
 

-o
tl

a
A

D
D

 
18

1
/

 6
10

2

 +a
haah

a*GM
FTSH

9  NBSI 0-7007-06-259-879  )detnirp( 
 NBSI 3-6007-06-259-879  )fdp( 

 L-NSSI  4394-9971
 NSSI 4394-9971  )detnirp( 
 NSSI 2494-9971  )fdp( 

 
ytisrevinU otlaA  

ecneicS fo loohcS  
sisylanA smetsyS dna scitamehtaM fo tnemtrapeD  

 if.otlaa.www

 + SSENISUB
 YMONOCE

 
 + TRA

 + NGISED
 ERUTCETIHCRA

 
 + ECNEICS

 YGOLONHCET
 

 REVOSSORC
 

 LAROTCOD
 SNOITATRESSID

 r
ed

na
ja

M 
ell

e
H

 g
ni

ga
mi 

ci
hp

ar
go

mo
t l

an
oi

sn
e

mi
d-

ee
rh

t r
of 

s
mh

ti
ro

gl
a 

no
it

cu
rt

sn
oc

er 
tn

ei
cfi

f
E

 y
ti

sr
ev

i
n

U 
otl

a
A

 6102

 sisylanA smetsyS dna scitamehtaM fo tnemtrapeD

noitcurtsnocer tneicfifE  
-eerht rof smhtirogla

cihpargomot lanoisnemid  
 gnigami

 rednajaM elleH

 LAROTCOD
 SNOITATRESSID



 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD  181 /  6102

rof smhtirogla noitcurtsnocer tneicfifE  
cihpargomot lanoisnemid-eerht  

 gnigami

 rednajaM elleH

fo rotcoD fo eerged eht rof detelpmoc noitatressid larotcod A  
eht fo noissimrep eht htiw ,dednefed eb ot )ygolonhceT( ecneicS  

ta dleh noitanimaxe cilbup a ta ,ecneicS fo loohcS ytisrevinU otlaA  
 .21 ta 6102 rebmevoN 11 no loohcs eht fo E llah erutcel eht

 ytisrevinU otlaA
 ecneicS fo loohcS

 sisylanA smetsyS dna scitamehtaM fo tnemtrapeD



 rosseforp gnisivrepuS
 nenövyH ittuuN .forP

 
 rosivda sisehT

 nenövyH ittuuN .forP
 

 srenimaxe yranimilerP
 dnalniF ,iknisleH fo ytisrevinU ,nenatliS ilumaS .forP

 modgniK detinU ,nodnoL egelloC ytisrevinU ,ekcteB .M atraM .rD
 

 tnenoppO
 kramneD ,kramneD fo ytisrevinU lacinhceT ,nesdunK miK .forP

 seires noitacilbup ytisrevinU otlaA
SNOITATRESSID LAROTCOD  181 /  6102

 
 ©  rednajaM elleH

 
 NBSI 0-7007-06-259-879  )detnirp( 
 NBSI 3-6007-06-259-879  )fdp( 

 L-NSSI  4394-9971
 NSSI 4394-9971  )detnirp( 
 NSSI 2494-9971  )fdp( 

:NBSI:NRU/if.nru//:ptth  3-6007-06-259-879
 

 yO aifarginU
 iknisleH  6102

 
 dnalniF

 



 tcartsbA
  otlaA 67000-IF ,00011 xoB .O.P ,ytisrevinU otlaA  if.otlaa.www

 rohtuA
 rednajaM elleH

 noitatressid larotcod eht fo emaN
 gnigami cihpargomot lanoisnemid-eerht rof smhtirogla noitcurtsnocer tneicfifE

 rehsilbuP  ecneicS fo loohcS
 tinU  sisylanA smetsyS dna scitamehtaM fo tnemtrapeD

 seireS seires noitacilbup ytisrevinU otlaA  SNOITATRESSID LAROTCOD  181 /  6102
 hcraeser fo dleiF  scitamehtaM

 dettimbus tpircsunaM  6102 enuJ 41  ecnefed eht fo etaD  6102 rebmevoN 11
 )etad( detnarg hsilbup ot noissimreP  6102 rebmetpeS 1  egaugnaL  hsilgnE

 hpargonoM  noitatressid elcitrA  noitatressid yassE

 tcartsbA
cihpargomot morf gnisira smelborp noitamitse retemarap raenilnon sredisnoc siseht sihT  

desop-lli era esehT .snoitauqe laitnereffid laitrap citpille yb denrevog seitiladom gnigami  
-emarf naiseyaB eht ni ,ro noitaziraluger seriuqer noitulos rieht ecneh dna smelborp esrevni

gniyrav yllaitaps detcurtsnocer-eb-ot eht tuoba noitamrofni roirp fo noitaroprocni ,krow  
tnatsnoc a ni snoisulcni tcnitsid evah ot nwonk si retemarap eht fi ,ralucitrap nI .retemarap  

retemarap eht noitazitercsid retfa taht gnimussa yb noitamrofni hcus yfitnauq ew ,dnuorgkcab  
-reffid morf revocer ot woh yduts ew ,revoeroM .noitubirtsid roirp gnicnahne-egde na swollof

noitcurtsnocer eht niur ot hguone eb nac seno llams neve ecnis ,atad eht ni srorre fo sdnik tne  
 .melborp gnigami cihpargomot desop-lli na rof

  
iroiretsop a mumixam eht eb ot melborp esrevni detagitsevni eht fo noitulos eht redisnoc eW  

.melborp noitaziminim a gnivlos yb dnuof eb nac hcihw ,tseretni fo retemarap eht rof etamitse  
-aziraenil gninibmoc no desab mhtirogla evitareti na yb reziminim eht rof hcraes ot esoporp eW

ecapsbus volyrK denoitidnocroirp a dna spets ytivisuffid deggal ,ledom drawrof eht fo snoit  
esuffid ,)TIE( yhpargomot ecnadepmi lacirtcele morf selpmaxe gnitneserp yB .)RQSL( dohtem  

-nomed ew ,)TAPQ( yhpargomot citsuocaotohp evitatitnauq dna )TOD( yhpargomot lacitpo
gnivlos rof elbisaef eb ot hguone yltneicfife detnemelpmi eb nac dohtem a hcus taht etarts  

rof tluser ecnairavni lamrofnoc a esu ew ,noitidda nI .smelborp lanoisnemid-eerht elacs-egral  
 .srorre gniledom cirtemoeg rof etasnepmoc ot TIE fo )MEC( ledom edortcele etelpmoc eht

 sdrowyeK gnicnahne-egde ,gnigami cihpargomot ,melborp noitamitse retemarap  
ecnadepmi lacirtcele ,RQSL ,gninoitidnocroirp ,srorre gniledom ,noitaziraluger  

evitatitnauq ,yhpargomot lacitpo esuffid ,ledom edortcele etelpmoc ,yhpargomot  
 yhpargomot citsuocaotohp

 )detnirp( NBSI  0-7007-06-259-879  )fdp( NBSI  3-6007-06-259-879
 L-NSSI  4394-9971  )detnirp( NSSI  4394-9971  )fdp( NSSI  2494-9971

 rehsilbup fo noitacoL  iknisleH  gnitnirp fo noitacoL  iknisleH  raeY  6102
 segaP  651  nru :NBSI:NRU/fi.nru//:ptth  3-6007-06-259-879





 ämletsiviiT
  otlaA 67000 ,00011 LP ,otsipoily-otlaA  if.otlaa.www

 äjikeT
 rednajaM elleH

 imin najriksötiäV
 neesimatnavuk neesfiargomot neesiettoluimlok ajemtiroglaoitkurtsnoker atiakkoheT

 ajisiakluJ  uluokaekrok nedieteitsureP
 ökkiskY  sotial nisyylanaimeetsys aj nakiitametaM

 ajraS seires noitacilbup ytisrevinU otlaA  SNOITATRESSID LAROTCOD  181 /  6102
 alasumiktuT  akkiitametaM

 mvp neskutiojrikisäK  6102.60.41  äviäpsötiäV  6102.11.11
 äviäpsimätnöym navulusiakluJ  6102.90.10  ileiK  itnalgnE

 aifargonoM  ajriksötiävilekkitrA  ajriksötiäveessE

 ämletsiviiT
aisiraaeniläpe äivyttiil niimletenemsimatnavuk niisfiargomot näälletisäk assajriksötiäv ässäT  

.öläthyilaaitnereffidsiattiso nenitpille no allatsuat nedioj ,aimlegnoitniomitseirtemarap  
iat aitniosiraluger iitaav usiaktar aknoj ,amlegnosietnääk uttetesa itsonouh no ässeesyK  

.atsirtemarap atsavuppiirakkiap atsavatiourtsnoker aoteitiroirp ässeskyheketiiv ässesiäliseyab  
ämät ,assatsuat assesiovraoikav atsioisuulkni uutsook irtemarap ätte ,näätedeit itsesiytire soJ  

ajonuer aattaduon irtemarap neekläj ninnioterksid ätte ,allamattelo naadiofiitnavk oteit  
aj -suattim netsippyytire söym näälletisäk assajriksötiäV .aamuakajiroirp aavatsorok  

-simatnavuk netsfiargomot nejuttetesa itsonouh ällis ,aitnioimouh nediehrivsunnillam
 .noitkurtsnoker atalip taviov teduukkratäpe nikteneip asseskuapat neimlegno

  
namuakajiroiretsop ässöyt ässät näätedip anusiaktar namlegno-oisrevni nulletsakraT  

aajiominiM .amlegnoitniominim ytteit allamesiaktar äätyöl naadiov akoj ,aathokimiskam  
nytetsäviiv ,ninniosiraenil nillam narous uutsurep akoj ,allimtirogla allesiviitareti näätiste  

.neesimätsidhy )RQSL( nämletenemsuuravaila-volyrK nutetsujhop aj neeleksasuusiviisuffid  
aj )TOD( naafiargomot neesitpo neesiviisuffid ,)TIE( naafiargomotissnadepmi ällämelettisäK  

ätte ,naatetioso äjekkremise äivyttiil )TAPQ( naafiargomot neesitsukaotof neesiviitatitnavk  
netsiettoluimlok navaakattim neruus itsaakkohet nävättiir aattuetot naadiov imtirogla ytletise  

-imrofnok nillamidortkele nesilledyät n:TIE ätsäre iskäsiL .iskesimesiaktar neimlegno
 .niitniosnepmok nediehrivsunnillam netsirtemoeg näätetyäk atsolutissnairavni

 tanasniavA avatsorok ajonuer ,nenimatnavuk nenfiargomot ,itniomitseirtemarap  
,afiargomotissnadepmi ,RQSL ,nenimatsujhop ,teehrivillam ,itniosiraluger  

neniviitatitnavk ,afiargomot nenitpo neniviisuffid ,illamidortkele nenilledyät  
 afiargomot nenitsukaotof

 )utteniap( NBSI  0-7007-06-259-879  )fdp( NBSI  3-6007-06-259-879
 L-NSSI  4394-9971  )utteniap( NSSI  4394-9971  )fdp( NSSI  2494-9971

 akkiapusiakluJ  iknisleH  akkiaponiaP  iknisleH  isouV  6102
 äräämuviS  651  nru :NBSI:NRU/fi.nru//:ptth  3-6007-06-259-879





Preface

This work has been carried out during the years 2012–2016 at the Depart-

ment of Mathematics and Systems Analysis of Aalto University, although

during the last two years I have been hosted at Centre de Mathématiques

Appliquées of École Polytehnique in France. I acknowledge the Academy

of Finland, the Foundation for Aalto University Science and Technology

as well as the Emil Aaltonen Foundation for funding during these years.

