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Abstract

We introduce a computationally efficient quasi-rigorous method for the analysis of corrugated planar waveguide
structures. The method is based on rigorous diffraction theory of gratings. The computational efficiency is achieved by
using Redheffer’s star product and the so-called binary method for the involution of the transfer matrix. The developed
method enables efficient rigorous analysis of corrugated waveguide structures without any limitations for the corru-
gation depth. Comparison with the thin-film stack method shows that the proposed method gives similar results for
Bragg grating for the fundamental mode when the corrugations are shallow, but the results differ significantly when the
corrugations are deep. Furthermore, the quasi-rigorous method also facilities the analysis of the coupling of light from
the fundamental mode into the higher waveguide modes. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 42.82.E; 42.79.D; 02.70
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1. Introduction

Bragg gratings are widely used in the rapidly
growing field of optical telecommunications. In
general, any perturbation formed as a periodic
corrugation or refractive index modulation in an
optical waveguide serves as a Bragg grating for
some wavelength. Bragg gratings written in a pho-
tosensitive fibers as a periodic refractive index
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variation can be used to make a variety of devices
such as filters, add/drop multiplexers, and disper-
sion compensators [1]. The advantage of the all-
fiber devices is that they have low insertion losses.
However, if cost efficiency, size reduction or sepa-
ration of several wavelength channels is important,
integrated optical Bragg gratings offer an attrac-
tive alternative. Silicon based waveguide technology
eases mass production and enables monolithic
integration of different gratings in almost arbitrary
configurations. Especially in complex systems this
eliminates many interconnections, thus reducing
work load, costs, power losses, and size. Materials
with high refractive index, such as silicon, allow to
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realize integrated optical grating components that
are smaller than their fiber equivalents. In addi-
tion, integrated Bragg gratings offer a couple of
completely new possibilities. First, gratings can be
fabricated as corrugated structures in materials,
which are not photorefractive. Second, other op-
tical devices (couplers etc.), and even electrical
components (modulators, control circuits etc.), can
be monolithically integrated with the gratings.

The propagation of optical modes in perio-
dic corrugated waveguides can be analyzed ac-
curately by using the Floquet-Bloch theory [2,3].
If the depth of the corrugated structure is much
lower than the waveguide thickness, coupled-mode
theory [4,5] is widely used for the analysis of
waveguide gratings. Wang [6] proposed a simple
effective-index/impedance matching technique for
solving the mode-coupling problem. Later Verly
et al. [7,8] derived the effective-index method for
corrugated gratings directly from Maxwell’s equa-
tions. The effective-index method is known to give
results equivalent with coupled-mode theory for
shallow surface corrugations [9]. Effective-index
method is very similar to the methods used to
study reflection and transmission of light from
thin-film stack. This thin-film stack approach
can be implemented in a computationally efficient
form for waveguide gratings by using Rouard’s
method [10], which is a recursive method used
in thin-film coating design. The basic idea of the
Rouard’s method is the replacement of a thin-film
layer characterized by an effective complex re-
flectivity by a single interface having the same
properties. In fact, thin-film stack method is a
numerical method for solving the coupled-mode
equations and it has shown to be in excellent
agreement with the coupled-mode method [10,11].
Coppola et al. have presented analytic approach
[12] for analysis of the effects of errors in grating
period and shape as well as other fabrication
errors, which is an extension of the coupled-mode
theory. The idea of this analytic extension is to
separate the response of the ideal grating and the
response of the errors.

All the methods mentioned above are limited
either by the assumption of infinite grating struc-
ture or by the small-perturbation (shallow struc-
ture) hypothesis. Recently, a rigorous method of

bidirectional mode expansion and propagation
(BEP) [13,14] has been extended for efficient mod-
eling of periodic structures by implementation of
the Floquet theorem [15,16]. The BEP method can
be cast into a consistent implementation of the
mode-matching method for waveguide structures
with strongly corrugated Bragg gratings. Also,
some finite-difference beam propagation methods
have been applied to the analysis of waveguide
gratings [17], but these methods are still compu-
tationally rather inefficient, especially if the wave-
guide grating contains a large number of periods.

