A Toolkit for Virtual Reality
Software Development

Investigating Challenges, Developers, and Users

Tuukka M. Takala

Aalto University DOCTORAL
DISSERTATIONS
|

Aalto University publication series
DOCTORAL DISSERTATIONS 6/2017

A Toolkit for Virtual Reality Software
Development

Investigating Challenges, Developers, and Users

Tuukka M. Takala

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) to be defended, with the permission of the
Aalto University School of Science, at a public examination held at
the lecture hall T2 of the school on 27th of January 2017 at noon.

Aalto University
School of Science
Department of Computer Science

Supervising professor

Professor Tapio Takala, Aalto University, Finland

Thesis advisor

Professor Tapio Takala, Aalto University, Finland

Preliminary examiners

Professor Mark Billinghurst, University of South Australia, Australia.
Professor Petri Pulli, University of Oulu, Finland.

Opponent

Professor Ernst Kruijff, Bonn-Rhein-Sieg University of Applied Sciences, Germany

Aalto University publication series
DOCTORAL DISSERTATIONS 6/2017

© Tuukka M. Takala

ISBN 978-952-60-7245-6 (printed)

ISBN 978-952-60-7244-9 (pdf)

ISSN-L 1799-4934

ISSN 1799-4934 (printed)

ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-7244-9

Unigrafia Oy
Helsinki 2017

Finland

441

(/4

697
Printed matter

A,, Aalto University Abstract

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Tuukka M. Takala

Name of the doctoral dissertation

A Toolkit for Virtual Reality Software Development: Investigating Challenges, Developers, and
Users

Publisher School of Science

Unit Department of Computer Science
Series Aalto University publication series DOCTORAL DISSERTATIONS 6/2017
Field of research Virtual Reality

Manuscript submitted 13 June 2016 Date of the defence 27 January 2017
Permission to publish granted (date) 4 November 2016 Language English
[Monograph DX Article dissertation [Essay dissertation
Abstract

Possibilities of virtual reality (VR) technology have gained considerable attention recently due
to technical advances in affordable head-mounted displays. Yet the use of VR technology has
not become mainstream, and there still does not exist a "killer application” for VR. One reason
for this situation could be the inherent difficulty of VR software development.

This thesis investigates challenges specific to VR software development, and explores
methodology for such research. The thesis includes some of the earliest quantitative analysis
on VR software development challenges, identifies the most severe development issues, and
proposes solutions to them. This has implications on how VR software development could be
eased. The analysis is based on data collected from 132 developers of VR application programs,
which forms the backbone of the research.

The thesis introduces RUIS, a software toolkit for facilitating hobbyist innovation by
simplifying the development of VR application programs that rely on immersive displays and
spatial interaction devices. Case studies employing VR application programs created with
RUIS are included, describing different ways how 3D user interfaces can affect the experience
and performance of VR software users.

Methodology for benchmarking VR toolkits is presented, RUIS is contrasted with other
toolkits, and multiple VR application programs created by students with RUIS are juxtaposed.
The results demonstrate the importance of the chosen VR toolkit for the development process
in two ways: 1) by presenting several comparisons that show how different VR toolkits can
significantly affect the experienced development challenges, and 2) by highlighting the
quantifiable distinctions in VR application programs created with different toolkits.

Additionally, this thesis features an extensive survey on the developers of 3DUT application
programs, revealing their demographics, the software and the hardware that they use, and an
overview of the 3DUI application programs that they create. The survey also points out those
development challenges that particularly affect inexperienced developers, and illustrates that
the reuse of high-level 3D user interface features is low. Potential solutions to these issues are
proposed in the thesis.

Keywords virtual reality, 3D user interface, human-computer interaction, spatial user
interaction, software toolkit, software development

ISBN (printed) 978-952-60-7245-6 ISBN (pdf) 978-952-60-7244-9

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942
Location of publisher Helsinki Location of printing Helsinki Year 2017

Pages 166 urn http://urn.fi/URN:ISBN:978-952-60-7244-9

A’, Aalto-yliopisto Tiivistelma

Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekija

Tuukka M. Takala

Vaitoskirjan nimi

Ohjelmistoalusta virtuaalitodellisuussovellusten kehitykseen: Katsaus haasteisiin,
ohjelmistokehittéjiin, ja kayttéjiin

Julkaisija Perustieteiden korkeakoulu
Yksikk6 Tietotekniikan laitos
Sarja Aalto University publication series DOCTORAL DISSERTATIONS 6/2017

Tutkimusala Virtuaalitodellisuus

Kasikirjoituksen pvm 13.06.2016 Vaitéspaiva 27.01.2017
Julkaisuluvan myoéntamispaiva 04.11.2016 Kieli Englanti
[Monografia X Artikkelivaitoskirja [| Esseeviitoskirja
Tiivistelma

Virtuaalitodellisuuden mahdollisuudet ovat viime aikoina saaneet huomattavasti julkisuutta
johtuen teknisisté edistysaskelista edullisten virtuaalilasien saralla.
Virtuaalitodellisuusteknologian kaytto ei ole kuitenkaan yleistynyt laajasti, ja vield ei ole
olemassa virtuaalitodellisuuden ldpimurtosovellusta. Eris syy télle tilanteelle voi olla
virtuaalitodellisuuden ohjelmistokehityksen vaikeus, ja sithen kuuluvat erityisongelmat.

Téassé vaitoskirjatyossa tutkitaan virtuaalitodellisuuden ohjelmistokehitykselle ominaisia
haasteita ja tarkastellaan aiheeseen liittyvad tutkimusmetodologiaa. Vaitoskirja siséltda
ensimmaiisten joukossa tehtya kvantitatiivista analyysia virtuaalitodellisuuden
ohjelmistokehityksen haasteista, identifioi kaikista vaikeimmat ongelmat, ja ehdottaa
ratkaisuja niihin. Tulokset antavat viitteitd siitd miten virtuaalitodellisuuden
ohjelmistokehitysté voi helpottaa. Tehty analyysi perustuu kyselytutkimukseen, johon on
vastannut 132 ohjelmistokehittdjas, mikd muodostaa vaitoskirjatyon kulmakiven.

Viitoskirja esittelee RUIS-ohjelmistoalustan, joka on tarkoitettu edistdméédn
harrastelijakehittdjien innovaatioita yksinkertaistamalla immersiivisti teknologiaa kayttdvien
virtuaalitodellisuussovellusten kehittdmistd. RUIS:lla toteutettujen sovellusten case-
tutkimuksia kdydaén 14pi, kuvaten eri tapoja, joilla kolmiulotteiset kdyttoliittymét voivat
vaikuttaa kdyttdjien kokemuksiin ja suorituskykyyn.

Viitoskirjassa lanseerataan menetelmia virtuaalitodellisuuden ohjelmistoalustojen
vertailemiseksi, RUIS:ia tarkastellaan muihin ohjelmistoalustoihin néhden, ja useita
opiskelijoiden RUIS:1la kehittdmia virtuaalitodellisuussovelluksia verrataan keskenéén.
Saadut tulokset havainnollistavat ohjelmistoalustojen merkityksen
virtuaalitodellisuussovellusten kehitysprosessille kahdella tapaa: 1) esittamélla kuinka
kaytetty ohjelmistoalusta voi vaikuttaa tilastollisesti merkitsevasti kehitystyossé koettuihin
haasteisiin, ja 2) korostamalla kvantitatiivisia eroja virtuaalitodellisuussovelluksissa, jotka on
toteutettu eri ohjelmistoalustoilla.

Lisédksi vaitoskirjatyo sisaltda laajan selvityksen kolmiulotteisia kayttoliittymia hyodyntavien
sovellusten kehittéjistd, paljastaen heidén taustansa, kiytetyt ohjelmistot seké laitteet, ja
yleisndkymaén kehitetyistd sovelluksista. Selvitys tuo ilmi erityisesti kokemattomia
ohjelmistokehittijid vaivaavat haasteet, seké osoittaa ettd korkean abstraktiotason
kolmiulotteisten kayttoliittyméakomponenttien uudelleenkiytté on harvinaista. Naihin
ongelmiin ehdotetaan mahdollisia ratkaisuja.

Avainsanat virtuaalitodellisuus, kolmiulotteiset kdyttoliittymét, HCI, keholliset
kayttoliittymaét, ohjelmistoalustat, ohjelmistokehitys

ISBN (painettu) 978-952-60-7245-6 ISBN (pdf) 978-952-60-7244-9
ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942
Julkaisupaikka Helsinki Painopaikka Helsinki Vuosi 2017

Sivuméaara 166 urn http://urn.fi/URN:ISBN:978-952-60-7244-9

Acknowledgements

The work presented in this thesis is done between 2010 and 2016 in Aalto Uni-
versity. I wish to thank my advisor, Professor Tapio Takala, and colleagues
Klaus Forger, Meeri Mékiridinen, and Roberto Pugliese. I am also thankful to
Lauri Savioja, Tapio Lokki, Perttu Himaildinen, Lauri Malmi, Jari Takatalo,
Piivi Rauhamaa, Seppo Ayriviinen, Robert Albrecht, Jari Kitsyri, Yu Shen,
Mikael Matveinen, Lauri Lehtonen, and Heikki Heiskanen.

I want to express special thanks to my family — Seija, Heimo, Riikka, and
Jukka — without whom it would not have been possible to complete this thesis.

My work has been funded by Finnish Doctoral Program in User-Centered In-
formation Technology (UCIT) and The Research Foundation of Helsinki Uni-
versity of Technology. Additionally, I have been supported by Jenny and Antti
Wihuri Foundation, Emil Aaltonen Foundation, and Nokia Foundation.

Helsinki, 27th of October 2016
Tuukka Mikael Takala

Contents

ACKNOWIEAZEIMENTS......viiiieiiieiieiieecterct ettt esee e s aeesee e aeeeeas 1
List of Abbreviations and Symbols.........ccccecveerernernienernennenieneereneenne 5
List Of PUDLICAtIONScocueterierierenieniietetetetesteeresetee sttt 6
Author’s ContribULION.ccovvvieeeiuieeeeiieeeeereeeeeeeeeeeieeeeeareeeeeereeeeeneeeenns 7
1. | H 910506 10 Tcin (o) + DURR R ORRRR 9
1.1 Scope Of the ThesiS....ccceereverrverieriereereeceerieeeeeeeseeeseeeseeeneens 10
1.2 Research QUESHONS.....cccceeecuieriieeeiiienieeeieeere e eere e e s 11
1.3 Research MethodS.......oooeeeieeeeeiieieiiceec e 11
1.4 ThesiS SIIUCIUIE ...ccouvveiieereeieeeeeeeieee et eeeaere e eeaaees 12
2, Related WOTK......ueivuiiiiieiieeciecieccte st sseeecee e e eessaaeeees 15
2.1 Virtual Realityccccvvieriiiriiiiiieeiieeecesieesre e esee e e 15
2.2 Software ENgineering.........ccceeeveevverveenernersersienseeneesesseenseenns 16
2.2.1 Challenges in VR Software Design and Implementation.....17
2.3 User-led INNOVAtIONc.ccccveeeiireeirieeieeeireeereeereeecreeeeeeeveeenes 18
2.3.1 Early Virtual Reality User Innovation............cceeeveeerevereenne 20
2.3.2 Virtual Reality User Innovation in the Oculus Rift Era........ 21
2.4 Virtual Reality TOOIKItSccceevuererrerrierieeerneeceseeseeseeeeens 22
2.4.1 3DUI Building BlOCKS.......ceoverveerierieniienieeieneeseesresveseenes 24
2.5 Teaching VR for Students........ccccceervueerciieniieenvieesrieeseeeseeenen 25
2.6 Main Contributions of the ThesiSc.cccceeverrerieniernersenneenne 26
3. RUIS TOOIKIEuvvveieenreieeetreeeeieeeeerireecereeeeeereeeeesneeecernnreeensnneeenns 27
3.1 RUIS fOr ProCeSSING....cecveeverirreirierrieriterieneeseeesseessesssesssessens 29
3.2 RUIS fOr UNItY eeeecveiriiiriieiniienieesieeesieeesieessieesseeesseeessseessneenns 30
3.2.1 3DUI Building Blocks in RUIS........cccceeveevieeeeceereeeeeeeenne, 32
3.2.2 Unique Aspects of RUIS for Unityc.cccceeveveverencrcncnne 35
4. Virtual Reality Software Developers..........cocueeeerveevereeseeseennens 37
4.1 3D User Interface SUIVEY.......ccceceevereereeerieeieneeseeceesreeeneenes 37
4.2 Development Challengesccccceeeeeeceereiencienieenseesseencneens 39

4.2.1 Difficulty Concepts Gathered with Open-Ended Questions44

4.3 VR Toolkit COMPATISONS ..c..vevrverrreinieriiernienseesseesseeessreennnes 45

4.4 Virtual Reality Course for Students........c.ccoeceeveervverveeneeneennnen. 46
4.4.1 Practical Considerations for VR Course Organizers........... 48
4.4.2 Effect of VR Toolkits on VR Development............cccceeuvennen. 49
5. Case Studies on Virtual Reality USers........ccccevveereervverveeneeneennnen. 51
5.1 3DUIL PUZZIE....uiiiieiieeieecteeceeeteeteete ettt ve e s 51
5.2 Tennis Game with Volumetric Shadows as Depth Cues.......... 52
5.3 3DUILOr BIENder......cooeveuveiieereeeeeeeeeeeee et eeeeeceeree e 55
5.4 TurboTuscany VR EXPEri€nce.......cccccerveerrueeriueersveesieesssuessnnes 56
6. DISCUSSION 1.eeueviieeeiiieeeciteeeeteeeeetteeeecteeeeessseeeessseeeessasaeessaesensens 59
6.1 Future DireCtionsS......cccveieeeeeeiuereeeeeeeerinreeeeeeeeenreeeeeeeeeennnreneeens 64
7. SUIMNIMATY ..eetiiiiieiiiirieneeeeeeete et seeee e e et e s ereesessaeesseseessennnee 67
REFEIEICES ..eeeniiieeeettee ettt ee e eeree e e tte e e tre e e e aaee e e sbaeesensaee e nseeaans 69
PUDLICATION T.nitrieeeiiieeeiieeeeeree et ceteeeeetreeeeetneeeeeareeeeeaseeeeennneeeesneeens 77
PUDLICATION 2 ..eiiiiiiiiieieccieeeieecte et eete e ee et e esre s ae s eessaaeevaessanessea s 89
L2010 =10 To) s 1 TR 99
PUDLCATION 4 ettt e et e ceaaeeeensaaeecenseeeeennns 133
PUDICATION Briiiviiiiieiiieiiiieeiteecieeecite et et e ssve e e e e ssreessaeessaaessaaesssnesnnes 159
PUDICATION 6uviiiieiiiiiieceiecsie ettt cere e ee s ae s re s saaeesaee s saaesaeas 163

List of Abbreviations and Symbols

2D two-dimensional

3D three-dimensional
3DUI 3D user interface
6DOF six degrees of freedom

ANOVA analysis of variance

AR augmented reality

CA correspondence analysis

CAVE cave automatic virtual environment

HCI human-computer interaction

HMD head-mounted display

LED light-emitting diode

MBC Mecanim blended character

MR mixed reality

RUIS reality-based user interface system

SAM self-assessment manikin

SEARIS software engineering and architectures for realtime interactive
systems

VR virtual reality

WIMP window, icon, menu, and pointing device

List of Publications

This doctoral thesis consists of a summary and of the following publications
which are referred to in the text by their numerals:

P1. Takala, Tuukka. 2014. RUIS — A Toolkit for Developing Virtual Reality
Applications with Spatial Interaction. In: Proceedings of the 2nd Symposium
on Spatial User Interaction (SUI'14), Honolulu, USA, October 4—5, 2014. ACM.
Pages 94—103. DOI: 10.1145/2659766.2659774.

P2, Takala, Tuukka; Rauhamaa, Paivi; Takala, Tapio. 2012. Survey of 3DUI
Applications and Development Challenges. In: Proceedings of the Symposium
on 3D User Interfaces (3DUI 2012), Orange County, USA, March 4-5, 2012.
IEEE. Pages 89—96. DOI: 10.1109/3DUI.2012.6184190.

P3. Takala, Tuukka; Malmi, Lauri; Pugliese, Roberto; Takala, Tapio. 2016.
Empowering Students to Create Better Virtual Reality Applications: Longitu-
dinal Study of a VR Capstone Course. Informatics in Education, Volume 15, No.
2, 2016. Pages 287—-317. DOI: 10.15388/infedu.2016.15.

P4. Takala, Tuukka; Himéildinen, Perttu; Matveinen, Mikael; Simonen, Taru;
Takatalo, Jari. 2015. Enhancing Spatial Perception and User Experience in
Video Games with Volumetric Shadows. In: T. Wyeld, P. Calder & H. Shen
(Eds.), Computer-Human Interaction. Cognitive Effects of Spatial Interaction,
Learning, and Ability. Springer LNCS. Pages 91-113. DOI: 10.1007/978-3-319-
16940-8_5. ISBN: 978-3-319-16939-2.

P5. Takala, Tuukka; Makéardinen Meeri; Himaldinen, Perttu. 2013. Immersive
3D modeling with Blender and off-the-shelf hardware. In: Proceedings of the
Symposium on 3D User Interfaces (3DUI 2013), Orlando, USA, March 16-17,
2013. IEEE. Pages 191—192. DOI: 10.1109/3DUL.2013.6550243.

P6. Takala, Tuukka; Pugliese Roberto; Rauhamaa, Paivi; Takala, Tapio. 2011.
Reality-based User Interface System (RUIS). In: Proceedings of the Symposi-
um on 3D User Interfaces (3DUI 2011), Singapore, March 19—20, 2011. IEEE.
Pages 141—-142. DOI: 10.1109/3DUI.2011.5759245.

Author’s Contribution

Publication [P1]: RUIS — A Toolkit for Developing Virtual Reality Applica-
tions with Spatial Interaction

The author created the requirements and designed the software architecture of
the presented toolkits, and implemented major portions of them. The author
wrote the entirety of the paper.

Publication [P2]: Survey of 3DUI Applications and Development Challenges

The author wrote 90% of the paper, created the associated 3DUI questionnaire,
gathered participants online, and performed statistical analysis on the ques-
tionnaire results. The author also devised methodology for studying develop-
ment challenges and benchmarks for comparing virtual reality toolkits. To the
best of our knowledge, this is the first paper to present and analyze quantita-
tive data on 3DUI development challenges.

Publication [P3]: Empowering Students to Create Better Virtual Reality
Applications: Longitudinal Study of a VR Capstone Course

The author wrote 90% of the paper, was involved in designing and improving
the VR course in question, as well as acted as the head teaching assistant of the
VR course for the five years covered in the study. Additionally, the author con-
ducted 90% of the statistical analysis on the data collected from students via
questionnaires and observations.

Publication [P4]: Enhancing Spatial Perception and User Experience in
Video Games with Volumetric Shadows

The author coordinated the work, wrote half of the paper, invented the use of
volumetric shadows as spatial cues, was involved in the design and implemen-
tation of the game used in the study, conducted third of the user studies, and
performed statistical analysis on gameplay metrics. The original paper was
published in proceedings of OzCHI 2013, and this thesis includes a version
that we revised for a book upon its editor’s request.

Introduction

Publication [P5]: Immersive 3D modeling with Blender and off-the-shelf
hardware

The author wrote 95% of the paper, invented and implemented the hybrid
2D/3D user interface, conducted the user study, and performed statistical
analysis on the results. The publication won an award in IEEE 3DUI Contest,
which limited the size to 2 pages, and required creating a video of the solution
(voutu.be/mFoioY7ctkM). The results have not been published elsewhere.

Publication [P6]: Reality-based User Interface System (RUIS)

The author wrote 80% of the paper, co-designed the user study’s puzzle game
and implemented 70% of it, conducted the user study together with Roberto
Pugliese, and performed statistical analysis on the results. The publication
participated in IEEE 3DUI Contest, which limited the size to 2 pages, and re-
quired creating a video of the solution (youtu.be/oDJhH1MLp1k). The results
have not been published elsewhere.

