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Abstract—A finite element method (FEM) formulation
is presented for the numerical solution of the electroelastic
equations that govern the linear forced vibrations of piezo-
electric media. A harmonic time dependence is assumed.
Both of the approaches, that of solving the field problem
(harmonic analysis) and that of solving the corresponding
eigenvalue problem (modal analysis), are described.

A FEM software package has been created from scratch.
Important aspects central to the efficient implementation of
FEM are explained, such as memory management and solv-
ing the generalized piezoelectric eigenvalue problem. Algo-
rithms for reducing the required computer memory through
optimization of the matrix profile, as well as Lanczos algo-
rithm for the solution of the eigenvalue problem are linked
into the software from external numerical libraries.

Our FEM software is applied to detailed numerical mod-
eling of thin-film bulk acoustic wave (BAW) composite res-
onators. Comparison of results from 2D and full 3D simula-
tions of a resonator are presented. In particular, 3D simula-
tions are used to investigate the effect of the top electrode
shape on the resonator electrical response. The validity of
the modeling technique is demonstrated by comparing the
simulated and measured displacement profiles at several fre-
quencies. The results show that useful information on the
performance of the thin-film resonators can be obtained
even with relatively coarse meshes and, consequently, mod-
erate computational resources.

I. INTRODUCTION

ACCURATE modeling of piezoelectric devices requires,
in general, the application of numerical methods. This
is due to the complexity of the piezoelectric equations that
describe the device and its loading conditions, rendering
analytical solutions of the equations for nontrivial 2D and
3D geometries exceedingly difficult. A general purpose,
computer-aided numerical method for predicting the be-
havior of a physical system in response to external loads is
the FEM [1]-[3]. The method is well established and has
been widely used in numerous engineering disciplines. The
general FEM formulation for linear piezoelectric materials
was elaborated by Allik and Hughes [4]. Since then, FEM
has been extensively applied in the simulation of piezoelec-
tric devices, such as ultrasonic transducers [5], [6], surface
acoustic wave (SAW) devices [7], [8], Lamb wave delay
lines [9], and BAW resonators [10]. In this paper, we em-
ploy FEM in simulations of thin-film BAW resonators.
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Fig. 1. Air gap and SMR composite thin-film BAW resonator con-
figurations. In an air-gap resonator, the structure is suspended from

both sides; in SMR, the resonator is fabricated atop an acoustic mir-
ror, which prohibits wave penetration into the substrate.
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Commercial, general purpose FEM software is often not
well suited to the analysis of piezoelectric devices; the se-
lection of elements and analysis types are commonly too
limited. Therefore, a customized FEM software has been
implemented, with matrix storage schemes and solution
algorithms chosen, keeping in mind the particular require-
ments posed by the modeling of thin-film BAW resonators.

Thin-film BAW technology promises small-size res-
onators and filters with GHz-range operating frequencies,
which are integrable with active RF circuits [11]-[13]. The
composite resonators considered in this paper are mem-
brane and solidly mounted resonator (SMR) configura-
tions, shown in Fig. 1. In membrane resonators, the acous-
tic cavity is formed as the wave reflects from the air inter-
faces above and below the resonator. The early membrane-
type composite BAW resonators [14], [15] were fabricated
by etching from the backside of the substrate, which limits
the number of components that can fit on the wafer. This
problem was solved by the air-gap type resonators, where
the air interface is formed by using either a sacrificial layer
[11] or etching the substrate below the resonator [16]—
both methods avoid the need for backside etching. Re-
cently, SMR configurations have emerged, where quarter-
wavelength thick layers—possessing alternately high and
low acoustical impedances—acoustically isolate the res-
onator from the substrate [17].

The main challenge in the design of thin-film resonators
is the suppression of side resonances that can be excited
around the frequency of the desired mode, e.g., the funda-
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mental longitudinal thickness mode. The spurious mode
content depends on the geometry of the device, such as
the thickness-to-width ratio. For large thickness-to-width
ratios, 1D modeling [18]-[21] is considered to be adequate.
For modeling in 2D, the mode-matching technique [22],
[23], the finite difference frequency domain method [24],
[25], and the FEM [26], [27] have been employed. 2D mod-
els are considered to be adequate for configurations with
narrow and long electrodes [28], such as monolithic crys-
tal filters (MCF). However, the electrode dimensions dic-
tated by electrical matching often are such that accurate
results do not warrant 1D or 2D modeling. Therefore, we
have studied the spurious resonances through full 3D FEM
simulations.

Although FEM tends to be computationally intensive,
the trend of constantly increasing speed and memory re-
sources of modern computers favors FEM over faster sim-
ulation techniques that rely on more restrictive simplifi-
cations and approximations. Because FEM is a strictly
numerical technique, it may provide somewhat limited in-
sight into the underlying physics. However, the strong ben-
efit of FEM is in its innate capability to accommodate
complicated geometries, different materials, piezoelectric-
ity, and full crystal anisotropy. Hence, only few simplify-
ing approximations are required, resulting in a precise and
flexible simulation technique.

In this paper, we briefly review the FEM formulation for
linear forced piezoelectric vibrations using two approaches:
1) the harmonic analysis in which sinusoidal excitation
and, consequently, sinusoidal variation of all of the fields
are assumed and 2) a modal analysis in which the gen-
eralized piezoelectric eigenvalue problem is solved, result-
ing in the natural frequencies and associated mode shapes
within the frequency range of interest. Next, implementa-
tion aspects are discussed, such as the memory manage-
ment method and solution algorithms, which are essential
for reducing the required computational effort.

The FEM analysis is applied to membrane-type res-
onator models, and it is found that only 3D modeling
permits detailed information on the pertinent rich mode
spectra. Next, the effects of the top electrode geometry
on the resonator behavior are studied, which also calls for
full 3D analysis. To validate the modeling technique, simu-
lated displacement profiles for resonators featuring square
and circular top electrode shapes are compared with those
measured from SMR using laser interferometry [29].

II. FINITE ELEMENT FORMULATION FOR LINEAR
FORCED VIBRATIONS OF PIEZOELECTRIC MATERIALS

The present section briefly summarizes the essential
equations in the FEM formulation for piezoelectric media.
For details, see [30], [31]. The governing equations are

VT +f = pii and (1)
V-D=o¢ (2)
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where p is the density [kg/m3], T is the mechanical
stress tensor [N/m?], f denotes the mechanical body force
[N/m?], D is the electric displacement vector [C/m?], u
is the mechanical displacement vector [m], and o abbrevi-
ates the (free) volume charge density [C/m?3].! The piezo-
electric constitutive equations that couple the mechanical
and electrical quantities in the piezoelectric material are
expressed using the abbreviated matrix notation as [32],
[33].

