Henri Mynttinen

Classification of emotions from functional
connectivity graphs

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 30.9.2016

Thesis supervisor:

Prof. Lauri Nummenmaa

Thesis advisor:

D.Tech. Enrico Glerean

A’, Aalto University



AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF ELECTRICAL ENGINEERING MASTER’S THESIS

Author: Henri Mynttinen
Title: Classification of emotions from functional connectivity graphs

Date: 30.9.2016 Language: English Number of pages:7+39

Department of Neuroscience and Biomedical Engineering

Professorship: Computational Neuroscience Code: 113003

Supervisor: Prof. Lauri Nummenmaa

Advisor: D.Tech. Enrico Glerean

Functional neuroimaging has proven to be a valuable tool in mapping local brain
activation patterns corresponding to different perceptual and behavioural tasks.
In functional magnetic resonance imaging the task-related changes in blood oxy-
genation level are inspected and inference about the involvement of brain locations
is made based on statistical modelling and testing. The statistical models have
traditionally been univariate allowing for inference on individual parts of the brain
(voxels) and requiring correction for multiple comparisons. Recent applications
of machine learning in neuroscience extended the univariate approach to multi-
variate methods that consider the simultaneous involvement of multiple voxels
in modelling the brain activation. Particularly, classification algorithms have en-
abled brain state decoding in which the current task is predicted from the local
activation pattern. However, the generalizability of the method in studies con-
cerning emotional states has been poor due to the distributed nature of emotional
information. In this thesis, connectivity patterns were used to discriminate be-
tween different emotional states. Based on functional connectivity between pairs
of brain areas (nodes), the classifier was able to determine the corresponding emo-
tional state by an accuracy significantly above the chance level. The classification
was performed using three different sets of nodes and it was demonstrated that
the choice of nodes does impact the classification accuracy. The results show that
similarities exist among the connectivity patterns of multiple individuals and that
discrimination between brain states is possible based on these patterns. The re-
sults also demonstrate that machine learning applications are powerful enough to
extract underlying connectivity structure from the data even with moderately few
samples. Further studies are required to investigate if increasing the sample size
allows using more detailed node structures.
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Toiminnallinen aivokuvantaminen on osoittautunut arvokkaaksi tyokaluksi kar-
toitettaessa eri koeasetelmissa esiintyvien aktivaatiokuvioiden anatomisia lokaa-
tioita.  Toiminnallisessa magneettikuvantamisessa tarkastellaan koeasetelman
tehtaviin liittyvid muutoksia aivojen verenkierrossa, minkd pohjalta voidaan
paatelld eri aivoalueiden osuus tilastollista mallintamista ja testejd hyodyntaen.
Tilastolliset mallit ovat perinteisesti olleet yksimuuttujamalleja, jotka mahdollis-
tavat tulkinnan paikallisella tasolla (vokselittain) ja vaativat useista vertailuista jo-
htuvan korjauksen tilastollisen korjauksen. Viimeaikaiset koneoppimissovellukset
ovat mahdollstaneet yksimuuttujamallien laajentamisen monimuuttujamalleiksi,
jotka mahdollistavat useiden vokselien samanaikaisen aktivaation tarkastelun.
Erityisesti luokittelualgoritmit ovat mahdollistaneet aivotilojen dekoodaamisen,
jossa suoritettava tehtdva paitellddn paikallisen aktivaation perusteella. Témén
menetelmin kiytté emootiotutkimuksissa on kuitenkin ollut rajoittunutta akti-
vaation hajautetusta luonteesta johtuen. Tassa tyossa konnektiivisuuskuvioita
kdytettiin paikallisten aktivaatioiden sijasta emootiotilojen erottamiseksi toisis-
taan. Aivoalueparien (solmujen) vélisen konnektiivisuuden perusteella luokittelija
kykeni madrittelemédn kyseessd olevan emootiotilan satunnaistasoa paremmin.
Luokittelu suoritettiin kdiyttdmalla kolmea solmujoukkoa. Solmujoukon valinnalla
todettiin olevan vaikutusta luokittelutulokseen. Tulokset osoittivat, ettd eri yk-
siléiden konnektiivisuuskuvioissa on samankaltaisuuksia ja emootiotilojen erottelu
nédiden kuvioiden perusteella on mahdollista. Tulokset osoittivat myos, ettd ko-
neoppimissovellukset kykenevit erottamaan konnektiivisuusrakenteita suhteellisen
vahaisestd otoskoosta huolimatta. Tulevat tutkimukset osoittavat, onko suurem-
malla otoskoolla mahdollista kiyttad yksityiskohtaisempaa solmujoukkoa.

Avainsanat: Funktionaalinen konnektiivisuus, luokittelu, piirteiden valinta
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Symbols and abbreviations

Symbols
J angular momentum
1 quantum number
w angular frequency
wo  Larmor frequency
0% gyromagnetic ratio
By external magnetic field
|t))  spin state
M  magnetization
Ty  time constant for longitudinal relaxation
T5  time constant for transversal relaxation
T5  time constant for combined transversal relaxation
TR repetition time
TE echo time
o summation
R;; Pearson’s correlation coefficient between i and j
Opetators
% partial derivative with respect to w
|| - || norm of vector
Abbreviations
AAL Automated Anatomical Labeling atlas
ATP adenosine triphosphate
BOLD blood oxygen-level dependent
EPI echo planar imaging
fMRI  functional magnetic resonance imaging
HO Harvard-Oxford atlas
MRI magnetic resonance imaging
MVPA  multivoxel pattern analysis
NMR  nuclear magnetic resonance
SVM support vector machine



1 Introduction

The quantity of data has increased dramatically in both scientific and non-scientific
field in the past few decades. Large amount of data having multiple dimensions is
an everyday challenge in today’s scientific research and often requires novel ways
to characterize it. Machine learning (also called statistical learning) has become a
vital tool to extract information from such large data. Machine learning methods
uncover underlying patterns and structure from the data and enable finding the
most important features buried within the heaps of numbers.

The virtues of many machine learning methods are highlighted in studying the
brain. The brain is an organ comprising of tens of billions of communication units
called neurons, and of even more connections between them. The neurons are con-
stantly sending countless of electric signals to each other during the simplest mental
tasks. It has been shown that there is considerable neuronal activity even when the
brain is ’at rest’ ie. not performing a specific task. Powerful mathematical models
are needed to characterize this flow of information.

Several non-invasive methods have been developed during the second half of the
twentieth century to obtain measurements of brain activity. Functional magnetic
resonance imaging is the most common tool used by both physicians and neurosci-
entists around the world. The method relies on an intrinsic physical property of
certain atomic nuclei called spin. Many isotopes present in human body possess
spin, the most common of them being the hydrogen atom. The controlled modi-
fications of the spin system of human body allow to obtain the fMRI-signal. The
signal is an indirect measure of neuronal activity in that it reflects changes in blood
oxygenation caused by energy consumption related to mental tasks.

Decoding this activity related information presents a computational challenge
that neuroscientists have been attempting to tackle for over two decades. The orig-
inal solution was to model the activity on a single voxel level and calculate a metric
describing how well the measured signal fitted the predicted time course. This
method of regression analysis is known as the univariate analysis and it quickly
became the standard way of inspecting fMRI-data. The mathematical foundation
of the method was in random field theory, which allowed accounting for the inher-
ent spatial correlation in the data and more efficient identification of statistically
significant active brain regions during mental processing tasks.

The restriction of the univariate method was that it could not account for in-
formation encoded in the simultaneous activation of multiple voxels. This problem
called for a multivariate method that would be able to identify spatial patterns of
activation. The solution came in the form of a particular machine learning method,
namely classification. Classification concerns the problem of categorizing observa-
tions into one of two or more classes and is accomplished through training a classifier
algorithm. In a supervised learning paradigm the training process involves present-
ing the classifier with observations from known classes and letting the algorithm
learn appropriate weight parameters based on the information structure of the data
points. The classifier is then tested with a separate data set to see if the classes can
be discriminated based on this information.



Classification is perfectly suited for investigating fMRI-data. As the algorithms
are optimized further, the computational load is decreases allowing the classifiers are
able to discern smaller details of structure in the data. This multivariate method
of fMRI was named multivoxel pattern analysis (MVPA). Despite its success in
recognizing detailed activation patterns on intrasubject level, the classifier often
faces difficulties when trying to categorize intersubject data of complex functions
such as emotions. It seems that the fine-grained patterns are at least to some extent
subject specific. To overcome this limitation, the data has to be further processed
before feeding it to the classification analysis. One such processing step is making
of connectivity graphs from windowed time courses.

