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1. Introduction

This thesis is devoted to the study of special varieties arising from the

theory of tensors and phylogenetics. While the main motivations for the

study of these objects come from both pure and applied mathematics, the

main source of inspiration underlying the present research is the glorious

Italian school of algebraic geometry [26]. Their results, ideas, and geo-

metrical intuition have contributed to most of the topics underlying these

fields of research. Indeed, one of the main contributions of this school was

the introduction of many interesting algebraic varieties whose properties

are unexpected. While these geometrical objects have a mathematical in-

terest on their own, they seem to be crucial also for many applications

of algebraic geometry. An instance of this phenomenon is represented by

secant varieties, which are ubiquitous in this overview.

Algebraic geometry primarily deals with systems of polynomial equa-

tions, which are fundamental in many applied sciences such as biology,

computer science, economics, statistics, and many others [141]. Origi-

nally studied by the German and Italian algebraic geometers during the

last century, the subject developed enormously following the abstract ap-

proach of the French school. During the last decades, a wealth of new

ideas coming from other disciplines of pure and applied mathematics has

led to an increased interest in concrete geometrical constructions, many

times introduced and already studied by the classical geometers. Re-

cently, the research directed towards establishing explicit properties of

projective varieties has been enormous, see for example [46].

Our research project follows the line of this renewed interest in complex

and real varieties with exceptional behaviour and in their applications.

More specifically, in the context of tensors, the main questions we study

11



Introduction

are related to the Waring problem and semialgebraic sets, which naturally

appear when the Waring problem is considered over the real numbers. In

the context of phylogenetics, we study the degree bound for equations of

a family of toric varieties encoding probabilistic models on phylogenetic

trees.

The subsequent overview is structured into two parts. The first reviews

real tensors, forms, and their Waring problems. Here we present the re-

sults in Papers I, II, and III. The second part introduces phylogenetics,

phylogenetic models, and explains their connection to algebraic varieties.

In this part, we explain the results in Paper IV.

12



2. Real Tensors

In this part we overview the background, methods, and main results re-

lated to Papers I, II, and III. The main references for tensors and Waring

problems are the books by Geramita [75], Iarrobino and Kanev [79], and

Landsberg [89]. For basic notions of real algebraic geometry and semial-

gebraic sets we refer to the book by Bochnak, Coste, and Roy [22].

2.1 Tensors and ranks

We start introducing the main character of this part. Let K be a field. Let

V1, . . . , Vk, U be K-vector spaces. A function

T : V1 × · · · × Vk → U

is multilinear if it is linear in each of the factors Vj . The vector space of

multilinear functions T is the tensor product V ∗
1 ⊗ · · · ⊗ V ∗

k ⊗ U , whose

elements are called tensors.

Let V be a K-vector space and let V ⊗d denote the d-fold tensor product

V ⊗· · ·⊗V . The symmetric group Sd acts on V ⊗d by permuting the factors.

We define the map π : V ⊗d → V ⊗d as

π(v1 ⊗ · · · ⊗ vd) =
1

d!

∑
σ∈Sd

vσ(1) ⊗ · · · ⊗ vσ(d).

The image of π is the dth symmetric power of V , denoted by SdV . The

elements of SdV are called symmetric d-tensors. The space SdV ∗ can be

identified with the vector space of homogeneous polynomials, or forms, of

degree d on V . Details of the role and the basics of tensors in algebraic

geometry may be found in [89].

A tensor T ∈ V1 ⊗ · · · ⊗ Vk of the form v1 ⊗ · · · ⊗ vk is said to be of rank

13



Real Tensors

one. The rank of a tensor T , denoted by rkK(T ), is the minimum integer s

such that

T =

s∑
i=1

Ti,

where the Ti are tensors of rank one. For instance, matrices are tensors

in V1 ⊗ V2. The usual matrix rank coincides with the tensor rank defined

above for k = 2. Tensor rank is a field-dependent notion.

Similarly, one can define the analogous notion for symmetric tensors

F ∈ SdV , or forms F ∈ R = K[x1, . . . , xn] of degree d. The vector space

consisting of homogeneous polynomials of degree d is denoted by Rd.

The symmetric or Waring rank of F ∈ Rd is the smallest integer s, de-

noted by rkK(F ), such that F can be written as a sum of powers of linear

forms,

F =
s∑

i=1

λiL
d
i ,

where Li ∈ R1 are linear forms, and λi ∈ K. This expression is called a

Waring decomposition of F . The λi-coefficients are needed when the field

K is not algebraically closed. The Waring rank is a field-dependent notion,

see [52]. The Waring problem over a field K for a form F is the determina-

tion of rkK(F ). The computation of some Waring ranks is a familiar task

in linear algebra. The Waring problem for a quadratic form Q is equiva-

lent to the computation of the rank of the associated matrix to Q.

Remarkably, the relationship between the tensor and the Waring rank

is still an open question. The conjectural relationship over the complex

numbers between these two notions of rank was proposed by Comon [50]:

For any symmetric tensor T ∈ SdV , the equality rkC(T ) = rkC(T ) holds.

It is known to be true for d = 2, n = 1, and other sporadic cases.

The origin of the Waring problem can be traced back to the 1770 treatise

Meditationes algebraicæ by Waring [149]. In this notable work, various

statements, without proof, regarding the decomposition of every natural

number as a sum of at most 9 positive cubes, as a sum of 19 biquadratics,

and so forth, made their first appearance. Waring believed that for every

natural number d ≥ 2, there exists a number N(d) such that every posi-

tive integer n can be written as a sum of powers n = md
1 + · · ·+md

N(d), for

some mi ≥ 0. It was only in 1909 that Hilbert [78] proved the existence of

such N(d) for every d.

Since its origins, the Waring problem has been a delightful chapter of

14
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classical geometry and algebra, and its first developments were achieved

in the pioneering work of Sylvester [145]. In the latter, Sylvester com-

pletely solved the case of forms in two variables over the complex num-

bers. Even this case over any field is an active area of research. Reznick

[125] studied the Waring rank of a fixed form in two variables, over K ⊂ C,

as K varies.

Waring problems for several classes of forms have been the subject of

intensive research in the last decade [27, 31, 32, 42, 48, 51, 69, 93, 99,

100, 110, 120]. Algorithms to produce Waring decompositions appear in

[14, 24, 50, 79, 109]. For geometric aspects of the Waring problem con-

nected to linear systems, we refer to the overview by Ciliberto [45].

One of the main objectives of the thesis is to study of the Waring prob-

lem for special families of forms. Apart from an algebraic and geometrical

interest, Waring and tensor ranks along with their geometrical counter-

parts are motivated by applications in algebraic statistics [73], dynamical

systems [3], geometric complexity [30], matrix multiplication complexity

[88], phylogenetics [65], quantum information [43], and signal processing

[49, 76]. In addition to Landsberg’s book [89], see the overview by Carlini,

Grieve, and Oeding [33] for more references.

The majority of the current results in the literature concern ranks over

the complex numbers, but most of the applications are in the real case.

The Waring problem for real forms in two variables is investigated in

[17, 39, 52]. Real monomials in two variables are treated in [14].

The results in Papers I and II contribute to the theory of Waring ranks

over the real numbers.

2.2 Varieties and ranks

Now we introduce some remarkable classical varieties and other rank no-

tions, which are fundamentally linked with the Waring problem. We refer

to textbooks in classical algebraic geometry for details and properties of

these costructions, for example the books by Beltrametti, Carletti, Gal-

larati, and Monti Bragadin [12], and Dolgachev [57].

