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ABSTRACT

We describe accurate algorithms for simulating propagated electric activation in three-dimensional
anisotropic cardiac muscle, based on bidomain theory under subthreshold conditions and governed by
a cellular automaton when an action potential is elicited. In a bidomain formulation, we represent the
anisotropic electric properties of cardiac muscle by conductivity tensors G and G, in intracellular and
extracellular domains, separated by a cell membrane with capacitance ¢, per unit area. For an equal
anisotropy ratio (G; = kG.), propagated activation is described by a parabolic reaction-diffusion equa-
tion for the transmembrane potential. For general anisotropies (G; # kG.), the transmembrane and
extracellular potentials need to be solved from a coupled system of parabolic and elliptic partial differ-
ential equations. We show how this full system can be decoupled into one parabolic system of reaction-
diffusion type by introducing the harmonic means of conductivities in the intracellular and extracellular
domains. We also describe an algorithm that accounts for a size of model cells which are larger than the
thickness of the wave front and thus permit the accurate simulation on a macroscopic scale. We found
that the decoupling via the harmonic-mean approximation of bidomain conductivities allows physiologi-
cally accurate simulations of cardiac electric propagation phenomena in a manner that is computationally
tractable.

Keywords: Bidomain model, cellular automata, computer simulation, cardiac electric activation.

INTRODUCTION

Following classical papers of Wiener and Rosenblueth [50] and Moe and co-workers [27], early mod-
els of electric propagation phenomena in the heart used automata with a small number of discrete states
to simulate electrophysiologic behavior of cardiac muscle (see review [12]). Emergence of bidomain
theory for the macroscopic description of cardiac electric properties [11, 34, 41, 48] opened the door to
physiologically accurate simulations of cardiac propagation phenomena, and with the advent of high-
performance computing in the 1990s, anatomically and physiologically realistic whole-heart models
became feasible [1, 4, 20, 36, 54]. However, despite important theoretical and computational advances,
numerical simulations of the propagated electric activation in the anatomically and physiologically accu-
rate models of the whole heart still pose a formidable computational challenge [3, 14, 35]. In general, the
computation time in heart-model simulations depends on the spatial resolution, being approximately pro-
portional to the fourth power of the cell-array dimensions. The state-of-the-art macroscopic description
of cardiac muscle involves a bidomain model with unequal anisotropy ratios in intracellular and extra-
cellular space [13]; this entails solution of coupled systems of partial differential equations, resulting in a
very large sparse-matrix problem [14]. Such bidomain simulations—especially when a detailed descrip-
tion of transmembrane ionic currents is included—require high-performance computing facilities, even
for simple parallelepiped slab geometries [3].

Accordingly, in an attempt to keep the whole-heart simulations tractable, we have adopted a hybrid
approach introduced by Leon and Horacek [23], which has been previously used in blocks of cardiac
muscle [17, 23], an ellipsoidal left ventricle [24, 25], and in an anatomically realistic structure repre-
senting human ventricular myocardium [18, 19, 31]. Computation of the propagated excitation proceeds
rapidly in this model, and captures the essential behavior of advancing wave fronts in the ventricular
myocardium with complex rotational anisotropy. The objective of the present paper is to show how to
account for the unequal anisotropy ratios in cardiac muscle and how to correct for the effects that arise
when the size of the model cells are large in relation to actual cardiomyocytes. Using simulations in a
parallelepiped slab geometry, we show how the simplifying assumptions regarding anisotropic bidomain
conductivities and the size of model cells affect the propagation of electric excitation.



Figure 1. A schematic presentation of a cardiac cell with cylindrical symmetry. The axis g is parallel
with longitudinal fiber direction and the axes & and a, are in the transverse plane perpendicular to fiber
direction.

THEORY

Basic concept of the hybrid model

Leon and Horacek introduced a hybrid model of cardiac muscle [23], with features that combine prop-
erties of continuous and automata models [35]. Their model overcomes the limitations of abrupt state
transitions in automata by permitting subtle summation of electrotonic currents in the anisotropic bido-
main under subthreshold conditions and by incorporating precomputed realistic action potentials (APS)
under trans-threshold conditions. Algorithms of the hybrid model were described in detail by Nenonen
et al. [30], and their brief description appears below under Computational Methods.

Macroscopic continuum model of cardiac muscle

The bidomain theory for macroscopic description of the electric properties of the myocardium rests on
the assumption that the cardiac muscle functions as an electrically conductive syncytium consisting of
two interpenetrating domains, one intracellular () and one extracellular/interstitial (e), separated by the
semi-permeable cell membrane with capacitance g, per unit area [13]. Cardiac muscle is represented
as the anisotropic bidomain region H, which consists of a system of cylindrical myocardial fibers with
anisotropic electric conductivity [7]; H is embedded in a bounded, insulated and isotropic conducting
medium B (body or tissue bath). The fibers are thought to be organized on sheet structures which are
layered between the endo- and epicardial surfaces and together constitute the complex three-dimensional
myocardial fiber architecture [46]. A tissue structure in H is assumed to have longitudinal fiber direction
defined by a unit vector a,(x), that is allowed to vary with position x, and a transverse unit vector & (x)

that is perpendicular to a,;(x). Intracellular and interstitial domains share the same vectors a(x) and

a;(x). The local basis consisting of an orthogonal set (Fig. 1) is chosen at x so that a unit vector a(x)

is parallel with a,(x) and unit vectors a; (x) and ay(x) (and all vectors coplanar with them) are said to
be in the transverse direction at x. In the local basis, the intracellular conductivities along the axes are
ot,ot, ob, and the corresponding interstitial conductivities are of, o¢, and o§. When uniform anisotropy
is assumed, the scalar constants o/ and oé’e are independent of x.