I want to express my gratitude to the supervisor and advisor of this

thesis, Prof. Nuutti Hyvönen, for his patient guidance and support dur-

ing my doctoral studies. I also thank the preliminary examiners, Prof.

Samuli Siltanen and Dr. Marta M. Betcke, for taking the time to review

the manuscript, and Prof. Kim Knudsen for agreeing to act as my oppo-

nent. I owe special thanks also to Prof. Antti Hannukainen, Dr. Tanja

Tarvainen, Dr. Lauri Harhanen and Dr. Stratos Staboulis with whom I

have had the pleasure of working while writing this thesis.

For encouragement especially in the beginning of my doctoral studies, I

want to thank Dr. Harri Hakula and Dr. Antti Rasila, the inverse prob-

lems group and the ‘coffee room gang’ at Aalto. I am also grateful for Prof.

Houssem Haddar, his DéFI-team and other friends at l’X for welcoming

me to France and making my stay here unforgettable. I thank my close

friend Hanna, my mother Karin and my sister Aini for their patience and

continuous support even from far away. Finally, my warmest thanks to

Atte for being there for me.

Palaiseau, September 12, 2016,

Helle Majander

1



Preface

2



Contents

Preface 1

Contents 3

List of Publications 5

Author’s Contribution 7

1. Introduction 9

2. Numerical methods 13

2.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Bayesian inversion . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Model errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Minimization schemes . . . . . . . . . . . . . . . . . . . . . . 24

3. Tomographic imaging 35

3.1 Electrical impedance tomography . . . . . . . . . . . . . . . . 35

3.2 Diffuse optical tomography . . . . . . . . . . . . . . . . . . . . 38

3.3 Quantitative photoacoustic tomography . . . . . . . . . . . . 41

4. Summary of results 45

References 49

Errata 57

Publications 59

3



Contents

4



List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I L. Harhanen, N. Hyvönen, H. Majander and S. Staboulis. Edge-enhancing

reconstruction algorithm for three-dimensional electrical impedance to-

mography. SIAM Journal on Scientific Computing, 37(1), B60–B78,

February 2015.

II A. Hannukainen, L. Harhanen, N. Hyvönen and H. Majander. Edge-

promoting reconstruction of absorption and diffusivity in optical tomog-

raphy. Inverse Problems, 32(1), 015008, 19 pages, January 2016.

III A. Hannukainen, N. Hyvönen, H. Majander and T. Tarvainen. Effi-

cient inclusion of total variation type priors in quantitative photoacous-

tic tomography. SIAM Journal on Imaging Sciences, 9(3), 1132–1153,

August 2016.

IV N. Hyvönen, H. Majander and S. Staboulis. Compensation for geo-

metric modeling errors by electrode movement in electrical impedance

tomography. arXiv:1605.07823, 22 pages, September 2016.

5



List of Publications

6



Author’s Contribution

Publication I: “Edge-enhancing reconstruction algorithm for
three-dimensional electrical impedance tomography”

The implementation of the algorithm (excluding the forward solver) is

mainly due to the author. She also participated in the writing process.

In particular, she designed and reported the numerical experiments.

Publication II: “Edge-promoting reconstruction of absorption and
diffusivity in optical tomography”

The implementation of the algorithm (excluding the forward solver) and a

large part of the writing process are due to the author. In particular, she

designed and reported the numerical experiments.

Publication III: “Efficient inclusion of total variation type priors in
quantitative photoacoustic tomography”

The author participated in the implementation of the matrix-free approach;

the other parts of the algorithm (excluding the forward solver) are due to

her. The author also substantially contributed to the writing process. In

particular, she designed and reported the numerical experiments.

Publication IV: “Compensation for geometric modeling errors by
electrode movement in electrical impedance tomography”

The author is responsible for modifying the forward solver of II and III for

EIT. She also substantially contributed to the writing process. In particu-

lar, she designed and reported the numerical experiments.

7



Author’s Contribution

8



1. Introduction

After Wilhelm Röntgen’s discovery of X-rays in 1895, the world of medicine

experienced a major change. Before that, the only way to see inside a pa-

tient was by a surgery or some other invasive method, but with the new

technology, a doctor could make an exterior measurement to get an image

of what the patient looked like from inside. Conventional X-ray imag-

ing developed into computerized tomography (CT) and was soon accom-

panied by other non-invasive imaging modalities, such as ultrasonogra-

phy, positron emission tomography (PET) and magnetic resonance imag-

ing (MRI). Newer methodologies include optical tomography, electrical

impedance and capacitance tomography, and elastography as well as var-

ious hybrid methods. For a thorough history of the development of diag-

nostic tomographic imaging, see [37]. In addition to diagnostics, differ-

ent imaging methods have several other applications, for example in non-

destructive testing of materials, and imaging of deep geologic structures,

the floor of an ocean or the space.

The shared aim of all tomographic imaging modalities is to recover in-

ternal information based on interaction between the input signal and the

imaged object. The type of the recovered information depends on what

kind of signal is employed, in what way it is applied, and how the mea-

surements are recorded. For example in X-ray imaging, the target is ex-

posed to electromagnetic radiation in X-ray frequencies, and the distinc-

tion of tissues is based on their capability of absorbing different amounts

of photons from the radiation. Furthermore, although conventional X-ray

imaging and CT use the same type of input signals, due to the different

application and recording methods, the two modalities yield different in-

formation about the target.

Formulating a tomographic imaging task mathematically is a two-fold

problem. First, assuming that the internal parameter of interest (the to-

9
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be-recovered information) is known, the forward problem is to make use

of the physical laws related to the employed imaging method to describe

how the recorded measurement depends on the parameter. The resulting

mathematical model is then used in the second part, which is the inverse

problem of estimating the value of the internal parameter based on some

actual recorded measurements. While specifying the forward model is by

no means a trivial task, it is beyond the scope of this thesis. We will con-

sider some well-established forward models and focus on the parameter

estimation problem.

Being an inverse problem, estimation of the internal parameter is not a

straightforward problem to solve. The difficulty arises from the fact that

such problems are usually ill-posed. According to the definition given by

Jacques Hadamard in 1920’s, a well-posed problem has a unique solution

that depends continuously on the data [43]. Conversely, an ill-posed prob-

lem may not have an exact solution at all or there may be several (possibly

an infinite number) of them. Most importantly, even if a solution exists, its

dependence on the data is certainly not continuous in any reasonable met-

ric. Hence, to solve such a problem, it is necessary to search for an approx-

imate solution and to use additional prior information that helps to define

which one of all the possible approximate solutions is likely to be the de-

sired one. Furthermore, all the errors have to be carefully accounted for,

since otherwise even small ones may ruin the solution. Broadly speaking,

the possible inaccuracies can be divided into two categories: model errors

result from imperfections in the forward model compared to the physi-

cal reality whereas measurement errors correspond to data uncertainties,

which can depend for example on the used instrumentation.

In addition to the difficulties arising from the ill-posedness, reconstruct-

ing the parameter of interest in a tomographic imaging problem often

introduces numerical challenges. Although the final images produced by

many practical imaging modalities are two-dimensional, the actual prob-

lems are usually inherently three-dimensional. Even when all the re-

lated mathematical concepts can be formulated similarly in both spatial

dimensions, the computational cost often increases substantially with the

dimension. For this reason, we are particularly interested in developing

algorithms that are also capable of handling three-dimensional problems

efficiently.

10
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Ω

c → f

Figure 1.1. The set-up of a general parameter estimation problem (inverse boundary
value problem): determine the value of a parameter c living in a domain
Ω, based on the (boundary) data f .

Parameter estimation problems

In order to handle the considered problems in a more concrete manner,

we introduce in this section a notation for a general parameter estimation

problem, illustrated in Figure 1.1. We denote the domain (the examined

body) by Ω ⊂ R
d. Although in this work we are mainly interested in the

three-dimensional case, d = 3, the presented methods also apply to d = 2.

The parameter of interest is denoted by c ∈ C ⊂ D, where D = D(Ω) is

the chosen parameter space, which is a function space defined over the do-

main, and C is the set of admissible parameters (containing e.g. positivity

constraints). Our data (the measurement) is denoted by f ∈ F , where

F is the data space usually defined on (a part of) the boundary ∂Ω. No-

tice that we only consider time-independent settings, that is, neither the

parameter c nor the measurement f depends on time.

In this configuration, the forward problem is to determine the forward

operator F : C → F , the structure of which depends on the application.

We restrict our attention to such F that can be described by an elliptic

partial differential equation. In particular, the considered forward opera-

tor may be nonlinear. The parameter estimation problem is now described

as follows: given the data f ∈ F , find such c ∈ C that F(c) ≈ f . We need

to look for an approximate solution, since the problem is ill-posed and in

practical applications the available data is always erroneous. More pre-

cisely, we consider the usual approach of finding the solution c ∈ C that

minimizes the least-squares functional

Φ(c) =
1

2
‖F(c)− f‖2F (1.1)

accompanied by suitable regularization that reflects our prior information

on the parameter. Note that the norm ‖ · ‖F may depend on the employed

11
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noise model. In this thesis we consider numerical aspects that let us effi-

ciently solve minimization problems of this type with a high-dimensional

discretization of the parameter space, a large number of data and in the

presence of modeling errors.

The rest of this overview is organized as follows. In Section 2 we go

through some numerical techniques related to solving the parameter es-

timation problem and conclude by introducing a reconstruction algorithm

that can be efficiently implemented for relatively large problems. Sec-

tion 3 is dedicated to describing the three imaging modalities that are

considered in the four publications comprising this thesis. The results of

the publications are then summarized in Section 4.

12



2. Numerical methods

In this section we consider the numerical solution of the parameter esti-

mation problem described in Section 1. We begin by discretizing the prob-

lem in Section 2.1 and proceed in Section 2.2 to describe the Bayesian

framework, which is used to derive the to-be-minimized functional cor-

responding to (1.1). In Section 2.3 we discuss the handling of modeling

errors, and finally in Section 2.4 we briefly go through the minimization

algorithms relevant to this thesis.

2.1 Discretization

To keep the explanations simple, we only consider here the case in which

all parameters and measurements are real-valued. Notice, however, that

the described approaches generalize to the complex-valued setting as well.

In particular, this observation is relevant for the set-up of Publication II.

Our presentation follows the books [16, 26]. For a more general descrip-

tion of the theoretical aspects considered in this section, we refer to [115].