Tex1 = CeExs Sex1 +96T><3 Vax1 and (3)

D31 = e3x6 Sex1 — 5§><3 Vszxi1 (4)

where T is the stress column, S the strain column, ¢ the
electric potential [V], e the piezoelectric matrix [C/m?], ¢
the elastic stiffness matrix (evaluated at constant electric
field) [N/m?], and €% is the dielectric permittivity matrix
(evaluated at constant strain) [F/m]. The superscript T
denotes the transpose of a matrix. Because the velocity
of the electromagnetic wave is five orders of magnitude
higher than that of the acoustic wave, the quasi-static ap-
proximation E = —V¢ for the electric field E [V/m] may
be used in (3) and (4) with V = (9/021,0/0x2,0/0z3)7T.
The strain column is related to the mechanical displace-
ment vector u through

S = Vsu (5)
where
. _
o 00
0 Dg g
0 0 %
Vs = 0 2 s (6)
6223 6372
02 0 2
653 9 Bxl
(25 9er O

For a unique solution, the mechanical (for displacement
or stress) and electrical (for electric potential or electric
displacement) boundary conditions need to be imposed on
the entire boundary of the problem domain. The boundary
conditions, together with (1)—(6), then completely deter-
mine the motion of the piezoelectric material. Alternative
equivalent representation of this boundary value problem
is in terms of Hamilton’s variational principle [34], [35].
This is especially useful in the derivation of various ap-
proximate formulations (see [36] and [37]).

A. Discretization

Consider a volume V constituting the problem domain
as illustrated in Fig. 2 for a BAW resonator. In FEM,
the physical problem domain V is discretized, i.e., subdi-
vided into small elementary volumes called elements. The
continuous field quantities—the three components of the
mechanical displacement u;, ¢ = 1,2,3 and the electric

IWith o = 0 as an insulating material.
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Fig. 2. Simple BAW resonator defining the problem domain V. For
clarity, only the part of the volume-element mesh located on the
boundary S of volume V is shown. The boundary S with unit out-
ward normal n; is divided into two parts: the part covered with
electrodes Se and the remaining non-metalized part S,. The piezo-
electric material (white) is between two electrodes (gray).

potential ¢—are approximated in each element through
linear sums of interpolation functions (shape functions):

uv(r) = Z aiij(r)ﬂ 1= 172337
=1
o (7)
¢(I‘> = Zl bJ]VJ(I'>7 rec Ve.
J:
Here r = (x1,22,23)7 is the position vector, n is the

number of specific so-called “node points” of the element,
and a;; and b; are the displacement and electrical degrees
of freedom (DOF), respectively. The DOFs are the un-
knowns, whose values finally result from the solution of
the FEM equations.

In (7), Nj(r) = N;(z1,x2,x3) are the shape functions
(chosen to be polynomials) associated with the element,
and they satisfy the interpolation property

Nj(r;) = Nj(xin, xi2, Ti3) = 045, 4, =1,...,n

(8)

where r; is the location of node point ¢, and d;; is the
Kronecker delta. This implies that the DOFs equal the
values of the field variables at the nodes.

In matrix form, (7) may be expressed as

u(r)sx1 = Nu(r)sxsnasnxi, ¢(r) = Np(r)ixnbnxi

(9)

where Ny (r) and Np(r) are matrices of shape functions
and a and b are the column vectors of mechanical and
electrical DOFs, respectively.
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B. Finite Element Equations

The element equations in matrix form are [4], [31], [38]

kuu kug| |2 " my, 0] [8
ki, ks | |b 0 of|b

: - s e (10)
+ [guu 0] [a] _ I:Fb+1':n+P:p]
0 0] [b Qb+ Qn+ Qp
where
Kuy = / BlcB,dV
kyg = / Ble'BydV
Kpp = — / B, eB,dV
My, = / PNINdV
guu = /BET}BudV
(11)

o= f NTt,dS

Fp = / INR A%

Fp = Z Nz(rpj)fpj
Qn=-— 7{ N} qdS
Qp=-— / N} odV

Qp =- Z NITn(rpj)Jpj~

Here, f5,, is the mechanical point force at position rp,
op;j is the point charge at the position rp,, tn, =
(Z?:l Tijn;, 2321 Thin;, 2?21 Ts;n;)T is the mechani-
cal surface force (the traction) (7j; is the stress tensor
element and n; is the jth component of the unit outward
normal to the element boundary), and ¢ = —D,, = —D;n,
is the inward-normal component of the electric displace-
ment on the element boundary. In (11), the definitions
B, = VsNy and By = VN, are used. The frequency-
dependent mechanical damping is introduced through
damping matrix gu,, where 17 denotes the viscosity matrix
[Ns/m?] [39]. Alternatively, frequency-independent me-
chanical, electric, and piezoelectric losses may be modeled
by using complex material constants [40], [41].

These equations apply for each element. The equations
describing the whole system, the so-called system equa-
tions, are assembled by evaluating contributions of the
form of (10) and (11) from each element and adding each
matrix element to the appropriate location in the global
mass, mechanical stiffness, piezoelectric, dielectric, and
damping matrices. The assembly of the system equations
is, effectively, the enforcement of continuity of the solution
at the interelement boundaries [1]. The form of the result-
ing linear system of equations to be solved, describing the
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whole system, is the same as that of (10). For a mesh with
N nodes, the total number of equations is 4N, with N
equations for each field variable.?

C. Boundary Conditions

On the entire boundary of the domain (S in Fig. 2), one
needs to define either a natural or an essential boundary
condition (BC). For the mechanical quantities, these are
expressed, respectively, as

3
(tn)i = Y Tinj — Y (For)id(x — tpi) = (En)i
3=1 k (12

~—

or

u; = U; on S. (13)
Here, f;; is the mechanical point force at position rp; on
the surface S and § is the Dirac delta function. The sum
k is over the point forces. Furthermore, u; and (ty,); (with
1 =1,2,3) are the prescribed components of displacement
and surface traction, respectively, and n; denote the com-
ponents of the unit outward normal to the domain bound-
ary.
The electrical BCs are expressed through

3
==Y Dinj =Y ppd(r—1pr) =Dn  (14)
=1 k
or

¢=¢ons, (15)
where ¢ is the prescribed potential, and ppk denotes the
point charge at position rpr on the surface S. The sum
k is over the point charges. On the dielectric part of the
boundary (S, in Fig. 2), D,, is the prescribed inward nor-
mal component of the electric displacement. On the part
of the piezoelectric material boundary covered with elec-
trodes, D,, is replaced with the prescribed surface charge
density 7.