Accurate representation of anatomical anisotropy

For anatomically accurate whole-heart modeling, it is necessary to incorporate the counterclockwise
rotation of fibers within the ventricular wall, which is the determinant of electric anisotropy; moreover,
evaluation of longitudinal and transverse electrotonic currents in an anisotropic bidomain requires that
second-rank tensors G; and G, be used to describe adequately the intracellular and interstitial anisotropic
conductivities [7, 40]. When the local basis is set as in Fig. 1, these tensors are diagonal, G, =

diag(o™®, ob, 04%). Variable fiber direction in the ventricular myocardium can be described in the



global Cartesian coordinate system (e.g., we use one with z axis pointing from the left-ventricular apex
to the root of the aorta), in which the local basis is defined at any x as A = (a(x), a;(x), a;(x)). Tensors
G and G} can be transformed into the global system by rotating the local basis. This is accomplished
by multiplying them on each side by a rotation matrix A: G;. = AG;-*,EAT, where the superscript T
denotes matrix transpose. Thus, in the global coordinate system the conductivity tensors become [7]

Gie = (00 — oi%)asal +0°I, (1)
where I is the identity matrix. Since 07 > o}, according to Eq. 1 an anisotropic medium can be
thought of as having isotropic conductivities o} throughout, plus the conductivity “boost” (o}® — o})
along the fiber direction.

In addition to conductivity tensors G; and G, we will use a conductivity tensor G, = G; + G, for
the composite medium of the bulk cardiac muscle, a conductivity tensor G = kG;/(k+1) = G./(k+1)
in the bidomain under condition of equal anisotropy ratio (G. = kG;) [34], and a conductivity tensor
with harmonic mean values o}, = o .05 /(0 , + 0f )

G" = Adiag (o7, 07, 0f) A 2)

in the bidomain under condition of unequal anisotropy ratio (G, # kG;) [5].

Electric potential distribution and current flow

Electric potential and current density are defined in H as macroscopic quantities, which may be consid-
ered to be averages over small volumes which are, nevertheless, still encompassing many cardiomy-
ocytes. The intracellular and interstitial current densities are defined as J; = —G;V¢; and J. =
—G. Ve in H, respectively. Here ¢; and ¢, are the electric potentials in the intracellular and inter-
stitial domains. The transmembrane potential is defined in H as v,, = ¢; — ¢.. The total macroscopic
current density is [11]1J = J; + J. = —G;Vp; — G .V ..

The associated volume-conductor problem can be treated as a quasi-static one [33]. Under this
assumption, the conservation law requires that V - J = 0. Then it can be shown that [11]

J= —Ginm - vad)e . (3)

The first term in Eq. 3 is driven by the electrochemical generators in the cardiomyocytes, while the
second term represents passive return currents in the tissue. Conservation of J leads directly to a partial
differential equation in ¢., with a source term that involves the gradient of the transmembrane potential

Um

V-GV =—V -GV, . (4)

Thus, the distribution of the interstitial potential, ¢, is related by Eq. 4 to the current sources. Equation 4
suggests that H can be regarded as a composite medium characterized by the bulk conductivity tensor
Gy, in which there is a distributed impressed current density (a current dipole moment per unit volume),
defined by the term J* = —G;V,, [33].

From cable theory [21], we can obtain another partial differential equation that relates the spatial
distribution of interstitial potential and the membrane dynamics [7]:

v ) . .
cma—;" + o0 (Um) — fapp = =V - GV I H . (5)
Here ¢, = XCh, tion = Xdions tapp = Xlapp, Where x is the membrane surface area per unit volume
of the tissue (surface-to-volume ratio), C,, is the membrane capacitance per unit area of the membrane
surface, I;,, is the ionic current per unit area of the membrane surface, and I, represents an applied
current stimulus to start the activation. (To make the equations more transparent, we will hereafter drop



the applied-current term.) Thus we have in H a system consisting of a nonlinear parabolic equation
(Eqg. 5) in v,,, coupled with an elliptic equation (Eqg. 4) in ¢. In extracardiac region B the electric
potential ¢, obeys the Laplace equation.

The systems in H and B are connected by the boundary conditions at the interface. Let the closed
surface Sy be a boundary separating bidomain region H and surrounding volume conductor B, and let
the closed surface Sp bound region B; n will denote the unit outward normal to Sy and Sg. Since the
potential must be continuous at each boundary and the normal component of current must be continuous
across each boundary,

$o = ¢e, M-0,Vdo =n-(GyVo. +G;Vuy,) onSy (6)
n-o,Vé, =0 onSg. )

Here o, is the scalar conductivity in B. The bidomain system in H and the passive volume conductor B
are connected via the transmission conditions on the boundary Sy (Eg. 6). Since the sources in H are
related to the presence of the intracellular medium, which is absent in B, we may further assume that
n- G;Vu, =0o0n Sy [7].

Under the condition of equal anisotropy ratio [34]—which requires that G, = kG;, where k is a
scalar constant—Eg. 5 yields the cable equation of electrophysiology [23] in the same form as in the
monodomain approximation (with grounded interstitial domain, i.e., ¢ = 0in H):

. vk
"ot k+1
Thus, instead of the coupled partial differential equation system, we need only solve Eqg. 8; all terms are

in units of electric current (charge per time). This equation can be rewritten to show explicitly the rate of
change of transmembrane potential (voltage per time):

V - GV — tion(vm) - (8)

ag—;n =V D'V, — iion(vm)/cm - 9)

The first contribution to dv,,/0t comes from nearby cells and it is determined from the Laplacian of the
transmembrane potential calculated in the local basis of the electrotonic diffusion tensor (in units of area
per time), D' = kG;/(k + 1)c,, [52, 53]. The second contribution is due to local transmembrane ionic
currents.

Although the monodomain approximation is deemed to be adequate for simulating mere propagation
(in contrast to extracellular electrical stimulation), for some applications, Eg. 9 might be an oversim-
plification. Real cardiac tissue has two distinguishable domains with different anisotropy ratios (with
the intracellular conductivity ratio 3- to 6-fold greater than the interstitial one [40]). Thus, we need to
consider the bidomain model which incorporates the distinctness of intracellular and extracellular do-
mains [28, 29, 39]. Recently, Clements et al. [5] proposed a way to decouple the parabolic equation,
Eqg. 5, and the elliptic equation, Eq. 4, into a single equation without sacrificing the realistic conductivity
characteristics of the bidomain:

ov .
Cma—;n -V- G"va = _Zion(vm) +

e{V - (A diag(o} + 0§,0,0)AT) V¢, + V- (A diag(c?,0,0)A7)Vou,}, (10)

where G" is the harmonic mean conductivity tensor given in Eq. 2. The dimensionless decoupling factor
€ is given by . .
oy0f — ojoy
eziete itée, (11)
(o} + 07) (o} + o7)

and satisfies ¢ < 1 for all possible values of the parameters 02? (Fig. 2). For weak coupling, Eq. 10

reduces to P
% =V - D"V — iion(Um)/Cm » (12)
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Figure 2: The decoupling factor. The factor e according to Eqg. 11 is represented as isocontour lines in
terms of v = o} /of and u = o /o§. The dots (S1-S4) refer to the parameter values of the simulations
described in Fig. 5.

where the electrotonic diffusion tensor is defined from the Eq. 2 as D' = G" /¢,,,. This approximation is
expected to produce nearly the same propagation for v,, as the coupled system of Egs. 4 and 5, without
a need to solve the large sparse system for ¢, at every time step.

