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Abstract
In this study self-organizing maps (SOM) were utilized for spatiotemporal
analysis and classification of body surface potential mapping (BSPM) data.
Altogether 86 cardiac depolarization (QRS) sequences paced by a catheter in
18 patients were included. Spatial BSPM distributions at every 5 ms over
the QRS complex were first presented to an untrained SOM. The learning
process of the SOM units organized the maps in such a way that similar
BSPMs are represented in particular areas of the SOM network. Thereafter,
time trajectories and distance maps were created on the trained SOM from
sequential maps in a selected paced QRS. The trajectories and distance maps
can be applied as such for the localization of abnormal ventricular activation, as
well as quantitative input for statistical classification. The results indicate that
the method has potential for locating endocardial sites of abnormal ventricular
activation, despite the patient material being too limited to provide a reliable
statistical evaluation of the source localization accuracy.
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1. Introduction

Catheter ablation of ventricular tachyarrhythmia sources is commonly used as an option,
or to complement drug treatment or application of an implantable cardioverter defibrillator
(Stevenson et al 1997). The treatment requires intracardiac mapping and pacing in an
electrophysiological study (EPS) to localize the arrhythmogenic tissue. If the tachycardia
cannot be treated by catheter ablation, the patient usually undergoes arrhythmia surgery
where the results of the localization can be utilized. During the routine EPS, standard
12-lead electrocardiograms (ECGs) are used to guide the catheter to the arrhythmogenic
area by comparing the signal morphology of a paced beat to the clinically verified tachycardia
(Josephson et al 1981). Visualization of the coronary arteries and the catheter’s position is
performed with a fluoroscopic device.

Body surface potential mapping (BSPM) has been applied clinically to the diagnosis of
several cardiac disorders such as myocardial infarction (Kornreich et al 1991), ventricular
arrhythmias (Mitchell et al 1992) and coronary artery disease (Hänninen et al 2001), in
which complementary non-invasive information to the standard 12-lead ECG is needed.
For example, the localization accuracy of ventricular tachycardia sources during endocardial
pace mapping based on the standard 12-lead ECG can be improved by the use of BSPM
(SippensGroenewegen et al 1993, 1994). The localization of arrhythmia sources during
catheterization is usually based on previously recorded databases for supraventricular
(Liebman et al 1991, Nadeau et al 1993) or ventricular arrhythmias (SippensGroenewegen
et al 1990, 1992). In BSPM database localization, the ECGs obtained during arrhythmia are
averaged at each channel over the time interval from Q-wave onset to S-wave offset (QRS
integral) and the resulting figures are plotted as a distribution on the body surface. The database
localization of arrhythmias has also been applied in our patient material (Simelius et al 1996b).

Database matching is based on the assumption that a monomorphic and stable tachycardia
originating from the same area of the heart will produce similar time-dependent potential
distribution patterns on the body surface for every patient. This assumption is not
strictly valid, but the localization accuracy has proved to be sufficient for clinical use
(SippensGroenewegen et al 1993, 1994). On the other hand, the classification accuracy of
the decision trees for standard 12-lead ECG is between 80 and 90% (Josephson et al 1981,
Holt et al 1985, Kuchar et al 1989).

So far, analysis methods for BSPM data during endocardial pace mapping have mainly
focused on the detection of morphological differences of QRS integral maps at various pacing
locations (Abildskov 1989). The integration procedure misses time-dependent features of
the activation process, which can provide additional diagnostic information. Therefore, more
dedicated analysis methods are needed to incorporate the temporal dynamics. We have studied
self-organizing maps for the analysis of high-resolution BSPM data. Initial experiences
with the method were described in conference reports (Simelius et al 1997, Reinhardt et al
1998) in which the results were classified manually. This paper reports more novel signal
processing methods allowing automated classification and aiming at robust localization of
cardiac excitation, such as endocardial origin sites of ventricular tachycardias.

