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Abstract
The large range of spatial and temporal scales inherent in biological and
soft matter is a challenge to modeling. To understand the physics of a
cell membrane, one needs to start from Ångström-sized atoms and their
motions in the femtosecond range, and go all the way to whole cells, whose
diameters can be tens of micrometers and lifetimes of the order of days.
All these scales can neither be probed by a single experimental technique,
nor modeled using one simulation approach. What is needed is a range of
techniques.

Describing matter by a hierarchy of computational models, systematically
linking the models at lower resolution to those at higher resolution, is termed
multiscale modeling. Depending on the phenomenon one wishes to study,
one may choose atomic-level models and algorithms, opt for a simplified
or coarse-grained description, or decide on a combination of these. The
aim of this Thesis is to describe modeling at atomic scale and mesoscale,
i.e., at scales in the range 1–1000 nm and 1–1000 ns. We also focus on the
systematic linking; how to reduce the degrees of freedom in an atomic-
scale model to arrive at a coarse-grained description. Further, use of hybrid
models that combine atomic and coarse-grained descriptions is discussed.

We approach multiscale modeling through examples from biological and
soft matter physics. Atomic-scale modeling is illustrated through molecular
dynamics simulations of phospholipid/cholesterol bilayers. The effect of
cholesterol on the free volume, packing, and diffusive properties of bilayers
is investigated. We then link the atomic-scale model to one allowing us to
reach length scales significantly larger than those reached in current-day
state-of-the-art atomic-level simulations: the new model offers an eight-
order-of-magnitude speed-up, enabling us to study the lateral structure
of bilayers at length scales up to hundreds of nanometers at a modest
computational cost. The simulation results point at the existence of
cholesterol-rich domains with sizes in the ten-nanometer-range.

From membrane systems we move to the realm of complex fluids. We use
polymer chains and colloids in solution as examples of systems where hybrid
models should be used. The solutes are modeled in microscopic detail,
while the solvent is coarse-grained. The solvent model is cost-effective,
yet correctly describes the hydrodynamic interactions between the solute
particles. Using these models we are able to resolve a long-standing debate
about dynamic scaling of two-dimensional polymers in solution, and obtain
interesting results for collective diffusion in colloidal suspensions.
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1

Introduction

Biological systems feature a multitude of spatial and temporal scales. Cell
membranes [5] are a case in point. Membranes are thin, flexible sheets
consisting of different kinds of lipid and protein molecules. They are found in
various parts of the cell, perhaps the most prominent one being the plasma
membrane surrounding the cell. A quick illustration of the length scales
in membrane systems is provided by the dimensions of a typical plasma
membrane: the membrane itself is approximately five nanometers thick,
but it may be wrapped around a cell whose diameter is of the order of tens
of micrometers or more. The separation of time scales is equally impressive,
ranging from molecular bond vibrations at picosecond time scale to a few
days or longer, a typical life time of a cell.

Understanding membrane structure gives more insight into the length scales
encountered in membrane systems. At atomic level, their most important
building blocks are the Ångström-sized atoms of carbon, hydrogen, oxygen,
nitrogen, and phosphorus. Atoms make up molecules: at molecular level
cell membranes are comprised of lipids and proteins [5]. These molecules
can be rather large, consisting of hundreds or thousands of atoms. The
molecules are thought to exhibit lateral long-range ordering; according
to the so-called raft hypothesis [6–9], they are organized in rafts, whose
dimensions are believed to range from tens to hundreds of nanometers.
Rafts have been suggested to be dynamic, ordered, lateral domains rich in
saturated glycerophospolipids, sphingomyelin, and cholesterol. Membrane
proteins are believed to attach to or be embedded in rafts to perform various
important tasks in transport and signaling.

Lateral diffusion of lipids in membranes [10] provides a more detailed
example of the manifold of time scales in biological systems. The fastest
local motions of whole lipids are dubbed rattling-in-a-cage; the lipid
molecule vibrates in a cage formed by its neighbors. The length scales
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1. Introduction

associated with this motion are less than the size of the lipid and the
time scales of the order of nanoseconds. The lipids may jump from one
cage to another: at time scales between 1 and 100 ns we expect to observe
jump diffusion within a single domain. This motion is intermediate-time
diffusion. At time scales of the order of microseconds, or larger, lipids may
cross domain boundaries or encounter networks of proteins. This is true
long-time diffusion.

Experimentalists measure lateral diffusion of lipids using a variety of
techniques, e.g., quasi-elastic neutron scattering (QENS) [11, 12], fluores-
cence correlation spectroscopy (FCS) [13], and fluorescence recovery after
photobleaching (FRAP) [14, 15]. Each of these techniques has a certain
resolution; different techniques are used to explore diffusion at different
spatial and temporal scales. Together they cover the range of motions
from the fast rattling-in-a-cage movement to the slower long-time jump
diffusion over domain boundaries. As motions at sub-nanosecond time
scales are much faster than those at the microsecond time scale, the different
experimental techniques yield lateral diffusion coefficients that may differ
by several orders of magnitude [10].

QENS is a microscopic technique, covering time scales of a few nanoseconds
at most. Hence, QENS experiments probe the fast rattling-in-a-cage
movement and yield high values for the lateral diffusion coefficient.
FRAP, on the other hand, cannot be used for studies of short-time
diffusion: its spatial resolution is of the order of 100 nm and the temporal
resolution 100 ns. The same applies for FCS, the spatial resolution being
approximately 50 nm and the temporal resolution 5 ms. FCS and FRAP are
therefore more macroscopic methods that probe intermediate- and long-time
diffusion. These are typically much slower than the local rattling-in-a-cage
movement [10]. It is not a fundamental problem that diffusion coefficients
measured using different techniques differ. It is, however, important to keep
this in mind when comparing results from different studies.

There are other much more severe reasons for the interpretation of diffusion
experiments being problematic, see Ref. [10]. As an example, many
techniques rely on attaching bulky molecules to the lipids: pyrene molecules
are often linked to the hydrocarbon chains of the lipids or large colloidal
particles with diameters of the order of tens of nanometers to the lipid
headgroup. These molecules allow experimentalist to track the motion of
the lipids, e.g., pyrenes are fluorescent. The downside is that it is not clear
how a probe such as pyrene really affects the lateral diffusion of lipids.
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It is quite plausible that a substantial probe molecule significantly slows
down diffusion. Even worse, the pyrene molecules may alter the microscopic
diffusion mechanisms of the lipid molecules. How does an experimentalist
find out whether the microscopic diffusion mechanisms are affected, or
indeed, what those mechanisms are in the first place?

Computer modeling [16–18] offers solutions to these dilemmas. A computer
simulation typically results in a trajectory for the system being studied,
i.e., the velocities and positions of the particles comprising the system as
functions of time. In principle, any structural or dynamic quantity, e.g.,
the lateral diffusion coefficient, can be extracted from this trajectory. In
addition to providing access to averages, trajectories reveal the microscopic
mechanisms behind experimental phenomena, say, how a lipid jumps from
one cage to another. Such microscopic information cannot be accessed in
experiments, at least not directly.

Computer modeling is not only a tool for interpreting experimental results.
It definitely has predictive power of its own [17, 18]: novel phenomena
first observed in simulations can be verified in experiments. It also
allows one to try things impossible to realize in experiments. Studying
the role of hydrodynamic or solvent-mediated interactions in colloidal
systems, see Chapter 4, is an example of such a case. Ideally, one should
compare two otherwise similar colloidal systems, but with and without
hydrodynamic interactions. Switching off the hydrodynamic interactions in
an experimental setup with colloidal particles immersed in a solvent is not
possible. In a computer simulation, hydrodynamic interactions can easily
be switched on and off.

The wide range of spatial and temporal scales in soft and biological systems
is a challenge to modelers. As in experiments, structures and phenomena at
different scales should be studied using different computational techniques.
It is neither feasible nor sensible to study, e.g., the long-time lateral
diffusion of lipids in membranes using quantum mechanical (QM) simulation
methods, see Chapter 2. Depending on the approximations used, state-of-
the-art QM simulations would enable one to follow at most 104 atoms during
a few picoseconds [18]. Such a simulation would be very expensive, but a far
cry from the 106 atoms and several microseconds needed in studies of long-
time diffusion. Even if future computers did allow us to use QM methods to
study large enough systems for times long enough, QM simulations would in
this case be largely pointless. That is because most of the relevant physics
involved here can be captured by a classical description. Using the finest
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1. Introduction

possible detail without any discretion is a very bad idea: the design of
models and choice of techniques should be tailor-made for each separate
problem.

Tailoring the models and methods to each specific system and carefully
considering the desired level of accuracy may sound simple. In practise,
it is not. As an example, suppose we should wish to study the raft
hypothesis presented above. We would need an at least micron-sized patch
of membrane with phospholipids, sphingolipids, and cholesterol, surrounded
by a substantial number of water molecules. Proteins might be nice to
include, as well. With state-of the-art computers, there is no way we could
afford to use a classical atomistic description: the computational load would
be simply enormous. A possible solution would be to try to reduce the
degrees of freedom by modeling the molecules by, e.g., interacting point-like
particles, see Chapter 3. How should these point-like molecules interact with
each other? Would it be better to include a few more degrees of freedom by
letting each molecule consist of a number of point-like particles attached to
each other? What about the form of interactions in such a model?

Coarse-graining is the term used for moving from one level of accuracy to
another. As in the raft example, we may wish to progress from a microscopic
all-atom description to a simplified description where the interacting units
may consist of tens of atoms. The physicist’s dream is to start from electron
densities and smoothly, level by level, go all the way to interacting elephants.
This should be realized in a controlled fashion such that at each level the
essential physics and chemistry are included, but most of the unnecessary
detail is discarded. Systematically linking different levels of description and
using these to model condensed matter has a fashionable name, multiscale
modeling.

Practitioners of multiscale modeling are bound to encounter systems with
parts that need to be considered using fine detail, while a large portion of
the system could be treated in a less accurate manner. These situations
are particularly challenging, since in most cases it is quite intractable to
include the whole system in the more detailed description. An example of
such a case is studying the dynamics of polymers or proteins in solution, see
Chapter 4. The detailed interactions between the monomers constituting
the biopolymer may be very important: certain monomers could be
hydrophobic and others hydrophilic, and this should have an impact on the
physics of our model. As for the solvent, simulating its detailed dynamics
is very expensive and rather uninteresting. The solvent cannot be left out

4



completely, since the solvent-mediated hydrodynamic interactions between
the monomers are very important for the dynamics of the polymer [19]. A
solution to this kind of problems is to use so-called hybrid models, where
two or more descriptions with different levels of accuracy are combined. In
the case of the polymer in solution, we may wish to carefully include the
direct monomer-monomer and monomer-solvent interactions in our model
and take care of the solvent-solvent interactions in an effective, less accurate
manner, see Chapter 4 for details. An interesting challenge would be to
study a protein, most of which could be described by a classical atomistic
model, and a few details, whose electronic degrees of freedom could not
be neglected, should be modeled quantum mechanically. In addition, there
would be a more coarse-grained solvent.

This Thesis is about modeling biological and soft systems by means of
computer simulations. Modeling of soft condensed matter at different
spatial and temporal scales is illustrated through case studies. There are
examples of atomistic modeling, systematic coarse-graining, and hybrid
models. Part of the emphasis will be on model design; the advantages
and limitations of each model will be considered. Another important theme
is the analysis and interpretation of simulation results.

Chapter 2 deals with classical atomistic modeling, and in particular, atomic-
level modeling of lipid membranes. We will first recount the basics of
classical molecular mechanics in biological systems [18], i.e., describe the
use and origins of force fields employed in state-of-the-art simulations of
membranes. A brief description of the classical molecular dynamics method
follows. After an account of the current research focus in computational
modeling of membrane systems, we will describe our case study into classical
atomic-level membrane modeling, a study of the effects of cholesterol on
the free volume and related properties of phospholipid bilayers. Our first
contribution here is systematically studying the impact of cholesterol on
the free volume, packing, and diffusive properties of phospholipid bilayers,
and probing the validity of simple free area theories for lateral diffusion of
lipids. The second main contribution is a careful analysis of the effect of
cholesterol on the detailed structure of the free volume pockets or voids in
phospholipid bilayers.

The atomistic models introduced in Chapter 2 do not allow us to explore
very large bilayer systems; as explained above, studying structures with
linear sizes larger than tens of nanometers is at least currently out of the
question. To study large-scale ordering or domains, we need a model with
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1. Introduction

fewer degrees of freedom. This model is obtained from the atomistic model
used in Chapter 2 by systematic coarse-graining.

Chapter 3 is about coarse-graining in membrane systems, with emphasis on
systematic approaches. We will first sketch some of the basic principles
of coarse-graining. This sketch is followed by a survey of the latest
developments in the use of coarse-grained models in studies of membrane
systems. Next, a promising method for systematic coarse-graining in soft
condensed matter, inverse Monte Carlo (IMC) [20], is presented. The
case study in this Chapter is an application of the IMC technique to
systematically coarse-grain the atomistic phospholipid/cholesterol system
from Chapter 2. We will describe the construction, validation, and
application of the coarse-grained model. The main contributions here are
the first application of IMC in membrane systems, and the construction
of a coarse-grained model for phospholipid/cholesterol systems, easily
applicable to large-scale studies in the hundred-nanometer-range. At certain
cholesterol concentrations we observe cholesterol-rich domains.

The themes of Chapter 4 are coarse-grained dynamics and hybrid models.
The basic question in this Chapter is how to study the dynamics of
molecules immersed in solvents. As explained above, simulating the details
of solvent motion is expensive and often unnecessary, but the hydrodynamic
interactions between the solvated molecules should be described in a correct
manner. A solution is a hybrid model where the solute is described in
detail and the solvent in a less accurate fashion using a novel solvent model
called stochastic rotation dynamics (SRD) [21]. The Chapter contains an
introduction to SRD and its hybrid extension, so-called MD/SRD [22]. The
two case studies presented in this Chapter are of very generic models,
and the results applicable to a wide range of systems. We will first
discuss the dynamics of a two-dimensional polymer in solution, followed
by a description of studies into the dynamics of a related system, a two-
dimensional colloidal suspension. These are a few of the first attempts
to use the novel MD/SRD model to solve real, albeit rather generic and
theoretical, problems. In addition to this testing and validation aspect,
an important contribution here is solving the dispute on dynamic scaling
in two-dimensional dilute polymer solutions. We also obtain interesting
preliminary results for the effect of hydrodynamic interactions on collective
diffusion in colloidal suspensions.
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2

Microscopic Modeling

2.1 From Quantum to Classical

In the non-relativistic limit, we could study the nuclei and electrons in any
molecular system by writing down a suitable Hamiltonian for the system and
subsequently solving the corresponding Schrödinger equation. Quantum
mechanical (QM) simulation methods are based on this seemingly simple
idea. Unfortunately, brute-force solution of the Schrödinger equation, where
the nucleic and electronic degrees of freedom are coupled, is prohibitively
expensive [18]. Present-day QM simulations are based on the so-called
Born-Oppenheimer approximation: the motion of the heavy, slow nuclei
and the light, fast electrons are separated. Depending on the additional
approximations used, QM simulations come in two major flavors; there are
ab initio and semi-empirical calculations.

Examples of biologically relevant QM calculations include, among other
things, studies of vancomycin resistance in bacteria [23] and a description
of the HIV-1 protease cleavage site [24], see Refs. [18, 24–26] for further
examples. The major drawback of such studies is their, despite the
approximations, still enormous computational expense. The largest systems
that can be currently studied using ab initio methods are of the order of
103 atoms, while semi-empirical models may be extended to systems with
104 atoms. The time scales reached in QM simulations, 1–10 ps, are likewise
much shorter than one should hope for. For these reasons it is unrealistic,
using bare QM methods, to include solvent molecules in the vancomycin
resistance model, or to simulate the reaction mechanisms of the HIV-1
protease [24].

Because of their computational requirements, QM methods should be used
only when necessary, i.e., in modeling processes where electronic degrees of
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2. Microscopic Modeling

freedom cannot be neglected. In all other cases, the electronic degrees of
freedom are integrated out, and the description becomes classical; the basic
building blocks are now atoms and ions. Large systems where both a QM
description for part of the system and long time scales are necessary, can
in some cases be handled by a combined QM and classical approach, see
Refs. [18, 24, 25, 27].

This Chapter deals with modeling classical many-body systems, with
emphasis on classical atomic-scale simulations of membrane systems. After
an introduction to the basic principles of classical modeling, we will describe
the state of the art of atomic-scale membrane modeling. We will then
proceed to introduce the DPPC/cholesterol system as an example of current
modeling efforts in lipid membrane systems. Here the focus will be on
packing, free volume, and diffusion in lipid bilayers, and the impact of
cholesterol on these.

2.2 Force Fields

In classical modeling the quantum effects are implicit in the intramolecular
and intermolecular interactions. The underlying idea is to describe a
molecular system in terms of a potential energy or force field, which is
a function of the atomic positions. The form of the force field, as well as
the associated parameter values, must be chosen to capture the essential
physics of the system. Ideally, each term in the force field has an intuitive
physical meaning.

A potential energy describing a molecular model can be written as a sum
of different contributions [18, 28]:

E = Ebond−length + Ebond−angle +Etorsional +ELennard−Jones + ECoulomb. (2.1)

This is a simple example where, e.g., cross terms, polarization effects,
and the effect of external fields have been omitted, see Refs. [18, 28] for
details. The first three terms represent so-called bonded interactions, and
the latter two represent non-bonded interactions. The exact form of the
terms in Eq. (2.1) may vary. In the following we will describe the physical
interpretation of each term, and give examples of commonly used forms.
For alternative expressions and additional terms, see Refs. [18, 28].
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2.2. Force Fields

Bonded interactions are based on a fixed list of atoms. The bond-length
interactions control bond deformations and can, as a first approximation,
be described by harmonic springs,

Ebond−length =
∑

i,j

kb
ij

2
(rij − bij)2 , (2.2)

where rij is the distance between the atoms i and j, kb
ij is a spring constant,

and bij a reference bond-length value. The sum is taken over the set of all
bonds.

The bond-angle term governs the bond angle arrangements around atoms
and contains three-body interactions. It can be written as a sum of harmonic
potentials,

Ebond−angle =
∑

i,j,k

kθijk
2

(
θijk − θ0

ijk

)2
, (2.3)

where θijk is the angle formed by atoms i, j, and k. The sum is taken over
all bond angles.

The torsional potential describes the rotational flexibility of sequences of
atoms. One formulation for the torsional potential is

Etorsional =
∑

i,j,k,l

∑

n

Vn
2

(1± cosnτijkl) . (2.4)

Here τijkl is the angle between the planes formed by atoms i, j, and k and
atoms j, k, and l. The first sum is over all dihedral angles. Integer n, which
typically assumes values between one and three [18], but can be higher in
some force fields [18,29], describes the periodicity of the rotational barrier.
Vn is the height of the barrier. There are several other, equally popular,
descriptions available, see, e.g., Refs. [18, 28].

Non-bonded interactions are pair-additive in the current force fields. The
Lennard-Jones (LJ) term describes the steep short-range repulsion between
a pair of atoms, together with an attractive tail attributed to dispersion
forces,

ELennard−Jones =
∑

i,j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
. (2.5)

The sum runs, in principle, over all pairs of atoms separated by, e.g., at
least three bonds [18]. A similar sum appears in the Coulomb term, that
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2. Microscopic Modeling

describes the electrostatic interactions between charged particles,

ECoulomb =
∑

i,j

qiqj
4πε0rij

, (2.6)

where qi is the effective charge of atom i.