In this thesis the possibility of improving the classification accuracy of emotional
states through connectivity analysis is investigated. Instead of training the classifier
with images where the voxel value corresponds to the BOLD-signal, multiple images
from a windowed time period are used to construct a connectivity matrix. In this
matrix each element describes the similarity between the time series of two brain
regions.

The emotional states that are investigated are the six basic emotions: surprise,
happiness, disgust, fear, sadness and anger. Additionally the neutral state is in-
cluded to represent the state on non-emotional activity. The six basic emotions
refer to the work by Paul Ekman who, along with Wallace V. Friesen studied if
isolated tribal cultures were able to identify a common set of emotional expres-
sions (Ekman, 1992). Other scholars have argued for a dimensional emotion theory
suggesting that all emotions can be constructed from a set of common dimensions
by different weighting of the components (Reisenzein, 1992). In the classification
paradigm the discrete categorization of emotions is the more useful one in modelling
the brain responses but the it has been discovered that many brain areas are shared
in processing different emotions (Saariméki et al., 2015).

The second part of the thesis describes the physics behind fMRI-signal, the
modelling of brain activity with networks and the mathematical background behind
classification methods. The third part focuses on the data acquisition procedure and
structure of the data analysis. In the next part the results of the work are presented.
The results are discussed in the fifth part of the thesis and finally the conclusions
of the work are outlined.



2 Background

2.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is widely used in medical imaging to study the
anatomy of the body. MRI is a non-invasive imaging modality and it does not
use ionizing radiation. It utilizes the intrinsic nuclear angular momentum called
spin that is a property of many isotopes present in human body. In forming an
image the nuclei of a body are first placed in an external magnetic field creating an
equilibrium state among the nuclei at different spin energy levels. The equilibrium
is then disturbed by a radio frequency pulse and a process of spin relaxation follows.
The relaxing spins emit a decaying signal that is observed resulting in the image
after a reconstruction process.

The basic mechanism in magnetic resonance imaging is exciting nuclei in the
body that is studied (Purcell, 1946). But not all nuclei are visible in MRI. The
nucleus is required to have an angular momentum (J) and magnetic moment (1)
that together constitute the so called nuclear magnetic resonance (NMR) property.
There are a few nuclei present in human body that possess the NMR-property, eg.
'H, 13C, '9F, 23Na and 31P (Huettel et al., 2004, p. 59). Because of the large
amount of water present in human body, hydrogen 'H nuclei are the most common
source of MR-signal in MRI and will be the focus of the following description of
spin dynamics. The classical analogy of angular momentum would be the rotation
of a particle around its axis. This property is also called the spin of the nucleus. In
the case of 'H nuclei, the particle in question is a proton. The rotation produces
a circular current on the surface of the particle which in turn induces a magnetic
source. When placed in a magnetic field, the particle experiences a torque due to
the interaction of the field with its magnetic moment. The spin is denoted by the
nuclear spin quantum number /. The spin quantum number determines the number
of nuclear states (27 +1) which are energetically degenerate under normal conditions.
However, when an external magnetic field is applied, the degeneracy ceases and the
different nuclear states have different energies. This breaking down of the degeneracy
is called Zeeman splitting. A hydrogen 'H nucleus has spin quantum number I = %
and so has two nuclear Zeeman sublevels (Levitt, 2001, p. 14). The spin of a nucleus
containing multiple protons and neutrons is determined by the combining the spins
of the individual particles

|1y — I
|1y — I

3 = . ) (]‘)
|11 + I

where I3 is the total spin of the resulting system consisting of parts I; and I
(Levitt, 2001, p. 8). The different energy states corresponding to the spins have
three different energies. The state with the lowest energy is called the ground state.



When no external magnetic torque is acting upon the protons, the spins are
oriented randomly. But when an external magnetic field is applied, the spins start
to precess around an axis parallel to the field. The frequency of the precession is
called the Larmor frequency and it is proportional to the magnitude of the field

w = —vBy, (2)

where w is the frequency of the precession, v is the gyromagnetic ratio and By
is the magnitude of the field (Levitt, 2001, p. 29). The gyromagnetic ratio is a con-
stant that is specific for each isotope. The sign of the precession frequency indicates
the direction of the motion with respect to the field. Most nuclei have a positive
resulting in negative frequency which means that the precession happens clockwise
around the field axis as viewed from the end of the field vector.

There are two so called eigenstates of this precession corresponding to the two
energy states: parallel and anti-parallel state denoted by |3) and |a) respectively.
In the parallel state the axis of precession is in the same direction as the external
magnetic field and in the anti-parallel state it is the opposite. The energy of the
anti-parallel state is greater than that of the parallel state. The two eigenstates are
not the only allowed states for a spin. The state of the spin is usually a superposition
of the two eigenstates expressed as

V) = c1|B) + cala) (3)

When the magnetic field is turned on, the spins start to precess at an angle to the
field direction. Because of local field inhomogeneities, the angle changes over time
and the spin executes a 'wandering’ motion (Levitt, 2001, p. 31) driven towards
the low energy state reaching an equilibrium which results in the net magnetization
(M) of the object. Magnetization is a vector quantity with a longitudinal component
(parallel to the magnetic field) and a transverse component (perpendicular to the
magnetic field) and its magnitude is proportional to the difference in the number of
spins on the two energy states. Transverse components of the individual spins cancel
each other out resulting in zero net transverse magnetization. Magnetization of the
object and the energy difference between the two states increase as the magnitude
of the external field increases. This is why strong external magnetic field (1.5—3
T) is used in MRI (Huettel et al., 2004, p. 63). The equilibrium is not reached
instantly, but rather the magnetization curve behaves exponentially. The build-up
of longitudinal magnetization component M"¢(t) over time is described with

t—ton
M) = My“(1—e ™) (4)
where M/'“ is the magnitude of total magnetization in the equilibrium state, t,,
is the field onset time and T is the appropriate relaxation time constant.

Strong external magnetic field is an essential part of fMRI signal generation but
to extract information the equilibrium state has to be perturbed. This is achieved
by a radio frequency pulse. The frequency is chosen such that the energy carried by



a photon matches the energy difference between the two spin states. This frequency
is the Larmor frequency (Huettel et al., 2004, p. 61). The pulse has the effect of
rotating the entire spin population around an axis laying in the transverse plane
by an angle that depends on the length of the pulse. This is called spin excitation
(Huettel et al., 2004, p. 64). Before excitation the transverse components of the
incoherent spins canceled each other out resulting in zero net magnetization in the
transverse plane. On the other hand the imbalance between the number of spins in
the different energy states resulted in the longitudinal component of the net magne-
tization. If electromagnetic waves oscillating at the Larmor frequency are delivered
continuously for certain amount of time, there will be equally many coherent spins
in both energy states. At this point the longitudinal component of magnetization
disappears but the coherently precessing spins produced by the excitation now con-
stitute a transverse component of the net magnetization. The pulse that produces
this transition of the magnetization is called the 90 degree pulse (Huettel et al.,
2004, p. 65).

When the transmission is turned off the net magnetization begins to change
back to equilibrium. This process is called relaxation. The spins precessing in the
same phase lose coherence and the excited spins return to the lower energy state
restoring the longitudinal net magnetization component. These two mechanisms of
relaxation are called the transverse and longitudinal relaxation. Both relaxations
start at the same time but are controlled by different time constants 75 and T
respectively. These time constants vary according to the tissue type. This fact is
utilized to produce images where different tissue types are represented by different
image intensities. The transverse relaxation or correspondingly the 75 decay takes
less time than the T1 recovery, usually only few tens of milliseconds whereas longitu-
dinal recovery may take hundreds of milliseconds. The longitudinal and transverse
relaxation processes can be expressed in terms of the three components of the mag-
netization as follows (Levitt, 2001, p. 35).

MZ(t) = Mpce” ™ (5)
Mj"e(t) = — M7 cos(wt)e T2 (6)
MPe(t) = M sin(wt)e_T% (7)

In order to construct the three-dimensional image, the contribution of each source
location to the total signal intensity needs to be determined. This is accomplished by
using three gradient magnets. The Lamour frequency is determined by the nucleus-
specific gyromagnetic ratio and the magnitude of the external field. With the first
gradient magnet, the magnitude of the field is varied in the longitudinal z-direction.
This process is also called slice selection because by applying the RF pulse on a
specific frequency range, only a portion or a slice of the object can be excited. After
slice selection it remains to encode the two-dimensional location information within
the selected slice to the signal using the x- and y-gradients. This process can be
divided into frequency and phase encoding. In frequency encoding the precession
frequencies of the spins are varied in the x-direction. In phase encoding the y-



gradient adds phase difference to the similarly precessing spins. The measured
signal will depend on the magnitude and duration of the two gradients applied. By
measuring with different combinations of the gradients, a so-called k-space describing
the spatial content frequency of the image is filled. By recognizing that the image
space and k-space are Fourier pairs, a Fourier transformation can be performed on
the filled k-space resulting in the image (Huettel et al., 2004, p. 109).