In these definitions we assume K = C. Let V1, . . . , Vk be vector spaces

15
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and let V = V1 ⊗ · · · ⊗ Vk. The k-factor Segre variety is the image of the

embedding

Seg : PV1 × · · · × PVk → PV,

mapping ([v1], . . . , [vn]) �→ [v1 ⊗ · · · ⊗ vk]. For instance, for k = 2, the Segre

variety can be thought of as the projectivization of the set of matrices,

whose usual rank is one. More generally, the Segre variety can be re-

garded as the projectivization of the set of rank one tensors.

Let V be a vector space. The dth Veronese embedding is the image of

the embedding

υd : PV → P(SdV ),

mapping [v] �→ [vd]. This is the symmetrized version of the Segre variety.

The join J(X,Y ) of two projective varieties X,Y ⊂ Pn is the Zariski

closure of the union of linear spans of pairs of points in X and Y :

J(X,Y ) =
⋃

x∈X,y∈Y,x �=y

〈x, y〉.

For instance, if X ⊂ P3 is a curve and Y is a point q outside the curve,

the join J(X, q) is a cone over the curve. The join of k varieties X1, . . . , Xk

is defined similarly. The kth secant variety σk of a projective variety X is

defined as the k-fold join σk(X) = J(X, . . . ,X). The secant σ2(X) is called

the secant line variety of X. Dimensions and equations of secants are in

general mysterious and have been studied intensively in the last decades,

starting with the work of Palatini [116], Scorza [134, 135], and Terracini

[148]. Geometrical properties of these special projective varieties along

with many applications of those within algebraic geometry are for exam-

ple in the books by Russo [128] and Zak [150].

The first issue in this context is to determine, given a projective vari-

ety X, the dimension of the secants σk(X). The dimensions of all secant

varieties of Veronese varieties have been obtained in the work of Alexan-

der and Hirschowitz [4]. Their result can be rephrased in terms of a

Waring problem for general forms. A general form F ∈ Rd is a sum of

s = 
 1
n+1

(
n+d
n

)
� powers of linear forms, unless

(i) d = 2, where s = n+ 1 instead of 
n+2
2 �;

(ii) d = 3 and n = 4, where s = 8 instead of 7;
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(iii) d = 4 and n = 2, 3, 4, where s = 6, 10, 15 instead of 5, 9, 14, respec-

tively.

For a simplified proof of this result with historical remarks, see [25].

The Grassmannian is the projective variety whose points are linear sub-

spaces of fixed dimension in a given projective space. Dimensions of se-

cant varieties of Segre varieties and Grassmannians are largely unknown.

A conjectural list of secants of those not with the expected dimensions are

presented in [2, 11]. There is a vast literature of partial results on dimen-

sions of these varieties [1, 2, 37, 38]. Nice results on lower bounds for the

degree of secants appear in [47].

A trend in current reseach is the focus on the description of ideals of

secant varieties of Segre varieties and Grassmannians. Motivated by the

computational complexity of matrix multiplication, Strassen showed some

instances in [139]. Further studies were performed in [90, 91, 92]. Raicu

[119] recently provided an explicit description of the ideal of the secant

line variety of Segre varieties. Further references may be found in [33].

Another exciting recent line of research focuses on showing that for a

family of varieties X(d, n) and fixed k the degrees of the minimal gener-

ators of the ideal of the kth secant variety of X(d, n) are bounded by a

constant not depending on d or n. Sam [129] showed that the ideal of kth

secants of dth Veronese embeddings of a projective variety is generated

in bounded degree that is independent of d. This was done with an unex-

pected use of Hopf rings. In [130], the same statement is shown to hold for

syzygies of secants. The latter statements are ideal-theoretic. Analogous

set-theoretic results are known for Segre embeddings and Plücker em-

beddings of Grassmannians by the work of Draisma and Kuttler [63], and

by Draisma and Eggermont [60]. Interestingly, the corresponding ideal-

theoretic generation in bounded degree for secants of Segre varieties and

Grassmannians is still not settled.

We shift gears and consider more general notions of rank from the lit-

erature, including the tensor and the Waring rank as particular cases.

This generalization will put the theory of ranks under a more geomet-

ric light. For this purpose, we assume K to be an infinite field, and we

denote by Pn
K = Pn the projective space over K. Let X ⊂ Pn be a projec-

tive variety and consider a point p ∈ Pn. The X-rank of p, denoted by

rkX(p), is the minimum integer s such that p belongs to the linear span of
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s points of X [29]. Blekherman and Sinn [19] showed that if X is a real

variety, then for any p ∈ Pn
R, the real rank rkX(p) satisfies the inequality

rkX(p) ≤ codim(X) + 2.

The X-border rank is the smallest s such that p ∈ σs(X). The geomet-

ric counterpart of the border rank is incarnated by secant varieties. The

X-rank coincides with the tensor rank when X is a Segre variety. Anal-

ogously, the X-rank coincides with the Waring rank over K when X is a

Veronese variety.

An integer s is an X-generic rank if the set of points in Pn of X-rank

equal to s contains a Zariski open dense subset. It is known that for any

non-degenerate variety X over an algebraically closed field, the X-generic

rank is unique [20]. Moreover, the X-generic rank is the smallest s such

that σs(X) = Pn. Assuming K = C and X to be a Veronese variety, the X-

generic rank is known by the Alexander-Hirschowitz theorem mentioned

before: The computation of the X-generic rank, when X is a Veronese va-

riety, is equivalent to determining the Waring rank of a general form of

fixed degree in a fixed number of variables.

2.3 Typical ranks and real rank boundaries

Let K be the field of real numbers. An integer s is said to be a typical rank

if the set of forms in R = R[x0, . . . , xn] of degree d of real Waring rank s

contains an open Euclidean ball. Unlike the complex generic rank, that is

unique, there may exist more than one typical rank. The smallest typical

rank is the generic rank over C, see [20].

The case n = 1 of forms in two variables has been analyzed in [17, 52]:

For all d and 
d+2
2 � ≤ s ≤ d, there exists a form F in two variables of

degree d whose real Waring rank is s and all forms in an open neigh-

borhood of F satisfy this property as well. That is equivalent to such s

being a typical rank. Bernardi, Blekherman, and Ottaviani [13] showed

the following property of typical ranks: Let X ⊂ Pn
R be a real projective

variety. Then each X-rank between the lowest typical rank and the high-

est typical rank is also typical. In addition, various interesting results

on ternary forms are proven. They proved that four is the unique typical
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rank of real ternary cubics, which was implicit in [8]. For quaternary cu-

bics, they demonstrated that five and six are the only typical ranks. For

ternary quartics, six and seven were shown to be typical ranks, and eight

was proven to be the maximal possible typical rank. It is still unknown if

eight is an actual typical rank for quartics. Even an example of a quartic

ternary form of Waring rank eight is unknown. Finally, for ternary quin-

tics, they showed that the typical ranks are between seven and thirteen.

Paper III deals with typical ranks in the case n = 2, the case of ternary

forms, along the lines of Bernardi, Blekherman, and Ottaviani above. Let

Rd be the set of forms of degree d whose Waring rank is the complex

generic rank. This is a semialgebraic set, whose topological boundary

∂Rd is either empty or of codimension one. One of the goals of Paper III is

to study the variety defined as the complex Zariski closure of ∂Rd, called

the real rank boundary and denoted by ∂algRd. The question of describing

this algebraic boundary was addressed and completely solved for forms

in two variables by Lee and Sturmfels [94], where the components of the

real rank boundary were identified.

As mentioned above, the real rank of a general ternary cubic is four, as

in this case there exists a unique typical rank. Consequently, the bound-

ary ∂R3 is empty.