In the 2D case, the field variables are assumed indepen-
dent of the xo-direction, i.e., we are considering straight-
crested waves. Hence, the 2D case is obtained readily
by setting all of the derivatives with respect to xo to 0

(8%2 = 0) and replacing the volume and surface integrals,
respectively, with surface and line integrals. The line inte-
gral then extends over the boundary of the element in the
counterclockwise direction. In addition, in 2D modeling,
we usually take the x5 displacement to vanish such that

the motion is in the plane only.

2 Application of the essential boundary conditions is implemented
through appropriate manipulation of the matrices in the system
equations involving the removal of matrix rows and columns. Hence,
the number of equations to be finally solved is usually less than 4N.
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III. HARMONIC ANALYSIS

For the time harmonic case, sinusoidal variation of the
physical quantities is assumed, i.e., a, b o< e™*. Then, after
application of the BCs, the resulting system equations may
be represented by

K%u Ku¢ Kur KuQ a
Kus Koo Kor Koq || b |

MUUOMUFO a
0 0 0 O||Db

Ko KTo Kep Krq | |ap | [MZ, 0 Mgr 0| | ap
Klq Klq Kfq Kaq] [P 0 0 0 0f|bg
Guu 0 Gur 0] [ a F
w0000 ib_|Q
GEF 0 GFF 0 afp FF
0 0 0 0] |bg Qq

(16)

The FEM equations in (16) are partitioned such that those
rows and columns corresponding to DOFs with an essen-
tial BC imposed are grouped together (submatrices with
subscripts F and Q). The column vectors of prescribed
nodal displacement and potential are ap and bq, respec-
tively. The column vectors F and Q, respectively, are those
of mechanical force and electric charge. From the first two
equations, the FEM equations to be solved may be ex-
pressed compactly as

(K — w’M +iwG| x = Fyo (17)
where
- [Kuu Kuﬂ _ {Muu 0}
_KE¢ Kgg |’ 0 0|’
G = Gg“g] ,X = [lj , and
= lg] - ([ 1) "

Mur O Gur O a
2 uF . uF F
[ [5ma]) )
The electromechanical stiffness matrix K is indefinite; the
mass matrix M is positive semidefinite [42].
In harmonic analysis, (17) is solved for the unknowns
x—the displacement and potential DOFs at the given fre-

quency w. From the solution, the element stress and elec-
tric displacement may be further obtained as

T = cBya + e"Byb and
D =eBya—eBgb,

respectively.
A. Admittance
The admittance Y is obtained through dividing total

charge @ on an electrode by the amplitude of the driving
voltage V:

(21)
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The total charge on the electrode is computed as a sum
of nodal charges. Inserting the solved DOFs into (16), the
so-called vector of reactions [Fg Qg]" is obtained. Here,
Fg is the nodal force at the nodes with fixed displacement,
and Qq is the nodal charge at nodes with fixed potential.
The total charge on a given electrode is computed through
summing the nodal charges:
Q=-TQq (22)
where I.; is a vector with unity at positions corresponding
to those electrical DOF's that belong to the given electrode,
and zeros elsewhere. The minus sign results from the defi-
nition of the current as positive into the piezoelectric body.
Computing the frequency response (e.g., admittance
vs. frequency) requires the solution of the FEM equa-
tions at each of the desired frequencies. An alternative
approach exploits the fact that the solution can be repre-
sented through a superposition of only a limited number
of relevant modes that are excited in the frequency range
considered [1], [43]. This approach involves the solution of
the natural frequencies of the structure and the associated
eigenmodes and is described in the next section.

IV. MODAL ANALYSIS

In modal analysis, the generalized piezoelectric eigen-
value problem formed by setting the load vector Fpg
and damping matrix G equal to zero in (17) is solved
for the eigenpairs, i.e., eigenvalues (resonance frequencies)
and eigenvectors (mode shapes). We consider mainly the
case of voltage loading, i.e., one electrode is electrically
grounded, and a sinusoidal voltage with prescribed con-
stant amplitude is connected between the grounded and
“hot” electrode. Solution of the eigenvalue problem then
results in series resonance frequencies (short-circuited elec-
trodes) at which the electrical impedance assumes low val-
ues. The parallel resonance frequencies with large values of
impedance can be obtained from the open-circuited case
[30], [44]. For the open-circuit boundary conditions, the
potential is set constant on the “hot” electrode, but not
fixed (floating potential).?

In practice, because of increased computing times, it
is not possible to solve for all of the eigenpairs for large
problems. Instead, the modes are only computed in the
frequency range of interest, e.g., in the vicinity of the fun-
damental thickness extensional mode. Because only part of
the modes are taken into account, the electrical and me-
chanical responses obtained with modal analysis are ap-
proximations of those computed with the harmonic anal-
ysis.

3The piezoelectric material between the two electrodes also forms a
waveguide for electromagnetic waves. The assumption of a uniform
potential on the electrodes implies that 1) the frequencies are low
enough, such that the wavelength of the EM wave propagating in the
waveguide is much larger than the lateral dimensions of the resonator
and 2) the electrode is a perfect conductor.
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A. Generalized Piezoelectric Figenvalue Problem

The derivation of the subsequent equations closely fol-
lows that in [45]. Assuming harmonic motion and no damp-
ing, (16) takes the form

Kuu Ku¢> KuO Muu 0 MuO
KE¢ K¢¢ K¢0 — w2 0 0 O X
K, Kgo Koo ML, 0 Moo
a F
bl=|Q| 3
€o Fr
where, using the submatrices in (16),
Kuo = [Kur Kug] Kgo = [Ker Kgq]
_ |Krr Krq _
Koo = |:KEQ Ko M,o = [Myr 0]
M - MFF 0 en — ag (24)

In (23), Fg is the vector of reactions. The first two equa-
tions in (23) may be written as

<[II§:3 E:ﬂ - w? [1\/{)@ gD [i] - {gﬂ (25)
where

Fo F Kuo 2 [Muo
= — — 26
ool = la] - ([ - [ e
is the equivalent load that converts the applied displace-
ment and voltage loading to mechanical force and electri-

cal charge on the nodes of the FEM mesh. The associated
generalized eigenvalue problem is