1. Introduction

Virtual reality (VR) has recently sprung to public conscious due to advances in
immersive technology and large investments by industrial giants like Facebook,
Google, Microsoft, Samsung, and Sony, all of whom are developing VR and
augmented reality (AR) products [1]. The VR field is rapidly evolving and a
multitude of affordable VR peripheral devices have been introduced via suc-
cessful Kickstarter campaigns, most famously the Oculus Rift head-mounted
display (HMD) in 2012. Other campaigns that reached their crowdfunding
target include Sixense STEM and Control VR controllers, Virtuix Omni and
Cyberith Virtualizer treadmills, Avegant Glyph and CastAR HMDs, ANTVR
and DIYVR developer kits, and Technolust VR computer game.

In total over 100,000 Oculus Rift development kits have been sold [2], each
unit costing around $300. With the advent of inexpensive VR technology,
hobbyist VR developers have become very active; over 350 Oculus Rift demos
have been created [3].

Entertainment applications represent a majority of the current VR software
that is being developed by VR enthusiasts: many VR computer games are un-
der development and there are several entities trying to popularize 360 degree
video for HMDs, including companies like Jaunt and NextVR which together
have received over $40 million in investments.

Despite the public enthusiasm and considerable investments in VR, a “killer
application” of consumer VR is yet to be seen [4]. If such an application is not
discovered, it could very well mean that this latest VR boom will end up in dis-
appointment, as has happened in the past.

The motivation for this thesis is as follows: firstly, establishing a more clear
understanding of challenges in VR software development can help in building
better VR toolkits, thus easing the development process and perhaps even fa-
cilitating the discovery of the killer application of consumer VR. Secondly, ad-
dressing the challenges in VR software development makes it easier for hobby-
ist VR developers to get started, which could empower a large number of VR
enthusiasts who otherwise might not get involved. Developer empowerment
should be one of the most important principles that guide those who create
tools for developers.

Consumer VR is taking its first steps to reach major audiences, VR as a me-
dia is advancing, and hardware manufacturers are eager to find and support
popular applications. We argue that it is at this point that hobbyist developers
can have the biggest impact with their innovations.

Introduction

1.1 Scope of the Thesis

This thesis deals with development challenges, developers, and users of VR
application programs. Specifically the focus is in VR application programs
that employ 3D user interfaces (3DUI) and are meant to be used via immer-
sive displays (e.g. HMDs, stereo 3D projection walls) and 3D input devices
such as six-degrees-of-freedom (6DOF) controllers. Virtual worlds such as
Second Life that are normally used with a mouse and keyboard interface are
out of the scope of the research at hand.

Bowman et al. [5] define 3DUI as an user interface that involves 3D interac-
tion, i.e. interaction that occurs in spatial 3D context. In VR context 3DUIs
often differ from traditional 2D interfaces that rely on the so-called WIMP
(window, icon, menu, and pointing device) style of interaction. Immersive VR
and 3DUIs are innately related and the concept of 3DUIs is commonly used by
VR researchers. For VR application programs 3DUIs offer a natural way to
interact with virtual environments, since VR often emulates reality that argua-
bly entails the most tangible 3DUI in existence.

Publications [P1—P3] study challenges that affect VR software development,
linking this thesis with the field of software engineering. Publication [P2] pre-
sents methodology for measuring VR software development challenges, and
publication [P3] focuses on teaching VR software development. Furthermore,
publication [P2] is a survey that charts the contemporary 3DUI developer
landscape, their demographics and the hardware and software they used prior
to 2012 and the arrival of Oculus Rift HMD. A vast majority of the developers
examined in publications [P1-P3] — and thus the subject population of the
whole thesis — is from western countries. Very few participants were from Af-
rica, Asia, and South America, which could limit the applicability of the devel-
oper related results.

VR toolkits that are intended to be used in creation of VR computer applica-
tions also fall within the scope of this thesis. A VR toolkit called Reality-based
User Interface System (RUIS) is introduced [P1, P6], which attempts to solve
some of the investigated development challenges. Two methods of benchmark-
ing different toolkits are proposed in publication [P2].

Finally, users of VR application programs are studied in publications [P4—
P6], where user experience and task performance is evaluated. The two VR
application programs described in [P5] and [P6] were developed for IEEE
3DUI Contest that has been organized annually since 2010 as part of the IEEE
3DUI Symposium. The 3DUI for Blender [P5] won the “Best Low-Cost, Mini-
mally-Intrusive Solution” award and the 3DUI puzzle [P6] placed 4t out of 8
participants.

N.B.: In publications [P1] and [P3] VR application programs are referred as
VR applications, and in publication [P2] the term 3DUI application is used to
describe an application program that employs a 3DUI. This thesis summary
purposely avoids those terms, so that their meaning would not be confused
with application domains, i.e. the use cases for VR and 3DUIs. The price of
avoiding this confusion is having to rely on somewhat uncommon terms VR
application program and 3DUI application program.

10

Introduction

1.2 Research Questions

VR software development contains many specific challenges [6—8] that hinder
the design and implementation of VR application programs. If these challeng-
es are not addressed properly, this could negatively affect the usefulness and
adoption of VR technology, and possibly have consequences in related fields
such as AR and mixed reality (MR), ubiquitous and pervasive computing [7].

This thesis poses the following research questions: 1) What are the most se-
vere challenges in VR software development? Previous research has identified
different challenges and provided anecdotal evidence about them, while this
work attempts to measure the severity of these challenges. 2) How to facilitate
VR software development and address its challenges? The role of VR software
toolkits in the development process is particularly inspected. 3) What benefit
does immersive VR offer to software users in contrast to traditional applica-
tion programs? This fundamental question regarding the rationale of using
VR technology is also touched on in the thesis.

The immediate goal of the thesis is to present an analysis on VR software de-
velopment challenges and provide guidelines for creating VR toolkits that take
those challenges into account. Hopefully this research has impact on future VR
toolkits that aim to ease the implementation of VR application programs and
make VR software development more accessible for hobbyist developers.

The research presented in this thesis could be of interest to specialists of AR
and MR, because VR has much in common with those technologies — including
3DUISs and the utilization of similar software tools for development.

1.3 Research Methods

This thesis represents open-ended, constructive research [9]. First — after a
literature review — a VR toolkit called RUIS was created [P1, P6]. This was
followed by the creation of several VR application programs [P4—P6], which
were used as part of case studies that extracted information about the VR user
experiences. Standard usability research methods and statistical analysis were
applied in the case studies, which involved tasks performed by study partici-
pants whose feedback and performance in the studies was evaluated.

An extensive questionnaire was created to gather data about 3DUI applica-
tion programs [P2], their developers and the experiences of the developers.
Between 2011 and 2016 a total of 167 participants answered the questionnaire.
Most of these were students of a virtual reality course organized in Aalto Uni-
versity, where the author of this thesis acted as the head teaching assistant
[P3]. The questionnaire participants’ answers yielded quantitative and qualita-
tive data about development challenges.

The gathered data regarding VR application program developers and users
was analyzed for statistically significant results with statistical tests appropri-
ate for each occasion: Kruskal-Wallis test, Wilcoxon rank-sum test, Wilcoxon
signed-rank test, Friedman test, analysis of variance (ANOVA), and Fisher’s
exact test. When comparing multiple groups, a post-test with either Bonferroni
or Tukey-Kramer correction was applied, depending on the case. In publica-

11

Introduction

tion [P4] qualitative data was explored with correspondence analysis.
MATLAB software was used to do most of the statistical analysis, and the rest
was done with SPSS Statistics software.

1.4 Thesis Structure

Themes of this thesis and their relationships are illustrated in Figure 1: the
overarching theme is VR, the focus being in VR toolkits, VR developers, and
development challenges. A brief introduction to these topics is given in
Chapter 2, alongside with the related themes of software engineering, teaching
VR, and user-led innovation.

Virtual Reality

Users
P4, P5, PG

7/ N
Developers
P2

Challenges > (Teaching VR
P3

P1,P2,P3 \\\\\\‘\‘Ar“//////

N

Y

VR Computer Programs

P1, P4, P5, P6

User-led
Innovation

Software
Engineering Toolkits

P1,P6

Figure 1. Themes of the thesis, how they are related to each other, and how publications P1—
P6 exhibit them. Bold font indicates the main theme of a publication, while regular font ex-
presses additional, minor themes.

Figure 1 depicts how VR toolkits exist conceptually at the intersection of soft-
ware engineering and user-led innovation, and are used by VR developers to
create VR application programs. Figure 1 also illustrates how VR users are a
superset of VR developers, who experience various development challenges
and can also be subjected to teaching VR development.

Chapter 3 presents the RUIS toolkit, which is our way of addressing research
question 2. Chapter 4 concentrates on developers of VR application programs,
the toolkits that they use, and their challenges. Research question 1 is an-

12

Introduction

swered in Section 4.2. Chapter 5 focuses on users of VR application programs
and introduces case studies that relate to research question 3. In Chapter 6 we
discuss our results, paying special attention to the most severe development
challenges and their possible solutions, thus further addressing research ques-
tion 2. Lastly, Chapter 7 summarizes our research and its contributions.

13

2. Related Work

This chapter introduces the topics relevant to this thesis and presents a selec-
tion of related literature that can be read to gain a deeper understanding of the
topics.

2.1 Virtual Reality

Several definitions for virtual reality exist, and here we present one by Sher-
man and Craig, who identified four key elements of VR: a virtual world, im-
mersion, sensory feedback, and interactivity. Using these elements they de-
fined VR as “a medium composed of interactive computer simulations that
sense the participant’s position and actions and replace or augment the feed-
back to one or more senses, giving the feeling of being mentally immersed or
present in the simulation (a virtual world)”. [10]

VR systems primarily convey output to visual and auditory senses, and mod-
ern VR can offer quite realistic audiovisual experiences. Visual stimulation is
usually delivered via a HMD, CAVE [11], or stereo 3D projection walls, where-
as headphones or speaker arrays are employed for auditory stimulation. VR
hardware capable of providing haptic feedback is also somewhat common, but
anything beyond vibrotactile stimulus is expensive and limited in fidelity due
to technological challenges related to haptics. VR interfaces that provide olfac-
tory feedback are quite rare, and even rarer are interfaces with gustatory feed-
back [10].

As for input technology, VR relies heavily on motion tracking, which is em-
ployed to track the user of the VR application program and to adjust the feed-
back from the virtual world accordingly. In many VR systems the user utilizes
hand-held 3D input devices that have buttons for interaction purposes. A more
detailed description of VR input and output technologies is given by Sherman
and Craig’s textbook [10].

VR technology was first employed for data visualization and training purpos-
es [10], and later on VR has spread to design, telepresence, collaborative work-
ing, and entertainment domains [12]. Traditionally the high cost of VR hard-
ware has restricted the use of VR mostly to research laboratories and big com-
panies. LaViola noted that video game companies have been introducing VR
and spatial 3D interaction to consumers since the late 1980s with peripherals
such as Mattel Power Glove, Sega 3-D Glasses, Sony EyeToy, and Nintendo Wii

15

Related Work

Remote [13]. Currently we are witnessing the biggest push for consumer VR
with the release of Oculus Rift, HTC Vive, Samsung Gear VR, and other afford-
able HMDs. As display technology advances further in the coming years, we
can expect a similar situation with AR devices.

First VR research dates back to 1960s, to Sutherland’s work with the first
motion-tracked HMD [14]. VR research usually concerns VR hardware, soft-
ware, task performance, and psychology. Particularly the latter two topics are
often explored via user studies, where statistical tests are employed to accept
or reject hypotheses. Andujar and Brunet [15] discussed the application of user
studies in the field of VR and some of the issues related to their use in VR re-
search. They noted that VR user study design is challenging due to the large
number of factors involved (including the multitude of hardware configura-
tions), many of which need to be fixed arbitrarily in order to keep number of
experiment conditions feasible. Andujar and Brunet also argued that “a large
body of findings in VR and 3DUI only apply to very specific conditions, and it
is unclear if the results can be generalized to other contexts.” [15] The same
notion was also mentioned by Wingrave and LaViola [7].

2.2 Software Engineering

Because this thesis deals with developers, users, development tools, and devel-
opment difficulties, it is inherently connected with software engineering re-
search. Below we present some of the previous VR and 3DUI literature that is
tightly coupled with field of software engineering. For example, a large body of
such literature has emerged via the Software Engineering and Architectures
for Realtime Interactive Systems Working Group (SEARIS), which has orga-
nized the annual SEARIS Workshop since 2008 [16].

Figure 2 represents the different conceptual layers of software engineering,
as described by Pressman and Maxim’s comprehensive book on the topic [17]:
focus in software quality forms the foundation of software engineering. Pro-
cesses establish how methods are applied and software projects are managed.
Methods supply technical descriptions on how to perform different tasks of
software engineering, such as designing and building software. Tools include
computer programs used for planning and implementing software, as well as
otherwise supporting the process.

Tools >
N Methods /
\ Process /

Figure 2. Software engineering layers. Reprinted from “Software Engineering: A Practitioner's
Approach” by R. S. Pressman and B. R. Maxim, 2015, p. 16. Copyright 2015 by McGraw-
Hill Education. Reprinted with permission.

16

Related Work

Much of VR software engineering literature deals with software tools and
toolkits; dozens of VR toolkits have been released. Most VR toolkits are con-
temporary, because it takes effort to upgrade a toolkit to conform to the con-
stantly evolving hardware and graphics libraries. Rare examples of long-
lasting VR toolkits that have received updates for over a decade include VRPN
[18], VR Juggler [19], and WorldViz Vizard [20].

Methods for VR development are more long-lasting as they are abstract, but
it is unclear how often they are applied by VR practitioners. In 1998 Kim et al.
released an early paper on a more structured software engineering approach to
VR development [21], presenting methods for creating specifications for form,
function, and behavior of VR application programs. Other examples of VR
software engineering methods include a VR user interface design model by
Tanriverdi and Jacob [22] and VR design methodology by Kaur [23], whose
work was further discussed by Fencott [24].

Mattioli et al. [25] described an agile development process for VR, which
takes elements from extreme programming and Scrum. As far as we are aware,
no other software engineering processes have been proposed for VR develop-
ment. This could be because the existing software engineering processes are
adequate for VR development, or perhaps because VR software projects are
rarely so large that the role of the process would become emphasized.

2.2.1 Challenges in VR Software Design and Implementation

Already in 1991 Green and Jacob [6] pointed out several issues that affect the
design and implementation of VR application programs. Subsequently there
has been some papers dealing with these issues: Myers [26] listed many hu-
man-computer interaction (HCI) design and implementation difficulties, most
of which apply directly to VR development. Steed [8] discussed issues with VR
software and hardware reuse, as well as their typically short lifespan. Research
published at SEARIS workshops often relates to VR development challenges
[27—29].

Wingrave and LaViola [7] concluded in their literature review that despite
decades of advances in VR technology, little has changed in VR software de-
sign and implementation, which is still riddled with challenges. They present-
ed a comprehensive list with 67 VR design and implementation issues, based
on their experience, developer interviews, and design artefacts. The issues
were categorized into 11 themes (indicated in bold):

1. Multiple Varied Skills such as programming, interface design,
content creation, and engineering are required in VR design and im-
plementation, which is a demanding cross-disciplinary process.

2. Human Experience and Perception is integral to VR, and devel-
opers need to understand user expectations, psychology, nausea, dif-
ferences between users, etc.

3. Content: acquiring and incorporating assets such as 3D models and
audio in high quality has challenges.

17

Related Work

4. Design Knowledge: VR design is intricate, and related standards
and guidelines have much room for improvement.

5. Iterative Prototyping is often necessary and has a negative impact
on the design and implementation process.

6. Representation and Reuse: it is easier to build new systems than
to reuse existing ones, and the application of formal models is prob-
lematic.

7. Complex, Chaotic, and Difficult is the nature of VR application
program development due to the many different components, hidden
connections, and challenging solutions involved.

8. Real-Time Operation: interactive VR application programs re-
quire an efficient implementation and the use of parallel and thread-
ed computing architectures, which complicates development.

9. Callbacks and Events are commonly used in VR development, but
they organize system complexity insufficiently and cause challenges
for system maintenance and reusability.

10. Hardware: it is difficult to determine and obtain the best VR hard-
ware configuration, and there is a lack of hardware standards.

11. Tools and Community: VR developers are divided by the tools that
they use, which hinders sharing of implementations and ideas.

Wingrave and LaViola argued that finding solutions to the aforementioned
issues will improve VR application programs and possibly alleviate similar
difficulties in related fields of AR and MR. [7]

To the best of our knowledge, no quantitative data has been presented about
challenges in VR or 3DUI development prior to our survey [P2] that was pub-
lished in 2012. A certain level of justification for the survey’s approach of ex-
amining 3DUI development challenges is provided by research of Lahtinen et
al. [30] and Tan et al. [31], who studied the difficulties of novice programmers
by employing a multitude of Likert statements rated by study participants.
Their statements regarding practical difficulties in learning programming are
similar to our development difficulty statements in publication [P2].

2.3 User-led Innovation

In the past 10 years consumer versions of immersive display technology and
motion controllers — essential components of VR hardware — have become
very affordable; examples include 3D televisions and game peripherals such as
PlayStation Move controllers.

In 2010, partly inspired by Johnny Chung Lee’s work with Nintendo Wii
Remotes [32], it occurred to the author of this thesis that the wide availability
of immersive technology would facilitate hobbyist innovations in the field of
VR, which in turn could advance VR research and mainstream adoption. This

18

Related Work

realization heavily influenced the creation of the RUIS toolkit, whose purpose
since its inception has been to ease VR development and unleash the innova-
tion potential of hobbyist VR developers [P6]. With this being the background
motivation for the work at hand, this thesis includes a user-led innovation per-
spective on VR. In this section we introduce basic user-led innovation concepts,
examine VR user innovation from the past 30 years, and finally utilize user-led
innovation literature to characterize recent, drastic advances in the field of
consumer VR.

Von Hippel wrote a comprehensive overview on user-led innovation, draw-
ing from 30 years of research in the field [33]. He emphasized that it is not
only producer companies that innovate products, but also product users who
tend to share and freely reveal their innovations. In the context of user-led
innovation, Von Hippel categorized users into individual consumers, commu-
nities, and firms [33], who have increasingly more options to create and modi-
fy products to meet their needs.

Von Hippel et al. presented a three-phased consumer innovation paradigm
that outlines how users can act as pioneers and create functionally novel prod-
ucts where market supply does not exist yet: [34]

I. Users develop new products for themselves.
II. Other users evaluate and reject, or copy and improve.
III. Producer companies enter when market potential is clear.

This paradigm is further illustrated by Figure 3, which depicts sequences of
innovation activities carried out by users and producer companies, and how
the two parties can interact with each other. Producer companies commonly
employ a traditional innovation process, depicted in the lower part of Figure 3.
Conversely, users often innovate before producers, particularly in cases where
existing market does not cater to the users’ needs. If the user innovator choos-
es to share their designs, innovation diffusion becomes possible: the innova-
tion can spread among other users, who may continue to improve the original
design, which in turn could even influence producer companies. [35]

While some papers exist on how VR could be harnessed to facilitate innova-
tion within companies [36], we have not come across any research that would
examine VR using existing user-led innovation literature. The only directly
related piece of research is a multiple case study by Whyte, where firms in the
construction sector were considered as user-innovators of virtual reality tech-
nology [37]. Whyte’s study mainly focused on how VR technology was adapted
in this specific sector, and it did not show whether that innovation had spread
to other sectors of VR.

19

Related Work

User innovation and diffusion

Innovation Collaborative evalution / Peer-to-peer
by users replication / improvement diffusion

Innovation Innovation
support designs

Market Research & Production Market
research development diffusion

Producer innovation and diffusion

Figure 3. The user and producer innovation and diffusion paradigms. Figure adapted from “The
user innovation paradigm: impacts on markets and welfare” by Gambardella et al., 2015
[35].