In a tomographic imaging problem the main parameter of interest is a

function depending on the position x ∈ Ω and as such, it naturally lives

in an infinite-dimensional function space that depends on the considered

imaging modality. Since our algorithms are designed for handling finite-

dimensional parameters, we first need to discretize the parameter and

the forward model. In other words, we approximate c ∈ C ⊂ D by some

ĉ ∈ Ĉ ⊂ D̂, where D̂ is a finite-dimensional subspace of D. The approxi-

mate parameter can then be represented in terms of a basis {φj}nj=1 of D̂

as

ĉ(x) =

n∑
j=1

cjφj(x), x ∈ Ω, (2.1)

which is uniquely determined by the vector of coefficients c = [cj ]
n
j=1 ∈ R

n;

we write D̂ ∼= R
n. After discretization, our aim is to recover the vector c.

13
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Forward model

To be able to numerically solve the forward problem corresponding to

an approximate parameter, we also need to discretize the forward model

F : C → F . To explain how this is done, we split the evaluation of g = F(c)
into two parts using F : C → S → F as follows: for a given c ∈ C, first

solve the state u ∈ S from the state equation and then use the measure-

ment operator M : S → F to retrieve the data corresponding to u. Con-

ceptually, the variable u ∈ S describes completely the state of the system

corresponding to a fixed parameter c and the considered input. The mea-

surement operatorM then indicates which (small) part of the information

in u can actually be measured. For simplicity, in this section we present

the theory assuming that the measurement g = M(u) is only related to

one state u ∈ S. However, in practice the data in (1.1) is often recorded

corresponding to several different input signals applied to the target (see

Section 3), and hence it is related to several states u(1), . . . , u(N). No-

tice that the generalization to such a case is straightforward by using

g = [M(u(1)), . . . ,M(u(N))].

The state equation of a (diffuse) tomographic imaging problem is typ-

ically governed by an elliptic (or parabolic) partial differential equation

(PDE) with appropriate boundary conditions. We assume that there ex-

ists a corresponding variational formulation:

B(u, v) = L(v) for all v ∈ S, (2.2)

where B : S × S → R and L : S → R. Here B = B(c) depends implicitly

on the parameter c. Details on how to deduce the formulation (2.2) for a

given boundary value problem can be found for example in [16]. The fol-

lowing theorem lists the sufficient conditions under which the variational

formulation has a unique solution.

Theorem 1 (Lax–Milgram). Assume that S is a real Hilbert space. Let

L : S → R be a continuous linear functional and B : S × S → R a bilinear

form for which there exist constants β <∞ and α > 0 such that

|B(v, w)| ≤ β‖v‖S‖w‖S for all v, w ∈ S (boundedness),

B(v, v) ≥ α‖v‖2S for all v ∈ S (coercivity).

Then there exists a unique u ∈ S that solves (2.2).

The state space S is typically infinite-dimensional; u ∈ S can be for ex-

ample a function of x ∈ Ω. Hence, we need to make a finite-dimensional
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approximation û ∈ Ŝ ⊂ S. If {φj}mj=1 forms a basis for Ŝ ∼= R
m, then

û =

m∑
j=1

ujφj (2.3)

for some u = [uj ]
m
j=1 ∈ R

m. Notice that we often use the same discretiza-

tion for c and u, i.e. the bases for Ŝ and D̂ are the same, and m = n, but

in general they need not to be. When Ŝ is chosen properly, there exists a

unique solution also for the approximate problem corresponding to (2.2)

and the associated error is characterized by the following theorem.

Theorem 2 (Céa’s lemma). Assume S, L, and B are as in Theorem 1. If Ŝ

is a finite-dimensional subspace of S, there exists a unique û ∈ Ŝ solving

B(û, v̂) = L(v̂) for all v̂ ∈ Ŝ. (2.4)

Furthermore, if u ∈ S is the unique solution of (2.2), then

‖u− û‖S ≤
β

α
min
v̂∈̂S

‖u− v̂‖S .

See for example [16] for proofs of these theorems. Now, using (2.1), (2.3)

and letting the test function v̂ go through all the basis functions {φj}mj=1,

the approximate state equation (2.4) can be written in a discrete form

Bu = L, (2.5)

where B = [B(φi, φj)]
m
i,j=1 ∈ R

m×m and L = [L(φj)]
m
j=1 ∈ R

m. Solving

u = [uj ]
m
j=1 ∈ R

m from (2.5) is then conceptually straightforward.

After the approximate state is solved from (2.5) and (2.3), we use the

measurement operator to get the (approximate) data, g =M(û). The mea-

surement operator may also (implicitly) depend on other infinite-dimen-

sional objects, which are again replaced by suitable finite-dimensional

approximations when numerically evaluating M(û). In addition, even

though physically realistic measurements g ∈ F are always finite-dimen-

sional, this is not necessarily the case in mathematical models. If F is

infinite-dimensional, again, we replace it by a finite-dimensional approx-

imation g ≈ ĝ ∈ F̂ ⊂ F . For notational convenience, we often identify the

finite-dimensional approximations with the corresponding coefficient vec-

tors and use F also to denote the discretized forward model i.e. we write

g = F(c).

Derivative of the forward model

To minimize a functional of form (1.1) with a differentiation-based algo-

rithm, we also need to approximate the derivative of the map c �→ F(c)
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evaluated at a given point. There are two possible approaches: either to

discretize the model first, and then calculate the exact derivative of the

discretized model, or to first calculate analytically the exact derivative of

the continuous model, and then discretize the resulting equations. For ex-

ample [23] presents some methods for computing the exact derivative of

the discrete model F : Rn → R
k at a point c ∈ R

n, i.e. the Jacobian matrix

JF
c (c) =

[
∂Fi(c)

∂cj

]k,n
i,j=1

∈ R
k×n.

In this work we take the other approach. We assume that the continuous

forward model F : C → F is Fréchet differentiable with respect to the

parameter c ∈ C i.e. that it has a Fréchet derivative for all c ∈ C, defined

as follows.

Definition 1. Let D and F be Banach spaces and C ⊂ D an open subset

of D. The Fréchet derivative of F : C → F at c ∈ C is the bounded linear

map F ′(c) : D → F that satisfies

lim
0�=h→0

‖F(c+ h)−F(c)− (F ′(c))(h)‖F
‖h‖D

= 0.

To discretize the Fréchet derivative, notice first that since (F ′(c))(h) ∈ F

it is either already finite-dimensional, F ∼= R
k, or we can discretize it in

the same way as the measurement g ∈ F . We then write the derivative by

its components as [(F ′
i(c))(h)]

k
i=1 ∈ R

k. Using the approximation (2.1) for

the parameter c ∈ C and a similar one for the direction h ∈ D, we have

(F ′(c))(h) ≈
[
(F ′

i(ĉ))(φj)
]k,n
i,j=1

h ≈ JF
c (c)h.

It remains to numerically approximate (F ′
i(ĉ))(φj) for all i = 1, . . . , k and

j = 1, . . . , n. In practice, since the forward operator is given as a composi-

tion of the measurement operator and the solution to the state equation,

the discretization of its derivative reflects back to the discretizations of

the state equation and the measurement operator. The details are mostly

model-specific and are hence postponed to Section 3.

Finite element method

Finite element method (FEM) is possibly the most important technique

for constructing finite-dimensional subspaces for function spaces related

to a spatial domain Ω. The idea is to divide the domain into a finite num-

ber of elements to form local finite-dimensional subspaces, which are then

combined to construct the global one. We demonstrate the idea with a sim-

ple example using a triangular mesh and piecewise linear basis functions.
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T

K →
← c(xj)

Figure 2.1. An approximation of the parameter c(x) ≈
∑

c(xj)φj(xj) on a triangular FE
mesh T of the domain Ω.

For a more general approach, detailed description and error estimates we

refer to [16, 26].

Let T be a division of the domain Ω ⊂ R
d, d = 2, 3 into triangles (or

tetrahedrons), Ω = ∪K∈T K, so that the interiors of distinct elements are

disjoint and the vertices and edges (and faces) of T coincide, i.e. no vertex

of any element lies in the interior of an edge. An example of such a divi-

sion is given in Figure 2.1. To this division T we associate a space P of

continuous functions that are linear on each triangle K. The space P is

finite-dimensional and, as an example, P ⊂ H1(Ω). On each element K,

a linear function can be uniquely determined by its values at the vertices

of the triangle. Hence, collecting the values at all vertices xi, i = 1, . . . , n

in T , we can uniquely determine any function of P . Furthermore, the

piecewise linear functions with

φj(xi) =

⎧⎨⎩ 1, if i = j

0, if i �= j
, i, j = 1, . . . , n (2.6)

form a basis for P . The power of FEM lies in the fact that when using

these basis functions, the system corresponding to (2.5) becomes sparse.

Furthermore, the discrete variables are easy to form. Consider for exam-

ple the approximation of c ∈ C in (2.1). With the basis functions (2.6), the

coefficients satisfy cj = c(xj) and hence the discrete variable c is formed

by simple point evaluations of c.

2.2 Bayesian inversion

There are different ways to form the regularized cost functional corre-

sponding to (1.1). Here we present the Bayesian approach along the lines

of [58, 101]; for the so-called regularization theory, see for example [36].
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In what follows, we consider a discretized parameter c ∈ R
n and a discrete

(or discretized) measurement F(c) ∈ R
k. For infinite-dimensional results

see [70, 76, 100] and references therein.

We assume that the measurements are corrupted by additive Gaussian

noise, i.e. our data f ∈ R
k is of form

f = F(c) + η, (2.7)

where η ∈ R
k is (a realization of) a zero-mean Gaussian random variable

with a covariance matrix Γη ∈ R
k×k. Consult for example [58] for other

noise models. Assuming that the noise η and the parameter c are inde-

pendent, the likelihood, i.e. the probability density of the measurement

given the parameter, is also Gaussian with the same covariance Γη and

with a mean shifted by F(c). To put it explicitly, the probability density

function has the form

p(f | c) ∝ exp

(
−1

2

(
f −F(c)

)T
Γ−1
η

(
f −F(c)

))
,

where we have ignored the coefficient ((2π)k det(Γη))
−1/2, since it does not

depend on c.

The information that we have on the parameter c ∈ R
n before any mea-

surements — the a priori information — is in our case quantified by giving

the parameter a prior probability density of the form

p(c) ∝ exp
(
− aR(c)

)
, (2.8)

where a > 0 is a free ‘regularization’ parameter and R is a function de-

scribing the expected behavior of c. From the Bayes’ formula we now get

the posterior density

p(c |f) ∝ p(f | c) p(c)

∝ exp
(
− 1

2

(
f −F(c)

)T
Γ−1
η

(
f −F(c)

)
− aR(c)

)
, (2.9)

where parameter-independent constants have again been ignored.

In an idealized statistical sense, the posterior probability density func-

tion (2.9) is the solution to the inverse problem we are considering. How-

ever, in practice we are usually interested in more concrete properties of

the parameter c, which can be described by estimates calculated from the

posterior density. In particular, the so-called point estimates give directly

reconstructions of the parameter (see e.g. [58] for other estimate types).

The most common point estimates are the conditional mean (CM) esti-

mate

cCM =

∫
Rn

c p(c |f) dc
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and the maximum a posteriori (MAP) estimate

cMAP = arg max
c∈Rn

p(c |f).

The CM estimate can be approximated for example by using Markov chain

Monte Carlo (MCMC) techniques (see e.g. [105]). In this work we restrict

our attention to the MAP estimate, which can be found by solving a mini-

mization problem (see Section 2.4).