COMPUTATIONAL METHODS
Algorithms of the hybrid model

The hybrid model was described in detail in Nenonen et al. [30]. Briefly, it is defined as a cellular au-
tomaton [2, 47] consisting of n interconnected “cells” (cubes with side &), each of which is characterized
by a type (e.g., Purkinje, endocardial, epicardial, M-cell) and a fiber direction. The time domain is also
discretized, and at each time instant each cell takes on an integer value that defines its state. The cell
can assume one of the four possible macrostates. There are 16 possible macrostate transitions (including
identity transformations) among four macrostates, but physiological constraints reduce these transitions
to 11. The model obeys a continuous reaction-diffusion partial differential equation for cells in excita-
tory state (below a threshold potential). As soon as the cell reaches a threshold potential, its behavior
is ruled by an automaton; initially, the cell switches to its depolarizing state, with an upstroke velocity
of the AP determined from the cell’s previous history and adjusted by using a directional bulk factor
(described further below); when the cell reaches a peak transmembrane potential, the automaton sets a
predetermined interval for an AP duration with a predefined function representing an AP shape and the
cell passes through refractory states. As it repolarizes below the threshold potential, it reverts to its ex-
citatory state and the reaction-diffusion equation rules again. To reduce computational time early in the
simulation, the quiescent state is initially assigned to all cells, until they are stimulated externally or until
they receive electrotonic current from neighboring cells; under such conditions the cell’s state switches
from quiescent to excitatory.

The basic algorithm of a hybrid automaton, simplified from the original description by Nenonen et
al. [30], is outlined in Table 1. There are only three state variables in the basic hybrid model: V' (i, j, k),



TABLE 1. Algorithm of Hybrid Automaton Model

For eachtime t = t + dt:
For each cell(i, 7, k)
(1) Choose new state:

If (nstat = 1 and V* > 0) nstat = 2

If (nstat =2and V > Vi) nstat = 3; nclock = APD/dt

If (nstat = 3and V' > Vipax) nstat = 4; V = Vinax

If (nstat = 4 and nclock = 0) nstat = 2; nclock = 0,V = Viest

(2) Calculate electrotonic current:

Evaluate Vi, V5 and V,, for Laplacian

Set stimulus current I, (optional)

dV/dt = axVix + ayVyy + a, Vo, + Tion + Lapp
(3) Update cells:

If (nstat = 1) nclock = nclock + 1

If (nstat = 2) V =V + (dV/dt)dt (electrotonic);
nclock = nclock + 1

If (nstat = 3) V =V + Bdt (linear upstroke);
nclock = nclock — 1

If (nstat = 4) V = f(nclock, Vinax) (AP shape);
nclock = nclock — 1

Features:

(1) APD = a+ (b — a)[1 — exp(—nclock/m)]  transition of state 3 to state 4

(2) Vin = ¢ + d exp[—(nclock — ARP) /1] transition of state 2 to state 3

(3) Vinax = h[1 — exp(—nclock [ T3)] transition of state 2 to state 3

(4) Liopn = —gV (ohmic) state 2 (subthreshold)

(5) nclock = nclock — plapp state 4 if stimulus on

V', transmembrane potential of any of cell’s neighbors; nstat = 1, quiescent state; nstat = 2, excitatory state;
nstat = 3, depolarizing state; nstat = 4, refractory state.

nstat(i, j, k), and nclock(i, 7, k). As with all models employing synchronous updating, dV (i, j, k) /dt
must also be stored for time stepping. Some optional features are added in Table 1 to the basic model
to show how its physiological utility can be expanded. Restitution of AP (AP duration as a function
of the previous diastolic interval) can be implemented as an exponential function [26], but requires that
APD(3, 7, k) for all cells be stored. The threshold potential V{, and the peak potential V;,ax can be time
dependent, in which case nclock mimics recovery of the sodium channel. A background current can
be added to electrotonic interactions in the excitatory state. External stimulation can force prolongation
of the AP by resetting the cell clock back an amount depending on stimulus strength. These added
features permit simulations of AP prolongation, decremental conduction, and unidirectional block with
an external stimulus or shock.

Calculation of electrotonic diffusion term

In the cable equation (Egs. 9 or 12), the rate of change of local transmembrane potential, dv,/0t, is
a sum of contributions from electrotonic interactions generated by the spatial gradient of w,, and from
local transmembrane ionic currents. The former contribution is proportional (after appropriate coordinate
transformation) to the divergence of the gradient of ,,, the Laplacian. In reaction-diffusion systems, the
coefficient associated with the Laplacian is called a diffusion coefficient D and it has units of area per
time. The electrotonic diffusion tensor with dimension of area per time in Egs. 9 or 12 is the conductivity
tensor divided by membrane capacitance per unit area, D = G/xG,, [52].