2.3.1 Early Virtual Reality User Innovation

Video game history has been shaped by hobbyist innovation [38], and the idea
of user innovators’ potential for advancing the related field of VR is not new: in
1991 Pausch remarked that the cost of hardware has limited the research on
VR. He suggested that the best way to speed up breakthroughs in VR is to pro-
vide low cost versions of the equipment so that more people can use the tech-
nology. [39]

The growing interest in the possibilities of VR and more affordable hardware
such as Mattel Power Glove led to an active “homebrew” VR scene in 1990s
[40]. Throughout the decade several books for hobbyists were published on
how to build affordable VR systems using personal computers and off-the-
shelf peripherals [41—43].

In 1993 Pimentel and Teixeira pointed out the innovation happening at
grass-roots level, listing several small VR start-ups of the era [44]. In the same
year Weber anticipated a further rise in VR user innovation: “with virtual re-
ality, these living room inventors, garage scientists, gadget tinkerers, and
hobbyist-entrepreneurs are resurfacing.” He also emphasized that for home-
brew VR research and development to truly surge, the cost of hardware should
come down from the $2500-5000 price range, which at the time was the cost
of a low fidelity desktop VR setup. [45]

Despite the increased appeal of VR and grass-roots innovation in the 1990s,
efforts to create consumer VR markets failed because the available technology
could not meet the inflated expectations of the public, and consumer VR fell
into a “trough of disillusionment” [10]. Factors contributing to this included
nausea and discomfort experienced by users, which were common with the
more affordable HMDs of the era [46].

The release of Nintendo Wii console and its Wii Remote controller in 2006
gave new momentum to the proponents of affordable VR. Several research

20

Related Work

papers were published about using the Wii Remote as an VR interaction device
[32, 47—49]. Microsoft’s Kinect from 2010 was also met with similar enthusi-
asm by hobbyists and researchers [50]. The wide adoption of Kinect by hobby-
ists can be partly attributed to Johnny Chung Lee, who had been part of Kinect
development team and who issued a $3000 software driver hack bounty after
the release of the device [51].

In 2012 - just before Oculus Rift — Pausch’s idea of advancing VR research
via affordable hardware was echoed by Basu et al. [52] and other researchers
at University of Georgia, who emphasized the importance of affordable, off-
the-shelf components [53] and noted their potential for user innovation: “VR
systems developed with off-the-shelf devices can be reproduced more easily
and cheaply, potentially leading to larger deployment of VR applications and
further innovation.” [54]

2.3.2 Virtual Reality User Innovation in the Oculus Rift Era

The three-phased consumer innovation paradigm presented above fits strik-
ingly well with the backstory behind the current consumer VR boom: founded
in 2007, the MTBS online forum [55] was a popular hub for VR hobbyists to
share their experiences about creating VR hardware for themselves [56] (phase
I). Since 2009 the Oculus VR founder Palmer Luckey — then a VR hobbyist —
had frequented the forum, where he actively collaborated with other forum
members while developing different HMD prototypes [57] (phase II). In 2012
Luckey founded Oculus VR, after leaving his job as a laboratory engineer at
University of Southern California Institute for Creative Technologies [40],
where he had been part of the team developing the mobile FOV2GO HMD [58,
59]. Impressed by the potential of Luckey’s HMD prototype, Oculus VR re-
ceived seed funding from a co-founder [60] and public endorsements from
renowned game industry veterans, leading to a successful Kickstarter cam-
paign in August 2012 [61]. Witnessing the enthusiasm generated by the Oculus
Rift HMD, big companies like Sony, Samsung, and HTC sensed the market
potential and followed up with their own HMD products (phase III).

Luckey’s journey from a VR hobbyist to the founder of Oculus VR is also a
case of a lead user becoming a producer, a possibility mentioned by Von Hip-
pel [33]. It should be noted that the ingenuity in the Oculus Rift HMD proto-
type relied strongly on earlier work by researchers and practitioners, which
often is the case with innovations, user-led or otherwise.

Today user innovation can be witnessed in the many VR meetups that are
regularly organized around the world, where VR hobbyists and start-ups ac-
tively participate. In these meetups people share ideas and socialize, while de-
velopers receive feedback and enthusiasts get to try the latest applications.
[62]

Big companies have also slowly started to embrace user innovation in VR
and related fields: in 2011 Sony made PlayStation Move controllers usable for
PC developers via their Move.me software. This was followed by Microsoft
doing the same to Kinect with the official Kinect SDK released later that year.
Currently companies like Oculus VR, HTC, and Valve actively support inde-

21

Related Work

pendent developers by providing hardware and in some cases even funding, so
that developers can create VR content [63]. Oculus VR and Leap Motion have
also been organizing “VR jams”, where small development teams compete for
prize money.

Baldwin and von Hippel [64] discussed the three models of innovation,
which appear in the user innovation literature: single user, producer, and open
collaborative innovation. In the context of VR, these innovation actors can be
illustrated with the following present-day examples: individual VR developers
who share their innovations are single user innovators, Oculus VR and Sony
are producer innovators, and the parties working with Open Source Virtual
Reality (OSVR) are open collaborative innovators.

Baldwin and von Hippel also introduced hybrid innovation models where the
aforementioned actors benefit from each other. As an example they mentioned
game engines, which are created by producer firms, and expanded upon by
individual developers or groups of developers [64]. Currently the most notable
game engines with large user communities are Unity 3D, Unreal Engine, and
CryEngine. Each of them has recently added native support for HMDs and
spatial 3D input devices.

2.4 Virtual Reality Toolkits

The concept of toolkits is found in user-led innovation [65], software engineer-
ing [17], and VR literature. The purpose of a VR toolkit is to provide reusable
components that can be utilized to create VR application programs, avoid
building everything from scratch, and reduce the amount of low-level pro-
gramming. A VR toolkit could for example include functionality for display
management, distributed rendering, or handling input devices. Notable exam-
ples of VR toolkits include an early yet comprehensive MR Toolkit by Shaw et
al. [66], Carlsson and Hagsand’s long-lived DIVE [67] that went through mul-
tiple iterations, and the widely used VR Juggler by Bierbaum et al. [19].

In this thesis we use the term VR toolkit loosely, to include everything from
auxiliary VR programming libraries to full VR development environments that
combine programming, content management, and execution in a single soft-
ware suite. In VR literature the term VR toolkit is often interchangeable with
the similar terms VR framework, platform, tool, and development environ-
ment.

Only a handful of publications examine VR toolkits and their qualities gener-
ally: in 1993 Shaw et al. [66] discussed the need for VR toolkits and presented
software engineering related VR toolkit requirements that are relevant even
today: 1) portability of VR application programs, 2) support for a wide range of
input and output devices, 3) VR application program independence from room
geometry and device configurations, and 4) a flexible development environ-
ment for VR application programs.

Bierbaum and Just [68] introduced three primary requirements for a VR
toolkit: ability to create high performance VR application programs, flexible
development environment, and ease of use. They noted that these require-

22

Related Work

ments often conflict, requiring compromises from the VR toolkit creator.
Bierbaum and Just also presented fifteen capabilities of VR toolkits, ranging
from cross-platform development to toolkit extensibility. The usefulness of
these capabilities depends on the VR application program that is to be con-
structed with the toolkit.

Taylor et al. [69] discussed desirable and undesirable features of VR toolkits,
based on 20 years of development experience. Steed’s long experience with VR
development led him to list several abstractions that can be useful features in a
VR toolkit [8]. Varcholik et al. [70] presented multiple requirements for a re-
search-oriented VR toolkit, and categorized them as high-level non-functional
requirements, primary components necessary for basic research, and second-
ary components essential to pursue long-term research efforts.

Within the realm of user-led innovation research, Von Hippel lists five im-
portant attributes of a high-quality toolkit for user innovation: [33]

1. It will enable users to carry out complete cycles of trial-and-error
learning.

2. It will offer users a solution space that encompasses the designs they
want to create.

3. It will be user friendly in the sense of being operable with little spe-
cialized training,.

4. Tt will contain libraries of commonly used modules that users can in-
corporate into custom designs.

5. It will ensure that custom products and services designed by users
will be producible on a manufacturer’s production equipment without
modification by the manufacturer.

Attributes 1-4 are abstract yet fitting requirements for a good VR toolkit. The
reproducibility attribute (5) is trivial in case of application programs, but ap-
plies well to VR hardware. One example of a pathway where user innovation in
VR hardware could influence a manufacturer’s production are the small track-
ing sensors of Valve’s Lighthouse tracking system, which will be made availa-
ble for users to embed in their own VR props and devices [71].

Dozens of VR toolkits as well as papers introducing them exist. There are
several commercial toolkits, while a large portion of VR toolkits are created by
academics. This is interesting when taking into account Wingrave and LaVio-
la’s perception that “academics are not rewarded for building and maintain-
ing tools. [...] As such, the resources available to advance the state of the art
are limited.” [7]

Steed [8] reasoned that so many VR toolkits exist because VR software is a
large domain with a multitude of different applications, each with their own
requirements that can vary from efficient parallel computing to peer-to-peer
networking. One VR toolkit can cover only a comparatively small area of that
domain. Moreover, programming languages, libraries, and hardware keep

23

Related Work

changing over the years, which increases the temptation of making a fresh
start by creating a new VR toolkit instead of extending the existing, often com-
plex toolKits.

Steed also explained why their laboratory had used over 40 different VR
software systems in a time span of 15 years: often the chosen toolkit offered a
good fit in some regard, but was later retired because it was visually outdated,
retired by its author, lacked features, etc. [8]

Because a plethora of VR toolkits exist, comparison of toolkits is important
so that a developer can choose a particular VR toolkit that best matches their
skills and the requirements for the VR application program to be created.
Bierbaum and Just summarized the dilemma that a developer faces when
choosing a VR toolkit: “Before deciding which development system is best
suited to a particular application, the developer needs to know what ques-
tions to ask. This includes knowing what capabilities are required to imple-
ment the application and how to tell which systems meet those requirements.”
[68]

Literature about comparing VR toolkits is limited: there are comparisons
based on feature charts [72, 73] that reveal the capabilities of different toolkits,
and subjective ratings of various toolkit aspects [74, 75] that imply the level of
usefulness. We have not come across literature describing more sophisticated
methodology for comparing VR toolkits, which we have attempted in publica-
tion [P2].

2.4.1 3DUI Building Blocks

VR toolkits can offer more than just hardware abstraction or flexible develop-
ment environments. They can provide means to build 3DUIs by including re-
usable components for implementing 3D interaction techniques. An early ex-
ample of this is VPL’s Reality Built For Two VR development platform that
featured a node-based visual programming environment, in which data from
input device nodes would flow through an editable graph of filter nodes. Ac-
cording to Blanchard et al., the system could be used to implement interac-
tions such as grabbing, hit testing, and kinematics. [76]

Over the years there have been many approaches to provide similar reusable
components for creating 3DUIs. In 1999 Jacob et al. [77] introduced PMIW, a
description language and a visual editor for developing non-WIMP user inter-
faces like those of VR application programs. The visual editor of PMIW fea-
tured state diagram and data-flow graphs for defining discrete events that
could enable or disable data-flows. More recently Haan and Post’s StateStream
approach [78] used a similar dual model with state machines and data-flow for
3D interaction techniques, which could be implemented with a Python appli-
cation programming interface.

Figueroa et al. [79] presented InTml, an XML-based description language for
VR application program development, which “defines a uniform way to repre-
sent [3D interaction techniques] that is high-level, toolkit-independent, com-
ponent-based, reusable, and extensible.” InTml was further refined by
Figueroa et al. [80] who introduced a visual editor, and summarized the dif-

24

Related Work

ferent challenges in low-level implementation of 3DUIs. Fundamentally InTml
language describes directed graphs with filter nodes, which Figueroa et al.
dubbed “building blocks” that can represent a device, behavior, interaction
technique, or content.

Ray and Bowman [81] pointed out that researchers have created several ap-
proaches for decomposing 3D interaction techniques into separate, reusable
components. Csisinko and Kaufmann characterized such components as 3D
interaction technique “building blocks” [27]. Typically 3D interaction tech-
niques are modeled with state machines [82], data-flow networks [79, 83], or
both [27, 77, 78], where the aforementioned components are nodes.

Valkov et al. [84] along with Ray and Bowman [81] have underlined the im-
portance of being able to share 3D interaction techniques and their compo-
nents across multiple VR toolkits without reimplementation. According to
Martinez et al. that goal is hindered by the lack of agreement on a standardized
set of basic interactive tasks and interaction techniques [85]. Nevertheless,
several 3DUI frameworks for the purpose of sharing and reusing 3D interac-
tion techniques across multiple VR toolkits have been proposed, for example
SVIFT [86], IFFI [81], VITAL [27], and Viargo [84]. From a software architec-
ture viewpoint, these 3DUI frameworks act as an additional software layer
below the application layer, but above the VR toolkit and its subcomponents.

Wingrave’s doctoral thesis [87] discussed extensively different methods and
frameworks for developing 3DUlIs, and provided a good overview on issues
related to implementing 3D interaction techniques.

We use the expression 3DUI building block to denote reusable components
that can be modified and combined to create individual 3D interaction tech-
niques or complete 3DUIs. As long as the 3DUIT building blocks fit this descrip-
tion, it does not matter whether they are functions in a VR programming li-
brary such as Viargo, elements of a 3DUI description language like InTml,
graphical objects in a visual programming environment, or something else.

Our expression is inspired by two sentences: firstly, Bowman et al. [5] stated
that “low-level interaction techniques and interface components are the
building blocks of complete 3DUIs.” Secondly, Wingrave and LaViola wrote in
their paper that dealt with VR development challenges [7]: “Nearly every in-
terviewee expressed a desire for plug and play interfaces or the ability to
build interfaces as easily and interchangeably as LEGO blocks.” We em-
ployed the expression 3DUI building block first in our 3D questionnaire and in
the subsequent publication [P2].

2.5 Teaching VR for Students

An abundance of literature exists about utilizing VR application programs to
assist training and education, while publications about teaching VR as a sub-
ject are quite rare. Majority of such publications describe a VR course design
and on occasion evaluate results from one course iteration [88—92].

There are fewer papers that consider multiple years of a VR course’s history:
Zara discussed lessons learned years during six years of organizing a VR

25

Related Work

course [93]. Miyata et al. put forward student learning experience ratings av-
eraged over several years and described student created VR application pro-
grams [94]. A paper by Hafner et al. is the only publication that has presented
quantitative data for each course iteration — in this case students’ ratings of
different course aspects — but the different VR course iterations were not ex-
plicitly compared, statistically or otherwise [95]. According to our literature
review, our publication [P3] is the first longitudinal study of a VR course,
where the course evolution is studied in detail using statistical analysis to
compare different course iterations.

It can be summarized that most of the VR courses described in the literature
take into account the multidisciplinary nature of VR, emphasize the im-
portance of hands-on experience, and include a group project where a VR ap-
plication program is created.

Burdea estimated in 2004 that only 3% of universities and colleges around
the world taught VR courses, based on his worldwide survey that found 148
universities offering courses on VR [96]. Burdea’s updated VR course list from
2008 demonstrated that the number of such universities had increased to 288
[97].

Justification for teaching VR is rarely discussed in the literature: Burdea as-
serted that the demand for VR specialists in growing as VR technology is being
applied in an increasing number of industries [96], while Stansfield mentioned
the need to educate the next generation of VR researchers [90].

2.6 Main Contributions of the Thesis

The previous research discussed in this section is extended by the work at
hand, which makes the following contributions: the creation of an easy-to-use
open-source VR toolkit (Chapter 3) with several 3DUI building blocks, includ-
ing ones that provide versatile avatar functionality (Section 3.2.1), the first
comprehensive survey on 3DUI developers and their application programs
(Section 4.1), the first studies with quantitative data about VR development
challenges and the ranking of those challenges according to their severity (Sec-
tion 4.2), novel benchmarks for comparing VR toolkits (Section 4.3), the first
longitudinal study with statistical analysis on the evolution of a VR course
(Section 4.4) and the lessons learned (Section 4.4.1), evidence on how VR
toolkits can affect the quality of the created application programs (Section
4.4.2), and case studies involving users of VR application programs (Section 5).

26

3. RUIS Toolkit

RUIS is an open source VR toolkit that utilizes off-the-shelf hardware and a
free to use integrated development environment. Features of RUIS have been
influenced by VR toolkit requirements of Varcholik et al. [70] and the “Reality-
Based Interaction” conceptual framework for non-traditional interfaces by
Jacob et al. [98], which encompasses the themes of naive physics, body aware-
ness, environment awareness, and social awareness.

As mentioned in Section 2.3, the goal of RUIS is to unleash the innovation
potential of hobbyist VR developers by offering an easy to use VR toolkit that
can be adopted by a wide range of people. Publication [P1] introduced and
explained our requirements for a VR toolkit with a low barrier of entry, i.e. a
convenient VR toolkit that allows starting VR application program develop-
ment easily and with little or no previous experience. These requirements are:

Ri. Developing applications is possible without any knowledge about
compilers or linkers

R2. Development is possible with a normal PC or laptop

R3. Motion trackers can be simulated with a mouse and a keyboard
R4. Input devices are abstracted and high-level data is provided
R5. 3D selection and manipulation utilities are provided

R6. The toolkit is free

R7. Applications can be tested without a slow build process

R8. Applications can be easily exported to a different computer

The RUIS toolkit fulfills the above eight requirements. Together RUIS and
the aforementioned requirements are an integral part of this thesis’ answer to
research question 2 posed in Section 1.2. They both attempt to facilitate VR
software development and address its challenges: novice VR developers can
use RUIS to create VR application programs with relatively little effort, and VR
toolkit creators can comply with some or all of the requirements in order to
make their toolkit more convenient and usable for a larger audience of VR de-
velopers.

Requirements R1-R6 lower the barrier of starting the development of VR ap-
plication programs. R7 enables a rapid, iterative development process, while
R8 makes deployment and testing easier. Publication [P1] further elaborates

27

RUIS Toolkit

on how the requirements benefit teaching VR development and address specif-
ic development challenges. Publication [P1] also includes a feature chart with
13 freely available VR toolkits and how they fulfill the requirements R1-R8.

The above requirements for a VR toolkit with a low barrier of entry are based
on our VR development experience and our interpretation of VR literature.
Requirement R2 originates from our wish to make VR development accessible
to as many people as possible. Particularly in the past some laboratories have
developed VR application programs with special hardware such as Silicon
Graphics workstations, which most developers do not have access to. Re-
quirements R3 and Ry stem from our own experiences; on many occasions we
have used 3D input device simulation to test our VR application program
without having the actual hardware at hand, and for rapid, iterative develop-
ment it is crucial that the application build process takes as little time as pos-
sible.

Requirement R1 is based on experiences shared by us and Taylor et al. [69]
regarding linking and compiling VR application programs. Requirements R4,
R6, and R8 were inspired by VR toolkit guidelines of Taylor et al. [69], who
encouraged input device abstraction, permissive licensing, and high portability.
Requirement R5 was influenced by Wingrave and LaViola [7], who reported
that nearly every developer who they interviewed hoped that toolkits would
have building blocks for creating 3DUTISs.

A majority of our requirements are directly related to Von Hippel’s [33] at-
tributes of a high-quality toolkit for user innovation from Section 2.4. Re-
quirements R1, R2, and R4 can be seen as manifestations of Von Hippel’s third
attribute about the toolkit being user friendly. Requirement R5 relates to the
fourth toolkit attribute, which calls for the toolkit to contain commonly used
modules that can be incorporated into custom designs. Requirement R8 is
analogous to the fifth toolkit attribute, which necessitates that the innovators’
custom designs can be reproduced on the manufacturer’s equipment without
modifications.

We have not formally validated the requirements R1-R8, as that would be
very difficult. As such these requirements should be considered as general
guidelines for VR toolkit creators, and not as strict necessities.

Nevertheless, some evidence exists of RUIS toolkit’s capability to facilitate
VR software development and address its challenges: in Publication [P1] we
discovered that 45 developers using RUIS for Unity rated the lack of proper
3DUI building blocks as a significantly less severe issue than a group of 17 de-
velopers using other high-level VR toolkits. Furthermore, a statistical analysis
of the other 9 issues did not find RUIS for Unity developers reporting more
severe difficulties than the other group of developers. Similarly, publication
[P2] demonstrated that 14 developers using RUIS for Processing rated the dif-
ficulty of learning the toolkit as significantly less severe issue when compared
to 18 developers using OpenNI library.