Gaussian priors

The choice of a function R(c) for the prior (2.8) can be done in many ways

and it is not always clear, which is the best one. We first consider the

function

R(c) =
1

2
(c− c0)

TΓ−1
c (c− c0), (2.10)

which gives the parameter of interest a Gaussian prior density with mean

c0 ∈ R
n and covariance Γc ∈ R

n×n. As an example, set c0 = c01, with

1 = [1, . . . , 1]T ∈ R
n, and Γc = γ2I, where I ∈ R

n×n is the identity ma-

trix. Then the coefficients cj in (2.1) vary from the mean c0 ∈ R with

the standard deviation γ ∈ R+ independently of one another. However,

as these coefficients correspond to the node values of the parameter c(x)

in the FE discretization, the assumption of independence (and identical

distributions) is often unreasonable; usually we expect there to be some

correlation between the parameter values evaluated at nodes lying close

to one another. A more informative Gaussian prior can be formed, e.g.,

by introducing the distance-dependent covariance matrix of ‘squared ex-

ponential type’

(Γc)i,j = γ2 exp

(
−|xi − xj |2

2λ2

)
, γ, λ > 0,

where xi, xj ∈ R
d are the FE nodes corresponding to the coefficients ci, cj ,

respectively, γ is the standard deviation for the node values, and λ is the

correlation length [72]. A downside of using this type of covariance matrix

is that, in principle, its construction requires the calculation of distances

between all pairs of nodes in the (unstructured) FE mesh, which can be

computationally expensive.

Gaussian densities are the most commonly used family of priors, since

they can often give good approximations even to non-Gaussian phenom-

ena and they are relatively easy to handle. In particular, for a linear

forward operator F(c) = Fc, when both the likelihood and the prior are
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Gaussian, the posterior is also Gaussian with explicit expressions for the

mean c and the covariance matrix [58]. This simplifies the statistical

analysis of the posterior, as for example cMAP = cCM = c.

The regularization theory provides also other approaches to choosing a

penalty term of form (2.10). By choosing the ‘weighting matrix’ Γ−1
c appro-

priately, this kind of regularization can correspond to different norms in

the continuous setting. For example with c0 = 0 ∈ R
n and Γ−1

c = S ∈ R
n×n

defined by

Si,j =

∫
Ω
∇φi(x) · ∇φj(x) dx, i, j = 1, . . . , n,

we get the squared L2-norm for the gradient of the finite-dimensional pa-

rameter

R(c) =
1

2
cTSc =

1

2

∫
Ω
|∇ĉ(x)|2 dx. (2.11)

Using the regularization term (2.11) corresponds to assuming an (im-

proper) smoothness prior [58] for the parameter c. In fact, as long as

the weight matrix S is positive (semi-)definite, the Tikhonov regulariza-

tion [106] with this type of penalty term can always be identified with a

MAP estimate corresponding to a (possibly improper) Gaussian prior with

the inverse covariance matrix S.

Edge-enhancing priors

Even though the use of Gaussian (smoothness) priors may be a computa-

tionally inviting choice, in many applications our prior knowledge does not

support the assumption of a smoothly behaving parameter. Instead, we

want to choose a prior that allows the parameter to exhibit jumps while

also restricting it from behaving too radically. To achieve this, consider a

prior density of form (2.8) with the function R being a discretized version

of the regularizer

R(c) :=

∫
Ω
r
(
|∇c(x)|

)
dx, (2.12)

where r : R+ → R+ is a continuously differentiable, monotonically in-

creasing function [3]. As an example, with r(t) = 1
2 t

2 we reproduce (2.11).

Choosing the function r carefully allows us to construct priors related

to nonquadratic edge-enhancing regularization functionals that are de-

signed to promote jumps in the parameter c. Note that such a choice cor-

responds to assuming an impulse prior for |∇c(x)|, see e.g. [58] for more

information.
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Edge-enhancing regularizers are frequently used in image reconstruc-

tion problems. One well known example is the total variation (TV) norm,

which is in essence the L1-norm of the gradient, i.e., the W 1,1 seminorm

of the parameter [91]. We get the corresponding prior with the choice

r(t) = t or r(t) =
√

t2 + T 2 ≈ |t|,

where the latter is a smoothened approximation that uses a small param-

eter T > 0 to ensure the differentiability of the regularizer (2.12). Similar

choices can be used to implement the TVq prior (see e.g. [52]). Another

nonquadratic penalty term considered in this thesis was presented by Per-

ona and Malik in [87] with two versions that correspond to the choices

r(t) =
1

2
T 2 log

(
1 + (t/T )2

)
and r(t) =

1

2
T 2
(
1− exp

(
−(t/T )2

))
.

The first one prefers large jumps over small ones and hence gives bet-

ter contrast, whereas the second favors large constant regions over small

ones. In both versions the parameter T > 0 controls the threshold below

which the discontinuities are considered as noise.

2.3 Model errors

In the previous section we dealt with (additive Gaussian) measurement

errors when constructing the to-be-minimized functional. However, so

far we have ignored the errors that are caused by imperfections in the

forward model, i.e. the model errors. These can result, for example, from

unknown auxiliary model parameters such as the shape of the imaged

object or other geometric dependencies. In addition, inaccuracies caused

by implementational choices such as domain truncation or discretization

are considered as modeling errors.

Arguably the most straightforward way to deal with auxiliary model pa-

rameters is to include their estimation in the reconstruction algorithm

(see e.g. [14, 31, 57, 111]). When the dimension of these additional pa-

rameters is reasonably low and the computation of the corresponding

derivatives cheap, this approach can be efficient. In some special cases,

the errors caused by inaccurate (geometric) model parameters can also

be compensated by changing other parameters, whose reconstruction is

easier to implement. This procedure has been considered for mismod-

eled domain shapes in [63, 64] and Publication IV. The implementational

errors can in some cases be estimated analytically or numerically (see
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e.g. [16, 26, 109]) and possibly be accounted for, e.g. by choosing a suit-

able stopping condition for an iterative method. Moreover, when using an

accurate enough numerical scheme, these errors can be neglected. There

are few general methods for dealing with model errors in (diffuse) tomo-

graphic problems. In the following sections we briefly describe two well-

established approaches.

Approximation error approach

To simplify the presentation, we assume here that the range of the for-

ward operator is finite-dimensional, F(c) ∈ F ∼= R
k, and we only consider

the case of discretization errors. The idea of the approximation error ap-

proach [58, 59] is to replace the discretized model (2.7) by the accurate

one

f = F(c) + η = F(c) + ε(c) + η, (2.13)

where c ∈ R
n, ε(c) = F(c) − F(c) ∈ R

k is the modeling error and η ∈ R
k

is the Gaussian noise vector with zero mean and a covariance Γη ∈ R
k×k.

In case of a linear forward model F(c) = Fc and Gaussian distributions

for the parameter c and the error ε(c), the posterior distribution corre-

sponding to the model (2.13) can be solved exactly [59]. Otherwise, it is

usually assumed that the continuous model can be approximated reason-

ably well (within the measurement accuracy) by a dense discretization,

F(c) ≈ F̃(c̃), where c̃ ∈ R
m, m > n, and the distribution for the modeling

error ε(c) ≈ ε(c̃) = F̃(c̃)−F(c) is approximated from a simulated sample.

In order to approximate the distribution of ε(c̃), first draw (e.g. using

MCMC) a sample of vectors
{
c̃(j)
}N
j=1

distributed according to the prior

probability density p(c̃). Then the modeling error distribution can be ap-

proximated from the sample{
ε
(
c̃(j)
)
= F̃

(
c̃(j)
)
−F

(
P c̃(j)

)}N

j=1
,

where P : c̃ �→ c is a linear model reduction operator (e.g. linear interpo-

lation). In practice, it is usually assumed that the Gaussian distribution

with the sample-based mean ε and covariance Γε,

ε =
1

N

N∑
j=1

ε
(
c̃(j)
)
, Γε =

1

N − 1

N∑
j=1

(
ε
(
c̃(j)
)
− ε
)(

ε
(
c̃(j)
)
− ε
)T

,

is a reasonable approximation for the distribution of ε(c̃). Then the den-

sity of the total error ε(c̃) + η is also Gaussian with the mean ε and the
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covariance Γε + Γη. If the model is furthermore simplified by ignoring the

dependence between the parameter c and the total error, the reasoning in

Section 2.2 can be repeated to determine the posterior density

p(c |f) ∝ exp
(
− 1

2

(
f −F(c)− ε

)T(
Γε + Γη

)−1(
f −F(c)− ε

)
− aR(c)

)
.

Notice that the generation of the (large) error sample may be compu-

tationally expensive, but this step can be done ‘offline’ before the actual

measurements are performed. The use of this method in the presence of

e.g. geometric errors requires a fixed (geometric) parametrization and a

good understanding of the possible measurement settings, which may be

challenging when real-life set-ups are considered. See [5, 82, 83, 84] for

examples of using the approximation error approach to compensate for

discretization and geometric errors.

Difference imaging

Instead of reconstructing the value of the parameter c ∈ R
n itself, in dif-

ference imaging the aim is to estimate the difference δc = c(2) − c(1) be-

tween parameter values corresponding to e.g. two time instances (see for

example [8]). In particular, this approach is only applicable when two sets

of measurements, f (1),f (2), are available. Assuming the additive noise

model (2.7) and a linear forward operator F(c) = Fc, we have

δf := f (2) − f (1) = Fδc+ δη,

where δη = η(2) − η(1). With η(1) and η(2) being independent zero mean

Gaussian noise vectors, δη is also Gaussian with zero mean and the co-

variance Γη(1) + Γη(2) . Then, following similar reasoning as before, we get

the posterior density

p(δc | δf) ∝ exp
(
− 1

2

(
δf −Fδc

)T(
Γη(1) + Γη(2)

)−1(
δf −Fδc

)
− aR(δc)

)
,

where the prior (2.8) is assumed for the difference δc. Since we are now

using the difference δf of two measurements, it can be argued that (most

of) the modeling error is canceled out (see e.g. [9]).

For a nonlinear forward model, the most popular modification of differ-

ence imaging is to make a linear approximation

F(c) ≈ F(c(0)) + J (0)(c− c(0)),

where c(0) is the reference point for the linearization and J (0) = JF
c (c(0))

is the Jacobian matrix of the map c �→ F(c) evaluated at c(0). Using this
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approximation, the difference imaging approach can be applied as in the

linear case.

To avoid the linearization, an alternative method was proposed in [73].

The idea is to write c(2) = c(1) + δc and reconstruct c̃ :=
[
(c(1))T, (δc)T

]T
using the model

f̃ :=

⎡⎣f (1)

f (2)

⎤⎦ =

⎡⎣ F(c(1))
F(c(1) + δc)

⎤⎦+

⎡⎣η(1)

η(2)

⎤⎦ =: F̃(c̃) + η̃.

Here the noise vector η̃ is again Gaussian with zero mean and a block di-

agonal covariance matrix Γη̃ = diag(Γη(1) ,Γη(2)) and the posterior density

has the form

p(c̃ | f̃) ∝ exp
(
− 1

2

(
f̃ − F̃(c̃)

)T
Γ−1
η̃

(
f̃ − F̃(c̃)

)
− aR(c̃)

)
,

where the prior (2.8) is this time assumed for the composite variable c̃.