2.2 Functional magnetic resonance imaging

Functional magnetic resonance imaging (fMRI) is a popular non-invasive neuroimag-
ing method. It produces an indirect measure of neuronal activity in a brain location
by detecting changes in the blood oxygenation level. The fact that the magnetic
properties of oxygenated and deoxygenated hemoglobin differ from each other is a
fundamental concept in fMRI theory. Oxyhemoglobin is diamagnetic and has no
magnetic moment while deoxyhemoglobin is paramagnetic. This means that hydro-
gen nuclei near deoxyhemoglobin experience a distorted field which consequently
alters their transverse magnetization decay.

Neuronal activity comprises of populations of neurons communicating with each
other by sending axon potentials. The propagation of an axon potential involves
depolarization of the cell membrane potential that is produced by the cell through
anion concentration manipulation. This membrane potential is restored by Na® /K-
ATPases acting to transfer Nat ions out of the cell and K™ ions into the cell. As
its name implies, ATPase requires energy in the form of ATP to accomplish this
task. The ATP is ultimately provided through the metabolism of glucose, a cellular
process that consumes oxygen. The cerebral blood flow adjusts in response to the
oxygen consumption by directing blood containing oxygenated hemoglobin towards
the active region. Because of the surge of oxyhemoglobin, the T3-contrast signal
from the active region increases through what is called the blood-oxygenation-level
dependent (BOLD) contrast.

2.2.1 Preprocessing

Discrepancies in fMRI data appear because of features of the imaging method and
the motion of the subject. Additionally, the anatomical details of same brain regions
may differ greatly between subjects. Consequently, the data is usually preprocessed
to remove artefacts, allow higher level data analysis across subjects and to smooth
both temporal and spatial noise.

Slice timing correction

An fMRI volume is constructed by imaging a number of two-dimensional slices and
then combining these to produce the final three-dimensional image. Imaging one
slice takes 50—150 ms and so the time interval between two consecutive volumes,
the so-called repetition time (TR), ranges from hundreds of milliseconds up to few
seconds. The delay between two spatially adjacent slices is typically half the repeti-



tion time. The delay causes temporal shifts between slices of the same volume and
can impair the analysis of the time series (Sladky et al., 2011).

Slice timing correction is applied in order to compensate for the delay between
two spatially adjacent slices. Most common method is to use interpolation. Linear,
cubic and sinc interpolation have all been proposed, but sinc interpolation is nor-
mally preferred (Calhoun et al., 2000).

Motion correction

Although movement of subjects head during the scan is highly undesirable, it
cannot be completely prevented. As a consequence, the brain location correspond-
ing to a particular voxel may change from volume to volume. The images need to
be realigned in order to correct for this motion induced artefact. A template image
is chosen and used as a reference. The differences between the reference image and
all other images in the time series is calculated using a cost function (Jenkinson et
al., 2002).

Coregistration

Images from different modalities are also realigned using similar rigid body trans-
forms as in motion correction. However, the intensities for the same tissue may vary
in different imaging modalities. For this reason a different cost function that esti-
mates the mutual information between the images is used (Maes et al., 1997).

Spatial normalization

Analysis are often carried out on an inter-subject level. There are anatomical
differences in the volume and shape of the brain between subjects, which requires the
images to be normalized to some common atlas for the voxel intensities to be com-
parable (Jenkinson & Smith, 2001). Montreal Neurological Institute (MNI) space is
commonly used.

Spatial filtering

Spatial filtering is performed in order to reduce the risk of false positive findings
through high frequency components of the data. Because fMRI-data is inherently
spatially correlated, it is reasonable to assume that a potentially detected activation
includes a diffused area. Thus, by constructing the spatial filter based on the esti-
mated correlation, the signal-to-noise ratio of the data can be improved (Worsley
et al., 1996). This increases the chance of detecting a true positive finding in the
analysis.

Temporal filtering

The fMRI-data often contains low-frequency noise component called the scanner



drift. This noise is the result of the imaging instruments heating during the scanning.
Scanner drift is removed by filtering the signal with a high-pass filter at a cut-off
frequency of 0.01 Hz. When functional connectivity analysis are performed, the
signal is additionally band-passed filtered, typically with a 0.01-0.08 Hz filter. This
is done to reduce the unwanted effects of the high-frequency components on the
connectivity analysis (Purdon & Weisskoff, 1998).

2.3 Brain data as networks

Brain function involves patterns that can be characterized in multiple scales. Cog-
nitive processes require the interplay of individual neurons that form circuits and
neuronal pathways. These combine to form different brain areas and finally the
whole organ. The different scales operate together and are dependent on each other.
Therefore it is challenging to study complex processes of the brain by focusing on
different scales separately. The mathematical modelling of complex networks offers
one solution to characterizing the organization of patterns in different scales.

Analysis of complex networks has penetrated many research fields from particle
physics to social sciences and neuroscience. Complex networks describe system con-
sisting of hundreds, thousands or millions of elements forming subunits and groups
eventually leading to a large entity called a network. The study of these entities
explores the interplay of the elements and communication between the nodes. The
goal is to discover how this interplay leads to the emergent network-level phenomena
that can be quantified but not broken down.

A network is defined as a collection of nodes and edges. The edges connect
the nodes forming clusters and subregions resulting in the structure of the whole
network. Mathematically a network can be expressed as a symmetrical square matrix
A where each element A, ; represents a connection between nodes 7 and j of the
network. If the values A, ; are binary, ie. zeros and ones, they describe a network
where the connection between the nodes either exists or does not exist. The values
can also lie in some range, eg. [0, 1], when they also contain information about the
strength of the connection between the two nodes.

2.3.1 Functional connectivity with fMRI

Bullmore and Sporns (2009) reviewed findings in brain connectivity research ob-
tained by different imaging modalities. They also considered how these relate to
non-human studies on the subject. Graph theoretical methods have been exten-
sively used to characterize the networks. There appeared to be convergence in these
findings with respect to some topological characteristics of the connectivity archi-
tectures discovered through different modalities. The networks consistently showed
small-world characteristics, short path length and clustering. The network structure
seemed to be the result of a balance between two driving factors: effective informa-
tion transfer and low wiring cost. Minimization of wiring cost drove the network
towards a highly regular structure whereas if efficiency was the only criterion the
network would be random.



Later, Bullmore and Sporns (2012) suggested that the development of brain
network architecture is not the result of an optimization exercise but an economical
trade-off process. According to them, the brain aims to deliver maximal value with
minimal cost. The trade-offs are related to producing the most adaptive network
topology with the minimal physical cost.

2.4 Machine learning

In many scientific fields the amount and dimensionality of data available for analy-
sis is growing at an increasing speed. Traditional statistical analysis methods face
challenges in extracting the characteristic features of the data. Machine learning
tools and algorithms are an attempt to meet this challenge by searching for under-
lying structure and patterns in the data. Machine learning tools can be divided into
supervised, unsupervised and reinforced learning methods.

In supervised learning the data is labelled and an error function is constructed to
give feedback on the output of the algorithm. The labelled data is used as training
data, a "teacher", for the algorithm. It adapts in response to the feedback and the
error is reduced until convergence (Mohri et al., 2012, p. 7). Unsupervised learning
methods are applied to unlabelled data. These methods search for structures and
patterns without a "teacher" and they have no means to evaluate the resulting
output (Hastie et al., 2009, p. 486). The reinforced learning model includes an
environment which the algorithm can interact with to collect information. For each
action there is an assigned reward and the method aims to maximize this reward
(Sutton & Barto, 1998).

2.4.1 Classification

Classification is one of the most popular and widely applicable machine learning
methods. Classification is defined as the process of categorizing an observation into
one of the multiple discrete classes. Classification is related to the more commonly
known method, regression. In regression, a scalar value for a dependent variable y is
estimated based on a set of values of independent variables © = {xy, z9,...,z,}. In
classification, the observation corresponds to a set of features x, but the predicted
value y is discrete instead of continuous (Alpaydin, 2004). Classifier can be thought
of as a function f(.) that takes as a parameter the observation z and determines
its class based on the functions output y = f(x). The elements of the observation
vector are also called features. In the context of fMRI-data analysis the observation
corresponds to the brain activation at a given time point and features represent the
BOLD-signal intensity at particular voxels (Norman et al., 2006).

