolve their
methods.

4.1.1 Mimicry attacks

Any approach to solve the problem of misuse detection will, at least to some
extent, be vulnerable to mimicry attacks. In Wagner and Dean (2001), a
mimicry attack is defined as a sequence of system calls taking the system
to an insecure state without detection. With the approach in this work, a

62

bash CMD="e.c.h.o. .f.o.o"; ${CMD//.}
tr ‘echo "ech% f%%" | tr % o‘

python ‘echo "oof ohce" |
python -c ’import sys;
print("".join(reversed(sys.stdin.read().strip())))’‘

Table 4.1: Examples of running echo foo.

mimicry attack occurs if an attacker can parrot the actions of real connections
well enough to be classified as a non-anomalous connection, that is, to belong
to a cluster of benign connections.

4.1.2 Evasion

Most of the evasion tactics, such as the insertion of packets or fooling an IDS
with a spoofed three-way handshake, as introduced in Ptacek and Newsham
(1998), do not apply to CryptoAuditor, as the system will not initiate the
forward connections without a valid underlying TCP connection. However,
when considering the captured terminal data, similar techniques apply to a
stream of commands. Using shell comments, environment variables to con-
tain strings, and commands such as tr to encode and decode the commands
to the shell – any one of those methods, and more, can be used to achieve
similar results in avoiding a terminal session from being tagged as, for exam-
ple, a session modifying user keys, or one where administrative privileges are
requested. If the server shell is not restricted in the commands it can run,
there is practically an infinite number of ways to encode a terminal session
with functionally identical command contents. Some ways of running echo
foo without that string appearing in the output are outlined in Table 4.1.

4.1.3 Correlation between dimensions

Some dimensions might correlate heavily. As we handle the dimensions with
equal weights, multiple values “pointing in the same direction” will cause
the shape of the data to skew in the direction of the actual data with the

63

combined weight of the correlating dimensions. Let’s consider a made-up
example: a column “has-feature” and a mistakenly introduced column “does-
not-have-feature”. The data has an inverse correlation, so that when the
“has-feature” has the value 1, the column for “does-not-have-feature” has
the value 0, and vice versa. The combined weight of these columns would
skew the data when compared to a dimension without a correlating data
column.

This effect can be identified by studying the eigen decomposition in PCA
and the covariance matrix of the data. As an example, from 40 dimensions
in the original data, the first three dimensions explained over a half of the
variation in the data, as reported in Section 3.1. The covariance matrix is
discussed in 3.1.1.

4.1.4 Cluster density

DBSCAN assumes the clusters in the data to have similar densities. If some
of the clusters are denser than others, depending on the value of ε, some
of the dense clusters may be coalesced if ε is too large, or data points that
should belong to a more sparse cluster will be classified as outliers if ε is too
small.

4.1.5 Mixed clusters

Intermingling clusters will be considered a single cluster with larger values of
ε, by design. This did not pose a real problem in this work, but the situation
could rise in production environments. Consider two sets of connections:
one that is represented by good backup connections and another that is
comprised of automated attacks transferring data in a similar access pattern,
masquerading as the backup application. This scenario is illustrated in Figure
4.1.

Here DBSCAN will combine the clusters, and if one cluster contains
flagged connections, the whole combined cluster will be “tainted”. The sit-
uation is improved somewhat with supervision, as we can mark the whole
cluster as problematic, but now the administrator needs to scan through all

64

Intermingling clusters

Figure 4.1: An example of intermingling clusters in two dimensions.

the connections in the combined cluster. Clusters with conflicting classifica-
tion could get special handling, such as rerunning DBSCAN with a smaller
value for ε for just the points in the problematic cluster, or using an altogether
different method for the data points in the problematic area.

A completely unsupervised classification is not achievable with clustering,
or perhaps any method, and there will always be some connections in a gray
area where judgment calls need to be made.

4.2 Towards a production system

In a production implementation of this system, anomalous connections from
clusters and outliers should be tagged differently; mislabelings due to clus-
ter association are more serious than being tagged anomalous because the
connection was an outlier. Any novel connection is an outlier at first, so
presumably new outliers would receive less scrutiny initially. Different orga-
nizations should be able to adopt their own policies to deal with these.

65

4.2.1 User interface for CryptoAuditor

Because tagging just outliers is not enough, as described in Section 2.3.1,
a convenient and fast user interface to go through the connections that the
system has raised is required. Without such an interface, the system will
have no value.

