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this thesis has been conducted in two research institutions: in the Com-

putational Systems Biology group led by Prof. Harri Lähdesmäki at the

Department of Computer Science at Aalto University, Finland and in the

Laboratory of Prof. Ramnik Xavier at the Broad Institute of MIT and

Harvard in Boston, USA.
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September 2013 and December 2016 in the Broad Institute as a visiting

scholar in Prof. Xavier’s laboratory.

This work has been generously supported and funded by former Helsinki
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I am grateful to these organizations for their generous financial support.
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I would like to thank my numerous advisors, mentors and collaborators
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I would like to address warm thanks to all my collaborators; without
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tific collaboration.
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ders Andersson and Dr. Jarkko Salojärvi, for their insightful and detailed

comments which undoubtedly improved this thesis.

Finally, I want to thank my family for their unconditional support for

anything I have decided to pursue in my life. I thank many friends who
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Auckland, New Zealand, February 17, 2017,
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1. Introduction

The human gastrointestinal tract is colonized by a dense and diverse com-

munity of resident commensal1 microorganisms known as the gut micro-

biota2. This neglected endocrine organ (O’Hara and Shanahan, 2006;

Clarke et al., 2014) contains tens of trillions3 of bacterial cells—a num-

ber that is in the same order of magnitude with the number of cells in

an adult human body (Sender et al., 2016). The gut microbiota has co-

evolved with the host species to conduct functions that the host cells are

lacking: they help digest food (Conlon and Bird, 2015; Sonnenburg and

Bäckhed, 2016), produce important vitamins (Martens et al., 2002; Conly

et al., 1994) and suppress the growth of harmful bacteria (Bäumler and

Sperandio, 2016) among other things. Indeed, the number of genes in the

human gut microbiome is estimated to be at least two orders of magnitude

larger than the number of genes in the human genome (Qin et al., 2010).

Based on the mutualism between the host and its microbiome, it has been

suggested that we are all holobionts, entities which consist of ourselves

and our microbiomes (Bordenstein and Theis, 2015; Gordon et al., 2013).

However, the dynamics of the gut microbial ecosystems as well as the com-

plexity of their functions and host-microbiome interactions remain largely

unexplored.

Recent developments in DNA sequencing techniques—so called high-

throughput sequencing techniques (Goodwin et al., 2016)—have revolu-

tionized the research of microbial communities. In contrast to traditional

culture-based approaches, where bacteria of interest are grown in labora-

tory conditions, DNA sequencing-based approaches allow characterizing

1Commensalism refers to non-harmful coexistence.
2The term microbiota refers to a collection of microorganisms, whereas the term
microbiome is used to refer to a collection of microbial genomes or genetic mate-
rial.
3One trillion equals 1012.
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whole microbial communities in an unbiased manner. For example, tra-

ditional culture methods can capture only a fraction, 10%–30%, of the

gut microbiota (Suau et al., 1999; Tannock, 2001). Together with other

molecular techniques, including RNA sequencing, metabolomics and pro-

teomics, high-throughput DNA sequencing has, figuratively speaking, trig-

gered a golden age on the field of microbiology. Researchers on many

branches of molecular biology are participating in this joint effort to bet-

ter understand these miniature ecosystems, their complex dynamics and

interactions with their environment.

The human gut microbiome maturates to closely resemble the adult

composition during the first 2–3 years of life (Tamburini et al., 2016; Back-

hed et al., 2015; Yatsunenko et al., 2012; Jakobsson et al., 2014), even

though there is evidence suggesting that the microbiota is still developing

towards toward adult-like configuration at the age of five (Cheng et al.,

2015). There is some evidence of microbial exposure in utero (Aagaard

et al., 2014; Fox and Eichelberger, 2015), but the large-scale microbial col-

onization of the gut begins at delivery. In vaginal birth, the neonate is

exposed to the vaginal microbiota of the mother (Dominguez-Bello et al.,

2010b), whereas in caesarean section the first bacterial contacts consists

of common skin and environmental microbes (Tamburini et al., 2016). Af-

terwards, the establishment of the gut microbial community is largely

shaped by oligosaccharides and microbes in human milk which usually

constitutes the cornerstone of neonate’s diet during the first months of

life (McGuire and McGuire, 2015; Jost et al., 2015; Gomez-Gallego et al.,

2016). The maturation of the gut microbiota is further influenced by the

growing complexity of diet, potential antibiotic exposures, the host genet-

ics and numerous other environmental factors. The assembly and trans-

mission of maternal and early childhood microbial communities is an area

of active research with many lessons to be learned (Charbonneau et al.,

2016).

Mounting evidence connects aberrations in infant and childhood gut

microbiota with not only immunological disorders including type 1 di-

abetes (T1D)(Rewers and Ludvigsson, 2016; Knip and Siljander, 2016),

asthma (Arrieta et al., 2015; Abrahamsson et al., 2014), juvenile rheuma-

toid arthritis (Arvonen et al., 2016), allergic disease (Simonyte Sjodin

et al., 2016) and pediatric IBD (Lewis et al., 2015) but also with conditions

such as obesity (Dogra et al., 2015), eczema (Nylund et al., 2013; Abra-

hamsson et al., 2012) and even autism spectrum disorder (Kang et al.,
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2013). According to the hygiene hypothesis, exposure to specific microor-

ganisms early in life benefits the developing immune system and protects

against immune-mediated diseases (Strachan, 1989). Indeed, the com-

plex relationship between the microbiome and both innate (Thaiss et al.,

2016) and adaptive (Honda and Littman, 2016) immune systems is an ac-

tive research area. The hygiene hypothesis is supported by a substantial

amount of correlative evidence, reviewed in (Bach, 2002; Bach and Chate-

noud, 2012), but the distinction between beneficial and harmful microor-

ganisms as well as mechanisms underlying their effects are still poorly

understood.

The gut microbial communities in healthy adults are stable over long pe-

riods of time (Faith et al., 2013; Coyte et al., 2015; Rajilić-Stojanović et al.,

2013) but exhibit significant inter-personal (Human Microbiome Project,

2012; Franzosa et al., 2015) and inter-cultural (Brito et al., 2016) varia-

tion. Aberrations in the adult gut microbiota have been linked to various

conditions, such as inflammatory bowel disease (IBD) (Frank et al., 2007),

type 2 diabetes (Pedersen et al., 2016), obesity (Ley et al., 2006), and even

depression (Naseribafrouei et al., 2014). Eventually, manipulations of the

gut microbiota may prove to help treating at least some of these condi-

tions but the current understanding of what constitutes a healthy gut

microbiota and how it can be manipulated is still very limited (Gilbert

et al., 2016). Among the first examples of microbiome based therapies

is the fecal microbial transplantation (FMT) from healthy donors which

has proven to be an effective treatment for restoring the healthy gut mi-

crobiota in recurring Clostridium difficile infections (Kelly et al., 2012;

Rohlke and Stollman, 2012). Using FMT to treat other conditions with

microbial aberrations is an active research area (Kelly et al., 2015) with

ongoing studies on different subtypes of IBD.

The nature and amount of data generated by DNA sequencing tech-

niques has granted computational scientists a central role in many mi-

crobiome sequencing studies. DNA sequencing results in usually millions

of short, roughly 100 basepairs long, DNA fragments, which need to be

processed computationally to gain any biological insights. Usually, se-

quencing reads are first quality controlled computationally and then ei-

ther aligned against reference databases or assembled de novo to form

longer segments called contigs that represent a consensus region of DNA.

Computational analyses enable profiling microbial communities taxonom-

ically as well as quantifying metabolic pathways and microbial genes.
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These information together with sample summary statistics, such as mi-

crobial community diversity, can be then analyzed statistically and com-

pared with physiological and other metadata that has been collected.

The aim of this thesis was to improve the understanding of infant and

adult gut microbiome while pushing the boundaries of the modern molecu-

lar and computational microbiome profiling techniques. By leveraging the

existing databases of microbial genomes and proteins, and whole meta-

genome shotgun sequencing data of several large cohort studies, we de-

veloped new methodology to assess microbial diversity and stability on

the strain level, and improved methods to assess functional profiles of the

microbiome in connection to contributing organisms. In DIABIMMUNE

study (Publications I–III) we set out to explain mechanisms behind the

hygiene hypothesis by studying the gut microbiome of infants in Finland,

Estonia and Russian Karelia—areas with contrasting occurrences of au-

toimmune diseases—from birth until the age of three. In Publication I,

we identified a mechanism of microbial origin—differences in lipopolysac-

charide immunogenicity—which may contribute to the difference in au-

toimmunity between Finland and Estonia versus Russian Karelia. In

Publication II, we focused on T1D in case-control setting and found that

infants progressing to T1D before the age of three harbored gut micro-

biome with decreased diversity, indicative of dysbiosis, before the disease

diagnosis. In Publication III, we studied the effects of recurrent antibi-

otic treatments and saw decreased microbial diversity as well as increase

in antibiotic resistance genes as a consequence of antibiotics. Together

these three Publications provide, to date, the largest longitudinal func-

tional profile of the infant gut microbiome. In Publications IV and V the

focus was on healthy and disrupted adult gut microbiome, respectively. In

Publication IV, we systematically analyzed 207 intrinsic and exogenous

factors for connections to the gut microbiome of 1179 Dutch adults. In

Publication V, we conducted the first prospective FMT study for adults

with active Crohn’s disease (CD).

This thesis contributes to the understanding of the human gut micro-

biome and its interplay with immune system and surrounding environ-

ment in infancy, adulthood, health and disease. The content is structured

as follows. In Chapter 2, I introduce the methods and techniques used in

this thesis, with an emphasis on the computational analysis. In chapter 3,

I discuss the materials and motivate the study designs of the individual

studies. This is followed by the most important results of this thesis in
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Chapter 4. Finally, I summarize the findings and discuss both theoretical

and practical implications of this thesis in Chapter 5.
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2. Methods for microbial community
analysis

In the era of next-generation sequencing (reviewed in Goodwin et al. (2016)),

microbial community profiling using DNA sequencing techniques has be-

come a common practice. In this task, where either specific informative

amplicons or all genetic material is sequenced, very little can be done with

the raw sequencing data itself. Instead, downstream bioinformatic anal-

yses are needed to understand the connection between the sequencing

data—short reads—and the microbial communities in question. On high

level, these analyses usually aim at answering two questions, (i) “who

is there?”, that is, taxonomic profiling, and (ii) “what are they doing?”,

that is, functional profiling. The first question can be addressed using ei-

ther amplicon sequencing, which is usually 16S rRNA gene sequencing,

or whole metagenome shotgun (WMS) sequencing. To answer the sec-

ond question in detail, that is to generate functional profiles for microbial

communities, WMS sequencing data is needed.

In this Chapter, I describe the experimental and computational methods

used in analyzing 16S rRNA gene and WMS sequencing data in this the-

sis. Since WMS sequencing data has a more important role in this thesis,

WMS sequencing analysis techniques are given more detailed scrutiny.

For all analysis tasks, the most important complementary and/or compet-

ing methods are also briefly described. I also cover computational analysis

tasks including data visualization and statistical testing.