The form of the potential energy function is not enough for the specification
of a force field, since Eqs. (2.2)–(2.6) contain a plethora of parameters:
bij, Vn, σij, qi, to mention a few. These should ideally be determined
using spectroscopic methods, crystallography, or in some cases QM
calculations [18]. For instance the reference values for bond lengths are
determined from solved X-ray crystal structures or obtained from QM
solutions of equilibrium structures of small molecules. Certain parameters
such as those associated with dispersion forces or torsional potentials are
supremely difficult to determine [30]. In practice, the patchwork of more or
less accurately determined parameters needs to be fine-tuned by comparing
the predictions a force field gives for simple systems, e.g., liquid hexadecane,
with experimental results. In this manner, so-called effective potentials
between the various kinds of atoms in a molecular model are acquired. The
potentials are dubbed effective, since they implicitly contain non-bonded
many-body interactions, QM contributions, and are, after all, a compromise
resulting from simultaneous optimization of several parameters.

Several different force fields are used to describe biologically relevant
systems: GROMOS, OPLS, CHARMM, AMBER, and many others. The
bad news is that the details—functional form and parameter values—of all
these force fields vary. Disappointingly, they do not seem to be converging
towards each other [18]. What is more important and very encouraging
however is that the different force fields seem to be yielding similar end
results. Furthermore, these results are in agreement with experimental
data. Current force fields can therefore be considered highly useful, but
still far from perfect. The most important limitations, apart from the
variability of the force fields, are the treatment of all particles as simple
point charges and the limited use of QM information in deriving the force
fields, see Refs. [18, 28, 30] for a more comprehensive discussion. Despite
the limitations, as Vattulainen and Karttunen point out in Ref. [31], force
fields, even though not always valid for accurate quantitative predictions,
do give us qualitative insights into the properties of soft condensed matter
and help us interpret puzzling experimental results.
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2.3 Molecular Dynamics

From a complete force field for a given molecular system, there are several
ways to proceed. For instance minimization approaches or basic Metropolis
Monte Carlo (MC) can be used to study the equilibrium or static properties
of a system with a given force field [16–18]. Molecular dynamics (MD) is the
method of choice whenever both static and dynamic quantities at atomic
level are being targeted.

The underlying idea of classical MD is simple: Hamilton’s equations of
motion [32] for the N particles comprising a molecular system with a
given force field are solved. If the generalized coordinates are chosen to be
the Cartesian components of the positions of the N particles, Hamilton’s
equations for an assembly of N particles with positions {ri}, momenta {pi},
and masses {mi} can be formulated as follows:

∂ri
∂t

=
pi
mi

, (2.7)

∂pi

∂t
= Fi ≡ −

∂E ({ri})
∂ri

. (2.8)

The total force on particle i, Fi, is computed from the potential energy
function E ({ri}). The potential energy function is given by Eqs. (2.1)–
(2.6) and is a function of the positions of all N particles. Hence, in three
dimensions the dynamics of our system is governed by 6N coupled first-order
differential equations.

A so-called integrator, that means, a finite difference scheme, is needed to
numerically solve the set of equations. A reliable choice is an integrator
of the Störmer/leap-frog/Verlet type [16–18, 28]. A popular integrator
in this class is the so-called velocity Verlet scheme. The positions {ri}
and velocities {vi} at time t yield series estimates for the corresponding
quantities at time t+ δt,

ri(t+ δt) = ri(t) + δtvi(t) +
(δt)2

2mi
Fi(t), (2.9)

vi(t+ δt) = vi(t) +
δt

2mi
[Fi(t) + Fi(t + δt)] . (2.10)

Starting from {ri(0)} and {vi(0)}, the trajectories of the N particles are
generated iteratively using Eqs. (2.9) and (2.10). The by far most time-
consuming part of each iteration is to calculate the forces Fi(t) from the
positions.
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2. Microscopic Modeling

In addition to the ingredients discussed so far—force fields and integrators—
an MD simulation needs a lot of other input. There is the initial
configuration to consider: because of their computational expense, MD
simulations conducted at temperatures low compared to the typical energy
barriers in the system will not get extremely far from their initial state [30].
Hence, this initial state cannot be chosen arbitrarily. The topology of the
system, i.e., a map of which atoms are connected by bonds, should be
specified. Further, there are lots of important methodological choices that
should be made. Even if MD calculations are no better than the governing
force field [18], they can certainly be a lot worse! This will be the case if
enough attention is not devoted to a number of critical details.

The art of molecular dynamics lies in choosing the correct methods and
algorithms for each system. In most biological systems, the appropriate
statistical ensemble is not the microcanonical (NV E) ensemble that results
from the straight-forward integration of Eqs. (2.7) and (2.8). By using, e.g.,
the weak-coupling algorithm of Berendsen et al. [33], we can instead opt for
constant pressure P and temperature T , a much more realistic condition for,
say, membrane systems. The weak-coupling scheme does not produce a well-
defined ensemble [28]. This problem can be mended by using a combination
of Nosé-Hoover [34, 35] and Parrinello-Rahman [36, 37] thermostats.

Another important choice regards the treatment of the boundaries of small
systems. In most present-day simulations the so-called periodic boundary
conditions are used [16, 17]; instead of simulating an isolated system, we
consider an infinite, periodic array of systems. Periodic boundaries are
closely related to a persistent problem in all condensed matter simulations:
the treatment of long-range interactions. The force calculations are the
expensive part of MD simulations. Without neighbor list algorithms, see
Refs. [16,17], the cost of the non-bonded force computation grows as O(N 2)
with the number of particles. In the case of short-range interactions, i.e.,
interactions that decay faster than r−d, where d is the dimensionality,
truncation and neighbor lists help to reduce the growth to O(N) [17]. If the
forces are long-ranged, the situation is at first sight intolerable: we cannot
ignore the interactions of a given particle with any particle in the infinite
periodic images of the original system. This is the case for the Coulomb
interactions, see Eq. (2.6). Simple truncation of the long-distance tails of the
Coulomb interactions will not do, as it leads to artifacts in membrane [1–3]
and other systems [17, 18]. In membrane simulations, Ewald summation
techniques such as particle mesh Ewald (PME) [17, 38] have been found
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to faithfully reproduce the experimental results [1–3]. PME and related
schemes reduce the growth of the computational cost to O(N logN) [17].

Most difficulties in MD simulations really stem from the computational
expense. Yet another such issue is the choice of integration step δt. On one
hand, to reach longer time scales, δt should be as large as possible. On the
other hand, too large a time step will lead to instabilities and inaccuracies
in the simulations [18]. By using multiple-timestep schemes [17], where
the fastest degrees of freedom are attended to more frequently than
the slower ones, the time step for the slow degrees of freedom may be
increased. Another way of extending δt is to constrain the fastest degrees of
freedom using algorithms such as SHAKE, RATTLE, or LINCS [18,28,39].
Constraining the fastest motions, e.g., certain bond vibrations with very
high frequencies f , is often necessary in any event. Classical physics should
not be used if hf � kBT , where h is Planck’s constant and kBT the
thermal energy [18]. For instance all bond lengths in phospholipids at room
temperature should preferably be constrained.

The expense of MD simulations has been mentioned several times. What
are state-of-the-art MD simulations capable for and at what cost? The
largest biological systems currently being studied by basic classical MD
consist of ∼ 105 atoms, which, e.g., in fully hydrated membrane systems
corresponds to a bilayer patch of 20 nm × 20 nm. The duration of such
simulations for pure lipids may be up to tens of nanoseconds. A commonly
used size, approximately 5 nm × 5 nm, allows one to sample for 100 ns or
more. The wall clock time of such a simulation is approximately one CPU
year. Given these limited spatial and temporal scales, one should consider
carefully what can and cannot be studied using MD, see Ref. [30] for a
discussion of feasible phenomena in bilayer systems. For instance the so-
called flip-flop of lipids from one monolayer to the other, with characteristic
time scales of the order of seconds, is not within reach of MD. The following
Sections contain examples of the most recent high-profile atomic-scale MD
studies of membrane systems, concretizing the possibilities of classical MD.

2.4 Atomistic MD Simulation of Membranes

The first atomistic lipid bilayer MD simulations were published in the
1980s [30, 40]. At the beginning, the focus was on single-component lipid
bilayers in the liquid-disordered phase. Early benchmark bilayers were the
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saturated DPPC, DMPC, and DLPE. Soon after came the first unsaturated
bilayer simulations with lipids such as POPC, DOPC, and DOPE. These
simulations were typically tens or at most hundreds of picoseconds long,
three or four orders of magnitude shorter than today.

The review paper of Tieleman et al. [30] gives a detailed picture of the
history and state of the art of membrane simulations in 1997. The
review is still a highly relevant account on the fundamentals of membrane
modeling, with insights into model design, data analysis, and comparison
of simulation results with experimental ones. Further, some of the topics
that have become more feasible and therefore popular during the 2000s—
composite bilayers, lipid-protein interactions, transport properties—are
already discussed in this review.

Since the 1990s, there has been a rapid development in the field of membrane
modeling. The time scales have been extended to 100 ns and more, the
simulations agree better with experimental data, and the systems have
grown more complex. This is thanks to faster processors and, perhaps more
important, methodological development: more sophisticated force fields, as
well as effective and accurate treatment of electrostatic interactions. Up to
2002, the development has been accounted for in the reviews by Forest and
Sansom [41], Feller [42], Scott [43], and Saiz et al. [44,45]. In the following,
we shall briefly discuss the most recent trends in membrane modeling.

Common to all computational membrane studies is that the models
of cell membranes are steadily becoming more realistic. As real cell
membranes may contain some two hundred different lipid species, as well as
sterols, carbohydrates, and proteins [5, 46], the approach must be gradual:
everything cannot be incorporated at once. Furthermore, membranes are
not isolated, and thus their interaction with, e.g., solutes such as anesthetics,
ions, and DNA must be studied further.

An important step towards more realistic systems is the modeling of
biologically relevant binary and ternary mixtures of lipids. Phospho-
lipid/cholesterol [47–51] studies and sphingomyelin simulations [52–54] pave
the way for ternary systems containing phospholipids, sphingomyelin, and
cholesterol [55, 56]. The interest in such ternary systems has its origins
in a desire to understand lipid rafts, i.e., domains rich in saturated
phospholipids, sphingomyelin, and cholesterol [7, 9, 57]. In cells, rafts are
thought to confine proteins involved in, e.g., signal transduction, and
therefore act as platforms for adhesion and signaling. Even without
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proteins, simulations of ternary mixtures are challenging, since both the
spatial and temporal scales targeted in these simulations must be very
large. The sizes of rafts in vivo are probably less than ten nanometers [7],
while domains in model lipid bilayers appear to be larger, see Ref. [7]. In
addition, it is unrealistic to expect rafts to assemble and the system to fully
equilibrate during a mere 100 ns. Hence, although MD simulations certainly
give valuable insights into rafts, less detailed approaches will be needed.

Another interesting direction is to model the interaction of solutes with lipid
bilayers. For instance the molecular mechanisms of anesthesia are not yet
understood. It is, however, possible that the interaction between lipids and
anesthetics plays a critical role here [58,59]. Pasenkiewicz-Gierula et al. [60]
have recently published an MD study of the interaction of carane derivative
local anesthetics with POPC lipids. Koubi et al. [61] have studied the effect
of halothane and hexafluoroethane on polyunsaturated lipid bilayers. A
closely related topic is the interaction of short-chain alcohols with bilayers.
Patra et al. [62] have used MD to investigate the effect of methanol
and ethanol on DPPC and POPC bilayers. Other recent MD studies
of the interaction of solutes with bilayers have featured solutes such as
trehalose [63,64], sucrose [64], pentacholophenol [65], dimethylsulfoxide [64],
and diphenylhexatriene [66], see also Ref. [67].

Membranes in vivo are immersed in an aqueous solution containing ions,
typically Na+, Ca2+, K+, and Cl− [5, 46]. Approximately 10–30 % of all
lipids in real membranes are charged [31, 68], and hence counterions have
to be present to compensate for the charge. The presence of ions has
been shown to significantly affect the electrostatic, structural, and dynamic
properties of bilayers, see e.g., Ref. [69]. Therefore the interaction of
ions with bilayers is an important, although computationally demanding,
subject. Recently, MD studies of the effect of sodium chloride on neutral
bilayers have been reported by Böckmann et al. [69,70] and Pandit et al. [71].
Sachs et al. [72] have investigated the effect of a series of monovalent Na+

salts on a POPC bilayer. Charged bilayers have also been studied using
MD: Pandit and Berkowitz [73] have published simulations of DPPS bilayers
with Na+ counterions, Mukhopadhyay et al. [74] of POPS bilayers with Na+

counterions and NaCl, and Pandit et al. [75] of mixed bilayers of DPPC and
DPPS in NaCl solutions of different concentrations.

A particularly interesting class of charged bilayers are those consisting of
cationic lipids. This is because of their relevance in gene therapy, drug
delivery, and our general understanding of DNA-membrane interactions.
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A slightly older, highly interesting study of Bandoyopadhyay et al. [76],
where a short strand of DNA is intercalated into a DMPC/DMTAP bilayer,
has been recently complemented by Gurtovenko et al. [77]. They have
studied DMPC/DMTAP bilayers with DMTAP concentrations from 0 to
100 %, paying particular attention to the behavior of the positively charged
DMTAP and zwitterionic DMPC headgroups. Their findings will be useful
in future studies of membrane systems with DNA. Currently, DNA/lipid
complexes are receiving comparatively little attention, especially compared
with the surging numbers of membrane protein simulations.

Simulations of membrane proteins have recently been reviewed by Ash et
al. [68]. An increasing number of experimental high-resolution structures
of membrane proteins, together with advances in simulation methodology
and hardware, have made these studies worthwhile. There are now MD
simulations of a wide variety of proteins, e.g., G-protein-coupled receptors,
aquaglyceroporins, ion channels, ATPases, and outer membrane proteins.
Also membrane binding peptides such as toxins and antibiotics, model
transmembrane helices, as well as natural and synthetic ion channel forming
peptides are being studied. For instance in the case of antibiotics and
toxins, the influence of the peptides or proteins on the surrounding bilayer
is investigated. In most cases, however, the function of the protein in
its lipid environment is the primary target. Examples include trying to
understand why aquaporins allow water and glycerol to pass through, but
block the entrance for protons [78], how the structure of a mechanosensitive
channel from E. coli changes under the influence of membrane tension [79],
or how different ions interact with the selectivity filter of a KcsA potassium
channel [80].

Transport of ions and small molecules, not only through channels, but also
through the lipid component of the membrane, is vital to cells. Permeation
of solutes through the lipid matrix is particularly challenging to simulate:
several seconds would be required to observe the spontaneous transport of
water across a 4 nm × 4 nm bilayer patch [30]. The standard procedure is
therefore to constrain the solutes to different depths in the heterogeneous
membrane, and measure the local diffusion coefficients and solubilities to
arrive at the overall permeability coefficient of the membrane to a given
solute [81, 82]. Recently, Bemporad et al. [83, 84] have reported MD
simulation results for the permeation of eight small organic molecules, both
hydrophilic and hydrophobic ones, through a DPPC bilayer. Although the
results are not in quantitative agreement with experiments, the relative
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permeabilities of the molecules were reproduced. For both hydrophobic
and hydrophilic components, the permeability coefficient of the membrane
is predominately determined by the solubility, i.e., the free energy profile.
In addition, it appears as if the diffusion depended less than expected on the
size of the solute, and the partitioning more so. Ulander and Haymet [85]
have studied the permeation of valproic acid—a small, branched fatty acid
used as an anticonvulsant and mood stabilizer—across DPPC bilayers.
Their results highlight the importance of sampling along the bilayer normal
and abandoning simplified mean-field approaches. Finally, Shinoda et
al. [86] have published an MD study of the effects of chain branching
on permeation of water and small, nonionic solutes, comparing transport
through DPPC and branched-chain DPhPC bilayers.

Other recent topics in membrane simulations include the structural
properties of branched-chain lipid bilayers [87], polyunsaturated lipids [61,
88–90], and binary mixing of PC and PE lipids [91]. Further, formation
of hydrophilic pores [92] and the properties of bilayer edges [93, 94] have
been studied, as have the static and dynamic properties of the lipid/solvent
interface [95–97]. A highly interesting investigation into the spontaneous
formation and final structure of a small DPPC vesicle in water has also
been reported [98].

2.5 Case Study: Cholesterol in Phospholipid
Bilayers

2.5.1 DPPC/Cholesterol System

The lipid component of a cell membrane of a higher organism may consist
of different kinds of glycerophospholipids, sphingolipids, glycolipids, and
cholesterol. To eventually understand the rich physics and chemistry of such
mixtures—the complicated phase behavior, rafts, and all—it is a good idea
to start with binary mixtures. Studying dipalmitoylphosphatidylcholine
(DPPC)/cholesterol systems is particularly useful, on one hand because
cholesterol is such an interesting and abundant molecule, and on the other
hand because binary mixtures of saturated phospholipids and cholesterol
have been extensively characterized in experiments [99–103].

Experiments have shown that cholesterol modulates the physical properties
of real cell membranes, as well as those of the simpler model bilayers [99].
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The phase diagram in Fig. 2.1 summarizes the structural changes cholesterol
brings about in DPPC/cholesterol bilayers.

Pure DPPC bilayers are, at low temperatures, in the gel or solid-ordered
(so) phase, characterized by hexagonally arranged PC headgroups and all-
trans hydrocarbon tails. Above the main transition temperature TM =
314.5 K, the pure bilayer is in the liquid crystalline or liquid-disordered (ld)
state with the headgroups forming a two-dimensional liquid and with gauche
defects in the tails. The main phase transition thus couples two order-
disorder transitions, translational and orientational ones. The presence of
cholesterol decouples these two, and leads to the introduction of a new
phase, the liquid-ordered (lo) one. The lo phase is distinguished by a liquid-
like arrangement of the PC headgroups and tails with a high degree of
ordering. In addition there are ld-lo, ld-so, and so-lo coexistence regions.
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Figure 2.1. Schematic phase diagram of DPPC/cholesterol system after
Refs. [103, 104], see the text for details. On the right hand side are
the structural formulae for the saturated DPPC (di(16:0)PC) (above) and
cholesterol (below).

In the physiologically relevant ld phase, adding cholesterol to a DPPC
bilayer alters the molecular packing: the orientational order of the
hydrocarbon tails increases [47–49,99,102] and the average area per molecule
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decreases [105]. These changes lead to the introduction of the ld-lo and lo
regions in the phase diagram.

An increasing cholesterol content also effects changes in the dynamic
properties of bilayers. In the case of saturated phospholipids the
passive permeation of small solutes [106–110] and the lateral diffusion
of phospholipids [10, 49, 111–113] are affected. Such dynamic processes
in bilayers are intimately connected to the amount, distribution, and
fluctuations of free volume [111, 112, 114–117], i.e., space not occupied by
phospholipids, cholesterols, or water. It is therefore reasonable to anticipate
that cholesterol modifies the free volume properties of bilayers. Further, the
changes in packing, free volume, and transport properties can be expected
to be coupled.

We have studied the cholesterol-induced changes in packing, free volume,
ordering, and lateral diffusion in DPPC bilayers. To this end, 100 ns MD
simulations of DPPC/cholesterol bilayers, with cholesterol concentrations
from 0 to 50 mol %, have been performed. The first part of the work
included validating the computational model by comparing key empirical
quantities such as average areas per molecule, NMR order parameters, and
electron density profiles with experimental findings [48]. As such quantities
often are [47,49], and indeed should be, computed in simulation studies, we
will not discuss them explicitly. In the second part, inspired by free area
theories [111,112,118], we investigated the interplay of packing, average free
area per molecule, and lateral diffusion [48]. In the final phase, we studied
the detailed distribution of free volume in bilayers, characterizing the size,
shape, and orientation of free volume pockets or voids [119].