The downside of this approach is the increased dimension of the corre-

sponding minimization problem. Furthermore, the effect on the modeling

errors is not as obvious as in the linear(ized) case. However, it has been

experimentally shown that, at least for electrical impedance tomography,

the method is robust to several types of model errors [74].

2.4 Minimization schemes

The MAP estimate corresponding to the posterior density (2.9) is equiva-

lent to the minimizer of the Tikhonov-type functional

Φ(c) :=
1

2

(
f −F(c)

)T
Γ−1
η

(
f −F(c)

)
+ aR(c). (2.14)

Obviously, we arrive at a similar functional when considering any of the

modified posterior densities presented in Section 2.3. In practice, the

problem of finding the global minimum of (2.14) is usually simplified to

the search for a local minimum, which can be identified with the help of

the following theorem [53].

Theorem 3. Assume that Φ : R
n → R is a continuously differentiable

function. If c∗ ∈ R
n is a local minimum of Φ, then ∇Φ(c∗) = 0 (necessary

condition). Assume then that Φ is twice continuously differentiable. If a

point c∗ ∈ R
n satisfies the necessary condition and the Hessian ∇2Φ(c∗) is

positive definite, then c∗ is a local minimum of Φ (sufficient condition).

Notice that in certain cases a local minimum is also the global one. In

particular, this is the case for (strictly) convex functions. When consid-

ering a linear forward operator F(c) = Fc with a Gaussian prior i.e. the
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regularization term (2.10), the convexity of (2.14) is ensured by the follow-

ing theorems (see e.g. [53] for proofs).

Theorem 4. Let A ∈ R
n×n be a symmetric matrix. Then the quadratic

form Q(x) := 1
2x

TAx, is a strictly convex function if and only if A is positive

definite (and a convex function if and only if A is positive semi-definite).

Theorem 5. Let F : Rk → R be a (strictly) convex function and A : Rn → R
k

an affine map. Then the function F ◦A : Rn → R is (strictly) convex.

Theorem 6. Let the functions F1, . . . , FN : Rn → R be (strictly) convex and

t1, . . . , tN ∈ R+. Then the function F :=
∑N

j=1 tjFj is (strictly) convex.

However, in general even the task of finding a local minimum is not a

tractable problem when the dimension of the parameter c ∈ R
n is high.

Hence, the minimization algorithms are actually designed to find a criti-

cal point of Φ i.e. a point c∗ ∈ R
n that is only required to satisfy the nec-

essary condition of Theorem 3. The search for such a point is performed

iteratively: starting from an initial guess c(0), the algorithm gives a rule

to construct a sequence {c(l)} where c(l) ≈ c∗ when l → ∞. In practice it

is certainly not possible to continue the iteration all the way to infinity,

which means that the algorithm has to also include a stopping criterion

(or several). This is described by a function C : c(l) �→ {TRUE, FALSE},
whose evaluation determines if the current iterate can be perceived as an

accurate enough approximation of c∗.

In the rest of this section, we briefly introduce the minimization schemes

that are relevant to this thesis. More thorough considerations and an

abundance of different algorithms can be found for example in the text

books [11, 53, 80].

Gauss–Newton iteration

When the regularization term in (2.14) is quadratic, i.e. of form (2.10),

the minimization of Φ corresponds to a nonlinear least squares problem.

Solutions to problems of this type can be efficiently approximated by the

Gauss–Newton algorithm. In the following, we derive the algorithm by

linearizing F in (2.14). Note that it can also be derived from the Newton’s

method by ignoring the second order terms in the Hessian, see e.g. [32].

To use the Gauss–Newton approach, it is necessary to assume that at

each step of the iteration we are able to evaluate (approximations of) the

forward solution F(c(l)) and the Jacobian JF
c (c(l)) of the map c �→ F(c) at
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a given point c(l). In practice, these can be obtained as FEM approxima-

tions as described in Section 2.1. Denoting the Jacobian J (l) = JF
c (c(l)) for

convenience, we can make a linear approximation of the forward solution

around c(l),

F(c) ≈ F(c(l)) + J (l)(c− c(l)),

and use this to write the to-be-minimized functional (2.14) in the approx-

imate form

Φ(l)(c) :=
1

2

(
y(l) − J (l)c

)T
Γ−1
η

(
y(l) − J (l)c

)
+ aR(c),

where y(l) = f − F(c(l)) + J (l)c(l). To find a critical point for this ap-

proximate functional, we look for a solution that satisfies the necessary

condition ∇Φ(l)(c) = 0, which is equivalent to the equation

(J (l))TΓ−1
η J (l)c+ a (∇R)(c) = (J (l))TΓ−1

η y(l). (2.15)

With the assumption of a quadratic regularization term of form (2.10),

we have (∇R)(c) = Γ−1
c (c− c0) and (2.15) is equivalent to the normal equa-

tion

ATAd(l) = AT

⎡⎣Lη

(
f −F(c(l))

)
√
aLc(c0 − c(l))

⎤⎦ , A =

⎡⎣LηJ
(l)

√
aLc

⎤⎦ (2.16)

with LT
η Lη = Γ−1

η and LT
c Lc = Γ−1

c being Cholesky factorizations of the in-

verse covariance matrices, and d(l) = c−c(l). The Gauss–Newton iteration

is then as follows.

Algorithm 1 (Gauss–Newton). Assume that the to-be-minimized func-

tional is of form (2.14) with the regularizer (2.10) and that a, f , c0, Γ−1
η and

Γ−1
c are fixed. Initialize by calculating Cholesky factorizations LT

η Lη = Γ−1
η

and LT
c Lc = Γ−1

c and setting c(0) = c0.

Iterate for l = 0, 1, 2, . . . , while C(c(l)) �= TRUE:

1. evaluate F(c(l)) and J (l) = JF
c (c(l)),

2. solve the descent direction d(l) from (2.16),

3. determine the step size α(l) > 0 e.g. by a line search algorithm,

4. set c(l+1) = c(l) + α(l)d(l).

Notice that the size of the normal equation (2.16) — or of the corre-

sponding least squares problem — solved in step 2 of the algorithm is

proportional to the number of nodes in the FE mesh. Hence, even though

the solution of the system is conceptually straightforward (see e.g. [41]),
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determining the exact solution may lead to a lengthy computation (es-

pecially in three spatial dimensions). For the line search mentioned in

step 3, we refer to [11, 53] and references therein, but note that the ex-

ecution of such algorithms may be challenging when the evaluation of a

forward solution is time-consuming.

Lagged diffusivity iteration

In [112] a method was proposed for minimizing the functional (2.14) with

a nonquadratic regularizer of form (2.12) in case of a linear forward oper-

ator F(c) = Fc. The algorithm is based on the fact that the discretized

Fréchet derivative of the regularization term (2.12) gives the gradient of

R : Rn → R+ the representation (∇R)(c) = Gcc, where Gc is the parameter-

dependent positive semi-definite matrix with the elements

(Gc)i,j :=

∫
Ω

r′(|∇ĉ(x)|)
|∇ĉ(x)| ∇φi(x) · ∇φj(x) dx, i, j = 1, . . . , N. (2.17)

The necessary condition ∇Φ(c) = 0 is then equivalent to

ATA c = AT

⎡⎣Lηf

0

⎤⎦ , A =

⎡⎣ LηF
√
aLc

⎤⎦ (2.18)

where LT
η Lη = Γ−1

η and LT
c Lc = Gc are again Cholesky factorizations. The

lagged diffusivity iteration for (2.14) is given as follows [112].

Algorithm 2 (Lagged diffusivity). Assume that the to-be-minimized func-

tional is of form (2.14) with a linear forward operator F(c) = Fc and R

being a discretized version of the regularizer (2.12). Let a, Γ−1
η and the

function r related to R together with its free parameter(s) be fixed. Ini-

tialize by calculating a Cholesky factorization LT
η Lη = Γ−1

η and by setting

c(0) = c0 with a suitably chosen initial guess c0.

Iterate for l = 0, 1, 2, . . . , while C(c(l)) �= TRUE:

1. evaluate Gc according to (2.17) with ĉ = ĉ(l) =
∑n

j=1 c
(l)
j φj ,

2. calculate a Cholesky factorization LT
c Lc = Gc,

3. set c(l+1) to be the solution of the normal equation (2.18).

The name of the method is due to the parameter-dependent ‘diffusivity

coefficient’ in (2.17),

Dc(x) =
r′(|∇ĉ(x)|)
|∇ĉ(x)| ,

lagging one step behind at each iteration. In principle, the normal equa-

tion (2.18) can be solved in step 3 in the same way as (2.16). However,

with this interpretation, in addition to the computation of the solution

27



Numerical methods

itself, we need to factorize Gc at each round of the iteration, which in-

creases the computational cost of the algorithm. The equation (2.18) can

be reformulated in several ways in order to make its solution more ef-

ficient (see e.g. [11]). Our choice is to resort to a preconditioned Krylov

subspace method, which we present in the following sections.

Conjugate gradient method

Our aim is to combine the Gauss–Newton method used in connection with

nonlinear forward operators and the lagged diffusivity method designed

for nonquadratic regularizers to solve a general minimization problem

of form (2.14). However, in order for such a method to be tractable for

large (three-dimensional) problems, we need to be able to solve the normal

equations (2.16) and (2.18) efficiently.

To this end, consider for an arbitrary matrix A the system

ATAx = ATb, (2.19)

or equivalently the linear least squares minimization problem

argmin
x
‖b−Ax‖2. (2.20)

We can efficiently approximate the corresponding (minimum norm) solu-

tion with the conjugate gradient method originally presented in [50]. This

is an iterative method designed specifically for solving large and sparse

systems, i.e. such as the ones arising when solving elliptic PDEs. The ba-

sic version of the method, formulated as a minimization algorithm, is as

follows.

Algorithm 3 (Conjugate gradient method). Assume that the to-be-mini-

mized functional is of form Φ = ‖b − Ax‖2 and that the matrix A and the

vector b are fixed. Initialize with a suitable initial guess x(0) = x0, set the

residual r(0) = b−Ax(0) and the direction d(0) = ATr(0).

Iterate for l = 0, 1, 2, . . . , while C(x(l)) �= TRUE:

1. set the step size α(l) = ‖ATr(l)‖2/‖Ad(l)‖2,
2. let x(l+1) = x(l) + α(l)d(l) and r(l+1) = r(l) − α(l)Ad(l),

3. set the direction parameter β(l) = ‖ATr(l+1)‖2/‖ATr(l)‖2,
4. let d(l+1) = ATr(l+1) + β(l)d(l).

For the justification of the algorithm as well as modifications of the basic

version, see e.g. [11, 41, 45]. Note that the search directions and step sizes
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are chosen so that at the lth iteration we solve (2.20) over

x ∈ x0 +Kl(A
TA;ATr(0)),

where Kl is the lth Krylov subspace related to (2.19) and the initial guess.

Definition 2. The lth Krylov subspace corresponding to a matrix M and

a vector v, is defined as

Kl(M ;v) = span{v,Mv, . . . ,M l−1v}.