2.1 16S rRNA gene sequencing

The 16S ribosomal RNA (rRNA) gene is encoding a part of the RNA com-

ponent of the ribosome, a cellular component responsible for the protein

synthesis in all living organisms. As such, the gene is found in all living

organisms, and its variable, non-conserved regions (so-called V-regions)
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can be used to compare different organisms in terms of evolutionary dis-

tance. 16S rRNA gene sequencing (later 16S sequencing) is the most

common experimental procedure for characterizing microbial communi-

ties taxonomically, that is, tackling the question “who is there?”. In 16S

sequencing, a chosen V-region(s) of 16S rRNA gene is amplified using poly-

merase chain reaction (PCR) and region-specific primers. In our experi-

ments, we sequenced the V4 region of the 16S rRNA gene using Illumina

HiSeq 2500 instruments by following the protocol described by Caporaso

et al. (2012). More detailed experimental procedures and information

about sample handling are given in accompanying publications (Publi-

cations I-III). In this thesis, all 16S sequencing data processing was con-

ducted using QIIME 1.8.0 (Caporaso et al., 2010; Kuczynski et al., 2012),

an open-source bioinformatics pipeline for performing microbiome analy-

sis from raw 16S sequencing data, which is described below.

16S sequence data needs to be analyzed computationally to obtain any

information about the microbial communities in question. An important

step of processing 16S sequencing data involves clustering all sequences

in groups based on sequence similarity. These clusters represent oper-

ational taxonomic units (OTUs), the lowest-level phylotypes detected by

16S sequencing. This step can be performed either in unsupervised man-

ner using tools such as CD-HIT (Fu et al., 2012) and mothur (Schloss

et al., 2009) incorporated in QIIME, or using a reference database of OTU

representatives, in which case this step does not involve clustering but

classification, strictly speaking. In this thesis, the OTU picking step was

conducted using GreenGenes reference database (McDonald et al., 2012)

with 97 % sequence similarity OTUs. Usually 97 % sequence similarity

is considered to approximate species-level phylotypes. However, due to

poor species-level annotations in reference databases and relatively short

length of the V4 region (∼255 basepairs), we constrained our 16S data

analysis on genus level and above (Soergel et al., 2012).

Recently, many improvements in 16S sequencing analysis pipeline have

been proposed. Edgar (2013) proposed a UPARSE pipeline which includes

quality filtering, dereplication, discarding singletons, and de novo OTU

clustering. More recently, Edgar and Flyvbjerg (2015) proposed improve-

ments in 16S sequence analysis by filtering reads with high expected error

count, by assembling overlapping read pairs, and by exploiting sequence

abundances for correcting sequencing errors. UPARSE algorithm perform
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chimera1 filtering and OTU clustering simultaneously, which improves

the accuracy of OTU picking. In this pipeline, taxonomy is assigned af-

ter the OTU clustering step and depending on the reference database a

number of OTUs may remain unannotated. Callahan et al. (2016) pro-

vide another software package called DADA2 for modeling and correcting

amplicon sequencing errors in Illumina data.

2.2 Whole metagenome shotgun sequencing

Where 16S sequencing provides taxonomic information about the micro-

bial communities, WMS sequencing aims at sequencing all genetic mate-

rial in a given sample. Therefore, this procedure provides near-complete

view of microbial genes and genetic potential in a given sample. However,

it is also more costly compared to 16S sequencing.

WMS sequencing data can be analyzed using two different and comple-

mentary approaches: read-based (and assembly-free) and assembly-based

methods. In read-based methods, raw sequencing reads are analyzed to-

gether with existing genomes and gene catalogs to better understand tax-

onomic composition and genetic functional potential of the given microbial

community. Assembly-based methods start by genome assembly, where

short reads are first assembled de novo to form longer contigs(Howe and

Chain, 2015). These contigs can then be annotated for coding sequences,

and their taxonomic origin and functional potential can be assessed in

many different ways. In this thesis, all work was limited to read-based

methods and assembly-based methods are not covered.

The taxonomic composition and the functional potential of the micro-

biome are in many ways orthogonal questions. Sometimes strain level

variation can have significant functional implications—for example, addi-

tion of a single genetic cassette, a virulence factor, may implicate patho-

genicity—and other times taxonomically distant species can occupy the

same functional niche. WMS sequencing data enables characterizing the

functional potential of the microbial community, therefore providing a

complementary view to the taxonomic composition. Below, taxonomic and

functional profiling approaches for WMS sequencing data are described

in detail.
1Chimera or chimeric reads are artefacts of the PCR process, which contain DNA
sequences originating from two or more genomes.
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2.2.1 Taxonomic profiling

While 16S sequencing provides limited resolution in taxonomic assign-

ments, WMS sequencing data provides means for assigning taxonomies

on species and strain level. Given enough sequencing depth2, WMS se-

quencing data contains reads covering all genomes in a given microbial

community, providing means for detecting single nucleotide polymorphism

(SNP) level differences between bacterial strains. In practice, reliable

SNP detection requires at least 10x coverage for a given genome, which

translates roughly to 1 % relative abundance of the given species with se-

quencing depth of 5 million short 100 nucleotide reads (Luo et al., 2015).

In this thesis, MetaPhlAn2 (Truong et al., 2015) was used for taxonomic

profiling of WMS sequencing data. Additionally, WMS sequencing data

was analyzed using ConStrains (Luo et al., 2015) for strain tracking in

Publications I and III. In This section, I will describe these methods to-

gether with their closest competitors.

MetaPhlAn for taxonomic profiling

A clade is a group of organisms representing a single branch in a phy-

logenetic tree. MetaPhlAn utilized clade-specific marker sequences to

estimate abundances of clades, which can be as specific as species and

strains, or as generic as phyla and domains. Clade-specific marker se-

quences are short DNA segments of coding sequences, which (i) are highly

conserved within the clade, and (ii) are not found in any genomes out-

side the clade. These properties guarantee that observing the marker se-

quences indicates presence of the clade in question, given vast enough ref-

erence collection. In theory, the definition of marker sequences, especially

property (i), is sensitive to the size of database of sequenced genomes;

there can always be unknown, yet-to-be-sequenced strains which do not

carry any given marker sequence defined for the clade in question. How-

ever, experiments conducted by Segata et al. (2012) showed that in prac-

tice this approach is effective even with an incomplete collection of refer-

ence genomes. In the latest MetaPhlAn2—the second generation version

of MetaPhlAn—marker database, there are approximately one million

unique clade-specific marker sequences identified from roughly 17,000

reference genomes (∼13,500 bacterial and archaeal, ∼3,500 viral, and

2Generally, sequencing depth (or coverage) refers to the number of reads covering
any given nucleotide in targeted genome. In WMS, sequencing depth usually
refers to total number of short reads generated.
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∼110 eukaryotic).

MetaPhlAn2 aligns metagenomic reads against pre-computed marker

sequence database using Bowtie2 (Langmead and Salzberg, 2012), which

provides more than 10 times faster run times compared to BLAST align-

ment in MetaPhlAn. After alignment, the total number of reads mapped

to each clade is normalized by the length of the marker sequences in ques-

tion, and relative abundances are calculated by dividing the normalized

read counts by the sum of all read counts. Details of the mapping and

relative abundance estimation steps are given in Truong et al. (2015).

Other methods conducting taxonomic profiling for WMS sequencing data

include mOTU (metagenomic operational taxonomic unit) (Sunagawa et al.,

2013), Kraken (Davis et al., 2013) and MEGAN (Huson et al., 2016).

mOTU utilizes universal marker genes, which occur in single copy in the

vast majority of known organisms, to detect and quantify both known

species and also clades that still lack reference information. Additionally,

mOTU can exploit covariance data across multiple samples to combine

different marker genes (mOTUs) into mOTU linkage groups. Kraken is

a k-mer based approach, utilizing exact alignment of k-mers and a novel

classification algorithm to assign taxonomic labels to short DNA reads.

MEGAN is a reference based tool for both taxonomic and functional pro-

filing. It conducts taxonomic profiling by aligning WMS reads directly

against NCBI reference genomes and assigning taxonomy for each read

according to the lowest common ancestor of all clades with a significant

alignment (Huson et al., 2016). Up to date, there are only a few inde-

pendent studies comparing methods for taxonomic profiling approaches

for WMS data. In one such study, Lindgreen et al. (2016) conclude that

"Picking a single best tool is not straightforward" and provide different

performance metrics to help researchers decide based on their own de-

mands.

ConStrains for strain-level profiling

Occasionally, it may be possible to detect and classify microbial strains us-

ing the marker gene approach described above. To achieve more generic

and sensitive strain tracking, one needs to look at the sequence data on

single nucleotide resolution. To obtain this, ConStrains (Luo et al., 2015)

exploits polymorphism patterns—that is, conducts SNP haplotyping—on

a set of bacterial genes found universally on the genomes of the given

species. More specifically, ConStrains operates on two steps: (i) identify
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species with enough coverage to detect and quantify SNPs, and (ii) trans-

form individual SNPs into species-specific SNP profiles representing indi-

vidual strains.

In the first step, ConStrains uses MetaPhlAn (Segata et al., 2012) for

species level compositional profiling. Species-specific sequencing cover-

age is determined by multiplying the total sequencing depth (number of

nucleotides sequenced) with the relative abundance of a given species and

dividing the product with the average genome length of the species. By

default, species with > 10x coverage are selected for downstream pro-

cessing. Given these species, ConStrains constructs a custom database

of marker genes using PhyloPhlAn marker set (Segata et al., 2013) and

aligns the raw sequencing reads against this marker gene database. Re-

sulting alignments are processed using SAMtools (Li et al., 2009) for SNP

detection. In this step, the reference gene sequences are no longer used to

minimize reference dependency.

In the second step, individual SNPs are combined into SNP profiles rep-

resenting strains. Each strain is represented by its unique SNP barcode,

termed uniGcode, spanning hundreds of genes. To determine the number

of strains per species and to derive strain specific uniGcodes, ConStrains

relies on clustering based approaches termed SNP-flow and SNP-type al-

gorithms. Briefly, these algorithms use per-species, per-sample nucleotide

occurrence proportions to determining strains-specific uniGcodes. Finally,

ConStrains will match SNP profiles between samples—for example, in the

case of longitudinal sampling—to obtain strain tracking across samples.

Detailed description of ConStrains algorithm is given in Luo et al. (2015)

and accompanying Online Methods.

As WMS sequencing is becoming commonplace, there are many new

tools aiming at strain level profiling, such as Sigma (Ahn et al., 2015),

PathoScope (Hong et al., 2014) and StrainPhlAn (yet unpublished, based

on Truong et al. (2015)). Sigma and PathoScope rely on available ref-

erence strain collections and are therefore limited to detect only known

strains. Similar to ConStrains, StrainPhlAn detects strain based on SNP

patterns on core genes. However, StrainPhlAn will only detect the domi-

nant strain per sample, which limits possible downstream analysis tasks.

For example, it is not possible to measure haplotype diversity (see Section

2.3.1) using such strain profiling approach. Li et al. (2016) have conducted

SNP based strain tracking using mOTU based method operating with uni-

versal marker genes. There are also methods for strain tracking based on
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amplicon sequencing data, such as 16S sequencing. Oligotyping (Eren

et al., 2013) and minimum entropy decomposition (Eren et al., 2015) can

successfully detect strain specific SNP patterns on 16S sequencing data.

However, they are limited to the SNPs within the span of the amplicon in

question and thus provide very limited view of the strains in any given

microbial community.

Strain profiling can reveal strain level shifts, which are left unobserved

on species-level taxonomic profiling. In Publication I, we measured within-

species, within-subject stability on strain level using ConStrains strain

profiles and Bray-Curtis dissimilarity (see Equation 2.5 below). This anal-

ysis led us to observe occasional “strain sweeps”, in which the dominant

strain was replaced by a new dominant strain between the two samples.