2.5.2 Model and Simulations

We simulated fully hydrated lipid bilayers with 128 macromolecules, i.e.,
DPPCs and cholesterols, and 3655 water molecules. In addition to pure
DPPC, we studied systems with five different cholesterol molar fractions:
χ = 4.7 %, 12.5 %, 20.3 %, 29.7 %, and 50 %. A snapshot of the system
containing 20.3 % cholesterol is shown in Fig. 2.2. The underlying MD
simulations have been described in Ref. [48], and we shall only give a brief
summary of the most important details here. As for validation, the results
have been shown to be in good agreement with experimental studies, see
Ref. [48], and other simulation studies [47, 49, 120–123].
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Figure 2.2. Snapshot of DPPC/cholesterol system with χ = 20.3 %. The
water has been omitted for clarity. DPPCs have been drawn using sticks
and cholesterols using spheres.

The united atom force fields for the DPPC and cholesterol molecules were
adopted from earlier studies [124–126], and the SPC model was used for
water molecules [127]. The initial configuration for the pure DPPC bilayer
was taken from the final structure of run E in Ref. [126]. For systems with
finite cholesterol concentrations, the initial configurations were constructed
by replacing randomly selected DPPC molecules with cholesterols such that
the same number of DPPC molecules was replaced in each monolayer. To
fill the free volume left by replacing DPPCs by the smaller cholesterols, the
system was thoroughly equilibrated, see Ref. [48] for details. The bilayer
was aligned such that it lies in the xy plane and the bilayer normal is parallel
to the z axis.

The MD simulations were run at a temperature T = 323 K, which is above
the main phase transition temperature of DPPC at TM ≈ 314.5 K. We used
the GROMACS [28, 128] molecular simulation software. After the initial
equilibration, the system was kept at constant temperature at a pressure
of 1 bar using the Berendsen thermostat and barostat [33]. For long-range
electrostatic interactions we used the PME method [129], which has been
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shown to yield reliable results for bilayers [1, 2]. The time step was chosen
to be 2.0 fs and the duration of each simulation was 100 ns.

For all systems up to and including the system with χ = 29.7 %, a
simulation time of 100 ns guarantees a reasonable sampling of the phase
space. The results for 50 % cholesterol should be regarded with some
caution: the diffusion of the DPPC and cholesterol molecules is rather
slow in this system [48] and the system probably bears traces of its
initial configuration. This applies to all state-of-the-art simulation studies
of phospholipid/cholesterol systems, and has been mentioned by other
authors [122]. In the following we will focus on χ = 0− 29.7 %.

2.5.3 Diffusion, Free Volume, and Packing

In this Section, we will discuss cholesterol’s effect on lateral diffusion of
DPPCs and cholesterols, free volume, and packing. In particular, we will
focus on the interplay of these effects. A first step in studying the interplay
is to consider simple free area theories for diffusion in lipid bilayers.

Free volume theory was developed to describe the transport properties of
glass-forming fluids [118, 130–132], and later adapted to modeling lateral
self-diffusion in lipid bilayers [111, 112, 133, 134]. In this approach lipid
bilayers are assumed to be homogeneous in the normal direction: lipids
and sterols are viewed as cylinders or disks diffusing in the plane of the
membrane. The model thus becomes essentially two-dimensional, and is in
this context usually called free area theory.

According to free area theory, lateral diffusion of a lipid or sterol in a bilayer
is restricted by the occurrence of large enough free areas next to it. A
diffusing molecule spends tens of nanoseconds [10, 30] rattling in a cage
formed by its neighbors, and according to free area theory, given a large
enough activation energy and an adjacent free area, jumps to that nearby
free site. Hence, for the lateral tracer diffusion coefficient of a lipid or sterol,
we can write [111]

DT ∼ exp

(
−a0

af

)
. (2.11)

Here af the average amount of free area per molecule in the bilayer and a0

is the cross-sectional close-packed area of a cylindrical DPPC or cholesterol
molecule.
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To study the pertinence of Eq. (2.11), we will first look at the lateral
diffusion coefficients for DPPCs and cholesterols at different cholesterol
concentrations. The lateral tracer diffusion coefficients can be computed
from an Einstein relation

DT = lim
t→∞

1

4tNspecies

Nspecies∑

i=1

〈[ri(t)− ri(0)]2〉. (2.12)

Here the sum runs over all molecules of a given species, and ri(t) is the center
of mass (CM) position of molecule i. The diffusion coefficients have been
calculated by following the position of a molecule in a given monolayer with
respect to the CM of that monolayer. By taking into account the motion
of the CM of each monolayer, we have ensured that, e.g., drift should not
be a problem. Note that in the case of lateral diffusion all positions are
projected to the plane of the bilayer.
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Figure 2.3. Lateral diffusion coefficients of DPPCs (•) and cholesterols
(◦) as functions of cholesterol concentration [48].

Lateral diffusion coefficients for DPPC and cholesterol as functions of choles-
terol concentration χ are shown in Fig. 2.3. Both decrease monotonically
when χ increases, in qualitative agreement with experiments [11, 13, 111,
135].

Having established that cholesterol suppresses lateral diffusion of both
DPPCs and cholesterols, we will focus on the average free area per molecule
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af . Figure 2.4 shows the total empty free volume in the bilayer, computed
using a grid approach explained in Ref. [48], as a function of χ. By empty
free volume we simply mean all space outside the van der Waals radii of
the atoms. Assuming, in the spirit of free area theory, that the bilayer
is homogeneous in the normal or z direction, it does not matter whether
we consider free volume or area: if our assumption is correct, the latter is
linearly proportional to the former. Further, as the total number of DPPCs
and cholesterols is constant for all χ, the total free volumes portrayed in
Fig. 2.4 are linearly proportional to the average free area per molecule af .
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Figure 2.4. Empty free volume as function of cholesterol concentra-
tion [48]. As the lipid/water interface is very broad, there is no unique
definition for the thickness of a bilayer. Hence, we have used three different
definitions. The thicknesses have been defined as the distance between the
points where the density of water starts to deviate from the bulk value
(�), the distance between the points where the density of phospholipids
and water are equal (◦), and the distance between the maxima in the total
electron densities (•). The errors are of the order of a few percent.

An examination of Fig. 2.4 shows that the total empty free volume and
therefore also the average free area per molecule decrease monotonically
with χ. So far so good: in the spirit of free area theory, we should intuitively
expect that less free area per molecule leads to slower diffusion. This, of
course, requires that a0 is largely independent of χ, or at least does not
decrease significantly with χ. In the case of the rigid and bulky cholesterol
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molecule, χ probably has very little influence on a0. Predicting the behavior
of the average cross-sectional area of DPPC with χ is more difficult. The
ordering of the tails and a possible reorientation of the headgroup may well
imply an increasing or decreasing a0.

It appears that we cannot proceed without actual numbers. By mapping
bilayers onto grids [48], we can find estimates for af and a0. The calculation
is such that the average free and cross-sectional areas will be calculated
separately for thin slices in the normal direction, i.e., we will end up with
af(z) and a0(z). We will thus be able to check the assumption about
homogeneity in the normal direction.
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Figure 2.5. Average empty free areas per molecule as functions of position
along bilayer normal [48]. The center of the bilayer corresponds to z = 0.
The errors are smaller than a percent.

The average free areas per molecule as functions of position along the bilayer
normal—the free area profiles—for different χ are portrayed in Fig. 2.5.
The first important observation is that the normal direction is by no means
homogeneous. There is more free space in the bilayer center or in the water
phase than at a distance z ≈ 2 nm from the bilayer center, just behind the
headgroups. Second, the average amount of free area per molecule is, for all
values of z, quite large. By multiplying the average free area per molecule by
the total number of DPPCs and cholesterols in a monolayer and comparing
this figure with the average areas of the bilayer patches [48], we can conclude
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that at least 30 % of the bilayer must be free space. Finally, the amount of
free area is reduced by an increasing cholesterol concentration for all z.

0.1

0.2

0.3

0.4
a D

PP
C

[n
m

2 ]

-3 -2 -1 0 1 2 3

z [nm]

0.0

0.1

0.2

0.3

a c
ho

l
[n

m
2 ]

= 29.7 %
= 20.3 %
= 12.5 %
= 04.7 %
= 00.0 %

(a)

(b)

Figure 2.6. Average cross-sectional close-packed areas for (a) DPPC and
(b) cholesterol as functions of position along bilayer normal [48]. The errors
are of the order of a few percent. In the water phase, the relative errors of
achol are somewhat larger.

The heterogeneity in the free area profiles suggests that not even in
the average sense are the DPPC and cholesterol molecules cylindrical.
Figure 2.6, showing the average close-packed cross-sectional areas for DPPC
and cholesterol as functions of position along the bilayer normal, confirms
this hypothesis. These cross-sectional area profiles have been obtained
by dividing the average area occupied by, say, DPPC in a given slice by
the number of DPPC molecules in that slice, see Ref. [48]. The cross-
sectional area profiles for DPPC reflect the ordering of the chains and the
reorientation of the headgroups with an increasing χ. As expected, all
achol(z) irrespective of χ are quite similar. The slight changes are caused by
the reduced tilt of the cholesterol molecules.
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Let us, despite the heterogeneity in the normal direction, for a while insist
on using Eq. (2.11) to describe lateral diffusion of DPPCs and cholesterols.
As the free area per molecule and the cross-sectional areas for DPPC and
cholesterol vary with z, the choice of scalar values for af and a0 becomes
ambiguous. We could, e.g., use values extracted at z = 1 nm from the bilayer
center. This region contains the phospholipid tails and the cholesterol
ring structures, and must be important to interactions between cholesterol
and DPPC molecules. Plugging the numbers into Eq. (2.11) results in a
prediction for the behavior of the lateral diffusion coefficients: when χ
increases from 0 % to 30 %, the lateral diffusion coefficients should decrease
by a factor of two or three at most. As a matter of fact, using any numbers
from the free and cross-sectional area profiles results in a reduction of the
same magnitude. At the same time Fig. 2.3 clearly shows that the diffusion
coefficients decrease by an order of magnitude.

Is there any way to improve the prediction for the behavior of the diffusion
coefficients with χ? Possibly. Apart from a large enough free site to
jump to, a molecule attempting a jump needs enough energy to overcome
the activation barrier Ea. In free area theory this is accounted for by
the familiar Boltzmann factor: DT ∼ exp(−Ea/kBT ). As Ea probably
increases with χ, see Ref. [48] for a discussion, the reduction of DT for
both DPPC and cholesterol presumably becomes larger than a factor of
two or three. Quantitative testing of this hypothesis is, unfortunately, an
expensive exercise, since it requires computing lateral diffusion coefficients
as functions of both χ and T .

The kind of semi-quantitative chat we have engaged in above should not
blind us to the important conclusion: any two-dimensional mean-field
theory is too crude to quantitatively describe diffusion in bilayers. In
addition to the fact that the bilayer is truly heterogeneous in the normal
direction, characterizing complicated structures and processes from a mean-
field point of view turns out to be too simplistic. A figure for the average
free area per molecule or the average amount of free volume in the bilayer
does not tell us anything about the distribution and fluctuations of free
volume in the bilayer. Is there one large, stable hole in the bilayer or are
there many tiny ones that are created and destroyed with characteristic
times in the nanosecond range? Distinguishing between these two scenarios
is extremely important from the point of view of permeation and lateral
diffusion. Further, the average cross-sectional area profiles do not tell us
much about the conformations of individual molecules or possible DPPC-
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cholesterol complexes. Finally, the detailed mechanism of diffusion jumps
must be fascinatingly complex, involving collective motion of several DPPCs
and cholesterols, as well as redistribution of free volume. Exciting diffusion
mechanisms have been observed, e.g., on metal surfaces [136–138] and in
supercooled liquids [139]. No one has yet studied such mechanisms in
membrane systems.

The incompleteness of free area theories thus opens up several interesting
directions for new research. We are currently studying the ones sketched
in the previous paragraph. In the following we shall concentrate on one of
these: the detailed distribution of free volume in phospholipid bilayers, and
in particular, the effect of cholesterol on this distribution.

2.5.4 Voids

Rather than two-dimensional assemblies of disk-like molecules, membranes
are porous three- or quasi-two-dimensional structures with free volume
pockets or voids. As we shall see, lipid bilayers contain voids of different
sizes, shapes, and orientations. These voids are dynamic: they can be
generated or annihilated by trans-gauche isomerizations in the hydrocarbon
tails of lipid molecules, or less frequently, by the movement of whole lipids
or sterols [114].

Voids are very significant for dynamic processes in lipid bilayers [117].
Lateral diffusion of lipids and sterols [111, 112], as well as diffusion of
small solutes within or across membranes are such processes. More specific
examples of the latter include passive permeation of water, oxygen, small
organic molecules, and small ions to and from cells [81–83,85,108,114,117,
140], and diffusion of the electron carrying quinone in mitochondria and
chloroplasts [141]. MD simulations indicate that diffusion of small solutes
proceeds via jumps between neighboring voids [66, 82].

MD simulations are an excellent tool for studying the detailed free volume
properties of lipid bilayers. Bassolino-Klimas et al. [114, 142] used the size
distribution of voids to explain the motion of benzene molecules in lipid
bilayers. The first and so far only detailed analysis of the properties of
voids in lipid bilayers was reported by Marrink et al. [116]. They looked at
the size, shape, and orientation of the voids in a DPPC bilayer, and pointed
out that these properties vary strongly in the direction of the bilayer normal.
More recently, Shinoda et al. [86] addressed the effect of chain branching

27



2. Microscopic Modeling

on the size distribution of voids, concluding that branching reduces the
probability of observing large voids. Jedlovszky et al. [108], in their MC
simulations of DMPC/cholesterol bilayers, briefly looked at the impact of
cholesterol on the number of large voids.

Equipped with our DPPC/cholesterol MD data, we focus on the impact of
cholesterol on the properties of voids in bilayers consisting of DPPC. The
technical details of how the voids were identified and characterized using a
union/find algorithm [143] and principal component analysis (PCA) [144]
can be found in Ref. [119]. Before describing the results of our analysis, we
should explain a few important concepts.

The first important notion is that of accessible free volume [116], the free
volume relevant for solute diffusion in bilayers. In the previous Section we
were dealing with empty free volume, i.e., all volume outside the van der
Waals radii of the atoms. Accessible free volume corresponds to the free
volume accessible to the CM of the diffusing solute, and is calculated by
adding the van der Waals radius of the diffusing solute molecule to the van
der Waals radii of the atoms in the bilayer. We have used different solute
sizes with radii r ranging between 0 and 0.2 nm. These sizes are of the same
magnitude as the effective van der Waals radii of, e.g., bare Na+, K+, and
Cl− ions; water and oxygen molecules; and the general anesthetic xenon.

A further prerequisite for understanding the subsequent discussion on voids
is the so-called four region model originally introduced by Marrink et
al. [81,116]. As the free volume properties vary with the position along the
bilayer normal [116, 119], it is not optimal to study the properties of voids
averaged over the whole bilayer. Instead, we have discretized the bilayer
into regions with more homogeneous compositions, slightly modifying the
original partition, see Fig. 2.7. Region 1 ranges from the point where the
mass density of water starts to deviate from the bulk value to the point
where the densities of DPPC and water are equal. This region contains
mostly water molecules and some DPPC headgroups. Region 2 extends
from the point where the densities of water and DPPC coincide to the
point where the density of cholesterol ring structures is half of its maximum
plateau value [48]. This region is dominated by the DPPC headgroups: the
choline, phosphate, and glycerol densities peak here. In addition a finite
density of DPPC tails and the major part of cholesterol hydroxyl groups
can be found in Region 2. Region 3 is defined between the points where
the cholesterol steroid ring density assumes half of its maximum value, and
contains in addition the middle parts of the DPPC tails. The remaining
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Figure 2.7. Mass density profiles of molecules and atomic groups at χ =
20.3 % [48]. The mass density of the cholesterol hydroxyl groups has been
scaled by a factor of ten. The division into four regions, indicated here by
numbers 1–4, is based on the mass density profiles, see the text.

part of the bilayer, i.e., the center of the bilayer, is Region 4, with a low
density of DPPC and cholesterol tails. Since an increasing χ shifts the
various atomic groups away from the bilayer center [48], the boundaries
between the regions vary with cholesterol concentration. As the densities of
DPPC and water are very similar in the pure DPPC bilayer and the bilayer
with 4.7 % cholesterol [48], the boundaries for pure DPPC have been taken
to be the same as in the case of 4.7 % cholesterol.

Let us take a closer look at the voids in the four regions. Figure 2.8 shows
the most important void properties in a system with χ = 20.3 % with a
permeant radius r = 0.09 nm. Panel (a) contains the unnormalized size
distributions for voids; N(V ) is the average number of voids of volume V .
Panel (b) characterizes the shape of the voids with 4 × 10−3 nm3 < V <
0.13 nm3. As opposed to larger voids with more complicated shapes, these
voids can be considered ellipsoidal, and therefore may be characterized using
PCA. PCA allows us to extract σ1, σ2, and σ3, which are proportional to
the lengths of the principal axes of an ellipsoidal void. From these we can
compute P (σi/σj), the probability of finding a void with a given value of
σi/σj irrespective of σk, k 6= i, j [119]. Finally, panel (c) describes the
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Figure 2.8. Properties of voids in Regions 1–4 for χ = 20.3 % and r =
0.09 nm [119]. (a) Size distributions, see Fig. 2.9 for errors. (b) P (σ1/σ2)
with errors smaller than two percent for σ1/σ2 < 3, and between two and
five percent for 3 < σ1/σ2 < 6. (c) P (cosφ) sinφ, see Fig. 2.11 for errors.

orientation of non-spherical voids with 4× 10−3 nm3 < V < 0.13 nm3. The
orientations of the principal axes of the ellipsoidal voids can be extracted
from PCA. The quantity P (cosφ) sinφ is the probability that an elongated
void is oriented such that the angle between its longest axis and the bilayer
normal is φ [119].

Region 1 contains more small voids with radii of the order of a few angstroms
than any other region, and virtually no voids larger than 0.10 nm3. Region
2 is similar, except the number of voids with small or intermediate V is
almost an order of magnitude smaller than in Region 1. Region 3 features
larger voids than do Regions 1 and 2. The largest voids, however, can be
found in Region 4, with sizes up to to V ≈ 2 nm3. The bilayer as a whole
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contains very few spherical voids, i.e., in most cases σ1/σ2 6= 1. The voids
with 4× 10−3 nm3 < V < 0.13 nm3 are most elongated in Region 3, and the
void shapes in Region 4 appear to differ from Regions 1 and 2 only slightly.
This is true for small voids with V < 0.13 nm3; we should keep in mind that
Region 4 also contains larger voids, see panel (a) of Fig. 2.8. The shapes
of these holes are not ellipsoidal but more complex. As for orientations, in
Region 1 there are no voids such that the principal axis would be oriented
along the bilayer normal: the most probable orientation of the principal
axis is in the plane of the membrane. Region 2 is, again, rather similar
to Region 1, although the distribution is more uniform and φ = π/2 not
so much favored. Region 3 is significantly different: orientation along the
bilayer normal or close to it is preferred and orientation in the plane of the
membrane is rare. Finally, Region 4 contains mostly voids that are oriented
in the plane of the bilayer.

How does changing the penetrant size r from r = 0.09 nm affect this picture?
If r = 0.09 nm, the free volume does not percolate in either x, y, or z
direction [119]. By percolation in, e.g., x direction, we mean that there is a
large void stretching, in the x direction, from one side of our patch of bilayer
to the opposite side. For a more detailed discussion on percolation theory
and percolation in infinite and finite systems, see Refs. [116,119,145]. With
0.05 nm . r . 0.08 nm, the free volume percolates in Region 4 in the xy
plane, and for r . 0.04 nm in addition in the z direction [119]. The presence
of a percolating cluster is reflected in the size distribution and orientational
distribution in Region 4: the percolating cluster is clearly visible in N(V )
and P (cosφ) sinφ has a peak close to φ = 0, see Ref. [119] for details.