New outliers and clusters that have not been classified should be raised
to the administrators’ attention. For clusters, a sampling of the connections
as well as aggregate data about them should be available; for example, the
cluster size and common features between the connections should be visible.
It should be possible to drill down to the connections to allow a closer study
of the actions taken.

Tagging outliers and connections in the clusters should be very easy, as
should be correcting any misclassifications. Restarting the clustering should
be simple, but as it might take a while to obtain the results, the user interface
should indicate this.

4.3 Further work

Feature extraction from the connection data was very simplistic in this work.
For some features, the detection could be much improved by using a heuristic
or a separate classifier. For example, a shell connection used for file transfer
by piping the data over could be tagged as such by using a specific classifier
over the channel data.

At the time of the experiments, CryptoAuditor had not been in the mar-
ket very long and there were few customer installations. These days, the
product is mature and in production use in a large number of organizations;
partnering with select customers to obtain actual production data could be
used to gather an anonymized set of connection data, and experiments on
clustering and other methods could be performed using that data.

Time complexity for the clustering with the scikit-learn DBSCAN
implementation was not what was expected from the algorithm descriptions
in the literature. An alternative implementation should be used to verify the

66

result.

4.3.1 Host-based data

The data captured by CryptoAuditor can only partially model what has
happened in the target servers. A software component could be added to the
target hosts which could give accurate information on the monitored users’
activities. This “agent” would run in the background monitoring system
activities and perhaps run with elevated privileges to monitor the system calls
in the processes the users launch. This data, combined with the monitored
data, would allow a far better accuracy on misuse detection. For example,
such a system would not need to use heuristics on whether the user executed
a command to elevate privileges, mapped to dimension has_su.

Similarly, the system could gather general events in the target system and
align them with the activities that have occurred on the line. A less intrusive
example of this are the system log events, whereas using ptrace to capture
system calls is much more invasive. An example of a system is described in
Hofmeyr et al. (1998), and the classification given by that method could be
included, for example, as a separate dimension in the clustering.

4.3.2 Improving the system performance

In this section, we introduce some mechanisms to improve the system per-
formance for a production system, should the performance fall, for example,
due to the number of audited connections.

Incremental updates

It would be beneficial if the clustering could be incrementally updated, that
is, it would not make any difference to the end result of the clustering whether
the data is processed in one pass or if the connections are processed, for
example, 1000 connections at a time.

In practice, there are two problems. The scaling to zero mean and unit
variance, as described in the previous section, cannot be done incremen-

67

tally. A rolling variance calculation would be possible, as described in Knuth
(1997)[Section 4.2.2, p. 232], but all the old samples would need to be up-
dated after adding samples, resulting in no improvements in the computa-
tional complexity. However, when the number of data rows is already large,
for example, over a million entries, updating with small numbers of con-
nections does not change the mean or variance that much. This means we
can delay the recomputation for the whole set while the updated mean and
variance have not deviated too much from the original.

Another problem is updating the clustering. In practice, this would
require merging of clusters, which is not supported by the scikit-learn
DBSCAN implementation. In a production system, this can naturally be
avoided, as we can keep persistent state to continue updating the clustering.
An incremental version of DBSCAN, described in Ester et al. (1998), can be
used here.

It would therefore be feasible to implement incremental updates, recalcu-
lating the clustering when the amount of new data would warrant it or based
on a time interval, once a week, for example. The recalculation could be done
without interfering with the operation of the system by creating an atomic
database copy and using different instances of CryptoAuditor to perform the
clustering; the copy used could be the backup of the database, the creation
of which is already done in production systems.

Sampling

Currently, production installations are reported to have stored connections in
the order of hundreds of thousands of trails. The amount of data stored by the
trails creates a bottleneck for the system performance, as the data usually
needs to be backed up, and the trails need to be indexed and searchable.
When these limits are approached, it should still be manageable by a well-
behaving implementation with O(n log n) performance in time and space. If
the number of connections surpasses feasible limits for the used clustering
algorithms, sampling can be used.

CURE, or Clustering Using Representatives, described in Guha et al.

68

(1998), itself an algorithm with O(n2 log n) complexity, can be used instead
of DBSCAN. Similarly, random sampling from the connections could be used
in conjunction with DBSCAN, but the connections are not guaranteed to be
clustered identically due to the change in density of the clusters, a critical
component of DBSCAN. However, intuitively it should not cause overt prob-
lems, as the reduced density should only cause an increase in the number of
clusters, and perhaps outliers, which would occur in the data anyway with
fewer connections.

