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We introduce a method for finding the required control parameters for a quantum computer that
yields the desired quantum algorithm without invoking elementary gates. We concentrate on the
Josephson charge-qubit model, but the scenario is readily extended to other physical realizations.
Our strategy is to numerically find any desired double- or triple-qubit gate. The motivation is the need to
significantly accelerate quantum algorithms in order to fight decoherence.
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Quantum computing algorithms are realized through
unitary operators that result from the temporal evolution
of the quantum system under consideration. Typically,
these are achieved with a sequence of universal gates
[1] which act analogously to the elementary gates of
digital computers. Quantum computers hold the promise
of exponential speedup with respect to classical com-
puters owing to the massive parallelism arising from
the superposition of quantum bits, qubits; for introduc-
tions to quantum computing and quantum information
processing, see Ref. [2]. Several physical implementations
of quantum computing have been suggested; in particular,
quantum computing with Cooper pairs [3].

Superconducting circuits [4] feature controlled fabri-
cation and scalability [5]; their drawback is that the leads
inevitably couple the qubit to the environment, thereby
introducing decoherence [6]. In a superconductor, the
number of the Cooper pairs and the phase of the wave
function constitute conjugate variables. The majority of
investigations has focused either on the charge regime
where the number of Cooper pairs is well defined [7], or
on the flux regime where the phase is well defined [8].
Qubits utilizing current-driven large Josephson junctions
have been tested experimentally [9]. Decisive experimen-
tal progress [10] demonstrated that it is possible to realize
104 elementary quantum gates with Josephson-junction
qubits. Here we consider Josephson charge qubits.

In this Letter we propose a method to construct arbi-
trary two- or three-qubit quantum gates by solving the
optimization problem of control parameters for a
Josephson charge-qubit register. We show that it is pos-
sible to numerically find the required control-parameter
sequences even for nontrivial three-qubit gates without
employing elementary gates. Recently, it has been sug-
gested [11] how to solve a similar problem in the context
of holonomic quantum computation [12], where time
does not appear as an explicit parameter. Here, the time
evolution arises through the Schrödinger equation.

The motivation underlying the investigation of this
approach is the need to overcome effects of decoherence.
The implementation of a quantum algorithm which is

composed of elementary gates is rarely optimal in exe-
cution time since the majority of qubits is most of the time
inactive; see Fig. 1. The decomposition into elementary
gates works extremely well with classical digital com-
puters. However, in the context of quantum computing the
number of consecutive operations is strictly limited by
the short time window set by interactions with the envi-
ronment. It is therefore of prime importance to concen-
trate on the implementations of quantum algorithms [13–
15]. We consider the construction of quantum algorithms
out of larger building blocks. Whereas careful design and
manufacturing can significantly increase the decoherence
time, our scenario can serve to reduce the number of the
operations needed.

The Josephson charge qubit utilizes the number de-
gree of freedom of a nanoscale Josephson-junction circuit.
The states of the qubit correspond to either zero or one
extra Cooper pair residing on the superconducting island,
usually denoted by j0i and j1i, respectively. The Cooper
pairs can tunnel coherently to a superconducting elec-
trode. The charging energy of the qubit can be tuned with
the help of an external gate voltage, whereas tunneling
between the states is controlled with the help of an
external magnetic flux.

The explicit single-qubit Hamiltonian for the qubit i is

Hi
single � � 1

2
Bi
z�z �

1

2
Bi
x�x; (1)

where the standard notation for Pauli matrices has been
utilized. Here Bi

z is a tunable parameter which depends
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FIG. 1. Instead of implementing the three-qubit quantum
Fourier transform with the help of elementary gates, we de-
termine a gate that performs the entire three-qubit operation
with a single control loop. Note that idle time is avoided.
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on the gate voltage, while Bi
x can be controlled with

the help of a flux through the SQUID. Note that setting
Bi
z � Bi

x � 0 results in degeneracy. At the degeneracy
point, there will be no change in the physical state of
the system. In the case of single-qubit gates, it is easy to
see from this model that any rotation in SU(2) can be
performed on the qubits. Note that U(2) is not available
since the Hamiltonian is traceless. In general, we cannot
achieve U�2N� for N qubits since the Hamiltonian of the
entire quantum register turns out to be traceless.
However, the global phase factor is not physical since it
corresponds to a redefinition of the zero level of energy.