The rest of this Section deals with how a changing cholesterol concentration
χ affects the voids. As these effects are restricted to Regions 3 and 4, where
the cholesterol steroid ring structures and tails reside, we will focus on these
regions.

The behavior of the size distribution of voids with an increasing χ is
illustrated in Fig. 2.9. As the vicinity of the percolation transitions is
significant for the form of the distribution, we have identified two cases
that represent the most biologically relevant regimes: r = 0.05 nm at which
xy percolation takes place in Region 4 and r = 0.09 nm with no percolation.
The regime where xyz percolation occurs is quite similar to the case of
r = 0.05 nm. Besides, even though our results are qualitative rather than
quantitative in nature, penetrant radii smaller than 0.05 nm are unphysical.
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Figure 2.9. Effect of cholesterol concentration on void size distribu-
tions [119]. (a) Region 3 and r = 0.05 nm. (b) Region 4 and r = 0.05 nm.
(c) Region 3 and r = 0.09 nm. (d) Region 4 and r = 0.09 nm. Percolation in
the plane of the bilayer is seen in panel (b) as a separate cluster of points in
the right-hand corner. The finite statistics lead to relative errors that grow
with V . For V < 0.01 nm3 the errors in N(V ) are smaller than a percent,
and in the range 0.01 nm3 < V < 0.1 nm3 smaller than ten percent. If V
is of the order of 1 nm3, the relative errors may be 100–300 %. As the data
are shown on a log-log scale, this is hardly a problem.

The case of r = 0.05 nm, representing all r below the xyz percolation
threshold and above the xy threshold, is portrayed in panels (a) and (b)
of Fig. 2.9. The most notable effect in raising χ from 0 % to 29.7 % is the
reduced connectivity of free volume. This is manifested in the size of the
percolating cluster, which decreases by a factor of three to V ≈ 5 nm3,
approximately ten times the average close-packed volume of a cholesterol
molecule, Vchol ≈ 0.459(2) nm3 [48]. At the same time the number of non-
percolating voids of all sizes in Region 4 increases: although the total free
volume decreases, the number of voids increases by a factor of three. The
effects in Region 3 also reflect the reduced connectivity, but are very minor.
Here the number of large voids with V ≈ Vchol decreases somewhat, while the
number of voids from those with radii of the order of 0.1 nm to V ≈ Vchol/10
increases slightly.

The situation with no percolating cluster, more specifically with r =
0.09 nm, is illustrated in panels (c) and (d) of Fig. 2.9. The effects of
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cholesterol are very pronounced in Region 3. Comparing the case of
χ = 29.7 % with pure DPPC we note that there are fewer voids of all
sizes. The number of voids is reduced at least by a factor of three, but
especially for larger voids the reduction can be as large as a factor of twenty.
The largest voids with V ≈ Vchol are removed completely. The effects are
similar, although more minor, in Region 4. Voids with radii up to 0.1 nm
are unaffected, while the number of intermediate and large voids decreases.
Here cholesterol removes the voids with 1 nm3 . V . 3 nm3, larger than its
own close-packed size.
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Figure 2.10. P (σ1/σ2, σ2/σ3) at χ = 0 % and χ = 29.7 % in Region 3 [119].
The penetrant size is 0.05 nm. (a) Surface plot at χ = 0.0 %. (b) Contour
plot at χ = 0.0 %. (c) Surface plot at χ = 29.7 %. (d) Contour plot at
χ = 29.7 %. The relative errors are smaller than ten percent.

To characterize the effect of cholesterol on the shape of the voids with
4× 10−3 nm3 < V < 0.13 nm3, we focus on P (σ1/σ2, σ2/σ3), the probability
that a void has given values of σ1/σ2 and σ2/σ3. The distribution has
been normalized such that integration over it gives unity. The behavior of
P (σ1/σ2, σ2/σ3) in Region 3 with r = 0.05 nm is portrayed in Fig. 2.10.
Cholesterol does not significantly influence the shape of the voids in any
other region, and other penetrant sizes give very similar results. Panels (a)
and (b) show the probability distribution for pure DPPC and panels (c) and
(d) for a bilayer with χ = 29.7 %. In both cases elongated voids dominate
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the distribution; spherical or nearly spherical voids with σ1/σ2 ≈ σ2/σ3 ≈ 1
are rare. The presence of cholesterol makes the voids more elongated: larger
values of σ1/σ2 and σ2/σ3 occur with a higher probability.
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Figure 2.11. Orientational distribution P (cosφ) sinφ in Region 3 for r =
0.05 nm at different cholesterol concentrations [119]. The relative errors are
of the order of five percent.

The impact of cholesterol concentration on the orientation of the elongated
voids is most conspicuous in Region 3 and largely independent of r. The
behavior of the orientational distribution P (cosφ) sinφ with an increasing
χ in the case of r = 0.05 nm is portrayed in Fig. 2.11. In pure DPPC,
angles φ > 0.1π are favored, while orientation along the bilayer normal, i.e.
φ = 0, hardly occurs at all. At χ = 29.7 %, orientation along the bilayer
normal or close to it is favored; alignment of the principal axis in the plane
of the bilayer is rare. At cholesterol concentrations between 0 and 29.7 %,
the orientational distributions change systematically from one extreme to
the other. In Region 4 the effects of cholesterol are less pronounced and
depend on r, see Ref. [119].

The above conclusions on the properties of voids may be used for predicting
how cholesterol influences, e.g., solute permeation across DPPC bilayers.
The permeability of a solute depends on both its solubility into the bilayer,
as well as its diffusion across it. As bilayers are heterogeneous in the normal
direction, the solubilities and diffusion coefficients of solutes vary with the
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position along the bilayer normal. This effect is captured by the so-called
inhomogeneous solubility-diffusion model [81].

The permeability of a solute across a given bilayer depends on its size, shape,
and hydrophobicity [81–84]. Here we are not so much interested in how the
properties of solutes influence the permeation process across a given bilayer.
Instead, we wish to make qualitative predictions about how an increasing
cholesterol concentration affects the permeation of solutes.

Most solutes have radii at least of the order of 0.1 nm, and we will
therefore concentrate on the regime without percolating clusters of free
volume. In this case the influence of cholesterol on the properties of
the voids is restricted to Region 3, where the cholesterol ring structures
and DPPC tails are located. From a permeation point of view, too,
Region 3 is very important [81]: this is where the largest resistance to the
permeation of hydrophilic solutes, as well as the anomalous size dependence
of permeability, originate.

In Region 3 the presence of 29.7 % cholesterol reduces the number of voids
of all sizes. In addition, large voids comparable in size with cholesterol
molecules are completely removed. An increasing cholesterol concentration
also makes the voids in Region 3 elongated, and transforms the isotropic
orientational distribution of voids in pure DPPC to an anisotropic one
favoring orientation of the principal axes of the voids along the bilayer
normal.

The reduced number of voids in Region 3 may affect both the solubility
and diffusion of solutes. As χ = 29.7 % implies that the number of voids
of all sizes V < Vchol decreases at least by a factor of three and in most
cases more, one would expect the solubility of small hydrophilic molecules
in Region 3 to be reduced. As for diffusion, the matrix of voids is thought
to be fairly static [81], and diffusion of small solutes therefore a series of
jumps between neighboring voids [114]. Given a lower density of voids of all
sizes, one would anticipate the diffusion coefficients of both hydrophobic and
hydrophilic small solutes, with radii, say, less than 0.2 nm, to be suppressed.
Concluding, χ & 20 % should, compared with pure DPPC, significantly
reduce the permeability coefficients of small solutes, more so for hydrophilic
solutes than for hydrophobic ones.

The diffusion coefficients of larger molecules are expected to behave quite
differently from those of small molecules. As the number of large voids is
small for all values of χ, the diffusion of larger molecules may be of the
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nonhopping type [81]. In this case the influence of the number of voids of
various sizes on the diffusion coefficients and therefore also permeability is
far from straight-forward.

The elongation and re-orientation of voids in Region 3 with an increasing
χ may also affect the permeation of solutes. Consider first the case of two
solutes with similar sizes and hydrophobicities, one of which is spherical and
the other elongated. When χ grows, we expect the permeability coefficient
of the elongated solute scaled by the permeability coefficient of the spherical
solute to increase slightly. Further, the permeation of very small solutes of
any shape may be speeded up by the more elongated voids oriented in the
direction of the bilayer normal. In pure DPPC, with less elongated voids
oriented mainly in the plane of the bilayer, small solutes have to jump
between voids to cross the bilayer. With χ = 29.7 %, in which case the
voids are more elongated and aligned with the bilayer normal, the small
solutes may diffuse unhindered within a void in the normal direction. This
should slightly increase the permeability of the bilayer to small solutes. We
expect this effect, at least for χ & 20 %, to be much less significant than
the permeability-reducing effect of the smaller number of voids. Hence, our
earlier conclusion that χ & 20 % should suppress permeabilities holds. For
low cholesterol concentrations, where the N(V ) are only slightly modified,
the situation is less clear.

Experiments on large unilamellar vesicles show that water permeation in
DMPC/cholesterol systems above the main phase transition is, compared
with pure DMPC, suppressed for cholesterol concentrations 5–27 % [107].
The reduction in water permeability becomes truly significant when χ =
20−27 %, in agreement with our predictions. Bhattacharya et al. [106] have
examined the permeation of carboxyfluorescein in small unilamellar vesicles
made of DMPC in the fluid phase, finding that a cholesterol concentration
χ = 10 − 30 % noticeably reduces the permeability of the bilayer. Our
predictions are also in accord with the experiments of Subczynski et al. [109],
who have studied the permeation of water in bilayers consisting of saturated
phosphatidylcholines and cholesterol.

The above discussion shows that more research into the detailed mechanisms
of dynamic processes in DPPC/cholesterol bilayers is needed. In addition to
the highly interesting mechanisms of lateral diffusion, and the role of voids
in these, it would be interesting to study permeation in these systems.
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3

Approaching Mesoscale:
Systematic Coarse-Graining

3.1 From Atomistic to Coarse-Grained

Classical molecular dynamics currently allows us to study systems contain-
ing of the order of 105 − 106 atoms. Converted to units of length and
time this means, in membrane systems, roughly tens of nanometers and
around ten nanoseconds, or five nanometers and hundreds of nanoseconds.
If state-of-the-art hardware and simulation software are used, this translates
to approximately one year of wall clock time on a single processor.

Lots of interesting phenomena in membranes take place at much larger
scales, at the so-called mesoscale. By mesoscale we mean spatial and
temporal scales between atomistic and macroscopic, say, in the range 10–
1000 nm and 10–1000 ns. Examples of mesoscopic phenomena in membranes
include domain formation, cooperative motions of lipids associated with
phase changes, and bilayer fusion.

To study mesoscopic phenomena, we have to simplify or coarse-grain our
classical atomic-scale models. This is analogous to what was discussed in
Chapter 2: instead of QM models, in many cases of biological relevance
classical atomic-scale models should be used. This leads us to the concept
of multiscale modeling. The phenomena in, e.g., cells, tissues, or organs,
taking place at a myriad of spatial and temporal scales, are best described
by a hierarchy of techniques ranging from QM to continuum or finite element
models. Ideally, these different levels of description should be connected by
systematic links. The links could take us from microscopic to macroscopic
or vice versa: in the former case we talk about coarse-graining and in the
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latter about fine-graining. In the remainder of this Chapter, we will focus
on coarse-graining.

The links from finer to coarser systems are by no means uniquely defined.
There are different ways of systematically reducing the degrees of freedom
in a given system [10, 146]. In addition, the degree or level of coarse-
graining may vary: we may wish to coarse-grain our atomistic phospholipid
description to point-particles in two dimensions, or opt for less coarse-
grained phospholipids consisting of ten connected blobs. It all really
depends on what we want to study with the resulting coarse-grained
model. The essential idea, however, is to decide what kind of interacting
coarse-grained particles would be useful for the problem at hand, and by
some means, using information from a more microscopic level, derive the
interactions between those coarse-grained particles.

The term coarse-graining is not exclusively reserved for the act of finding
systematic ways to connect different levels of description. In some cases
coarse-graining implies the construction of a phenomenological model
containing fewer degrees of freedom than, say, an atomistic model. This
kind of coarse-graining is by no means inferior to the systematic linking
procedure, just different. Cleverly constructed coarse-grained models, which
are general enough, can be used to study the generic properties of a wide
variety of soft systems. We should, however, keep in mind that they are no
faithful models of any particular system.

In the following the label ’systematic coarse-graining’ will be used for
the linking process described above, and ’coarse-graining’ denotes the
construction of any model where the smallest interacting units are larger
than atoms. This categorization is, unfortunately, not very clear-cut. On
one hand, some coarse-graining procedures are semi-systematic: at least
some attempt has been made to mimic real systems, but the linking is far
from systematic. A good example of such a case is the coarse-graining
from QM models to classical atomic-scale models; ideally, the classical
atomic-scale force fields could be derived from QM simulations alone. More
examples will be mentioned below. On the other hand, even in atomic-scale
models a single interacting unit can be larger than an atom, united atom
force fields being a case in point.

In this Chapter we will come across both kinds of coarse-graining—
systematic and phenomenological—and everything in between. The
emphasis will, however, be on systematic coarse-graining. After describing
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the state of the art of coarse-grained approaches in membrane systems,
we will discuss systematic coarse-graining, focusing on a coarse-graining
technique called inverse Monte Carlo (IMC) [20]. Finally we will describe
the use of IMC in the DPPC/cholesterol system introduced in the previous
Chapter.

3.2 Coarse-Graining in Membrane Systems

One of the first off-lattice coarse-grained bilayer models was introduced
in the mid-1990s by Nielsen et al. [113, 147–149]. This phenomenological
model is very useful in the study of lipid/sterol bilayers, most notably in the
theoretical interpretation of their experimental phase diagrams. As phase
behavior is targeted, the degree of coarse-graining must be high: lipids
and sterols are hard-core particles with internal degrees of freedom. The
model is a two-dimensional off-lattice one, and statistics are obtained from
MC simulations. The model has also been used for studies of the effect of
phospholipase A2 on lipid bilayers [150].

Another phenomenological model with a high degree of coarse-graining, also
describing lipid/sterol systems, but at the high-concentration solubility limit
of cholesterol, has been published by Huang et al. [151,152]. It is somewhat
similar to the model of Nielsen et al., the most notable difference being
that Huang et al. use a lattice description as opposed to an off-lattice one.
The aim of these computer experiments is to look for so-called superlattice
structures in lipid/sterol bilayers, structures whose existence has been
suggested by Somerharju et al. [153–156]. Superlattices of cholesterol are
indeed observed, but this could be a lattice artifact [147]. These studies
have been recently complemented by a two-dimensional off-lattice study
with point-like lipids and sterols [157]. Even here superlattice structures
are observed. The actual existence of superlattices, however, is at this
point not established: the experimental evidence in favor of superlattices
might be due to probes.

Moving towards less coarse-grained but still phenomenological models, we
should mention the amphiphile simulations by Loison et al. [158, 159].
They have performed MD simulations of simple chain-like amphiphiles
consisting of two hydrophilic and hydrophobic beads in an explicit solvent.
Under suitable conditions, the amphiphiles self-assemble into a lamellar
phase. Loison et al. have studied the thermal fluctuations [158] and pore
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formation [159] in their self-assembled stack of bilayers, comparing their
results to predictions of theoretical models.

A similar phenomenological model has been constructed by Lipowsky
et al. [160, 161]. The details of the interactions differ from those in
Refs. [158, 159], and in addition to flexible chain-like molecules, more
complicated amphiphiles with tunable chain stiffness and either one or two
tails are studied. Using a combination of MC and MD, Lipowsky et al.
investigate the self-assembly and physical properties of their coarse-grained
lipid membranes. Diffusion coefficients for water and amphiphiles, pressure
profiles across the bilayer, as well as interfacial tensions and compressibility
moduli are computed. An extension of the model [162] features two kinds
of macromolecules, long lipid-like and short cholesterol-like amphiphiles.

Lipowsky’s group has also developed a second phenomenological coarse-
grained bilayer model [163]. This model is studied using dissipative particle
dynamics (DPD) [164–166], and as often is the case in DPD simulations,
the non-bonded interactions are soft, i.e., they do not have a hard core. The
so far reported results include equilibrium structure properties and lateral
stress profiles. The model is currently being used for studies of vesicle
fusion, a topic far beyond the reach of atomistic MD simulations. Vesicle
fusion of coarse-grained amphiphiles has also been investigated by Stevens
et al. [167]. Their amphiphiles are a little less coarse-grained than those of
Lipowsky et al., and they use MD rather than DPD. The model by Stevens
et al. has also very recently been used for studies of bilayer assembly and
structure [168].

The DPD methodology seems to be rather popular in coarse-grained bilayer
studies; further examples of its use are the publications by Groot et
al. [169] and Kranenburg et al. [170–172]. These two groups use essentially
the same model, where the level of coarse-graining is very similar to
that in Refs. [160, 161, 163]: an amphiphile consists of approximately ten
coarse-grained particles. The model, however, is less phenomenological.
The repulsive interaction parameters were originally chosen by Groot et
al. [169, 173] to reproduce the compressibilities and mutual solubilities in
the experimental soft systems to be modeled. Groot et al. [169] used
their DPD model to qualitatively study systems consisting of lipids and
nonionic surfactants, focusing on the rupture of the lipid bilayer with
added surfactants. Kranenburg et al. [170–172], in turn, have been mostly
preoccupied with interdigitation of amphiphiles in various circumstances.
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The first more specific, rather than qualitative, coarse-grained model in
our narrative is that of Shelley et al. [174–176]. They have constructed
an interesting model for a DMPC bilayer in water, attempting to capture
certain key properties of the water and lipid molecules known from
experiments and atomistic simulations. For instance the force field
parameters for the coarse-grained water molecules were tuned to match
the melting temperature, vapor pressure, and density of real water. The
most interesting part are the non-bonded, nonelectrostatic interactions
between the coarse-grained particles comprising the DMPC molecules.
The parametrization of these interactions was based on radial distribution
functions (RDFs) from atomistic simulations. This model is therefore an
example of semi-systematic coarse-graining, where at least part of the
interactions originate from a more microscopic level. The coarse-grained
lipid model has recently been used in simulations of the insertion and
function of a nanosyringe in a bilayer [177].

The novel coarse-grained model designed by Marrink et al. [178] is another
example of more quantitative approaches. Here, as in the case of Shelley
et al., the parametrization is achieved by comparison to experimental and
simulation results. The systematic or semi-systematic linking, however, is
missing; the parameters are tuned such that the model yields results in
accord with experiments and atomistic simulations. The construction is, in
fact, very similar to that of classical atomic-scale force fields. The model is
versatile: it can be used to model a variety of phospholipids, and it works
well in both lamellar and nonlamellar—inverted hexagonal and micellar—
phases. It is fast, giving the user a speed-up of more than three orders of
magnitude compared to atomistic MD. Finally, it can be said to be at least
semi-quantitative, with results in fair agreement with structural, elastic,
dynamic, and thermodynamic data for a range of bilayers.

The perhaps most interesting venture so far is the systematic multiscaling
effort for solvent/bilayer systems by Voth et al. [179–184]. The first
publication in this ambitious series [179] introduces a methodology, the
material point method, for interfacing “atomistic” MD with continuum
dynamics. The “atomistic” bilayer simulations are not truly atomistic:
for instance the lipids are ellipsoids with a dipolar charge distribution in
one end. A second paper [182] consummates the project, replacing the
simple water molecules and ellipsoidal lipids by fully atomistic pure DMPC
and DMPC/cholesterol simulations. Another direction for Voth et al. is to
bridge atomistic and DPD-like mesoscopic models. In Ref. [181] DPD is
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cast in a new membrane formulation called elastic membrane DPD (EM-
DPD). The interaction parameters between the mesoscopic particles, which
are in a sense replicas of the original MD simulation box, are derived from
atomistic MD and NEMD simulations [180]. An additional novel mesoscopic
bilayer model from the Voth group is presented in Ref. [184]. One of the
latest publication from Voth et al. [183] introduces a mesoscopic model
for studying lateral diffusion in bilayers. Briefly, a probe is inserted to an
atomistic MD simulation, and the dynamics of the probe is then used to
construct a new coarse-grained model.