We will demonstrate here in detail how the terms for electrotonic interaction of the form V - GV¢
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(where G = G, G") are computed in our discrete model. The purpose of this detailed exposition is to
demonstrate the role of the coordinate transformations, which add the extra terms to the Laplacian of the
scalar function ¢. In global Cartesian coordinates, in which the local basis is specified by azimuth and
colatitude angles ¢ and @, respectively, the conductivity tensor can be written as [17]

o_ysin®fcos’ ¢ + 0,  op_;sin®fsingcosg o sinb cosf cos p
G=| o, sin®fsinpcosp oy ;sin?@sin’p +o0; o0;_;sinfcosfsing |, (13)
07— sinf cosfcos 07—t sinf cos Osin @ o1_4 cos? 0 + oy

where we have used the symbol o;_; = o; — o4, and assumed a cylindrical symmetry with transverse
conductivity o;. In the computation of the electrotonic diffusion term in Eqgs. 9 and 12, the first step is
to evaluate the total electrotonic current. Matrix G' can be written as a sum of the general conductivity
matrix and the longitudinal “boost” matrix:

99
gx
GV¢ = od| 57 |+
99
0z
sin? @ cos? ¢ sin? fsin g cos p  sin @ cos O cos @ 3
+ o, | sin?@singpcosgp sin? fsin ¢ sin @ cos # sin <Z> . (14)
sinfcosfcosyp  sinf cosfsinp cos® 6 gf

The whole electrotonic diffusion term is next evaluated as the divergence of the electrotonic current
field (Eq. 15 below) divided by the capacitance per unit area, g,,.

V-GV$ = <82¢ ¢ 82¢>

Ox? +8y +8z
oy? 022

9%¢ 9%¢
220y +251n9c0s0cos<pax8z

. 0? . . 0? 0?
+ o4 <sm2 6 cos? cpa—;f + sin? 6 sin? cp—¢ + cos? 06—

4+ 2sin?@sinpcosgp

2
+ 25in0cos€sin<pa¢ . (15)
0yoz

Alternative calculation of the divergence of electrotonic currents

The terms of the form V - GV ¢ (where G = G', G") can be effectively evaluated by surface integration
over an arbitrary small volume, using the Gauss identity

/ V.GV dv— 7( GV - d5. (16)
v S
The differential GV ¢ - dS can be written as
7{ GV -dS = 7{ 02 Vb - iidS, (17)
S S

where 4 is the unit vector from the center of the volume to the surface point, and g, is the conductivity
associated with the direction of the surface normal. The conductivity g, is given by the expression

sin? 0 cos? @ sin? @sin pcos ¢ sinf cos O cos @
On = o+ 04 sin? 0 sin ¢ cos @ sin? fsin? sinfcosfsing || -ud
sinf cos@cosy  sinfcosfsinp cos? 6
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sin? 0 cos? ¢ uy sin? @ sin ¢ cos @ Uy sinf cosfcos ¢ u,

= o;+o0,_; | sin?@singcosy u, sin? 0 sin? ¢ Uy sinfcosfsinpu, |- -u
sinf cos @ cos p u;  sinf cos O sin p u, cos® 0 u,
= o1+ al,t(sin2 6 cos? ¢ ui + sin? @sin® ¢ “2 + cos? 0 uz
+25sin® #sin ¢ cos ¢ Uz Uy + 25in 6 cos O cos ¢ ugu, + 2siné cos §sin ¢ uyu,)
= o0y + oy_(sinf cos p u, +sinfsin ¢ u, —l—cos@uz)2
= oy +o(d- @), (18)

where & is the fiber direction at the center.

Mean values of variables for macroscopic model cells

When the cable equation (Egs. 9 or 12) is solved in the discretized model, the relation between the ac-
tivation wave front thickness and the model’s cell-to-cell spacing h has to be considered. A maximum
rate of rise of transmembrane potential, Vinax, in human cardiomyocytes [43] is steeper than what a
coarse-grained model can simulate (because each model cell typically encompasses hundreds or thou-
sands of cardiomyocytes within its volume 4?). Therefore, to represent for computational purposes the
mean macroscopic values of quantities required for propagating the activation—namely, the slope of the
AP upstroke during automaton’s suprathreshold depolarizing state and the gradient of transmembrane
potential during subthreshold excitatory state—we have introduced a directional bulk factor B, which
was derived under the following simplifying assumptions.

We assumed that a cubic model cell, occupying a volume %, is uniformly anisotropic with fiber
direction defined by the unit vector a,; we further assumed that the propagating activation transits the
cell as a plane wave front defined by its unit normal i, which makes an angle a with the fiber direction,
and it spreads with constant velocity . Under these assumptions, the bulk factor can be calculated as a
ratio of model cells’ spacing h and the thickness of the activation wave front, which is estimated from the
directional conduction velocity, 49, and the direction-dependent risetime of the AP (Vipax — Vin)/ Viax,

thus,
h

B— — (19)
ﬁ(vmax - ‘/th)/vmax

Since the activation wave front propagating across model cell only occupies a fraction 1/B of the cell’s
size, the upstroke of the model cell’s mean AP lasts on average B-times longer than the depolarization
of one cardiomyocyte from V;, t0 Vi,ax (because the relatively thin wave front must transit through
the relatively thick model cell). Consequently, the rate of depolarization of each model cell during
the depolarizing state of the automaton must be scaled to Vy,ax /(B + 1). In the same vein, since the
thickness of the wave front propagating across the model cell is a fraction 1/B of the cell’s size, the
computed gradient of transmembrane potential is reduced by a factor of 1/B with respect to its true
magnitude, and it has to be multiplied by B to obtain a correct mean value over the model cell’s volume.
The propagation velocity, ¢, depends in the anisotropic cardiac muscle on the direction of propa-
gation; in addition, we also assume (departing from the classical bidomain theory) thatV;,. depends
on fiber direction. Consequently, we must calculate the bulk factor dynamically, during the course of
simulation. This is done by calculating first a unit normal to the wave-front surface from the gradient
of transmembrane potential and then evaluating the angle « between local longitudinal fiber direction
a, and the wave-front’s normal i from the dot product a, - n. Associated with the longitudinal fiber
direction is a nominal value of propagation velocity ¢, (Table 2); a propagation velocity in the direction

1n continuous bidomain theory [52], it is assumed that the local activation risetime is the same in all directions; however,
Spach and Barr [43, 45] have shown that this assumption is not valid due to discontinuous cardiac propagation on micro-
scopic scale. Because the depolarizing phase (AP upstroke) is managed in our hybrid model by a cellular automaton, we can
algorithmically adjust directional variables so as to fit the experimentally observed structural complexities of cardiac tissue.
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TABLE 2. Nominal parameters of the hybrid model

Parameter Symbol  Value Unit  Reference

Size of model cells h 0.05 cm

Surface-to-volume ratio* X 2200 cm™!