2.4.2 Multivoxel pattern analysis

The main method of statistically analysing the magnitude of the activation has
been the use of regression analysis. In these analysis, a model of predicted shape
of activation has been fitted to the activation timeseries of each voxel. Measuring
the match between the predicted and observed time series is then used to determine
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weather there is activation present in the voxel. These methods are called univariate
because they consider the activation of each voxel separately. However, recently the
focus of analysis has shifted towards so called multivariate methods. These take
into account the simultaneous activation of multiple voxels and are able to extract
neural information encoded in the activation patterns (Norman et al., 2006).

Multivariate pattern analysis (MVPA) is the name used in fMRI-literature to
describe analysing different brain states with classification. The goal of the analysis
is to train a chosen classifier, test its generalizability by test data and evaluate its
performance by an accuracy measure (Haxby, 2012). The three-dimensional voxel
data is usually vectorized before feeding it to the classifier. The classifier input is a
two-dimensional matrix with each column vector representing a scan that belongs to
some category. Each element of the vector is the activation for the voxel. The total
number of columns is divided into five parts, four of which are used for training the
classifier and one for testing. This procedure is repeated five times using each one
of the five parts as the testing data. The general procedure for MVPA is illustrated
in Figure 1.

+«——— sCans —
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Training Data Testing Data

voxels

Input
(training data)
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(testing data)

Classifier
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Classifier accuracy ‘

Figure 1: Hlustration of the MVPA pipeline. Adapted from Norman et al. (2006)

Visualization of the classification results in neuroimaging can be divided into
inspection of the classifier performance and inference on neural activation. The
former can be effectively visualized using a confusion matrix. Confusion matrix is
a square matrix in which rows represent the actual class {1,2,...n} and columns
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represent the predicted class {1,2,....,n}. The number in matrix element (i,j) then
tells, how many samples belonging to class i were classified into class j. The diagonal,
elements i—j, give the number of correctly classified samples for each class. The
larger the number on the diagonal, the better the performance. Confusion matrix
also gives information about which classes were confused with one another.

However, perhaps the more interesting result is which features contributed most
to the classification result. This is interpreted from the classifier weights. Typi-
cally used classification algorithms determine a separation boundary (hyperplane)
between the classes. The coefficients for each feature indicate how much variability
between the classes there is in this dimension. Plotting the magnitude of the clas-
sifier weights might give an idea where the regions critical for the studied functions
are located.

2.4.3 Linear classifiers

Linear classifiers derive their name from the characteristics of the boundary they
produce to solve the classification problem. The boundary is a hyperplane (a straight
line in two dimensions) and has the familiar mathematical form of

f=wizi +wars + ... + wWpT, (8)

The learning algorithm computes the weights w; of the plane, typically minimiz-
ing the value of some loss function. The input z is classified to class y = {0,1}
by calculating the weighted linear combination of the features and thresholding the
result using some mapping function f.

y=flw-) (9)

Linear classifiers can be further divided into generative and discriminative mod-
els. Generative models assume a conditional distribution for the samples given their
class f(z|class) and additionally often impose further assumptions on the shape
of this distribution or the indepence of the observations. However, in the present
application, the validity of these assumptions cannot be easily confirmed. For this
reason, only discriminative models are considered. Examples of different discrimi-
native models are described below.

Logistic regression
Logistic regression is a type of linear classifier that uses the sigmoid function as
the means of mapping the weighted combination of features to the decision space.

The mathematical form of the sigmoid function is given in ref and its shape is
sketched in ref below.

o(z)=1/(1+e7%) (10)
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There are several arguments for using a mapping function that has this satu-
rating quality. While training the classifier, the loss function is differentiable. The
saturating shape also promotes a large margin between the classification boundary
and the separated classes.

Multilayer perceptron model

The concept of multilayer perceptron model builds on the idea of combining the
output of classification units such as the sigmoid function described above. The
perceptron is a general term and has historical significance in the machine learning
literature. It refers to supervised classification process in general, more specifically
the operation of weighted combination of inputs and the assigning of the sample to
one of two categories through thresholding. The idea of multilayer model derives
from the notion of further combining the output of multiple perceptron units. Such a
combination is actually a perceptron itself. This is demonstrated in Figure 2 below.

Xy

X2

%
X

3 X3

(a) Single perceptron. (b) Multilayer model.

Figure 2: Single perceptron and multilayer model illustration.

The weights of a single perceptron unit represent the contribution of the input
features. In the multilayer model, the outputs are further weighted and combined,
allowing for increased representional capability. This results in a powerfull classifi-
cation mechanism. However, as the multilayer model increases in complexity, the
association between the original feature of the data and the representational content
of the weights gets more difficut to visualize. Also, the choice of model parameters,
the number of layers and percpetron units per layer, may be somewhat artificial.

2.4.4 Support vector machine

Support vector machine (SVM) is one of the most popular and widely used clas-
sifiers. In fMRI-studies only, SVM has been applied in temporal classification, lie
detection, classification of brain states and diagnosing deseases (LaConte et al., 2005;
Davatzikos et al., 2005; Mourao-Miranda et al., 2005; Vemuri et al., 2008). Among
the many machine learning tools developed for classification, SVM is a relatively
recent invention (Vapnik, 1995).

The derivation of the decision boundary for an SVM begins with an assumption
of a linearly separable data that consists of samples {x;,y;}, where i = 1,....,n. The
data points belong to one of two groups. If data point x; belongs to group one,
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y; = 1, otherwise y; = —1. The assumption regarding linear separability means
that it is possible to draw a line in the data space so that the line separates the
data points belonging to the two classes. This is illustrated in Figure 3 below. The
assumptions are made only for the derivation presented here. The classifier can be
extended to multiple classes and also applied to non-separable data through the
kernel method described below.

+ + + + + +
) ) ) + -
(a) Linearly separable data. (b) Linearly  non-separable
data.

Figure 3: Tllustration of linearly separable and non-separable data.

The decision boundary can be placed in multiple orientations while still separat-
ing the two classes correctly. Different classifiers try to solve the optimal orientation
for the boundary in varying ways. The SVM places the boundary based on a large
margin criterion. It’s orientation is such that the distance between the boundary
and the data points closest to it is maximized. This is illustrated in Figure 4.

+ + + +
~_—— —_— .. .
T::-i-ﬁt:':L
(a) Multiple possible bound- (b) Large margin criterion.

aries.

Figure 4: Tllustration of large margin criterion.

The slope of the boundary is defined by two weights w; and ws. These are the
elements of the normal vector w of the boundary. Given a data point v with unknown
class, it needs to determined, on which side of the boundary it lies by calculating
the magnitude of its projection on the normal vector as illustrated in Figure 5(a).
If this magnitude is greater than or equal to some constant w-u > ¢, the data point
is classified in the first class and otherwise in the second one.

w-u+b>0 theny =1 (11)
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Here ¢ = —b. The parameters w and b are unknown and need to be solved by
adding some constraints. To introduce the idea of a margin, the decision rule is
required to give a value greater than one for positive samples and less than nega-
tive one for negative samples. These two expressions can be combined by taking
advantage of the class indicator variable y; associated with each sample.

w-x;+b>1 fory, =1 (12)
w-z;+b< -1 fory, =—1 (13)
yi(w-x;+b) >1 forall {z;, vy} (14)

This means that for the samples lying on the edge of the margin, the following
expression holds

These samples are called the support vectors. These are denoted by z, and x_
in Figure 5(b).

N

N

(a) Decision rule. (b) Width of the total margin.

Figure 5: Tllustration of the decision rule and the width of the total margin.

The expression for the width of the total margin separating the positive and
negative samples can be obtained by projecting the difference between a positive
and a negative support vector on the unit normal vector IILWU_H

(x+—x).HZ—H:(x.w+—x-w>-ﬁ:(1—b+1+b>.izi (16)

This is the quantity that is being maximized. This is equivalent of minimizing
the expression 3||w||*>. Minimization is done using Lagrange multipliers.

L= glloll = Y oulyuleo i+ )~ 1 a7)

oL
a—w:w—;aiyixi:()%w:zayixi (18)
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The resulting normal vector is a weighted sum of the samples. The optimiza-
tion problem is quadratic because of the second power of the quantity w that is
being optimized. There are a number of numerical methods available to solve the
optimization problem, Logo and Cplex algorithms among them.

But the expression 17, that is minimized, can be modified further by plugging
in the constraints obtained in 18 and 19

% (Z Oéiyixi) (Z Oéi?h%) - Z QGYi T (Z Oéj%’%’) - Z Q;yib + Z a;, (20)
i i i j i i

which can be simplified into

Zai - %Zzai@jyi%xia T (21)
) ) 7

using the constraint 19 and combining the first two sums (Vapnik, 1995). This
form of the expression, that is being minimized, is the starting point for the discus-
sion of applying the kernel method to the SVM.