3.3 Systematic Coarse-Graining and Inverse
Monte Carlo

Modeling soft condensed matter by a hierarchy of models rigorously
connected to each other, each model being applicable over certain spatial
and temporal scales, is indeed desirable. However, there is no unique rule
for how this hierarchy should be constructed. As exemplified in Sec. 3.2, the
choice of the coarse-grained particles depends on the objectives of the coarse-
grained simulations. To study phase behavior in bilayers it is convenient
to have a high degree of coarse-graining, the coarse-grained particles being
whole lipids or sterols [113, 147–149]. On the other hand, in studies of
vesicle fusion real three-dimensional amphiphiles with headgroups and tails
are clearly needed [167]. Even after the coarse-grained particles have been
defined, there is no unique way of deriving the interactions between these
particles. Several techniques exist, see Refs. [31, 146] for further references.

Inverse Monte Carlo (IMC) [20, 185] is a method for obtaining interactions
between coarse-grained particles using information from a more detailed
description. The idea is to solve an inverse problem; to reconstruct the
Hamiltonian of a system using canonical averages from either simulations
or experiments. The corresponding direct problem is to, computationally
or analytically, calculate averages for a system with a given Hamiltonian.

In isotropic systems, radial distribution functions (RDFs) are a convenient
choice for the canonical averages to be used as a starting point for
reconstructing the Hamiltonian H. It has been shown [186] that two pair
potentials that result in the same RDFs for a given system can differ from
each other by only a constant. This constant can be fixed by the requirement
that the potentials vanish at infinite interparticle distances.
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In practise the reconstruction of the coarse-grained Hamiltonian from the
RDFs is achieved iteratively. We assume for simplicity that our model
contains only pairwise interactions and that all coarse-grained particles in
our system are of the same kind. The Hamiltonian can then be written as

H =
∑

i,j;i6=j
V (rij), (3.1)

where the kinetic energy part has been left out. Here V (rij) is the so far
unknown interaction potential for a pair of coarse-grained particles at a
distance rij from each other.

To proceed it is convenient to work with discretized interaction potentials.
Let us assume that the pairwise interaction potential V (r) can be set to
zero for r > rcut, where rcut is a cutoff distance. We divide the interval
where V (r) is finite to Nbins equally large bins, whose widths thus become
δr = rcut/Nbins. For (α − 1)δr ≤ r < αδr, α = 1, . . . , Nbins, we set V (r)→
Vα ≡ V [rα ≡ (α− 1/2)δr)]. The Hamiltonian can be written as

H =
∑

α

VαSα, (3.2)

where Sα is the number of pairs whose interparticle distance r satisfies the
condition (α− 1)δr ≤ r < αδr.

The {Sα}Nbins
α=1 are closely related to the RDFs. The RDF at a distance

rα = (α− 1/2)δr is obtained by scaling the canonical average of Sα by the
number of pairs with (α − 1)δr ≤ r < αδr in an ideal gas with the same
average density as that of the system under study. The scaling factor is
dimension-dependent, e.g., in two dimensions we have:

gα ≡ g(rα) =
〈Sα〉A

πN(N − 1)(δr)2 [α2 − (α− 1)2]
, (3.3)

where the angular brackets denote a canonical average, A is the total area
of the system, and N is the number of particles.

Assume now that we have obtained {gα} either experimentally or from, say,
atomistic simulations. Using Eq. (3.3) we can compute the corresponding
unscaled quantities, which we will call {S∗α}. The task of reconstructing the
Hamiltonian now boils down to finding the {Vα} between the coarse-grained
particles that yield {Sα} very close to the {S∗α}.
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As the {Sα} must be functions of the pair potential, we can expand

∆〈Sα〉 =
∑

γ

{
∂〈Sα〉
∂Vγ

∆Vγ +O
[
(∆Vγ)

2
]}

, (3.4)

where the sum is over all bins. The partial derivatives are easily obtained
using basic statistical mechanics, more specifically the definition of a
canonical average, arriving at

∂〈Sα〉
∂Vγ

=
1

kBT
(〈Sα〉〈Sγ〉 − 〈SαSγ〉) . (3.5)

Equations (3.4) and (3.5) allow us to iteratively find the final {Vα}, or the
so-called effective potential.

The iteration starts with an initial guess for the interaction potential,
denoted by {V (0)

α }. It is usually a good idea to use the so-called potential
of mean force as an initial guess:

V (0)
α = −kBT ln gα. (3.6)

If gα = 0, as is often the case at short distances, the initial guess can be
a value a few orders of magnitude higher than the energy scales of the
problem at hand. Note that the potential of mean force differs from the
final outcome of the iteration, as the effective potential includes corrections
from many-particle interactions.

We continue by performing an MC simulation using the {V (0)
α } as a discrete

interaction potential between the coarse-grained particles. The simulation
results in the canonical averages {〈Sα〉(0)} and {〈SαSγ〉(0)}. These can be
inserted in Eq. (3.5) to obtain the partial derivatives in Eq. (3.4). Further,

we can calculate the {∆S(0)
α } on the left-hand-side of Eq. (3.4):

∆S(0)
α = 〈Sα〉(0) − S∗α. (3.7)

The set of Nbins linear equations (3.4) can now be solved for {∆V (0)
α }, and

a new interaction potential {V (1)
α } emerges from

V (1)
α = V (0)

α + ∆V (0)
α . (3.8)

This potential is used in a second round of MC simulations, resulting in
{〈Sα〉(1)} and {〈SαSγ〉(1)}. The iteration progresses until the potential
hopefully converges.
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The algorithm is easily generalized to systems with K different kinds of
particles [185], the main difference being that the notation becomes less
elegant and the set of linear equations more challenging to solve with Nbins×
K × (K − 1)/2 equations.

The IMC technique is fairly novel, and has so far been used in only a
few applications. Laaksonen et al. have utilized it to coarse-grain NaCl
solutions [187–189] and ion-DNA systems [190]. Brunner et al. [191]
have used it to determine the effective potentials in quasi-two-dimensional
colloidal systems of charge-stabilized polystyrene spheres, comparing
the IMC approach with a less rigorous way of deducing the effective
potentials from RDFs: an inversion method based on the Ornstein-Zernike
equations [191, 192]. Acuña-Campa et al. [193] have employed a method
vaguely similar to IMC, also in quasi-two-dimensional colloidal systems.
Their procedure is not explained in detail and seems to be less systematic
than IMC. Also Shelley et al. [175], see Sec. 3.2, have used a technique
reminiscent of IMC to construct a coarse-grained model of DMPC.

Techniques closely related to IMC are also gaining popularity in the field
of computational polymer science, see Ref. [146] for a recent review.
Several different systematic coarse-graining techniques where RDFs are used
to derive effective potentials between coarse-grained particles have been
devised. Examples of such methods are simplex mapping techniques [194,
195], as well as techniques that stem from the physics of the problem,
e.g., the inverse Boltzmann technique [196,197], the structure-based coarse-
graining approach introduced by Akkermans and Briels [198], and the
semigrand canonical Monte Carlo method by Bathe and Rutledge [199].

3.4 Case Study: Coarse-Graining of
DPPC/Cholesterol System

3.4.1 Motivation

As explained in Chapter 2, binary mixtures of DPPC and cholesterol
show rich phase behavior. A particularly interesting feature in the phase
diagram, see Fig. 2.1, is the ld-lo coexistence region. The coexistence
region is expected to contain domains of lo and ld phases [200]. The
size of these domains in DPPC/cholesterol bilayers or the very similar
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DMPC/cholesterol bilayers has remained elusive. Quite recently, Loura
et al. [200], using a combination of fluorescence techniques and MC
simulation, were able to study the domain sizes in large unilamellar vesicles
of DMPC/cholesterol. In the cholesterol-poor end of the phase diagram,
they were able to detect small lo domains, with linear sizes less than 20–
25 nm. In the cholesterol-rich end, the ld domains had larger sizes. We
would expect this to apply to the DPPC/cholesterol system, as well.

Domains are perhaps not the only ordering phenomenon in fluid
DPPC/cholesterol bilayers. As mentioned in Sec. 3.2, the existence of
superlattice structures in these systems has been suggested [153–156, 201].
In brief, the superlattice model states that the sterols become maximally
separated and regularly distributed in a hexagonal lipid matrix. Domains
with hexagonal order are supposed to coexist with completely disordered
domains [201]. At certain critical concentrations [154, 201], the ratio of
regularly distributed and disordered domains is said to peak. Also other
propositions exist. Nielsen et al. [148] have reported an observation of
threadlike structures in their MC simulations. Cholesterols seem to form
one-dimensional threads, which tend to be surrounded by lipids. The
threads are short, consisting of only a few molecules, and their orientation
does not show any long-range correlations.

Our aim is to study (quasi-)long-range structure in DPPC/cholesterol
bilayers. As the domain sizes in the ld-lo coexistence region are expected
to be of the order of tens of nanometers or larger, our computer model
should be able to reach linear sizes of the order of hundreds of nanometers.
The atomistic MD model discussed in Chapter 2 therefore has to be coarse-
grained, and the degree of coarse-graining needs to be high. In the following,
we will discuss the construction and validation of a planar, off-lattice, two-
dimensional model, where each molecule is described by a point-like particle.
More specifically, each DPPC and cholesterol molecule is represented by its
CM position. The solvent degrees of freedom are integrated out, i.e., the
model contains no explicit solvent. The interactions between the coarse-
grained DPPC and cholesterol particles are derived from the RDFs of the
atomistic system described in Sec. 2.5.2 using IMC.

3.4.2 Construction of Coarse-Grained Model

Let us first briefly state the underlying assumptions of our model, see
Ref. [202] for more details. First, as we consider the upper and lower
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monolayers of our original bilayer only weakly interacting, we focus on
one monolayer only. Second, neglecting the out-of-plane fluctuations, we
assume our monolayer to be strictly planar. We further assume that the
interactions between DPPCs and cholesterols are adequately described using
pairwise, radially symmetric effective potentials. Finally, we fix the area
per molecule in the coarse-grained model, separately for each cholesterol
concentration, to be the same as the average area per molecule calculated
from the atomistic MD simulations [48]. The coarse-grained simulations are
therefore conducted in the canonical ensemble.
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Figure 3.1. Two-dimensional RDFs from atomistic MD simulations for
(a) DPPC-DPPC, (b) DPPC-cholesterol and (c) cholesterol-cholesterol
pairs [202]. The errors are of the order of a few percent, only somewhat
higher for the DPPC-cholesterol and cholesterol-cholesterol RDFs at χ =
4.7 %. The curves have been smoothed using an algorithm from Ref. [203].

The interaction potentials for DPPC-DPPC, DPPC-cholesterol, and
cholesterol-cholesterol pairs at cholesterol concentrations χ = 0 − 29.7 %
are derived using the IMC technique outlined in Sec. 3.3. The input for
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the IMC algorithm are the RDFs for the CM positions of the DPPCs and
cholesterols computed from the atomistic simulations described in Sec. 2.5.2.
The RDFs for DPPC-DPPC, DPPC-cholesterol, and cholesterol-cholesterol
pairs at different χ are shown in Fig. 3.1. Note that these RDFs are two-
dimensional, i.e., the CM positions of the molecules have been projected
to the plane of the bilayer. The RDFs clearly indicate liquid-like behavior:
the systems are, as they should, in the ld, lo, or ld-lo phase. As the
cholesterol concentration increases, the range of ordering increases slightly
and the maxima and minima become sharper.
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Figure 3.2. Effective potentials for (a) DPPC-DPPC, (b) DPPC-
cholesterol, and (c) cholesterol-cholesterol pairs [202]. The curves have been
smoothed using an algorithm from Ref. [203]. The errors are of the order
of a few percent.

After approximately 50 iterations of IMC with the RDFs from Fig. 3.1 as
input, the effective pair potentials converge. Wherever the RDFs vanish,
i.e., at short interparticle distances r, the quantitative values emerging
from the IMC procedure are meaningless. The exact values play no role
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whatsoever, as the interparticle distances never become quite as short. The
only requirement is that the values must be higher than at distances where
the RDFs are finite. We can therefore, at distances where the RDFs vanish,
replace the potential given by IMC by polynomials such that the potential
and its first derivative are continuous at the edge of the region.

The potentials thus obtained, for different χ, are shown in Fig. 3.2. Because
the degree of coarse-graining is high, the effective potentials decay rapidly.
As a consequence of the two-dimensional nature of the RDFs, some of the
DPPC-DPPC and all DPPC-cholesterol interactions are soft; they do not
have a hard core. The DPPC-DPPC potentials are almost entirely repulsive
at low cholesterol concentrations, and become more so with an increasing χ.
The DPPC-cholesterol potentials at low cholesterol concentrations have an
attractive well at r ∼ 1.5 nm and a very soft core. As χ increases, the well
disappears and the potentials become more repulsive at short distances. The
cholesterol-cholesterol potentials are harder than the other potentials and
quite complex with multiple local minima. The cases χ = 4.7 %, χ = 12.5 %,
and χ = 20.3 % have an attractive component at short distances, while the
cholesterol-cholesterol potential at χ = 29.7 % is mostly repulsive.

An obvious way of verifying that the effective pair potentials really
reproduce the original RDFs is to perform coarse-grained simulations using
these potentials and compute the RDFs. As we are focusing on large-scale
structure, we have chosen to use Metropolis MC in the canonical ensemble
to calculate averages. Figure 3.3 shows a comparison of the RDFs from the
atomistic MD simulations and those obtained from the coarse-grained MC
simulations. The coarse-grained system contains the same number of lipid
and sterol molecules as does the atomistic one. The two concentrations
shown in Fig. 3.3 are representative of all the systems we have studied:
the RDFs from atomistic and coarse-grained simulations are essentially
identical. When the system size is increased, there are minor changes in
the coarse-grained RDFs, see Ref. [202]. These changes are most probably
finite-size effects that originate in the limited sizes of the original atomistic
MD simulations. It is likely that atomistic simulations on larger systems
would result in similar changes to the atomistic RDFs.

3.4.3 Ordering in DPPC/Cholesterol Bilayers

To observe the possible long-range ordering phenomena, the system size was
raised from the original 64 molecules per monolayer to 36864 molecules per
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Figure 3.3. Comparison of RDFs from atomistic (solid black lines)
and coarse-grained (dashed grey lines) simulations [202]. Two cholesterol
concentrations are shown: (a) χ = 12.5 % and (b) χ = 29.7 %. The errors
are of the order of a few percent.

monolayer. This means simulating systems with linear sizes of 120–160 nm,
24 times larger than in the atomistic systems. Equilibration and sampling
of the larger systems required 50–100 CPU hours on a desktop computer.

The static structure factor, also called the scattering function, is used in
studying ordering by means of scattering experiments or simulations. For a
system consisting of N particles with positions {ri}, the scattering intensity
at the scattering vector k ≡ kf − ki, ki and kf being the wave vectors of
the incident and scattered beams, can be written as

S(k) =
1

N2

∑

i,j

〈exp [ık · (ri − rj)]〉. (3.9)

In our system the wave vector k is two-dimensional. Since the structure
factors are radially symmetric [202], we will discuss the circularly averaged
structure factors S(k). These are easier to visualize.
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Figure 3.4. Static structure factors and snapshots of systems at different
cholesterol concentrations: (a) χ = 4.7 %, (b) χ = 12.5 %, (c) χ = 20.3 %,
and (d) χ = 29.7 % [202]. In each panel, the structure factors computed
for DPPC-DPPC (dashed grey), DPPC-cholesterol (dashed black), and
cholesterol-cholesterol (solid grey) pairs, as well as the total structure factor
computed for all pairs of particles irrespective of their molecular species
(solid black), are shown. In the snapshots each cholesterol is represented as
a dot, and DPPCs are not shown.

The structure factors have been calculated for DPPC-DPPC, DPPC-
cholesterol, and cholesterol-cholesterol pairs, as well as for all pairs
irrespective of molecular species. The circularly averaged structure factors
at each cholesterol concentration, together with snapshots of the systems
showing the positions of cholesterol molecules, are shown in Fig. 3.4. At
χ = 12.5 % and χ = 20.3 %, the snapshots suggest the existence of domains
where the local cholesterol concentration is higher than elsewhere. At
these concentrations the cholesterol-cholesterol structure factor has a rather
broad maximum at small k, supporting our interpretation of the presence of
cholesterol-rich and cholesterol-poor domains. The location of the maximum
indicates domain sizes of approximately 20 nm or larger. Acquiring more
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accurate figures is difficult. Even for the largest systems we have studied,
with linear sizes of approximately 280 nm, the maximum is still quite broad,
and the small k side of the peak is, because of fluctuations at large length
scales, not very distinct. It is, however, possible to study how the maximum
behaves if the system size is varied. To do so, we have computed the static
structure factors for systems with linear sizes 6, 12, 24, and 48 times that
of the original atomic-scale simulation box. This finite size scaling analysis
indicates no clear changes in either the position or shape of the maximum.

According to the DPPC/cholesterol phase diagram, see Refs. [103, 104]
and Fig. 2.1, the ld-lo coexistence phase is present above the main phase
transition temperature and at intermediate cholesterol concentrations. The
precise location of the phase boundaries is not known: phase diagrams
constructed by different groups differ a little at this point. We cannot
therefore state which cholesterol concentrations should be in the ld-lo
coexistence phase at T = 323 K. Another complication is the underlying
atomistic force field: it is simply not good enough to allow us to claim that
we are exactly reproducing the experimental phase behavior of the system.
Despite these reservations, the phase diagram does lend support to our
observations.

As we have not included the ordering of the DPPC tails in our coarse-grained
mode, we cannot directly distinguish between the ld and lo phases. Yet it
is plausible that the cholesterol-rich phase should be lo and the cholesterol-
poor ld. The ordering effect of cholesterol on the phospholipid tails has been
clearly demonstrated: the higher the cholesterol concentration, the more
ordered the tails [48, 49, 204]. This ordering effect appears to be local, i.e.,
the tails become more ordered in the vicinity of cholesterol molecules [204].
It is thus conceivable that the cholesterol-rich regions should be lo. Based on
this reasoning, our coarse-grained systems with χ = 12.5 % and χ = 20.3 %
are in the ld-lo coexistence phase. The linear sizes of the lo domains appear
to be approximately 20 nm, in agreement with the sizes suggested by Loura
et al. [200]. The other systems with χ = 4.7 % and χ = 29.7 % appear to
be in single phases. According to the phase diagram the former must be in
the ld phase and the latter in lo.

In addition to static structure factors, also other quantities were computed,
see Ref. [202]. These studies shed no further light on the nature or size of
the domains. Neither did we find support for the presence of superlattice
structures [202]. This might be because our DPPC particles are radially
symmetric. The occurrence of superlattices—if they exist, see Sec. 3.2—
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could require a geometry with radially symmetric cholesterols and two
radially symmetric hydrocarbon tails.

3.4.4 Remarks on Coarse-Grained Model

IMC clearly is a very appealing approach to systematic coarse-graining.
It is adjustable: the level of coarse-graining and the number of degrees
of freedom to be included are user-controlled. This allows the user to
decide whether accuracy or speed is more critical, and design the model
accordingly. We made a minimal model of the DPPC/cholesterol bilayer
system, sacrificing a lot of detail to be able to look at mesoscopic systems
at rather modest computational costs. The actual speedup of the coarse-
grained model compared to the atomistic model was estimated to be eight
orders of magnitude, see Ref. [202].