In Paper III we start the description of the real rank boundary for ternary

quartics. The algebraic boundary ∂algR4 is a reducible hypersurface in the

P14
R of real quartics. One of its irreducible components has degree 51. The

latter component divides the quartics F that can be written as

F =
5∑

i=1

λiL
4
i − λ6L

4
6,

where the λi are positive real numbers. Another irreducible component

divides the region of hyperbolic quartics. The complete list of all irre-

ducible components of this algebraic boundary is still unknown.

A complete answer for ternary quintics is provided. The algebraic bound-

ary ∂algR5 of the set R5 = {F : rkR(F ) = 7} is an irreducible hypersurface

of degree 168 in the P20
R of real quintics. It is a unirational variety having

a parametric representation

G = L5
1 + L5

2 + L5
3 + L5

4 + L5
5 + L4

6L7, where L1, . . . , L7 ∈ R1.

19



Real Tensors

Quartics are more difficult than quintics, since their decompositions are

parameterized by a threefold, while quintics have a unique Waring de-

composition up to scaling.

We now consider ternary sextics. The generic complex rank for sextics

is ten. We show that eleven is a typical real rank. Indeed, the algebraic

boundary is non-empty and we show that ∂algR6 is a hypersurface in the

P27
R of real ternary sextics. One of its irreducible components is the dual

to the Severi variety of rational sextics. This Severi variety has dimen-

sion 17 and degree 26312976 in the P27
R of all sextic curves [18]. The same

proof technique to show the non-emptiness of the algebraic boundary in

the case of ternary sextics applies also to octics. Indeed, fifteen is the

smallest typical rank for octics and it coincides with the size of the fourth

catalecticant of an octic form F , and we are able to conclude that there is

an open set of octics of rank bigger than fifteen. However, for even inte-

gers d ≥ 10, such arguments do not work, since the generic complex rank

exceeds the size of the 
d2�th catalecticant. New techniques are needed to

establish the existence of the hypersurface ∂algRd for d ≥ 9.

Finally, for ternary septics, we show that the real rank boundary ∂algR7

is a non-empty hypersurface in P35
R . One of the components is equal to the

join of the tenth secant variety and the tangential variety to the seventh

Veronese variety of P2. We conjecture that the join of a secant and a tan-

gential variety is a component of the real rank boundary, whenever a form

has finitely many Waring decompositions. Moreover, we conjecture that

it is the unique component of the real rank boundary when a form has a

unique Waring decomposition.

2.4 Waring ranks, apolarity, and lower bounds

Let R = K[x0, . . . , xn] and T = K[∂/∂x0, . . . , ∂/∂xn] be its dual ring of dif-

ferential polynomial operators, acting by the usual (right) differentiation

on R. This action is classically known as apolar action. The apolar action

is a central notion in invariant theory [111].

For a given F ∈ Rd form of degree d, the apolar ideal F⊥ of F is the

homogeneous ideal of all forms G ∈ T such that G ◦ F = 0, where ◦ de-

notes the differentiation. The ideals F⊥ were called principal systems by
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Macaulay [95]. He showed that the ideals F⊥ are Gorenstein, that is,

they are Artinian, graded and whose socle is one-dimensional. Moreover,

Gorenstein ideals of socle degree d are in bijection with forms F ∈ Rd.

At the heart of apolarity stands the apolarity lemma [79, Lemma 1.15].

As before, let F ∈ Rd be a form of degree d. The following are equivalent:

(i) F =
∑s

i=1 λiL
d
i , where the Li are linear forms;

(ii) IX ⊂ F⊥, where IX is the ideal defining a zero-dimensional reduced

scheme X of degree s. Equivalently, X consists of s reduced points.

In the classical literature the collection of these linear forms Li is called

polar s-gon or polar polyhedron. We call this collection of linear forms an

apolar scheme to F . The apolarity lemma is one of the main devices to

solve the Waring problem for forms.

In order to determine the Waring rank of a given form, it is useful to

have powerful lower-bounds. A remarkable lower bound for the Waring

rank is given by catalecticants. The rth catalecticant of F ∈ Rd is a linear

map φr : Tr → Rd−r given by φr(G) = G ◦ F . Catalecticants were intro-

duced by Sylvester [146]. Catalecticant matrices and their vanishing loci

were studied by Iarrobino and Kanev in [79].

Another lower bound appears in [93, Theorem 1.3]. This lower bound

takes into account not only the rank of the catalecticant, but also the di-

mension of the singular locus of the projective hypersurface whose equa-

tion is given by the form F .

The goal of Paper I is to develop other lower bounds for the Waring rank.

The lower bound introduced in Paper I is as follows. We assume K to be

of characteristic zero. Let 0 ≤ p ≤ n be an integer, F ∈ K[x0, . . . , xn] be a

form, and set Fk = ∂F/∂xk for 0 ≤ k ≤ n. If

rkK(F0 +

p∑
k=1

λkFk) ≥ m,

for all λk ∈ K, and the forms F1, . . . , Fp are linearly independent, then

rkK(F ) ≥ m+ p.

This lower bound is particularly effective in the case of real and complex

reducible cubics. The main reason is that when F is a cubic form, the

condition on the Waring rank of F0 +
∑p

k=1 λkFk is a matrix rank condi-

tion. We also derive the classification of reducible cubics over the real
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numbers. This classification involves the signature of a quadric and the

action of the orthogonal groups O(p,R)×O(n+1−p,R). Segre proved that

the reducible cubic surface V (C) ⊂ P3, whose components are a smooth

quadric and a tangent plane, has rank seven and that this is the maximal

rank among cubic surfaces [136]. Our classification result may be viewed

as an extension of this classical result, without the maximality property

of the rank.

2.5 Monomials and apolar schemes

Monomials are interesting since they are the sparsest symmetric tensors.

In other words, they are the simplest forms to study. Over the complex

numbers, we have the recent precise answer by Carlini, Catalisano, and

Geramita [31]: If M = xa00 xa11 . . . xann with 0 < a0 ≤ a1 ≤ . . . ≤ an, then

rkC(M) =
1

a0 + 1

n∏
i=0

(ai + 1).

Over the real numbers, the situation is much more involved. In this

context the only result is for monomials in two variables by Boij, Carlini,

and Geramita [23]: If M = xa00 xa11 , then

rkR(M) = a0 + a1.

The goal of Paper II is to obtain results toward a solution of the real

Waring problem for monomials. Equipped with a Descartes’ rule of signs

type of result, we obtain the following upper bound. If M = xa00 . . . xann

with 0 < a0 ≤ . . . ≤ an, then

rkR(M) ≤ 1

2a0

n∏
i=0

(ai + a0).

This upper bound immediately implies that for a monomial M , whose

least exponent is equal to one, the real and complex Waring ranks coin-

cide. In order to show the lower bound, we introduce a symmetric bi-

linear form B on the finite R-algebra A, whose spectrum consists of the

reduced points apolar to M . If A consists only of R-points, then B is

positive definite [117]. The assumption that a reduced apolar scheme to

M = xa00 xa11 . . . xann , with 2 ≤ a0 ≤ . . . ≤ an, consists of
∏n

i=1(ai + 1) real

points is shown to contradict the positive definiteness of B. We use that
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reduced apolar schemes to a monomial M of degree rkC(M) are complete

intersections [20].

Moreover, Paper II gives an upper bound, which is better than the pre-

vious one, for the infinite family of monomials of type M = x20 · · ·x2n. The

real Waring rank of M satisfies rkR(M) ≤ (3n+1 − 1)/2. A reduced apo-

lar scheme of degree (3n+1 − 1)/2 to M is constructed from specific apolar

schemes of points to its partial derivatives ∂M/∂xi.