2.4.5 Kernel Method

Kernels are the feature that make SVMs appealing and popular. The kernel trick
is a widely used method to expand the feature space of the data. This is done in
order to make the data more linearly separable. This is illustrated in Figure 6.
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(a) Data linearly unseparable. (b) Data linearly separable.
Figure 6: Increased linear separability by feature expansion.
In the examples of the previous section the data was always linearly separable

in order to more clearly demonstrate the concept of classifier margin. However, in
Figure 6(a) the data cannot be separated using a straight line. Hence, when using
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feature expansion by adding the feature z7, it can be seen that the data becomes
separable by a linear boundary as illustrated in Figure 6(b). Next, the effect of
feature expansion on the SVM computation is investigated.

In the last section, the SVM primal and dual forms were introduced and in the
end the following form of the optimization problem for calculating the weights was
obtained.

Z o — % Z Z QOGY Y5 - Xy (22)
i T ]

This expression depends on the pairwise dot products of the data points, namely
x; and x;. The matrix formed by the product elements is called the Gram matrix
and can be viewed as measuring the angular similarity between the data points. If
the points are orthogonal, the product is zero. If the angle between the data points
is small, the product increases.

Suppose that feature expansion was performed on the pair z; and z; using the
polynomial features.

d(x) = (1 V2x1 V2x9 o 1y Ty o N 21179 V27173 ) (23)

The dot product between the two data vectors x; and x5 now becomes

() ®(x;) =1+ Z 221, %95 + ZI1J132] + Z Z 201 T15T2jTok, + .. (24)

J k>3

which can be simplified into

()" ®(;) = <1+lejx2j) = K(z1,9) (25)

Here the effectiveness of kernel functions in feature extension is revealed. This
simple expression is much easier to calculate than transforming the data vectors
into the new feature space and computing the dot product between them in the
transformed space.

2.5 Decoding functional connectivity graphs

Decoding brain states through MVPA paradigm has yielded valuable information
about the spatial distribution of activity patterns during various brain states. How-
ever, performing successful intersubject decoding has proven to be difficult when
analysing complex states, such as emotions Saariméki et al. (2015). Although the
classifier recognizes state-specific patterns in the intrasubject data, the method fails
to discriminate between emotional states when the data is pooled from multiple
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subjects. This implies that the neural signature of the activation pattern is differ-
ent for individual subjects. Consequently, these fine-grained differences prevent the
classifier from recognizing the common larger scale features of the states. The idea
behind introducing the further preprocessing step of generating functional networks
before the classification is to reduce these signature differences between the subjects
and enhance the intersubject classification accuracy. The high frequency aspects of
the data that are supposed to confuse the classifier are reduced.

It can also be argued, that connectivity features express brain function better
than the local activation. The ability of brain to integrate multimodal sensory
information and execute cognitive processes relies on the simultaneous interplay of
various brain regions (Van Den Heuvel & Pol, 2010). Emotions have been shown
to be no exception to this (Saarimiki et al., 2015), and it is therefore reasonable
to use connectivity information in decoding the affective brain processes. However,
accurate connectivity measurement requires temporal stability over a relatively long
time period. The effects being estimated by correlation coefficients are small by
default and thus require a wide temporal window in order to manifest. This places
additional demand on data acquisition and conclusion can often be drawn only from
large quantities of data.

Shirer et al. (2012) used classification of functional graphs to successfully decode
cognitive states. They constructed the graphs using independent component analysis
on group-level resting state data measured from a subset of the subjects. After
thresholding, this yielded 14 components which were then used to identify 90 regions
of interest. Shirer et al. (2012) were able to classify with reasonable accuracy four
cognitive states based on functional connectivity graphs. The accuracy level was
around 80% even when time windows of 0.5-1 min were used to construct the graphs.

Further, Richiardi et al. (2011) were able to discriminate the brain state of
viewing a movie and resting. They also created an atlas of 90 regions of interest
based on structural MRIs of the subjects. Richiardi et al. (2011) used an ensemble
classifier which was based on classification trees.

In this study the connectivity based classification of fMRI-data was used to de-
code the representation of emotions in the brain. The goal was to see if connectivity
based classification would be able to perform reasonably when classifying intersub-
ject data. First, MVPA-analysis was conducted to confirm that the data agreed
with previous findings. Then, the connectivity based analysis were performed and
their statistical significance was inspected. Finally, the major cortical components
of the connectivity features were visualized.
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3 Materials and methods

3.1 Subjects

Sixteen female volunteers with ages 20-39 (mean 25 years) took part in the exper-
iment. The subjects were right-handed, neurologically healthy and with normal or
corrected-to-normal vision and hearing. They also gave written informed consent
according to the Declaration of Helsinki. The experimental protocol was approved
by the Institutional Review Board of Aalto University.

3.2 Experimental Design

The stimuli consisted of thirty-five 60-second-long auditory narratives describing
an event or experience with emotional content (Smirnov et al., In preparation).
The narratives were designed to elicit primarily one out of six possible emotions
(anger, fear, disgust, happiness, sadness, surprise) or a neutral emotional state. For
each emotion state, five narratives were recorded. A female speaker recorded the
narratives. She was given a list of 35 story topics (e.g., Happiness: I was lying on
a blanket underneath a tree with my lover. We were kissing passionately, and T felt
I was so much in love with him. Sadness: T was sitting with my mother on her
hospital bed. She fell into a coma during an unsuccessful operation. She could no
longer talk to me, and I knew she would never recover. Neutral: I was spending an
afternoon at home. There was nothing particular to do, so I went to the kitchen. I
opened the fridge and started wondering what I should eat for dinner.). The speaker
then formulated them into one-minute short episodes that she could relate to and
narrate as if it would have happened to her.

The narratives were spoken by the same female speaker. Speech was recorded
during an fMRI scanning session (see Smirnov et al. for details) using an MR-
compatible noise-cancelling recording system (FOMRI; Optoacoustics Ltd.). An-
other speech sample with high quality spectral shape outside of the fMRI scanner
was recorded. In order to clean the noise in the original recording, the original
recordings were equalized by matching their sound frequency spectra with a high
quality control spectrum derived from the speech sample outside the scanner. Fi-
nally, the audio recording was cut into segments containing the narrated parts only.

In the fMRI experiment, the recorded stories were played back to the partici-
pants. The narratives were divided into five runs (seven narratives per run, one from
each category). Each trial started with a visual presentation of a cue phrase, which
indicated the episode that would be presented next. This was accompanied by the
target emotion elicited by the episode (e.g. "happy"). The cue stayed on the screen
for five seconds, and was followed by five seconds of white fixation cross presented
on the screen. Then the story recording was presented with white fixation cross
in the centre of the screen. The order of the narratives within the runs as well as
their division into runs was same for all participants. Participants were instructed
to listen to the narratives similarly as if the narrator would be telling them during
a face-to-face conversation, and to try to get involved in the stories by imagining
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the described events vividly. Auditory stimuli were delivered with Sensimetrics S14
insert earphones (Sensimetrics Corporation, Malden, MA | United States). Sound in-
tensity was adjusted loud enough for each subject individually to be heard over the
scanner noise. Visual cues were delivered using Presentation software (Neurobehav-
ioral Systems Inc., Albany, CA, USA). Visual stimulation was back-projected on a
semi-transparent screen using a 3-micromirror data projector (Christie X3, Christie
Digital Systems Ltd., Ménchengladbach, Germany) and reflected via a mirror to the
subject.

3.3 fMRI data acquisition

MRI scanning was performed with 37 Siemens Magnetom Skyra scanner at the
Advanced Magnetic Imaging Centre, Aalto Neurolmaging, Aalto University, using
a 20-channel Siemens head coil. Whole-brain functional images were collected using
a whole brain Tj-weighted echo-planar imaging (EPI) sequence, sensitive to blood
oxygenation level-dependent (BOLD) signal contrast, with the following parameters:
33 axial slices, TR = 1.7 s, TE = 24 ms, flip angle = 70°, voxel size = 3 x 3 x 4.0
mm?®. A total of 365 volumes were acquired in each run, and the first three volumes
of each run were discarded due to the potential effects of temperature changes on
the data. High-resolution anatomical images with isotropic 1 x 1 x 1 mm? voxel size
were collected using a Ti-weighted MP-RAGE sequence.