In practice, this could be implemented by starting to sample after the
clustering speed starts to plummet after some large number of connections
has been gathered. Samples would be taken from connections that have
already been presented to the administrators. They are therefore expected to
have received some scrutiny. We would include all admin-labeled connections
in the sample. This should still allow reasonably precise clusters. In the
unlikely event of too many administrator-labeled connections, we could just
use n latest connections, with n set to some sensible upper limit.

4.3.3 Other classes of anomalies

In this work, we have only considered point anomalies. Attackers who have
a continued access to user credentials can easily adapt to use multiple con-
nections to avoid detection, moving the detection problem towards collective
and contextual anomalies.

4.4 Conclusion

In this work, we have implemented a semi-supervised classification system
for detecting anomalous connections from normal ones. We compared two
clustering algorithms, DBSCAN and k-means++, for the task. We analyzed
DBSCAN’s performance in the classification when the parameter ε and the
number of the connections were varied. We outlined a set of features needed
for a practical implementation of the system.

As an unsupervised approach where the accumulated data does not need

69

to be specifically categorized by the administrators, and only outliers would
be treated as anomalous connections, a clustering approach alone would not
really work. Very few of the outliers were really anomalous; they were just
rare in the collected data. The attack connections were reasonably well
clustered.

As a tool to reduce administrator work, this method has merits. Instead
of wading through all the connections, the administrators only need to deal
with a set of random representatives from the clusters, reducing the amount
of manual labor. Instead of checking 50000+ connections, the administrator
needs to check a few hundred. This is a marked improvement.

70

Bibliography

Arthur, D. & Vassilvitskii, S. k-means++: The advantages of careful seeding.
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial and Applied Mathe-
matics, 2007.

Barber, D. Bayesian Reasoning and Machine Learning. Cambridge Univer-
sity Press, New York, NY, USA, 2012. ISBN 0521518148, 9780521518147.

Barnes, R. & Thomson, M. & Pironti, A. & Langley, A. Deprecating Secure
Sockets Layer Version 3.0. RFC 7568, RFC Editor, June 2015. URL:
https://tools.ietf.org/html/rfc7568.

Chandola, V. & Banerjee, A. & Kumar, V. Anomaly detection: A survey.
ACM Computing Surveys (CSUR), 41(3):15, 2009.

Dierks, T. & Rescorla, E. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246, RFC Editor, August 2008. URL: https://www.
ietf.org/rfc/rfc5246.txt.

Ester, M. & Kriegel, H.-P. & Sander, J. & Xu, X. et al. A density-based
algorithm for discovering clusters in large spatial databases with noise.
Kdd, volume 96, pages 226–231, 1996.

Ester, M. & Kriegel, H.-P. & Sander, J. & Wimmer, M. & Xu, X. Incre-
mental clustering for mining in a data warehousing environment. VLDB,
volume 98, pages 323–333. Citeseer, 1998.

Forcier, J. Fabric – pythonic remote execution. URL: http://docs.
fabfile.org/, 2017. Accessed: 2017-03-14.

71

Friedman, J. H. & Bentley, J. L. & Finkel, R. A. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical
Software (TOMS), 3(3):209–226, 1977.

Guha, S. & Rastogi, R. & Shim, K. Cure: an efficient clustering algorithm
for large databases. ACM Sigmod Record, volume 27, pages 73–84. ACM,
1998.

Hofmeyr, S. A. & Forrest, S. & Somayaji, A. Intrusion detection using
sequences of system calls. Journal of computer security, 6(3):151–180,
1998.

Kamp, P.-H. & Watson, R. Jails: Confining the omnipotent root.
Technical Report, May 2000. URL: http://phk.freebsd.dk/pubs/
sane2000-jail.pdf. Accessed: 2017-03-14.

Knuth, D. E. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997. ISBN 0-201-89684-2.

Lehtinen, S. & Lonvick, C. The Secure Shell (SSH) Protocol Assigned
Numbers. RFC 4250, RFC Editor, January 2006. URL: https://www.
rfc-editor.org/rfc/rfc4250.txt.

Leskovec, J. & Rajaraman, A. & Ullman, J. D. Mining of massive datasets.
Cambridge University Press, 2014.

Leung, K. & Leckie, C. Unsupervised anomaly detection in network intrusion
detection using clusters. Proceedings of the Twenty-eighth Australasian
conference on Computer Science, volume 38, pages 333–342. Australian
Computer Society, Inc., 2005.

Microsoft Corporation. Remote Desktop Protocol: Basic Connectivity and
Graphics Remoting. Technical Report, Microsoft Corporation, October
2016a. URL: https://msdn.microsoft.com/en-us/library/cc240445.
aspx.