IMC is also general in the sense that it can be applied to a wide range
of systems. The only prerequisite is that RDFs for pairs of coarse-
grained particles should be ascertained from more microscopic simulations
or experiments. This, however, could be a mixed blessing. It may imply that
RDFs or other suitable canonical averages must, each time a new coarse-
grained model is constructed, be acquired from, say, expensive atomistic
simulations. On the other hand, this need not be true, since the coarse-
grained potentials derived for a given system may be valid in related
systems. For instance pair potentials determined at χ = 12.5 % might
be valid at other concentrations, as well. We did investigate whether the
effective potentials can be used at concentrations other than those at which
they were determined [202]. The results indicate that they may be used
at nearby concentrations. If phase boundaries are crossed, problems will
indeed arise. This is not necessarily true for less coarse-grained models
constructed using IMC.

Another problem was encountered when we attempted to study dynamic
quantities such as lateral diffusion. Such studies cannot be conducted using
Metropolis Monte Carlo; realistic dynamics has to be incorporated into the
system. It is well known that this can be very challenging in coarse-grained
systems. We found no simple way of including realistic dynamics into our
coarse-grained model, see Ref. [202] for details.

In our opinion the benefits clearly outweigh the problems, and we plan
to initiate further IMC-based studies. A possible line of development is
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to include conformational degrees of freedom for the DPPCs. This could
be done, in the spirit of Nielsen et al. [149], by giving each DPPC two
possible states, ordered and disordered. Another modification is to include
the two tails of the DPPCs as separate particles and possibly model the
headgroup as a third particle. Such modified models should be compared
to the minimal model to assess the possible benefits of the additional degrees
of freedom, and to gain further insight into the coarse-graining process.

The IMC approach could also be applied to more complex bilayer systems.
This, of course, requires input data from additional atomistic simulations.
An interesting idea is to coarse-grain a sphingomyelin/cholesterol bilayer,
and ultimately a phospholipid/sphingomyelin/cholesterol ternary mixture.
The study of these ternary systems at large length scales should be
rewarding, since such studies could help to explain the formation of lipid
rafts [6–9]. Also simple bilayers containing proteins, and perhaps ternary
lipid systems with proteins, should be feasible.
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Coarse-Grained Dynamics

4.1 Complex Fluids and Coarse-Grained
Dynamics

In this Chapter we must extend our rather loose definition of coarse-
graining. So far, coarse-graining has been explained as follows. Starting
from, say, an atomistic system, new coarse-grained particles or superatoms
have been defined. By some means—using more or less systematic coarse-
graining methods or intuition—interactions between these particles have
been derived. In the following, we will also discuss coarse-graining of solvent
dynamics. Coarse-graining will in this context, as previously, imply that
details not necessary for the problem at hand are left out.

Imagine simulating a complex fluid such as a colloidal or polymeric solution,
or as in Chapters 2 and 3, an amphiphilic mixture. Usually the goal of
such simulations is to study the dynamics of the solute, e.g., the folding
dynamics of a protein. The detailed motions of the solvent particles are
in most cases much less interesting. In an MD simulation of a single
polymer in solution, a decent-sized simulation box, preferably one whose
linear size L is significantly larger than the radius of gyration of the polymer,
is needed. Otherwise the finite size of the box will seriously affect the
results. With, say, 102 monomers and 105 solvent particles, it is not hard to
figure out that a substantially longer time is spent on resolving the solvent-
solvent interactions than on resolving the monomer-monomer or monomer-
solvent ones. As the most time-consuming part of an MD simulation is the
force calculation, see Sec. 2.3, the solvent-solvent force computation is a
bottleneck for the whole simulation.

Ideally, complex fluids should be studied on long time scales and over long
distances. For instance folding a rather simple protein requires several
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microseconds, in most cases more [18]. With small time steps, see Sec. 2.3,
and an enormous amount of solvent-solvent force computations, the MD
method with an explicit solvent becomes unfeasible.

A possible solution would be to integrate out the solvent altogether by
means of, e.g., IMC. In systems where hydrodynamic or solvent-mediated
interactions play an important role, this is a very bad idea. For instance
in the case of polymer collapse in solution, in essence a simpler version
of protein folding, hydrodynamic interactions have been shown to play a
significant role in the collapse dynamics [205, 206]. We must therefore not
remove the solvent, but coarse-grain it such that the exact hydrodynamic
equations of motion for the conserved fields—mass, momentum, and
energy—remain valid. A convenient way of achieving this is to model the
solvent by stochastic rotation dynamics (SRD) [21, 22]. There are other
methods that will lead to similar results, see e.g., Refs. [207, 208]. SRD, as
we will see, has several appealing features.

Even though the solvent is coarse-grained, it would be desirable to
preserve the microscopic character of the solute. Some monomers may
be hydrophobic, others hydrophilic, and we may wish to include this
information in our model. The word microscopic does not have to allude to
an atomistic force field aimed at mimicking a specific system: any explicit
pair or many-body interactions will do. The microscopic solute degrees of
freedom should somehow be coupled to the coarse-grained solvent. This
leads us to the MD/SRD hybrid model, where the solute is described using
ordinary microcanonical MD and the solvent using SRD.

This Chapter is about modeling mesoscopic systems where hydrodynamic
interactions are relevant. We will first explain the basics of the SRD
and MD/SRD techniques, give references to analytical work on SRD, and
review the applications where SRD has been used. Two two-dimensional
simulation studies, a dilute polymer solution and a colloidal solution, where
the MD/SRD algorithm has been exploited, will then be discussed.

4.2 Stochastic Rotation Dynamics and
MD/SRD

Stochastic rotation dynamics, also known as multi-particle collision
dynamics, real-coded lattice gas, or Malevanets-Kapral model, was first
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introduced by Malevanets and Kapral [21,22]. In brief, SRD is a mesoscopic
fluid model, where the fluid comprises particles with continuous positions
and velocities. The system is coarse-grained into cells of a regular lattice,
the simplest tessellation being a hypercubic grid with a mesh size a. The
dynamics of the system consists of a superposition of streaming and collision
steps. It can be shown that this dynamics conserves the momentum and
energy in each cell, and gives a correct description of the hydrodynamics of
the velocity field [21].

Assume a solvent consisting ofNb particles with positions {ri} and velocities
{vi}. During a streaming step at time t each particle i is propagated a
distance τvi(t), where τ is a discretized time step, also called the collision
step. After the streaming step, the particles are sorted into cells: ξi(t +
τ) denotes the coordinates of the cell where particle i is found after the
streaming step. The mean velocities u(ξ) of the particles in each cell ξ are
then computed. The actual collision is performed by randomly rotating the
relative velocity vi(t)− u[ξi(t+ τ)] of each particle i. The velocities of the
particles residing in the same cell are rotated by the same rotation matrix,
while different cells have different randomly chosen matrices. The equations
describing the dynamics read

ri(t+ τ) = xi(t) + τvi(t), (4.1)

vi(t+ τ) = u[ξi(t + τ)] + ω[ξi(t+ τ)] · {vi(t)− u[ξi(t+ τ)]} , (4.2)

where ω[ξi(t + τ)] is a random rotation matrix. Any random rotations
consistent with detailed balance can be used. In two dimensions a rotation
by either an angle +α or −α, each with a probability 1/2, is a typical choice.
In three dimensions, rotation by ±α around a randomly chosen unit vector
is often used, see Refs. [209, 210] for a detailed explanation. Even other
implementations of the collision step have been studied [209–211].

The above dynamics works well as long as the mean free path λ = τ
√
kBT—

a measure of the distance the particles travel between two collisions—of the
particles is larger than the mesh size a. If this is not the case, e.g., at low
temperatures, the particles in a given cell collide repeatedly with each other
before any of the particles leaves the cell or new particles enter the cell [207,
212]. The first consequence is that Galilean invariance is broken [207]:
transport coefficients measured in a system moving with velocity U will
depend on U. Second, a basic assumption in the analysis of Ref. [21],
that of molecular chaos, meaning that particles have no memory of their
earlier collisions, breaks down. Fortunately, there is a fix to these problems
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suggested by Ihle and Kroll [212]. Before a collision all solvent particles
are shifted by the same randomly chosen vector with components in the
interval [−a/2, a/2]. This shift randomizes the collision environment of the
particles, removing their memory of earlier collisions. After the collision,
particles must be shifted back to their original positions. The collision step
can now be written as

vi(t+ τ) = u[ξs
i(t+ τ)] + ω[ξs

i(t+ τ)] · {vi(t)− u[ξs
i(t+ τ)]} , (4.3)

where ξs
i(t+τ) denotes the coordinates of the cell particle i has been shifted

to.

Apart from the seminal Refs. [21, 22], there exist a few analytical and
numerical studies of the SRD method. Ihle et al. [207, 210, 212–214] have
presented a detailed analytical and numerical analysis of SRD with shifting.
In Ref. [207] they complement the work of Malevanets and Kapral [22]
by rederiving the equations of motion for the correlation functions of
coarse-grained hydrodynamic variables. Also new Green-Kubo relations
for the kinematic shear and bulk viscosities and the thermal transport
coefficient are given: shifting introduces a new contribution to the Green-
Kubo relations. In Ref. [213] approximate analytic expressions for the
transport coefficients in two dimensions are derived and compared to
numerical results. The long-time tails of velocity and stress autocorrelation
functions in two dimensions are studied numerically and found to be in
excellent agreement with mode-coupling predictions. This analytical and
numerical analysis is extended to three dimensions in Ref. [210]. Finally, in
Ref. [214], Ihle et al., inspired by Kikuchi et al. [208], refine their analytic
approximations for the transport coefficients. Kikuchi et al. [208] have
also studied transport coefficients in two and three dimensions, deriving
analytic expressions for the kinematic shear viscosity and comparing these
to numerical calculations where a shear has been applied to the system.
Another series of studies is that of Gompper et al. [209,211,215–217], where
flows in channels and around obstacles are studied numerically using SRD.
Finally, Malevanets and Yeomans [218] and Hashimoto et al. [219] have
employed the SRD algorithm to model binary fluid flow.

One advantage of SRD is that its rules are simple enough to allow analytical
work that contains few approximations and compares favorably to numerics.
Another advantage is that SRD can be easily coupled to a solute which
is described using MD. Compared to, e.g., combining MD and Lattice-
Boltzmann approaches [220], the MD/SRD hybrid method introduced by
Malevanets and Kapral [22] is easy to describe and implement.
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We now introduce solute particles with continuous positions and velocities
to the hydrodynamic bath of solvent molecules. The solute-solute and
solute-solvent interactions, Ess and Esb, can be chosen as in MD, while
the interaction potential Ebb between two solvent particles is always
zero. Instead of undergoing free streaming described by Eq. (4.1) between
collisions, the system evolves according to Hamilton’s equations of motion,
see Eqs. (2.7) and (2.8), where we set E = Ess + Esb. As Ebb = 0,
unless solvent particles interact with solutes, their motion is reduced to free
streaming. The effective solvent-solvent interactions take place as multi-
particle collisions at intervals of τ : the velocities of the solvent particles are
transformed according to Eq. (4.2) or (4.3).

Especially in the case of dilute solutions, the hybrid MD/SRD introduced
in Ref. [22] significantly reduces computation times of ordinary MD
simulations. An even faster variant of the hybrid algorithm has been
introduced by Malevanets and Yeomans [221]. In this case also the direct
solute-solvent interaction is absent: it is described indirectly through
collisions.

Let us briefly list the MD/SRD applications, either with or without
explicit solute-solvent interactions, published so far. Malevanets and Kapral
chose to demonstrate the use of their novel hybrid model by simulating
nanocolloidal particles in solution [22]. In a later publication, Lee and
Kapral [222] studied the structural and dynamic properties of clusters of
nanocolloidal particles in an SRD solvent. Yeomans et al. have studied the
dynamics of short polymer chains in dilute solutions [221] and the collapse of
a single polymer chain in solution [205]. Ripoll et al. [223] have, too, studied
short polymer chains in solution. Approaches to combining a solute and an
SRD solvent that differ from the MD/SRD presented in Refs. [22,221] have
been put forward by Ohashi et al. [224, 225].

The above discussion might suggest that SRD/MD simulations are simple
indeed. In a way, they are: modifications required to existing MD codes are
rather minor. On the other hand, a lot of insight and work are needed to
design, and in particular, to parametrize a sensible SRD/MD simulation.
The parameters that determine the collision dynamics—the mesh size a,
the collision step τ , and the rotation operator—influence the properties
of the coarse grained solvent, e.g., its viscosity and Schmidt number, see
Sec. 4.4.2. Also spatial and temporal scales inherent to the problem at hand
are part of the equation: for instance τ should be chosen small enough to
correctly describe the effect of solvent dynamics on solute particles [22].

59



4. Coarse-Grained Dynamics

The choices are not independent of each other; if a is altered, the solvent
viscosity is affected, and we might have to reconsider the choice of τ to
make sure the hydrodynamic interactions between the solute particles are
described correctly. A more comprehensive discussion on parametrization
can be found in Ref. [226]. In the following we will describe our MD/SRD
studies in two dimensions, and illustrate how MD/SRD studies are designed
and executed in practise.

4.3 Case Study: Two-Dimensional Polymer
in Solution

4.3.1 Anomalous Dynamic Scaling?

The MD/SRD method is not yet quite ready to be used in modeling specific
systems such as a β-hairpin from protein G, or a strand of DNA with a bunch
of counterions, in water. It is, however, already a very useful tool in generic,
phenomenological simulations that capture the behavior of a large range of
systems. A good example of such systems is a two-dimensional polymer in
a solvent with full hydrodynamics [227].

The dynamics of a two-dimensional polymer in solution, unbelievable as
it may sound, is a very controversial issue. The corresponding three-
dimensional system is well understood; simulations and experiments support
the existing theories for polymer dynamics in three dimensions [19, 228].
The dispute in two dimensions has to do with the theory of dynamic
scaling, a fundamental theory describing the dynamics of polymers [19].
To understand what the debate is all about, we have to briefly discuss the
static and dynamic scaling for polymers in dilute solution.

There are three key quantities to consider. The first is the radius of gyration,
a measure of the area or volume the polymer occupies. It is defined as

Rg ≡

√√√√ 1

N

N∑

i=1

〈(ri −RCM)2〉, (4.4)

where N is the degree of polymerization, {ri} are the positions of the
monomers, and RCM is the CM of the polymer. A second important
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quantity is the CM diffusion coefficient of the polymer

DCM ≡ lim
t→∞

1

2dt
〈[RCM(t)−RCM(0)]2〉, (4.5)

where d is the dimensionality of the system. A third central quantity is
the intermediate scattering function, the time correlation function of the
intensity of the scattered light from scattering experiments, see Eq. (3.9),

S(k, t) ≡ 1

N

∑

i,j

〈exp [ık · (ri(t)− rj(0))]〉, (4.6)

where k is a wave vector.

The radius of gyration and the CM diffusion coefficient scale with the degree
of polymerization as

Rg ∼ Nν (4.7)

and
DCM ∼ N−νD, (4.8)

where ν and νD are universal scaling exponents. The circular average of the
intermediate scattering function, see Sec. 3.4.3, scales as

S(k, t) ∼ k−1/νF (tkx) (4.9)

for k ∈ (2π/Rg, 2π/b), where b describes the size of a monomer. The new
exponent x, the so-called dynamic scaling exponent, is related to ν and νD

through

x = 2 +
νD

ν
. (4.10)

Equations (4.9) and (4.10) are the cornerstones of dynamic scaling of
polymers, and they should hold true in all dimensions d > 1.

Universality implies that the values of the two exponents ν and νD should
capture the generic behavior of any polymer system. Details such as the
chemistry of the polymers are largely insignificant in this respect. Only
three properties dictate the exponent values: dimensionality, whether or not
excluded volume interactions play a role, and whether or not hydrodynamic
interactions are present. For instance DNA molecules confined to the
surface of a fluid lipid membrane [229] form a two-dimensional system
where excluded volume interactions, but not hydrodynamic interactions,
are significant. The exponents are, as we shall see, in excellent agreement
with simple scaling theories: ν = 0.79± 0.04 and νD = 0.95± 0.06 [229].
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The Rouse model [19] describes systems with neither excluded volume
effects nor hydrodynamic interactions. In systems without excluded volume
interactions, only monomers that are close neighbors along the chain
interact with each other. This scenario is valid for polymer melts. In the
absence of excluded volume interactions ν = 1/2 in all dimensions [19].
The exclusion of hydrodynamic interactions leads to νD = 1, regardless of
dimensionality or the presence of excluded volume interactions [19] . Hence,
according to Eq. (4.10), we must have x = 4.

Excluded volume interactions, that are screened in polymer melts, are
crucial in describing systems such as a polymer chain in solution [19]. In
such cases steric interactions should be taken into account: as real monomers
have finite sizes, two monomers cannot come arbitrarily close to each other.
If excluded volume effects are taken into account, ν becomes dimension-
dependent, ν ≈ 0.75 in two and ν ≈ 0.59 in three dimensions [19, 230].

In a model that features excluded volume interactions, but no hydrodynamic
interactions, we have a dimension-dependent ν and, as in the Rouse model,
νD = 1. In this case Eq. (4.10) gives x ≈ 2.75 in two and x ≈ 2.59 in three
dimensions. An example of a system best described by such a model is
DNA on the surface of a fluid lipid membrane, see above. Hydrodynamic
interactions are not present because of the experimental setup; a glass plate
supporting the membrane makes the system dissipative.

The Zimm model [19], which takes the hydrodynamic interactions into
account, is the model of choice for describing polymer chains in solution.
The model can be formulated either with or without excluded volume
interactions. In both cases, νD = ν in three dimensions [19], and we
have ν = νD = 1/2 without and ν = νD ≈ 0.59 with excluded volume
interactions. Thus x = 3, irrespective of the presence of excluded volume
interactions.

The problem arises in the two-dimensional case with hydrodynamics.
Vianney and Koelman [231] state that in the so-called non-draining limit
the polymer should behave as an obstacle around which the solvent must
go. Hence in three dimensions the CM diffusion coefficient should scale
as that of a spherical particle, inversely proportional to the size of the
particle. This is exactly what the Zimm model predicts: νD = ν or
DCM ∼ R−1

g . Analogously, in two dimensions DCM should scale as the
diffusion coefficient of a disk-like particle. In practise, this implies that
DCM should, in two dimensions, depend logarithmically on the size of the
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particle and the linear size of the system. The lattice-gas simulations
of Vianney and Koelman, however, suggest that in two dimensions with
excluded volume and hydrodynamics ν = 0.75 and νD = 0.78± 0.05. After
demonstrating that their simulations suffer from no artifacts, but without
any finite size scaling analysis, the authors pronounce that two-dimensional
hydrodynamics “cannot be described within the nondraining concept”.

Shannon and Choy [232] think along similar lines. They use MD to study the
scaling of S(k, t) in two dimensions with excluded volume and hydrodynamic
interactions, arriving at ν = 0.72 and x = 2. The latter they call “a value
not predicted by the Rouse or Zimm models”, a statement which would
certainly be correct in three dimensions. The result x = 2 should, according
to Eq. (4.10), imply that νD = 0, i.e., logarithmic scaling of DCM with N , in
agreement with the original hypothesis of Vianney and Koelman. Shannon
and Choy have also studied the scaling of DCM with N , with confusing
results. Their MD simulations suggest that νD > 0, contradicting the
scaling theory. They have also numerically solved the Zimm equations in
two dimensions, verifying that x = 2, but finding that now νD < 0. These
results prompt the authors to suggest that dynamical scaling is broken
for two-dimensional polymers. Their preliminary re-examination of the
two-dimensional dynamic scaling theory lends support to this suggestion.
Unfortunately neither their simulations nor their theory take into account
finite size effects, in the latter case resulting in formulae that make little
sense from the point of view of dimensional analysis.