2. Methods and materials

2.1. Body surface potential mapping

The design of our BSPM system design is based on the system developed at the University
of Amsterdam (MettingVanRijn et al 1993). Our BSPM utilizes 123 channels for the ECG
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Figure 1. BSPM electrode positioning on the body surface. The horizontal line depicts the fourth
intercostal space, and the six precordial standard leads are indicated by the filled squares.

recordings (Simelius et al 1996a). The signals are bandpass filtered to 0.16–300 Hz and
sampled with a 1000 Hz sampling rate and 16-bit resolution. The data are transferred optically
from the patient front-end to a PC using direct memory access transfer. The instrumental
noise of the system is less than 1 µVrms. In patient recordings, noise levels of 1.5 µVrms have
been measured. Further system characteristics and performance as well as the protocol for
patient studies have been described elsewhere (Simelius et al 1996b, 1998). The electrodes
are attached on flexible strips with an interelectrode distance of 50 mm (In Vivo Metric
System, Healdsburg, CA). The electrode placement on the body surface is presented in
figure 1.

2.2. Electrophysiological studies

We included in this study 18 patients with ventricular tachyarrhythmias scheduled for catheter
ablation treatment or for an electrophysiological study. The mean age of the patients was
60.5 ± 14.0 years. The patients had no large structural changes in their hearts, although ten
patients had a previous myocardial infarction.

Invasive EPS was performed in all patients using standard quadrupolar 5 French electrodes
(Daig, St Jude Medical, USA) with 10 mm electrode spacing. The patients were in unsedated
postabsorptive state, when they had been off antiarrhythmic agents for more than five half-
lives. Electrode catheter placement, measurements of conduction and refractoriness as well
as induction of ventricular arrhythmias were performed using standard electrophysiological
techniques. Programmed ventricular stimulation was done with up to three extra stimuli from
two ventricular sites using driving cycle lengths of 600 and 400 ms without the application of
isoproterenol.

Left and right ventricular pace mapping was performed using a quadrupolar 7 French
steerable ablation catheter (EP Technologies/Boston Scientific Corp., USA) with 5 mm
electrode spacing according to the principles presented by Josephson et al (1982a). In this
technique, the endocardial surface of the left ventricle is divided into 12 and the right ventricle
into six different pacing sites (Josephson et al 1981). The heart was paced from the tip of the
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Figure 2. (a) Sampling of the paced ventricular beats. Maps at every 5 ms during the selected QRS
are included for the SOM. (b) BSPM activation during ventricular stimulation displayed every
20 ms, denoted by thick ticks in (a).

mapping catheter with a current over the diastolic threshold at a rate close to the documented
tachycardia rate. The 12-lead ECG (CardioLabR, Prucka Engineering, Inc., Houston, TX,
USA) and body surface potential mapping were recorded both during sinus rhythm and pace
mapping. The position of the catheter tip was monitored using biplane fluoroscopy in right
and left anterior oblique projections.

2.3. Sampling of paced maps

Altogether, 86 BSPM recordings were obtained from 16 distinctive pacing sites in 18 patients
during catheter pace mapping. The minimum and maximum number of recordings per
patient were 2 and 13, respectively. From each recording, the isoelectric baseline and three
paced QRS complexes were selected manually. Also automatic baseline detection was tested
(Jokiniemi et al 2003). The selected QRS complexes were then sampled at 5 ms sampling
intervals from the beginning to the end of the depolarization. Figure 2(a) gives an example
of the sampling process for a paced ventricular beat. Based on this procedure, altogether
8346 potential maps were extracted. The data obtained from the 123-channel recordings were
interpolated on a triangulated 3D standard torso with 352 nodes as shown in figure 2(b). The
interpolation algorithm is based on minimizing the surface Laplacian at all nodes of the torso
(Oostendorp et al 1989).