SRR

where u = [uy uj]" is the matrix of eigenvectors (mode

shapes) corresponding to the mechanical DOFs; [Q?] de-
notes the diagonal matrix of the corresponding eigenvalue
spectrum. The electrical DOF's have zero mass and, con-
sequently, infinite eigenvalues associated with them [45];
the eigenvectors corresponding to electrical DOFs may be
neglected. The eigenvectors are normalized:

Kuu Kud)

T T
u,Myguy =1I; u
{Km Koo

] v (28)

The unknown mechanical and electrical DOFs at the fre-
quency w can be expressed in terms of the solved eigen-
vectors and eigenvalues.
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B. Mechanical and FElectrical Response

For voltage excitation, one electrode is grounded, and a
potential ¢ is imposed on the “hot” electrode. Then, the
displacement vector may be written as

n
a=> - % (29)
w? — w? + injw
j=1
and the potential vector may be written as
n
uy, pH;
b= —_ 30
;w-—wz—l—mw * ¢¢QO (30)

In (29) and (30), u,, and uy, are, respectively, the me-
chanical and electrical parts of the eigenvector correspond-
ing to the eigenvalue w;, and

_1 uuT FO
Hj_;|:u¢:|j |:Q0:|.

In the denominators of ( 9) and (30), damping is intro-
duced through term mjw where 77; describes the strength
of damping in mode j.

Inserting a and b into (23), Fgr, the column of reactions,
can be computed. The total charge on the electrode at the
potential ¢ is obtained through summing the nodal charge:
Qr = —IgFR, where 1;5 is a row vector with unity at the
positions corresponding to the electrical DOFs associated
with nodes on the electrode at the potential ¢ and zeros
elsewhere. The admittance may be expressed as

(31)

) 4iwC, (32)
jz::l w - w2 + injw 2
where the modal constants M, defined as
Uy
My -0 [KEKL] [0 B @)
j

indicate the contribution of mode j to the electrical re-
sponse [45], [46]. The shunt capacitance C, is given by

Cp= —élg [Kooeo + KoK, Qo (34)
For the case F = Q = 0 in (23) and with the prescribed
values of mechanical DOF's in the vector e, equal to zero,
one obtains M; = H;. As already mentioned, the admit-
tance in (32) approximates that obtained using the har-
monic analysis approach in the case that only part of the
modes are included in the sum, i.e., if n < N,, where N,,
is the total number of free mechanical DOFs (number of
elements in the column vector a). The same holds for the
solved displacement and potential in (29) and (30), respec-
tively.
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Fig. 3. Extended Butterworth Van Dyke lumped element equivalent
circuit of a BAW resonator [20].

C. Equivalent Circuit Representation

Consider the extended Butterworth Van Dyke lumped
element equivalent circuit of a BAW resonator [20] shown
in Fig. 3. Each branch contains a resistor, an inductor, and
a capacitor, representing a resonance in the frequency re-
sponse of the resonator. The admittance of the equivalent
circuit is

w

Ly

3

Y(w) =
j=1

+ iwCy.

J 35
Lmj ( )

2 .
— =Wt w
Lmjcmj

Defining the unloaded quality factor of the series resonance
as Qs; = 1/(w;jCmjR;) [20], gives R;j/Limj = w;/Qs;.
Comparing (32) and (35) allows one to express the equiv-
alent circuit elements in terms of the FEM modal analysis
parameters:

M;
Oy = (36)
1
Lmj =5 (37)
J
o winy 1
R; = T Qsj = " (38)
1
wj = (39)

\V Lmjcm,j '

The intensity of modes is commonly evaluated using the
effective piezoelectric coupling coefficient [38], [42]:

hegrg =/ 252 (40)

with w,; and w;, respectively, denoting the parallel and
series resonance frequencies (antiresonance and resonance
frequencies). In the idealized case of only one excited
mode, say mode j, the parallel resonance frequency wy;
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can be found by omitting other terms in the sum appear-
ing in (32), except the one corresponding to mode j, and
setting the admittance equal zero. Omitting the damping
factor yields

M
Wpj = w?- + F; (41)
Substitution into (40) leads to
Chnj M;
[ Y 42
Y] Cp w]ch ( )

relating the effective coupling constant k.g ; and modal
constant M;.

V. COMPUTER IMPLEMENTATION

The main features of our FEM software are 1) the use
of 2D quadrilateral elements with cubic and 3D brick el-
ements with quadratic interpolation polynomials for im-
proved accuracy of the results, 2) skyline storage scheme
utilizing the characteristic sparse structure of the consis-
tent mass matrix, and 3) use of the spectral transforma-
tion Lanczos method for efficient solution of the general-
ized piezoelectric eigenvalue problem. For creation of 2D
resonator models, we have developed a separate prepro-
cessor program. For 3D models, the computational mesh
needs to be created using a commercial preprocessor pro-
gram. The 3D FEM meshes of resonators modeled in this
paper are created using the preprocessor of the commer-
cially available ANSYS software. For the postprocessing,
e.g., visualization of the computed fields and mode shapes,
postprocessing programs both for 2D and 3D geometries
have been coded. The software is implemented in the C
language, although it uses several numerical subroutine li-
braries programmed in Fortran (such as BLAS, LAPACK,
and ARPACK [47]).

Our FEM solver is based on the approach of [1], which
is extended appropriately to model piezoelectric materi-
als. The integrals in the element equations (10) are eval-
uated numerically using Gauss-Legendre quadrature. The
order of quadrature may be chosen in the range from 1
to 5. Currently, for 2D modeling, quadrilateral elements
up to cubic and, for 3D modeling, linear and quadratic
brick elements have been implemented. All of the ele-
ments are of serendipity type, i.e., the nodes are located
on the boundary of the element. The shape functions are
mapped from the parent element on real elements in the
actual mesh (isoparametric elements), allowing for curved
element boundaries. The vectors required for the compu-
tation of the reactions, e.g., Ig [KEO Kgo] and IgKooeg
in (33) and (34), respectively, are computed at the assem-
bly phase without need to form the full matrices in (16)
and (23). The materials properties are defined through the
full stiffness, piezoelectric, dielectric, and viscosity con-
stant matrices. In harmonic analysis, local non-uniform
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damping may be modeled by spatially varying the viscos-
ity constants.