2.2.2 Functional profiling

Functional interpretation of WMS sequencing data is key to connecting

microbial communities with their host or surrounding environment. This

task involves identifying different metabolic pathways or functions present

or absent in a given microbial community and determining their relative

abundances. In this thesis, this task is tackled using the second genera-

tion version of the HMP Unified Metabolic Analysis Network (HUMAnN),

that is HUMAnN2, described below. Additionally, ShortBRED was used

to identify and to quantify antibiotic resistance (AR) genes in Publication

III.

HUMAnN2

Both the original HUMAnN (Abubucker et al., 2012), and the second

generation version (HUMAnN2) described here are assembly-free meth-

ods for constructing functional profiles for microbial communities based

on WMS sequencing data. Given WMS sequencing data—that is DNA

reads—this method provides information on the functional potential of

the communities, while the same analysis based on RNA-sequencing data

provides profiles of actual functional activities.

A pangenome is a collection of genes found in any sequenced isolate of a

bacterial species (Huang et al., 2014). HUMAnN2 start by aligning qual-

ity controlled and human genome filtered WMS sequencing reads against

a collection of pangenomes. In HUMAnN2, genes on the pangenomes have

been pre-annotated using a comprehensive, non-redundant protein se-

quence database UniRef50 (Suzek et al., 2015) to their respective UniRef50
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gene families. Ambiguity in the alignment step is minimized by selecting

the pangenomes used using an upstream taxonomic profiling conducted

using MetaPhlAN2; only pangenomes of species with >0.1% relative abun-

dance are used. Alignment to annotated pangenomes provides taxonom-

ically stratified functional information; each aligned sequencing read is

functionally annotated through UniRef50 with taxonomic origin given by

the pangenomes.

WMS sequencing reads with no alignment in the pangenomes alignment

step are mapped separately to the entire UniRef50 database by translated

search with DIAMOND (Buchfink et al., 2015). This step allows detect-

ing contributions from organisms that are lowly abundant or otherwise

undetected—for example, species with no sequenced genome—in the tax-

onomic profiling step. Hits from both alignment steps described above

are weighted based on alignment quality and target sequence length, and

combined to produce community totals for each gene family in reads per

kilobase (RPK) units.

The above process results in quantifications of typically tens of thou-

sands of microbial UniRef50 gene families. These families can be com-

bined to more meaningful and interpretable functional categories using

different ontologies, such as Gene Ontology (GO)(Gene Ontology Consor-

tium, 2015) or MetaCyc (Caspi et al., 2012). In Publications I, IV and V,

we mapped UniRef50 gene families to GO terms using the mapping be-

tween UniProt proteins—UniRef50 gene families is a subset of UniPro

proteins—and GO terms(Dimmer et al., 2012). We further isolated a sub-

set of categories in GO terms by following previous work in Huang et al.

(2007) and Zhou et al. (2002). We concentrated in a subset of “informative”

GO terms associated with > k proteins for which all descendant terms

were associated with < k proteins. In Publication I, we used k = 2000,

which equates to roughly 1 GO term per 5,000 UniRef50 protein families.

In that case, this procedure yielded a comprehensive but manageable set

of 247 non-redundant GO Biological Process terms for subsequent analy-

sis. By the nature of their construction, informative GO terms tend to pro-

vide more resolution for well-conserved and well-studied processes, which

are annotated to many proteins, and place less focus on highly specific

processes associated with only a small number of proteins.

There are many other tools for functional characterization of WMS se-

quencing data, which operate by searching the reads from a sequenced mi-

crobial community against pre-annotated databases of protein sequences.
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Such approaches include IMG/M (Markowitz et al., 2014), MG-RAST (Glass

et al., 2010) and MEGAN (Mitra et al., 2011). Since these approaches use

sequenced genomes to build their databases, they may be biased towards

known species and under-perform when analyzing microbial communities

with many novel organisms. In HUMAnN2, the translated search against

UniRef50 database aims at tackling this weakness.

ShortBRED

In addition to quantifying gene families and broad functional pathways,

one may be interested in tracking presence/absence of specific microbial

proteins and genes encoding them. ShortBRED (Short, Better Represen-

tative Extract Dataset) is a tool for high-specificity targeted functional

profiling for WMS samples (Kaminski et al., 2015). In this thesis, we used

ShortBRED for detecting and quantifying AR genes in Publication III.

ShortBRED operates with short, highly representative protein sequences,

but in contrast to MetaPhlAn marker sequences, ShortBRED markers are

represented as amino acid sequences. The tool enables one (i) to identify

such marker sequences for any proteins of interest, and (ii) to quantify

these proteins in microbial communities analyzed using WMS sequenc-

ing.

In the identification step given a set of proteins of interest, ShortBRED

identifies peptide marker sequences for these proteins against any com-

prehensive protein database by several clustering and alignment steps us-

ing CD-HIT (Fu et al., 2012), MUSCLE (Edgar, 2004) and BLAST (Altschul

et al., 1990). Proteins are first clustered using CH-HIT, and consensus se-

quences are created for clustered protein families using multiple sequence

alignment by MUSCLE. These consensus sequences are then queried against

each other and against comprehensive protein database to identify mar-

ker sequences using BLAST. In this thesis, UniRef90 was used as the

comprehensive protein database (Suzek et al., 2015).

In the quantification step, ShortBRED maps WMS sequencing reads

against the marker sequences by translated search using USEARCH (Edgar,

2010). Hit counts are normalized by adjusting for average read length,

marker length and sequencing depth to produce protein quantity esti-

mates in reads per kilobase of reference sequence per million sample

reads (RPKM).
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2.3 Downstream data analysis

After taxonomic and functional profiling steps described above, one usu-

ally needs to conduct many additional computational analysis steps in

order to answer scientific questions of interest. These tasks may include

assessment of community diversity, comparisons of samples, data ordi-

nation or visualization, statistical modeling, classification and clustering.

In this section, I describe the most important downstream data analysis

methods used in this thesis.

2.3.1 Microbial diversity and stability

The within-sample diversity, or α-diversity, has been shown to be an im-

portant biomarker for disruptions in microbial communities. The condi-

tion of decreased α-diversity is sometimes referred as dysbiosis, referring

to unbalanced microbiota. Specifically, intestinal dysbiosis has been re-

ported in many diseases, such as IBD (Matsuoka and Kanai, 2015), col-

orectal cancer (Ahn et al., 2013) and T1D (Publication II).

In microbial community profiling, the (dis)similarity between two sam-

ples or microbial communities is usually called β-diversity. As such, it

can be used to measure stability of the microbiota over time, given longi-

tudinal sampling. Below, I describe the most common measures of α- and

β-diversity.

Measures of α-diversity

The measure of α-diversity is related to the count of different bacteria and

their distribution in the community. Sometimes α-diversity is measured

by the mere count of distinct microbial species in the community, often

referred to as richness. In sequencing based community profiling, there

may often be lowly abundant but undetected bacteria, which means that

richness cannot be observed directly. Instead, one can estimate the num-

ber of unseen taxa by looking at the distribution of observed taxa. Chao1

index (Sest) is a nonparametric estimate of richness based on frequencies

of singleton and doubleton taxonomic groups (Chao, 1984):

Sest = Sobs +
f2
1

2f2
, (2.1)

where Sobs is the number of observed species, f1 is the number of single-

ton species and f2 is the number of doubleton species. In Publication II,

we used chao1 estimate to measure α-diversity based on 16S sequencing

data.
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Instead of focusing on the mere number of microbial species, one can

measure α-diversity by assessing the abundance distribution of microbes

in the community. Intuitively, of two communities with the same number

of species, the one where the species are present in comparable abun-

dances is more diverse compared to the other where one microbe domi-

nates the community. Following this reasoning, any information theoretic

measure of entropy can be used as an estimate of α-diversity. One com-

monly used measure is Shannon’s diversity index (Shannon, 1948)

H = −
T∑

i=1

pi ln pi, (2.2)

where pi are relative abundance of microbial taxa and T is the total num-

ber of taxa. In Publications I, III, IV and V Shannon’s diversity index was

used for estimating microbial α-diversity.

Similar to sample-specific microbial community diversity, it is possible

to evaluate species-specific strain diversity based on ConStrains strain

profiles. In Publication I, we formulated haplotype diversity score

Hhaplotype = 1−
S∑

i=1

p2i , (2.3)

where pi denotes the within-species abundance of strain i and S is the to-

tal number of strains. Haplotype diversity measures species- and sample-

specific strain diversity and it is bounded between [0,1]. This measure was

motivated by the concept of heterozygocity in population genetics. There

is a convenient probabilistic interpretation for haplotype diversity score:

given two randomly sampled bacterial cells from species X in sample Y ,

the corresponding haplotype diversity score reflects the probability that

the two cells are derived from different bacterial strains.

Measures of β-diversity

In theory, any (dis)similarity measure, such as Euclidean distance, can be

used to measure β-diversity between two microbial communities. How-

ever, given the proportional nature of profiles we are dealing with, the

field of ecology offers many better-suited measures, which take the com-

positionality of the data into account.

Jaccard index measures the proportion of shared taxa in two microbial

communities A and B:

J(A,B) =
|A ∪B|
|A ∩B| . (2.4)

As such, Jaccard index only concerns the presence or the absence of mi-

crobial taxa rather than their relative abundances. When used for mea-
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suring microbial stability in longitudinal setting, Jaccard index measures

the introduction of new microbes and the elimination of existing commu-

nity members. Using Jaccard index for measuring stability, (Faith et al.,

2013) found that on average roughly 60 % microbial strains remain sta-

ble in adult gut microbiota over the course of five years. We used Jaccard

index for measuring the stability of infant gut microbiota in Publications

I-III.

Another commonly used measure for β-diversity is Bray-Curtis dissimi-

larity

BCij =

∑T
t=1 |xti − xtj |∑T
t=1 |xti + xtj |

, (2.5)

where xti is a count or relative abundance of taxon t in sample i and T is

the total number of taxa. Bray-Curtis dissimilarity can be used for both

count data, such us OTU counts in 16S sequencing, and relative abun-

dance data. Bray-Curtis dissimilarity was used in all β-diversity based

analyses in all Publications except for the longitudinal stability analyses

described above.

2.3.2 Ordination of microbial profiles

Data ordination or visualization, where data points or other objects of in-

terest are presented as point on a, usually two-dimensional, surface, is

an important element of data analysis. Such analysis can provide a com-

pact high-level view of the data convenient for further hypothesis gen-

eration and data summarization. In microbial community analysis, any

data ordination graph is usually referred to as principal coordinate anal-

ysis (PCoA) plot, which is not to be confused with another dimensional-

ity reduction and data visualization method principal component analysis

(PCA)(Pearson, 1901). Operating with data covariance matrix, PCA finds

a linear mapping to a lower-dimensional space in such way that maxi-

mum amount of variation is preserved. When operating with microbial

community data, it is often desireable to use other measures for simi-

larity rather than covariance (see Section 2.3.1 above). Different vari-

ants of multidimensional scaling (MDS)(Borg and Groenen, 2005), such

as non-metric MDS, and t-Distributed Stochastic Neighbor Embedding (t-

SNE)(van der Maaten and Hinton, 2008) enable data ordination based on

any (dis)similarity matrix and are popular for generating PCoA plots.

In this thesis, visualization of stool samples, that is microbial commu-

nities, was conducted using t-SNE (van der Maaten and Hinton, 2008),
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which is a state-of-the-art method for visualizing structure in large data

sets. Briefly, t-SNE operates by minimizing the Kullback-Leiber (KL) di-

vergence between two distributions, pij and qij :

KL(P ||Q) =
∑

i,j

pi,j log
pi,j
qi,j

, (2.6)

where pij is a matrix of probabilities computed given the original data

points and qij is a matrix of probabilities given the distances of the data

points in the output mapping, that is the resulting visualization of the

data points. In the case of microbial community data, any β-diversity

matrix naturally takes the form of pi,j ’s (Van der Maaten and Hinton,

2012). The task is to find qij such that it is as close to pij as possi-

ble, that is, the KL divergence between these distributions is minimized.