Specific membrane capacitance Cm 1.0  pFlcm?

Maximum duv,y, /dt Viaze 1200 Vs [44]
Vinazy  160.0 Vs [44]

Resting potential Viest:  —83.0 mV [44]

Activation threshold Vin —60.8 mvV [37]

Longitudinal propagation veloc- g, 0.7 m/s [37]

ity

Simulation time step At 10 1S

Longitudinal bulk factor By 1.07 -

Transverse bulk factor * B; 3.33 -

*x corresponds to 100-um long cylindrical cells with 10-um radius, x = 2(r + 1) /rl
**By = (0.05cm x 120.0mV /ms)/(0.07cm/ms x 80mV) = 1.07 (Eq. 19)
***By = (0.05cm x 160.0mV /ms)/(0.03cm/ms x 80mV) = 3.33 (Eq. 19)

transverse to fiber axis, ¥, can be estimated—under the assumptions stated above—as 9 = Jp\Joyfoy.
(Note that in the bidomain model, harmonic mean conductivities o' and o}/ can be used.) Thus, if the
activation isochrones are to obey the equation of an ellipse: (z /) (y/ﬁt) = 1, where z = ¥ cos «
and y = 9 sin «, the directional conduction velocity should then be

9 = 1‘}4/\/cos2 a+ (0p/oy) sin? a,

where ¥, oy, and o, are globally defined parameters and the angle « between local fiber direction and
local direction of propagation is evaluated during the course of simulation.

The maximum rate of rise of transmembrane potentlal Vinax, in our model is dependent on fiber
direction according to Spach et al. [44]. We recognize V.. cand Vmax +, associated with longitudinal
and transverse propagation, respectively, as nominal parameters globally assigned to the model (Table 2).
The Viax in the direction that subtends angle « with the local fiber direction is determined analogously
with the expression for directional conduction velocity as

Vmax = ‘max,é/\/cosz a—+ (Vmax,Z/Vmax,t)2 SiIl2 «.

The directionally-dependent bulk factor, determined during the simulation, is then applied in “pack-
aging” the transmembrane potential, v,,, and the transmembrane current, I,,. In particular, the rate
of rise of the model cell’s mean AP is calculated from directional Vi,ay as VmaX/B and electrotonic
transmembrane currents are computed from the values of transmembrane-potential gradients as BV,.

Implementation of the hybrid model

The hybrid model of propagated excitation in the ventricular myocardium has been implemented in
Fortran 95 on a four-processor Unix workstation (IBM RS/6000), and in C language on desktop system
running Windows NT (SGI Visual PC). For a model with realistic ventricular geometry, we minimized
memory usage by allocating space for only those cells that belonged to the myocardial volume. The
data of each cell can be accessed by referring to a cubical address volume that has the dimensions of the

13



model. Furthermore, the addresses of cells in the activation wave front are collected separately into a
smaller table to avoid repeatedly going through the whole address cube.

The values we adopted for physiological constants in the bidomain equations are listed in Tables 2
and 3 [6, 40]. Simulations were run in different slabs of tissue with uniform or rotating (from —45 to
45°) anisotropies. The slab dimensions were 5¢cm x 5 cm x 2 cm, and the spacing of a regular grid was
0.05 cm.

Solution of the full system

Besides equal anisotropy ratio, Eq. 9, and the harmonic mean conductivity approximation, Eq. 12, the full
system consisting of coupled elliptic and parabolic equations Egs. 4 and 5 with the appropriate boundary
conditions 6 and 7 has been solved to provide a “gold-standard” solution for comparison. Even though
the solution is computationally demanding, it can be accomplished by utilizing the sparseness of the
discretized problem.

The coupled equation system is solvable also in the context of our hybrid model as follows:

1. Initially, vy, (¢) = v, att = 0 in all cells, and selecting ¢; = 0, ¢.(t) = —v, att = 0.

2. When an external stimulus is applied at time #, solve v, (tx+1) as a function of ¢, (), applying
the explicit forward method to the parabolic Eq. 5.

3. Substitute the resulting v, (tx1) into the elliptic Eq. 4, and solve for the distribution of ¢ (tx1).
4. Switch to the next time point and repeat the previous two steps.

In the sparse system solution, we used the PESSL library routine PSPGIS, using an iterative algo-
rithm and a smoothly converging variant of the conjugate gradient squared method (Bi-CGSTAB) as a
preconditioner [49]. Iterations were done according to Eq. 15 in Henriquez et al. [14].

The Fortran implementation of the full system was ran on an IBM RS/6000 SP high-performance
computer at the Scientific Computing Ltd., Espoo, Finland (http://www.csc.fi). In solving the sparse
parabolic Eq. 5, we utilized the parallelized ESSL numerical library (http://www.ibm.com/essl.html) and
message passing interface (MPI).

RESULTS

For refinements of the numerical implementation of the hybrid model’s propagation algorithm (namely,
for testing of the bulk factor and various stencils) we used a slab with uniform anisotropy and dimensions
of 50 x 50 x 20 mm (100 x 100 x 40 cells). We first tested the invariance of the propagation algorithm
with respect to the coordinate system. Uniform fiber direction was assigned at three different angles (@,
—45°, and 65°) in the planes of z = const. The AP and the transmembrane current were monitored at 5
locations throughout the simulation. Isochrones depicting 25 ms of simulated activation for these three
different configurations of the slab are shown in Fig. 3. To assess the shape of the isochrones, an ideal
ellipse is plotted along the 25-ms isochrone. The resulting propagation velocity in these simulations
was 9, = 0.7 m/s in the longitudinal direction of fibers, and ¢, = 0.3 m/s in the transverse direction.
The propagation ellipsoids obtained without the bulk factor (Eq. 19) exhibited different shapes; due to
numerical inaccuracies, the ellipses for 45° and 65° fiber angles were fatter’ and those for 0° *slimmer’
than the near-ideal ellipses in Fig. 3.