72

Microsoft Corporation. Remote Desktop Protocol: File System Virtual
Channel Extension. Technical Report, Microsoft Corporation, July 2016b.
URL: https://msdn.microsoft.com/en-us/library/cc241305.aspx.

Oracle Corporation. Test, develop, and demonstrate across multi-
ple platforms on one machine. URL: https://www.oracle.com/
virtualization/virtualbox/resources.html, 2017. Accessed: 2017-
03-14.

Pedregosa, F. & Varoquaux, G. & Gramfort, A. & Michel, V. & Thirion, B.
& Grisel, O. & Blondel, M. & Prettenhofer, P. & Weiss, R. & Dubourg, V.
& Vanderplas, J. & Passos, A. & Cournapeau, D. & Brucher, M. & Perrot,
M. & Duchesnay, E. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Portnoy, L. & Eskin, E. & Stolfo, S. Intrusion detection with unlabeled data
using clustering. In Proceedings of ACM CSS Workshop on Data Mining
Applied to Security (DMAS-2001). Citeseer, 2001.

Ptacek, T. H. & Newsham, T. N. Insertion, evasion, and denial of service:
Eluding network intrusion detection. Technical Report, DTIC Document,
1998.

SIGKDD. KDD Cup 1999 Data. URL: https://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html, 1999. Accessed: 2017-01-20.

SIGKDD. 2014 SIGKDD Test of time award. URL: http://www.kdd.org/
News/view/2014-sigkdd-test-of-time-award, 2014. Accessed: 2017-
01-20.

SSH Communications Security Corp. CryptoAuditor. URL: https://www.
ssh.com/products/cryptoauditor/, 2017a. Accessed: 2017-03-14.

SSH Communications Security Corp. Universal SSH Key Manager.
URL: https://www.ssh.com/products/universal-ssh-key-manager/,
2017b. Accessed: 2017-03-16.

73

The IEEE and The Open Group. uuencode – The Open Group
Base Specifications Issue 7, IEEE Std 1003.1-2008, 2016 Edi-
tion. URL: http://pubs.opengroup.org/onlinepubs/9699919799/
utilities/uuencode.html, 2016. Accessed: 2017-03-13.

Turner, S. & Polk, T. Prohibiting Secure Sockets Layer (SSL) Version 2.0.
RFC 6176, RFC Editor, March 2011. URL: https://tools.ietf.org/
html/rfc6176.

Wagner, D. & Dean, D. Intrusion detection via static analysis. Security and
Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on, pages
156–168. IEEE, 2001.

Ylönen, T. & Lehtinen, S. SSH File Transfer Protocol. Internet-draft,
RFC Editor, October 2001. URL: https://www.ietf.org/archive/id/
draft-ietf-secsh-filexfer-02.txt.

Ylönen, T. & Lonvick, C. The Secure Shell (SSH) Protocol Architecture.
RFC 4251, RFC Editor, January 2006a. URL: https://www.rfc-editor.
org/rfc/rfc4251.txt.

Ylönen, T. & Lonvick, C. The Secure Shell (SSH) Authentication Protocol.
RFC 4252, RFC Editor, January 2006b. URL: https://www.rfc-editor.
org/rfc/rfc4252.txt.

Ylönen, T. & Lonvick, C. The Secure Shell (SSH) Transport Layer Protocol.
RFC 4253, RFC Editor, January 2006c. URL: https://www.rfc-editor.
org/rfc/rfc4253.txt.

Ylönen, T. & Lonvick, C. The Secure Shell (SSH) Connection Protocol. RFC
4254, RFC Editor, January 2006d. URL: https://www.rfc-editor.org/
rfc/rfc4254.txt.

Ylönen, T. & Turner, P. & Scarfone, K. & Souppaya, M. NISTIR 7966
– Security of Interactive and Automated Access Management Using Se-
cure Shell (SSH). URL: http://nvlpubs.nist.gov/nistpubs/ir/2015/
NIST.IR.7966.pdf, 2015. Accessed: 2017-03-16.

74

Zanero, S. & Savaresi, S. M. Unsupervised learning techniques for an intru-
sion detection system. Proceedings of the 2004 ACM symposium on Applied
computing, pages 412–419. ACM, 2004.

Zweig, M. H. & Campbell, G. Receiver-operating characteristic (ROC) plots:
a fundamental evaluation tool in clinical medicine. Clinical chemistry, 39
(4):561–577, 1993.

75