Qubits can be coupled by connecting them in parallel
to an inductor; see Fig. 2. This scenario has the benefit of
allowing for a longer decoherence time and that of being
tunable. The resulting coupling term in the Hamiltonian
between the qubits i and j is then of the form [4]

Hcoupling � �CBi
xB

j
x�y � �y; (2)

where C is a positive parameter depending on the capaci-
tances of the qubits and also on the inductance. It follows
from Eqs. (1) and (2) that one can apply nontrivial two-
qubit operations by simultaneously turning on the
SQUIDs of the two qubits, although the �x term will be
turned on as well. All the other qubits must have their
SQUIDs turned off. On the other hand, one-qubit �x

operations require that all but one SQUID is turned on.
By turning off a SQUID we mean applying a half flux
quantum through it. Note that in the present context it is
actually impossible to perform independent operations on
any two subsets of the quantum register due to the in-
ductive coupling. Since one must also take into account
the decoherence mechanism, it is not practical to let most
qubits reside at their degeneracy point. The question
arises whether it would rather prove more efficient to
try and find some scheme of finding larger quantum
operations, instead of using elementary gates.

To tackle the challenge posed above, we concentrate on
finding quantum gates numerically. The structure of the
Josephson-qubit Hamiltonian is such that it is not imme-
diately transparent how one would actually construct
even the basic controlled-NOT gate. We accomplish this
by considering loops 
�t� in the control-parameter space
spanned by fBj

x�t�g and fBj
z�t�g. Therefore, the function


�t� is of the vector form


�t� � 
B1
z�t� � � �BN

z �t� B1
x�t� � � �BN

x �t��T ; (3)

where we have assumed a register of N qubits. The tem-
poral evolution induces the unitary operator

U � T exp

 

�i
Z


�t�
H�
�t��dt

!

; (4)

where T stands for the time-ordering operator and we
choose �h � 1. The integration is performed along the
path formed by 
�t� where the loop starts at the origin,
i.e., at the degeneracy point. We will restrict the path to a
special class of loops, which form polygons in the pa-
rameter space. Thus the parameters vary in time at a
piecewise constant speed, and none of the parameters is
turned on or off instantaneously. We further set the time
spent in traversing each edge of the polygon equal to
unity. This limitation could be relaxed, in which case
the length of each edge in time would be an additional
free parameter. We also set C � 1 in Eq. (2). This can be
achieved by properly fabricating the inductor, but we have
every reason to believe that the algorithm will work for
other choices of C as well. Hence, in order to evaluate
Eq. (4) one needs only to specify the coordinates of the
vertices of the polygon, which we denote collectively as
X
. Numerically, it is easy to evaluate the unitary opera-
tor in a stable manner by further dividing the loop 
�t�
into tiny intervals that take the time �t to traverse. If 
i

denotes all the values of the parameters in the midpoint of
the ith interval, and m is the number of such intervals,
then we find to a good approximation

UX


 exp�� iH�
m��t� � � � exp�� iH�
1��t�: (5)

We now proceed to transform the problem of finding the
desired unitary operator into an optimization task.
Namely, any ÛU can be found as the solution of the problem
of minimizing the error functional

f�X
� � kÛU�UX

kF (6)

over all possible values of X
. Here k � kF is the Frobenius

trace norm defined as kAkF �
������������������

Tr�AyA�
p

. The number
of adjustable vertices of the polygon � is kept fixed
from the beginning. One needs to have enough vertices
to parametrize the unitary group SU�2N�. The dimension
of this group is 22N � 1 and there are 2N parameters for
each vertex. Thus, we must have 2N� � 22N � 1. We use
� � 12 for the three-qubit gates and � � 4 for the two-
qubit gates. Within this formulation the method of finding
the desired gates is similar to the recently introduced
method of finding holonomic quantum gates [11]. Thus
we again expect the minimization landscape to be rough
and we apply the robust polytope algorithm [16] for the
minimization.

We concentrate on finding two- and three-qubit gates,
since one-qubit gates can be trivially constructed with the
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FIG. 2. Schematic illustration of three Josephson charge qu-
bits with inductive coupling. The adjustable parameters include
the gate voltages Vi and the enclosed fluxes �i.
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help of Euler angles. A larger quantum gate could be per-
formed by factoring it into two- and three-qubit opera-
tions, and the implementation for these could be found
numerically. It seems that quantum operations for four,
five, or more qubits could be found with the same method,
assuming that sufficient computing resources are avail-
able. However, even in the case of three-qubit gates the
optimization task becomes challenging and we need to
use parallel programming. In the parallel three-qubit
program, since the function evaluations of f�X
� require
a major part of the computation, we distribute the work-
load such that each processor calculates the contribution
of a single edge of the polygon. In addition, one processor
handles the minimization routine.