2.6 Varieties and spaces of sums of powers

For any form F ∈ R = C[x0, . . . , xn] of degree d, the space parameterizing

all the Waring decompositions of length s is called the variety of sums of

powers and it is denoted by VSP(F, s). Suppose that V (F ), the vanishing

locus of F , is a hypersurface in Pn. If F =
∑s

i=1 λiL
d
i , by projective duality,

each linear form Li gives a point li in the dual projective space Pn∨. The

variety of sums of powers VSP(F, s) parameterizes unordered collections

of s points that can occur in a Waring decomposition of F , see [120] for

a precise definition. In other words, each point of the variety of sums of

powers corresponds to a collection of linear forms Li appearing in a War-

ing decomposition of F .

These varieties received a lot of attention by algebraists and geome-

ters in the nineteenth century: Dixon and Stuart [55], Hilbert [77], Reye

[122, 123, 124], Rosanes [127], Scorza [132, 133], and Sylvester [145],

see [79] for an account of the subject. After they had been forgotten for

decades in the literature, Mukai [105] gave very nice appearances of vari-

eties of sums of powers: For instance, for a general ternary quadric F , the

variety of sums of powers of F is a del Pezzo threefold V5. These results

renewed the interest in these classical varieties. Old and new results con-

cerning the varieties of sums of powers were later collected and explained

with modern terminology by Ranestad and Schreyer in [120] by the means

of apolarity and syzygies. More recently, they showed in [121] that for a

quadric Q ⊂ Pn, the variety of sums of powers is a smooth Fano variety of

index two and Picard number one when n < 5, and singular otherwise.

Despite the fact that there are fascinating results for specific instances,

very little is known in general about these schemes, for example about
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Ternary forms Generic rank Variety of sums of powers Reference

Quadrics 3 del Pezzo threefold V5 Mukai [105]

Cubics 4 P
2 Dolgachev and Kanev [56]

Quartics 6 Fano threefold V22 of genus 12 Mukai [105]

Quintics 7 1 point Hilbert [77], Palatini [115],

and Richmond [126]

Sextics 10 K3 surface V38 of genus 20 Mukai [106]

Septics 12 5 points Dixon and Stuart [55]

Octics 15 16 points Ranestad and Schreyer [120]

Table 2.1. Varieties of sums of powers for ternary forms of degree d = 2, . . . , 8.

their degrees. As these intriguing results witness, the varieties of sums of

powers constitute a peculiar family of very special varieties with marvel-

lous properties. In Table 2.1, we state the current knowledge of varieties

of sums of powers for ternary forms in small degrees.

For a general form, one of the natural questions related to the Waring

problem is the identifiability or the uniqueness of a Waring decomposi-

tions of it. The finiteness of the number of decompositions corresponds

to a zero-dimensional variety of sums of powers. Identifiability questions

are also treated in the more general context of decompositions of tensors

[21]. The cases when the decomposition for a general form is unique are

particularly interesting, as they correspond to the variety of sums of pow-

ers being one point and guarantee the existence of a canonical form of it.

In these regards, a general form F ∈ Rd has a unique presentation as a

sum of s powers of linear forms only in the following cases [72]:

(i) n = 1, d = 2k − 1 and s = k, by [145];

(ii) n = 2, d = 5 and s = 7, by [77, 126, 115];

(iii) n = 3, d = 3 and s = 5, the Sylvester Pentahedral Theorem [145].

In [98], Massarenti and Mella study the birational behaviour of the va-

rieties of sums of powers: For a general quadric in R2, the irreducible

components of the variety of sums of powers are unirational for any s and

rational for s = n + 1. Moreover, they show the rational connectedness of

infinitely many varieties of sums of powers.

Generalizations of varieties of sums of powers are present and studied

in the literature. One of those is due to Massarenti [97], it is analogous to

the concept of X-rank of any projective variety X, and it was studied along

with its birational behaviour. Another direction was presented by Gallet,

Ranestad, and Villamizar in [71], where varieties of apolar schemes were

introduced.
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Paper III introduces the space parameterizing all real Waring decompo-

sitions of a form F . This is called the space of real sums of powers and

it is denoted by SSPR(F ). This space is a semialgebraic set sitting inside

the variety of sums of powers, when s = rkC(F ). This does not need to

coincide with the real part of the variety of sums of powers. Indeed, the

latter is defined as the variety of points in the variety of sums of powers

which are invariant under complex conjugation. One goal of Paper III is

to get an explicit description of the space of real sums of powers for gen-

eral ternary forms of small degrees.

One of the main traits of these semialgebraic sets, studied in Paper III,

is that they are described by hyperdeterminants. This is again a very

classical notion, and it was introduced by Cayley [41]. Let X ⊂ Pn be a

projective variety. The dual variety X∨ ⊂ Pn∨ is the closure of all hyper-

planes tangent to X in some smooth point [74, Chapter 1]. The dual defect

δX of X is the natural number n − 1 − dimX∨. A variety X is said to be

dual defective if the dual defect is positive, it is said to be non-defective

otherwise.

Let X = Seg(PV1 × · · · × PVk) be the Segre variety, where dimVi =

ri + 1. If rj = max{ri, 1 ≤ i ≤ k}, then X is non-defective if and only

if rj ≤
∑

i �=j ri, [74, Chapter 14]. When X is non-defective, the poly-

nomial equation of the hypersurface X∨ is called the hyperdeterminant

of format (r1 + 1) × . . . × (rk + 1), [74, 112]. In order to explicitly de-

scribe the space of real sums of powers, the hyperdeterminants of format

m × (n + 1) × (m + n − 1) are interpreted as Hurwitz forms [142]. More

specifically, the case of interest is for n = 2: The hyperdeterminant of for-

mat 3 ×m × (m + 1) is an irreducible homogeneous polynomial of degree

12
(
m+1
3

)
, and it is the discriminant of ideals of

(
m+1
2

)
points in P2.

The case of ternary cubic forms was considered by Banchi [8]. In Paper

III, we show that the space of real sums of powers is either a disk in the

real projective plane or a disjoint union of a disk and a Möbius strip. The

two cases are characterized in Table 2.2. The algebraic boundary of the

space of real sums of powers is an irreducible sextic curve that has nine

cusps.

The general ternary form F belongs to the Hesse pencil [7],

F = x30 + x31 + x32 + λx0x1x3.
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λ λ < −3 −3 < λ < 0 0 < λ < 6 6 < λ

F hyperbolic not hyperbolic not hyberbolic not hyperbolic

H(F ) not hyperbolic hyperbolic hyperbolic hyperbolic

C(F ) hyperbolic hyperbolic not hyperbolic hyperbolic

Space of sums of powers disk disk �Möbius strip disk disk

Oriented matroid (+,+,+,+) (+,+,+,+) � (+,+,−,−) (+,+,+,−) (+,+,+,+)

Table 2.2. Four possible types of a real cubic F in the Hesse pencil.

There are two ternary forms classically associated to the cubic F , the Hes-

sian H(F ) and the Cayleyan C(F ) [57, Chapter 3].

As shown in Table 2.2, the remarkable feature here is that the hyper-

bolicity behaviour of F,H(F ), and C(F ) determines the structure of the

space of real sums of powers.
Here is a connection to combinatorics. Consider a ternary cubic F = L3

1+

L3
2 +L3

3 +L3
4, whose apolar ideal F⊥ is generated by three quadrics. Then

any three of the linear forms L1, L2, L3, L4 are linearly independent. As a

consequence, there is unique vector v = (v1, v2, v3, v4) ∈ (R\{0})4 satisfy-

ing v1 = 1 and
∑4

i=1 viLi = 0. The oriented matroid [16] of (L1, L2, L3, L4)

is given by the sign vectors
(
+, sign(v2), sign(v3), sign(v4)

)
∈ {−,+}4.