A defect of the method is that, if the matrix A in (2.20) is ill-conditioned,

the basic version of the algorithm may become numerically unstable. For

the analytically equivalent LSQR method with better numerical proper-

ties, we refer to [85, 86].

Priorconditioning

Notice that we can reformulate the normal equation (2.16) as

(ATA+ aG)x = ATb, (2.21)

with definitions A = LηJ
(l), G = Γ−1

c , b = Lη

(
f −F(c(l)) + J (l)(c(l) − c0)

)
and x = c− c0. Likewise, we can express (2.18) in form (2.21) by defining

A = LηF , G = Gc, b = Lηf and x = c. Solving (2.21) is equivalent to the

minimization problem

argmin
x

(
‖b−Ax‖2 + axTGx

)
, (2.22)

where the regularization term corresponds to the prior of our choice. In-

stead of using a Cholesky factorization of G to rewrite the equation in

form (2.19), we can take the approach presented in [18, 19, 20, 21, 22] and

precondition the system with the matrix G — also known as priorcondi-

tioning. The formal idea is to use a factorization LT
c Lc = G to transform

(2.21) into(
(AL−1

c )T(AL−1
c ) + aI

)
x̃ = (AL−1

c )Tb, x̃ = Lcx, (2.23)

where I is the identity matrix. Note that, in regularization terms, prior-

conditioning corresponds to the transformation of the quadratic Tikhonov

functional in (2.22) into the standard form (see e.g. [35, 47, 51]).

When the conjugate gradient method is applied to the transformed equa-

tion (2.23) and the initial guess is set to x0 = 0, the solution space for x

spanned by the method after l iterations is

x(l) ∈ Kl

(
G−1ATA;G−1ATb

)
.
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In particular, for all l, the solution is of the form x(l) = G−1z for some

z ∈ R
n, and hence the prior information is built into the approximate so-

lution starting from the very first iterates (see also [3, 21, 61]). As a result,

the conjugate gradient algorithm applied to the priorconditioned problem

(2.23) usually converges significantly faster than when applied to (2.19) —

at least as long as the prior model is accurate. In addition, since the prior

information is directly incorporated into the Krylov subspace spanning

the solution, it is possible to get rid of the free regularization parameter

by setting a = 0 in (2.23) and using an early stopping rule of the conju-

gate gradient algorithm for regularization [36, 45]. Finally, it is essential

to notice that to solve the priorconditioned problem, the potentially costly

factorization LT
c Lc = G need not actually be carried out: a preconditioned

LSQR algorithm that works directly with the inverse G−1 was presented

in [3]. This approach can be accompanied e.g. by a multigrid method to

approximate operations with the inverse when G = Gc (see [17]).

To use the described method, it is necessary to have an invertible prior-

conditioner G, which causes slight problems when edge-enhancing priors

are considered. This can be observed by interpreting G = Gc defined by

(2.17) as the system matrix of the FE discretized variational formulation

of the elliptic partial differential operator

−∇ ·Dc∇ (2.24)

accompanied by the homogeneous Neumann boundary condition. Since

neither the operator nor the boundary condition ‘sees’ an additive con-

stant in a target function, it is clear that Gc is not invertible. Fortunately,

there are some straightforward ways to circumvent this problem. For ex-

ample, Gc can be made invertible by replacing the Neumann boundary

condition for (2.24) with a Dirichlet condition on some part of the bound-

ary O ⊂ ∂Ω i.e. setting c(x) = c0 with some constant c0 ∈ R when x ∈ O.

Invertibility can also be ensured by adding a small homogeneous absorp-

tion term to the operator i.e. using −∇ · Dc∇ + A with a small A ∈ R+

instead of (2.24). Another way to circumvent the problem is to employ

suitable matrix decompositions [47] in the spirit of [56].

Combined algorithm

In [3] the lagged diffusivity iteration was combined with a preconditioned

LSQR algorithm to introduce an efficient method for solving linear inverse

problems with edge-enhancing priors. Here we generalize this algorithm
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to nonlinear inverse problems by incorporating the linearization step from

the Gauss–Newton iteration into the method. This approach was first

presented in Publication I.

Consider the minimization of a functional of form (2.14) with a dis-

cretized version of (2.12) as a regularizer. After linearizing the measure-

ment operator as in the Gauss–Newton iteration, we need to solve the

equation (2.15). Now the gradient of R can be represented as in the lagged

diffusivity iteration, which then gives the normal equation(
ATA+ aGc

)
c = ATLηy

(l), A = LηJ
(l), (2.25)

where, as previously, y(l) = f−F(c(l))+J (l)c(l), Gc is defined by (2.17) and

LT
η Lη = Γ−1

η is a Cholesky factorization. Using this formulation, we can

introduce an algorithm to solve the nonlinear parameter reconstruction

problem with an edge-enhancing prior.

Algorithm 4. Assume that the to-be-minimized functional is of form (2.14)

with R being a discretized version of the regularizer (2.12). Let a, Γ−1
η and

the function r related to R together with its free parameter(s) be fixed. Ini-

tialize by calculating a Cholesky factorization LT
η Lη = Γ−1

η and by using

Algorithm 1 (with a suitable initial guess c(0) ∈ R) to solve

c0 = argmin
c∈R

1

2
(f −F(c1))TΓ−1

η (f −F(c1)),

where 1 = [1, . . . , 1]T ∈ R
n. Set c(0) = c01.

Iterate for l = 0, 1, 2, . . . , while C(c(l)) �= TRUE:

1. evaluate F(c(l)) and J (l) = JF
c (c(l)),

2. build the matrix Gc according to (2.17) with ĉ = ĉ(l) =
∑n

j=1 c
(l)
j φj ,

3. use the preconditioned LSQR with c0 = 0 to solve c(l+1) from (2.25).

In the initialization step, only a homogeneous estimate of the parame-

ter is needed, which can be approximated using the basic Gauss–Newton

algorithm. Notice also that in steps 2–3 we have suppressed one level of

iterations by taking only one step of the lagged diffusivity iteration per

each linearization of the forward model. That is, in principle these steps

could be replaced by:

2. set e(0) = c(l),

Iterate for j = 0, 1, 2, . . . , while C(e(j)) �= TRUE:

i. build the matrix Gc according to (2.17) with ĉ = ê(j) =
∑n

i=1 e
(j)
i φi,

ii. use the preconditioned LSQR to solve e(j+1) from (2.25),

3. set c(l+1) = e(j).
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However, since each step of the lagged diffusivity iteration requires the so-

lution of a normal equation (with another iterative method), this approach

would considerably increase the computational cost of the algorithm. We

have also observed in practice that taking several lagged diffusivity steps

per linearization does not seem to improve reconstructions.

Finally, we note that, even though not written out explicitly, the whole

algorithm consists of two nested iterations, which may seem inefficient.

However, using the priorconditioning approach, the number of inner LSQR

iterations is typically not very high. Moreover, since the information cor-

responding to the solution from the previous iteration round is included in

the prior matrix Gc, it is usually enough to make only a few linearizations

(outer iterations) before the algorithm converges.

Stopping conditions

So far we have presented all the algorithms with a general stopping con-

dition C : c(l) �→ {TRUE, FALSE}. The choice of the used condition(s) is,

however, a delicate issue, which is particularly important when working

with inverse problems: if the iterative algorithm minimizing a cost func-

tional of form (1.1) is run too long, the reconstruction starts to fit to noise.

In consequence, we want to stop the iteration before actually reaching a

critical point. A widely used approach, originally presented in [77], is to

terminate the iteration, when the discrepancy in the minimized functional

reaches the noise level.

Condition 1 (Morozov discrepancy principle). Assume that the to-be-mini-

mized functional is of the form Φ(c) =
(
f −F(c)

)T
Γ−1
η

(
f −F(c)

)
, with the

data vector f being a noisy version of the exact measurement f∗ satisfying(
f − f∗)TΓ−1

η

(
f − f∗) ≤ ε. Then, with a fixed (small) τ > 1,

C(c(l)) :=
(
Φ(c(l)) ≤ τε

)
.

Under the assumption (2.7) of an additive noise model for f ∈ R
k, we can

approximate the noise level by

ε ≈ E

[(
f −F(c)

)T
Γ−1
η

(
f −F(c)

)]
= E

[
ηTΓ−1

η η
]
= k.

The early stopping by using Condition 1 combined with the conjugate gra-

dient iteration can in fact be considered as a regularization method [45].

When the cost functional includes a regularization term as in (2.14), it

may be reasonable to let the iteration converge to a critical point even in
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the context of inverse problems. In this case, the most obvious condition

‖∇Φ(c(l))‖ ≤ δ is often considered inadequate, since the measured quan-

tity — and hence a suitable δ > 0 — is strongly case-dependent [32]. A

modified approach is to compare the change in the target functional to

that of the parameter for example as follows.

Condition 2. Denote the to-be-minimized functional by Φ(c). Then, with

a user-specified observation length h ∈ N and a tolerance δ > 0,

C(c(l)) :=
(
|Φ(c(l−h))− Φ(c(l))|
‖c(l−h) − c(l)‖

≤ δ

)
, l > h.

Finally, it is possible for an iterative method to stagnate before reaching

the noise level or a critical point. Therefore it may also be reasonable to

consider stopping conditions that check if the reconstruction is still im-

proving. In practice this is done by measuring the change in the parame-

ter, which can be implemented for example as follows.

Condition 3. Denote the to-be-minimized functional by Φ(c). Then, with

a user-specified observation length h ∈ N and a tolerance δ > 0,

C(c(l)) :=
(
‖c(l) − c(l−h)‖ ≤ δ

)
, l > h.

For detailed considerations of stopping conditions in general, we re-

fer to [32]. In addition, suitable stopping criteria are considered in the

method-specific references, such as [45, 46, 62, 86, 112].
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3. Tomographic imaging

In this thesis we consider the parameter reconstruction problems related

to three tomographic imaging modalities, whose forward operators can be

described with the help of boundary value problems for elliptic PDEs. We

model the imaged body as a bounded domain Ω ⊂ R
d, d = 2, 3, which is

assumed to have a connected complement and a Lipschitz boundary ∂Ω.

In addition, the to-be-reconstructed parameters live in the set

L∞
+ (Ω) = L∞

+ (Ω,R) := {v ∈ L∞(Ω,R) | ess inf v > 0} .

In the following sections we describe the forward models for electrical

impedance tomography, diffuse optical tomography and quantitative pho-

toacoustic tomography.

3.1 Electrical impedance tomography

Electrical impedance tomography (EIT) is an imaging modality that em-

ploys electrical signals to recover the internal distribution of electrical

properties in the imaged object. More precisely, the principal parame-

ter of interest is the conductivity distribution and the measurements are

performed by controlling the electrical current and measuring the corre-

sponding potential on the object boundary. Since the electrical properties

of air, different tissues and blood differ greatly [8, 13, 54], EIT can be

useful in medical applications such as monitoring lung problems or heart

function and blood flow, imaging brain function, and screening for breast

cancer. The industrial applications include process tomography and non-

destructive testing of materials. Consult the review articles [13, 24, 108]

or the books [54, 78] and references therein for more information about

the theoretical background, numerical implementation and possible ap-

plications of EIT.
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Ω

σ

ek
← Ik↘

Uk

zk

Figure 3.1. Illustration of the parameters of the CEM for EIT: on each electrode ek we
control the net current Ik and measure the potential Uk, which depends on
the internal conductivity σ and the contact resistances zk, k = 1, . . . ,K.