2.4. Self-organizing map

The self-organizing map (SOM) is an artificial neural network architecture based on
unsupervised, competitive learning (Kohonen 1995). The basic SOM maps the input data
space Rn onto a discrete two-dimensional lattice of neurons in a topologically ordered fashion.
For each neuron, a codebook vector mi (dimension Rn) is associated. Each input vector is
compared with the codebook vectors, and the input is mapped to the location of the best
match c. The comparison can be done by, e.g., minimizing the Euclidean distance:

c = arg min
i

‖x − mi‖ (1)
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where x is the input vector. In the learning process the codebook vectors are updated according
to the input vectors as

mi(t + 1) = mi(t) + hci(t)[x(t) − mi(t)] (2)

where t is the learning time step, and hci(t) is the neighbourhood kernel function. All neurons
that belong to the neighbourhood kernel of the winner neuron c are updated according to the
type of kernel. A simple ‘bubble’ kernel is defined as follows: let Nc be a set of neurons
around the winner c. All the neurons in Nc are updated with same weight defined by a learning
rate function α(t):

hci =
{
α(t) if i ∈ Nc

0 if i /∈ Nc.
(3)

Another commonly used kernel, the Gaussian one, is defined as

hci(t) = α(t) · exp

(−‖rc − ri‖2

2σ 2(t)

)
(4)

with

α(t) = α0

(
1 − t

tmax

)
σ(t) = 1 + (r0 − 1)

(
1 − t

tmax

)
. (5)

The parameters α0 and r0 are the initial learning rate and the neighbourhood radius,
respectively. During the learning process, the neighbourhood radius and learning rate are
diminished. The learning process leads to a smoothing effect on the codebook vectors in
the neighbourhood and by continued learning to global ordering of the codebook vectors
(Kohonen et al 1995).

The SOM adaptation process is achieved in four steps:

(a) Setup and initialization: various network parameters are provided for the SOM setup,
such as number of neurons (codebook vectors), neighbourhood topology (rectangular or
hexagonal), neighbourhood radius and learning rate function. The codebook vectors are
then initialized with random data values.

(b) Ordering: the codebook vectors are ordered coarsely according to equation (2). In
ordering phase the initial neighbourhood radius and learning rate are large.

(c) Learning: the codebook vectors are fine-tuned. Initial neighbourhood and learning rate
are smaller than in the ordering phase. The number of learning steps is substantially larger
than the number of ordering steps.

(d) Evaluation of the SOM: after the learning phase, the quality of the SOM is estimated,
e.g., by calculating the quantization error and distortion, defined as ave‖x − mc‖ and∑

hci‖x − mi‖2, respectively. The SOM can also be inspected visually.

In the present study, the predominant BSPM features were extracted by adaptively
projecting the observed BSPM patterns onto a SOM. In the setup of the SOM we used a
two-dimensional array for the network, with a hexagonal arrangement of the neurons. The
number of neurons in the horizontal direction was set to 18 and in the vertical direction to 14,
giving a total number of 252 neurons and codebook vectors for the SOM. In the ordering and
learning phases, the codebook vectors were adaptively modified by subsequently presenting
all measured BSPM patterns to the SOM. The adapted neurons can be viewed as specific
detectors of their respective domains of BSPM patterns—in other words, the SOM can be seen
as a mapping, where each 352-component BSPM pattern is projected to a single point in a
18 × 14 lattice.
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(a) (b)

Figure 3. (a) Quantization error and (b) distortion measure as a function of the training steps. The
vertical scale in (a) refers to the quantization error per channel, and in (b) to distortion measure
multiplied by 10−9.

3. Results

3.1. Training of the self-organizing map

The input data for the SOM comprise BSPM distributions obtained during ventricular pacing
as described above. Every cell on the SOM represents a potential map on the body surface.
All cells together constitute the SOM codebook, where each map is represented as a codebook
vector. In the learning process we estimated the quantization error and distortion. They are
presented in figure 3 as a function of training steps. The distortion measure is better adapted
for large codebooks since it takes into account the neighbourhood function (Kohonen et al
1995). The development of a SOM during the learning process is shown in figure 4. After
random initialization of the reference vectors, self-organization of the map starts and spreads
over the network. The zero BSPM was fixed to the centre of the SOM.