3.4 Preprocessing

The runs were slice time corrected by temporal sinc interpolation followed by re-
sampling the interpolated data to compensate for the acquisition delay. Motion
correction was performed using MCFLIRT (Jenkinson et al., 2002). The scans were
realigned by choosing a reference image and minimizing a cost function representing
the dissimilarity between the reference image and the rest of the images. The scans
were also registered to standard MNI space using FLIRT (Jenkinson & Smith, 2001).
This was done in order to obtain standardized networks to be used in intersubject
analysis. Spatial smoothing was left out because it could potentially reduce the high
frequency information.

3.5 Data analysis

Both intrasubject and intersubject classification of the connectivity graphs were per-
formed on the data. The intrasubject-analysis was done by usual MVPA-procedure
to confirm the validity of the data. The connectivity networks were generated and
fed to the same classifier used in the MVPA-scheme. Custom Matlab-scripts were
used to generate the connectivity networks. Python package PyMVPA and the
algorithms already implemented in the toolbox waere used for the classification.
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3.5.1 Classification of whole-brain activity

The traditional intrasubject MVPA-analysis was performed in order to confirm the
validity of the data. In case of a poor intrasubject classification accuracy, further
analysis would have been pointless. The spatially non-normalized and unfiltered
images were fed to the classifier along with the metadata concerning the emotional
state of each image and the run during which the image was acquired. Images were
left in the native space because the analysis was carried out on intrasubject level and
spatial normalization process could introduce unnecessary noise into the data. The
rest-periods of the data, that were not relevant for the analysis, were removed. A
whole-brain gray matter mask was applied on the images. An SVM classifier using
a linear kernel (LinearCSVMC) was used as the classifier for both intrasubject and
intersubject analysis. The default parameters of the implementation were applied
(C=-1,e=5-10"°, v = 0.5) and the multiclass classification was handled according
to one-versus-rest scheme. The partitioning for the cross-validation was based on
the runs. The data was partitioned so that each run represented one segment and
the cross-validation was performed according to the leave-one-run-out scheme.

3.5.2 Classification of ROI connectivity patterns

Connectivity graphs for each emotional state were generated from the preprocessed
images. The functional regions of interest identified by Shirer et al. (2012) were used
as the basis of the analysis. The ROIs are publicly available at http://findlab
.stanford.edu/research. The ROI time series were created by averaging the time
points from all voxels included in the ROI. The time series then needed to be parsed
into blocks containing stimulus evoked activity relevant for the connectivity analysis.
After the onset of the stimulus, the first five seconds were discarded because the
assumed rise in the signal would distort the correlation estimation. Additional ten
seconds of the wipe-out section were included because it was assumed to contain
relevant signal due to the slow hemodynamic response. Altogether, the last 60
seconds of the obtained signal were used to generate the graphs. Shirer et al. (2012)
demonstrated that correlation estimates using a 60 second window already contain
sufficient information for decoding brain states. After creating the ROI time series
and parsing them into blocks containing different emotional states, the connectivity
graphs for each state were created. The Pearson’s correlation between each ROI
during one block was calculated.

_ 2l — @) (=ft]; — )]
T VR - PG, - 5 (26)

The graphs were fed to the classifier. The same cross-validation scheme was used
in graph classification as in the MVPA-pipeline. This resulted in one sample of each
category per run.
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3.6 Visualization

Hubmaps of the obtained emotion state networks were created in order to visually
inspect the differences of the brain states. The maps were calculated by averaging
the correlation values across subjects yielding one map for each emotion. The corre-
lation values were first mapped from the range [—1, 1] to | — 0o, oo[ using hyperbolic
arctangent function

), (27)

averaged and then mapped back by the inverse function

1
artanh = §log(

1 11—z
h= -1 . 2
arcot 5 og(1 +$) (28)

Finally, the strongest five percent of the links were chosen to be displayed in the
resulting hub maps. The medial and lateral views of both hemispheres were plotted
by Caret visualization tool (Van Essen et al., 2001).
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4 Results

4.1 MVPA results

The results for regional within-subject classification of the activation patterns are
shown in Figure 7. In the Figure on the left the averaged accuracy for each cat-
egory (emotion) is shown. For each category the accuracy lies above the chance
level although for categories happiness and neutral it is rather low. For these two
categories and the category sadness the chance level is within the standard error.
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Figure 7: Bar plot showing the mean within subject accuracy for the seven emotional
states (surprise, happiness, disgust, neutral, fear, sadness, anger) averaged across
all the subjects. The confusion matrix illustrating the classification results. The
emotional state sadness has the highest average classification accuracy. The vertical
lines depict the standard error of the mean. The accuracies of the emotional states
surprise and disgust had relatively large variance across the subjects, while the
accuracies for happiness showed consistence.

In the confusion matrix a relatively strong diagonal is discernible indicating
reasonable classification accuracy for all categories. The confusion matrix supports
the conclusion that the happiness condition is least recognized by the classifier. On
the other hand the diagonal element for the conditions of surprise and disgust can
be clearly discerned. It indicates that these conditions are most reliably recognized.
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4.2 Classification accuracy for the emotions

The results for inter-subject classification of the connectivity patterns are shown
in Figure 8. Overall, the best best classification accuracy when averaged across
categories is obtained using the functional region of interest atlas as shown in Figure
below. In this instance, the only category having an accuracy slightly below the
chance level is happiness. Applying the AAL-atlas gives the lowest discriminative
power.
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Figure 8: Bar plots showing the mean inter-subject accuracy and the corresponding
confusion matrix for the three sets of nodes. The accuracies for individual categories
vary greatly among the three choices. The best overall accuracy is achieved with the
functional regions of interest while using the AAL-atlas gives relatively poor results.
The standard error of the mean is not shown here because the accuracies could not
be averaged across subjects; the data was pooled and the single accuracy obtained
for the connectivity-based analysis. The significance of the results is considered
below.
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4.3 Connectivity maps for the emotions

The hubmaps for the seven emotional states are shown in Figure 9. The five percent
of the averaged links are plotted for each state.
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Figure 9: Hubmaps of the seven emotional states calculated from averaged node
degree values and thresholded at the strongest five percent.

The hubmaps show similar regions in the frontal lobe are involved in multiple
emotional states, although their individual strength varies slightly. Also, frontal
medial areas are consistently among the strongest nodes. The hubmaps also show
some salient network characteristics, including the anterior cingulate and lateral
parietal cortices.
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4.4 Significance testing

The significance testing results are displayed in Figure 10. The classification accu-
racies for the different atlases were: functional ROIs - 20.89, Harvard-Oxford - 17.5
and AAL - 16.96. The accuracy for the functional ROIs is clearly better than the
accuracy for the two other atlases. The AAL-atlas had the lowest accuracy. The
chance-level for seven classes 1/7 ~ 0.143 is indicated by a vertical red line. The
null distributions for the atlases center approximately at this point.
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Figure 10: Testing the significance of obtaining an accuracy above the chance-level.
The null distributions, the chance-level and the obtained accuracy are plotted for
each set of nodes. The average classification accuracies for the functional ROIs,
Harvard-Oxford and AAL atlases were 20.89, 17.5 and 16.96 respectively. The ac-
curacy was significantly higher for the functional ROIs than the other two atlases.
The accuracies were significantly better (p < 0.5) than with random permutation
for all three sets of ROIs. However, the mean accuracies across emotion states were
clearly below that obtained with activity-based classification.

The shape of all null distributions is small-tailed. This indicates that running
the classification analysis on randomized data robustly gives accuracies close to the
chance level. The obtained average classification accuracies using all three atlases
were significantly better (p < 0.5) than those obtained using random permutation
testing.
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5 Discussion

The main finding of the thesis was that emotional states can be differentiated on
an intersubject level based on connectivity patterns. The classifier was able to
discriminate between the different emotions and the significance of the classification
result was confirmed with a permutation test.

In this chapter, the differences between classification based on activity and con-
nectivity patterns is discussed and the impact of the choice of nodes is considered.
Additionally, the significance testing results are inspected in more detail. Emotions
as a complex brain function are difficult to study and characterize by computational
methods. Whether emotions are best represented by activation or connectivity pat-
terns is discussed by reviewing recent findings. Finally, methodological issues related
to the experimental design and analysis tools are discussed along with some sugges-
tions for future studies.

5.1 Comparison of activity and connectivity decoding

Multivoxel pattern analysis has been extensively used to investigate whether neural
activation patterns are able to separate mental conditions from each other. Moving
from MVPA procedure to using connectivity patterns for classification input has
been a relatively new phenomenon (Richiardi et al., 2011; Shirer et al., 2012). The
connectivity-based data can also be viewed as better describing the integrating na-
ture of brain processes, especially in complex ones, such as emotions. In this study it
was found that average classification accuracy was clearly higher for activity-based
classification compared to connectivity-based classification. The activity-based clas-
sification accuracy was first calculated within each subject for each emotion. The
average accuracy for each emotion was then calculated by averaging over the sub-
jects. On the other hand, the connectivity-based accuracies were calculated by first
pooling the data from all subjects. This was done because of the small number of
samples per each subject.