For a general cubic, every point in the space of real sums of powers is

mapped to one of the three sign vectors above. By continuity, this map is

constant on each connected component of the space of real sums of powers.

The last row in Table 2.2 shows the resulting map from the five connected

components to the three oriented matroids. For instance, the fiber over

(+,+,−,−) is the Möbius strip in the space of real sums of powers. This

is the first of the following two cases. For a general ternary cubic F ,

(i) the space of real sums of powers is disconnected if and only if F is

isomorphic over R to a cubic of the form x30+x31+x32+(ax0+bx1−cx2)
3

where a, b, c are positive real numbers;

(ii) the Hessian H(F ) is hyperbolic and the Cayleyan C(F ) is not hyper-

bolic if and only if F is isomorphic to x30 + x31 + x32 + (ax0 + bx1 + cx2)
3

where a, b, c are positive real numbers.

Results on spaces of sums of powers from Paper III cover also the case of

sextics. Here, we derive the space of real sums of powers and its boundary

inside the real part of the variety of sums of powers, which is a real K3

surface, by the 3× 4× 5-hyperdeterminant. It is a polynomial of degree at

most 240 in local coordinates and it completely describes the boundary of

the space of real sums of powers.
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2.7 Quartics

Ternary quartics are beautiful creatures of classical algebraic geometry.

A source is Ciani’s monograph [44]. A modern approach can be found in

Dolgachev’s book [57, Chapter 6]. Ternary quartics are non-hyperelliptic

curves of genus three with 28 complex bitangents. They are one of the ex-

ceptions to the Alexander-Hirschowitz theorem and their generic rank is

six. In his wonderful thesis at the University of Pisa in 1898, Scorza [132]

studied the properties of polar polyhedra of ternary quartics. Mukai [105]

proved that for a general ternary quartic F ⊂ P2, the variety of sums of

powers is a smooth Fano threefold V22, and every V22 arises this way. This

threefold is the intersection of the Grassmannian of four-dimensional sub-

spaces in a five-dimensional space with a suitable thirteen-dimensional

linear subspace [120]. A study of real Fano threefolds has been pursued

by Kollár and Schreyer [85], and Schreyer [131].

Real ternary quartics in P2
R have six topological types, which were clas-

sified by Zeuthen [151]. This classification is reviewed in [118]. The types

are: four ovals, three ovals, two non-nested ovals, hyperbolic, one oval,

and the empty set. The topological types correspond to reality conditions

on the 28 complex bitangents. Klein [84] proved that these types are con-

nected subsets in P14
R .

As for any smooth ternary form, on a general ternary quartic we may

define a theta characteristic. This is a collection of points in the curve

with special properties. Using the language of divisors, a theta character-

istic is a divisor class θ such that 2θ is linearly equivalent to the canonical

divisor KF of the ternary form F . A theta characteristic θ on F is even

or odd, depending on the parity of h0(F, θ). If a ternary form has genus

three, there are 28 odd theta characteristics and 36 even theta character-

istics [57, Chapter 6].

Another intriguing divisor lying on a quartic curve is the intersection

divisor given by contact cubics. A contact cubic for a ternary quartic F

is a ternary cubic whose intersection with F is given by six non-reduced

points, each of whom has multiplicity two. There are 56 contact cubics

given by three bitangents for every even theta characteristic whose six

points do not lie on a conic. In total there are 56×36 = 2016 contact cubics

of this type [118]. Additionally, there are 45 × 28 = 1260 contact cubics

27



Real Tensors

whose six points lie on a conic. These are all the triples of the 28 bitan-

gents of a general ternary quartic, and 1260 + 2016 =
(
28
3

)
. Contact cubics

of the first type can be used to construct a determinantal representation

of a ternary quartic. A modern account of this result is presented by Plau-

mann, Sturmfels, and Vinzant [118]. They also discuss how to derive the

36 representation of it as a determinant of Ax0+Bx1+Cx2, where A,B,C

are symmetric matrices.

The Aronhold invariant of a ternary cubic is a homogeneous polynomial

in the ten coefficients of the cubic. It vanishes on a ternary cubic C if and

only if C is projectively equivalent to the Fermat cubic x30 + x31 + x32.

The Scorza map associates to a general ternary quartic F a pair (S(F ), θ)

where S(F ) is another quartic, the Aronhold covariant, and θ is an even

theta characteristic on S(F ). The quartic S(F ) is the Aronhold invariant

of the ternary cubic obtained as the polar of F with respect to a general

point in P2. Scorza [133] showed that F �→ S(F ) is a degree 36 cover-

ing map and that this map is a birational map between the moduli space

of curves of genus three and the moduli space of curves of genus three

equipped with an even theta characteristic. A modern and neat proof of

this fact was given by Dolgachev and Kanev in [56].

Mukai [107] introduced the strictly biscribed triangles to a general quar-

tic. These are contact cubics for the quartic. There are 288 biscribed tri-

angles on a general ternary quartic. Each even theta characteristic on

its Aronhold covariant S(F ) produces eight of them and, moreover, every

strictly biscribed triangle corresponds to a Waring decomposition of F .

In Paper IV, we study the Scorza map over the reals. Among the 36 pairs

of topological types of smooth ternary quartics in the real projective plane

P2
R, at least 30 pairs are realized by a quartic F and its Aronhold covariant

quartic S(F ). Every pair not involving the hyperbolic type is realizable as(
F, S(F )

)
. The result is obtained with computational methods.

We also analyze the space of real sums of powers for a real quartic. Let

F be a general ternary quartic of real rank six. If it can be written as

F =

6∑
i=1

λiL
4
i ,

where the λi are positive real numbers, then the space of real sums of

powers equals the real part of its variety of sums of powers. If the space

of real sums of powers is a proper subset of the real part of the variety
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of sums of powers, then its algebraic boundary has degree 84. It is the

hyperdeterminant of format 4× 3× 3.
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3. Phylogenetics

In this part we overview the background, methods, and main results re-

lated to Paper IV. Our motivation here comes from applications of alge-

braic geometry in biology. The main reference is the book by Pachter and

Sturmfels [114].

3.1 Markov processes and phylogenetics

A Markov chain is a sequence of random variables {Xi} satisfying the

Markov property

P (Xk+1 = xk+1|X1 = x1, . . . Xk = xk) = P (Xk+1 = xk+1|Xk = xk),

where P (A|B) denotes the conditional probability of A given B. In other

words, the Markov property is satisfied whenever the probability of Xk+1

being in a specific state xk+1 depends only on the state of the previous

random variable Xk in the sequence.

This construction can be generalized to rooted trees. In the definition of

a Markov chain, the underlying rooted tree is a path. Let T be a directed

rooted tree on the set of vertices (or nodes) V , that is, a directed connected

graph without cycles on V , with a distinguished vertex r ∈ V . We denote

by E the set of edges of T . The degree of a vertex is the number of edges

incident to the vertex. The leaves of T are the vertices of T whose degree

is one. The set of leaves is denoted by L. The vertices that are not leaves

are referred to as internal nodes.

To each vertex v ∈ V we associate a random variable Xv, whose set of

states is a finite set Sv. For each vertex v different from the root, there

is a unique vertex u connected to v through an edge, directed from u to
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v. Such a vertex u is the ancestor of v. Each edge e ∈ E, directed from

u to v, comes equipped with a |Sv| × |Su| matrix Me, whose entries are

the conditional probabilities for the states of Xv, given those of Xu. These

matrices are called transition matrices. Analogously to the sequence of

random variables {Xi}, on the tree T , the states of Xv depend uniquely

on the states of the random variable Xu, corresponding to the ancestor u

of v.