Novice developers’ VR application programs created with RUIS indicate the
toolkit’s suitability for hobbyist VR development purposes. A body of 28 VR
application programs have been created in five different VR courses by a total

28

RUIS Toolkit

of 91 students, 71% of whom had not created VR application programs before
the course. Several of the students’ creations and their quality are presented in
publications [P1] and [P3].

While RUIS is not currently a wildly popular toolkit, it has been adopted in-
dependently by a number of international developers who have not participat-
ed in the VR courses organized by us. RUIS online forum activity reflects the
use of the toolkit, and at the moment the online forum has 58 members who
we have not met before, who have created 34 topics and made 91 posts. Partic-
ularly RUIS’ Kinect-controlled avatar has been popular among developers.

RUIS toolkit or components of it have been used in all the VR application
programs presented in publications [P1, P3—P6] and as such RUIS forms the
cornerstone of this thesis. In the following two sections we introduce the two
variants of RUIS toolkit that exist.

3.1 RUIS for Processing

Development of RUIS for Processing started in 2010, when we started to add
abstraction layers to our existing codebase that had been used in various VR
projects. Our codebase was built on top of Processing, a simple Java-based
development environment used by artists, designers, and teachers, among
others [99].

RUIS for Processing is fundamentally a programming library that comes
with code templates on top of which developers can create their VR application
program. RUIS for Processing is not updated anymore and has become
somewhat obsolete, but it can still be obtained from RUIS website [100].

Initially RUIS for Processing worked in Upponurkka, our laboratory’s VR
environment with two 3D stereo-projection walls [101]. We employed a cus-
tom LED tracking system to track the position of user’s head and two Ninten-
do Wii Remote (Wiimote) controllers with color LEDs attached to them. The
position tracked Wiimotes acted as 6DOF controllers, because they also pro-
vided orientation, which RUIS for Processing yaw-corrected by utilizing sta-
tionary infrared LEDs and Wiimote’s infrared camera. From early on RUIS
supported simultaneous use of multiple stereo 3D displays and keystone cor-
rection for projection walls (Figure 4), provided 6DOF controller simulation
with a mouse and high-level functions for basic 3D selection, manipulation
and navigation. This first version of RUIS for Processing was introduced in
publication [P6].

In 2011 RUIS for Processing became more usable to developers outside our
university, when a new version added support to PlayStation Eye camera and
PlayStation Move controllers. These were used from there on as hand-held
controllers and head-tracking attachments, instead of our custom LED track-
ing system. By spring 2012 RUIS could also utilize Kinect’s full-body motion
tracking, and included a simple calibration process that enabled the use of
PlayStation Move controllers and Kinect-tracked avatar in the same coordinate
system.

29

RUIS Toolkit

Figure 4. Projector keystone corrections and oblique perspective projection in a RUIS for Pro-
cessing VR application program intended to be used in a four wall CAVE-setup.

At that point our ambitions for RUIS as a VR toolkit were too restricted by
Processing’s limitations for VR development, which included its slow graphics
performance, poor content integration capabilities, insufficient 3D program-
ming library, as well as its lack of vital features such as a scenegraph and built-
in physics and audio engines. In an attempt to address these issues, we started
porting RUIS to Unity 3D development suite, which overcomes the aforemen-
tioned limitations of Processing.

3.2 RUIS for Unity

All the features from RUIS for Processing were implemented into RUIS for
Unity by spring 2013. Publication [P1] introduced RUIS for Unity, the princi-
ples behind it, the included features as they were in 2014, and a selection of VR
application programs created with it. A more detailed description of RUIS for
Unity is presented in the master thesis of Matveinen [102], whose work in
2012 and 2013 was instrumental in porting RUIS from Processing to Unity.
The author of this thesis supervised him, designed the RUIS for Unity archi-
tecture, and worked together with him on the implementation.

In 2014 and 2015 another research assistant aided in the continued devel-
opment of RUIS for Unity by adding support for Oculus Rift DK2 and Kinect 2,
and extending the toolkit’s 3D interaction capabilities.

At the moment RUIS for Unity supports Kinect 1, Kinect 2, Oculus Rift, HTC
Vive, PlayStation Move, and Razer Hydra devices. Like RUIS for Processing,
RUIS for Unity also provides an easy calibration process that can find the rigid
transformations between the coordinate systems of the aforementioned devic-
es, allowing their simultaneous use in a shared coordinate system. This ena-
bles developers to experiment and create novel VR application programs that
combine multiple VR devices. For example, students of our 2014 and 2015 VR
courses developed VR games that utilized Oculus Rift, Kinect, and PlayStation
Move controllers in parallel.

30

RUIS Toolkit

VR Application

3DUI Building Blocks

6DOF Wand

Selectable Items

Mecanim Blended Character

6DOF Tracker Abstraction

Multi-purpose VR Camera

L JUEJuJu

J

Input Manager

Input Devices Display Devices

Device configuration

Display Manager

Multi-display configuration

Figure 5. An overview of RUIS for Unity architecture, depicting the coupling between its mod-
ules and the devices that it interfaces with. Arrows represent data flow.

A broad overview of RUIS for Unity software architecture is shown in Figure 5:
RUIS is an add-on for Unity 3D development suite, composed of various soft-
ware modules. A developer uses RUIS to create a VR application program just
as they would use any Unity add-on to implement ordinary software.

Roughly speaking, Unity development is carried out in the following manner:
a developer uses the graphical user interface of Unity Editor to organize tree
structures of game objects in Unity’s scenegraph. Individual game objects act
as containers for Unity components, which can be e.g. renderers, physical col-
liders, audio sources, or custom scripts created by the developer to define in-
teractive behavior. A tree structure of game objects containing various compo-
nents can be saved as a prefab into the Unity asset library. These prefabs can
be summoned from the asset library as reusable elements and arranged in the
Unity Editor.

RUIS for Unity comes with its own VR and 3DUI prefabs that the developer
can drag and drop from the Unity asset library into their project. For instance,
the RUIS input and display managers are incorporated into a single prefab,
because they are both required by VR application programs that have been
implemented with RUIS for Unity.

Each included RUIS prefab can be modified to suit the particular needs of a
VR application program under construction. For example, the RUIS display
manager can be used to configure rendering for multiple displays, where each
display can have either monocular or stereo rendering and act as a normal
display, a head-mounted display, or a CAVE projection wall with keystone cor-

31

RUIS Toolkit

rection and oblique perspective projection. Similarly, the RUIS input manager
provides settings for individual input devices and common coordinate system
settings for cases where multiple different motion tracking systems are used in
conjunction.

RUIS for Unity is primarily meant to work with desktop VR devices, and its
features do not function with mobile HMDs without modifications to the code.

3.2.1 3DUI Building Blocks in RUIS

When developing RUIS for Unity, we have been exploring the utilization of
Unity prefabs as 3DUI building blocks. Over the years we have created and
refined several high-level, reusable RUIS prefabs that can be modified and
combined to create 3DUISs, and as such they fit our definition of 3DUI building
blocks from Section 2.4.1.

It should be noted that the 3DUI building blocks in RUIS are not based on
state machines or data-flow networks, and lack the flexibility of those ap-
proaches. Combining them is possible in Unity’s scenegraph, but otherwise
any meaningful interplay between the 3DUI building blocks is limited to what
we have explicitly implemented. Instead, we have made them highly modifia-
ble. Below we introduce the most prominent 3DUI building blocks in RUIS for
Unity, which are summarized in Table 1.

Table 1. 3DUI building blocks included in RUIS for Unity.

Building block category Prefab name(s) Summary of functionality
RUIS wand OpenVRWands Spatial interaction tools with different VR
PSMoveWand input sources. Each wand can be configured
RazerHydraWand to follow various selection and manipulation
SkeletonWand (Kinect) behaviors.
MouseWand
Selectable object Crate Selectable object prefabs can be interacted
BigLever with RUIS wands. Crate prefab is an example
ThrustLever of a generic selectable object, while the
DoubleDoor others have selectable hinge joints.
Multi-purpose VR camera |RUISCamera Supports HMD rendering, 3D stereo displays,
head-tracked projection wall rendering with
asymmetric frustum, and keystone correction.
Head-tracker assigner HeadTrackers Chooses the head tracking method at run-
time based on the hardware that is available.
Character Mannequin Kinect-tracked avatar where each limb seg-
ment is represented by a separate, simple 3D
model.
ConstructorSkeleton A more complex Kinect-tracked avatar with a
single skinned 3D model.
ControllableCharacter Same as above, but with locomotion controls

and HeadTrackers prefab.
MecanimBlendedCharacter [Same as above, but the Kinect-tracked body
parts can be animated separately.

6DOF motion tracker RUISTracker Allows combining different position and rota-
tion tracker sources, and Kalman filtering
their input.

RUIS wand prefabs abstract different 6DOF controllers and other input devic-
es as generic spatial interaction tools with a shared interface. Currently RUIS
for Unity has wand prefabs for 2D mouse, HTC Vive, Razer Hydra, PlayStation
Move, and Kinect hand tracking. Figure 6 shows the components of a

32

RUIS Toolkit

PlayStation Move wand, including the RUIS Wand Selector component that is
common to all RUIS wand prefabs. The developer can choose which button is
used to select an object, detailed behavior of the selection button such as
whether it acts as a toggle, the length of the selection ray and which object lay-
ers it affects, as well as how the position and rotation of the selected object are
manipulated. In essence each RUIS wand prefab is a 3DUI building block for a
6DOF manipulator whose attributes are chosen to determine its selection and
manipulation behavior. Details of the selection and manipulation process are
described in publication [P1].

¥ RUISPS Move Wand (Script)

Trigger

Figure 6. Attributes of the RUIS PlayStation Move wand prefab that can be modified via Unity
Editor’s graphical user interface.

RUIS offers two types of 3DUI building blocks for creating selectable items
that can be interacted with by using the RUIS wands: 1) a generic selectable
object that can be manipulated in 6DOF and affected by physical forces if
needed, and 2) a selectable hinge joint for implementing levers, wheel control-
lers, doors, and hatches that can be swivelled by RUIS wands.

The most unique high-level 3DUI building blocks of RUIS are the character
prefabs, especially the Mecanim blended character (MBC) prefab. The MBC
integrates motion tracked real-time avatar with locomotion controls and ani-
mation blending. RUIS supports motion tracking via Kinect and can also re-
ceive data from other motion capture systems that can stream data into Unity.

The MBC prefab is relatively flexible; it includes a head-tracked first-person
viewpoint camera that can render into HMDs, which allows immersive VR
experiences where the user can see their avatar reflect their own body pose in
the virtual world. A third-person viewpoint is also possible. Several MBC in-
stances can be utilized concurrently in multiuser VR application programs.

We created the MBC prefab to experiment with hybrid locomotion where the
avatar can be moved in three ways: by real-time motion capture, by using a
hand-held controller, and by physics engine. All physical movement by the
user within the range of the motion tracker will be mirrored by the MBC avatar,
whether taking steps, crouching, leaning, or somersaulting.

33

RUIS Toolkit

If the user wants to travel beyond the range of the motion tracker virtually,
they can utilize hand-held controllers such as the HTC Vive to make the MBC
avatar run, walk, jump, or perform other actions specified by the developer.
When such artificial locomotion is triggered, a predefined animation can be
blended into individual avatar body parts so that the avatar appears to move
naturally in the virtual world. For example, in the case of walking by pushing
an analog stick of a controller, a walk-cycle animation will be temporally
blended into the avatar’s legs for the duration of the walk, while the rest of the
avatar’s body keeps mirroring the motion-tracked user. Developers can replace
the MBC prefab’s default rigged humanoid 3D model and animations with
their own.

If so desired, the MBC avatar can take part in Unity’s physics simulation, so
that the user can push virtual objects with their limbs, step on objects, climb
stairs, fall down into a virtual ravine, etc. An example of a VR application pro-
gram employing the MBC prefab is presented in Section 5.4.

Figure 7 illustrates the most important components and their attributes in
the MBC: pivot determines the location of the avatar’s yaw rotation axis,
ground settings are related to friction and jumping, while locomotion attrib-
utes concern traveling through the use of hand-held controllers. The skeleton
controller settings determine how the motion tracking data poses the avatar,
and whether the individual avatar limbs (bones to be more specific) will be
scaled to match the limb sizes detected by the motion capture system.

Controller (Script)

Kine

Scale Length Only

Figure 7. Various attributes of the Mecanim Blended Character prefab: (Left) Avatar controller
settings and a partial list of the locomotion attributes. (Right) Settings for posing and scaling
the avatar.

Other 3DUI building blocks provided by RUIS for Unity are: a 6DOF motion
tracker abstraction with optional Kalman filtering that allows separate sources
for position and rotation tracking, a multi-purpose VR camera that works to-
gether with the RUIS display manager, and a configurable, automatic head-
tracker assigner for those VR application programs that are intended to work
with several hardware configurations. In general we have attempted to follow

34

RUIS Toolkit

the principle of making RUIS prefabs and their components to adjust them-
selves to the detected hardware, when possible.

Each RUIS component is a C# script, which can be edited to implement such
interaction behavior that is beyond of what can be achieved by configuring the
component’s attributes in Unity Editor’s graphical user interface. For example,
the default behavior for RUIS Selectable component is to have its position and
rotation manipulated upon selection by a RUIS wand. Using C# inheritance,
the RUIS Selectable can be extended with another class, where the default be-
havior could be replaced with something else, e.g. triggering an animation up-
on selection.

The RUIS prefabs presented above correspond to our definition of 3DUI
buildings blocks. As illustrated in Figure 6 and Figure 77 they can be modified,
which affects the subsequent 3D interaction. The RUIS prefabs can also be
combined to create a more complex 3DUI. For example, the selectable object
and hinge joint prefabs in RUIS can be used to create virtual control panels
and 3D widgets, which can be interacted via RUIS wands. Similarly, a RUIS
wand or a 6DOF motion tracker abstraction can be parented under an MBC
instance, so that the former are affected by the MBC locomotion and stay with
the avatar regardless of its movement.

3.2.2 Unique Aspects of RUIS for Unity

As affordable consumer VR hardware has become available recently, software
support and toolkits for that hardware has rapidly emerged. Both Unity and
Unreal development suites have added native support for consumer HMDs,
and developers can utilize consumer VR controllers by installing official
plugins from Valve and Oculus VR. These additions enable a plug-and-play
approach to VR development. This makes it simple to get started with creating
VR application programs, and in this sense RUIS for Unity has more competi-
tion than before. Similarly, recent Unity plugins like Newton VR [103] and
VRTK [104] offer VR developers a rich set of selection and manipulation 3DUI
building blocks that go far further than those of RUIS, providing many more
ways to implement 3DUIs for VR application programs. It is therefore reason-
able to ask how relevant RUIS is anymore in the year 2016.

Fortunately, RUIS for Unity still contains a few unique features that should
make the toolkit appealing to some developers: firstly, there is the aforemen-
tioned ability to easily pair the coordinate systems of multiple motion trackers
through a semi-automated process, which allows the utilization of different VR
input devices in a shared coordinate system. For example, developers can cre-
ate VR application programs where a Kinect sensor is used in conjunction with
a HMD, so that a Kinect-tracked avatar body replaces the user’s body when
viewed through the HMD.

Secondly, the motion-tracked avatar functionality provided by the MBC pre-
fab of RUIS is unmatched. As discussed in the previous section, among other
things the MBC offers a simple way to interactively blend character animation
sequences and real-time motion capture data on the level of individual limbs,
an option for using traditional locomotion controls as part of the MBC’s hybrid

35

RUIS Toolkit

locomotion scheme, and a possibility to have the avatar affected by physics
simulation.

Lastly, RUIS supports the use of multiple stereo 3D displays and keystone
correction for projection walls such as those employed in CAVEs. While this is
not a unique feature, the implementation in RUIS fares very well against other
modern Unity-based VR toolkits with similar functionality, as shown in a re-
cent comparison by Ritter et al. [75].

36

4. Virtual Reality Software Developers

The center of interest for this thesis lies in VR developers and their challenges,
which are examined in this chapter. Methodology for comparing VR develop-
ment challenges and VR toolkits are also presented, along with a VR course
where we taught VR development for students. Most of the results introduced
in this chapter are based on data that we gathered with a 3DUI questionnaire,
which over the years has been answered by a total of 167 developers.

4.1 3D User Interface Survey

In 2011 we formulated an online questionnaire intended for developers who
have developed at least one VR, AR, or MR application program with a 3DUI
that employed spatial input devices such as 6DOF controllers or motion cap-
ture suits. The questionnaire gathered information about the background of
the developer, the 3DUI application program that they had developed, the
hardware and software used, challenges experienced during the development,
and their thoughts on an ideal 3DUI toolkit. The questionnaire and its descrip-
tion of participant requirements can be viewed online [105].

L A N O T

P1
r

25F

i |
1

20~

P2

15

10~

5

rrrr rrrr rrrrmrrrer rrrrrrr rrrrrrrrer

o
2011 2012 2013 2014 2015 2016
Year and Month

Number of Answers

T

Figure 8. 3DUI questionnaire answer histogram. The horizontal line segments indicate which
answers were used for publications [P1-P3].

The distribution of answers collected with the 3DUI questionnaire over time is
presented in Figure 8. Each year, in the beginning of summer, there was a
spike in the number of answers when students of our VR course were asked to
fill the questionnaire. All in all the questionnaire has been answered by 76 de-
velopers who have not been our students. A vast majority of these answers, 57,

37

Virtual Reality Software Developers

are from 2011, when the existence of the 3DUI questionnaire was vigorously
made known to 3DUI practitioners in order to gather data for publication [P2].

From those questionnaire participants who have not been our students, only
17 answered after the release of Oculus Rift DK1 in 2013. Therefore our 3DUI
questionnaire data regarding non-student developers mostly represents the
3DUI development era just prior to Oculus Rift.

Publication [P2] examined the first batch of data collected via the question-
naire, which included answers from a total of 71 participants: 14 students of
our VR course, 13 colleagues, and 44 participants that we were not familiar
with before. The participants were divided into three groups: student, hobbyist,
and professional developers, and their demographics were presented. A major-
ity of the participants were 20-29 years old professionals, had three years or
less of 3DUI development experience, and had created at most three 3DUI
application programs. The full details of the demographics, such as the devel-
opers’ country of residence (Figure 9), are presented in publication [P2].

Country Count

Finland
USA
France
Canada
UK |
Slovenia
Brazil
Austria
Other

0 5 10 15 20 25
Professionals ® Hobbyists M Students

Figure 9. Countries where publication [P2]'s surveyed developers were based in.

Statistics about 56 unique 3DUI application programs were also introduced,
which excluded our students’ 3DUT application programs that were all made
with RUIS for Processing, because that would have introduced a bias into the
results. Exactly half of the reported application programs were created for VR
use, while the rest were AR and MR application programs. They were catego-
rized into research, hobby, and commercial projects. The majority of the 3DUI
application programs were implemented between 2009 and 2011 for research
purposes, by up to 4 developers, utilizing C/C++ programming language, and
used by less than 50 people. The popularity of different input and output de-
vices utilized by the 3DUI application programs were also presented, as well as
the toolkits and programming libraries used in their development. Detailed
information about the surveyed 3DUI application programs, such as the appli-
cation domain distribution (Figure 10), is included in publication [P2].

38

Virtual Reality Software Developers

Application domain Count

Entertainment
Simulator and Training
Visualization

Education

Medicine and Psychiatry
Design and Architecture
Communication and Collaboration
Art

Virtual Heritage

Science and Engineering
Navigation

Advertising

0 5 10 15

M Research Projects M Hobby Projects Commercial Projects

Figure 10. The most common application domains among the 56 different 3DUI application
programs from the survey of publication [P2].

Furthermore, the survey [P2] showed the occurrence of different 3DUI fea-
tures in the application programs and whether they were inherited from a
software toolkit or implemented by the developers themselves. The two most
common features were navigation and object manipulation techniques, which
were present in 75% and 70% of the 3DUT application programs respectively.