In this paper we introduce a computationally
efficient quasi-rigorous method for analyzing cor-
rugated Bragg gratings. It has been developed for
the simulation of silicon-on-insulator (SOI) wave-
guide gratings [18-20], but it is applicable to other
grating structures as well. The method is based
on rigorous diffraction theory of gratings [21] and
it is described in detail in Section 2. The compari-
son between the introduced method and thin-film
stack method is given in Section 3, where we also
demonstrate that the thin-film stack method can-
not predict the reflectance of Bragg gratings with
strong corrugations. The new method can be ap-
plied also to the error analysis of Bragg gratings.
Some results for regular, stitching-type errors are
given in Section 3.

2. Computational model

Vahimaa and Turunen [22] introduced an idea
on how to apply rigorous grating diffraction theory
to the analysis of waveguide gratings (see also Ref.
[23]). A similar method has been used by Lalanne
and Silberstein [24]. This method is highly accurate
but computationally inefficient because the transfer
of fields through the structure must be calculated
sequentially, period by period. In this paper we
describe how the S-matrix transfer algorithm with
the star product [25,26] can be applied to reduce the
computational effort from ~N to ~log, N, where N
is the number of grating periods.

Let us consider the three-dimensional structure
illustrated in Fig. 1. We assume that the ridge
waveguide is etched by an amount / so that J/2
identical periods, where J is an even integer, are
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Fig. 1. Three-dimensional structure of an etched ridge-waveguide grating.

formed. If we assume that the constant width w of
the guiding part is, at least, a few wavelengths, we
may approximate this structure by a two-dimen-
sional structure illustrated in Fig. 2, where ny is
the effective refractive index of the ridge part cal-
culated in the y-direction as described in Ref. [28].
In Fig. 2 we have already assumed that the struc-
ture is periodic, with period D, in the x-direction
to make the use of the grating theory possible. To
minimize the interaction between the fields in ad-
jacent periods the artificial absorbers have to be
added between the periods. The optimal selection
for an absorber would be an optimized Bérenger
layer [29], but in numerical simulations we noticed
that Gaussian absorber, which does not require
optimization, is sufficient. Moreover, the period D
is assumed to be large enough to prevent the eva-
nescent tails of the guided modes from interacting
with the absorbers.

As explained in Ref. [21], the field expression in
the jth layer in the case of TE-polarization is of
the form

2= fj {al, exp [i7/,(z — )]
+ bl exp [ — iy, (z — z41) | } X (x)
(1)

where @/, and b/, are the unknown amplitudes of
the mth mode propagating in the positive and the
negative z-directions, respectively, and 7/, are the

propagation constants of the modes obtained by
solving the eigenvalue equations as explained in
Ref. [21]. Here the function X/(x) represents the
transversal distribution of the mth mode. Applying
the periodicity, X/ (x) may be expanded as a Fou-
rier series

Z , €xp(i2ngx/D), (2)
with the qth Fourier coefficient given by

P, :%/0 X/ (x) exp(—i2ngx/D) dx. (3)

These coefficients P], are actually solved eigen-
vector coefficients from the eigenvalue problems,
see Ref. [21]. In rigorous grating diffraction theory,
the input and output regions are assumed to be
homogeneous materials. However, in our model
for waveguides both the input and output regions
are periodically modulated, and the field expres-
sions in these regions are similar to Eq. (1):

z) = i {ad exp (170z)
+byexp[—ih(z—z)]} X (x)  (4)

in the input region and

o0
E;1(x,z) E 7l exp [i

m=1

T (2 = 2r) [ X, ()

(5)
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Fig. 2. Two-dimensional approximation of the geometry in Fig. 1.

in the output region. We note here that in Eq. (4)
the first term in summation represents incoming
field and the second term represents reflected field.
To solve the mode amplitudes ¢/, and b/, we use
the requirement of the continuity of the electric
field as well as its z-derivative at the boundary
between the layers j and j + 1, which yields

aj+1 a;
=S;|,”7 |, 6
[ b, } j{bjﬂ] ( )
where
S = { P —Pj]l{ PE,  —PiuE;, }
Pl PG| | PLE, Pl By |
(7

The elements of the column vectors a; and b; are
a/ and b/ , respectively. Here I'; and E; are diagonal
matrices with elements 1/ and exp[iy/ (zj+1 — z;)],
respectively, while the elements of the matrix P; are
defined in Eq. (3). Therefore, all the matrices S; can

be formed once the eigenvalue problem of each
layer is solved. One should notice that Eq. (7) is
valid also at z = z; and z = z;, . In the latter case,
however, b,,; = 0.