This is achieved iteratively using gradient descent, and the process is fur-

ther accelerated using Barnes-Hut algorithm in the latest implementa-

tion (van der Maaten, 2014). In this thesis, Bray-Curtis dissimilarity ma-

trix (Equation 2.5) was used as pi,j .

2.3.3 Statistical modeling

Biological data collected from human subjects, such as the microbiome

data studied in this thesis, is usually complex and noisy. Subjects un-

der study are genetically different and they are exposed to environment

with plethora of factors potentially contributing to the biological measure-

ments in question. There may also be technical factors producing biases in

the measurements. This is to say that the inter-sample variation observed

is always a sum of all these factors and never reflects the comparisons of

scientific interest, such as case-control comparisons, alone.

Statistical models provide a convenient mathematical framework for ac-

counting any confounding factors while testing the scientific hypotheses

at the same time. In this thesis, a statistical tool called Multivariate As-

sociation with Linear Models (MaAsLin) (Morgan et al., 2012) was used

for all statistical modeling. Below, I describe the components of MaAsLin

one by one.

MaAsLin

MaAsLin is a linear modeling system adapted for microbial community

data and it consists of multiple steps. The goal of the first three steps is

to filter and transform the data such that it better fits the assumptions

of the linear mixed effects model used for modeling the data in step four.
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Final step conducts multiple testing correction.

First, MaAsLin conducts outlier removal using Grubbs’ test (Grubbs,

1950). This is important since both microbial relative abundances and

clinical metadata often contain outliers which violate the assumptions—

such as assumption of normally distributed data—of linear models and

may thus result in spurious results. Grubbs’ test is based on the assump-

tion of normality and is therefore well-suited for this task.

Second, MaAsLin applies variance stabilizing arcsine square root trans-

formation

yi,transformed = arcsin
√
yi, (2.7)

which is also known as arcsine transformation (Sokal and Rohlf, 1995).

This will pull out the ends of the distribution making the data more nor-

mally distributed. Arcsine transformation is preferred over other trans-

formations, such as logarithmic and logistic transformations, since it can

be directly applied to data with zeros and ones, whereas adding pseudo

counts or other steps need to be applied before these other transforma-

tions are applicable.

Third, MaAsLin reduces the complexity of the linear model to be fitted

next by conducting a feature selection step per each microbial taxon. This

means that only a minimal set of predictors, which are identified to be

associated with the given microbial taxon, is used in each linear model

fitted. Features are tested for a tentative association with the microbial

taxon one by one. For continuous predictors associatedness is measured

by correlation and for binary and categorical predictors non-parametric

test is used to test for any association between the predictor and microbial

taxon in question. By including all predictors with tentative association in

the model simultaneously, MaAsLin provides a data-driven approach for

associating strongest predictors with microbial taxa while other, possibly

correlated and confounding predictors are included in the model to explain

away their contribution to the variation in the microbial taxon in question.

To resolve possible confounding effects more explicitly, one has to directly

measure correlations between the predictors.

Fourth, MaAsLin fits a linear mixed effect model one microbial taxon at

a time. A linear model is a statistical model where the observed quantities

yi—in this case arcsine transformed microbial relative abundances—are

represented in terms of J predictors xi,j with a linear relationship to the

target variable

yi = β1xi,j + · · ·+ βJxi,J + εi, i = 1, . . . , n. (2.8)
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Variables selected in the previous step are used as predictors. There may

be two kinds of predictors or effects, fixed effects and random effects,

hence the name mixed effects model.

A random effect(s) model (Skrondal and Rabe-Hesketh, 2004) assumes

that the data being analyzed contains a hierarchical structure and it is

thus directly related to Bayesian hierarchical models (Gelman et al., 2014).

For example, in the case of longitudinal study of human subjects, repeated

measurements from the same test subject are correlated and thus violate

assumptions of many statistical models, which assume independent and

identically distributed (i.i.d.) data. In a random effect model, these cor-

relations are explicitly modeled using a hierarchical structure where the

subjects themselves represent the lower level of the hierarchy, and the

subjects are members of a population that is the higher level of the hier-

archy. As such, a random effect term is well-suited for modeling within-

subject correlations in longitudinal study designs, and in biostatistics,

terms “random effect” and “subject-specific effect” are often used inter-

changeably (Diggle, 2002).

In biostatistics, the term “fixed effect” is used to refer to terms other

than random effects in a linear mixed effect model. This is in contrast to,

for example, econometrics, where a fixed effects model is another type of

linear model for longitudinal panel data analysis, where subject specific

effects are assumed to correlate with other predictors (Wooldridge, 2010).

Gardiner et al. (2009) provide a concise description of fixed effects and

random effects with formal definitions and illustrative examples.

A linear mixed effects model is a statistical model containing both fixed

effects and random effects and as such it is useful in longitudinal stud-

ies where repeated measurements are made on the same test subjects.

MaAsLin fits a linear mixed effects model for one microbial taxon at a

time using a penalized quasi-likelihood approach (Breslow and Clayton,

1993) provided in R package MASS. In the resulting model, each fixed ef-

fect term is given a p-value which is computed using respective degrees of

freedom and the ratio between the fixed effect estimate and its standard

error, t-value, as described in Pinheiro and Bates (2006).

Finally, MaAsLin conducts false discovery rate correction for all p-values

obtained from the linear models fitted in the previous step, using Benjamini-

Hochberg method (Benjamini and Hochberg, 1995). This correction in-

volves p-values for all fixed effect terms that have passed the feature se-

lection step for each taxon.
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2.3.4 Classification

Classification is a branch of supervised machine learning where labeled

training data are used to learn a model which predicts the class of new

data. In addition to prediction, classification models can be used to eval-

uate separability between groups of data among other things. In this

thesis, supervised learning method called Random Forest was used for

classifying samples in Publication I.

Random Forest

Random Forest (RF) is a supervised learning technique which can be used

to conduct classification and regression among other things (Breiman,

2001). It is a robust technique—that is, it is difficult to do over-fitting

with RFs—with loose assumptions about the input data. These reasons

have probably contributed to its current popularity on many fields apply-

ing machine learning techniques, including microbiome research.

RFs operate by training an ensemble of decision trees (Utgoff, 1989)

while applying bootstrap aggregating (bagging)(Breiman, 1996) for the

training data of each decision tree separately. This means that the train-

ing set for each decision tree in a RF is generated by sampling from the

original input data with replacement. RFs also apply feature bagging,

which means that a random subset of features is used at each candidate

split in the learning process.

When used for prediction, RFs classify new data using majority vote

principle, which means that the output is the mode of the classes of the

individual trees. In regression task, the output is usually the mean of

the individual trees’ predictions. RFs also enable evaluating the perfor-

mance of the model without separate test data or cross-validation proce-

dure. This is achieved by using out-of-bag predictions—that is, predic-

tions where a subset of trees that did not have the sample in question

in their training bootstrap sample are used to generate the output—to

compute classification or regression errors.
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In this Chapter, I describe the research hypotheses and study cohorts used

in this thesis. Specifically, I lay out the motivation behind the cohorts and

describe the experimental methods used for analyzing the stool samples

collected in our studies.

3.1 DIABIMMUNE study

In the DIABIMMUNE study, 678 infants and their families from Finland,

Estonia and Russian Karelia were recruited in order to study how differ-

ences in lifestyle between these regions affect the early development of

infants’ immune systems. All infants were followed-up from birth until

three years of age. Enrollment was based on human leukocyte antigen

(HLA) genotyping, which can be used to predict susceptibility to autoim-

mune diseases and allergies (Pociot and Lernmark, 2016; Larizza et al.,

2012; Sollid and Thorsby, 1993). HLA genotyping was used in order to

control for genetic differences between the populations under study, al-

lowing us to attribute any observed phenotypic differences between the

populations to environmental factors. In this thesis, these three popula-

tions were used as a “living laboratory” to study mechanisms behind the

hygiene hypothesis.

There is a steep gradient in incidence of autoimmune diseases and aller-

gies between Finland and Russian Karelia despite the geographic proxim-

ity and the genetic similarity between the populations. For instance, the

incidence of type 1 diabetes (T1D) is 5–6 fold higher (Kondrashova et al.,

2008a,b) and incidence of allergic diseases are 2-6 fold higher (Seiskari

et al., 2007) in Finland relative to Russian Karelia across the border.

In Estonia, the incidence of aforementioned disease has been increasing

rapidly from rates similar to Russian Karelia to incidence similar to Fin-
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land together with modernization of the lifestyle in recent decades (Teeaar

et al., 2010; Voor et al., 2005).

All infants in DIABIMMUNE study were followed from birth till age

of three by monthly stool sampling, together with collection of periodic

blood samples at age of 3, 6, 12, 18, 24 and 36 months. Families filled

in extensive questionnaires covering topics such as breastfeeding, diet,

allergies, living conditions and use of drugs. Additionally, information

about the mode of birth (vaginal birth vs. caesarean section) was recorded.

This cohort provides, up to date, largest longitudinal collection of infant

stool samples, enabling functional profiling of developing infant gut mi-

crobiome at unprecedented detail.

In Publication I, the underlying research hypothesis was that there are

differences in early gut microbiome contributing to the differences in au-

toimmunity between the countries. We set out to compare the infant gut

microbiome in these three populations—Finns, Estonians and Russian

Karelians—which represent a microcosm of the global gradient in autoim-

mune disease incidence between western and developing nations to gain

insights in mechanisms behind the hygiene hypothesis.

Studies in mice have demonstrated that early colonization with protec-

tive microbiota can convey decreased risk of autoimmune diabetes (Markle

et al., 2013) and allergies (Stefka et al., 2014). In Publication II, we exam-

ined the relationship between T1D and microbiome in case-control setting

by following gut microbiome of 11 infants with T1D associated autoanti-

bodies (cases) and 22 infants with no observed autoantibodies (controls)

until three years of age. Four infants developed T1D within the timeframe

of the study.

Antibiotic treatments have both short- and long-term effect in gut micro-

bial communities (Dethlefsen and Relman, 2011; Jakobsson et al., 2010).

In Publication III, we leveraged differences in early antibiotic prescrip-

tion rates in DIABIMMUNE study by composing a cohort of infants with

no antibiotic treatments or more than nine antibiotic treatments during

the first three years of life. This cohort of 39 infants enabled us to exam-

ine effects of repeated antibiotic treatments in early life in comparison to

infants with no such perturbations but otherwise similar environmental

exposures.

In addition to the cohort specific questions described above, all three

cohorts in Publications I–III were used to study various common ques-

tions on the developing infant gut microbiome, such as its diversity and
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# of

infants

# of samples with

16S sequencing

# of samples with

WMS sequencing

Publication I 222 1584 785

Publication II 33 777 124

Publication III 39 1069 240

Total 294 3430 1149

Table 3.1. Number of infants and stools samples in DIABIMMUNE study

stability. Results regarding these generic questions are combined and pre-

sented in coherent sections in Chapter 4.