The application of essential BCs involves modification
of the right-hand side in the system equations, as is evi-
dent in (18) and (26). The rows and columns associated
with the DOFs, where an essential BC is imposed, may
be removed from the matrix equations to be solved. The
program allows for sets of nodes to be coupled, i.e., a spec-
ified field variable is forced to assume the same value on
the coupled nodes. Then, all but one of the corresponding
DOFs may be eliminated from the system equations, thus
slightly reducing the computational task. After the solu-
tion, the value obtained for one remaining DOF is copied
to the rest of the DOFs in the coupled set. This is con-
venient, e.g., in defining the driving voltage between two
electrodes under the assumption that the potential does
not vary over the electrode. Also, configurations involving
electrodes without a fixed potential, such as monolithic
crystal filters and stacked crystal filters [17] can be mod-
eled. Floating electrodes are treated by coupling the po-
tential of the nodes belonging to the electrode but leaving
the value of the potential undetermined; the electrode po-
tential is obtained via the solution of the FEM equations.

A. Skyline Matriz Storage Scheme

The FEM matrices in (17) and (23) are sparse, sym-
metric, and banded, i.e., most of the elements equal zero,
and the nonzero elements are grouped close to the diago-
nal of the matrix. This results from the local connectivity
property of the FEM, as opposed to the global connec-
tivity, e.g., in boundary element method, which leads to
dense matrices. The assembly of the global FEM matrix
from the element contributions is illustrated in Fig. 4. Be-
cause there are four field variables to be considered, each
node corresponds to four rows and columns in the FEM
matrices. Node i is connected to all of the nodes in those
elements that share node ¢. Hence, in the example shown in
Fig. 4, e.g., node 13 is connected to nodes 1-8, 12, 1415,
17, 18, 20, 21, and 28-31, resulting in non-zero elements
at locations shown in dark gray. Because of symmetry, it
suffices to save only the upper or lower triangular part.

The sparsity structure of the electromechanical stiffness
matrix K is shown in an expanded view of Fig. 5. In the
conventional skyline (envelope) scheme applied to the stiff-
ness matrix, the elements in each column are stored from
the diagonal element until the last non-zero element above
the diagonal. For the mass matrix, a modified scheme
[48] is utilized that exploits its specific structural pattern
shown in Fig. 6. The non-vanishing elements are located
on the diagonals of 3 x 3 submatrices; most of the zeros
inside the envelope are not stored. The reduction in the
number of the stored elements also reduces the number of
computational operations, resulting in savings in the exe-
cution time.

To minimize the execution time and memory require-
ments, it is essential to arrange the DOFs in the FEM
equations such that the number of elements within the
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Fig. 4. FEM mesh (left) and the corresponding structure of the electromechanical stiffness matrix K (right). The grid in the graphical
representation of the K matrix divides it into 4 X 4 submatrices. The nodes coupled to node number 13 are denoted with crosses in the
FEM mesh. The non-zero elements associated with node 13 in the K matrix potentially are presented in dark gray. Instead of the ordering
of the DOFs explicit in (17) and (23), i.e., all of the mechanical DOF's precede the electrical DOFs, the mixed ordering reported in [50],
which decreases the matrix bandwidth, is used here: the mechanical DOFs of each node are followed by the electrical DOF of the node.

skyline (matrix profile) is minimized. Prior to the assem-
bly of the system matrices, the node numbering and/or
order of the DOFs in the K matrix are optimized with re-
spect to the matrix profile using the Gibbs-King algorithm
[49].% The effect of optimization of the node numbering us-
ing the Gibbs-King algorithm on the structure of the elec-
tromechanical stiffness matrix K is plotted in Fig. 7 and
8, showing the significant reduction in the matrix profile.

B. Solution of Generalized Eigenvalue Problem

In the modal analysis, the eigenvalues and eigenvectors
of the generalized piezoelectric eigenvalue problem result-
ing from the FEM formulation are solved using a variant
of the Lanczos algorithm, as implemented in the numerical
ARPACK library [47]. The efficiency of the method results
from the fact that the algorithm retains the banded sparse
structure of the stiffness matrix, in contrast to the conven-
tional method, which uses a static condensation technique
[4], [30] to eliminate the electric potential DOFs from the
equations prior to the solution of the eigenvalue problem
[48]. The spectral transformation Lanczos algorithm com-
putes the given number of eigenpairs whose eigenvalues
are in the vicinity of a given limit w?. Before the iteration
starts, the matrix K —w2M is formed and factored. In the
iteration process, the two major operations required are
1) solution of a linear system of equations with the prefac-
tored coefficient matrix and 2) multiplication of the mass

4The DOF ordering shown in Fig. 4, 5, and 6 is that before the
optimization.

matrix with a vector.® The solution technique used allows
for an efficient computation of the resonance frequencies
(eigenvalues) and mode shapes (eigenvectors), especially
for resonator configurations that involve narrow matrix
bandwidths [50]. This is the case for 2D models of the thin
and wide BAW composite resonator structures considered
here.

VI. FEM SIMULATIONS OF THIN-FILM RESONATORS

We apply the FEM modeling software to the analysis of
the vibration characteristics of membrane type thin-film
resonator configurations. The response of the resonator
considered is characterized by using the modal analysis
approach to compute the resonant frequencies, displace-
ment profiles, and excitation strengths of the modes in the
vicinity of the fundamental thickness extensional mode. In
thin-film resonators, the thickness of electrodes can be sig-
nificant in comparison with the total thickness of the res-
onator. Consequently, ignoring the electrodes or including
them in the model merely as additional mass loading, as is
done in various plate theories for piezoelectric resonators
[36], [37], may result in an inaccurate description. More-

5In the Lanczos method described in [48], [50], Cholesky factor-
ization of the mass matrix is required. This will retain the structure
of the mass matrix shown in Fig. 6, but many of the zeros on the
diagonals of those 3 X 3 submatrices, which are inside the envelope,
would be replaced by non-zero elements. Because a factorization of
the mass matrix is not required here, the storage method of the mass
matrix could be further improved through saving only the non-zero
elements. In this case, e.g., the elements at positions 362, 373, and
384 in Fig. 6 would not be saved.
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Fig. 8. Skyline of the K matrix for a 3D FE model with optimization
of the node numbering using the Gibbs-King algorithm.
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Fig. 9. Materials and dimensions of the membrane BAW composite
resonator [53] modeled.

over, the support layers in membrane configurations and
the layers in the acoustic mirror in SMR are comparable
with the thickness of the piezoelectric. The situation is
similar to ultrasonic transducers with matching and back-
ing layers. For their modeling, 3D FEM is widely used
[6], [38]. However, the 3D FEM can be computationally
exceedingly intensive. To reduce the computational load,
laminated plate theories have been suggested for the mod-
eling of thin-film resonators [51], [52], involving the reduc-
tion of the 3D equations into 2D through integration over
the thickness direction. However, the plate theories pro-
vide accurate results only for certain modes within limited
frequency ranges. Therefore, we use full 3D FEM, but with
relatively coarse meshes to reduce the required computa-
tional costs.