Inter-subject classification of complex processes, such as emotion, has been shown
to be difficult based on the mere activations. This may be due to the distributed
nature of the activation. As Saarimiki et al. (2015) showed, emotions are governed
by a widely distributed network and the local activation patterns of this network
are possibly highly distinctive between subjects. Although the classifier is able to
distinguish the neural pattern among samples from the same subject, it is not able
to match the activation pattern of the same emotion from two different subjects.

However, connectivity as a metric is more distributed by nature (Bullmore &
Sporns, 2009). Calculating the connectivity pattern of an emotion loses statistical
learning power when the number of samples is decreased but it may better preserve
the distributed nature of the activation. The local "salt-and-pepper" patterns that
are individual to subjects are balanced by emphasizing the different areas that show
constant activation during an emotional state. Thus it could be argued that the
global connectivity patterns would show much greater resemblance between subjects.
This would be due to the emphasis on the features of the data that are common
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among subjects. Further, the role of the local, distinct activation patterns that
confuse the classifier in the case of inter-subject would be diminished.

Classifying the brain states based on the connectivity patterns has been at-
tempted before. Richiardi et al. (2011) were able to successfully discriminate be-
tween two brain states, watching a movie and resting state, using connectivity-based
classification. The reasonable inter-subject discriminative power of the classifier be-
tween the two states is largely attributed to the similarity of the resting state network
between the subjects. This assumption is supported by the fact that the weights
within this network showed low variation between the subjects. In many respects,
the classification problem studied in this thesis is more complex compared to that
of Richiardi et al. (2011). In this study the aim was to discriminate between seven
emotional states not including resting state. Moreover, classification of two states
is made easier if the sates do not resemble each other whereas the seven emotional
states very likely share some connectivity patterns. Also, discriminating between
resting state and a task-related state on inter-subject level is made easier by the
close resemblance of the connectivity architecture of the first condition between
the subjects. The difference in the choice of classifier is also of significance when
comparing the two results. While the use of an ensemble classifier combining the
discriminative power of multiple frequency bands is a novel way to solve the problem
of small sample size, the results are not strictly comparable with activation based
MVPA results, where a linear classifier was used. In this study the possibility of
intersubject classification was investigated in the context of previous work on classi-
fying emotional states (Saarimiki et al., 2015). For these reasons, choosing a linear
classifier was more in line with the previous trend.

The possibility of separating between multiple distinct brain states has also been
investigated among others by Shirer et al. (2012) who were able to classify four
distinct brain states based on their functional connectivity patterns. Consequently,
the ROI map they constructed for the connectivity analysis was also chosen for
this study, as discussed further in the next section. The brain states they studied
included remembering past events, simple mathematical calculations and singing
song lyrics in the subject’s head. The classification procedure used by Shirer et
al. (2012) was a novel one. Connectivity graphs were constructed for each of the
states and the nodes that showed relevance for each of the states were identified.
Thus, as in Richiardi et al. (2011), the results to the present study are not directly
parallel. However, one of the key observations made by Shirer et al. (2012) was that
discriminative connectivity information could be obtained from signals of the length
of one minute. Consequently, signals of the length of approximately one minute were
extracted for the analysis in the present study.

In general, the comparison between activity-based and connectivity-based decod-
ing is made difficult by the varying methodological approaches taken in the choice
of the classifier. Support vector machine has usually been the popular choice in
MVPA-pipeline, but was not used in the previous studies described here and in the
background. Also, the complexity of the stimulus and the number of categories
vary greatly between studies. The results in this study provide a useful reference
point in comparing the two classification approaches because the same classification
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pipeline was used for both features. In the context of emotional processing, the
results confirmed a previous finding of great intrasubject accuracy by the activity-
based approach but poorer generalization in the intersubject setting (Saarimiki
et al., 2015). The intersubject accuracy was significantly better when using the
connectivity-approach but the intrasubject classification failed possibly due to lack
of samples. Further studies should compare the approaches more thoroughly with a
larger dataset.

5.2 Impact of regions of interest selection

In this section, the considerations leading to the ROI atlases used in this study
are discussed. For carrying out effective but non-biased connectivity analysis, the
choice of mapping out the regions of interest is critical. In the ideal situation,
the feature space used in classification analysis should be of as high resolution as
possible. However, in constructing the network for the connectivity analysis, the
number of interactions between signal components leads to a dramatic expansion in
the dimensionality of the data potentially confusing the classifier. Thus, the original
feature space is compressed by averaging the signal on a collection of predetermined
nodes which then form the basis for the network. However, the nodes need to be
chosen carefully in order not to introduce unwanted bias to the classification result.

First, it should be noted that the issue of whether regions of interest are useful
compared to having no "a priori" assumptions about the structure of the network
is still open. Marrelec and Fransson (2011) inspected the effect of ROI selection
method on functional connectivity analysis and concluded that their main results of
interest were unaffected by the selection procedure. They used four different ROI
selection methods and investigated whether the default mode network (DMN) would
show decrease during a task when compared to resting state. DMN decreased in all
four cases. They pointed out that the methods used for ROI selection are based on
resting state data which could potentially lead to suboptimal ROIs for task related
data. In conclusion, they remarked that different selection methods had relatively
little impact on resting state connectivity.

There is a clear trend towards using voxel-wise networks (Stanley et al., 2013).
Voxel-wise networks are defined by calculating the connectivity measure between
each pair of voxels, possibly after some downsampling of the data space. The rational
for using voxel-wise graphs is that networks that are constructed based on ROIs
depend upon a priori knowledge. They are undoubtedly useful in confirming previous
findings but also include a bias towards these results. Stanley et al. (2013) argued
that voxel-wise networks are essential in discovering new principles of the brain.

In this thesis, the analysis was first started by attempting to classify voxel-wise
networks covering the whole brain within individual subjects. The images were
first downsampled to 6x6x6 mm voxel space decreasing the number of nodes of the
eventual network. It was discovered that the number of features is enormously large
compared to the number of samples making efficient discrimination of the classes
practically impossible. Various feature reduction methods were also unable to direct
the classification algorithm to the most relevant parts of the data. Thus the atlas
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of ROIs was used to reduce the size of the feature space and pool the data from
all subjects to increase the number of samples per condition. Moreover, the ROI
atlases were chosen based on previous studies in order to be able to compare the
findings with existing results.

Shirer et al. (2012) used a set of functional ROIs defined by applying indepen-
dent component software FSL MELODIC (Beckmann & Smith, 2004) on the resting
state data of the subjects. The ROIs were constructed independent of classification
results and covered most of the grey matter. Using this atlas that was constructed
completely independent of data used in this thesis guaranteed a minimal bias on
the results. Besides, Shirer et al. (2012) had already demonstrated significant ac-
curacies in classifying brain states based on connectivity patterns of this network.
Richiardi et al. (2011) utilized AAL (Tzourio-Mazoyer et al., 2002) in successfully
discriminating between resting state and task related connectivity patterns. Fi-
nally, Harvard-Oxford atlas was chosen because of its prominent status among the
structurally defined ROI atlases.

The connectivity-based classification accuracies across all emotions were clearly
highest using the functional ROI atlas. Only the accuracy for happiness was lower
than chance-level. Surprise and sadness had exceptionally high accuracies. The su-
periority of functional ROI atlas is further demonstrated visually using the confusion
matrices in figure 8 to display how the samples were misclassified. Only in the first
confusion matrix one can discern the diagonal. When using the AAL atlas, only
fear, sadness and anger are reasonably distinguished by the classifier. When using
the Harvard-Oxford atlas, the classifier appears to recognize the surprise condition
only.

The reasons for the success of the functional ROI atlas can only be speculated.
The atlas does consist of anatomically relevant areas. Due to the way the com-
ponents were obtained, they possibly have many features in common with the so
called intrinsic network of the brain. This has been suggested to be a valid candidate
for the common network underlying emotional processing, as discussed below. It is
therefore possible, that some features of this atlas were able to guide the classifier
to recognize some critical aspects of the data.

5.3 Significance of classification accuracies

In the pattern analysis the main result can be condensed into one value, the accuracy
of the classifier. It tells how well the classifier could separate the studied conditions
from each other. If there are only two conditions that the classifier needs to choose
between, an accuracy that is well above 50% is usually considered significant. This
means that using the classifier to label the samples is better than flipping a coin to
decide the class at random.