This model is very useful in applied mathematics, since it is powerful

to describe different phenomena such as Brownian motion, population

growth, stock market fluctuations, and many others [80]. These tree mod-

els are used in computational biology to study the evolution process of

species and the history of life. In this context, each vertex v of T repre-

sents a species (the random variable) and the states are usually the four

nucleobases forming the DNA: adenine, cytosine, guanine, and thymine

denoted by A,C,G, and T , respectively. The matrices of conditional prob-

abilities Me specify the model of evolution of the species in the tree.

The part of computational biology that models evolution and describes

mutations in this process is called phylogenetics [137]. This is a fer-

tile subject witnessing many connections to various parts of mathematics

such as algebraic geometry [65, 96, 138, 144], combinatorics [15], and rep-

resentation theory [86].

A remarkable structure modeling evolution is a phylogenetic tree. This

is a binary tree, that is, all internal nodes have degree three, except for

the root having degree two. The leaves of a phylogenetic tree are la-

belled by integers and called taxa. The leaves are observed variables,

while the internal nodes are hidden variables. The tree models appearing

in phylogenetics are very intriguing since they naturally give algebraic

varieties. To be more specific, let us fix a tree T with n taxa. Assum-

ing that each leaf has k possible states, there are kn possible observa-

tions at the leaves. The probability φi of an observation i is a polynomial

in the entries of the matrices Me and the probability distribution of the

root, see the example in Figure 3.1. Then we obtain a polynomial map

φ = (φ1, . . . , φkn) : R
N → Rkn , where N is the number of entries of the ma-

trices Me and the probability distribution of the root. The first approach

in phylogenetic algebraic geometry [65] is to study the Zariski closure of

the image of φ over the complex numbers. From the probabilistic per-
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Species DNA

Human CCCCGGTGTACTCTAACCACTGAAG CGGCCGTGTCGGGGACTCACGCGCTTCCCATTCAGCTCTGGATCTGGAAC

Mouse CCCCGTCGCCT TGATCATTTAAACGGGCCCTGTAGCAGGCTAGCT ATCCTATACATTTCTGGGCCTGGAGC

Rat CCCCGTCACCCCATGATCGTTTAAGCGGGCCCTGTAGCAGTCTAGGT GTCCTATTCATTTCTGGACATGGAGC

Table 3.1. Example of DNA alignment from [64].

spective, the relevant points are the real positive points lying in the stan-

dard simplex sitting in Rkn . In phylogenetic algebraic geometry, these

relevant points sit inside the phylogenetic varieties together with extra

points, coming from complex numbers and Zariski closure. The crucial

advantage is that working with complex algebraic varieties makes all the

machinery of algebraic geometry available.

The generators of ideals of these phylogenetic varieties are called phy-

logenetic invariants. They were introduced by Cavender and Felsenstein

[40], and Lake [87] as algebraic tools to reconstruct evolutionary trees.

In general, it is a very difficult task to explicitly compute phylogenetic

invariants. Progress on their computation is subject of current intensive

research [5, 28, 36, 58, 101, 103, 104].

Besides determining phylogenetic invariants, the other main issue is to

infer phylogenetic trees. Suppose that we have a DNA alignment of n

species, as in Table 3.1. Our aim is to reconstruct the phylogenetic tree

underlying the evolution of these species.

The problem of reconstructing ancestral genomes, along with the re-

lated statistical and mathematical questions of comparative genomics, are

treated by Pachter in [113]. To discuss some of the methods address-

ing the phylogenetic reconstruction, we mostly follow the overview by

Casanellas [34]. We choose a model of evolution M and a set of invari-

ants fT , for each binary tree T with n leaves. The data of the alignment

give an empirical probability distribution p̂ ∈ R4n , that comes from count-

ing columns of every possible type in the alignment. Now, we evaluate

each set of invariants at the point p̂ and we pick the binary tree T such

that fT (p̂) is the smallest according to some measure. The problem is that

the choice of the invariants fT does not necessarily differentiate the topol-

ogy of different phylogenetic trees [35, 64]. Only those invariants that are

topologically informative, that is, they vanish on some tree topologies but

not in others, can be seen as meaningful for a statistical test. Casanellas

and Fernández-Sánchez [35] proved that some of these useful invariants

for phylogenetics come from edges of the tree, called edge invariants.
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One of the most common phylogenetic reconstruction methods is the

MLE-algorithm. Given a DNA alignment D and an evolutionary model

M, the objective is to find a binary tree T̂ and parameters θ̂ maximizing

the probability P (D|M, T , θ) among all the possible tree topologies and

parameters. The MLE-algorithm is performed separately on each tree

topology using optimization methods. The weak point of this approach is

due to the magnitude of the number of cases, there are (2n− 5)!! unrooted

phylogenetic trees on n leaves [114, Lemma 2.32].

Another useful reconstruction method is the neighbor-joining method.

A dissimilarity function d on a set of n species is a symmetric map on

pairs of species that outputs a non-negative real number. This dissimilar-

ity function can be interpreted as a distance between pairs of species. In

other words, it is meant to give an estimate of the amount of mutations

that separate apart two species. To approximate the amount of observed

and unobserved mutations that occurred between two species, the Jukes-

Cantor distance is typically chosen as distance function. It is defined as

−3
4 ln(1 − 4

3f), where f is the fraction of different nucleotides in both se-

quences.

Given a dissimilarity function d, the neighbor-joining algorithm chooses

two species x and y minimizing the function

D(x, y) = d(x, y)− 1

n− 2

∑
z

(d(x, z) + d(y, z)),

where z runs over all the species. Then the two species x and y are

joined by two edges through an internal node. The algorithm introduces a

species t at the internal node substituting x and y. At each step, the num-

ber of species decreases and the function D is redefined. The algorithm

gives the correct phylogenetic tree if the species are actually organized in

a tree and the distances used are the lengths of the paths between the

species in the tree.

3.2 Models and varieties

Here we explore in more detail some phylogenetic models and we draw

more formally the connection to algebraic geometry. Let T be a directed

rooted tree, let Xv be the random variables corresponding to the vertices

of T , and S be their finite set of states. We define W to be the complex
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vector space spanned by the elements of S, that is W = ⊕s∈SCs. To each

vertex v we attach a vector space Wv isomorphic to W , whose basis is {αv}.

Defining a model M is equivalent to selecting a subspace Ŵ ⊆ End(W )

of matrices. To each edge e ∈ E of T , we associate an isomorphic copy of

Ŵ , denoted by Ŵe. Each entry of any matrix in Ŵe is labelled by pairs of

elements in S.

The models mostly used in the literature, listed in chronological order,

are:

(i) The Jukes-Cantor model. It was introduced by Jukes and Cantor in

[81]. In this model, S has four elements and the transition matrices

are of the form:

⎡
⎢⎢⎢⎢⎢⎣

a b b b

b a b b

b b a b

b b b a

⎤
⎥⎥⎥⎥⎥⎦
.

(ii) The Cavender-Farris-Neyman model. It was introduced by Neyman

in [108]. In this model, S has two elements and the transition ma-

trices are of the form: ⎡
⎣a b

b a

⎤
⎦ .

(iii) The 2-Kimura model. It was introduced by Kimura in [82]. In this

model, S has four elements and the transition matrices are of the

form:

⎡
⎢⎢⎢⎢⎢⎣

a b c b

b a b c

c b a b

b c b a

⎤
⎥⎥⎥⎥⎥⎦
.

(iv) The 3-Kimura model. It was introduced by Kimura in [83]. In this

model, S has four elements and the transition matrices are of the

form:
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⎡
⎢⎢⎢⎢⎢⎣

a b c d

b a d c

c d a b

d c b a

⎤
⎥⎥⎥⎥⎥⎦
.