For accurate results, a sufficient number of nodal points
per wavelength in the highest mode of interest needs to be
used in the computational mesh—the number decreases
with increasing order of interpolating polynomials used for
the element. Choosing the number of elements in the thick-
ness direction such that the thickness mode is accurately
modeled and keeping the element aspect ratio small would
require a large number of elements in the lateral directions
because of the thin and wide structure of the thin-film
resonators. However, because of the relatively large lat-
eral wavelength of the anharmonic thickness extensional
modes close in frequency to the fundamental mode, rela-
tively coarse element division in the lateral direction can
be used. The higher order elements are less affected by
the large element aspect ratios, and, in our simulations
with quadratic 3D elements, no numerical problems were
encountered.

A. Comparison of 2D and 3D Simulations

First, we study the resonator reported by Milsom et al.
[53], which they have modeled with the mode-matching
method. The 2D cross-section of the resonator configura-
tion is shown in Fig. 9. Because of symmetry, in 3D mod-
eling, it suffices to perform the computations using only
one quadrant of the actual resonator and to impose ap-
propriate boundary conditions on the symmetry planes.
Simulations in 3D are carried out with 20-node quadratic
3D brick elements. The element division in the lateral di-
rections is regular 14 x 14 elements per side. The number
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of elements in the thickness (z) direction in the Si, Al,
7m0, and Al layers is 1, 1, 2, and 1, respectively, with the
largest element aspect ratio in the mesh being 125. In 2D
simulations, plane-strain elements are employed, i.e., the y
dimension is assumed infinite. Air loading is neglected, and
the models are truncated on the edges of the membrane,
demonstrating one of the shortcomings of FEM—the diffi-
culty in modeling open boundary problems. Several tech-
niques have been proposed for alleviating this problem,
such as the infinite element approach [54], [55]. In har-
monic analysis, the effect of the wave reflections from the
model edges can be reduced by introducing a region with
strong damping at the membrane edges. Here, we simply
impose zero displacements on the artificial boundary re-
sulting from the truncation, which is an approximation to
the actual BC. However, this introduces only minor mod-
eling errors in case of trapped modes, where the displace-
ments on the boundary are negligible. The potential of the
upper electrode is assigned the value 1V, and the bottom
electrode is grounded. On the non-metalized boundaries
of the problem domain, the BC D,, = 0 is implicitly as-
sumed (no electric flux leakage). Actually, D,, should be
continuous across the non-metalized part (for insulating
materials) of the boundary rather than zero. However, the
approximation is fair for piezoelectric materials with either
a weak piezoelectric coupling (as for quartz) or a high di-
electric constant [22]. For certain geometries, materials,
and modes, flux leakage acts to slightly decrease the reso-
nance and antiresonance frequencies, but can affect more
considerably the effective coupling coefficient of the mode
[c.f., (40)] [42]. The resonator model is always an idealiza-
tion of the actual structure, which can feature imperfec-
tions affecting the resonator behavior. Moreover, as FEM
derives the device behavior directly from the device geom-
etry and materials constants, the accuracy of the results
also depends on the precision to which these parameters
are known.

The modal constants in (33) together with the admit-
tance in (32), computed for the 2D and 3D models are dis-
played in Fig. 10 as a function of frequency. It is seen that
the fundamental thickness extensional mode, with large
average displacement in the z direction at the frequency
221.3 MHz in the 2D case and 221.8 MHz in the 3D case,
is most strongly excited. The frequency of the main reso-
nance computed with the 3D model is slightly higher than
that computed with the 2D model because of the low num-
ber of elements in the thickness direction used in the 3D
model—the result is not quite fully converged. Several ad-
ditional responses or side resonances can be recognized in
the vicinity of the main resonance. The unwanted modes
present in the frequency response degrade the usability
of the resonator. Above the main resonance frequency, the
weaker spurious modes are associated with the anharmonic
thickness extensional modes (resonances in the lateral di-
rection caused by reflections of Lamb waves on the edges
of the electrode [56]). The generation of the plate waves
can be attributed to the electrode edges. To satisfy the BC
at the electrode edge, thickness extensional modes with a
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Fig. 10. Modal constants and admittance vs. frequency computed
with modal analysis for the 2D and 3D models of the membrane
BAW composite resonator. The admittance computed with a 1D
model cannot model the parasitic resonances.

non-vanishing lateral component of the wave vector are
required. It is clearly seen, by comparing the 2D and 3D
results, that the 2D model is not adequate to model the full
anharmonic mode content; the 3D model predicts stronger
and richer mode spectrum than the 2D model.

The various modes are characterized through their elec-
tric and mechanical field profiles. The mechanical field pro-
file is obtained from the mechanical part of the eigenvector.
The mode shapes at the main resonance and at selected
spurious resonances for the 2D model are shown in Fig. 11.
The displacement profiles [computed with (29)] obtained
with 3D simulations are plotted at selected resonances in
Fig. 12. For the mode in Fig. 11(c), the charge (current)
distribution on the upper electrode is also displayed. The
electrode effectively integrates the current distribution, re-
sulting in an average current [21]. Hence, the modes with
a net current distribution summing up to zero cannot be
excited by the applied voltage loading, e.g., in the 2D
case, the anharmonic thickness extensional modes with an
even number of current (and displacement) maxima across
the electroded region are not electrically excited. In other
words, because of the symmetry of the resonator geome-
try, the applied loads, and the materials properties, only
symmetric modes can be excited. Both the resonance fre-
quencies and the mode shapes computed with the 2D FEM
agree well with those predicted in [53].