Surprisingly, our survey demonstrated that inheriting 3DUI features from
toolkits was rare, especially with complex features. For example, only 12% of
the 3DUI application programs that included navigation techniques and 10%
that included object manipulation techniques inherited their respective fea-
tures. Overall it was more common for developers to implement a feature than
to inherit it from a toolkit, which implies a low rate of feature reuse in the
3DUI developer community. This is in line with Wingrave and LaViola’s ob-
servation that “it remains easier to build than to reuse” [7].

Published in the first quarter of 2012, publication [P2] further elaborated on
our beliefs regarding hobbyist innovation that were first expressed in publica-
tion [P6] from 2011, and made recommendations on how companies could
further encourage such innovation: “A positive feedback loop could emerge
between 3DUI hobbyist community and related technology companies, where
innovations spread and accumulate between commercial developers and
hobbyists [...] Any device manufacturer, that wants to tap into the stream of
hobbyist innovation, should aim to remove unnecessary barriers between
their device and its potential developers.” As far as we know [P2] is also the
first publication to tie hobbyist innovation in the field of VR to the existing
user-led innovation literature: we refer to Hippel and Katz [65] as well as Ao-
yama and Izushi [38].

4.2 Development Challenges

Publication [P2] introduced how existing survey methodology could be applied
in a novel way for quantitative measurement and comparison of challenges in
VR and 3DUI development: we devised 18 statements regarding different de-

39

Virtual Reality Software Developers

velopment difficulties that can be rated on a Likert scale according to their
severity. A collection of such ratings — possibly coupled with other data — can
then be used for statistical analysis of challenges in VR development. Likert
ratings and statistical analysis are widely employed in VR and 3DUI user stud-
ies, but to the best of our knowledge publication [P2] was the first to utilize
them for examining 3DUI development difficulties.

Several of our 18 difficulty statements were inspired by Wingrave and LaVio-
la’s list of development issues [7], while the rest stemmed from our own expe-
rience. For example, getting started with VR development was quite challeng-
ing for the author of this thesis in 2006 when he first begun working with
Upponurkka virtual environment [101] and the custom VR software that was
used prior to RUIS: setting up a development environment with the required
programming libraries and linking them correctly, interfacing with exotic VR
device drivers, having access only to low-level input data from those devices,
etc.

This led the author of this thesis to wonder how big of an obstacle such initial
difficulties would be for aspiring VR hobbyists, and whether that could lead
them to abandon their task of developing VR applications altogether. In an
effort to shed light on the matter, the development difficulty statements were
formulated so that 10 of them concerned early difficulties that could be experi-
enced at the beginning of the development process, while 8 were about later
difficulties that could occur subsequently.

In our 3DUI questionnaire the statements were rated on a seven point Likert
scale, where 1 indicated strong disagreement and 77 indicated strong agreement.
The participants were asked to base their ratings on the development experi-
ence of the particular VR application program that they had described earlier
in the questionnaire.

All the statements were constructed in a manner where a higher rating signi-
fies a more severe difficulty. That way the rating process is consistent for the
questionnaire participants and they can easily indicate whether some difficul-
ties are more severe than others. This also allows us to compare the severity of
the difficulties.

Below we present the 10 statements regarding difficulties that can take place
early in VR and 3DUI development:

A1. The input devices required by my 3DUI application were too expensive
A2. The output devices required by my 3DUI application were too expensive
Getting input device drivers to work was difficult

A3

A4. There were too many steps required between connecting the input device
for the first time and successfully streaming data from the device into my
application

As. Device input data was too low-level for quickly getting started with my
3DUI application

40

Virtual Reality Software Developers

A6. Lack of documentation or tutorials about the 3DUI toolkit made the
development difficult

A7. The 3DUI toolkit had a steep learning curve

A8. The development was difficult because the 3DUI toolkit had a bad
programming interface

Ag. Programming in general was difficult

A10. Creating mathematical algorithms required by my application's 3DUI
was difficult

It should be noted that in this section and in publication [P2] the statements
refer to “3DUI application [program]” and “3DUI toolkit”’. However, within
these two expressions the abbreviation “3DUI” is interchangeable with “VR”,
at least in the context of this thesis.

The following 8 statements concern difficulties that can occur later in the de-
velopment process:

Bi. Input device performance was poor

B2. There were bugs in the 3DUI toolkit that I used for developing my
3DUI application, making the development difficult

B3. Lack of proper 3DUI building blocks made it difficult to develop my
3DUI application

B4. Each added 3D interaction feature increased application complexity,
making the development difficult

B5. Constant testing and re-implementation was required, making the
development difficult

B6. Testing of the application's 3DUI could not be carried out properly
with just mouse and keyboard, making the development difficult

B7. Teamwork was difficult

B8. Legal status of using unofficial drivers and libraries for commercial
purposes was unclear

Publications [P1—P3] examined separate subsets of developers who had an-
swered our 3DUI questionnaire, juxtaposing difficulty statement ratings from
different groups of VR and 3DUI developers. For example in publication [P2]
we compared 30 inexperienced and 27 experienced 3DUI developers, and dis-
covered that the inexperienced group rated A8 and A9 as significantly more
severe.

In the remainder of this section we rank the VR development difficulty
statements by their severity, using difficulty ratings from all the developers
who described creating a VR application program in their answers to our 3DUI
questionnaire between 2011 and 2016 (Figure 8). Those 35 participants who

41

Virtual Reality Software Developers

reported developing AR and MR application programs were not included, be-
cause we specifically wanted to find the most severe VR development challeng-
es, in accordance with research question 1 of this thesis.

Consequently we have difficulty statement ratings from a total of 132 VR de-
velopers, 91 of whom were students in our VR course between 2011 and 2015,
and 41 other developers who have answered our 3DUI questionnaire. The lat-
ter group is generally more experienced, containing 28 professionals, 9 hobby-
ists, and 4 students. Therefore the total pool of 132 participants consists most-
ly of novice VR developers, whose demographics match very closely to the de-
veloper demographics presented in our survey [P2].

Our students used 6DOF controllers and Upponurkka virtual environment
[101], latter of which was replaced with Oculus Rift DK2 in the 2015 course.
Utilization of different input and output devices by the other 41 VR developers
was the following: 11 Kinects, 11 Wiimotes, 11 cameras, 10 6DOF controllers, 6
data gloves, 21 monitors, 15 projectors, 7 CAVE or surround-screen displays, 5
Oculus Rift HMDs, and 4 unspecified HMDs.

The difficulty statement ratings between our students and the other 41 VR
developers were quite similar overall. Only one statistically significant differ-
ence was found, using a Wilcoxon rank-sum test with Bonferroni correction (z
= 3.4, p < 0.001, T = 0.29): our students rated statement B6 as more severe,
indicating that the group with more professionals had a better access to VR
hardware, which is not surprising.

T T T T T T T T T T T T T T T T T T
7~ -

6 . -

Likert ratings
I
T
®
L)
L)
L)
®
L)
®
L)
L)
L)
L)
L)
1

r r r r r r r r r r r r il r r r r il 7
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8
Difficulty

Figure 11. Severity of VR development difficulties (boxplot of Likert ratings).

Finally we examined whether statistically significant differences existed be-
tween the 18 statements, as rated by the 132 VR developers. The Likert rating
distributions for each statement are approximated by the boxplot of Figure 11.
A significant effect of difficulty statements was detected with a Friedman test
((17) = 267.4, p < 0.001). Post-hoc multiple comparisons with Bonferroni
correction was performed using MATLAB, revealing significant differences
between the statements. Table 2 list those differences as well as the associated
effect sizes that were calculated with pairwise comparisons utilizing a Wilcox-
on signed-rank test. An effect size is a measure of observed effect magnitude,
which in our case is the magnitude of difference in severity. From statistics
literature we obtained the formula (r = Z/+/N) to calculate effect sizes for our

42

Virtual Reality Software Developers

test, and thresholds of 0.1, 0.3, and 0.5 for small, medium, and large effect
sizes, respectively [106].

Statistically significant differences and the relative severity between all the
18 statements are illustrated by Figure 12, which was created with MATLAB’s
friedman and multcompare functions using all the VR developers’ ratings. The
more severe ratings a statement has received, the farther right it appears on
the chart. The comparable severity ranking between those statements whose
comparison intervals overlap in Figure 12 should be considered only as weakly
indicative. It is only when comparison intervals between two statements are
disjoint, there is sufficient statistical evidence to say that the rightmost of the
two difficulties is significantly more severe.

Table 2. Pairwise comparisons: a significant difference exists for each table cell with a number

(effect size), so that the (row) statement on the left is more severe than the (column) statement
above. Medium and large effect sizes are denoted with light and dark gray color, respectively.

More Severe Than
Statement A1 | A2 | A3 | A4 | A5| A6 | A7 | A8 | A9 |A10|B1|B2 | B3 |B4|B5|B6|B7|B8
A1 0.28 0.27
A2 0.36 0.30]0.36|0.22 0.23 0.26
A3 0.22
A4 0.32 0.28
A5
A6 0.37 0.34]0.37|0.24 0.26
A7 0.29 0.30
A8
A9
A10
B1 0.21
B2
B3 0.26 0.27
B4 0.32 0.31
B5 0.26 0.36/0.28]0.47 0.35]0.42|0.50/0.39|0.37|0.37|0.33|0.37 0.26]0.38
B6 0.35|0.26{0.40|0.35|0.46|0.30|0.39|0.44/0.49|0.42|0.38(0.41|0.38|0.37 0.34/0.41
B7 0.27 0.26
B8
A5 © -1
A9 S -
A8 © -
B8 © -1
A10 © -
B2 © -
A3 < -
.. B1} — -
3 B3} = E
£ A7} — E
o B4} © .
A4l S .
AlF © -
B7 © -
AB — .
A2 D b
B5 © -
B6 - © -1
5 6 7 8 9 10 11 12 13 14 15

Mean rating ranks

Figure 12. Mean ranks (circles) computed by Friedman test for ratings of A1-A10 and B1-B8.
Ratings between two statements are significantly different if their comparison intervals (hor-
izontal line segments) do not overlap. Rating severity increases from left to right.

43

Virtual Reality Software Developers

As can be seen from Figure 12 and Table 2, both statements B5 and B6 are rat-
ed significantly more severe than the rest of the statements, with the exception
of non-significance between B5, A2, and A6. In the same vein, Figure 12 and
Table 2 demonstrate that A2 and A6 are the most severe of the early difficul-
ties in VR development. On the other end of the spectrum, A5 and A9 are the
least severe difficulties.

There are 12 difficulty statements in the middle of Figure 12, which are not
significantly different from each other in terms of severity. Therefore any se-
verity differences between them, as suggested by their horizontal location, are
indicative at best.

These results directly address research question 1, by revealing what the
most severe challenges in VR software development are according to the 132
VR developers who answered our 3DUI questionnaire. This analysis of the
consolidated difficulty ratings data is previously unpublished, while different
subsets of the same data have been utilized before in publications [P1—-P3].

4.2.1 Difficulty Concepts Gathered with Open-Ended Questions

The statements A1-A10 and B1-B8 were designed to cover the most common
3DUI development difficulties. However, a finite, predefined list of statements
is not likely to contain all the relevant challenges of developers who work with
3DUIS.

Therefore our 3DUI questionnaire included two open-ended questions deal-
ing with 3DUI difficulties: one question asking to describe difficulties encoun-
tered early in the development process and another question about later diffi-
culties. When writing publication [P3], we examined the answers to these two
questions, collected from 45 students who took part in our VR course between
2011 and 2013, and 69 other questionnaire participants.

We pooled the two answer sets regarding early and later difficulties together,
since there were several overlapping difficulty descriptions. We extracted key
ideas from the answers, compressing them into a set of 33 difficulty concepts
that were perceived by the questionnaire participants.

Table 3. Number of mentions about various development difficulties by our students and other
participants who answered open-ended questions of our 3DUI questionnaire.

Development Difficulty Mentions by Students Mentions by Others Total Mentions

Limited VR setup access 14

Bad documentation 10

Poor tracking 8
ersion control

Driver or library issues

Learning the toolkit

Lack of 3DUI experience

Poor audio capabilities

[Time management

Prior knowledge required

Gesture recognition

[=IENEYN S EIEIEN IR
NENEERENEERLEE

FYEIEIEIEIERIERE

We focused on a subset of 11 concepts that each had at least 3 mentions, which
represented 72% of the overall coded answers (Table 3). Most difficulties listed
in Table 3 were reported by students of our course, because answering the

44

Virtual Reality Software Developers

open-ended questions was mandatory to them, whereas the other question-
naire participants could skip those questions.

Majority of the described difficulty concepts of Table 3 were covered by our
predefined difficulty statements, including the most often mentioned issue of
“Limited VR setup access”, which is directly related to statement B6 that was
found to be the most severe difficulty in Section 4.2. The following concepts
were not covered by our difficulty statements: issues with version control that
were due to our students using Unity, lack of 3DUI experience, poor audio
capabilities of the utilized VR toolkit, time management of students who had
trouble allocating enough time for our course, the amount of prior knowledge
that was required to utilize the VR system, and issues with gesture recognition.
Looking at these specific concepts and the number of mentions they received,
we argue that only the latter two and the lack of 3DUI experience could be
considered as premises for new predefined development difficulty statements.
These results were intended to be included in publication [P3] as additional
material, but they were finally dropped in order to shorten the already lengthy

paper.

4.3 VR Toolkit Comparisons

Publication [P2] introduced two new methods for VR and 3DUI toolkit
benchmarking: feature-based and difficulty-based benchmarking, both of
which are based on the idea of utilizing data gathered from developers using a
questionnaire such as ours. In both schemes the questionnaire answers are
partitioned by the toolkits used in the development of the reported VR applica-
tion programs, and each toolkit partition gets ranked by examining develop-
ment experiences or artifacts particular to the benchmark in question.

The feature-based benchmark ranks VR toolkits by the proportion of inherit-
ed and implemented 3DUI features among the surveyed VR application pro-
grams. The idea of the benchmark is that developers, who want to avoid im-
plementing certain features by themselves, could easily determine the toolkits
that are most often utilized for inheriting the desired features. As such the fea-
ture-based benchmark can facilitate reuse of VR and 3DUI software compo-
nents.

The following list of 3DUI features was presented in publication [P2]:

F1. 3D stereographics

F2. Head tracked view rendering
F3. Full-body interaction

F4. Two-handed interaction

F5. Finger interaction

F6. Gesture recognition

F7. Navigation techniques

F8. Object manipulation techniques
Fg. Physics engine

F1o0. 3D audio

45

Virtual Reality Software Developers

The above list was not intended to be all-encompassing, and other question-
naires could include different features. An example of using the feature-based
benchmark was demonstrated in publication [P2]: from a group of 4 different
programming libraries and toolkits to be ranked, Microsoft Kinect SDK had
the highest inheritance ratio of the full-body interaction feature among all the
3DUI application programs that employed it.

The difficulty-based benchmark ranks VR toolkits according the ratings of
the development difficulty statements. The underlying principle is that the
toolkits with low difficulty ratings are easy to use. Thus the difficulty-based
benchmark can assist developers, particularly novices, in selecting the least
difficult VR toolkit for their development needs.

Publication [P2] suggested that difficulty-based benchmarks should mostly
focus on ratings of statements A3-A8 and B2-B6, because the other difficulty
statements are not directly related to 3DUIs or VR toolkits.

As described in Section 3, we used the difficulty-based benchmark in publi-
cations [P1] and [P2] for comparing other toolkits to RUIS for Unity and RUIS
for Processing, respectively. In publication [P3] we used the-difficulty based
benchmark to track the evolution of the RUIS toolkit, by comparing RUIS for
Unity and two versions of RUIS for Processing. Publication [P3] also explored
further ways of benchmarking toolkits, by juxtaposing the number of 3D mod-
els, sound assets, and complex features in VR application programs that were
created with the three versions of RUIS toolkit. Different toolkit users’ willing-
ness to showcase their VR application program to potential employers was also
utilized as a benchmark.

All in all our 3DUI questionnaire has quite an extensive set of questions,
which take time and energy to answer. If the purpose of a questionnaire is to
merely produce data for toolkit benchmarking, then it is sufficient to use a very
narrow subset of items from our 3DUI questionnaire.

4.4 Virtual Reality Course for Students

From 2011 to 2015 we organized an annual VR course in Aalto University,
which each year was completed by between 12 to 28 students. Publication [P3]
introduced the VR course and detailed its structure, learning goals, student
deliverables, assessment, and instructor involvement.

The course focused on teaching VR application program development for
students. It was organized as a project course, where students formed groups
to develop VR application programs together. We selected this approach be-
cause project courses suit the interdisciplinary nature of VR development well,
which requires understanding programming, interface design, human psy-
chology, and content creation.

In publication [P3] we emphasized the importance of hands-on experience in
VR courses and how organizing a VR course with such a hands-on approach is
more feasible now than ever before, due to the availability of affordable con-
sumer VR products. We pointed out that nowadays courses involving VR de-

46

Virtual Reality Software Developers

velopment do not need to be complicated for students because of development
tools that are easy to setup and work with popular, interpreted programming
languages.

Learning assessment results for our course were featured in publication [P3].
The assessment was conducted in 2015 with an additional question form in-
cluding open questions and Likert statements, which the students used for
self-evaluation. Statistical analysis of the statement ratings indicated that the
students learned about basic VR concepts, 3DUIs, VR technology, and VR ap-
plication program implementation. The most evident result was that the stu-
dents expressed becoming better at contributing to VR application program
creation. Answers to open questions suggested that overall the students met
their learning goals during the course.

(e) Curling Simulation, 2014 (f) Antibody, 2015

Figure 13. A selection of VR application programs created by the students of our VR course
between years 2011-2015.

47

Virtual Reality Software Developers

Publication [P3] also presented the small adjustments that we made to the VR
course within the five years that it was organized. Through those years RUIS
toolkit was utilized by all but one student group. More detailed analysis was
performed on the first three course iterations, during which the underlying
platform of RUIS toolkit was switched from Processing to Unity. The effect of
our improvements to RUIS and the course was investigated by comparing the
student-created VR application programs, student feedback, and their answers
to our 3DUI questionnaire.

Our quantitative and qualitative analysis indicated that the latest of the
compared course iterations was the most successful with regard to the VR ap-
plication program quality and student feedback. Examples of students’ work
are presented in Figure 13 and in a video that is available online.!

4.4.1 Practical Considerations for VR Course Organizers

In publication [P3] we outlined the lessons learned during the five years of
arranging the VR course by presenting multiple practical considerations for
VR course organizers. These considerations are summarized below.

Besides having practical and theoretical VR knowledge, VR course instruc-
tors should be familiar with human-computer interaction and immersive tech-
nologies. In order to avoid overwhelming the VR course students with the
amount of knowledge that is involved in developing a VR application program,
there should be some prerequisites for the students. For example, it could be
required that they have already completed courses in related subjects such as
computer graphics or user interface design.

The VR course students should have an ample access to VR hardware, so that
they can readily develop and test their VR application programs. We recom-
mend that the teaching laboratory has one VR workstation per student group,
and that the students can also borrow VR peripherals. Teaching laboratory
equipment and lecture material should be kept up to date if possible, as the
field of VR is rapidly advancing.

Although HMDs are finally affordable, CAVEs still have their place in VR ed-
ucation, because they make it possible for an entire class of students to see VR
application programs being demonstrated clearly. Furthermore, relying solely
on HMDs discourages the development of multiuser VR application programs,
as each HMD requires its own computer, which necessitates implementing a
VR application program running on a network of computers.

On some VR courses instructors might want to focus on teaching VR applica-
tion program development utilizing a specific VR toolkit. In those cases the
choice of the VR toolkit should be based on the course’s learning goals, teach-
ing methods, available hardware, and the background of the students. Moreo-
ver, if the chosen VR toolkit does not require experience with compilers and
linkers, then the course staff needs to spend less time on helping the students
with technical issues such as setting up the development environment.

" Student-created VR application programs from 2013 and 2014: https://youtu.be/09MPIJmGTU8

48

Virtual Reality Software Developers

Other factors that should be taken into account when choosing a VR toolkit
include the quality of the toolkit documentation and the size of the developer
community. Both are significant resources for the students who will use the VR
toolkit. If the visual appearance of VR application programs is important for
the VR course, then the chosen toolkit should contain a 3D scene manager and
an asset pipeline.