The development of the gut microbial communities of infants in DIA-

BIMMUNE study was characterized using taxonomic and functional pro-

filing approaches, which are described in more detail below (experimen-

tal part) and in Chapter 2 (computational part). We analyzed a total of

3430 stool samples from 294 infants using 16S sequencing. Since WMS

sequencing is more expensive compared to 16S sequencing, in DIABIM-

MUNE cohorts it was applied to a subset of samples analyzed using 16S

sequencing. In Publication II and Publication III, samples for WMS se-

quencing were selected “manually”, by targeting samples of specific inter-

est. In Publication I, we applied unsupervised selection tool called mi-

croPITA (Tickle et al., 2013) to select 785 samples, which represent the

variation in 16S sequencing data as well as possible. The total of 1149

stool samples were analyzed using WMS sequencing. The sample counts

are broken down by Publications I-III in Table 3.1.

3.2 LifeLines DEEP study

LifeLines is a prospective population cohort of 165000 Dutch adults who

will be followed for 30 years. LifeLines DEEP is a sub-cohort of LifeLines

where detailed ‘omics profiling data has been collected for approximately

1500 individuals (Tigchelaar et al., 2015). Goals of the LifeLines DEEP

study include elaborating the concept of “normal” adult gut microbiome as

well as investigating associations between the gut microbiome and other

intrinsic and extrinsic host factors. For this purpose, stool samples were

collected from 1179 LifeLines DEEP participants.

In Publications IV, we reported WMS sequencing analysis results of
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1135 stool samples together with 207 exogenous and intrinsic host factors.

These factors included 39 self-reported diseases, 44 drug categories, smok-

ing status, 78 dietary factors and 41 intrinsic factors of various physiolog-

ical and biomedical measures. Theses analyses provide important steps

towards better understanding of the healthy human gut microbiome.

3.3 Fecal microbial transplantation in Crohn’s disease

Fecal microbial transplantation (FMT) is an efficient technique for treat-

ing recurrent C. difficile infections (Kelly et al., 2012; Rohlke and Stoll-

man, 2012). It has been proposed that it could be used for treating other

conditions where gut dysbiosis has been implicated (Kelly et al., 2015).

In Publication V, our goal was to study the efficacy of FMT in treating

Crohn’s disease (CD)—a subtype of IBD—in a prospective setting. We con-

ducted an uncontrolled, prospective open-label study of FMT from healthy

donor to patients with active CD with 19 subjects and three donors. A sin-

gle FMT per patient was performed via colonoscopy.

We followed the microbiome of recipients by collecting three stool sam-

ples per subject: one pre-treatment sample preceding the FMT and two

post-treatment samples four at eight weeks after the FMT. We also mea-

sured several clinical parameters including Harvey Bradshaw Index (HBI),

short Inflammatory Bowel Disease Questionnaire (sIBDQ), Crohn’s Dis-

ease Endoscopic Index of Severity (CDEIS), and C-reactive protein (CRP)

levels in blood during 12 weeks period following FMT. Stool samples were

subject to WMS sequencing and the data was analyzed for microbial sig-

natures explaining treatment response. This is a first study reporting the

impact of colonoscopic FMT on microbial and immunological parameters

in patients with active CD.
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4. Results

In this chapter, I describe the main findings in the publications in this

thesis. First, I describe our results in characterizing the developing infant

gut microbiome in the DIABIMMUNE study (Publications I–III). Next, I

highlight some findings from the LifeLines DEEP study, where we char-

acterized gut microbiomes of 1135 Dutch adults in Publication IV. The

chapter is concluded with results from the FMT study in Publication V.

4.1 Gut microbiome in early childhood

The gut microbial communities in infancy are dynamic as they develop to-

ward adult composition. In DIABIMMUNE, we have studied systematic

differences between populations (Publication I), local differences between

diseased and healthy infants (Publication II), and perturbations such as

antibiotic treatments (Publication III) and their connections to the devel-

opment of the immune system. These results described below, give many

new insights in the developing infant gut microbiome.

4.1.1 Microbial diversity is established during the first three
years of life

The infant gut microbial community is dynamic during the first three

years of life. Accordingly, age of the subjects was a major source of vari-

ation in all three cohorts (Publications I–III). This could be seen in PCoA

plots (see Figure 4.1 for PCoA plots in Publication I) and was also reflected

by α-diversity, measured by Shannon diversity index (Equation 2.2); In all

three cohorts, we observed consistent increase in α-diversity with respect

to age. This trend was later controlled using linear or non-linear mod-

eling when conducting other statistical comparison, such as case-control

comparisons or comparisons between countries.
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1y    2y    3y
Age

RussiaEstoniaFinland

Figure 4.1. PCoA ordination of DIABIMMUNE 16S samples in Publication I, colored by
age (left) and country (right). Each point represents an individual stool sam-
ple.

Healthy and stable microbial communities in the gut are typically char-

acterized by high diversity (Lloyd-Price et al., 2016), whereas decreased

diversity is usually implicated in disease or microbial dysbiosis (Manichanh

et al., 2012). In Publication II, we found that decreased diversity is also

implicated in T1D pathogenesis. Infants who progressed to T1D in our

case-control cohort were described by decreased microbial diversity be-

fore clinical diagnosis but after autoantibody seropositivity. This finding

suggests possible microbial elements in the onset of the disease but is not

sufficient evidence to prove a causal relationship between microbiome and

T1D.

In Publication I, where Russians were compared to Finnish and Esto-

nian infants due to their lower susceptibility to autoimmunity, we sur-

prisingly found that Russians had lower microbial diversity during the

first year of life. This result could be explained by differences in human

milk oligosaccharide (HMO) utilizing bacteria between the countries; in

Russian gut communities, a few Bifidobacterium species were responsi-

ble for HMO utilization, whereas in Finnish and Estonian guts many

Bacteroides species were responsible for HMO utilization in addition to

Bifidobacterium. Regardless of lower diversity in early life, Russians de-

veloped gut communities with on average higher microbial diversity after

the first year of life but before the end of the follow-up period. This sug-

gests that higher microbial diversity of gut communities in early infancy

may not necessarily be beneficial in similar manner that is reported in

the literature covering adult gut microbiome. This observation is further

connected to innate immunity in Section 4.1.6.

Antibiotic treatments have been shown to cause perturbations in both
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the human (Dethlefsen and Relman, 2011; Korpela et al., 2016) and murine

(Nobel et al., 2015) gut microbiome. In Publication III, we reported de-

creased microbial diversity (Equation 2.2) in infants with repeated antibi-

otic treatments. Birth by caesarean section results in a distinct microbial

profile characterized by absence of Bacteroides species and decreased mi-

crobial diversity (Dominguez-Bello et al., 2010a; Jakobsson et al., 2014).

Analyzing data of 39 infants in Publication III, we found that infants

born by caesarean section together with infants with no early Bacteroides

species (phenomenon which is further described in Section 4.1.3) had de-

creased microbial diversity.

We profiled the WMS data in Publication I and Publication III on strain

level using ConStrains (see Section 2.2.1). Briefly, ConStrains infers mi-

crobial strains by conducting haplotyping of SNPs on species-specific mar-

ker genes and enables following subject-specific strains in time. We fur-

ther quantified within-species diversity using haplotype diversity (Equa-

tion 2.3), a measure of withing-species strain diversity. In Publication I,

we observed an increasing trend with respect to age similar to diversity

on community level (α-diversity). We also found that in 60 % of the strain

profiles there was one dominant strain per microbial species accounting

for more than 90 % of within-species abundance. However, some genera,

such as Veillonella and Faecalibacterium, had bimodal haplotype diver-

sity distributions indicating more complex strain behavior. In Publication

III, we observed significantly lower haplotype diversity scores in infants

with repeated antibiotic treatments. Consequently, these infants were

more often colonized with species with a single dominant strain.

4.1.2 Stability of the microbiome is decreased in infancy

Faith et al. (2013) found that microbial stability follows power-law func-

tion in adults; within-subject similarity of microbial communities is de-

creased rapidly in time but there is certain number of taxa, which are

persistent over long periods of time. In Publication II, we found that

this holds also for the infant gut microbiome. Our model suggested that

roughly 10 % of bacterial strains obtained soon after birth were main-

tained until three years of age. This means that despite the dynamic

nature of the microbial community in infancy there is a “core” microbiota

that is persistent over this period. In adulthood, this “core” part accounts

for more than 50 % of the microbial species inhabiting the gut (Faith et al.,

2013).
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In addition to measuring stability on community level, we investigated

stability within taxonomic groups in Publication I. First, we applied power-

law model on genus level for genera represented with more than 10 OTUs

in our data. Bifidobacterium were more stable in Russian infants whereas

all other genera compared were more stable in Finns and Estonians. This

can be also viewed such that Russians have more plastic microbiota dur-

ing this early dynamic period while beneficial Bifidobacterium are able to

colonize in a stable manner regardless.

Strain level variation may play important roles in determining func-

tional potentials and even pathogenicity of microbes (Scholz et al., 2016).

We investigated within-species stability using strain profiles generated

by ConStrains and observed two kinds of behaviors: microbial strains

tended to remain stable with a single dominant strain per species, and

occasionally experienced a “strain sweep” where an old dominant strain

was replaced by a new one. These events may be implicated in weaning,

antibiotics exposures and other life events.

In Publication III we found that exposure to antibiotics provided a per-

turbation in the gut microbiome, which was seen as a short-term decrease

in stability. Infants with multiple antibiotic treatments during the first

three years of life had overall less stable microbial communities when

compared to infants with no antibiotics treatments. This observation un-

derlines the importance of ongoing efforts to reduce over-prescription of

antibiotics.

4.1.3 The microbiome is modulated by diet

Dietary intake influences the composition and activity of the gut micro-

biota in adulthood in both human (Conlon and Bird, 2015; David et al.,

2014) and mice (Sonnenburg et al., 2016). In early childhood, diet and

especially breastfeeding play an important role in the development of

gut microbial communities towards an adult composition (Backhed et al.,

2015). In DIABIMMUNE study, we have collected times of first intro-

duction to various dietary elements to study and correct for changes in

microbiota associated with accrual of dietary diversity.

Breastmilk is the sole nutrition source available to most infants during

the first months of life. Breastmilk contains human milk oligosaccharides

(HMOs) (Sela and Mills, 2010) and assortment of bacteria (Hunt et al.,

2011) which provide important pre- and probiotic functions, respectively.

In Publication I and Publication II, we found that breastmilk was highly
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favorable to fecal Bifidobacterium and Lactobacillus species, an effect well

known in the literature (Backhed et al., 2015). Genera Blautia and Os-

cillospira, and family Lachnospiraceae were among the most decreased

taxonomic groups until weaning. However, in Publication III we noted

that some Finnish infants had low abundance of Bifidobacterium species

even during the breastfeeding period.

In addition to Bifidobacterium, Bacteroides species are also capable of

utilizing HMOs (Marcobal et al., 2011). In Publication I, we found evi-

dence for distinct microbiota-dependent HMO metabolism in infants from

Finland and Estonia in comparison to Russian Karelian infants. By an-

alyzing the abundance and origin of genes in the bona fide HMO gene

cluster (Sela et al., 2008) we showed that while most of these genes were

carried by Bifidobacterium in Russians, Bacteroides species were respon-

sible for majority of HMO metabolism in Finnish and Estonian infants.

The relative decrease of Bifidobacterium in Finns and Estonians was not

explained by differences in breastfeeding; Russian infants were breastfed

for a shorter period on average (mean ± SD breastfeeding days: Finland

268± 149, Estonia 307± 217, Russia 199± 165). However, Finnish infants

had higher abundance of Bifidobacterium breve—species incapable of me-

tabolizing intact HMOs (Locascio et al., 2009)—compared to Russians.