All of the plotted modes exhibit energy trapping into
the top electrode region, and, hence, the BC of zero dis-
placement at the edges of the membrane is an accurate
approximation. Because of the large width-to-thickness ra-
tio of the resonator, Lamb waves propagating in infinite
plates can be used to interpret the trapping of the modes.
Because the resonance frequency of the mode is above the
cut-off frequency of the associated Lamb wave mode for
the electroded region, the wave can propagate in the elec-
troded region in the lateral direction (the component of the
wave vector in the lateral direction k, is real). However,
the resonance frequency is below the cut-off frequency in
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Fig. 11. Modal displacement fields at the selected resonances for the
modeled BAW resonator (left half; the right half is symmetric). The
arrow marks the edge of the top electrode. The grayscale indicates
the lateral displacement. For one of the modes (c), the current dis-
tribution in the top electrode is also plotted. The lateral and vertical
dimensions are not to scale.

the non-metalized region (imaginary lateral component of
the wave vector), where an exponential decay of the wave
amplitude results [57]. We have computed the cut-off fre-
quencies of \/2 thickness extensional mode to be 221.1 and
228.2 MHz in the metalized (short-circuited) region and
non-metalized region, respectively. Because of the energy
trapping, the loss mechanism associated with the Lamb
waves carrying acoustic energy away from the resonator is
suppressed, giving rise to low losses and high Q values.

B. Influence of Top Electrode Shape

To investigate the effect of the top electrode shape on
the resonator response, in general, full 3D simulations are
required. Here, we consider the cases of square, circular,
and irregular quadrilateral top electrodes (see also [58]).
FEM is validated by comparing the simulated displace-
ment profiles with those measured for SMR resonators
with a laser interferometer [29]. The laser probe is de-
scribed in detail in [59].

Each resonator model consists of a 400-nm thick molyb-
denum bottom electrode, a 2050-nm thick ZnO layer, and
a 400-nm thick aluminum top electrode. The thickness of
the ZnO layer is chosen such that the measured and sim-
ulated series resonance frequencies for the resonator with
a square top electrode are equal. The top and bottom sur-
faces are stress free, and the edges of the plate are fixed.
The distance from the electrode edge to the fixed plate
edge for models with square and circular top electrodes is
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Fig. 12. Simulated displacement profiles at the selected resonances
for the 3D model of the resonator. For clarity, only one-half of the res-
onator is shown; the other half is symmetric. The grayscale indicates
the vertical (z) displacement. The displacements between different
frequencies are not to scale.
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Fig. 13. Lateral element divisions of FEM meshes for the resonators
with square and circular top electrodes. The meshes cover only one
quadrant of the complete resonator. The edge of the electrode is
indicated with the thick line.

30 pm. The area of the top electrode in all of the configu-
rations is 40 000 ym?.

The number of elements in the thickness (z) direction in
the molybdenum, the ZnO, and the aluminum layers is 1,
3, and 1, respectively. The lateral discretizations in FEM
for the resonators with square and circular top electrodes
are shown in Fig. 13.

1. Square Top Electrode. The model covers one quad-
rant of the actual resonator, and the symmetry BC are
imposed: z- and y-components of the displacement vec-
tor vanish on the yz- and xzz-symmetry planes, respec-
tively. The simulated and measured displacement profiles
on the top surface of the resonator with square top elec-
trode are plotted for several frequencies in Fig. 14. In the
computation of the displacements, the quality factor (Q)
of 1500 is used for all modes [i.e., Qs; = 1500 in (38)].
This value yields appropriate separation of the modes to
match the measured mode shapes. In Fig. 14 through 17,
the gray scale is such that the largest normalized mag-
nitude of the z-displacement in each figure is indicated
in white, and the lowest one is indicated in black. Similar
displacement profiles for resonators with AIN as the piezo-
electric and rectangular top electrode have also been mea-
sured by other authors and have been obtained with the
atomic-force-microscope-based technique [60] and by laser
interferometry [61], [62]. The ripple with a short spatial
period observed in the simulated and measured displace-
ment profiles is attributed to the standing wave pattern of
high order anharmonic thickness shear modes. The funda-
mental frequency of these modes is below the operational
frequency of the resonator considered here. However, the
resolution of the computational mesh in Fig. 14 is not ade-
quate to accurately model waves of such short wavelengths.

2. Clircular Top Electrode. The case of a circular top
electrode is simulated both with quadratic 3D and 2D ax-
isymmetric elements. The measured and simulated mag-
nitudes of the z-displacements obtained with 3D elements
and 2D axisymmetric elements are illustrated in Fig. 15.
Here, a @Q-factor of 1000 is used for all modes. The mea-
sured frequencies are somewhat lower than those simu-
lated, because, most probably, the ZnO layer in the mea-
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Fig. 14. Simulated (left) and measured (right) magnitudes of the
z-displacements for the resonator with a square top electrode.
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sured resonator with circular top electrode is thicker than
that in the resonator with square top electrode.

3. Quadrilateral Top Electrode with No Parallel Sides:
It is suggested in [63], that irregular top electrode shapes
could decrease the strength of the spurious modes. To test
for this, the electrical response of a resonator featuring
quadrilateral top electrode with no parallel sides has been
simulated. The lateral element division in the FEM mesh
is shown in Fig. 16. The simulated magnitudes of the dis-
placement components in the z-direction on the top sur-
face of the resonator as functions of frequency are plot-
ted in Fig. 17. It is seen in Fig. 17(c, d, and e), that the
mode with three displacement amplitude maxima across
the electrode in the y-direction occurs first at the right-
hand end of the electrode. As the frequency increases and
the wavelength decreases, this amplitude profile moves to-
ward the left, where the shorter electrode dimension in the
y-direction is capable of supporting the mode. In Fig. 17(a,
b, and f), regular displacement profiles are seen with 1 x 1,
2x1, and 4x 2 vibration amplitude maxima in the z- and y-
directions, respectively, with the number in the x-direction
given first.

The static capacitances computed with FEM are
1.770 pF for the square; 1.764 pF and 1.755 pF for the
circular top electrode configuration obtained with 3D el-
ements and 2D axisymmetric elements, respectively; and
1.797 pF for the quadrilateral top electrode shape with
no parallel sides. Fig. 18 shows the simulated frequency
responses for the three top electrode geometries. Strong
side resonances caused by anharmonic thickness exten-
sional modes are observed at frequencies above the fun-
damental thickness extensional mode (approximately at
1060 MHz). Comparing the response of the irregular top
electrode with those simulated for the square and circular
top electrodes, it can be seen that, for the irregular top
electrode, the onset of the strong side resonances occurs
at a higher frequency, and the frequency spacing of the
side resonances is larger. However, the response still shows
spurious resonances with strengths approximately equal to
those present in the responses simulated for square and
circular top electrode shapes. Furthermore, the series res-
onance Q-factor in the case of the irregular top electrode
can be seen to be slightly lower than in the cases of rect-
angular and circular top electrodes. Using 3D FEM, the
shape of the top electrode can be easily varied to adjust
the electrical response and to find a shape that minimizes
the detrimental effects of the side resonances.