4.4.2 Effect of VR Toolkits on VR Development

Our students utilized the first version of RUIS for Processing in the 2011 VR
course, an updated version with PlayStation Move support in 2012, and the
newly created RUIS for Unity in 2013. Because RUIS received extensive up-
dates between 2011 and 2013, publication [P3] focused on those first three
course iterations, which were subjected to a detailed comparative analysis. We
examined the differences in the student-created VR application programs and
the students’ development experiences, finding statistically significant differ-
ences in several metrics: students from the 2013 course experienced less se-
vere development difficulties with RUIS for Unity when compared to RUIS for
Processing of earlier courses. The use of RUIS for Unity toolkit led to increased
utilization of graphics and audio assets, as well as increased complexity in the
VR application programs. Students from 2013 who used RUIS for Unity were
also more willing to showcase their VR application programs for prospective
employers.

It is not surprising that the quality of a VR application program is influenced
by the VR toolkits utilized in its development. With the aforementioned quan-
tifiable distinctions, publication [P3] provided evidence about the possible
ways in which the choice of a VR toolkit can affect the development experience
and the resulting VR application program.

Our analysis of different groupings of students in publication [P3] acts as an
example how different software development aspects can be isolated and stud-
ied: software project courses provide a controlled setting where factors like the
utilized software toolkit can be examined, if the course organizers are willing
to vary them between students or course iterations. Naturally this requires
collecting data from the students and their projects, necessitates certain con-
sistency in the skills and ambitions between the students, and does not allow
extensive changes in the course execution if the study spans several course
iterations. Such research could possibly reveal other interesting effects that
can result from the choice of a software toolkit.

49

5. Case Studies on Virtual Reality Users

While the previous chapters have concentrated on VR developers and matters
related to them, this chapter examines the users of VR application programs.
We describe four VR application programs, each of which was created by us,
utilizing RUIS or its components. The related case studies will also be present-
ed, revealing the experiences of the VR application program users. The analy-
sis in those studies contributes shards of knowledge regarding research ques-
tion 3, about what benefits immersive VR offers to software users in contrast
to traditional application programs. It should be noted that answering re-
search questions 1 and 2 is the main focus of this thesis, and the research ques-
tion 3 is a secondary interest, worthy of further exploration.

5.1 3DUI Puzzle

Publication [P6] provided some justification for utilizing VR and 3DUIs in
specific use cases instead of traditional interfaces, but with possible caveats
related to fatigue. We presented a user study with 16 participants, of whom 11
were novices and 5 experts in 3DUIs. Their task was to solve a 3D puzzle with-
in a 10 minute time limit in three different settings (Figure 14): employing a
two-handed VR interface created with RUIS for Processing, a traditional
mouse and keyboard interface, and a real world puzzle. The publication was
submitted to the IEEE 3DUI Contest 2011, where the VR interface placed 4%
out of 8 participants. The contest restricted the publication size to 2 pages and
also necessitated creating a video of the results.2

—

(a) (b) (c)

Figure 14. Study participant solving a 3D puzzle with (a) VR Interface, (b) mouse and keyboard
interface, and (c) real puzzle pieces.

2 3DUI Contest 2011 RUIS Puzzle entry video: https://youtu.be/0DJhH1MLp1k

51

Case Studies on Virtual Reality Users

The participants used a Likert scale to rate the VR interface significantly more
intuitive and realistic than the mouse interface. When ratings regarding all
three interfaces were compared statistically, the VR interface came out as sig-
nificantly more fun than the mouse interface, but it was also considered to
cause significantly more fatigue than the real puzzle pieces.

Unsurprisingly, 75% of the participants indicated that the real puzzle had the
best performance when asked to explicitly rank the interfaces. Objective per-
formance metrics gave only indicative results: the puzzle was completed on the
first attempt by 6 participants with the VR interface, 11 participants with the
mouse interface, and 15 participants with the real puzzle. This could be partial-
ly explained by learning effects as the puzzle remained the same with each in-
terface, and every participant first used the VR interface and then the mouse
interface, because we wanted to focus on the performance of the former with-
out any accustomization effects. The five expert participants of the study, who
each received two extra attempts with the VR interface, did not solve the puz-
zle consistently enough to draw clear conclusions about the VR interface’s
learning effects.

5.2 Tennis Game with Volumetric Shadows as Depth Cues

In publication [P4] we presented a novel concept of using volumetric shadows
and light shafts (Figure 15) to enhance 3D spatial perception in tasks that em-
ploy motion tracked controllers. When writing the paper in summer 2012 we
were not aware of earlier use of volumetric shadows as depth cues, despite
extensive online search. It is only when compiling this thesis, we came across
the work of Khlebnikov et al. [107], whose publication from December 2011
dealt with volumetric lighting in tumor accessibility planning. We discovered
their paper through a search that included “crepuscular rays”, a term which we
were not familiar with in 2012. Thus, Khlebnikov et al. invented independently
the concept of using volumetric lighting as a depth cue slightly before us.
However, unlike in publication [P4], their lighting calculation was done in an
offline process, there were no interactive volumetric shadows, and they did not
perform user studies with interactive spatial tasks.

Figure 15. (a) Volumetric shadow, (b) normal shadow, and (c) volumetric light shaft.

52

Case Studies on Virtual Reality Users

We implemented the volumetric lighting-based depth cues into a single-player
game that had some resemblance to wall tennis; the goal of the game was to
use virtual rackets represented by two PlayStation Move controllers to strike
virtual balls so that they would hit as close as possible to a center of an archery
target. The virtual balls appeared both in stationary positions within the play-
er’s reach and moving linearly across the playing area.

The game was displayed on a 55” 3D TV, and it employed Kinect full-body
tracking to give the player a better awareness of the virtual space and their
avatar in it. RUIS provided the means to calibrate and map the coordinate sys-
tems between PlayStation Move and Kinect devices.

(a) CO: No shadows, no parallax (b) C1: Stereo 3D, normal shadows

(c) C2: Volumetric lights in rackets (d) C3: Volumetric light in ball

(e) C4: Vol. light from above (f) C5: Stereo 3D, vol. light in ball

Figure 16. Our game’s six different conditions C0O-C5 and their depth cues.

Our game contained six different conditions that are illustrated in Figure 16.
Each of the conditions featured a unique combination of depth cues: Condition
o functioned as a baseline, provided only perspective depth cues, and was the
only condition without head-tracked motion parallax and normal shadows.

53

Case Studies on Virtual Reality Users

Condition 1 exemplified “industry standard” of VR graphics with stereo 3D and
normal shadows. Condition 2 utilized each racket as a volumetric light source,
whereas in Condition 3 each of the virtual balls was a volumetric light source.
Condition 4 featured a volumetric light from far above, and Condition 5 had
stereo 3D while otherwise being the same as Condition 3.

The volumetric lighting and shadows of conditions 2-5 were our contribution
to natural depth cues. These cues can be used to enhance spatial perception
and to assist reaching, interception, and aiming tasks. Their effectiveness was
explored in a user study, where 35 participants played through all the six con-
ditions of our game. We exercised great care in planning the user study, which
utilized a randomized within-subject design with partial counterbalancing.

Spatial task performance was examined by measuring aiming accuracy, in-
terception rate of moving balls, and acquisition time for stationary balls. After
completing each condition the participants’ user experience was examined
extensively via Likert statement ratings, short interviews, and self-assessment
manikin (SAM) ratings for pleasure, arousal, and dominance levels [108].

In the analysis phase we included only those 30 participants who we had
tested to have a stereoscopic acuity better than or equal to 120 arc seconds.
Participant interviews contained descriptions that were condensed into 17 di-
chotomous variables, which were explored via correspondence analysis and by
correlating them with the Likert and SAM ratings.

The results of our analysis suggested that volumetric lighting can impact spa-
tial task performance and user experience positively or negatively, depending
on the particular lighting configuration. The high-above volumetric light
source of Condition 4 turned out to be the most promising of the volumetric
light setups; even though it featured monocular rendering, there were no sta-
tistically significant differences in spatial task performance metrics when
compared to Condition 1 that was the best stereo 3D setup and represented a
typical VR configuration. Conversely, Condition 4 had a significantly higher
moving ball interception rate when compared to two other conditions while
Condition 1 did not.

Our analysis revealed that overall the most satisfying user experience and the
highest level of mastery was provided by Condition 1 with its stereo 3D and
normal shadows. Nearly half of the study participants reported improved spa-
tial perception in conditions that had volumetric lighting. However, the study
participants were divided in their opinion about our game’s use of volumetric
light sources: some participants were distracted by them while others were
pleased with the interesting and exciting lighting.

At the end of publication [P4] we summarized our results as a list of lighting
guidelines for improving spatial perception. Further user studies need to be
conducted to quantify more precisely how well volumetric shadows can im-
prove spatial perception in monocular and stereo 3D conditions, as opposed to
normal shadows.

54

Case Studies on Virtual Reality Users

5.3 3DUI for Blender

Publication [P5] explored the benefits that immersive technology could offer to
3D artists. We introduced a custom 3DUT for the popular Blender 3D modeling
software [109], which is available as open source. The 3DUI employed RUIS
for Processing to handle device input, a 55" 3D TV for stereo 3D, and
PlayStation Move controllers for 3D input and head tracking. Like the 3DUI
puzzle (Section 5.1) from two years earlier, the 3DUI for Blender was submit-
ted to IEEE 3DUI Contest 2013. There it was rewarded with the “Best Low-
Cost, Minimally-Intrusive Solution” award. Again the maximum length for the
paper was 2 pages and the rules required us to create a video of the work.3

The implemented 3DUI (Figure 17a) was a hybrid interface that mixed regu-
lar 2D interaction of Blender with spatial 3D interaction developed by the au-
thor: the position and orientation of the PlayStation Move controller steered a
3D cursor that could be used to draw metaballs, move and rotate objects or
their sub-components, extrude polygons of a mesh, and duplicate objects.
Moreover, the PlayStation Move controller could also be employed as an emu-
lated 2D mouse for selection and axis-constrained manipulation, as well as
projective texture painting. Thus the 3DUI allowed the use of Blender solely
via PlayStation Move and Navigation controllers. Despite having several non-
trivial features, the 3DUI was developed in a short time of 3 weeks by the au-
thor alone.

— Future usage

Rare

MW Secondary

Participants
B
w
N

W Dominating

o w
s L
a s
o
z

‘Stereo3D‘ 3D input ‘ Parallax ‘

(b)

Pro

Novice
Pro

Novice

Figure 17. (a) 3DUI for Blender. (b) Professional and novice participants’ beliefs regarding
future utilization of immersive technology in 3D modelling.

Publication [P5] included a user study with 7 professional 3D artists and 7
novices who had little or no experience with 3D modeling. The task for the
participants was to build a 3D model of a castle with the 3DUI, based on a ref-
erence image. The study gauged the participants’ beliefs on how common the
use of 3D input devices, stereo 3D, and head-tracked motion parallax will be-
come among professional 3D modelers in the next 10 years. After completing
the task half of the participants believed that in the future 3D displays will
dominate over 2D displays in terms of usage, whereas a majority thought that
3D input devices and head tracking will be common, but their use will be sec-
ondary to standard interfaces with 2D input and no head tracking (Figure 17b).

3 3DUI Contest 2013 Blender entry video: https://youtu.be/mF0ioY7ctkM

55

Case Studies on Virtual Reality Users

The participants also answered open questions about the good and bad sides
of the 3DUI: good depth perception, fun, intuitiveness, fatigue (mostly eye
related), and poor controller accuracy stood out as frequently mentioned
themes. Like in the case of our 3DUI puzzle study from publication [P6], the
aforementioned findings suggest that an immersive 3DUI could offer some
benefits for 3D modelling as well, but again with possible caveats.

Furthermore, the participants used a Likert scale to rate the 3DUI in terms
of fun, intuitiveness, ease of use, and subjective performance. The only statisti-
cally significant difference between the two participant groups was that the
professionals considered the 3DUI to be more fun than the novices.

It is our opinion that the quality of the 3D models created by the study par-
ticipants, the short development time of 3 weeks, and the 3DUI’s many fea-
tures demonstrated well how much can be accomplished with affordable, off-
the-shelf equipment and open source software. This ties in with the user-led
innovation theme that was discussed in Section 2.3, and underlines the poten-
tial of easily available technology.

5.4 TurboTuscany VR Experience

We introduced TurboTuscany VR demo in a one-page abstract that was pub-
lished in IEEE VR 2014 conference’s video track [110], along with an associat-
ed presentation video.4 The demo showcased features of RUIS for Unity in
action, including the MBC prefab and its hybrid locomotion interface: Kinect
full-body tracking was utilized simultaneously with traditional, controller-
based 3D character locomotion.

Figure 18. User’s view of their virtual avatar (left), which is tracked with Kinect (right).

* |IEEE VR 2014 video of TurboTuscany: https://youtu.be/wMEaJWsowfQ

56

Case Studies on Virtual Reality Users

Released in August 2013, TurboTuscany was the first publicly available demo
to combine immersive 1%t person view of Oculus Rift DK1 to a Kinect-tracked
virtual body (Figure 18). TurboTuscany also supported Razer Hydra and
PlayStation Move controllers for more accurate positional head tracking and
6DOF manipulation of objects. The absolute orientation tracking of those con-
trollers was employed to correct the yaw angle of Oculus Rift DK1 that was
slowly drifting over time, which is another useful feature of the MBC prefab,
meant for those head-mounted displays that suffer from yaw drift.

No formal user studies were conducted with TurboTuscany, but the feedback
from users who downloaded the demo or tried it in our laboratory was enthu-
siastic:

e “Ireally like the virtual body, it reduces nausea a great deal.”

e “T'was just practicing tai chi with my virtual body on the rooftop lis-
tening to the sound of the wind, and taking in the scenery. The Ki-
nect tracking is near perfect and tracks the entire body! So immer-
sive.”

e “It is amazing how much immersion is added with positional track-
ing and by being able to see your arms and feet in VR. You would
not believe how long I spent crouching to look at things close up and
swaying from side to side to see around barrels. Fantastic work on
this!”

57

6. Discussion

The central focus of this thesis, research question 1, was confronted in Section
4.2, where we applied statistical analysis on development difficulty statement
ratings from a total of 132 VR developers. In this section we discuss the most
severe development challenges that were pointed out by our analysis and re-
lated thesis publications, and propose ways to alleviate them, thus addressing
research question 2 beyond what was presented in Chapter 3. Research ques-
tion 3 and future directions of our work will also be examined.

The results of our statistical analysis indicated that the most severe difficul-
ties in VR development are testing of the user interface without VR equipment
(B6), and the constant cycle of testing and re-implementation of the VR appli-
cation program (B5). Both of these difficulties are inherently connected to the
VR application program’s 3DUI and its evaluation.

VR course students in particular suffered from limited access to VR equip-
ment and its impact on testing. Conversely, in separate surveys both Lahtinen
et al. [30] and Tan et al. [31] found that access to computers/networks was the
least serious practical issue for programming course students. We believe that
this issue of limited access to VR equipment will gradually become less pro-
nounced, when consumer VR products become more common. With the ex-
ception of very rare or expensive VR systems, this problem should solve itself
and does not necessarily require intervention.

The inconvenience caused by the constant cycle of testing and re-
implementation in VR development is not easy to tackle. In the future this
could be partially addressed with automated 3DUI testing that bears resem-
blance to automated 2D user interface testing. In such a scheme recorded or
simulated user actions would be automatically applied to the application pro-
gram during testing, sparing the developers from performing the actions
themselves.

In our experience the cycle of testing and re-implementation is exacerbated
by the following, common 3DUT issues:

I. Implementation of 3D interaction is required: the desired in-
teraction behavior does not exist as a reusable component and needs
to be implemented from scratch.

II. No clear mental image of the desired 3D interaction: this can
occur when exploring new or complex interaction styles, or in those
cases where the developer lacks 3DUI experience.

59

Discussion

III. Unexpected 3D interaction side-effects: the interaction works
mostly as intended, but introduces unexpected and unwanted side-
effects.

Publication [P2] introduced evidence about the prevalence of issue I in 3DUI
application program development, particularly the high implementation rate
of navigation and object manipulation techniques. Issues II and III reflect our
own experiences, what we have witnessed in the students of our VR course,
and the challenges described by Wingrave and LaViola [7].

We argue that the above issues and the constant cycle of testing and re-
implementation will be alleviated with the emergence of widely-accepted 3D
interaction standards and VR toolkits that provide high-level 3DUI building
blocks. When VR and AR application programs become more prevalent, 3DUI
conventions and standards should surface, as has happened with WIMP and
multi-touch interfaces. That should harmonize the 3D interaction expectations
of general public and developers to some extent, increase their knowledge
about 3DUIs, and consequently mitigate aforementioned issues II and III.

3DUI building blocks address issue I head-on, and issues II and III indirectly,
because over time VR developers will learn to understand the interaction ca-
pabilities of their toolkit’s building blocks and the associated side-effects. Ide-
ally VR toolkits would offer versatile and robust 3DUI building blocks that
could be modified and combined in a way that allows a multitude of meaning-
ful 3D interaction behaviors to be created.

The statement regarding difficulties caused by a lack of proper 3DUI build-
ing blocks (B3) was rated significantly less severe than statements B5 and B6,
and significantly more severe than A5 and Ag. There were no statistically sig-
nificant differences in pairwise comparisons with the other 13 difficulty state-
ments, and the lack of 3DUI building blocks stands somewhere in the mid-
range when it comes to development difficulty severity. Nevertheless, we spec-
ulate that 3DUI building blocks will be one of the most important means for
facilitating VR development.

We assert that skillfully crafted, useful 3DUI building blocks would be
adopted by developers for regular use. This would tackle the issue of develop-
ers frequently implementing basic 3DUI features rather than inheriting them,
saving time and effort, while allowing developers to work on a higher level of
abstraction. A VR toolkit with such 3DUI building blocks could potentially
hasten the emergence of 3DUI standards, if it was used to create massively
popular VR application programs.

The RUIS toolkit and the low barrier of entry requirements for a VR toolkit
(R1-R8 in Chapter 3) that it fulfills are our attempt to facilitate VR develop-
ment and address the research question 2. RUIS for Unity also features our
initial effort of providing high-level 3DUI building blocks, which have eased
some areas of VR application program development for us and our students.

Currently the most prominent 3DUI building blocks in RUIS are the MBC
prefab with its humanoid avatar posing and navigation capabilities, the wand
prefabs with their different adjustable selection and manipulation behaviors,

60

Discussion

and the selectable object templates. They are part of our preliminary explora-
tion on how 3DUI building blocks can function in a visual environment like
Unity Editor. We expect that such 3DUI building blocks will become increas-
ingly useful for implementing typical 3DUI concepts: selection, manipulation,
interactive objects, wayfinding, locomotion, gesture controls, and 3D widgets.

Looking at Section 2.4.1 and the sheer number of papers dedicated to differ-
ent approaches in reusable components for building 3D interaction techniques,
it appears that we are not alone in having high hopes for 3DUI building blocks
of some kind.

Why then these existing approaches to reusable 3DUI components have not
become widely adopted among VR and 3DUI developers? We speculate that
this is due to similar reasons as why there is so much fragmentation in VR
toolkits; continuous updates are required for the 3DUI building blocks them-
selves or the underlying hardware abstraction layer to maintain compatibility
with the constantly evolving VR hardware and software. Furthermore, the
3DUI developer community has been relatively small, and the effort towards
creating reusable 3DUI building blocks has mostly come from researchers, and
possibly with other researchers in mind as the target audience. Perhaps this
worldwide community has not yet reached a “critical mass” of developers or
external attention that would support the continuous development of such
high-level tools.

VR industry insiders have estimated that currently Unity 3D is used to create
a vast majority of VR application programs [111, 112]. It is likely that some
kind of 3DUT building blocks will become widely utilized on popular develop-
ment suites such as Unity 3D or Unreal Engine, which already have a critical
mass of developers. Both development suites have been steadily furnished with
VR development features and native support for different HMDs by their re-
spective companies, so it is conceivable that they will one day provide 3DUI
building blocks like they are now providing components for creating 2D inter-
faces.