In the following, we will describe the use of the MD/SRD hybrid model
in verifying the validity of dynamical scaling for two-dimensional polymers.
We have extracted the exponents ν, νD, and x through extensive mesoscopic
simulations of a two-dimensional polymer with excluded volume and
hydrodynamic interactions. In particular, we have been able to carefully
consider the system size dependence of the CM diffusion coefficient. An
extensive finite size scaling analysis would have been impossible with a
conventional MD solvent.

4.3.2 Model System

We simulated a polymer chain immersed in a two-dimensional solvent.
The chain was described using MD and the solvent using SRD, resulting
in an MD/SRD hybrid model. The monomer-monomer interactions were
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modeled by truncated Lennard-Jones (LJ) potentials, also called WCA
potentials [233]:

ULennard−Jones(r) =

{
4ε
[(

σ
r

)12 −
(
σ
r

)6
]

+ ε, r ≤ 21/6σ;

0, r > 21/6σ.
(4.11)

In some of the simulations the monomer-solvent interactions, too, were
described by truncated LJ potentials. However, computing the CM diffusion
coefficients was very time consuming, and in that case the monomer-solvent
interaction potentials were set to zero and the monomers included in the
collision dynamics, see Sec. 4.2. In addition to the LJ potentials, nearest-
neighbor monomers interacted through anharmonic, attractive FENE
potentials [234]

UFENE(r) = −cR
2
0

2
ln

(
1− r2

R2
0

)
, (4.12)

where c = 7 ε σ−2 and R0 = 2 σ.

The mass of a solvent particle was set to m and the mass of a monomer was
2m. The parameters σ and ε together with m define the LJ unit system,
where the unit of time is defined as τLJ ≡ σ

√
m/ε.

The mass density of the solvent was set to ρb = 0.581mσ−2 and the
temperature to kBT = 1.2 ε. Hamilton’s equations of motion were integrated
using the velocity Verlet algorithm with a time step δt = 0.005 τLJ. The
size of the polymer chain was from 20 to 150 monomers, and the linear
size of the system L from 40 σ to 420 σ. Periodic boundary conditions were
employed.

The central parameters of the SRD collision dynamics, the mesh size and the
collision step, were chosen to be a = 2 σ and τ = τLJ. The mesh size was a
compromise. On one hand, it is inefficient to have, on the average, very few
colliding particles in a cell. On the other hand, to prevent correlations in the
intermediate-time dynamics of the monomers, a cell cannot accommodate
a large number of monomers, especially if monomer-solvent interactions are
modeled through collisions. The mean free path was approximately as large
as the mesh size, and hence no grid shifting was implemented. The random
rotation angles were selected from a uniform distribution in [0, 2π). These
choices result in a solvent shear viscosity η ≈ 1mτ−1

LJ .

The value of the shear viscosity is needed to determine a lower bound
for the length scales that can be modeled reasonably accurately. The
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hydrodynamics is not adequately described on time scales smaller or of
the order of the collision step τ [22]; time scales of τH = 3 − 5 τ are the
smallest to be considered. As the kinematic shear viscosity η/ρb is the
diffusivity of momentum [17], the distance traveled by momentum during a
time interval τH is approximately ` ∼

√
ητH/ρb, in our case ` ≈ 3 σ. This

implies that the description of dynamic quantities with k = 2 π/` < 3 σ−1

should be valid. Hence, the CM diffusion coefficient and the scaling of the
intermediate scattering function, see Fig. 4.2 for details, can be studied
using this parametrization of MD/SRD.

4.3.3 Scaling from Stochastic Rotation Dynamics
Simulations

In this Section we shall, for convenience, drop the dimensions from Rg, DCM,
k, and so on. First we establish that the excluded volume interactions are
correctly included in our model. This can be done, e.g., by checking the
scaling of Rg with N . This scaling is portrayed in Fig. 4.1. The slope of
lnRg vs. lnN gives ν = 0.76± 0.01, as it should.

We proceed by verifying the result of Shannon and Choy [232] for the
dynamic exponent x. The scaling of the intermediate scattering function is
depicted in Fig. 4.2. The scaling relation (4.9) implies that if the exponents
ν and x are chosen correctly, all k1/νS(k, t) vs. kxt should collapse on a single
curve. As ν is already fixed, we may only vary the dynamic exponent. The
best data collapse is obtained with x = 2.0± 0.1.

Having verified that ν ≈ 0.75 and x ≈ 2, we focus on the controversial
exponent νD. For a detailed account on how to define and compute transport
coefficients such as DCM in two dimensions, see Sec. 4.4 and Refs. [226,227].
As the nondraining argument of Vianney and Koelman suggests, it is not
enough to study DCM as a function of N or Rg for a fixed system size L.
Instead, both N and L should be varied to detect the possible logarithmic
scaling with the chain and system sizes.

Using the so-called memory expansion technique [235], we first determined
DCM for fixed N ∈ [20, 80] with varying L. For instance in the case of
N = 30 we considered the system sizes L ∈ {60, 90, 120, 150, 180, 210, 240}.
For each N , DCM was found to be linearly proportional to ln(b/L). The
conventional trick, which is used in three dimensions where DCM ∼ b/L,
would be to let L→∞ and thus extrapolate an asymptotic value for DCM.
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Figure 4.1. Scaling of radius of gyration with degree of polymerization.
The closed circles are the simulation data and the dashed line is a linear fit
to the data. The errors are of the order of a few tenths of a percent.

With the logarithmic dependence, however, this is no option. We therefore
chose cutoff values Lcut ∈ {102, 103, 104, 105, 106} and extrapolated a value
DCM(N,Lcut) for each chain size and cutoff.

If our data complies with Eq. (4.8), we will, when plotting DCM(N,Lcut)
vs. lnN , obtain a set of equally spaced straight lines. Each line should
correspond to a given value of Lcut, and the lines should all have the same
slope. As panel (a) of Fig. 4.3 shows, this indeed is the case within the
statistical uncertainties of our data. Hence, DCM scales logarithmically
with N or Rg and L,

DCM ∼ − ln

(
Rg

L

)
, (4.13)

which, in the language of scaling, means that νD ≈ 0. To quantify the
last statement, we may examine the slopes of lnDCM(N,Lcut) vs. lnN for
different values of Lcut. Taking logarithms on both sides of Eq. (4.13), using
Rg = bNν [19], and Taylor-expanding shows that for large values of Lcut

we should have lnDCM ∼ − lnN/ ln(L/b). On the other hand, according
to Eq. (4.8), lnDCM ∼ −νD lnN . Hence, the larger the value of Lcut is, the
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Figure 4.2. Scaling of S(k, t) for different values of N , L, and k [227]. Part
of the curves represent chains with N ∈ {30, 40, 60, 80, 120, 150}, computed
such that the ratio L/Rg > 10 has been kept constant. The rest has been
computed for a chain of N = 40 with different L ∈ {40, 80, 120, 60, 200}.
When x = 2 the 120 curves corresponding to different k ∈ [1.0, 2.4], N , and
L coalesce. The inset shows a scaling plot of S(k, t) with x = 3. This curve
has been computed for a system where N = 40 and L = 120.

closer to zero the slope of lnDCM(N,Lcut) vs. lnN , or the exponent νD,
should be. Panel (b) of Fig. 4.3 shows that νD decreases steadily with Lcut,
as it should. For the largest Lcut studied here, we find νD ≈ 0.05± 0.05.

Our numerical evidence for the behavior of the CM diffusion coefficient
can be backed up by analytical arguments based on the Zimm theory in
two dimensions. The preliminary theoretical results for DCM we published
in Ref. [227] have recently been refined [4]. The Zimm-model based
analytical calculations of Punkkinen et al. [4] clearly show that DCM scales
logarithmically with Rg/L. Furthermore, a quantitative comparison of the
numerical and analytic results is possible. Plugging in numbers to the
analytic prediction of Ref. [4] yields DCM = 0.1 σ2τ−1

LJ ln(Rg/L). The data
displayed in Fig. 4.3 give DCM = 0.1 σ2τ−1

LJ ln(Rg/L), in excellent agreement
with the analytic prediction.

We conclude that there is no reason to suppose that dynamic scaling should
be broken in two dimensions. Analytic predictions [4, 230] for the scaling
exponents in two dimensions, with excluded volume and hydrodynamic
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Figure 4.3. Dependence of DCM on N for different cutoffs Lcut [227]. The
sets of data correspond to Lcut ∈ {102, 103, 104, 105, 106} from bottom to
top. The closed circles are the simulation data and each dashed line is a
linear fit to the data set with a given Lcut. The errors, where invisible, are
smaller than the markers.

interactions, are ν ≈ 0.75, νD ≈ 0, and x ≈ 2. By correctly taking into
account the effect of system size, these exponents can be obtained from
numerical simulations.

4.4 Case Study: Two-Dimensional Colloidal
Diffusion

4.4.1 Introduction to Colloid Dynamics in Two Di-
mensions

In this Section we will continue discussing two-dimensional transport
phenomena in soft systems. Instead of polymers in solution, we will study
diffusion in two-dimensional nanocolloidal systems, and in particular, the
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role of hydrodynamic interactions in colloid dynamics. Colloids in confined
geometries are attractive from both experimental and modeling points of
view. Experiments are quite convenient, since two-dimensional trajectories
of colloidal particles can be followed using video imaging [236]. Interesting
issues, such as the form of the effective pairwise interactions between
colloidal particles [191–193] or the effect of hydrodynamics on tracer
diffusion of colloidal particles [237–244], are currently under debate. Our
emphasis will be on tracer and collective diffusion of colloidal particles in
solution, at finite particle densities and with full hydrodynamic interactions.

Quite a few groups studying colloidal diffusion in confined geometries have
focused on tracer or self diffusion. Even if the hydrodynamic interactions
are neglected, understanding tracer diffusion of Brownian particles at
finite densities is far from trivial, see, e.g., Refs. [245–247]. Taking the
hydrodynamic interactions into account further complicates the situation.
In quasi-two-dimensional colloidal systems, hydrodynamic interactions have
been suggested to slow down tracer diffusion of colloidal particles with short-
range interactions [237, 238, 242, 243]. On the other hand, in quasi-two-
dimensional colloidal suspensions where interactions are softer and more
long-ranged, the presence of hydrodynamic interactions appears to speed
up tracer diffusion [238–241,244].

Much less is known about collective or chemical diffusion in two-dimensional
colloidal suspensions. The collective diffusion coefficient measures the decay
rate of density fluctuations in a system. Hence, it is an important quantity
in describing processes such as spreading and phase separation. There is
evidence that hydrodynamic interactions do influence density fluctuations in
confined colloidal systems, see Refs. [238–240,242,243]. These publications
describe the effect of hydrodynamic interactions on the exponential short-
time decay of the intermediate scattering function. This effect is captured
by the so-called hydrodynamic function H(k) [248], which is unity in
the absence of hydrodynamic interactions. It appears that hydrodynamic
interactions contribute differently to the short-time relaxation of particle
fluctuations at different reciprocal length scales k, and that the deviations
from unity become more major with an increasing density. Measurement
or computation of the actual collective diffusion coefficients in colloidal
suspensions has, to our knowledge, not yet been reported. Numerical data
for collective diffusion coefficients exist in the absence of hydrodynamic
interactions for the case of Brownian particles with short-range direct
interactions [246].
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We have studied tracer and collective diffusion in two-dimensional nanocol-
loidal suspensions by means of extensive MD/SRD simulations. The direct
interactions between our model colloids are short-ranged and repulsive. The
efficient MD/SRD method allows us to consider a wide range of particle
densities and investigate how hydrodynamic interactions affect diffusion at
intermediate and long time scales. The effect of hydrodynamic interactions
is quantified through comparisons to numerical studies of the corresponding
dissipative systems [246].

4.4.2 On Transport Properties

Before describing the simulations or their results, we need to define and
discuss two-dimensional transport properties. These are conveniently
defined through so-called Green-Kubo relations.

The tracer diffusion coefficient DT describes the motion of a tagged tracer
particle. It is usually defined through DT = limt→∞DT(t), where

DT(t) =
1

dN

N∑

i=1

∫ t

0

dt′〈vi(t′) · vi(0)〉. (4.14)

Here N is the number of particles and vi(t) is the velocity of particle i
at time t. This definition of DT is equivalent to the so-called Einstein
definition, see Eq. (2.12).

In practise DT was not determined using Eq. (4.14) or the Einstein
definition. Instead we used the computationally superior memory expansion
technique [235]. In brief, a memory expansion for a transport coefficient
consists of a sum of contributions, each describing memory effects in a
given time interval. This technique thus allows one to monitor the decay of
memory effects in time.

In infinite two-dimensional systems with momentum-conservation the
asymptotic limit is not well defined; all transport coefficients should diverge
as t→∞ [213,215,217,249–253]. A solution to this problem is to treat the
transport coefficients as time-dependent.

When tracer diffusion in colloidal suspensions is investigated experimentally,
it is common to single out the effects of the hydrodynamic interactions
by concentrating on the so-called short-time diffusion coefficients, see e.g.,
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Refs. [237, 242, 243]. These are measured at times τB � t � τI [248]. Here
τB is a typical time scale for the relaxation of the velocity of a colloidal
particle. This relaxation is induced by the solvent friction. The time scale
τI is the structural relaxation time, the time it takes a colloidal particle to
diffuse a distance comparable to its own size. In MD/SRD simulations the
time interval between τB and τI tends to be narrow. Further, as the SRD
solvent model has been developed for studies in the hydrodynamic regime,
i.e., t� τI, we should not expect it to give a very accurate description of the
dynamics at time scales t ≈ τB. Computing short-time diffusion coefficients
is therefore not going to solve our problems.

Instead, we consider transport coefficients measured at times t > τI, i.e.,
intermediate- and long-time diffusion coefficients [248]. Despite a predicted
divergence of the form DT(t) ∼

√
ln t, see, e.g., Ref. [252], our data show

that tracer diffusion coefficients DT(φc, t), measured at different colloidal
area fractions φc, converge in the long time limit, see Ref. [226]. Although
at intermediate time scales we observe that DT(φc, t) ∼

√
ln t, in the limit

t→∞ this tail is cut off by the finite system size, as it should [215,217]. The
tail is also masked by statistical noise. Effective values DT(φc) for the tracer
diffusion coefficients can thus be extracted from the time regime where
DT(φc, t) appears to be constant. In the dilute limit, this plateau region
yields the effective single-particle diffusion coefficient D0 ≡ DT(φc → 0).
Both DT(φc) and D0 depend on system size.

Scaled effective tracer diffusion coefficients are defined as DT(φc)/D0.
Since both DT(φc) and D0 should have similar—logarithmic—system size
dependences, we expect that the scaled quantities do not depend on the
system size. This indeed seems to be the case, see Ref. [226].

Having dealt with the tracer diffusion coefficient, we may define the other
relevant transport coefficients in an analogous manner. The next transport
coefficient to be discussed is the collective diffusion coefficient, which
characterizes the decay rate of collective density fluctuations. It is usually
defined as DC = limt→∞DC(t), where

DC(t) = ξDCM(t) = ξ
1

dN

∫ t

0

dt′〈J(t′) · J(0)〉. (4.15)

The current flux J(t) =
∑N

i=1 vi(t) is proportional to the CM velocity of the
N particles comprising the system, and therefore DCM(t) can be interpreted
as the time-dependent CM diffusion coefficient of the N -particle system.
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Scaled effective CM mobilities DCM(φc)/D0 have been determined in the
spirit of scaled effective tracer diffusion coefficients DT(φc)/D0, see above.
The prefactor ξ = 〈N〉/[〈N 2〉−〈N〉2] is the so-called thermodynamic factor,
which is inversely proportional to the isothermal compressibility. It is a
static quantity, and is not, within our numerical accuracy, affected by the
presence of hydrodynamic interactions. We have determined ξ using both
MD/SRD simulations and the so-called Boublik approximation [254]. These
are in excellent agreement, see Fig. 4.5 and Ref. [246].

The third transport coefficient to be considered is the kinematic shear
viscosity of the solvent η/ρb. As mentioned in Sec. 4.3.2, this quantity
can be interpreted as the diffusion coefficient of linear momentum.
The numerical evaluation of the kinematic shear viscosity for the two-
dimensional SRD solvent model with grid shifting is discussed in detail in
Refs. [207, 208, 210, 212, 213]. As all the other transport coefficients in two
dimensions, the kinematic shear viscosity is, in principle, a time-dependent
quantity. Its long-time tails have been studied in Ref. [213].

The dimensionless ratio of the momentum and mass diffusivities of a fluid
is called its Schmidt number Sc. For the solvent it is defined as

Sc ≡ η

ρbDb
, (4.16)

where Db is the tracer diffusion coefficient of the solvent particles. In two
dimensions this definition must be effective in the same sense as the scaled
effective tracer diffusion coefficient DT(φc)/D0.

When analytical arguments are formulated, it is often assumed that
hydrodynamic fluctuations have reached a steady state at the time scale
of the motion of the colloidal particles [253], i.e., Sc → ∞. In real fluids
hydrodynamic interactions do not act instantaneously, but nevertheless,
Sc � 1. For instance for water Sc ≈ 103. The situation can be quite
different in mesoscopic simulations: because of the soft direct interactions,
a DPD solvent typically has Sc ≈ 1 [255]. In this case the hydrodynamic
interactions are still developing at the time scales of colloidal diffusion; the
dynamics of the colloids and the solvent velocity field are coupled. The
consequences for the colloid dynamics are not fully understood [255].

Certain mesoscopic simulation techniques such as the Lowe-Andersen
method [256] do allow for a wider range of Schmidt numbers. However,
the numerical effort of updating the positions and velocities of all colloidal
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and solvent particles can be enormous. Efficient techniques that could be
used for modeling systems with hydrodynamic interactions under a variety
of conditions, including dilute and concentrated solutions, and cases where
Sc must be varied, are needed. The MD/SRD approach is a step in this
direction.

4.4.3 Model System

We simulated an ensemble of disks immersed in a two-dimensional solvent.
In the spirit of the MD/SRD model, the colloidal particles were described
using MD and the solvent using SRD. The direct interactions between the
colloidal particles were repulsive and short-ranged

Vcc(r) =

{
εcc

(
σcc

r

)n
, r ≤ rc ≡ 2.5σ;

0, r > rc,
(4.17)

with n = 12, permitting a direct comparison with previous calculations
without hydrodynamics [246]. In most simulations there were no direct
colloid-solvent interactions, but the colloids participated in the multi-
particle collisions, see Sec. 4.2. Whenever colloid-solvent interactions were
included, they were of the form

Vcb(r) =

{
εcb

(
σcb

r

)n
, r ≤ rc;

0, r > rc.
(4.18)

The colloid-colloid interaction parameters were set to σcc = 2 σ and εcc = ε,
and the colloid-solvent ones to σcb = σ and εcb = ε.

The masses of colloidal and solvent particles were chosen to be mc = 5m
and mb = m. As in Sec. 4.3.2, the parameters σ, ε, and m define our system
of units, where the unit of time is defined as τLJ ≡ σ

√
m/ε.

The temperature was set to kBT = 2 ε. Hamilton’s equations of motion
were integrated using the velocity Verlet algorithm with a time step δt =
0.005 τLJ. Periodic boundary conditions were employed.

The dimensionless solvent density or solvent area fraction was chosen to be
φb = 1. The colloidal and solvent area fractions are defined as φc ≡ Nc σ

2
cc/A

and φb ≡ Nb σ
2
cb/A. Here A is the total area of the system, Nc the number

of colloidal particles, and Nb the number of solvent particles. With these
definitions the colloidal area fraction of a closed-packed system is φc ≈ 1.15.

73



4. Coarse-Grained Dynamics

Sc η/ρb [σ2τ−1
LJ ] τ [τLJ] a [σ] α L [σ]

1 0.82(1) 0.5 2 ±90◦ 200
100 9.11(2) 0.1 2 ±170◦ 100

Table 4.1. Summary of parameter sets used in colloid simulations. See the
text for details.