If only the amplitudes by and a;,, are of inter-
est, one may combine the matrices S; by using
Redheffer’s star product [30] as described by Li
[26]:

a a

Here the star product for 2N x 2N matrices C and
D is defined as

CxD
_ {011 c12] . |:d11 dlz]
C e dy dp
_ |: dy (I- c12d21)71cl] diy +djep(l - d21012)71d22

en(l—dyepn) 'dy 7

©)

o
€1+ endy (I —cpdy) ey
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where c,,, and d,, are N x N submatrices and I is
an unit matrix.

If the structure is periodic so that layers j and
j+2 are identical, we have S;=S,, for j=
1,2, ...,J — 3. Using the associativity of the star
product, we may express Eq. (8) as

[a;]} =Sy [(S1 %Ss) -+ (Sy_3 *S,5)]

«S, 1 *S, [a(’} (10)
0
So*Z(J_Z)/z*SJl*SJ|:‘z)O:|, (11)

where Z = S, * S, and Z" is an involution in terms
of Eq. (9).

Due to the involution the computational effort
may be reduced significantly. However, many dif-
ferent approaches to the evaluation of powers
exist. Probably the most straightforward method
(excluding the direct computation) is known as the
binary method [31]. Because this method is fully
explained in elementary textbooks of computa-
tional mathematics, we discuss it here only briefly.

The loop for calculating C = Z" consists of the
following steps:

1. Initialize: Set C « L. If n =0, output C is the
answer and one terminates the algorithm. Other-
wise, set p«— nand D «— Z.

2. Multiply: If p is odd, set C— D=« C and
p—p—1L

3. Halve p: Set p — p/2. If p = 0, the output is C
and the algorithm is terminated. Otherwise, set
D <— D% D and return to step 2.

This method requires the calculation of no more
than 2log, n + 1 star products and is thus superior
to direct computation, especially with large n. For
example, with n = 29999, as in the examples given
later in this paper, evaluation of only 24 star
products is needed. Of course, three additional
products must be calculated when combining
the. remaining matrices and one more is needed
to form Z. Hence, in this case, a total of 28 star
products is needed. One should notice that, by
using only values n = 2™, where m is an integer, the

number of matrix multiplications can be further
reduced remarkably.

The binary method represented here does not
always give the smallest possible number of mul-
tiplications. However, usually the difference in the
number of calculations between different power-
raising methods is relatively small and the deter-
mination of the best available method is not a
simple task. For extensive discussion of the evalu-
ation of powers with different methods, see Ref.
[32].

3. Analysis and design results

As the first example we consider the back-
reflection efficiency of a SOI waveguide Bragg grat-
ing [20] as a function of the wavelength. We assume
that the waveguide is silicon on silica, with refrac-
tive indices n, = 3.48, n. =1 (air) and n, = 1.46,
respectively. The dimensions of the waveguide and
the grating are as follows: width w = 7 pum, height
G=10 um, g =5 um, period d =220 nm, and
filling factor ¢/d = 0.5; see Figs. 1 and 2 for the
notation. In the two-dimensional approximation
used here, the refractive index of the ridge part can
be replaced by the effective index calculated in the
transverse (y) direction. For the given dimensions
ner ~ 3.4782, i.e., very close to the refractive index
of the core. The analysis is carried out for the TE-
polarization of the ridge waveguide. However, one
should notice that in the selected geometry the ef-
fective index of the ridge part must be calculated
for TM-polarization.