Complete electrode model

There are a number of forward models that have been considered for EIT

(see e.g. [78]). Here we introduce the complete electrode model (CEM) [25,

98] which is the most accurate model for the real-life EIT measurements

used in Publications I and IV. Consider the domain Ω illustrated in

Figure 3.1. Attached to the boundary, there are K ≥ 2 pairwise dis-

joint, open and connected electrodes, ek ⊂ ∂Ω, k = 1, . . . ,K. We control

the net current Ik through each electrode and, corresponding to a par-

ticular current pattern I = [Ik]
K
k=1, we measure the constant potentials

U = [Uk]
K
k=1 on the electrodes. Due to the principle of charge conservation

and by choosing the ground level of potential appropriately, it holds that

I, U ∈ R
K
� := {V ∈ R

K |
∑K

k=1 Vk = 0}. The parameter of interest is the in-

ternal conductivity distribution σ ∈ L∞
+ (Ω). However, to account for the

imperfectly conducting layers between the electrodes and the domain, the

CEM introduces contact resistances, z = [zk]
K
k=1 ∈ R

K
+ , which typically

also need to be reconstructed from the EIT measurements. With a system

of K electrodes, there are K − 1 linearly independent current patterns

I(1), . . . , I(K−1) for which the measurements are produced and hence the

full forward operator is of form F(σ, z) = [U (1), . . . , U (K−1)] ∈ R
K×(K−1),

where the dependence on the current patterns is assumed implicitly.

According to the CEM, the state of the EIT system corresponding to a

current pattern I ∈ R
K
� is characterized by the internal electromagnetic

potential u ∈ H1(Ω) together with the electrode potentials U ∈ R
K
� . The

pair (u, U) ∈ H1(Ω)⊕R
K
� =: H1 is the unique solution of the state equation
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described by the elliptic boundary value problem

∇ · σ∇u = 0 in Ω

ν · σ∇u = 0 on ∂Ω \ ∪K
k=1ek

u+ zkν · σ∇u = Uk on ek, k = 1, . . . ,K,∫
ek

ν · σ∇u dS = Ik, k = 1, . . . ,K,

(3.1)

where ν : ∂Ω→ R
d denotes the exterior unit normal of ∂Ω.

The variational formulation corresponding to (3.1) is to find (u, U) ∈ H1

that satisfies [98]

B
(
(u, U), (v, V )

)
=

K∑
k=1

IkVk for all (v, V ) ∈ H1, (3.2)

where the bounded, coercive bilinear form B : H1 ×H1 → R is defined by

B
(
(u, U), (v, V )

)
:=

∫
Ω
σ∇u · ∇v dx+

K∑
k=1

1

zk

∫
ek

(u− Uk)(v − Vk) dS.

Following the reasoning of Section 2.1 (see e.g. [110] for details about the

FE implementation), after the discretization of σ and u, the (approximate)

state (u, U) can be solved from (3.2) for all K − 1 current patterns. By

applying the measurement operator M : (u, U) �→ U to all of the resulting

states, we then get the measurement F(σ, z) = [U (k)]K−1
k=1 ∈ R

K×(K−1).

To write down the Fréchet derivative of the forward operator, consider

first the derivative corresponding to the solution of the state equation (3.1).

For a fixed current pattern I, the solution itself is given by the operator

L∞
+ (Ω)× R

K
+ � (σ, z) �→ (u, U) ∈ H1

and its Fréchet derivative at (σ, z) ∈ L∞
+ (Ω) × R

K
+ is given by the linear

map

L∞(Ω)× R
K � (θ, ξ) �→ (u′, U ′) ∈ H1,

where (u′, U ′) =
(
(u′, U ′)(σ, z)

)
(θ, ξ) is the unique solution of the varia-

tional problem [60, 68, 111]

B
(
(u′, U ′), (v, V )

)
= −

∫
Ω
θ∇u · ∇v dx+

K∑
k=1

ξk
z2k

∫
ek

(u− Uk)(v − Vk) dS

for all (v, V ) ∈ H1. Combining this with the measurement operator then

gives the derivative of the forward operator

F ′(σ, z) : (θ, ξ) �→ [U ′(k)]K−1
k=1 .

In Publication IV we also need the Fréchet derivatives with respect to the

electrode sizes and locations. Their computation is based on [29, 30]; the

details are given in Section 2.2 of Publication IV.
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3.2 Diffuse optical tomography

In optical tomography (OT) the imaged object is illuminated with near-

infrared (NIR) light and the aim is to determine its internal optical prop-

erties. To be more precise, typically there are two parameters of interest:

the absorption and the (reduced) scattering coefficient. The measurement

is the flux of photons coming out of the object corresponding to a specific

illumination pattern. The most important potential applications of OT,

which include detecting breast cancer and imaging the brain, are based

on the different absorption spectra of some physiologically interesting

molecules such as hemoglobin and melanin (see e.g. [2, 92]). For details

about the theory of light propagation in tissue, medical applications and

instrumentation for OT, we refer to the review articles [2, 4, 12, 40, 48, 81]

and references therein.

Diffusion approximation

The widely accepted model for light propagation in tissue is the radiative

transfer equation (RTE), see e.g. [60, 104] for details and implementation.

However, because the RTE is computationally rather expensive, in practi-

cal applications it is commonly approximated by simpler models. Here we

focus on the diffusion approximation (DA) of the RTE [2, 49], which is the

model considered in Publications II and III. The formulation of OT with

the DA as the forward model is also known as diffuse optical tomography

(DOT). In a strongly scattering medium, such as most tissues, the DA is

a fairly accurate forward model. As a result, DOT is the typical imaging

approach in medical applications [2]. Notice, however, that the DA has its

limitations. In particular, it is somewhat inaccurate close to light sources

and boundaries (see e.g. [69] and references therein).

We present the DA in the frequency domain denoting the fixed har-

monic frequency, with which the illumination is modulated, by ω ∈ R. In

practice the illuminations are usually time-modulated [48], but any such

measurement can equivalently be expressed in the frequency domain (see

e.g. [2, 4]). Consider the domain Ω illustrated in Figure 3.2. There are two

types of optical fibers attached to the boundary: photon sources sk ⊂ ∂Ω,

k = 1, . . . ,K, and measurement sensors ml ⊂ ∂Ω, l = 1, . . . , L. The

sources and sensors are modeled as pairwise disjoint, open and connected

subsets of the boundary. The object is illuminated through each source

sk, one at a time, and the corresponding outward photon flux Ylk ∈ C
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Ω

κ, μa

ω, c
Φk↙

sk

ml←−Ψl↘
Ylk

Figure 3.2. Illustration of the parameters of the DA of the RTE for OT: we control the
input amplitude Φk on each photon source sk and account for the ‘device
function’ Ψl of each measurement sensor ml to measure the outward photon
flux Ylk, which depends on the diffusivity κ and the absorption μa as well as
on the (known) harmonic frequency ω and the speed of light c in Ω.

is measured at each sensor ml resulting altogether in the measurement

Y = [Ylk]
L,K
l,k=1 ∈ C

L×K . The two internal parameters in the DA are the dif-

fusion and absorption coefficients, which are here assumed to be isotropic

and denoted by κ, μa ∈ L∞
+ (Ω,R), respectively. The scattering coefficient

μs is related to these parameters through

κ =
1

3(μa + μ′
s)
,

where μ′
s := (1 − g)μs is the reduced scattering coefficient, and g ∈ (0, 1)

is a free parameter accounting for the fact that scattering in biological

tissues is in reality anisotropic. Hence, the forward model is of form

F(κ, μa) = Y ∈ C
L×K , where the dependence on the frequency ω is im-

plicit. Obviously, instead of the diffusivity κ, we could as well choose to

use μ′
s or μs as the model parameter accompanying μa.

The illuminations through the sources s1, . . . , sK are characterized by

the input amplitudes Φ(1), . . . ,Φ(K) ∈ L2(∂Ω,R), which are modeled by

suitable functions supported on the corresponding sources. The state of

the DOT system corresponding to an input amplitude (or inward photon

flux) Φ is the internal photon density (or fluence) ϕ ∈ H1(Ω) = H1(Ω,C).

Ignoring the boundary reflections for simplicity, ϕ is the unique solution

of the elliptic boundary value problem [42]

−∇ · κ∇ϕ+
(
μa +

ω

c
i
)
ϕ = 0 in Ω,

γdϕ+
1

2
ν · κ∇ϕ = Φ on ∂Ω,

(3.3)

where i =
√
−1, c is the constant speed of light in Ω, and γd is a dimension-

dependent constant with γ2 = 1/π and γ3 = 1/4. The variational formula-
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tion corresponding to (3.3) is to find ϕ ∈ H1(Ω) that satisfies

B(ϕ, v) = 2

∫
∂Ω

Φv̄ dS for all v ∈ H1(Ω). (3.4)

Here the bounded and coercive sesquilinear form B : H1(Ω)×H1(Ω)→ C

is given by

B(ϕ, v) :=

∫
Ω

(
κ∇ϕ · ∇v̄ +

(
μa +

ω

c
i
)
ϕv̄
)
dx+ 2γd

∫
∂Ω

ϕv̄ dS.

After discretizing κ, μa and Φ(k) for all k = 1, . . . ,K, the FEM approxima-

tions of ϕ(1), . . . , ϕ(K) can be solved from (3.4) as described in Section 2.1.

In the framework of the DA, the boundary measurement at the lth sensor

corresponding to the state ϕ(k) can be written as [49]

Ylk =

∫
∂Ω

Ψ(l)

(
γdϕ

(k) − 1

2
ν · κ∇ϕ(k)

)
dS = 2γd

∫
∂Ω

Ψ(l)ϕ(k) dS, (3.5)

where Ψ(l) ∈ L2(∂Ω,R) is a suitable ‘device function’ supported on ml. The

second equality in (3.5) follows from the boundary condition in (3.3) since

the supports of Φ = Φ(k) and Ψ(l) are disjoint. Applying the measure-

ment operator M(ϕ(k)) = [Ylk]
L
l=1 ∈ C

L to all K states then gives the full

measurement F(κ, μa) = [M(ϕ(k))]Kk=1 = Y ∈ C
L×K .

Consider the operator corresponding to solving the state equation (3.3)

with the input amplitude Φ,

[L∞
+ (Ω)]2 � (κ, μa) �→ ϕ ∈ H1(Ω).