In Publication III, we observed that both Bifidobacterium and Bacteroides

dominated HMO metabolism can be found in Finnish infants as well. It is

known that infants born by caesarean section lack Bacteroides species in

their early gut microbiota (Jakobsson et al., 2014; Backhed et al., 2015).

However, we found such signature in 7 of 35 (20%) infants born vaginally.

In infants with no early Bacteroides species (all four infants born by cae-

sarean section and seven vaginally born infants) Bifidobacterium were

the main contributors to HMO metabolism. Despite our extensive search

for clinical metadata which would explain this lack of Bacteroides species

in vaginally born infants, we could not find any explanation for this newly

described phenomenon.

Even though the influence of diet to the microbiome is recognized, there

is only scattered information on the implications of different dietary ele-

ments on the microbiome. In Publication I, we utilized our dietary data

to look for consistent changes in the microbiome co-occurring with first

introduction to different dietary elements. Among other things, we ob-

served an increase in bacterial family Lachnospiraceae to be significantly

increased after introduction of vegetables and oat, and genus Lachnospira
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to be increased after introduction of soy. De Filippis et al. (2015) have

previously reported increased levels of Lachnospira in subjects following

vegetarian diet. We also saw a consistent increase in Ruminococcus and

Ruminococcaceae after introduction of egg in Publication I and Publica-

tion II, respectively. These bacteria can likely utilize proteins in eggs.

More systematic study designs are required to assess dietary implications

in early gut microbiome in more detail and with better confidence.

4.1.4 Antibiotic treatments perturb microbial taxa and genes

In addition to looking at global shifts in gut microbial communities caused

by antibiotic treatments (see Section 4.1.1 and Section 4.1.2), we exam-

ined implications of antibiotics on taxonomic and functional levels. In

Publication I, we observed that while genera Clostridium and Haemophilus

and class Gammaproteobacteria tended to be most significantly decreased

in association with antibiotics, class Deltaproteobacteria and genus Bilophila

had an opposite trend being increased together with antibiotics. Atarashi

et al. (2013) identified strains in so called Clostridium clusters IV and

XIVa to have health-promoting effects through induction of T regulatory

cells. In Publication III, we observed that children in antibiotic treatment

group had lower levels of these bacterial species—a difference driven by

difference in abundance of Eubacterium rectale—compared to children

with no antibiotic treatments.

Bacterial resistance to antibiotic treatments is conveyed by antibiotic

resistance (AR) genes which can be harbored chromosomally and trans-

ferred horizontally in mobile elements (Waters and Salyers, 2013). In

Publication III, we leveraged the WMS sequencing data to quantify genes

that are known to confer resistance to specific types on antibiotics (McArthur

et al., 2013). We found that chromosomal AR genes peaked after antibi-

otic treatments and in many cases we were able to identify the bacterial

species likely carrying the AR gene by corresponding peaks in their longi-

tudinal relative abundance profiles. In contrast to this peaking behavior,

we observed different patterns for some episomally encoded AR genes,

that is, genes that are encoded on plasmids or other mobile elements.

More specifically, their presence continued for much longer time after the

antibiotic treatment, which may be explained by the fact that they can

be distributed across wide variety of bacteria, whereas chromosomal AR

genes are constrained to their harboring species. Finally, we detected

AR genes in some children (11 of 39) prior to any antibiotic treatments,
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Figure 4.2. Receiver operating characteristic (ROC) curves for pairwise Random Forest
classifiers predicting country based on 16S genus data using samples col-
lected between 170 and 260 days of age in Publication I.

a phenomenon described earlier in the microbiome of infants (Backhed

et al., 2015) and rural Amerindians with no access to modern antibiotics

(Clemente et al., 2015).

4.1.5 Population-level differences in microbiota composition

There is a regional, and even a familial component in human gut micro-

biome implicating that people living in same area or household have more

similar microbiome with each other compared to their peers living outside

of their community (Lax et al., 2014; Yatsunenko et al., 2012). In Publi-

cation I, we found similar trend already in early infancy; Russian infants

had distinct gut microbiota compared to their Finnish and Estonian peers

with striking consistency. This difference could be seen on PCoA ordina-

tion (Figure 4.1) and was most clear in the earliest sampling points. We

trained a Random Forest classifier to separate samples by country in early

time window and obtained area under curve (AUC) equal to 0.949 (Figure

4.2) when comparing Russians to Finns and Estonians, implicating close-

to-perfect separability between the groups.

As briefly described above, differences in Bacteroides and Bifidobac-

terium species were among the most significant taxonomic differences be-

tween the countries. Bifidobacterium species are usually increased during

breastfeeding due to their specialization in HMO metabolism, whereas in

addition to breastmilk HMOs, Bacteroides species can utilize a wide vari-

ety of dietary plant polysaccharides (Sela and Mills, 2010; Xu et al., 2003).

Previous studies suggest that early colonization of Bacteroides play a

role in different immune mediated diseases, such as T1D (Davis-Richardson
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et al., 2014) and celiac disease (Sanchez et al., 2011). In Publication I we

found that Bacteroides dorei, a species previously connected T1D patho-

genesis (Davis-Richardson et al., 2014), was the Bacteroides species with

the biggest fold change between Russian and Finnish infants. Fecal B.

dorei relative abundance correlated with serum insulin autoantibody lev-

els both within Finland and cohort wide. This result was consistent with

the literature and provided further evidence for the role of B. dorei in au-

toimmunity and T1D pathogenesis.

To better understand potential implications of the taxonomic differences

between the countries, we also compared the countries by looking at the

functional content of the microbiome. We found roughly 100 biological

process GO terms with differences in abundance between Finland and

Russia. Glycolytic functions, which are related to HMO metabolism, were

more active in Russian infants. This is likely caused by higher abun-

dance of Bifidobacterium species—highly specialized HMO metabolizing

bacteria—in Russian intestines. We saw many GO terms, such as vir-

ulence and siderophore-related functionalities, increased in Finnish in-

fants compared to Russians. While most of these findings have not been

followed up in this thesis, the list may include many important, yet un-

studied microbial pathways, which have implications in infant health and

wellbeing, deserving studies of their own.

Most importantly, we observed that two lipopolysaccharide (LPS) re-

lated GO terms—LPS biosynthetic process and Lipid A biosynthetic process—

showed notably increased abundance in Finnish infants compared to Rus-

sians. The difference in LPS biosynthesis was most substantial during

early months of life and dissipated in time (Figure 4.3). LPS is a surface

protein of gram-negative bacteria and it is known to elicit strong immune

response in mammalian cells (Cullen et al., 2015). The known immunos-

timulatory properties of LPS and early differences in LPS production be-

tween Finland and Russia made us hypothesize that this signal might

have implications on the development of the immune system.

Lipid A is a subunit of LPS, responsible for its immunostimulatory prop-

erties. Therefore, the lipid A biosynthesis pathway is more specific path-

way and is encoded by a smaller set of genes compared to the LPS biosyn-

thesis pathway. Using lipid A biosynthesis as a proxy to LPS biosynthesis,

allowed us to avoid contributions from many genes that are important to

multiple microbial pathways, and thus resulted in a less noisy signal. For

example, when we deconvoluted LPS biosynthesis signal by contributing

44



Results

0

250

500

750

12 24 36
Age at collection (months)

Li
pi

d 
A

 b
io

sy
nt

he
si

s 
R

P
K

M

RussiaEstoniaFinland

Figure 4.3. Lipid A biosynthesis pathway normalized read counts (RPKM) per sample
and a linear fit per country in Publication I.

species, we saw contributions from many highly abundant gram-positive

bacteria, which are known not to produce LPS. This was not the case when

the deconvolution was conducted to the lipid A biosynthesis signal.

By deconvoluting the lipid A biosynthesis signal, we were able to in-

vestigate computationally what species were contributing to LPS biosyn-

thesis in the infants under study. We found that Escherichia coli was a

major LPS producer in all countries. More importantly, many Bacteroides

species contributed to lipid A and LPS biosynthesis in Finland and Es-

tonia from early on. These bacteria were partly the same species that

accounted for the differences in HMO metabolism between the countries,

and the contrast in their abundance was most substantial during the first

year of life, the time frame most important for the developing immune

system. This prompted us to investigate properties of LPS and lipid A

produced by these species in more detail in experiments which are de-

scribed next.

4.1.6 Variation in LPS structure impacts immune development

Differences in LPS structure are implicated in its immunogenicity, that

is, ability to invoke innate immune responses (Whitfield and Trent, 2014).

Immune cells recognize LPS through the Toll-like receptor 4 (TLR4) com-

plex, which is activated by binding of lipid A subunit described above (Kim

et al., 2007). The number of acyl chains in lipid A is an important factor in

determining the magnitude of the immune response (Hajjar et al., 2002;

Needham et al., 2013). Lipid A from E. coli has six acyl chains (hexa-

acylated) and provokes robust immune response (Needham et al., 2013)

whereas lipid A structures with four or five acyl chains (tetra- and penta-

acylated) have been previously shown to elicit reduced TLR4 activation
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Figure 4.4. Mean cytokine production in PBMCs stimulated with the indicated doses of
LPS purified from different bacterial species as assessed by cytokine bead
array in Publication I.

(Herath et al., 2011). Taken together, structural changes in lipid A are

likely to influence multiple facets of microbiota-host interactions, which

prompted us to investigate LPS from the microbes in the guts of the in-

fants in our cohort experimentally.

To study structure and function of LPS produced by early colonizing

bacteria in infant in the cohort, we set out to purify LPS from bacteria

that contributed to the LPS load in our samples. We were able to pu-

rify LPS from 11 type strains listed in Table 4.1. We first used these LPS

to stimulate primary human peripheral blood mononuclear cells (PBMCs)

and measured different necrosis factor κB (NF-κB)-dependent cytokines—

interleukin-10 (IL-10), tumor necrosis factor α (TNFα), IL-1β and IL6—to

assess inflammatory response evoked by LPS. As expected, E. coli LPS

produced a robust response even on small doses (Figure 4.4). Strikingly,

LPS derived from B. dorei failed to elicit any response regardless of the

dose. Response evoked by LPS from all other analyzed Bacteroides species

and Prevotella copri was also greatly impaired compared to response shown

by E. coli LPS. We confirmed these findings in human monocyte-derived

dendritic cells and in TLR4-NF-αB reporter cells which both produced

concordant results. Since E. coli and B. dorei LPS were responsible for the

highest and lowest cytokine responses, respectively, we next used these

two LPS subtypes to study certain properties of these molecules in more

detail.

To probe the structural basis for the contrasting response between E.

coli and B. dorei LPS, we used matrix-assisted laser desorption/ionization-

time of flight mass spectrometry (MS) to examine the structure of the lipid

A domain of these LPS subtypes. E. coli derived lipid A produced a pre-

dominant peak at a mass-to-charge ratio (m/z) of 1798.3, consistent with
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Name Description Reference

Bacteroides dorei strain: 175 DSM 17855

Bacteroides ovatus strain: NCTC11153 ATCC 8483

Bacteroides vulgatus strain: NCTC11154 ATCC 8482

Bacteroides stercoris strain: VPIB5-21 ATCC 43183

Bacteroides fragilis strain: VPI2553 ATCC 25285

Bacteroides uniformis strain: VPI0061 ATCC 8492

Bacteroides caccae strain: VPI3452A ATCC 43185

Prevotella copri strain: 18205 DSM 18205

Akkermansia mucinophila strain: CIP107961 ATCC BAA-835

Klebsiella oxytoca strain: OCC-SAL-18A ATCC 68831

Escherichia coli strain: ECOR2 Ochman & Selander,

J. Bacteriol (1984)

Table 4.1. Bacterial strains used in LPS Purification and following experiments with im-
mune cells in Publication I.

predicted exact mass 1797.2 m/z of the published [M-H]− ion structure of

E. coli lipid A containing two phosphate groups and six acyl chains (Need-

ham et al., 2013). Lipid A extracted from B. dorei LPS produced two pre-

dominant peaks at m/z 1,690.9 and 1,436.2, corresponding to the [M-H]−

ion structures with one phosphate group and four and five acyl chains,

respectively (predicted exact mass: 1689.2 and 1435.0 m/z). These obser-

vations provided structural basis for the differences in immunogenicity of

these LPS molecules we observed in our immune cell experiments.