(v) The general Markov model. In this model, the space of matrices Ŵ

coincides with End(W ) and the number of states is arbitrary.

As an example, let us consider the following directed rooted tree T with

a root r, two leaves l1 and l2, and two edges a and b.

r

l1l0

ba

Figure 3.1. The rooted tree T

We consider the Cavender-Farris-Neyman model on T . Suppose that the

probabilities of r to be 0 and 1 are, respectively, σ0 and σ1. Let us de-

note the transition matrices associated to the edges a and b in Figure 3.1,

respectively, by:

A =

⎡
⎣a0 a1

a1 a0

⎤
⎦ and B =

⎡
⎣b0 b1

b1 b0

⎤
⎦ .

Here a0 is the conditional probability P (l0 = 0|r = 0) = P (l0 = 1|r = 1),

and a1 is P (l0 = 0|r = 1) = P (l0 = 1|r = 0), where l0 is a leaf in Figure

3.1. Likewise b0 and b1 are conditional probabilities for the states of the

leaf l1 in Figure 3.1. The parameters of the model are σ0, σ1, a0, a1, b0, b1.

The probability distribution at the leaves l0, l1 is encoded in the following

matrix with four entries corresponding to the possible states 00, 01, 10, 11:
⎡
⎣σ0a0b0 + σ1a1b1 σ0a0b1 + σ1a1b0

σ0a1b0 + σ1a0b1 σ0a1b1 + σ1a0b0

⎤
⎦ .

This matrix can be understood as a projective morphism P1×P1×P1 → P3.

The closure of its image is the secant line variety of the Segre variety

P1 × P1.
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We give a more algebraic framework for the models and the map given

in the example, following [28, 101]. Let us define the following vector

spaces,

WV =
⊗
v∈V

Wv, WL =
⊗
�∈L

W�, ŴE =
⊗
e∈E

Ŵe.

Let ψ̂ : ŴE → WV be the map whose dual is defined as

ψ̂∗
(⊗

v∈V
αv

)
=
⊗
e∈E

(
αu(e) ⊗ αv(e)

)∗
|Ŵe

,

where the edge e connects u(e) to v(e). The map ψ̂ is the map giving the

probability distribution to the leaves. Now, we define the map πL : WV →
WL to be

πL =
(⊗

v∈L
idWv

)
⊗
(⊗

v∈N
δWv

)
,

where N denotes the set of internal nodes and δWv is the sum of the duals

of the basis {αv}, that is, δWv is the sum of the coordinates. The map π is a

contraction map and it sums up the probabilities of all states of vertices as

long as they differ on the nodes. We obtain a map φ̂ = πL ◦ ψ̂ : ŴE → WL

between vector spaces. The map φ̂ induces a rational (that is, it is not

necessarily defined everywhere) map between the corresponding projec-

tive spaces. This map coincides with the one given in the example of the

rooted tree T in Figure 3.1. The closure of the image of φ̂, denoted by

X(W, Ŵ , T ), is the algebraic variety of the model.

Examples of classical varieties that show up as varieties parameteriz-

ing probabilistic models are Veronese varieties, determinantal varieties,

secant varieties, and joins. Particularly interesting instances of the latter

family are secant varieties of Segre varieties, as in the example related

to Figure 3.1. The special variety σ4(P
3 × P3 × P3), that is the fourth

secant variety of the Segre variety P3 × P3 × P3, is the variety of the mix-

ture model with four states, corresponding to the nucleotides A,C,G, T .

It describes the evolutionary tree of three species with a common ances-

tor. Conjecturally, such a projective variety is generated by polynomials

of degrees five, six, and nine. This conjecture is known as salmon conjec-

ture, since the prize for the hypothetical solver would be a smoked Cop-

per river salmon. There has been some progress towards this conjecture

by Friedland [67], who gave the first set-theoretic solution to the salmon

conjecture. Friedland’s solution used Strassen’s equations of degrees five
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and nine, along with new equations of degree sixteen. Bates and Oeding

[10] gave a different set-theoretic solution using equations of degrees five,

nine, and six. This solution was in part based on computational methods

carried with the software for numerical algebraic geometry Bertini [9].

Friedland and Gross [68] modified Friedland’s original proof using degree

six equations to play the role of the original Friedland’s degree sixteen

equations, providing a numeric-free proof of the set-theoretic statement.

More recently, Daleo and Hauenstein [54] gave a numerical proof of the

full salmon conjecture.

Another family of interesting explicit varieties is the one of toric vari-

eties, see [53, 70, 140] for an introduction to those. They arise as varieties

for group-based models, which we discuss next. Let G be an abelian group

acting transitively and freely on the set of states S. A general group-

based model is a maximal subspace ŴG of invariant matrices under the

group action. A subspace of this maximal subspace is called a group-

based model. Examples of group-based models include the Cavender-

Farris-Neyman model and the 3-Kimura model for the groups G = Z2

and G = Z2 × Z2, respectively.

For group-based models, the variety of the model is the closure of the

map

φ̂ = πL ◦ ψ̂ :
∏
e∈E

P(Ŵe) → P(WG
L ),

where WG
L is the invariant subspace of WL with respect to the action of G.

In [101], it is shown that the target projective space has coordinates pa-

rameterized by group-based zero-sum sequences. Let G be a finite abelian

group and n a natural number. A group-based zero-sum sequence is a se-

quence of n elements of G summing up to the 0 of G. The set of group-

based zero-sum sequences is a group, via the coordinate-wise action, iso-

morphic to Gn−1.

The origin of group-based models can be traced back to the seminal work

of Evans and Speed [66]. They realized that the Klein group G = Z2 × Z2

acts on {A,C,G, T} transitively and freely. A further generalization of

their method was presented in [147], where the variety of the model was

recognized to be toric, after a change of coordinates. More recently, Sturm-

fels and Sullivant [143] studied phylogenetic invariants for several group-

based models: For Jukes-Cantor and Kimura models on a binary tree,
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they showed that their phylogenetic invariants form toric ideals, whose

minimal generators and Gröbner bases were determined. For a binary

tree, the ideal of phylogenetic invariants for the models below is gener-

ated by an explicit set of polynomials of given degrees:

(i) Cavender-Farris-Neyman model, degree 2;

(ii) Jukes-Cantor model, degrees 1, 2, 3;

(iii) 2-Kimura model, degrees 1, 2, 3, 4;

(iv) 3-Kimura model, degrees 2, 3, 4.

Moreover, they proved that it is enough to consider stars K1,n in order

to analyze arbitrary trees T .

As already mentioned above, the group-based models encountered so

far give rise to toric varieties, but this is not in general the case. In [101],

Michałek gave a precise condition under which the phylogenetic variety

of the model is toric. Let H be a normal, abelian subgroup of a group

G ⊂ Sym(S), the symmetric group of a set S. Suppose that H acts tran-

sitively and freely on S. Then the phylogenetic variety X(W, Ŵ , T ) is a

toric variety for any tree T , where Ŵ is the space of matrices invariant

under the action of G. Moreover, he gave conditions for the normality of a

toric variety from a model.

In the setting of more general models, some results are known. For

a general Markov model on binary trees, Allman and Rhodes [6] deter-

mined the full ideal of invariants for the 2-state model. They showed

that the ideal of the variety parameterizing the 2-state general Markov

model is generated by 3×3-minors of certain matrices coming from tensor

flattenings. The flattenings correspond to contracting internal edges and

grouping the leaves. Raicu [119] proved the same type of result in the

case of stars, which is equivalent to finding the vanishing ideal of the se-

cant line variety of any Segre variety. Results of Draisma and Kuttler [62]

showed that it is sufficient to know the case of stars in order to obtain the

result for any tree. The last statement holds for all equivariant models,

which include general Markov and group-based models.
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3.3 Moves and phylogenetic complexity

The objects of interest in Paper IV are the toric varieties of group-based

models whose trees are the stars K1,n, and whose group G acts freely

and transitively on the set of states. We denote them by X(G,K1,n), for

simplicity of notation.