The membrane potential and the transmembrane current from the electrotonic interaction are shown
in Fig. 4. The AP foot and upstroke are steeper in the direction of propagation. The transition from
bidomain excitation to a cellular automaton at —60 mV is not noticeable, and the AP foot follows an
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Figure 3: Cross-sectional activation isochrones from simulations in uniformly anisotropic slab with fiber
directions of 0°, —45° and 65° in the plane of the cross section. The thicker black line is, in all three
images, the same analytically computed ellipse rotated to correspond to the fiber direction. The circles
indicate the cells, where the transmembrane AP and the transmembrane current were monitored during
simulation. The isochrones are plotted in 5-ms intervals; the slab dimensions are 50 mm or 100 cells in
each direction (rectangular outline).

TABLE 4. Conduction velocities

S1 S2 S3 S4 Unit

Decoupled (Eq. 12)

9y 069 0.70 0.70 0.70 mis
Iy 028 0.26 030 033 mis
de/Vy 246 270 234 213 -
Coupled (Egs. 4 & 5)
oy 069 0.73 0.79 086 mis
Iy 028 026 032 034 mis
Po/ O 246 280 251 257 -

Normalized deviation 1.00 1.04 1.07 1.20

exponential curve (not seen on the plots). In the transmembrane current plots, the ratio of the positive
area under the curve to the negative area is approximately 0.7 for all cells.

Next, we rotated the fibers horizontally on each plane to mimic the architecture in the left ventricle.
In the bottom (‘endocardial’) layer the fiber angle was set to —45 (z=0), in the center (‘intramural’)
layer to 0° (z=20), and in the top (‘epicardial’) layer to 445 (z=40). The propagation was simulated
both using the full system as described above, and using the decoupled parabolic system of reaction-
diffusion type with harmonic means of conductivities in intracellular and extracellular domains (Eq. 12).
An initial stimulus was delivered at the center of the ‘intramural’ layer. The resulting isochrones are
shown in Fig. 5.

Propagation velocities were next estimated from these isochrones by fitting an ellipse on the 25-ms
isochrone in the intramural layer. The ellipses are sketched on top of the isochrones in Fig. 5. The
longitudinal and transversal velocity were evaluated by dividing the distances from the stimulus to the
corresponding edge of the ellipse by the time (Table 4).

DISCUSSION
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Figure 4: Macroscopic “action potentials” and “transmembrane electrotonic currents” of the cells marked
in Fig. 3. The panels (from top to bottom) correspond to fiber directions (7, —45° and 65°, respectively.
These AP and I,,, functions do not represent the recordings that would have been obtained from actual
cardiac tissue; rather, they are time-functions of mean quantities , and I,,, derived by volume- and
time- integration of v, and I,,, over the volume A3 of a given model cell, taking into account variable
slope of the AP as a function of direction of propagation, and the variable velocity of propagation in
different directions.
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Figure 5: Simulated isochrones for propagated activation in cases S1-S4 marked in Fig. 2. The simula-
tion parameter values are given in Tables 2 and 3. Row A in each case denotes to a decoupled parabolic
system of reaction-diffusion type using harmonic n of conductivities in intracellular and extracellular
domains (Eq. 12), while row B refers to a full sy;Ttlem with unequal anisotropy ratios, given by coupled
parabolic and elliptic equations (Egs. 4 and 5) with the appropriate boundary conditions (6 and 7).



TABLE 3. Anisotropic conductivity parameters and directional diffusion coefficients

ST s2  S3  s4 Unit

ol 3.000 3.000 3.000 3.000 mS/cm

ot 0495 0.330 0.330 0.330 mS/cm

o 2.000 2.000 2.000 2.000 mS/cm

of 0330 0.330 0.660 1.320 mS/cm

of =S4 1200 1200 1200 1.200 mS/cm
L7

of = 2% 0198 0165 0220 0.264 mS/cm
t

Jol o 2462 2.697 2335 2.132 -

¢ 0.000 0.100 0.267 0.400 -

D! =0o"/c,,t 0545 0545 0545 0.545 cm?/s

D} =ol/c,t 0.090 0.075 0.100 0.120 cm?/s

oy, harmonic mean conductivities from Eq. 2; Dy, directional diffusion coefficients of the
diffusion tensor D" = A diag (D}, D}, D}}) A.

D!/ should exceed the value of 0.2 cm?/s [52]

1 DY should exceed the value of 0.008 cm?/s [52]

Diffusion coefficient and its value

Winfree [52, 53] emphasized repeatedly the importance of an electrotonic diffusion coefficient D, argu-
ing that everything concerning the spatial pattern of cardiac electric conduction (propagation velocity and
its dependence on curvature, liminal length, threshold for stimulation etc.) depends on this quantity with
dimension involving space in the cable equation (Egs. 9 or 12). Based on the assumption that cardiac
muscle is an anisotropic monodomain represented by longitudinal and transverse intracellular conductiv-
ities (with the extracellular space grounded), he identified tentatively a value of the diffusion coefficient
as being approximately 1.0 cm?/s and concluded that this value “seems to lie securely within the range
required for the assumption of continuous cardiac conduction.” In his review/tutorial [52], Winfree fo-
cussed on the diffusion coefficient “in its simplest incarnation as a single number (or perhaps three: in
longitudinal, transverse, and transmural directions) in monodomain theory, rather than as a tensor in the
more refined bidomain model.” In the present paper, we use an anisotropic bidomain theory with the as-
sumption of axial symmetry of fibers (thus disregarding possible differences in transverse and transmural
conductivities suggested by LeGrice et al. [22]), which requires four conductivity parameters (see Table
3). A simple calculation shows that a monodomain estimate of the electrotonic diffusion coefficient D
is larger than that based on bidomain theory, which is affected by a factor k/(k + 1) under the equal
anisotropy ratio assumption and by a harmonic mean of conductivities under the unequal anisotropy ra-
tio assumption. Calculation based on the value a longitudinal intracellular conductivity of 2.4 mS/cm
(Table 3), surface-to-volume ratio of 2200 cm~!, and a specific capacitance of the membrane 1 pF/cn?