When multiple conditions are considered, the chance level that the classifier
should exceed is one over the number of conditions. Many studies are content to
report only the chance level and demonstrate that the classification accuracy exceeds
it. Also, it has to be noted that the overall accuracy across categories is not enough
to demonstrate validity of the results because the classifier could simply recognize a
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subset of the categories accurately while performing poorly on the others. The more
elegant way to demonstrate that the data actually contains information about the
conditions is to use significance testing. Here, the null distribution of classification
accuracies was obtained under the null hypotheses that the samples contain no
information about the conditions. By estimating the probability of getting the
observed classification result under the null hypotheses, it was possible show whether
the accuracy results were significantly above the chance level.

Figure 10 shows that the overall accuracy obtained when using the functional
ROI atlas was significantly greater than the chance level. The accuracies obtained by
using AAL and Harvard-Oxford atlases also exceeded the chance level. It is notable
that the null distributions in all three cases were rather concentrated at the chance
level. Moreover, the small tails of the null distribution indicated that accuracies
exceeding the chance level cannot be obtained by classifying random data that does
not contain condition-relevant signal.

There has been discussion in the literature about permutation when applied to
significance testing in the context of the MVPA procedure (Etzel & Braver, 2013).
The discussion has concentrated on the proper reporting of the used procedure,
comparing two approches labeled the dataset-wise and fold-wise schemes. For the
present analysis, the fold-wise scheme was chosen, because this is the implementation
provided by pyMVPA. The main difference between the two schemes is that fold-
wise permutation tends to give a more narrow variation for the null distributions,
which can lead to smaller p-values. However, the implementation of a permutation
analysis can be tedious and not in the range of this thesis. Despite the potentially
underestimated p-value, pyMVPA is a widely used toolbox for carrying out the
analysis, and the consistency of the results in this study give no reason to doubt the
overall conclusions.

5.4 Activation and connectivity based representation of emo-
tions

Central debate in psychological imaging studies concerning emotions is whether the
functions under investigation can be mapped to some anatomical unit in the brain.
In the beginning of imaging studies the assumption that distinct functions could be
attributed to distinct brain regions was prevalent (Fodor, 1983). However, over time
and after accumulating evidence, the opinion has shifted towards a more distributed
nature of cognitive and affective processing.

Recent research argues that emotions cannot be attributed to only one brain
location, but that they are a function involving and engaging multiple regions si-
multaneously (Barrett & Satpute, 2013). A potential candidate for the source of
this emotion-related network would be the so-called intrinsic network. The intrinsic
network is engaged with task-independent processes and is active during the resting
state. However, Barrett & Satpute (2013) showed that emotion-specific networks
do not exists within the intrinsic network. Instead, the overlap of emotion-specific
discovery maps showed similarities to the so-called the salience network (Seeley et
al., 2007). The visualization produced for the connectivity data used in this study



32

also supports this notion that the salient network is involved in emotional process-
ing. As shown in Figure 9, the anterior cingulate cortex is present in all seven
emotions. Areas of lateral parietal cortex seem to be consistently recruited across
the categories.

Saariméki et al. (2015) also confirmed that the six basic emotions are supported
by multiple brain areas through activity based decoding. They used multivoxel
pattern analysis to uncover neural signatures corresponding to the emotions. No
one-to-one mapping could be found to connect each emotion to a single brain lo-
cation. Instead, similar areas were found to activate during many emotions. Since
emotions engage many distinct areas of the brain, it is reasonable to include the
whole brain in the analysis. This thesis further explored the possibility of demon-
strating that connectivity patterns indeed underlie affective processing. The results
clearly indicate this and even hint that these patterns are shared between individuals.

5.5 Methodological issues

The construction of connectivity graphs has inherent technical difficulties related to
head motion. Head motion is a persistent source of artifatcs in nearly all manner
of analysis. In connectivity analysis, head motion has been shown to introduce ar-
tifacts into the network data by increasing the estimated correlation between voxels
separated by a short distance and decreasing the correlation of voxels that are far
apart (Power et al., 2012) . Power et al. (2012) investigated two methods to remove
the head motion artefacts, excluding contaminated frames from the analysis and
trying to separate the real signal from the noise eg. by regression. Both methods
reduced the amount of head motion artefacts in the connectivity data but could not
completely remove them. In this study, was used to remove the artefacts.

The difference between brain connectivity during rest and task has been re-
searched extensively. An intrinsic network has been identified that is thought to
be involved in brain processes during rest (Golland et al., 2007). Correspondingly
an extrensic network responds to external stimulation and these networks appear
to overlap considerably. Due to the major role played by the intrinsic network and
the potentially minor effects introduced by the recruitment of the extrinsic net-
work, the networks identified in this study for each emotional state naturally share
many nodes. This is also consistent with previous findings suggesting that intrinsic
and extrensic networks resemble each other (Cole et al., 2014; Betti et al., 2013).
Further, the challenge faced by the classifier is to identity these potentially minor
changes. The fact that in this study the identification was observed to be possible,
is a testament to the capability of the multivariate method.

Ever since classification analysis were first applied to neuroimaging data, there
has been discussion and misconceptions about the interpretability of the weights
produced by the algorithm. Machine learning analysis can of course be used to
simply produce numerical predictions that are as accurate as possible. This approach
is often useful and adequate in the context of eg. brain-computer interfaces where
the need for accuracy trumps interpretability. However, in the clinical context there
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is a need for understanding what features of the data drive the algorithm. This has
understandably led to the widespread misconception that large classifier weights
correspond to significant features in the data. This was elegantly demonstrated to
be false by Haufe et al. (2014).

5.6 Future work

From the beginning in designing the analysis for this thesis there were two main
challenges that had to be accounted for. These are the capability of dealing with
the spatial resolution of the data and the ability of the classifier to determine the
part of the network that is essential in driving the classification.

The role of efficient utilization of big data has been pivotal in fields such as
physics and genomics and its need in neuroscience has also been recognized (Se-
jnowski et al., 2014). From a computational point of view, which has been pro-
moted in this thesis, this is the way forward in discovering the processes underlying
brain functionality. However, presently the analysis tools often end up struggling
with the high dimensionality of the data which has even led to researchers taking
steps towards reducing the data complexity (Mwangi et al., 2014). Particularly in
brain network analysis, the amount of complexity can increase dramatically as the
analysis often inherently involve mapping the original features to higher dimensional
space through modelling of the interactions between individual signals. The high
dimensionality combined with the often relatively small number of samples makes it
difficult for the machine learning tools to distinguish the signal out of the noise. Here
the small number of samples was compensated by pooling the data from multiple
subjects, thereby increasing the signal-to-noise ratio. The capability of the analytic
tools remains a future challenge.

Another area that future research on the computational methods should focus
on is the identification of the part of the network that is driving the classification.
It is a challenge that can be placed in the wider context of connectivity analysis.
The recognition of subnetworks that guide the emotional response based on the
parameters of the obtained model would be an ideal tool for interpretation but has
been demonstrated to be problematic (Haufe et al., 2014). The interpretation of
algorithm weights is one aspect that has been discussed in this thesis.

Connectivity analysis is an essential tool in neuroscience in discovering how the
interplay of various brain regions promotes different functionalities. The required
stability of the cognitive state provides some difficulties when using fMRI as the
imaging modality but connectivity analysis are also widely utilised in MEG analysis.
This imaging modality provides data with much higher temporal resolution and thus
allows more detailed analysis on the temporal scale. The trade-off is that the sources
of MEG data are difficult to locate and often accurate source estimation can only be
done on the cortical level. fMRI detects signals from both cortical and subcortical
regions and allows the inspection of larger networks. This could be essential when
analysing some particular brain processes that heavily rely on subcortical brain
structures.
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6 Conclusions

The goal of this work was to apply classification on brain connectivity data to see if
emotional states can be distinguished on an intersubject level. The effectiveness of
this analysis was then compared to more traditional MVPA procedures. First, the
previous findings were confirmed by carrying out MVPA analysis on the activation
data on intrasubject level. Then, the connectivity networks were created and used
as an input for the classifier.

The main finding was that brain networks contain enough shared information
for the classification algorithm to succesfully distinguish between different emotional
states. This finding is interesting because the individual brain activation patterns
tend to have enough unique features to confuse the classifier in MVPA analysis. The
result gives reason to suggest that the further processing of the signal in constructing
the networks somehow diminishes the distinctiveness of these features enabling the
classifier to find the relevant structure shared by individuals. The results also clearly
indicate that emotions are based on different patterns of underlying brain networks.

The analysis of complex natural stimuli is challenging the capabilities of the
current methods, a fact that was encountered during this work. However, the results
presented in this thesis also encourage to pursue this line of analysis in the future.
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