Next, we set out to study possible interactions occurring when LPS from

different bacteria co-occur in the infant gut. Using human primary im-

mune cells and a base dose of E. coli LPS, we co-treated these cells with

increasing dose of B. dorei LPS. We measured production of inflammatory

cytokines with respect to the baseline E. coli stimulation and found that

B. dorei LPS inhibited cytokine production elicited by E. coli LPS in pri-

mary human PBMCs and in monocyte-derived dendritic cells. We noticed

that maximal inhibition was reached when B. dorei and E. coli LPS were

used at a ratio of 10:1 which corresponded to the computational predic-

tion of the ratio of these LPS subtypes typical for IAA seropositive infants

in our cohort in Publication I. This result confirmed that immunologically

silent B. dorei LPS has implications in immune activation, even when act-

ing together with potent E. coli LPS, by inhibiting immune activation by
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E. coli LPS.

Stimulating immune cells with LPS induces a temporary refractory state

where the cells show decreased activation upon repeated immune chal-

lenge. This phenomenon is known as endotoxin tolerance (Watson and

Kim, 1963). We hypothesized that the distinct properties of B. dorei LPS

may have implications in induction of endotoxin tolerance and tested this

using primary human monocytes. As expected, initial exposure to E. coli

LPS inhibited TNFα production in restimulation at all conditioning doses

used. When we used B. dorei LPS in the initial exposure, we observed

substantially reduced potency to induce endotoxin tolerance. Consistently

with our previous experiments, mixing B. dorei LPS with E. coli LPS dur-

ing the endotoxin tolerance induction phase prevented the establishment

of endotoxin tolerance by E. coli LPS in a dose-dependent manner. Even

though the mechanisms of endotoxin tolerance are still poorly understood,

these experiments connect our findings to immune development, as en-

dotoxin tolerance is though to underlie the immune protective effect con-

ferred by microbial exposure suggested by the hygiene hypothesis (Biswas

and Lopez-Collazo, 2009).

Finally, we wanted to demonstrate the relevance of the differences in

LPS structure and function to T1D pathogenesis in vivo in non-obese

diabetic (NOD) mouse model of T1D. LPS can be used to protect NOD

mice from T1D by intraperitoneal (i.p.) injection (Aumeunier et al., 2010)

and oral gavage (Sai and Rivereau, 1996). We found that while E. coli

LPS given through i.p. injection protected NOD mice from T1D, B. dorei

LPS did not have this protective effect. This shows that immunostimu-

latory LPS can play a role in protection from immune-mediated diseases,

whereas immunologically silent B. dorei LPS has less potency to provide

such protective effects.

4.2 Adult gut microbiome

In comparison to the infant gut microbiome, the adult gut microbiome

is studied more extensively in both healthy adults and in different dis-

eases. In Publication IV, we studied the gut microbiome of 1135 Dutch

adults, representing the general population, using WMS sequencing of

stool samples. This study provides a step towards a better understanding

of complex environment-diet-microbe-host interactions. In Publication V,

we reported the first FMT study in active Crohn’s disease (CD), where we
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followed the recipients by stool sampling for eight weeks. In both studies,

WMS data was analyzed using MetaPhlAn2 for taxonomic profiling and

HUMAnN2 for functional profiling similar to above.

4.2.1 Factors associated with gut microbiome variation in
Dutch population

In Publication IV, we conducted extensive analysis of microbiomes from

1135 Dutch adults together with extensive metadata, including 39 self-

reported diseases, 44 drug categories, smoking status, 78 dietary factors

and 41 intrinsic factors of various physiological and biomedical measures.

Similar to other studies, we found high inter-individual variation in our

data, which was clearly visible on phylum level (Figure 4.5, top panel).

Regardless, 23 nonredundant molecular function GO terms representing

high level microbial functions showed remarkably stable profiles across

the cohort (Figure 4.5, bottom panel), similar to previous reports (Human

Microbiome Project, 2012; Lozupone et al., 2012). Out of all collected 207

metadata factors, 126 were found to significantly explain variation in the

microbiome data. Together these factors explained 18.7 % of the variation

in the data. Metadata also explained 13.7 % of the variation in microbial

α-diversity, measured by Shannon’s diversity index (Equation 2.2).

We conducted extensive association analysis between collected meta-

data and microbial species and pathways. Exhaustive results of these

analyses are given in Publication IV and accompanying online materials.

Here, I highlight some findings while connecting them to relevant litera-

ture.

Diet is known to be a major factor driving the taxonomic and functional

composition of gut microbial communities (Sonnenburg et al., 2016; Turn-

baugh et al., 2009). In our analyses, we observed positive correlation be-

tween fruit intake and Alistipes shahii, a species which have been previ-

ously associated with lower blood triglyceride levels (Fu et al., 2015). This

finding suggests a link between the fruit intake and the blood triglyceride

levels. We also founds that buttermilk (sour milk with a low fat content)

consumption correlated with microbial diversity, whereas regular high-

fat milk had inverse correlation with diversity. This suggests pre- and/or

probiotic effects in buttermilk. In contrast to previous reports (Wu et al.,

2011), we did not see a connection between carbohydrate consumption and

genus Prevotella. Instead, we observed increased levels of bacteria from

genera Lactobacillus, Streptococcus and Roseburia in low-carbohydrate

49



Results

Actinobacteria

Bacteroidetes

Firmicutes

Proteobacteria

Verrucomicrobia

other

Phylum level taxonomic composition

0

25

50

75

100

0

25

50

75

100

Functional composition, GO molecular functions

Re
la

tiv
e 

ab
un

da
nc

e 
(%

)
Re

la
tiv

e 
ab

un
da

nc
e 

(%
)

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

Figure 4.5. High-level taxonomic groups (top) and functional categories (bottom) in adult
gut microbiome in Publication IV. Each column (n = 1135) represents a stool
sample. Samples are sorted according to Actinobacteria relative abundance.
Functional categories in the bottom panel are A: ATP binding; B: oxidore-
ductase activity; C: RNA binding; D: sequence-specific DNA binding tran-
scription factor activity; E: active transmembrane transporter activity; F:
ligase activity; G: lyase activity; H: oenzyme binding; I: isomerase activity; J:
ATPase activity, coupled; K: methyltransferase activity; L: nucleotidyltrans-
ferase activity; M: sequence-specific DNA binding; N: zinc ion binding; O:
nuclease activity; P: inorganic cation transmembrane transporter activity;
Q: hydrolase activity, hydrolyzing O-glycosyl compounds; R: transferase ac-
tivity, transferring glycosyl groups; S: transferase activity, transferring acyl
groups other than amino-acyl groups; T: phosphorelay sensor kinase activity;
U: protein binding; V: endopeptidase activity; W: protein serine/threonine ki-
nase activity

diet.

Antibiotic use in the Netherlands is the lowest in Europe. Regardless,

we saw significant shift in subjects who used antibiotics before sampling,

with largest decrease in Bifidobacterium adolescentis and Bifidobacterium

longum species. Other drugs, such as proton-pump inhibitors (PPIs), met-

formin, statins and laxatives were found to have an impact on the gut

microbiota composition, as well.

Chromogranin A (CgA) is a member of the granine peptides and in Life-

Lines DEEP it was measured as a marker for neuro-endocrine system ac-
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tivation. CgA is secreted by immune cells in many gastrointestinal tract

disorders including IBD (Sciola et al., 2009) and inflammatory bower syn-

drome (IBS) (Ohman et al., 2012). We found that fecal CgA levels ex-

plained 3 % of the variation in microbiota composition (adonis R2 = 0.03,

adjusted P = 0.0006). There was inverse correlation between CgA levels

and microbial α-diversity, functional richness and high-density lipopro-

tein (HDL) concentration. High fecal CgA levels were associated with

high fecal calprotectin levels, with high concentrations of triglycerides

in blood, with high stool frequency, with soft stool type, and with self-

reported IBS. After correcting for potential confounding effects by the

factors above, we found 61 microbial species correlating with fecal CgA

levels. Many species from phylum Bacteroidetes (24 out of all 36 species)

showed inverse correlation with CgA.

4.2.2 FMT in active Crohn’s disease

In Publication V, we conducted an uncontrolled, open-label FMT study for

patients with active CD. Nineteen patients were treated with FMT from

three donors and followed up over 26 weeks. Eleven patients showed a

clinical response, measured by decrease greater than three in Harvey

Bradshaw Index (HBI), a questionnaire-based index of Crohn’s disease

activity. We collected three stool samples per patient—one pre-treatment

sample and two post-treatment samples four and eight weeks after the

FMT treatment—and analyzed microbial composition of these samples

using WMS sequencing. A stool sample from all three donors were ana-

lyzed in a similar manner.

We observed a shift in microbiota following the FMT, where responders

showed significantly larger change towards the donor profiles, measured

by Bray-Curtis dissimilarity (Equation 2.5). We also saw an increase

in microbial α-diversity, which was larger in responders, following the

FMT. Regardless of these community level differences between respon-

ders and non-responders, we did not observe any strong and consistent

species level differences between these two groups. Overall, we found that

questionnaire-based indices of disease severity—HBI and sIBDQ—improved

after FMT, but there was no significant change in CDEIS or CRP scores

12 weeks after the FMT. Based on our study, FMT was safe and well toler-

ated in the setting of active Crohn’s disease although the clinical response

was variable.
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5. Discussion

A growing body of evidence suggests that the gut microbiome is an impor-

tant factor in many human conditions, such as autoimmunity and aller-

gies. In this thesis, we used modern molecular methods to characterize

the gut microbiome in two cohorts, DIABIMMUNE (Publications I–III)

and LifeLines DEEP (Publication IV), and in a prospective FMT study

in active CD (Publication V). We identified the lack of immunogenicity

in Bacteroides-derived LPS as a novel molecular mechanism which may

contribute to the prevalence of autoimmunity and T1D in Finland and

Estonia. We also elucidated microbial changes preceding T1D diagnosis,

and in connection to recurrent antibiotic treatments in infancy. With re-

gards to the adult microbiome, we found signals in the gut microbiome of

healthy Dutch adults corresponding to various intrinsic and extrinsic fac-

tors, most significantly chromogranin A. We also showed that FMT from

healthy donors in active CD is safe and well-tolerated. Taken together

this thesis expands the current understanding of the human gut micro-

biome in infancy and adulthood, and contributes novel mechanistic un-

derstanding in microbiome-host interactions in autoimmunity.