The company behind Leap Motion finger tracking device has released Unity
components and prefabs for implementing gesture-based interaction tech-
niques, 3D widgets, and other 3DUI elements [113, 114]. These are similar to
the 3DUI building blocks in RUIS for Unity, and referred to with matching
vocabulary; for example, the pinch utility is described as a “fundamental in-
teractive ‘building block.” [114]

Third party developers have recently developed VR toolkits with a rich set of
3DUI building blocks for HTC Vive, two of the most notable toolkits being
Newton VR [103] and VRTK [104] for Unity 3D. Regardless of who creates
reusable 3D interaction technique components, the existing literature on the
subject can guide their work.

The 3DUI building blocks in RUIS for Unity have not been formally studied;
we merely have presented them in this thesis. VR application programs that
utilized our 3DUI building blocks were examined mostly qualitatively in publi-
cations [P1], [P3], and [110], which gives some idea of their capabilities.

61

Discussion

However, this thesis does also contain statistical evidence on how RUIS can
help when compared to other toolkits, as presented in publications [P1] and
[P2]; the former demonstrated how our students who had used RUIS for Unity
rated the difficulty regarding the lack of 3DUI building blocks to be significant-
ly less severe than a group of developers using other high-level VR toolkits.
Publication [P3] showed how we were able to improve RUIS by porting it from
Processing to Unity, resulting in significantly reduced development difficulties,
more complex VR application programs, and more willingness from students
to showcase them.

A student of our 2015 VR course gave the following feedback that aptly de-
scribes the features present in our toolkit: “RUIS was useful, but it abstracted
away all the technical details: I can't use Move / Kinect / Oculus Rift without
it.” Even though the abstraction offered by RUIS was in conflict with this par-
ticular student’s personal learning goals, our VR toolkit performed its role just
as intended; it provided useful, high-level means to utilize VR equipment.

Developers using RUIS are expected to have basic skills with Unity develop-
ment environment, which is relatively easy to learn but still takes some time. If
a developer wants to include features beyond what RUIS offers, they need to
learn C# programming language. VR development could be made even more
accessible by creating a VR toolkit that can be used via a visual programming
language, such as the one used in Alice programming environment [115] or the
Blueprints Visual Scripting of Unreal Engine. Such attempts have been made
by individual 3DUI researchers, as we discussed in Section 2.4.1, but so far
these existing 3DUI frameworks have not become popular among developers.

Visual programming or easier scripting languages in software toolkits might
help inexperienced 3DUI developers in particular, who according to the results
of publication [P2] had significantly more difficulty with the programming
interface of their 3DUI toolkit (A8) and programming in general (A9), when
compared to experienced developers. Providing developers with good tutorials
about the toolkit should also alleviate the former difficulty.

Our analysis of the 132 VR developers in Section 4.2 revealed that from the
early obstacles in VR development, the most severe were the high price of the
output devices (A2) and the lacking VR toolkit documentation (A6). The for-
mer obstacle should diminish over time when the prices of consumer VR
products come down. As for the latter obstacle, VR toolkit authors can and
should address the lack of documentation and tutorials.

Publications [P4—P6] showcased the flexibility of RUIS as a VR toolkit that
can be used to implement different kinds of VR application programs from
various application domains and with assorted VR hardware. They also pre-
sented user studies that explored the benefits of immersive VR technology for
software users, contributing to and strengthening the existing knowledge re-
lated to research question 3. Fun and intuitiveness of VR experiences stood out
in publications [P5] and [P6], whereas the results of publication [P4] suggest-
ed that standard VR depth cues such as stereo 3D and head-tracked motion
parallax improve the user experience and work best with non-distracting

62

Discussion

lightning. The evidence related to improved user experience is in line with ear-
lier research [116, 117], as is the evidence about fun and intuitiveness [118, 119].

We share the concern of Andujar and Brunet [15] that some of our user study
findings — like in many similar studies in the field — might have limited ap-
plicability due to the their very specific hardware and task conditions.

From a goal-oriented viewpoint it might have been better to first collect
quantitative data about VR development challenges, and then offer solutions
to them in the form of a VR toolkit. However, we first formulated the funda-
mental principles of RUIS toolkit utilizing our own experiences and existing
VR literature, and only after development on RUIS had started, we created the
3DUI questionnaire and its development difficulty statements. Further RUIS
development and gathering of quantitative data about the difficulties occurred
side-by-side over the years. The transition from Processing to Unity was our
intervention to address some of the VR development challenges experienced
by us and our students when using Processing.

We utilized our difficulty-based benchmark to compare different versions of
RUIS and other toolkits. The comparisons performed in publications [P1] and
[P2] both involved juxtaposing a relatively homogeneous group of students
who utilized RUIS with another, more heterogeneous group utilizing other
toolkits. The students of the former group all answered the 3DUI question-
naire as part of our VR course, while the latter group were developers from
around the world with different backgrounds. Comparing groups with such
varied compositions is not ideal, but our conjecture in both publications was
that the more heterogeneous group represented a typical developer using the
evaluated toolkits, at least on average.

Conversely, the compared groups of students using different RUIS versions
in publication [P3] were very similar: they all attended our VR course, their
demographics were closely matched, and all but two students created enter-
tainment VR application programs. This student homogeneity and the possi-
bility for a controlled setting are the reasons why in Section 4.4.2 we suggest
that a software project course can act as an environment for studying different
factors in software development.

In publication [P2] we compared the different strategies adopted by Mi-
crosoft with its Kinect and Sony with its PlayStation Move devices, and sug-
gested how producer companies could encourage user innovation. More gen-
eral guidelines can be found in the user-led innovation literature: Von Hippel
et al. listed specific actions that companies can do to embrace user innovation.
For example, user innovators should be credited if a company adopts their
designs [34]. Gault and von Hippel presented a survey showing that a signifi-
cant fraction of user-innovators are freely sharing their innovations in an open
source manner, and suggested updates to intellectual property rights policies
so that they would better facilitate innovation transfer [120].

63

Discussion

6.1 Future Directions

With the recent release of Oculus Rift CV1 and HTC Vive there are a plethora
of new VR games released by mostly small independent developers. Within a
year or two we should be able to say whether VR games will be the first killer
application of VR, or whether they remain as a niche market.

The initial sales of these new consumer HMDs look promising, and there ap-
pears to be more VR developers than ever before, encouraged by the growing
hype that has surrounded VR ever since Oculus Rift DK1 was released. While
this new generation of VR developers will most likely reinvent the wheel many
times over with respect to existing VR literature, we remain confident that the
increasing pool of aspiring VR developers and hobbyists will result in in-
creased user-led innovation and possibly even major breakthroughs or killer
applications. So far the new VR developers have been experimenting copiously
with novel forms of locomotion that minimize nausea: e.g. different forms of
teleporting, portals, vehicle cockpits as static frame of reference, and limiting
field of view.5 We expect that some of these developers will direct their energy
into creating 3DUI building blocks of some form.

Using the lessons learned from our research, we plan to update RUIS for
Unity so that some of the identified developer issues will be alleviated. First
and foremost, we intend to address the low reuse of 3D interaction techniques
by significantly increasing the number and functionality of the 3DUI building
blocks in RUIS. The most straightforward way to achieve this is to integrate
VRTK [104] into RUIS, which has quickly become popular among developers
and entails a permissive software license. The improved 3DUI building blocks
should also ease the constant cycle of testing and re-implementation in the
development, as discussed in Section 6. Additionally, we plan to extend the
documentation of RUIS for Unity and add tutorials, since our research indicat-
ed that the lack of toolkit documentation is one of the most severe early obsta-
cles in 3DUI development.

As we have discussed in this thesis, the field of VR has already benefitted
from user-led innovation, but VR as a topic has largely remained untouched by
the user innovation research community. More research is warranted on user-
led innovation in VR, which presents an opportunity to researchers of that
field.

The ongoing surge in new VR developers provides us with a good set of cir-
cumstances for collecting more data via our 3DUI questionnaire. Based on the
thesis author’s recent interactions with new VR developers in hackathons and
online communities, many of them have some background in game develop-
ment. The challenges faced by them could differ from those of the VR develop-
ers presented in this thesis.

While some in the new generation of developers are eager to consume VR re-
search literature and learn precise terminology, others are not so familiar with
academic definitions of 3DUI, AR, and related terms. Thus, the use of tech-
nical jargon within the rapidly expanding VR and AR communities could be-

® Locomotion in VR: https://youtu.be/p0YxzgQG2-E

64

Discussion

come muddled. We are considering updating our 3DUI questionnaire so that it
is more approachable for hobbyist VR and AR developers, who might be mis-
led or confused by the terminology. For example, a description such as “3DUI
that utilizes 3D spatial input devices” is not necessarily understood by VR
hobbyists.

For the purposes of our questionnaire the definition of 3DUI is too loose, be-
cause it also allows traditional 3D software that is used only via a mouse, a
keyboard, and 2D display, as long as the interaction happens in a 3D context.
Since we are interested in 3DUI application programs with spatial 3D interac-
tion and immersive displays, we had to make the questionnaire introduction
fairly lengthy in order to describe requirements for potential participants.

One limitation of our research is that the 3DUI questionnaire was answered
by mostly Western developers, with only a handful of participants being from
Asia. This failure to reach Asian developers could possibly mean that some
3DUI development related aspects that are relevant in Asia have been over-
looked by our research. In the future this will be addressed by trying to enroll
participants more evenly around the world, and possibly by creating translated
versions of the 3DUI questionnaire.

Our study of development challenges contains the weakness that our prede-
fined difficulty statements A1-A10 and B1-B8 might not cover all the relevant
issues, potentially missing difficulties that we have not thought of. This can be
remedied by adding new statements when unaddressed challenges are discov-
ered, either through literature review or analysis of answers to open-ended
questions about development challenges. Such analysis was demonstrated in
Section 4.2.1, which indicated that our difficulty statements covered extensive-
ly the most frequently mentioned issues experienced by the participants of our
3DUI questionnaire. Each statement could also be re-evaluated and modified
in cases where the statement wording is suspected to cause avoidable bias in
the ratings.

Some participants to our 3DUI questionnaire gave feedback that the ques-
tionnaire was rather long, as it easily takes between 20 to 30 minutes of time
to fill. The long length can induce survey fatigue and degrade the quality of the
answers. This could be alleviated by removing certain parts of the question-
naire based on the study focus; for example, if we only wanted more data on
development difficulties regardless of the developer background or details
about their application programs, then the other questions could be dropped.

Our approach of using surveys to gather information about developers, VR
application programs, and the use of VR toolkits [P2] is time consuming both
for the participants and researchers. A more efficient approach could be if the
development suite — such as Unity 3D or Unreal Engine — would collect some
of this information automatically. For example, data regarding the use of dif-
ferent VR features on the code level (e.g. invocations to methods and variables
directly related to HMD or 6DOF controllers) could be collected during compi-
lation time and sent to the analytics team of the development suite. Such data
could provide further insight on VR developers and their challenges.

65

7. Summary

This thesis presented a holistic view on VR software; firstly, we grounded our
work on existing literature about VR, software engineering, and user-led inno-
vation. Secondly, we surveyed and analyzed VR developers, their challenges,
and development tools extensively. Thirdly, we also assessed VR application
programs and their users’ experiences in case studies.

The research at hand was largely based on our 3DUI questionnaire that was
developed as part of our undertaking to collect data about VR and 3DUI devel-
opers. This data was the foundation for our investigation of various aspects in
3DUI development, and we used it to outlined the general demographics of
3DUI developers, the software and hardware that they employed, and the ap-
plication programs that they created.

As far as we know, our work represents the first attempt to quantitatively
analyze difficulties in VR development by utilizing survey methodology. Re-
search question 1 of the thesis asked what the most severe challenges in VR
software development are. We addressed this question by investigating diffi-
culty ratings from 132 VR developers, which produced the most important
empirical results of the thesis: a ranking of development difficulties based on
their severity, accompanied with a list of statistically significant pairwise dif-
ferences. This ranking has implications on how to facilitate VR development
and alleviate its challenges, which could also potentially affect AR and MR
development.

We identified the constant cycle of testing and re-implementation in VR as
the most serious challenge that could benefit from intervention. Our question-
naire data also revealed other interesting findings, the foremost one being de-
velopers’ tendency to implement basic 3D interaction techniques instead of
inheriting them from VR toolkits. Solutions to these and other development
challenges were proposed. We particularly emphasized the possible ad-
vantages of high-level 3DUI building blocks, which function as reusable com-
ponents that can be modified and combined.

The main effort in the work at hand has gone into the technical development
of the RUIS toolkit, which among the results of this thesis is the most tangible
one. We described how RUIS and the principles behind it are our endeavor to
facilitate VR development and make it easier to hobbyists, who we believe to
have considerable — yet so far mostly untapped — potential for producing user
innovations in the field of VR. Thus, with RUIS toolkit and its principles we
have addressed research question 2, which inquired how to facilitate VR soft-

67

Summary

ware development and address its challenges. We also directly confronted re-
search question 2 with our proposals to alleviate the most severe development
challenges in Section 6.

In our research we have considered students of VR courses as hobbyists of
VR. We presented a detailed account of our VR course and shared the lessons
learned during the five years that we organized it, introducing the first longi-
tudinal study where several VR course iterations were extensively analysed.

This thesis introduced new methods for benchmarking VR toolkits, which
help to compare toolkits by specific characteristics. The use of these bench-
marks was demonstrated via examples; comparisons between our students,
who had utilized different RUIS versions in three successive years, contributed
knowledge on the different ways in which the chosen VR toolkit can affect the
created VR application program and the related development experience.

The thesis also presented several VR application programs of varying nature,
which were created by us and our students with RUIS, demonstrating the flex-
ibility of RUIS for VR development. Three of our VR application programs
were part of user studies, where we explored lighting-based depth cues and
provided evidence that increased fun and intuitiveness can be some of the ad-
vantages of 3DUIs, when compared to traditional user interfaces. These find-
ings addressed research question 3, which asked what benefits immersive VR
offers in contrast to traditional application programs.

Most of all, we enjoyed the raw creativity in our students’ VR application
programs and the knowledge that we had been able to provide them with the
means to construct such creations.

68

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

B. Lang, “At the End of 2014, Tech Giants Sony, Facebook, Google, Samsung,
Apple, and Microsoft All Have a Hand in VR”, Road to VR, 2014.
http://www.roadtovr.com/end-2014-tech-giants-sony-facebook-samsung-
google-apple-microsoft-hand-vr/ (accessed February 16, 2015).

M. Rose, “Oculus Rift has sold more than 100,000 dev kits”, Gamasutra, 2014.
http://gamasutra.com/view/news/220125/Oculus_Rift_has_sold_more_than_
100000_dev_kits.php (accessed December 8, 2014).

“App”, STVR, 2016. http://stv.re/category/app/ (accessed June 12, 2016).

D. Pearson, “VR needs a killer app, not games, to become mainstream”,
GameslIndustry.biz, 2014. http://www.gamesindustry.biz/articles/2014-11-12-
vr-needs-a-killer-app-not-games-to-become-mainstream (accessed February
18, 2015).

D.A. Bowman, E. Kruijff, J.J. LaViola Jr, I. Poupyrev, “3D user interfaces: theory
and practice”, Addison-Wesley, 2004.

M. Green, R. Jacob, “SIGGRAPH "90 workshop report: Software architectures
and metaphors for non-WIMP user interfaces”, Computer Graphics, 25 (3),
1991, pp. 229-235.

C.A. Wingrave, J.J. LaViola Jr, “Reflecting on the design and implementation
issues of virtual environments”, Presence: Teleoperators and Virtual Environ-
ments, 19 (2), 2010, pp. 179-195.

A. Steed, “Some useful abstractions for re-usable virtual environment plat-
forms”, Software Engineering and Architectures for Realtime Interactive Sys-
tems-SEARIS, 2008.

G.D. Crnkovic, “Constructive research and info-computational knowledge gen-
eration”, in: Model-Based Reasoning in Science and Technology, Springer,
2010, pp. 359-380.

W.R. Sherman, A.B. Craig, “Understanding virtual reality: Interface, application,
and design”, Elsevier, 2002.

C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, “Surround-screen projection-based
virtual reality: the design and implementation of the CAVE”, in: Proc. Confer-
ence on Computer Graphics and Interactive Techniques, 1993, pp. 135-142.
http://dl.acm.org/citation.cfm?id=166117.166134 (accessed September 11,
2012).

T. Mazuryk, M. Gervautz, “Virtual reality-history, applications, technology and
future”, 1996.

J.J. LaViola Jr, “Bringing VR and spatial 3D interaction to the masses through
video games”, Computer Graphics and Applications, IEEE, 28 (5), 2008, pp. 10—
15.

I.E. Sutherland, “A head-mounted three dimensional display”, in: Proceedings
of the December 9-11, 1968, Fall Joint Computer Conference, Part |, ACM,
1968, pp. 757-764.

C. Andujar, P. Brunet, “A Critical Analysis of Human-Subject Experiments in
Virtual Reality and 3D User Interfaces”, in: Virtual Realities, Springer, 2015, pp.
79-90.

SEARIS, “Software Engineering and Architectures for Realtime Interactive Sys-
tems Working Group”, 2016. http://www.searis.net/ (accessed April 6, 2016).

69

References

(17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]
(34]

70

R. Pressman, B.R. Maxim, “Software Engineering: A Practitioner’s Approach”,
8th ed., McGraw-Hill, Inc., New York, NY, USA, 2015.

R.M. Taylor IlI, T.C. Hudson, A. Seeger, H. Weber, J. Juliano, A.T. Helser, “VRPN:
a device-independent, network-transparent VR peripheral system”, in: Pro-
ceedings of the ACM Symposium on Virtual Reality Software and Technology,
ACM, 2001, pp. 55-61.

A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, C. Cruz-Neira, “VR Jug-
gler: A virtual platform for virtual reality application development”, in: Virtual
Reality, 2001. Proceedings. IEEE, IEEE, 2001, pp. 89-96.

WorldViz LLC, “Vizard virtual reality toolkit”, 2016.
http://www.worldviz.com/vizard-virtual-reality-software/ (accessed April 5,
2016).

G.J. Kim, K.C. Kang, H. Kim, J. Lee, “Software Engineering of Virtual Worlds”, in:
Proceedings of the ACM Symposium on Virtual Reality Software and Technol-
ogy, ACM, New York, NY, USA, 1998, pp. 131-138.
doi:10.1145/293701.293718.

V. Tanriverdi, R.J. Jacob, “VRID: a design model and methodology for develop-
ing virtual reality interfaces”, in: Proceedings of the ACM Symposium on Vir-
tual Reality Software and Technology, ACM, 2001, pp. 175-182.

K. Kaur, “Designing Virtual Environments for Usability”, PhD Thesis, City Uni-
versity, 1998.

C. Fencott, “Towards a design methodology for virtual environments”, in:
Workshop on User Centered Design and Implementation of Virtual Environ-
ments. University of York, Citeseer, 1999.

F. Mattioli, D. Caetano, A. Cardoso, E. Lamounier, “On the Agile Development
of Virtual Reality Systems”, in: The Steering Committee of The World Congress
in Computer Science, Computer Engineering and Applied Computing (World-
Comp), Athens, 2015, pp. 10-16.

B.A. Myers, “Why are human-computer interfaces difficult to design and im-
plement”, Carnegie Mellon University, Pittsburgh, PA, 1993, Technical Report
CMU-CS-93-183.

M. Csisinko, H. Kaufmann, “VITAL - The virtual environment interaction tech-
nique abstraction layer”, in: Proceedings of the IEEE Virtual Reality SEARIS
Workshop, Waltham, MA, USA, 2010, pp. 77-86.

B. Pellens, F. Kleinermann, O. De Troyer, “An Approach Facilitating 3D/VR Sys-
tem Development Using Behavior Design Patterns”, in: Proceedings of the
IEEE Virtual Reality SEARIS Workshop, Waltham, MA, USA, 2010.