The organization of a fully trained SOM in figure 4(c) shows that the map direction
between neighbouring cells is changing smoothly on the SOM. In all teaching runs, the SOM
organized to a good quality representation of the endocardium, i.e. adjacent sites on the
endocardium mapped to adjacent points on the SOM. Moreover, the fully trained SOM did
not include any meaningless or random maps. Of all teaching runs, the SOM that resulted in
the lowest quantization error of the test set was chosen to be used in the classification.

3.2. Trajectories and distance maps

When a new potential map is presented to the trained SOM, the best matching node is
found. Tracing the best matching nodes one by one for sequential potential maps results in a
trajectory on the SOM. In order to provide data that are suitable for automatic classification,
the trajectories of the paced beats on the SOM were quantified as follows: for each node
of the SOM the shortest distance between the codebook vector associated with that node
and all data vectors of the BSPM sequence was calculated. After logarithmic scaling a
distribution of shortest distances over the SOM is obtained. This distribution is referred to
as the QRS distance map in the following. Two typical trajectories and the corresponding
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(b)

(c)

(a)

Figure 4. SOM development during the training process: (a) a random initialization of the SOM is
followed by (b) an ordering phase using 1000 training steps. (c) The fully trained SOM is obtained
after 100 000 training steps.

distance maps are shown in figure 5. In figure 5(a) the trajectory is somewhat discontinuous
and the distance map contains dark islands with light coloured areas between them. This
results from discontinuous projection of the BSPM patterns onto the SOM; the feature
can be used in both estimating the quality of the SOM mapping and visual classification
of unknown data. The distance maps calculated from QRS sequences of one subject are
presented in figure 6, and some maps of eight subjects in figure 7. From the figures it can
be seen that the distance maps from adjacent pacing sites resemble each other. Also the
distance map resulting from same pacing sites in different subjects are alike. For example,
paced QRS sequence from the right ventricle apex (Josephson site 14) produces in all the
subjects a map that contains small distances (dark colours) in the upper right part of the map.
Physically this means that those QRS sequences contain maps that resemble codebook vectors
in the upper right part of the SOM. The subject no 0021 had an anteroapical myocardial
infarction. This explains partly the almost identical distance maps resulting from all the
apical pacings.
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(a) (b)

Figure 5. QRS trajectory and corresponding distance map of paced ventricular beats from
(a) the left ventricular apex (Josephson site 1), and (b) the right ventricular outflow tract (Josephson
site 17). The red (grey) dots in the trajectories indicate the earliest timepoints in the sequences.
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Figure 6. Calculated distance maps of seven pacing sites in one subject with ventricular
tachycardia.

3.3. Classification—a case study

The distance maps of all paced beats can be used as input for a classifier such as a learning
vector quantization (LVQ) method. In the LVQ algorithm, vector quantization is used to
directly define the class borders according to the nearest-neighbour rule (Kohonen et al 1995).
The accuracy of the LVQ classification depends on the amount of training data, the number of
codebook vectors assigned to each class and on the proper learning rate.

The LVQ codebook learning was done with a jackknifing method: distance maps of one
patient were left out of the training set and used as a test set. The number of subjects and
the localization results for each class are shown in table 1. When all the distance maps were
classified according to the ventricle, where the catheter was, the results were good. Also
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Figure 7. Calculated distance maps of five pacing sites in eight different subjects.

Table 1. Recognition accuracy obtained by LVQ classification of different pacing locations (see
Josephson et al (1981)).