The choice of the SRD parameters needs more thought than in the case
of the two-dimensional polymer. In addition to attending to the usual
constraints, we wanted to control the Schmidt number. This can be achieved
by tuning the SRD parameters. We concentrated on two systems, one with
Sc ≈ 1 and another with Sc ≈ 100. An additional system with Sc ≈ 20 is
discussed in Ref. [226]. The two different parameter sets corresponding to
Sc ≈ 1 and Sc ≈ 100, as well as the resulting relevant solvent properties,
are shown in Table 4.1.

The mesh size was set to a = 2 σ in both systems. As the solvent area
fraction was φb = 1, there were on the average four solvent molecules in each
cell, which is reasonably efficient. On the other hand, with the diameter
of the colloidal particles set to σcc = 2 σ, at most one colloidal particle
was to be found in each cell. The collision step τ was assigned a value of
either 0.5 τLJ or 0.1 τLJ , implying that the system with Sc ≈ 100 had a
mean free path λ ≈ 0.1 a. To avoid unphysical correlations at short spatial
and temporal scales, we employed the random grid shifting procedure, see
Sec. 4.2. The rotation angles were such that either an angle +α or −α was
chosen, each with probability 1/2. These choices together result in solvent
shear viscosities that guarantee a valid description of the dynamics at length
scales ` & σcc.

4.4.4 Influence of Hydrodynamics on Tracer Diffusion

Figure 4.4 contains a summary of our results for the scaled effective
tracer diffusion coefficient DT(φc)/D0 as a function of the area fraction
φc. For comparison we also present data from purely dissipative systems
of Brownian particles with short-ranged, repulsive interactions [246]. These
data have been manipulated such that they correspond to the interaction
potential and temperature used in the MD/SRD simulations, see Refs. [226,
246] for details.

74



4.4. Case Study: Two-Dimensional Colloidal Diffusion

0 0.2 0.4 0.6 0.8 1
φc

0

0.2

0.4

0.6

0.8

1

D
T

(φ
c) /

 D
0

Figure 4.4. Scaled effective tracer diffusion coefficients as functions of
colloidal area fraction for Sc ≈ 1 (◦) and Sc ≈ 100 (�) [226]. Results from
simulations without hydrodynamic interactions [246] are also shown (•).

The scaled effective tracer diffusion coefficients decrease monotonously with
an increasing colloidal area fraction; tracer diffusion is considerably slower in
the concentrated regime than in the dilute limit. This is the case regardless
of the Schmidt number or the presence of hydrodynamic interactions, and
the reduction must therefore originate in the direct interactions.

The effect of the hydrodynamics on long-time tracer diffusion can be singled
out by comparing the results generated using MD/SRD to the ones from
the purely dissipative Brownian dynamics (BD) simulations. At low values
of Sc, hydrodynamics has virtually no effect on tracer diffusion. When
Sc is increased to approximately 100, we observe a minor enhancement in
DT (φc)/D0. The enhancement is largest at intermediate area fractions, i.e.,
φc ≈ 0.4− 0.7.

How do these findings compare with experimental and other simulation
studies? Experimental studies [237, 241–244] are always quasi-two-
dimensional, and the interactions between the colloidal particles, in most
cases polystyrene spheres, can be tuned such that they are either short- or
long-ranged. The simulation studies [238–241] aim at closely mimicking the
experiments, and hence are, too, quasi-two-dimensional. Our simulations
have been conducted in a very generic, ideal two-dimensional system.
Although comparison of such systems with quasi-two-dimensional ones
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should be meaningful [252], we should be mindful that there exist subtle
differences between different kinds of confined systems, e.g., in the decay of
the velocity fluctuations [257, 258].

In experimental studies, hydrodynamic interactions just cannot be “turned
off”; comparison between two otherwise similar systems, but with and with-
out hydrodynamics is not possible. Experimentalists, and some simulators,
too, believe that at high dilution and short time scales, hydrodynamic
interactions between colloidal particles alone explain deviations from the
diffusion coefficient at infinite dilution [237, 241–244]. The larger the area
fraction of colloidal particles, the more important the role played by the
hydrodynamic interactions. Hence, if the short-time tracer diffusion coeffi-
cient decreases with an increasing area fraction, hydrodynamic interactions
are said to suppress tracer diffusion. This appears to be the case for
colloidal particles with short-range interactions [237,242,243]. Analogously,
an increase in the short-time tracer diffusion coefficient with an increasing
area fraction is interpreted as enhancement by hydrodynamic interactions.
This applies for colloidal particles with long-range interactions [241, 244].

To our knowledge, there exists only one set of simulations where the same
systems with and without hydrodynamic interactions between colloidal
particles have actually been compared: the Stokesian dynamics simulations
by Pesché et al. [238]. In accordance with Refs. [237, 242, 243], the short-
time tracer diffusion coefficient for colloidal particles with hard-sphere
interactions was found to decrease with an increasing area fraction. What
is more interesting, at intermediate and long time scales, hydrodynamic
interactions seemed to suppress tracer diffusion of particles with hard-sphere
interactions. This was the case for moderately charged particles interacting
with Yukawa-like potentials, as well. With stronger charges, intermediate-
and long-time tracer diffusion was very slightly enhanced. The intermediate-
and long-time results in Ref. [238] are all for low area fractions φc . 0.05.

We find that for colloidal particles with short-range interactions of the
form V (r) ∼ 1/r12, hydrodynamics might have a slight enhancing effect
on intermediate- and long-time tracer diffusion. In our opinion, the low
Schmidt number result, i.e., essentially no significant effect, may be more
reliable than the slight enhancement from simulations with Sc ≈ 100. The
reason is that in our experience, with MD/SRD, finite size artifacts seem to
be more severe in systems with Sc � 1. On the other hand, as explained
in Sec. 4.4.2, Sc ≈ 1 may have unforeseen consequences for the solute
dynamics. As for comparison to Refs. [237,241–244], we are not completely
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Figure 4.5. Scaled effective CM mobility as function of colloidal area
fraction for Sc ≈ 1 [226]. The inset shows the thermodynamic factor ξ from
our MD/SRD simulations (◦) and the Boublik approximation [254] (solid
line).

convinced that the influence of direct interactions can be ruled out at short
time scales, especially as the area fraction increases. Pesché et al. [238] do
not make such assumptions, but their intermediate- and long-time results
are for rather dilute systems.

We conclude that more research into tracer diffusion in confined geometries
is needed. Two issues are of special interest. First, it would be interesting to
compare tracer diffusion in bulk three-dimensional, quasi-two-dimensional,
and ideal two-dimensional systems. This could be realized by starting from
a three-dimensional system and systematically reducing the linear size in
the, say, z direction. There are, however, certain fairly severe technical
problems with conducting MD/SRD simulations in a quasi-two-dimensional
geometry. Another line of inquiry would be to systematically alter the form
of the direct interactions between colloidal particles.

4.4.5 Hydrodynamics and Collective Diffusion Coef-
ficient

The collective diffusion coefficient, as explained in Sec. 4.4.2, is a product
of the thermodynamic factor ξ and the CM diffusion coefficient of the
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system of colloidal particles. In the case of dissipative hard spheres on a
smooth surface, the CM mobility is independent of the area fraction [259]:
DCM(φc) = DCM(0) = const. With hydrodynamic interactions in place, this
no longer holds true. As Fig. 4.5 shows, in our MD/SRD simulations the
scaled effective CM mobility decreases monotonously with φc. The decrease
is more rapid than that of DT(φc)/D0, see Fig. 4.4. Unlike DT(φc)/D0, the
scaled effective CM mobility does not appear to depend on the value of the
Schmidt number.

The thermodynamic factor is shown in the inset of Fig. 4.5. It is a
monotonously increasing function of φc. In the dissipative system with
a constant DCM(φc)/D0, the thermodynamic factor alone dictates the
behavior of the scaled effective collective diffusion coefficient, see Fig. 4.6.
With a decreasing DCM(φc)/D0, we may expect to see an interesting
interplay of the thermodynamic factor and the CM mobility.
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Figure 4.6. Scaled effective collective diffusion coefficients as functions of
colloidal area fraction: Sc ≈ 1 from simulations without direct colloid-
solvent interactions (◦), Sc ≈ 1 with direct colloid-solvent interactions
(�), and Sc ≈ 100 without direct colloid-solvent interactions (�) [226].
Scaled effective collective diffusion coefficients from simulations without
hydrodynamic interactions [246] are shown for reference (solid lines).

The scaled effective collective diffusion coefficient from MD/SRD simula-
tions is depicted in Fig. 4.6. The intriguing interplay is indeed there:
DC(φc)/D0 displays a slight minimum at low area fractions. Although
ξ increases monotonously, below φc ≈ 0.2 − 0.3 the initial decay of
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DCM(φc)/D0 dictates the shape of the scaled effective collective diffusion
coefficient. At these low area fractions, the scaled tracer and collective
diffusion coefficients are essentially identical. This is expected, since in the
dilute limit DC ≈ DT. Above φc ≈ 0.2− 0.3, the behavior of DC(φc)/D0 is
dominated by the diverging thermodynamic factor.

Most of the data we have presented are from simulations where the direct
colloid-solvent interactions have been replaced by multi-particle collisions,
see Sec. 4.2. We have ascertained that the minimum seen in DC(φc)/D0

vs. φc is no artifact originating from the omission of the direct colloid-
solvent interactions. Scaled effective collective diffusion coefficients for
φc ≤ 0.2 from MD/SRD simulations with direct colloid-solvent interactions
are shown in Fig. 4.4. Within our numerical accuracy, both schemes yield
identical values for DC(φc)/D0. Consequently, in both cases a minimum
close to φc ≈ 0.2 − 0.3 is observed. For a more extensive discussion
on the consequences of including vs. excluding the direct colloid-solvent
interactions, see Ref. [226].

Concluding, the presence of hydrodynamic interactions appears to have a
striking effect on collective diffusion. The value of the Schmidt number,
on the other hand, does not have any influence on the value of the scaled
effective collective diffusion coefficient. Our simulations suggest that the
phenomenon observed here—the competition between the CM mobility and
the thermodynamic factor—could be generic in colloidal suspensions and
might also be observed in experiments. The actual form of DC(φc)/D0 may
vary from one system to another, depending, e.g., on the detailed form of
the direct interactions. Recent mode coupling calculations seem to support
this idea [260]. Nevertheless, further studies and experiments in particular
are needed.
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5

Conclusions

The theme of this Thesis was computer simulation of biological and soft
matter at different spatial and temporal scales. Modeling at different scales
was illustrated through examples or case studies. Each case study was
complemented by a brief introduction to the relevant simulation algorithms,
as well as an overview of the most recent progress in related studies and
model development.

The first set of case studies was into classical atomic-scale MD simulations
of lipid membrane systems. Here we focused on the effect of cholesterol on
phospholipid bilayers, especially on their free volume, packing, and diffusive
properties. The complementary material consisted of an introduction to
classical atomic-scale models of biological matter, a description of the
principles of MD simulations, and a summary of the latest literature on
computational modeling of membrane systems.

The topic of the second case study was coarse-graining of models of
soft condensed matter, with an aim to reach larger system sizes. More
specifically, we coarse-grained the atomic-scale phospholipid/cholesterol
systems from the previous case studies, subsequently using the coarse-
grained models to study the lateral structure of bilayers at mesoscale, in
our case at length scales up to hundreds of nanometers. The background
material included a sketch of the motivation and strategies of coarse-
graining, a review of coarse-grained membrane models in the literature,
as well as a description of a novel approach to systematic coarse-graining:
inverse Monte Carlo.

The third set of studies illustrated the use of important, emerging tools in
computer modeling: hybrid models that combine two or several descriptions
at different resolutions. Another leitmotiv here was coarse-grained modeling
of hydrodynamic interactions. We presented two systems, a polymer
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chain in solution and a colloidal suspension. Both were modeled using
MD/SRD, a novel hybrid approach that combines an MD description for
the solute with a coarse-grained solvent model called stochastic rotation
dynamics (SRD). In addition to the case studies, we introduced the SRD and
MD/SRD techniques, and presented a literature review of the development
and application of these very novel techniques.

At the end of each set of case studies, we mentioned possible ideas for
future research. There are many interesting directions to take, but the
most intriguing ones are perhaps the following. In the field of atomic-
scale MD modeling, a promising project for the near future would be to
look at the microscopic diffusion processes of phospholipid and cholesterol
molecules, and to perhaps investigate the role of voids in these processes.
The systematic coarse-graining methodology should be used for studies of
phospholipid/sphingomyelin/cholesterol bilayers, as well as for membrane
systems with proteins. Different degrees of coarse-graining should also be
attempted. Finally, an ambitious project, which is more long-term, would
be the development of novel hybrid models to be used in, e.g., membrane
simulations.
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[69] R. A. Böckmann, A. Hac, T. Heimburg, and H. Grubmüller, Biophys.
J. 85, 1647 (2003).
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Lipid Res. 41, 66 (2002).

[101] M. B. Sankaram and T. E. Thompson, Biochemistry 29, 10670 (1990).

[102] M. B. Sankaram and T. E. Thompson, Biochemistry 29, 10676 (1990).

[103] M. R. Vist and J. H. Davis, Biochemistry 29, 451 (1990).

[104] M. B. Sankaram and T. E. Thompson, Proc. Natl. Acad. Sci. USA
88, 8686 (1991).

[105] H. I. Petrache, K. Tu, and J. F. Nagle, Biophys. J. 76, 2479 (1999).

[106] S. Bhattacharya and S. Haldar, Biochim. Biophys. Acta 1467, 39
(2000).

88



Bibliography

[107] A. Carruthers and D. L. Melchior, Biochemistry 22, 5797 (1983).

[108] P. Jedlovszky and M. Mezei, J. Phys. Chem. B 107, 5322 (2003).

[109] W. K. Subczynski, A. Wisniewska, J.-J. Yin, J. S. Hyde, and A.
Kusumi, Biochemistry 33, 7670 (1994).

[110] T.-X. Xiang, J. Phys. Chem. B 103, 385 (1999).

[111] P. F. F. Almeida, W. L. C. Vaz, and T. E. Thompson, Biochemistry
31, 6739 (1992).

[112] H.-J. Galla, W. Hartmann, U. Theilen, and E. Sackmann, J.
Membrane Biol. 48, 215 (1979).

[113] J. M. Polson, I. Vattulainen, H. Zhu, and M. J. Zuckermann, Eur.
Phys. J. E 5, 485 (2001).

[114] D. Bassolino-Klimas, H. E. Alper, and T. R. Stouch, J. Am. Chem.
Soc. 117, 4118 (1995).

[115] A. Bondi, J. Phys. Chem. 58, 929 (1954).

[116] S.-J. Marrink, R. M. Sok, and H. J. C. Berendsen, J. Chem. Phys.
104, 9090 (1996).

[117] K. Rajagopal and V. Sitaramam, J. Theor. Biol. 195, 245 (1998).

[118] M. H. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164 (1959).

[119] E. Falck, M. Patra, M. Karttunen, M. T. Hyvönen, and I. Vattulainen,
J. Chem. Phys. 121, 12676 (2004).

[120] M. Pasenkiewicz-Gierula, T. Róg, K. Kitamura, and A. Kusumi,
Biophys. J. 78, 1376 (2000).

[121] T. Róg and M. Pasenkiewicz-Gierula, Biophys. J. 81, 2190 (2001).

[122] A. M. Smondyrev and M. L. Berkowitz, Biophys. J. 77, 2075 (1999).

[123] K. Tu, M. L. Klein, and D. J. Tobias, Biophys. J. 75, 2147 (1998).

[124] O. Berger, O. Edholm, and F. Jahnig, Biophys. J. 72, 2002 (1997).

89



Bibliography
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[164] P. Español and P. Warren, Europhys. Lett. 30, 191 (1995).

[165] R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).

[166] P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19,
155 (1992).

[167] M. J. Stevens, J. H. Hoh, and T. B. Woolf, Phys. Rev. Lett. 91,
188102 (2004).

[168] M. J. Stevens, J. Chem. Phys. 121, 11942 (2004).

[169] R. D. Groot and K. L. Rabone, Biophys. J. 81, 725 (2001).

[170] M. Kranenburg, M. Venturoli, and B. Smit, Phys. Rev. E 67,
060901(R) (2003).

[171] M. Kranenburg, M. Venturoli, and B. Smit, J. Phys. Chem. B 107,
11491 (2003).

[172] M. Kranenburg, M. Vlaar, and B. Smit, Biophys. J. 87, 1596 (2004).

[173] R. D. Groot and T. J. Madden, J. Chem. Phys. 108, 8713 (1998).

[174] S. O. Nielsen, C. F. Lopez, P. B. Moore, J. C. Shelley, and M. L.
Klein, J. Phys. Chem. B 107, 13911 (2003).

[175] J. C. Shelley, M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, and
M. L. Klein, J. Phys. Chem. B 105, 4464 (2001).

92



Bibliography

[176] J. C. Shelley, M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, P. B.
Moore, and M. L. Klein, J. Phys. Chem. B 105, 9785 (2001).

[177] C. F. Lopez, S. O. Nielsen, P. B. Moore, and M. L. Klein, Proc. Natl.
Acad. Sci. USA 101, 4431 (2004).

[178] S. J. Marrink, A. H. de Vries, and A. E. Mark, J. Phys. Chem. B 108,
750 (2004).

[179] G. Ayton, S. G. Bardenhagen, P. McMurtry, D. Sulsky, and G. A.
Voth, J. Chem. Phys. 114, 6913 (2001).

[180] G. Ayton, A. M. Smondyrev, S. G. Bardenhagen, P. McMurtry, and
G. A. Voth, Biophys. J. 82, 1226 (2002).

[181] G. Ayton and G. A. Voth, Biophys. J. 83, 3357 (2002).

[182] G. Ayton, A. M. Smondyrev, S. G. Bardenhagen, P. McMurtry, and
G. A. Voth, Biophys. J. 83, 1026 (2002).

[183] G. Ayton and G. A. Voth, Biophys. J. 87, 3299 (2004).

[184] J. L. McWhirter, G. Ayton, and G. A. Voth, Biophys. J. 87, 3242
(2004).

[185] A. P. Lyubartsev and A. Laaksonen, in Novel Methods in Soft
Matter Simulations, edited by M. Karttunen, I. Vattulainen, and A.
Lukkarinen (Springer-Verlag, Berlin, 2004), pp. 219–244.

[186] R. L. Henderson, Phys. Lett. A 49, 197 (1974).

[187] A. Lyubartsev and A. Laaksonen, J. Phys. Chem. 100, 16410 (1996).

[188] A. Lyubartsev and A. Laaksonen, Phys. Rev. E 55, 5689 (1997).

[189] A. P. Lyubartsev, M. Karttunen, I. Vattulainen, and A. Laaksonen,
Soft Materials 1, 121 (2003).

[190] A. Lyubartsev and A. Laaksonen, J. Chem. Phys. 111, 11207 (1999).

[191] M. Brunner, C. Bechinger, W. Strepp, V. Lobaskin, and H. H.
Grünberg, Europhys. Lett. 58, 926 (2002).

[192] G. C. de León and J. L. Arauz-Lara, Phys. Rev. E 59, 4203 (1999).

93



Bibliography

[193] H. Acuña-Campa, M. D. Carbajal-Tinoco, J. L. Arauz-Lara, and M.
Medina-Noyola, Phys. Rev. Lett. 80, 5802 (1998).

[194] H. Meyer, O. Biermann, R. Faller, D. Reith, and F. J. Müller-Plathe,
J. Chem. Phys. 113, 6264 (2000).

[195] M. Tsige, J. G. Curro, G. S. Grest, and J. D. McCoy, Macromolecules
36, 2158 (2001).

[196] R. Faller and D. Reith, Macromolecules 36, 5406 (2003).
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(2001).
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