In Publication I, we found differences in the abundance of HMO degrad-

ing Bacteroides and Bifidobacterium species in the infant gut microbiome

between Finnish and Estonian versus Russian Karelian infants (Figure

5.1). We also identified LPS biosynthesis as one of the largest functional

differences between the populations, suggesting that the microbiome of

Finnish and Estonian infants produced more LPS. By following up this

pathway in mechanistic and structural experiments, we found out that

LPS produced by different bacteria in the infant microbiota could either

stimulate or actively inhibit TLP4, NF-κB activation, and endotoxin toler-

ance. This difference is most likely driven by the difference of the number

acyl chains in the lipid A component of LPS. Importantly, we showed that
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Figure 5.1. Graphical summary of Publication I: Human milk oligosaccharides can be
metabolized by different prevalent microbes in Russia (primarily Bifidobac-
terium species) versus Finland and Estonia (primarily Bacteroides species).
Potentially as a result of these population differences, Bacteroides-derived
lipopolysaccharide (LPS) constitutes the major portion of LPS produced by
microbes in Finnish and Estonian infants, whereas LPS in Russian infants
is mostly derived from E. coli. Bacteroides-derived LPS is of an immunoin-
hibitory subtype, thus leading to differential immune education by means of
endotoxin tolerance or other routes.

injections of non-immunogenic subtype of LPS from B. dorei did not pro-

tect NOD mice from T1D, whereas immunogenic LPS from E. coli both

decreased the incidence of T1D and was able to elicit endotoxin tolerance

in vivo in NOD mice. These results suggest that the immune activation

triggered by the gut microbiome derived LPS is determined by the nature

and composition of different subtypes of LPS rather than the amount of

LPS alone.

In Publication II, we found a marked drop in α-diversity in infants who

progressed to T1D in comparison to infants who seroconverted but did

not progress to T1D and controls with no disease or T1D specific AABs.

This shift occurred prior to the onset of the disease but after seroconver-

sion and was accompanied by spikes in inflammation-favoring organisms,

such as Ruminococcus gnavus and Streptococcus infantarius. In Publi-
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cation III, we compared infants undergoing recurrent antibiotics treat-

ments (9 or more treatments per infant) with infants with no antibiotic

treatments during the first three years of life and saw a reduction in

microbial diversity and increase in AR genes in connection to antibiotic

treatments. In this study, we also noticed that 20 % of the children born

vaginally lacked Bacteroides species in the first 6 to 18 months of life.

This low-Bacteroides signature is known to be typical for infant born by

caesarean section (Dominguez-Bello et al., 2010b; Jakobsson et al., 2014)

and there are also reports arguing that this is a typical profile in infancy

(Arrieta et al., 2014). Despite our extensive search for a clinical variable

that would explain this behavior, we were not able to find any explaining

variable(s) for the low-Bacteroides group.

Understanding the microbial mechanisms that influence the develop-

ment of autoimmunity and allergic sensitization is necessary for the suc-

cess of efforts to manipulate bacterial communities for prophylactic and

therapeutic purposes. Though our studies concerning the DIABIMMUNE

cohort did not address therapy, our results entice speculation that early

colonization and engraftment by certain Bifidobacterium species may lower

the load of Bacteroides and other tetra-acylated-LPS-producing species.

This hypothesis is supported by a recent study (Uusitalo et al., 2016)

suggesting that early probiotic administration, consisting of mostly Bi-

fidobacterium and Lactobacillus species, may reduce the risk of islet au-

toimmunity in children with genetic risk to T1D. The exact environmen-

tal factors that would initially favor a colonization by the beneficial Bi-

fidobacterium species in Russia remain to be assessed, but may reflect

biodiversity differences at the macroscopic and microbial levels in these

regions (von Hertzen et al., 2015). Indeed, one hypothesis suggests that

antibiotic administration leads to loss of commensal microbes, especially

taxa with low relative abundance (Blaser, 2016). This effect is cumulative

across generations due to the fact that we inherit our microbiome largely

from our mother. Indeed, in the DIABIMMUNE cohort, Finnish families

reported roughly seven times more antibiotic courses per children during

the first three years of life compared to Russian families (average 3.42 ver-

sus 0.46 courses per child during the first three years in Finland versus

Russia).

Interestingly, in Publication II we identified Dialister invisus as being

absent in infants who progressed to T1D, suggesting that it might confer

disease protection. In the cohort of Publication I, D. invisus was highly
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abundant in seven Russian subjects after the first year, but the corre-

sponding difference between the countries was not statistically signifi-

cant. Notably, D. invisus is a member of the ill-defined Negativicutes

class, whose cell wall composition is atypical and poorly characterized.

Indeed, we were unsuccessful in purifying LPS from our D. invisus strain

and could not determine whether this strain produces LPS at all. There-

fore, additional investigations are necessary to determine the exact mech-

anism of action underlying potential disease protection of D. invisus.

Altogether, Publications I–III expanded the current understanding of

the developing infant gut microbiome in many ways. They extended the

view that the adult gut microbiome has high inter-individual and inter-

regional variation. This was supported by the marked differences between

Russians and others in Publication I, and differences in early Bacteroides

abundance in Publication III. The microbiome data generated in DIA-

BIMMUNE are publicly available through DIABIMMUNE microbiome

website1. These data—3430 16S sequencing and 1149 WMS sequencing

samples from 294 infants—will hopefully enable testing many other exist-

ing hypothesis on the infant gut microbiome and will hopefully facilitate

many more interesting discoveries.

Publication I–III earned a lot of media attention2 and this has spurred

public discussion about the hygiene hypothesis and its implications in par-

enting. While this thesis does not fully explain the hygiene hypothesis or

microbial components of T1D pathogenesis, it has provided an opportu-

nity to remind parents, for example, about the side effects of unnecessary

antibiotic courses. Many reporters have also educated the public about

the benefits of a healthy and diverse gut microbiome; the idea that not

all microbes are bad. This is an important counter force to the increasing

use of antimicrobial products which may be harmful to our commensal

microbiome and may also facilitate resistant strains.

Our analysis in Publication I followed a generalizable discovery and

validation process (Figure 5.2). We computationally quantified metabolic

pathways in the microbial communities and identified pathways with dif-

ferential abundance between the phenotypically distinct populations in

our study. We followed by assigning these functions to specific microbes

and ultimately identified structural differences within the products of

these pathways (e.g. LPS) that induced distinct immune responses in

1https://pubs.broadinstitute.org/diabimmune/
2See https://cell.altmetric.com/details/7059017
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Figure 5.2. Generalizeable analysis workflow highlighting important steps in metage-
nomic data analysis and mechanistic experiments in Publication I.

vitro. Similar process can be used to identify and characterize micro-

bial products with potential interactions with the host immune system

in any study setting. In the DIABIMMUNE study population, there were

many other functional differences between the countries, such as glycol-

ysis and iron uptake, which may deserve further mechanistic investiga-

tions of their own.

WMS sequencing study in LifeLines DEEP revealed a lengthy list of as-

sociations between the gut microbiome and various intrinsic, environmen-

tal, dietary and medication parameters, and disease phenotypes. Even

though 90 % of these associations could be replicated using 16S sequenc-

ing data generated in Fu et al. (2015), most of these associations need to

be validated and followed up in new studies to understand their signifi-

cance and possible causality in more detail. Most importantly, this study

suggested fecal CgA as a novel biomarker for gut health. Further studies

will show whether CgA can be used as a proxy for gut inflammation or

microbial dysbiosis in a similar manner as, for example, fecal calprotectin

(Konikoff and Denson, 2006).

In Publication V, we reported the impact of colonoscopic FMT on mi-
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crobial and immunological parameters in patients with active CD. This

study suggested that FMT for CD is safe and may provide symptomatic

improvement in some patients potentially by increasing the overall di-

versity of the colonic microbiome. However, randomized controlled trials

of FMT are needed to assess the clinical efficacy of FMT in CD and to

identify components of the donor microbiota that can suppress potentially

pathogenic bacterial families in the patients. This study complements

previous, partly contradictory studies of FMT in IBD (Moayyedi et al.,

2015; Rossen et al., 2015), and it is yet to be shown whether FMT can be

efficiently and reproducibly used to cure different subtypes of IBD.

This thesis introduced novel methods for analyzing WMS sequencing

data for microbial pathways as well as strain level taxonomic identifica-

tion of microbes. HUMAnN2 analyses combined with downstream quan-

tification of GO terms provides a convenient way of studying microbial

communities at the functional level. These quantification can be improved

in the future by identifying high-specificity genes per metabolic pathway,

rather than using all contributing genes to quantify a pathway. In Pub-

lications I and III, we analyzed the WMS sequencing data using Con-

Strains, and developed novel downstream analyses for these data. We

adapted the concept of heterozygocity from population genetics to mea-

sure within-species diversity on strain level and investigated phylogenetic

relationships between different strains. There are many unexplored av-

enues on strain level analysis and it remains to been seen, for example,

how to best interpret the implications of SNP level differences between

strains.

Current databases utilized and populated by the microbiome researchers

contain tens of thousands of microbial genomes (e.g., NCBI RefSeq) and

tens of millions of protein sequences (e.g., Universal Protein Resource,

UniProt). Regardless, this reference material covers only about 50 %

of the human gut metagenome at most, usually significantly less (Joice

et al., 2014). More is known about the gut microbiome of people with west-

ern lifestyle, whereas the gut microbiomes of isolated, indigenous com-

munities are typically remarkably different from westerners and poorly

covered by existing reference material (Schnorr et al., 2014; Obregon-

Tito et al., 2015). This bias has been previously noted in psychology and

dubbed “WEIRD”, according to the traits that are often overpresented

in scientific studies: Western, educated, industrial, rich and democratic

(Henrich et al., 2010). Portion of the gut metagenome that lays beyond
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our current understanding, the metagenomic “dark matter”, offers plenty

of challenges for both bioinformaticians and microbiologists in years to

come. Below I provide an outlook on how these challenges may be ap-

proached.

A portion of metagenomic reads that cannot be assigned to any known

genomes can still be mapped to known proteins using translated search.

While large proportion of catalogued proteins lack functional annotation,

this offers a data-driven way to prioritize proteins with both high preva-

lence and high abundance in known metagenomes for functional char-

acterization. Recent advances in genome engineering techniques, such as

CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9

(Peters et al., 2016) and chemical synthesis of entire bacterial genomes

(Hutchison et al., 2016), offer multiple ways to study the function of any

given gene by systematic phenotypic analyses.

Assembly-based methods offer many venues to extend our understand-

ing of the dark matter. For example, it may be possible to assign a subset

of tentative proteins to known clades in situations where they occur on

longer contigs with confident taxonomic assignments. Offering benefits

similar to assembly, a few competing sequencing techniques offer similar

benefits by generating significantly longer reads (>10,000 base pairs) com-

pared to Illumina platform. Indeed, Pacific Biosciences (PacBio) is already

the choice of many microbiologists when the aim is to sequence a com-

plete genome of a single organism. Using PacBio sequencing, one can ob-

tain a high quality genome with rudimentary computational processing.

Nanopore sequencing, where DNA is sequenced as it flows through small

pore with a voltage applied across it, is developed by Oxford Nanopore

Technologies. Their sequencing machine called MinION is truly portable

in size (think of an usb-drive), and may revolutionize DNA sequencing,

given that they are able to solve some final technical hurdles (Deamer

et al., 2016).

In addition to sequencing-based studies and computational analysis,

performing experiments on gut strains in the laboratory is essential to

complement the results obtained using computational methods. Major-

ity of the gut microbes are obligate anaerobes, which are challenging to

isolate and cultivate in the laboratory. However, the development of spe-

cific complex media and adequate growth techniques (Browne et al., 2016)

has enabled capturing a great majority of the gut microbial population in

anaerobic chambers. In addition to monocultures, mimicking the gut mi-

59



Discussion

crobial complexity in a bioreactor has shown to be key to the study of

community composition and interdependencies in this elaborate ecosys-

tem (McDonald et al., 2013). Investigators using these techniques in con-

cert with data from large cohort studies are likely to spearhead the gut

microbiome research with new discoveries in the coming years.
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