Pacing Number of
location patients Accuracy (%)

Jos1 5 0
Jos2 5 0
Jos3 5 28
Jos5 4 12
Jos6 3 0
Jos7 6 5
Jos9 3 0
Jos11 4 17
Jos14 12 43
Jos17 11 63

LV 9 91
RV 14 83

from classes with many subjects (Josephson sites 14 and 17), the results were encouraging.
However, for the left ventricular pacings the localization accuracy was poor; this results mainly
from the size of the dataset. The same QRS sequences were used for teaching the SOM and
calculating the distance maps that were used as LVQ input. This is not a problem as such,
but the errors due to badly projected data (trajectories with large gaps) tend to grow in further
neural processing.
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4. Discussion

4.1. Advantages of the SOM

QRS integral maps have been utilized in most BSPM studies for localizing infarctions and
arrhythmias. Such maps compress the spatiotemporal information of the whole QRS complex
into one spatial distribution. In contrast, the SOM approach is to our knowledge the first
approach which takes advantage of both the whole spatial distribution and the temporal
development during the QRS. The SOM method also uses data of several QRS sequences,
and can utilize data from patients both with and without myocardial infarctions (MI). In
contrast, QRS integral matching requires separate databases for MI and non-MI patients
(SippensGroenewegen et al 1990, 1992).

The SOM approach is expected to result in an improved and consistent localization
accuracy while also providing more detailed information for the clinician treating the patient.
For example, two different arrhythmia sequences may generate almost identical QRS integral
maps, while they produce distinctly different QRS traces. Therefore, the distance maps are
suitable for using with any classification method.

In the creation of the distance maps from trajectories, a fundamental assumption is made.
Namely, since the directional information of time is lost in the conversion process, it must be
assumed that the activation of the heart cannot produce two different sequences of potential
maps, wherein the only difference is in the order of the maps. In other words, it is assumed
that the arrhythmic activation of the heart cannot propagate so that it produces in reverse
order a similar sequence of maps as another activation. Considering the electrophysiological
properties of cardiac tissue and the generation of the electrocardiogram, this assumption is
very well founded.

The method is fast, and the SOM used for localization can be upgraded easily with new
patient recordings. Our future aim is to obtain for each paced beat a probability distribution
describing the likelihood that it belongs to a particular pacing location. Moreover, the method
performs in a predictable manner for new beats falling between the teaching beats, which is
behaviour similar to that of the QRS integral method (Potse et al 2000).

4.2. Limitations of the study

Our patient data included very few VT beats, and the study was therefore limited to the data
obtained during ventricular pacing. The main limitation is the relatively small number of
patients and pacing sites; especially the number of subjects with structurally normal hearts
paced from both ventricles is inadequate. The problems related to the small training set can be
seen in discontinuous SOM trajectories resulting from some pacing locations in the training
data. For reliable statistical classification, the learning dataset should contain about the same
number of sequences for each pacing class; the dataset of about 15 patients for each class
should improve the results substantially.

The earlier results that were based on manual classification demonstrated the strength
of the SOM approach. The powerful visualization of cardiac activation is a helpful tool
in localization of the arrhythmia sources. However, the current approach where a further
classification step was carried out by another neural network system revealed the weaknesses
of the method. More specifically, it became obvious that the use of SOM alone produces such
a strong compression of the information in the activation sequence that further compression
results in degradation of localization accuracy, especially if the training datasets are not large
enough. Moreover, the loss of detail through the use of distance maps leads to some ambiguity
in the interpretation of the trajectories. As a conclusion, it would perhaps be best to offer both
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the trajectories and the distance maps to the cardiologist for interpretation, along with a library
of trajectories and distance maps representing various arrhythmia sources.

5. Conclusions

We have developed a novel method for non-invasive characterization and classification of
cardiac activation from BSPM data. As compared to QRS integral maps which display only
average spatial information on the whole QRS complex, the SOM-approach uses both spatial
and temporal QRS information. The method is fast and the SOM used for localization can
be upgraded easily. Moreover, the method does not require selection of a single beat but can
utilize a longer tachycardia sequence as input. The results are promising, but further studies
and more patient material are still needed to test the method for clinical BSPM localization
of VT.
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