T. Duval, A. Blouin, J.-M. Jézéquel, “When Model Driven Engineering meets
virtual reality: Feedback from application to the Collaviz framework”, in: Soft-
ware Engineering and Architectures for Realtime Interactive Systems (SEARIS),
2014 IEEE 7th Workshop on, IEEE, 2014, pp. 27-34.

E. Lahtinen, K. Ala-Mutka, H.-M. Jarvinen, “A Study of the Difficulties of Novice
Programmers”, SIGCSE Bull., 37 (3), 2005, pp. 14-18.
doi:10.1145/1151954.1067453.

P.-H. Tan, C.-Y. Ting, S.-W. Ling, “Learning Difficulties in Programming Courses:
Undergraduates’ Perspective and Perception”, in: International Conference on
Computer Technology and Development, IEEE, 2009, pp. 42—-46.
doi:10.1109/1CCTD.2009.188.

J.C. Lee, “Hacking the Nintendo Wii Remote”, IEEE Pervasive Computing, 7 (3),
2008, pp. 39-45. doi:10.1109/MPRV.2008.53.

E. Von Hippel, “Democratizing innovation”, MIT Press, Cambridge, Mass., 2005.
E. Von Hippel, S. Ogawa, J.P. De Jong, “The age of the consumer-innovator”,
MIT Sloan Management Review, 53 (1), 2011, pp. 27-35.

(35]

(36]
(37]
(38]

(39]

(40]

(41]
(42]
(43]
(44]

[45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]

(56]

References

A. Gambardella, C. Raasch, E.A. Von Hippel, “The user innovation paradigm:
impacts on markets and welfare”, Social Science Electronic Publishing, Inc,
2015. doi:10.2139/ssrn.2079763.

T. Watts, G. Swann, N.R. Pandit, “Virtual reality and innovation potential”,
Business Strategy Review, 9 (3), 1998, pp. 45-54.

J. Whyte, “Innovation and users: virtual reality in the construction sector”,
Construction Management and Economics, 21 (6), 2003, pp. 565-572.

Y. Aoyama, H. lzushi, “User-led innovation and the video game industry”, in:
Submitted to IRP Conference, London, 2008.

R. Pausch, “Virtual Reality on Five Dollars a Day”, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ACM, New York, NY,
USA, 1991, pp. 265-270. doi:10.1145/108844.108913.

A. Robertson, M. Zelenko, “The Rise and Fall and Rise of Virtual Reality”, The
Verge, 2014. http://www.theverge.com/a/virtual-reality/oral_history (ac-
cessed March 25, 2016).

N. Lavroff, “Virtual Reality Playhouse”, Waite Group Press, 1992.

L. Jacobson, “Garage Virtual Reality”, Sams, 1994.

R. Hollands, “The Virtual Reality Homebrewer’s Handbook”, Wiley, 1996.

K. Pimentel, K. Teixeira, “Virtual Reality: through the new looking glass”,
Windcrest Books, 1993.

G.S. Weber, “The New Medium of Expression: Introducing Virtual Reality and
Anticipating Copyright Issues”, The John Marshall Journal of Information
Technology & Privacy Law, 12 (2), 1993, pp. 175-194.

L. Rebenitsch, “Managing Cybersickness in Virtual Reality”, XRDS, 22 (1), 2015,
pp. 46-51. doi:10.1145/2810054.

T. Schou, H.J. Gardner, “A Wii remote, a game engine, five sensor bars and a
virtual reality theatre”, in: Proceedings of the 19th Australasian Conference on
Computer-Human Interaction: Entertaining User Interfaces, ACM, 2007, pp.
231-234.

L. Gallo, G. De Pietro, I. Marra, “3D interaction with volumetric medical data:
experiencing the Wiimote”, in: Proceedings of the 1st International Confer-
ence on Ambient Media and Systems, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2008, p. 14.

B. Williamson, C. Wingrave, J.J. LaViola Jr, “RealNav: Exploring natural user
interfaces for locomotion in video games”, in: 3D User Interfaces (3DUI), 2010
IEEE Symposium on, IEEE, 2010, pp. 3—10.

J. Giles, “Inside the race to hack the Kinect”, New Scientist, 208 (2789), 2010,
pp. 22-23.

D. Mosher, “Six Months Later, Kinect Hacks Flourish”, Wired, 2011.
http://www.wired.com/2011/05/johnny-lee-kinect-hacking/ (accessed March
4,2016).

A. Basu, C. Saupe, E. Refour, A. Raij, K. Johnsen, “Immersive 3DUI on one dol-
lar a day”, in: 2012 IEEE Symposium on 3D User Interfaces (3DUI), 2012, pp.
97-100. doi:10.1109/3DUI1.2012.6184191.

P. Wins, A. Basu, K. Johnsen, “Off-the-Shelf Electronics Prototyping for Virtual
Reality”, in: IEEE VR Workshop on Off-the-Shelf Virtual Reality, 2012.

P. Wins, A. Basu, K. Johnsen, “Do-It-Yourself Interface Device Prototyping for
Virtual Reality”, The International Journal of Virtual Reality, 11 (3), 2012, pp.
43-48.

N. Schneider, “MTBS Forum”, 2007.
http://www.mtbs3d.com/phpbb/index.php (accessed February 23, 2016).

D. Woligroski, “3D, Virtual Reality, And Immersive Technology At The U Of
OIT”, Tom’s Hardware, 2013.

71

References

(57]

(58]

[59]

(60]

[61]

[62]

(63]

[64]

(65]

(66]

[67]
(68]

(69]

[70]

[71]

[72]

(73]

72

http://www.tomshardware.com/reviews/augmented-reality-immersive-
technology-university-of-ontario,3630.html (accessed February 23, 2016).

L. Palmer, “PR2, a DIY, low cost, high FOV stereoscopic HMD"”, MTBS Forum,
2011. http://www.mtbs3d.com/phpBB/viewtopic.php?f=120&t=13745 (ac-
cessed March 21, 2016).

D. Nelson, “It’s alive!”, MxR Blog, 2012.
http://projects.ict.usc.edu/mxr/blog/it%E2%80%99s-alive/ (accessed March
20, 2016).

M. Bolas, P. Hoberman, T. Phan, P. Luckey, J. Iliff, N. Burba, et al., “Open virtu-
al reality”, in: IEEE Virtual Reality (VR), IEEE, 2013, pp. 183-184.

D.M. Ewalt, “Palmer Luckey: Defying Reality”, Forbes, 2015.
http://www.forbes.com/sites/davidewalt/2015/01/05/palmer-luckey-oculus-
rift-vr/ (accessed March 20, 2016).

P. Rubin, “The Inside Story of Oculus Rift and How Virtual Reality Became Real-
ity”, Wired, 2014. http://www.wired.com/2014/05/oculus-rift-4/ (accessed
March 20, 2016).

E. Carson, “Why virtual reality could finally mend its broken promise”,
TechRepublic, 2015. http://www.techrepublic.com/article/why-virtual-reality-
could-finally-mend-its-broken-promise/ (accessed March 25, 2016).

A. Wawro, “Oculus VR is funding about two dozen Rift-exclusive games”, Ga-
masutra, 2015.
http://www.gamasutra.com/view/news/247979/Oculus_VR_is_funding_abou
t_two_dozen_Riftexclusive_games (accessed April 3, 2016).

C. Baldwin, E. Von Hippel, “Modeling a Paradigm Shift: From Producer Innova-
tion to User and Open Collaborative Innovation”, Organization Science, 22 (6),
2011, pp. 1399-1417. doi:10.1287/0rsc.1100.0618.

E. Von Hippel, R. Katz, “Shifting innovation to users via toolkits”, Management
Science, 48 (7), 2002, pp. 821-833.

C. Shaw, M. Green, J. Liang, Y. Sun, “Decoupled simulation in virtual reality
with the MR toolkit”, ACM Transactions on Information Systems (TOIS), 11 (3),
1993, pp. 287-317.

C. Carlsson, O. Hagsand, “DIVE A multi-user virtual reality system”, in: Virtual
Reality Annual International Symposium, IEEE, 1993, pp. 394—-400.

A. Bierbaum, C. Just, “Software tools for virtual reality application develop-
ment”, in: SIGGRAPH 98 Course 14: Applied Virtual Reality, Orlando, FL, 1998.
R.M. Taylor, J. Jerald, C. VanderKnyff, J. Wendt, D. Borland, D. Marshburn, et
al., “Lessons about virtual environment software systems from 20 years of VE
building”, Presence: Teleoperators and Virtual Environments, 19 (2), 2010, pp.
162-178.

P.D. Varcholik, J.J. LaViola Jr, C. Hughes, “The Bespoke 3DUI XNA Framework: a
low-cost platform for prototyping 3D spatial interfaces in video games”, in:
Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games, 2009,
pp. 55-61.

B. Gilbert, “Valve is solving virtual reality’s input problem”, Engadget, 2015.
http://www.engadget.com/2015/03/04/valve-vr-input/ (accessed March 20,
2016).

A. Zeitler, “Survey and Review of Input Libraries, Frameworks, and Toolkits for
Interactive Surfaces and Recommendations for the Squidy Interaction Library”,
Master’s Thesis, Ludwig Maximilian University of Munich, 2009.

P. Figueroa, S. Gil, R. Oses, J. Toro, C. Rodriguez, C. Benavides, et al., “Visual
Programming for Virtual Reality Applications Based on InTml|”, SBC, 3 (1), 2012.

(74]

(75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]
(89]

[90]

References

P. Figueroa, W.F. Bischof, P. Boulanger, H.J. Hoover, “Efficient comparison of
platform alternatives in interactive virtual reality applications”, International
Journal of Human-Computer Studies, 62 (1), 2005, pp. 73-103.

K.A. Ritter, C.W. Borst, T.L. Chambers, “Overview and Assessment of Unity
Toolkits for Rapid Development of an Educational VR Application”, Interna-
tional Journal for Innovation Education and Research, 3 (7), 2016.

C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko, M. Oberman, et al., “Re-
ality built for two: a virtual reality tool”, ACM SIGGRAPH Computer Graphics,
24 (2), 1990, pp. 35-36.

R.J. Jacob, L. Deligiannidis, S. Morrison, “A software model and specification
language for non-WIMP user interfaces”, ACM Transactions on Computer-
Human Interaction (TOCHI), 6 (1), 1999, pp. 1-46.

G. de Haan, F.H. Post, “StateStream: a developer-centric approach towards
unifying interaction models and architecture”, in: Proceedings of the 1st ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, ACM, 2009,
pp. 13-22.

P. Figueroa, M. Green, H.J. Hoover, “InTml: a description language for VR ap-
plications”, in: Proceedings of the Seventh International Conference on 3D
Web Technology, ACM, 2002, pp. 53-58.

P. Figueroa, W.F. Bischof, P. Boulanger, H.J. Hoover, R. Taylor, “Intml: A data-
flow oriented development system for virtual reality applications”, Presence:
Teleoperators and Virtual Environments, 17 (5), 2008, pp. 492-511.

A. Ray, D.A. Bowman, “Towards a system for reusable 3D interaction tech-
niques”, in: Proceedings of the 2007 ACM Symposium on Virtual Reality Soft-
ware and Technology, ACM, 2007, pp. 187-190.

C. Wingrave, D. Bowman, “Chasm: Bridging description and implementation of
3d interfaces”, in: Proc. of IEEE VR Workshop on New Directions in 3DUIs,
Citeseer, 2005, pp. 85-88.

D. Vanacken, J. De Boeck, C. Raymaekers, K. Coninx, “NiMMIiT: A notation for
modeling multimodal interaction techniques”, in: Proceedings of the First In-
ternational Conference on Computer Graphics Theory and Applications
(GRAPP 2006), INSTICC, 2006, pp. 224-231.

D. Valkov, B. Bolte, G. Bruder, F. Steinicke, “Viargo-a generic virtual reality
interaction library”, in: Software Engineering and Architectures for Realtime
Interactive Systems (SEARIS), 2012 5th Workshop on, IEEE, 2012, pp. 23-28.
D. Martinez, J.L. Lawson, J.P. Molina, A.S. Garcia, P. Gonzélez, J. Vanderdonckt,
et al., “A framework to develop VR interaction techniques based on openinter-
face and AFreeCA”, in: Human-Computer Interaction—INTERACT 2011, Spring-
er, 2011, pp. 1-18.

G.D. Kessler, “A framework for interactors in immersive virtual environments”,
in: Virtual Reality, 1999. Proceedings., IEEE, IEEE, 1999, pp. 190-197.

C.A. Wingrave, “Concept-Oriented design in Chasm: Conversational domain
language inspired 3D user interface design and development”, PhD Thesis,
Virginia Polytechnic Institute and State University, 2008.

D.H. Bell, “Teaching virtual reality”, ACM SIGCSE Bulletin, 28 (2), 1996, pp. 56—
61. d0i:10.1145/228296.228306.

G.W. Zimmerman, D.E. Eber, “When worlds collide!: an interdisciplinary
course in virtual-reality art”, in: ACM SIGCSE Bulletin, ACM, 2001, pp. 75-79.
S. Stansfield, “An introductory VR course for undergraduates incorporating
foundation, experience and capstone”, in: ACM SIGCSE Bulletin, ACM, 2005,
pp. 197-200.

73

References

[91]

[92]

[93]

(94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]
[105]

[106]

[107]

[108]

[109]

74

D. Cliburn, “Incorporating Virtual Reality Concepts into the Introductory Com-
puter Graphics Course”, in: Proceedings of the SIGCSE, ACM, Houston, Texas,
USA, 2006, pp. 77-81.

B. Herbelin, J. Ciger, “Teaching and learning immersion and presence”, in: 11th
Annual International Workshop on Presence, Padova, Italy, 2008, pp. 305-313.
J. Zara, “Virtual Reality course — A natural enrichment of Computer Graphics
classes”, in: Computer Graphics Forum, Wiley Online Library, 2006, pp. 105—
112.

K. Miyata, K. Umemoto, T. Higuchi, “An educational framework for creating VR
application through groupwork”, Computers & Graphics, 34 (6), 2010, pp.
811-819.

P. Hafner, V. Hafner, J. Ovtcharova, “Teaching Methodology for Virtual Reality
Practical Course in Engineering Education”, Procedia Computer Science, 25,
2013, pp. 251-260.

G.C. Burdea, “Teaching Virtual Reality: Why and How?”, Presence: Teleopera-
tors and Virtual Environments, 13 (4), 2004, pp. 463—483.
doi:10.1162/1054746041944812.

G.C. Burdea, “World-wide Survey of Universities Teaching Virtual Reality”,
2008. http://vrtechnology.org/resources/public/survey.html (accessed April
29, 2016).

R.J. Jacob, A. Girouard, L.M. Hirshfield, M.S. Horn, O. Shaer, E.T. Solovey, et al.,
“Reality-based interaction: a framework for post-WIMP interfaces”, in: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ACM, 2008, pp. 201-210.

C. Reas, B. Fry, “Processing: a programming handbook for visual designers and
artists”, Mit Press, 2007, 6812.

T.M. Takala, “Download”, Reality-Based User Interface System, 2016.
http://blog.ruisystem.net/download/ (accessed December 5, 2016).

T. Lokki, T. llmonen, W. Makela, T. Takala, “Upponurkka: An Inexpensive Im-
mersive Display for Public VR Installations”, in: Virtual Reality Conference,
2006, 2006, pp. 315-315.

M. Matveinen, “The Design and Implementation of a Virtual Reality Toolkit”,
Master’s Thesis, Aalto University, 2015.
https://aaltodoc.aalto.fi/handle/123456789/16649 (accessed March 20, 2016).
K. Bradner, N. Abel, A. Hunter, “Newton VR”, 2016.
https://github.com/TomorrowTodayLabs/NewtonVR (accessed September 10,
2016).

H. Ball, “VRTK”, 2016. http://vrtk.io (accessed September 10, 2016).

T.M. Takala, “Survey: Challenges in VR / 3DUI Development”, 2011.
https://docs.google.com/forms/d/1zeelAh4sHY56G1et7pE_g9s0gV7deT47c32
X8MW_o090 (accessed December 5, 2016).

A. Field, “Discovering Statistics using IBM SPSS Statistics”, 4th ed., SAGE Publi-
cations, 2013.

R. Khlebnikov, B. Kainz, J. Muehl, D. Schmalstieg, “Crepuscular rays for tumor
accessibility planning”, Visualization and Computer Graphics, IEEE Transac-
tions on, 17 (12), 2011, pp. 2163-2172.

M.M. Bradley, P.J. Lang, “Measuring emotion: the self-assessment manikin
and the semantic differential”, Journal of Behavior Therapy and Experimental
Psychiatry, 25 (1), 1994, pp. 49-59.

Blender Foundation, “Home of the Blender project”, 2016.
https://www.blender.org/ (accessed May 9, 2016).

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

References

T.M. Takala, M. Matveinen, “Full body interaction in virtual reality with af-
fordable hardware”, in: Virtual Reality (VR), 2014 iEEE, IEEE, 2014, pp. 157—
157.

J. Gaudiosi, “This company dominates the virtual reality business, and it’s not
named Oculus”, Fortune, 2015. http://fortune.com/2015/03/19/unity-virtual-
reality/ (accessed June 12, 2016).

P. Graham, “Palmer Luckey: ‘Something like 90% of projects on Gear VR are
made using Unity’”, VR Focus, 2016.
http://www.vrfocus.com/2016/02/palmer-luckey-something-like-90-of-
projects-on-gear-vr-are-made-using-unity/ (accessed June 12, 2016).

A. Colgan, “New Unity Module for User Interface Input”, Leap Motion Blog,
2016. http://blog.leapmotion.com/ui-input-module/ (accessed June 12, 2016).
A. Colgan, “Power at Your Fingertips: Pinch Utilities for Orion”, Leap Motion
Blog, 2016. http://blog.leapmotion.com/power-fingertips-pinch-utilities-
orion/ (accessed June 12, 2016).

C. Kelleher, D. Cosgrove, D. Culyba, C. Forlines, J. Pratt, R. Pausch, “Alice2:
programming without syntax errors”, in: Proceedings of the 15th Annual Sym-
posium on the User Interface Software and Technology, Paris, France, 2002.

J. Takatalo, T. Kawai, J. Kaistinen, G. Nyman, J. Hakkinen, “User experience in
3D stereoscopic games”, Media Psychology, 14 (4), 2011, pp. 387-414.

M.P. Snow, R.C. Williges, “Empirical models based on free-modulus magnitude
estimation of perceived presence in virtual environments”, Human Factors:
The Journal of the Human Factors and Ergonomics Society, 40 (3), 1998, pp.
386-402.

G. Hackenberg, R. McCall, W. Broll, “Lightweight palm and finger tracking for
real-time 3D gesture control”, in: Virtual Reality Conference (VR), 2011 IEEE,
IEEE, 2011, pp. 19-26.

W. Hirst, M. Helder, “Mobile 3D graphics and virtual reality interaction”, in:
Proceedings of the 8th International Conference on Advances in Computer En-
tertainment Technology, ACM, 2011, p. 28.

F. Gault, E. Von Hippel, “The prevalence of user innovation and free innova-
tion transfers: Implications for statistical indicators and innovation policy”,
MIT Sloan Research Paper No. 4722-09, 2009.

75

This thesis investigates challenges specific
to VR software development, and explores
methodology for such research. The thesis
includes some of the earliest quantitative
analysis on VR software development
challenges, identifies the most severe
development issues, and proposes solutions
to them. This has implications on how VR
software development could be eased. The
analysis is based on data collected from 132
developers of VR application programs,
which forms the backbone of the

research. The thesis introduces RUIS, a
software toolkit for facilitating hobbyist
innovation by simplifying the development
of VR application programs that rely on
immersive displays and spatial interaction
devices. Case studies employing VR
application programs created with RUIS are
included, describing different ways how 3D
user interfaces can affect the experience and
performance of VR software users.

ISBN 978-952-60-7245-6 (printed)
ISBN 978-952-60-7244-9 (pdf)
ISSN-L 1799-4934

ISSN 1799-4934 (printed)

ISSN 1799-4942 (pdf)

Aalto University

School of Science

Department of Computer Science
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

	258785_Aalto_DD_2016_006_Takala_verkkoversio