Let us turn to the results. First, we attempt to construct
a gate equivalent to the controlled-NOT, namely,

U � exp

�

i
�

4

�

2

6
6
4

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3

7
7
5: (7)

The phase factor is needed in order for the gate to belong
to SU(4). It is already hard to see from the form of the
Hamiltonian how this gate would be carried out in the
present setting. Figure 3 illustrates an implementation of
this gate that has been obtained by minimizing the error
function in Eq. (6); the error is negligible. This example
clearly illustrates the potential of our method.

As a second example, we construct the two-qubit
quantum Fourier transform (QFT). The QFT (see, e.g.,
Ref. [2]) is given in the case of two qubits by

F2 �
1

2

2

6
6
4

1 1 1 1

1 i �1 �i
1 �1 1 �1

1 �i �1 i

3

7
7
5: (8)

Furthermore, we need to multiply this by exp�i �
8
� in order

to find a gate that belongs to SU(4). Figure 4 shows the
resulting loop that has been found with the help of the
algorithm. In general, the optimization task for two-qubit
gates can be performed quite easily with the help of
personal computers. However, finding three-qubit gates
is already quite time consuming. It proves worth the extra
effort to do this, though.

The three-qubit quantum Fourier transform is [2]

F3 �
1
���

8
p

2

6
6
6
6
6
6
6
6
6
6
6
4

1 1 1 1 1 1 1 1

1 ! !2 !3 !4 !5 !6 !7

1 !2 !4 !6 1 !2 !4 !6

1 !3 !6 ! !4 !7 !2 !5

1 !4 1 !4 1 !4 1 !4

1 !5 !2 !7 !4 !1 !6 !3

1 !6 !4 !2 1 !6 !4 !2

1 !7 !6 !5 !4 !3 !2 !

3

7
7
7
7
7
7
7
7
7
7
7
5

;

(9)

where ! � exp�i �
4
�. Since det�F3� � i we must set ÛU �

exp��i �
16
�F3 such that ÛU 2 SU�8�. As an evidence of the

success of the three-qubit algorithm, we have in Fig. 5
plotted the implementation of the three-qubit Fourier
transform. We conclude from these three examples that
it is possible to find far more powerful optimal imple-
mentations of multiqubit quantum gates with the help of
the minimization scheme [17].

To further assess the strength of the technique, we
compare the number of steps that are required to carry
out the three-qubit Fourier transform using only two-
qubit gates with the number of steps required when using
the full three-qubit implementation of Fig. 5. The two-
qubit implementation [18] requires effectively four gates;
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FIG. 3. Control-parameter sequences as functions of time that
yield the gate in Eq. (7) which is equivalent to the controlled-
NOT. The relative error is on the order of 10�11 and 100
discretization points per edge were used.
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FIG. 4. Control-parameter sequences as functions of time
that yield the two-qubit Fourier transform in Eq. (8). The
relative error is on the order of 10�11 and 100 discretization
points per edge were used.
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see Fig. 1. Since these gates would have to be performed
sequentially, we would need five polygon edges per
two-qubit operation. This results in 20 edges for the whole
operation. Using elementary gates would require far more
edges. Our optimized three-qubit Fourier transform,
though, only requires 13 edges. Since each edge contrib-
utes the same amount to the operation time, we conclude
that our implementation is improved. What is more, not
all multiqubit gates can be decomposed as conveniently
as the Fourier transform. For them the gain is higher.
Thus, increasing the amount of classical computing re-
sources should yield even better results.

In conclusion, we have described how to efficiently
construct two- and three-qubit quantum gates for the
Josephson charge qubit using numerical optimization.
An immediate strength of the present scenario is that
one avoids unnecessary idle time during the logical
quantum operations. Since the loops are traversed at a
piecewise constant speed, and no fields are instan-
taneously switched, this method of constructing quan-
tum gates should be viable from the experimental point
of view as well. The effect of finite fall and rise times
of pulses on the quality of quantum gates has been
studied recently [19]. Since we do not use pulses but
instead interpolate along linear paths in the parame-
ter space, such errors can be avoided. It seems reason-
able to construct large-scale quantum algorithms in
multiqubit blocks. This can be accomplished by opti-
mizing the gate realization with the help of classical
computers.

The authors thank M. Nakahara for useful discussions
and CSC (Finland) for computing resources. This work is
supported by the Helsinki University of Technology and
Academy of Finland.

Note added.—After submitting our manuscript, work
on a parallel switching method was kindly brought to our
attention by Burkard et al. [20].
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FIG. 5. Control-parameter sequences as functions of time
that yield the three-qubit quantum Fourier transform (modulo
a global phase). The relative error is on the order of 10�5 and
100 discretization points were used.
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