(Table 2) results in a directional electrotonic diffusion coefficient along fibers with a value of 1.09 cn#/s,

in agreement with Winfree’s estimate. However, since a harmonic-mean conductivity in the longitudinal
direction is only 1.2 mS/cm (Table 3), the directional electrotonic diffusion coefficient along fibers in an
anisotropic bidomain becomes 0.55 cm?/s, which is not as “securely” within the range required for the
assumption of continuous cardiac conduction as the previous Winfree’s estimate. This brings us to the
fundamental assumption underlying mathematical modelling of cardiac electric conduction.
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Continuous versus discontinuous conduction

Spach [42] reflected recently on the developments of the past 50 years which have advanced our un-
derstanding of cardiac electric conduction, and cautioned that a continuous conduction theory of elec-
tric propagation phenomena in cardiac muscle does not hold at the microscopic level. This point is
well taken. A bidomain theory, assuming that the heart muscle is a syncytial structure, formulates
all quantities as macroscopic; that suits perfectly our viewpoint, which is macroscopic — aiming at
whole-heart simulations taking into account complex three-dimensional anisotropic myocardial fiber
architecture. Each “cell” of our hybrid model encompasses, at h = 0.05 cm, a very large number
(~3000) of cardiomyocytes. In this context, two separate questions concerning continuous model’s
suitability to describe cardiac conduction arise. The first one is whether the electric propagation phe-
nomena in cardiac muscle—which is inherently discontinuous, with myocytes of 100 xm in length and
20 pm in diameter—can be described credibly by continuous cable equation (Egs. 9 or 12). The sec-
ond question—specifically pertaining to our model—is whether the very same cable equation, when
discretized on a grid with internodal distance, say, h = 0.05 cm, is still adequate for accurately sim-
ulating cardiac propagation phenomena. Winfree [52] shows that the answer to these questions lies
in the value of the directional diffusion coefficient in relation to spacing of cardiomyocytes (or model
cells), and risetime of the action potential (which, in continuous bidomain theory, is assumed to be
the same in all directions). As long as the directional diffusion coefficient “generously” exceeds (cell
spacing)? /(activation risetime) the continuous equation suffices for macroscopic purposes. Thus, along
the fiber direction it is required that D > (0.01 ¢m)?/0.0005 s = 0.2 cm?/s, and in the transverse direc-
tion D > (0.002 ¢cm)?/0.0005 s = 0.008 cm?/s. Although these inequalities are satisfied in our model
(see Table 3), the required values are exceeded by a small margin and thus the answer to the second
question must be only a qualified “yes.” With model parameters such as those listed in Table 3, adequate
precautions have to be taken (such as an incorporation of a “bulk factor” and carefully chosen stencils
described in the Appendix).

Bulk factor

By introducing the locally adjustable bulk factor defined in Eq. 19, we compensate for the macroscopic
size of model cells by performing, in fact, time- and volume-integration of pertinent variables. The bulk
factor takes into account that the activation wave-front’s propagation across a given model cell is affected
not only by anisotropic conductivities (since a directional velocity of propagation depends, under the as-
sumption of uniform anisotropy and planar wave front, on the square root of directional conductivity)
but possibly also by the directionally-dependent value of the membrane capacitance. Spach and col-
leagues observed a directionally-dependent wave front thickness resulting from structural discontinuities
of cardiac muscle, and they showed that the observed differences are compatible with different values of
specific membrane capacitance in different directions; normally, C,, is approximately 1 pF/cm? in the

longitudinal direction, but it appears that it may be only 0.5 pF/cn? in the transverse direction [43].

Values of Vmw,g and Vmw,t given in Table 2 were measured in canine ventricular preparation [44];
values for human cardiac tissue are also available [43], but the latter measurements were obtained in
an atrial preparation, with more pronounced anisotropic properties than in ventricles; values of Vi
obtained in isolated human ventricular myocytes [37] are much higher, because of the lack of loading
effect caused by surrounding tissue.

The directionally-dependent bulk factor, determined during the simulation, is applied in “packaging”
the transmembrane potential, v,,, and the transmembrane current, L,,. This “packaging” method has
been thoroughly validated in the uniformly anisotropic slab. It follows from the one-dimensional cable
equation [15] that the propagation velocity of an AP is proportional to the square root of conductivity.
This relation is also valid for the two- and three-dimensional uniformly anisotropic media under the
assumption of equal anisotropy ratio and for the planar activation wave front [29, 32, 51, 52, 53]. In
the bidomain case, the ratio of propagation velocities can be approximated as a square root of the ratio
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of harmonic mean conductivities defined in Eq. 2. Although the square-root relation for conduction
velocities is generally not valid for general anisotropy cases [52], it can be used in the local basis to
calculate directional bulk factor, provided assumptions of planar wave and uniform anisotropy are locally
satisfied.

A more rigorous definition of the bulk factor would require evaluation of double (volume- and time-)
integrals for the model cell’s volume 4? and the time required for the wave front of a given thickness
(variable with direction of propagation) to transit through the model cell. However, even the simple
approximation of the mean directional quantities based on the presently used estimate of the bulk factor
produces noticeable improvements in the propagation algorithm, as judged by the close approximation
of the ideal ellipsoid in the uniformly anisotropic medium, and by the stability of the algorithm in the
medium with rotational anisotropy resembling transmural rotation of fibers in the ventricular wall.

Previous studies of unequal anisotropy ratio

Previous studies of general anisotropy ratio [9, 14, 16, 38] used fine grids (h ~ 100 pm) in small blocks
of excitable cells. Our hybrid approach is designed for whole-heart simulations and, therefore, has to
accommodate larger grid sizes. For example, Roth [38] and Henriquez et al. [14] solved the elliptic
equation, Eq. 4, using an iterative method, and then substituted the resulting ¢ into

V.-G;Vv, = Cmag—;n + iion(vm) —V- GZ’V¢6 .
Hooke et al. [16] showed that using this transformation, in terms of v,, and ¢., allows one to solve
the latter parabolic PDE using an explicit forward method. Di Cola et al. [9] solved the elliptic PDE by
means of the semidiscrete Galerkin approximation, and the parabolic PDE using a linearization technique
for the reaction term combined with the Crank-Nicholson time-stepping. The above mentioned studies
used the Ebihara-Johnson model [10] to simulate the ionic current dynamics and action potentials.