The discrepancies between the simulated and measured
displacement profiles can be attributed mainly to the fol-
lowing effects.

o Fabrication inaccuracies, e.g., the actual resonator
possesses a non-uniform piezoelectric layer thickness
profile, whereas, in the FEM, all of the material lay-
ers have an ideal constant thickness. In addition, the
material parameters are not accurately known.

e The simulated structure is a membrane-type res-
onator, rigidly supported at the plate edges, whereas
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Fig. 15. Measured (middle row) and simulated magnitudes of displacement components in the z-direction for the resonator with a circular top
electrode. In the 3D simulations (top row) and 2D simulations (bottom row), 20-node brick elements and 8-node quadrilateral axisymmetric
elements are used, respectively. For the axisymmetric case, the top electrode edge is indicated with the white dashed line.

the actual resonator is an SMR configuration. Adding
the acoustic mirror layers below the resonator would
significantly increase the computational cost in the 3D
case.

o The Q-factors of the modes in the measurements and
simulations are unequal, resulting in different overlaps
of the modes.

o A comparatively coarse lateral discretization is used
in the 3D FEM models.

Although the aspect ratios for the 3D elements used

y were rather large (15.6, 31.3, and 59.2 for the square, cir-

cular, and irregular quadrilateral cases, respectively), the

Z X accuracy in the resonance frequencies of the anharmonic

thickness extensional modes above the main resonance fre-

Fig. 16. Lateral element divisions of the FEM mesh for the resonator ~quency is reasonable. This is seen by comparing the admit-

with asymmetric top electrode. The edge of the top electrode is in-  tances computed for the circular top electrode configura-
dicated with the thick line. tion using both the 3D and axisymmetric elements.
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(a) 1061.0 MHz
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(f) 1070.0 MHz

Fig. 17. Simulated magnitudes of displacement components in the z-direction as functions of frequency for the membrane resonator featuring
quadrilateral top electrode with no parallel sides. In the computation of the displacements, a Q-factor of 1000 is used for all of the modes.
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Fig. 18. Simulated admittances for resonators with various top elec-
trode shapes obtained using FEM modal analysis (a Q-factor of 1000
has been used for all of the modes).

The computational parameters for the FEM simulations
are displayed in Table I. The simulations were carried out
with an SGI Origin 2000 computer. The execution times
in Table I are only indicative, because they also depend on
the total computational load in the multiuser environment.
The effect of increasing the model size on the computing
time in modal analysis is twofold. First, the execution time
for solving each eigenpair increases. Second, the number of
modes within a given frequency range of interest increases.
For example, the 40 eigenpairs solved for model 5 in Table I
spanned a bandwidth of 5.5 MHz.

VII. CONCLUSIONS

The FEM formulation for linear forced vibrations of
piezoelectric media has been described. The harmonic
analysis and modal analysis approaches to simulate the fre-
quency characteristics of BAW resonators have been con-
sidered.

For the efficiency of the FEM modeling technique, the
memory management method chosen and algorithms for
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TABLE 1
COMPUTATIONAL PARAMETERS FOR THE RESONATORS MODELED. THE MATRIX SIZES ARE IN MEGABYTES (MB).

Matrix half- Size of Size of stiff- Number of CPU

Model!  Elements Nodes DOFs bandwidth mass matrix  ness matrix  eigenpairs  time(s)
1 1170 3737 9686 180 1.63 5.45 50 62.6
2 1400 7481 20748 236 3.98 15.4 40 157.2

3 884 4587 14371 2148 25.9 94.5 60 1289.9

4 1900 9391 30642 2460 77.1 272 50 3006.6

5 2020 10098 32658 3048 85.6 322 40 4587.8

6 1494 7588 23526 2540 46.3 173 40 2334.0

11 = Circular top electrode, 2D axisymmetric; 2 = 2D model of resonator in Fig. 9; 3 = 3D model of
resonator in Fig. 9; 4 = circular top electrode, 3D; 5 = square top electrode, 3D; 6 = irregular quadrilateral

top electrode, 3D.

solving the linear system of equations (in the harmonic
analysis) and generalized eigenvalue problem (in the modal
analysis) are of fundamental importance. The skyline stor-
age scheme exploiting the characteristic structure of the
mass matrix is employed in the interest of efficient memory
usage. Consequently, simulations with more refined meshes
for higher accuracy or simulations with larger models are
possible. The application of cubic elements in 2D simula-
tions provides an improved accuracy of the solution with
less computational load in comparison with lower degree
elements.

In the modal analysis, the Lanczos eigensolver is uti-
lized in the computation of the natural resonance frequen-
cies and the corresponding mode shapes within a specified
bandwidth. Its efficiency results from the preservation of
the sparse structure for the piezoelectric stiffness matrix.
Furthermore, the modal constants quantifying the excita-
tion strength for each resonant mode are computed. Sub-
sequently, the approximate electrical admittance response
can be computed in terms of the modal constants.

The FEM is applied to a thin-film membrane BAW res-
onators. The phenomenon of energy trapping is demon-
strated, and the origin of the spurious modes in the anhar-
monic thickness extensional modes is emphasized. Com-
parison of results from 2D and 3D FEM simulations shows
that, for most geometries, accurate analysis of resonator
response requires full 3D modeling. The electrical response
(admittance) and the displacements for resonators with
various top electrode shapes are simulated. For square
and circular top electrodes, the simulations are validated
against laser interferometric measurements; the simulated
magnitudes of the displacement components in the thick-
ness (z) direction are found to agree well with the mea-
surements. This shows that, although accurate 3D FEM
simulations of composite BAW resonators would require
a dense FEM mesh, rendering the simulations computa-
tionally intensive, valuable qualitative information on the
performance of the resonator can be obtained from sim-
ulations requiring only moderate storage space and com-
puting time. This is particularly true for the anharmonic
thickness extensional modes with relatively long spatial
wavelength in the vicinity of the fundamental thickness
extensional mode.

The FEM simulations serve to analyze proposed res-
onator configurations and enable their comparison with
respect to electrical performance. The dependence of the
undesired parasitic resonances on the device structure, de-
sign, and dimensions can be investigated to help in the
resonator design. Effects of manufacturing inaccuracies on
the resonator response can also be studied. Moreover, the
predictions of models based on approximate equations [37],
[52], [64] can be tested and validated against 3D FEM.
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