The polytopes corresponding to these toric varieties are constructed as

follows. Let M ∼= Z|G| be a lattice with a basis corresponding to elements

of G. Consider Mn with the basis e(i,g) indexed by pairs in [n] × G. We

have an injective map of sets

G → Mn, (g1, . . . , gn) �−→
n∑

i=1

e(i,gi),

where G is the group of group-based zero-sum sequences. The image of

this map defines the vertices of the polytope PG,n, which correspond to

group-based zero-sum sequences.

The phylogenetic complexity is an intriguing invariant of abelian groups,

first analyzed in [143]. Let φ(G,n) = φ(G,K1,n) be the maximal degree of

a generator in a minimal generating set of I(X(G,K1,n)). We define the

phylogenetic complexity φ(G) of an abelian group G to be

φ(G) = sup
n∈N

φ(G,n).

The main goal of Paper IV is to show that for any finite abelian group G,

the phylogenetic complexity φ(G) is finite.

To achieve this, we use a more suitable way to look at the binomials

in the ideal I(X(G,K1,n)). Such binomials may be identified with a pair

of matrices T0 and T1, or tables, of the same size filled with elements of

G, regarded up to row permutation. Each row of such tables has to be

a group-based flow. The identification is as follows. Every binomial is a

pair of monomials. As mentioned above, the variables in such monomi-

als correspond to group-based zero-sum sequences, given by a collection

of n elements in G. Every monomial is viewed as a table, whose rows are

the variables appearing in the monomial. The number of rows of the cor-

responding table is the degree of the monomial. A binomial is identified

with the pair of tables encoding the two monomials. A binomial belongs

to I(X(G,K1,n)) if and only if the two tables are compatible, that is, for

each i, the ith column of T0 and the ith column of T1 are equal as multi-

sets. In order to generate a binomial, represented by a pair of tables T0,
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T1, by binomials of degree at most d, we select a subset of rows in T0 of

cardinality at most d, and we replace it with a compatible set of rows. We

repeat these replacements until both tables are equal. The procedure just

described is a move of degree d.

For an instance of such moves, let us assume for the sake of simplicity

G = (Z2,+) and n = 6. Consider the compatible tables

T0 =

⎡
⎢⎢⎣
1 1 1 1 1 1

0 0 0 0 0 0

1 1 0 0 0 0

⎤
⎥⎥⎦ and T1 =

⎡
⎢⎢⎣
0 1 0 1 0 0

1 0 1 0 0 0

1 1 0 0 1 1

⎤
⎥⎥⎦ .

The red subtable of T0 is compatible with the table

T ′ =

⎡
⎣0 1 0 1 0 0

1 0 1 0 1 1

⎤
⎦ .

We may exchange them obtaining

T̃0 =

⎡
⎢⎢⎣
0 1 0 1 0 0

1 0 1 0 1 1

1 1 0 0 0 0

⎤
⎥⎥⎦ .

The tables T0 and T̃0 are compatible. Now, the brown subtable of T̃0 is

compatible with the table

T ′′ =

⎡
⎣1 0 1 0 0 0

1 1 0 0 1 1

⎤
⎦ .

Finally, we exchange them obtaining T1. Then we have a sequence of ta-

bles T0 � T̃0 � T1. We started from a degree three binomial given by the

pair T0 and T1, and we generated it using degree two binomials.

In order to show the finiteness of the phylogenetic complexity, we prove

that φ(G,n) is eventually constant. Our task is to demonstrate that there

exists n0, such that for any n > n0, any pair of tables of size d × n is

generated by binomials of degree at most φ(G,n0). The proof is based on

an analysis of combinatorial features of the tables representing binomials

in the ideal I(X,K1,n). Given a d × n table T filled with elements of G,

we restrict to a subtable T ′ where a chosen element g in G is one of the

most frequent in all the columns. This is not a serious restriction, as n

is very large and we work with a subtable with at least n/|G| columns.

We construct a subdivision into subtables, with certain properties, on the
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T̃0 − T̃1 = −

Figure 3.2. Vertical stripes

restrictions T ′
0, T

′
1 of a pair of tables T0, T1. An instance of a subdivision

into subtables is depicted in Figure 3.2, where subtables are denoted by

colored squares. The subdivision algorithm transforms the tables T0, T1

into suitable tables T̃0, T̃1 using only moves of degree two. The important

feature is that this algorithm produces corresponding vertical stripes in

T̃0 and T̃1 of subtables consisting of two columns, whose rows contain ex-

actly the same elements row by row. An example of such a vertical stripe

is drawn in yellow in Figure 3.2. During the process, there are subta-

bles failing our requirements. The red squares in Figure 3.2 denote these

subtables. A yellow vertical stripe needs to be chosen outside the red

squares. Since in each step of the algorithm the number of red squares

is very small compared to the total number of subtables, we can always

choose a yellow vertical stripe. For technical details on this subdivision

and its combinatorial structure, we refer to Paper IV.
After having produced such a pair of corresponding columns in the tables

T̃0 and T̃1, we are able to use an inductive argument on the number of

leaves n. Fix n0 � |G| sufficiently large and take n > n0. We want to

show that φ(G,n) ≤ φ(G,n− 1). In other words, we want to prove that the

phylogenetic complexity is eventually constant.

The first crucial step is to use the Hilbert basis theorem as basis for the

induction. This theorem states that an ideal in a polynomial ring with

finitely many variables is finitely generated. Once we fix n0, the ideal

I(X(G,K1,n0)) is in a polynomial ring with finitely many variables and

so it is finitely generated. This means that the phylogenetic complexity

φ(G,n0) is finite.

The other crucial step is to use the subdivision algorithm above. By this

algorithm, we may assume that the tables T0 and T1 have two pairs of

columns whose corresponding elements are exactly the same row by row.

Summing up these columns in both of the tables, we go from n leaves to
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n − 1 leaves. The key observation is that every move on n − 1 leaves can

be lifted to a move on n leaves, up to moves of degree two. In other words,

we do not deal directly with large degree moves, but, instead, we use in-

duction. This proves the finiteness of phylogenetic complexity, but it does

not give an effective bound and it is not even close to the conjectural one,

which is |G| [143, Conjecture 29]. The issue is that we work with suffi-

ciently large tables in order to device the subdivision.

The finiteness of the phylogenetic complexity sits in the setting of cur-

rent reseach of finiteness results for models. Indeed, the result of Paper

IV establishes the ideal-theoretic finiteness for group-based models. For

equivariant models, which include the class of group-based models, the

finiteness result on set-theoretic level was proved in [59, 62]. As a conse-

quence, Paper IV can be regarded as a slightly stronger result, but for a

smaller class. Finiteness plays also an increasingly important role in the

context of infinite dimensional toric varieties [61]. There are two inter-

esting long-standing conjectures for group-based models. The first is that

the phylogenetic complexity of G = Z2 × Z2 is four [143, Conjecture 30].

The second, already mentioned, is that the phylogenetic complexity of G

is |G| [143, Conjecture 29]. The first is already known to hold scheme-

theoretically by the work of Michałek [102] and the second is known to be

true on a Zariski open dense subset by Casanellas, Fernández-Sánchez,

and Michałek [36]. More ideas are needed to solve these problems.
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