In the following we will compare results of our
quasi-rigorous method with the film-stack method.
The latter is based on the calculation of multiple
reflections and transmissions from a stack of uni-
form homogeneous layers, where the refractive
index of each layer is the effective index of the fun-
damental mode in the corresponding waveguide
cross-section. In the film-stack method the refrac-
tive indices of the both input and output regions
are replaced by the effective index of the unmodu-
lated waveguide. We have implemented our film-
stack method as described in Ref. [33]. The results
of these two methods are shown in Fig. 3 for the
grating of 30000 periods. The reflection peak of
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Fig. 3. Reflectances of waveguide Bragg gratings with three
different etch depths /4, calculated by the method presented here
(solid lines) and by the thin-film stack method (dashed lines).

the fundamental guided mode is predicted very
accurately by the thin-film stack method, but the
efficiency of the modal method is somewhat lower
because of the correctly handled losses. Moreover,
the modal method predicts additional reflection
peaks at shorter wavelengths. These peaks arise
because of wavelength-dependent coupling of
energy from the fundamental mode to higher-
order modes. The wavelength of the reflected
higher-order modes can be solved approximately
from f = (B, + |B.|)/2, where m is the number of
the order and f = 2mnee /A [27].

In addition to the above-considered relatively
shallow structures we calculated reflection spectra
also for strongly corrugated waveguides. As shown
in Fig. 4, the difference between the modal method
and the thin-film stack method is remarkable for
such structures. By comparing Figs. 3 and 4 we
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Fig. 4. Same as Fig. 3, but with deeper etch depths. Note, here
thick line: presented method, thin line: thin-film stack method.

notice that the reflectance peak is shifted towards
lower wavelengths when the etch depth is in-
creased. This phenomenon originates from the fact
that etching alters the average effective index of
the waveguide.

In addition to the calculations mentioned
above, we determined the effect of stitching errors,
which typically occur in fabrication of waveguide
Bragg gratings by electron beam lithography. We
assumed that these errors take place with every
454th period and that they are identical to each
other. In computations we can first construct one
structure with the error and then multiply these
basic blocks together by applying the matrix in-
volution rule. Thus, these regular errors increase
the computational effort only by few matrix mul-
tiplications. The etch depth used in these calcu-
lations was 1.5 um. The results for two different
errors, 4 = —10 nm and 4 = +20 nm (see Fig. 5
for notation), are illustrated in Fig. 6. By com-
paring Figs. 3 and 6 we immediately see that the
reflectance peak of the fundamental guided mode

Fig. 5. Definition of the stitching error 4 used in this article.
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Fig. 6. Same as Fig. 3, but with stitching errors —10 nm (thin
line) and +20 nm (thick line).

is shifted towards either shorter or longer wave-
lengths, depending on the sign of 4.

4. Conclusions

We have presented a computationally efficient
method for the analysis of corrugated waveguide
structures, like Bragg gratings. The efficiency of
the method is based on the possibility to apply the
Redheffer’s star product. By using the star product
it is possible to construct the electromagnetic field
transfer problem in a form of a matrix involution.
This matrix involution is then solved using a so-
called binary method which enables the solution of
matrix involution in a basis of the powers of two.
The approach reduces the computational effort of
the rigorous analysis method to ~log, N, where N
is the number of periods in a Bragg grating. The
extension of the rigorous method for the analysis
of the three-dimensional waveguide structures is
straightforward, but mainly due to the computer
memory limitations, it is not reasonable at this
moment.

In this paper we have shown that the thin-film
stack method gives rather accurate results when
the corrugation of the waveguide is shallow. How-
ever, when the groove depth of the corrugation
exceeds two tenths of the waveguide thickness, the
results given by the thin-film stack method differ
remarkably from the results given by the quasi-
rigorous approach. One of the main benefits of
the new numerical method is that it enables the

analysis of coupling of light from the funda-
mental mode into higher-order modes. We have
shown that this coupling, which occurs at shorter
wavelengths than the fundamental-mode Bragg
reflection, can be very strong. Thus, in wavelength-
division-multiplexing systems this coupling will
determine the free spectral range of the system.
Furthermore, we have demonstrated that the pre-
sented quasi-rigorous method is a suitable tool for
the analysis of regular, stitching type errors.
Method can also be used for the analysis of other
fabrication errors, like undercutting or tilted
sidewalls. In these cases one has to divide a single
period up into thin layers and then proceed as with
the multilayer structure in rigorous diffraction
problems. When the problem is solved for the
single period, the star product and matrix involu-
tion can be applied as described in this paper.

Experimental work on the demonstration of
the results is underway and we expect to publish
characterization results of fabricated Bragg grat-
ings on silicon waveguides elsewhere.
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