The isochrones in our simulations with equal and harmonic-mean anisotropy ratios have elliptical
shapes, and the estimated average propagation velocities are in very good agreement with the square-root
relation derived by Muler and Markin [29, 51]. Moreover, the propagation velocities are in agreement
with the velocities observed in isolated human hearts [8]. With the introduction of the bulk factor to take
into account the large cell size, the algorithm could be adjusted to produce correct behavior for the model
cells.

The ellipsoidal activation isochrones in Fig. 3 are identical regardless of the fiber orientation. Thus,
the stencil for the electrotonic source computed from Eq. (17) is not directionally biased. Moreover, the
activation isochrones follow the theoretical ellipsoidal shape closely. The observed propagation speed
fits well with values obtained in other studies, indicating that the surface-to-volume ratio is correct. (The
value of 2200 cm~! was estimated from the typical dimensions of cardiomyocytes observed on electron-
micrographic images.)

Limitations

The model is able to reproduce the foot of the AP as it would have been recorded by an electrode with
diameter h. However, the large inter-cell distance introduces errors in the transmembrane current, as can
be seen from the ratio of positive to negative area under the curve. Theoretically, and in microscopic
recordings, the ratio should be close to one. The large spacing acts as a low-pass filter that widens the
negative deflection and thus increases the negative area.

Spatial conduction is continuous after the modification of the propagation algorithm involving the
bulk factor (Eg. 19). If the effect of bulking is neglegted, the activation appears to ‘jump’ between
cells. When the cell goes into upstroke, it depolarizes very fast, and the neighboring cell detects the v,
change that resembles a step function. With the bulk factor, the average membrane potential is used in
the computation of electrotonic interaction. The effect of this is demonstrated in Fig. 6.
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Figure 6: The application of the bulk constant makes the propagation of the AP spatially continuous. a)
Without taking into account bulking, the AP upstroke due to ionic currents is too fast. The spatial APs
derived from neighboring cells in subthreshold (triangle) and upstroke (square) state do not match. b)
With bulking, the spatial AP is a well-defined continuous function that can be derived from the state of
any active cell in the cell’s neighborhood.

The stability of the simulations was improved significantly by computing the electrotonic source
according to Eq. (17). After this modification, no unstable behavior could be observed.

The results also demonstrate that the same monodomain-type equation of the equal anisotropy ratio
(Eq. 9) can be solved for unequal anisotropies (Eq. 12) at the same computational cost. There is still
ongoing discussion regarding precisely what conductivities should be used.

Conclusions

We have introduced modifications to the bidomain simulation algorithms of the previously developed
hybrid model of the cardiac muscle that account for unequal conductivity ratios of conductivities in intra-
cellular and interstitial domains, and for the relatively large size of the model cells compared to the thick-
ness of the activation wave front. With these modifications, the simulated electrical propagation agrees
with theoretical results, the propagation velocity is of the correct order, and the APs and transmembrane
currents resemble measurements from real tissue. Our model allows simulations of propagated excita-
tion in large and complex anatomical structures, such as the ventriclar myocardium, by assuming general
anisotropy ratio and bypassing detailed modeling of transmembrane ionic currents during the cardiac AP.
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APPENDIX

Computation of partial derivatives

Partial derivatives are estimated as differentials computed in a neighborhood of the center cell. Esti-
mation of higher-order partial derivatives for a function is usually done with a Taylor expansion in the
neighborhood of a central point. (We chose to use 19 cells, including the central cell, from the neigh-
borhood of 3 x 3 cells.) This method regularly yields estimates that are O(#2), but O(h*) estimates are
also easy to construct. In our case, stability of the estimates in iterative computations is more important
than high accuracy, since the period when the cells are interacting is rather short in terms of the number
of timesteps. For this reason, the estimation error does not accumulate, but a stencil must be carefully
chosen to avoid erratic behavior of the propagation algorithm. The stencils for different derivatives are
described below.

The cross derivatives in Eqg. 15 would be easy to evaluate by a square stencil, where the first and third
guadrant receive a weight of 1.0 and the second and fourth a weight of —1.0. However, we found such
simple estimation of cross derivatives inadequate, and thus we considered instead two other candidates
for stencils in an 18-neighbor environment. The first one, a “corner stencil,” used the corners of a 3x3
square and consequently had a spacing 2h. This stencil is a sum of four unit stencils; when these four
stencils are added, all the cells in the middle cancel out. Because we observed instability in the “corner
stencil,” we finally chose to use a diagonally asymmetric stencil, which is constructed by including only
two of the smaller stencils used in the “corner stencil.” This way, we can use 7 of the 9 points available
for the computation, and the stencil has no gaps. Most importantly, the center cell is included in this
stencil with a weight of 2. To prevent overestimation of the cross derivative, the orientation of the stencil
is always chosen so that we get a smaller result of the two possible ones. In other words, the stencil is
aligned to the wave front; this alignment is done as a part of the propagation algorithm.

The second derivatives in Eg. 15 are computed by using a longitudinal stencil of (1,-2,1) at the center
cell. For example, fo»(z,vy,2) = f(x — h,y,2) — 2f(x,y,z) + f(x + h,y, z). Averaging of second
derivatives from neigbouring cells would introduce excessive smoothing.

The Laplacian in Eq. 15 (fz, + fyy + f-2) can be estimated by any totally symmetric and zero-sum
stencil, where the center cell has a negative weight. The most accurate coefficients for computing the
estimate can be calculated by writing the analytical expression for Taylor series expansion up to the sixth
term, and requiring that the O(h?) and O(h?) terms cancel. The resulting coefficients weight the stencil
heavily in the direction of the coordinate axes. On the other hand, a perfectly even weighting would result
in a very stable estimate for the simulations. We chose a method that weights the 6 closest neighbors by
4.0 and the other 12 by 1.0, which yields a central weight of —36.0.

The gradient in Eq. (16) is computed simply as the difference in ¢ divided by the distance between the
cells: Vf = 28, (fx — fo)/dy, where fy is the value at the center and d is the distance between the
elements (i.e., h, hv/2, or hy/3). The weight on the diagonal neighbors and “corners” is thus reduced,
correspondingly, to 1/v/2 and 1/+/3, which improves stability.
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