Its Fréchet derivative at (κ, μa) ∈ [L∞
+ (Ω)]2 is given by the linear map

[L∞(Ω)]2 � (θ, ξ) �→ ϕ′ ∈ H1(Ω),

where ϕ′ =
(
ϕ′(κ, μa)

)
(θ, ξ) is the unique solution of the variational prob-

lem (see e.g. [33])

B(ϕ′, v) = −
∫
Ω
(θ∇ϕ · ∇v̄ + ξϕv̄) dx for all v ∈ H1(Ω). (3.6)

The derivative of the forward operator is then given by

F ′(κ, μa) : (θ, ξ) �→ [Y ′
lk]

L,K
l,k=1,

where (
Y ′
lk(κ, μa)

)
(θ, ξ) = 2γd

∫
∂Ω

Ψ(l)ϕ′(k) dS. (3.7)

Instead of a direct computation based on (3.7), the Fréchet derivative

can also be efficiently sampled (see e.g. [2]) using the ‘dual problem’. The
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variational formulation of this problem is to find the unique ψ(l) ∈ H1(Ω)

for which

B(ψ(l), v) = 2

∫
∂Ω

Ψ(l)v̄ dS for all v ∈ H1(Ω). (3.8)

Using (3.8) and (3.6), we may then write (3.7) as

(
Y ′
lk(κ, μa)

)
(θ, ξ) = −γd

∫
Ω

(
θ∇ϕ(k) · ∇ψ(l) + ξϕ(k)ψ(l)

)
dx.

3.3 Quantitative photoacoustic tomography

Photoacoustic tomography (PAT) is a hybrid imaging modality for which

the imaging signal comes from an optical source, but the measurements

are based on acoustic waves. The aim is, as in OT, to reconstruct the op-

tical properties of the imaged target. More precisely, the examined object

is illuminated by an external light pulse (using e.g. NIR or visible light),

which propagates inside the target. When the light is absorbed, the re-

leased energy generates local heating, which causes an increase of pres-

sure in the material. Assuming that the underlying medium is elastic in

nature (such as most tissues), the pressure relaxation acts as a source for

acoustic signals that propagate through the material as ultrasonic waves.

The receivers at the object boundary then record these waves as functions

of time. The images of PAT are based on the initial pressure distribution,

which can be formed as in conventional (pulse-echo) ultrasound imaging.

The modality aims to combine the desirable qualities of OT and ultra-

sound imaging to create a high resolution image with good contrast. The

main potential applications are biomedical; PAT has been used for exam-

ple to visualize human blood vessels and to detect tumors as well as to

create whole-body images of small animals. For further reading about the

underlying physics, practical implementation and imaging capabilities of

PAT, we recommend [10, 71, 113, 114] and references therein.

The initial pressure distribution provided by PAT describes the qualita-

tive behavior of internal optical parameters, but does not reveal their ac-

tual values. This information, however, is essential e.g. for accurate func-

tional and molecular imaging, where the absolute concentrations of light-

absorbing molecules are required. In quantitative photoacoustic tomogra-

phy (QPAT) the aim is to use the image of PAT to go a step further and

estimate the absolute distribution of optical parameters. Hence, it corre-

sponds to solving two inverse problems: the inverse initial value problem
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Ω

s

κ, μa → H

↗
Φ

Figure 3.3. Illustration of the parameters of the DA of the RTE for QPAT: we control
the input photon flux Φ on s and get the absorbed energy density H as an
‘internal measurement’ that depends on the diffusivity and absorption distri-
butions κ, μa in Ω.

in acoustics to reconstruct the initial pressure distribution from the ul-

trasound measurements, and the inverse parameter estimation problem

to reconstruct the optical parameters from the solution of the first prob-

lem. In addition to the ill-posed inversion, QPAT provides numerical chal-

lenges, since the data for the latter inverse problem are high-resolution

three-dimensional images of considerable size, and the resolution is ex-

pected to be carried over to the reconstruction. For more information

about QPAT see for example [6, 27, 39, 79, 103].

Optical forward problem

As in OT, the light propagation in QPAT can be modeled by the RTE (see

e.g. [44, 75, 90, 93, 102]) or by its approximations. Here we consider

the DA, but this time without harmonic modulation i.e. with ω = 0. The

set-up is illustrated in Figure 3.3. The domain Ω is illuminated by a light

pulse (or possibly several) that propagates into the domain through a part

of the boundary s ⊂ ∂Ω. The output (or ‘measurement’) of the model is the

corresponding absorbed energy density H ∈ L2(Ω,R), which represents the

amount of energy generated when the light is absorbed inside the domain.

If the to-be-reconstructed optical parameters are again the diffusion and

absorption coefficients, κ, μa ∈ L∞
+ (Ω,R), the optical forward operator is

given by F(κ, μa) = H ∈ L2(Ω,R).

The light pulse is characterized by the input amplitude Φ ∈ L2(∂Ω,R)

supported on s and the corresponding state of the optical forward problem

is given by the photon density ϕ ∈ H1(Ω,R), which is the unique solution

of (3.3) (with ω = 0). Given the state, the measurement operator produces

the absorbed energy density via M(ϕ) = μaϕ = H ∈ L2(Ω,R). After the
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Ω

p0
ml

↗
pl(t)

Figure 3.4. Illustration of the parameters of the acoustic forward model in QPAT: the
initial pressure distribution p0 propagates through the domain and the re-
sulting pressure pl(t) is measured at the sensors ml for t ∈ [0, T ].

discretization of κ, μa and Φ, the discretized ϕ ∈ R
n can be solved using

the variational formulation (3.4). The approximate model for the mea-

surement is then H = [(μa)jϕj ]
n
j=1 ∈ R

n.

The Fréchet derivative of the forward operator F at (κ, μa) ∈ [L∞
+ (Ω)]2

to the direction (θ, ξ) ∈ [L∞(Ω)]2 is given by

F ′(κ, μa) : (θ, ξ) �→ μaϕ
′ + ξϕ ∈ L2(Ω),

where ϕ′ =
(
ϕ′(κ, μa)

)
(θ, ξ) ∈ H1(Ω) is the unique solution of (3.6).

Acoustic forward problem

The absorbed energy density H generates an initial acoustic pressure dis-

tribution p0 = Γ̂H ∈ L2(Ω), where the coefficient Γ̂ ∈ L∞
+ (Ω) represents

the photoacoustic efficiency (Grüneisen parameter for an absorbing fluid)

i.e. the efficiency of the conversion of heat to pressure. Starting from

the given initial value p(x, 0) = p0(x), the pressure distribution p(x, t) de-

scribes how the acoustic wave propagates through the space. The pressure

pl(t) is then recorded for t ∈ [0, T ] at a number of sensors ml, l = 1, . . . , L,

around the domain Ω. The propagation of the pressure wave is described

by a wave equation [28], whose detailed description is beyond the scope of

this thesis, but the measurement configuration is sketched in Figure 3.4.

The corresponding forward model is of form F(p0) = [pl(t)]
L
l=1 = P (t),

t ∈ [0, T ]. The inverse problem of estimating p0 based on the measure-

ments P (t) is considered for example in [55, 66, 67, 107, 113, 114]. See

also [34, 38, 44, 88, 97, 99] for approaches where the two inverse problems

are combined to estimate the optical parameters directly from P (t). Fur-

thermore, e.g. [1, 7, 79, 89, 96] provide discussion about estimation of the

Grüneisen parameter together with the optical properties.
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4. Summary of results

I: Edge-enhancing reconstruction algorithm for three-dimensional
electrical impedance tomography

Consider the nonlinear parameter estimation problem of EIT described in

Section 3.1 and assume that the to-be-reconstructed conductivity distribu-

tion has an approximately constant background value in which there are

distinct inclusions. In Publication I this problem is tackled by assuming

an edge-enhancing prior and utilizing Algorithm 4 to compute the MAP

estimate for the conductivity. In particular, the algorithm is modified to

include also the estimation of contact resistances, which are given an un-

informative prior, i.e. all realizations are considered equally likely. In fact,

the equation corresponding to (2.25) can then be restructured to separate

the reconstruction of the conductivity from that of the contact resistances,

see Section 4.2 of Publication I for details.

The functionality of the method is tested with three-dimensional nu-

merical experiments using simulated data in two different geometrical

settings and real-life measurements from a water tank. Two different

priors, the total variation and the Perona–Malik, are employed for com-

parison. Despite a slight imperfection in the reconstruction of the contact

resistances (see Figure 1 in Publication I), the results demonstrate that

the method produces conductivity reconstructions that are well in accor-

dance with the prior information. Furthermore, the reconstructions are

produced in just a few minutes on dense unstructured FE meshes (around

10 000 – 30 000 nodes) and with relatively large data vectors (240 – 2 256

entries).
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II: Edge-promoting reconstruction of absorption and diffusivity in
optical tomography

In Publication II we consider the application of Algorithm 4 to the setting

of DOT (see Section 3.2), where two internal parameter distributions are

to be estimated from complex-valued measurements. In this case it proves

to be useful to consider the (componentwise) transformation c̃ = log(c/c0)

for the discretized parameters of interest, where c0 is the homogeneous es-

timate from the initialization phase of Algorithm 4. The transformation

ensures the positivity and ‘normalizes’ the parameters, producing better

results when considering simultaneous reconstruction (see e.g. [95, 104]

for similar approaches). The transformed versions of both parameters

are given edge-enhancing priors of form (2.8) with different free param-

eters a, b > 0. Then, assuming that the to-be-reconstructed parameters

are independent, their MAP estimate corresponds to the solution of the

equation (2.25) with a block diagonal matrix Gc (see Section 4.1 of Publi-

cation II). The two blocks in Gc correspond to the priors given for the two

parameters of interest. The relative strength of the priors is controlled by

the ratio b/a, introducing an additional free parameter into the algorithm.

In the simulated numerical experiments of Publication II, we observe

that if one of the parameters is assumed to be known, the reconstruction

of the other is comparable to those presented in Publication I. This ob-

servation is based on reconstructions corresponding to unmodulated mea-

surements (i.e. ω = 0 in (3.3)). However, as demonstrated in the other

examples, to successfully reconstruct the two parameters simultaneously,

frequency modulated measurements are required to prevent ‘cross-talk’ in

the reconstructions (see [94]). These examples also demonstrate the com-

putational capabilities of the algorithm when the number of the param-

eter values or the size of the data vector increases. The reconstructions

on dense three-dimensional FE meshes (around 50 000 nodes) with a data

vector of fixed length (496 entries) were performed in about five minutes

for both the separate (one parameter) and the simultaneous case (two pa-

rameters). However, when the length of the data vector was doubled (to

992 entries), the computation took also approximately twice the time.
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III: Efficient inclusion of total variation type priors in quantitative
photoacoustic tomography

As explained in Section 3.3, the optical inverse problem of QPAT provides

a computationally challenging setting. Both the measurements and the

parameters of interest are inherently infinite-dimensional and thus re-

quire high-dimensional discretizations. Therefore any practical method

for solving this inverse problem must perform efficiently for systems of

considerable size. In Publication III we propose to solve the parameter

estimation problem of QPAT by assuming edge-enhancing priors for the

(transformed) optical parameters and applying Algorithm 4 together with

a matrix-free approach for calculating the needed Jacobians (see the Ap-

pendix of Publication III). The reconstruction algorithm is a modification

of the one presented in Publication II. In particular, the use of homoge-

neous estimates of the parameters for initialization leads in this case to a

slow convergence in the first iteration round. However, utilizing the spe-

cific structure of the measurement of QPAT, we are able to significantly

improve the initialization phase of the algorithm (details are given in Sec-

tion 5 of Publication III when describing the first numerical experiment).

The two simulated numerical experiments demonstrate that when two

or more (well positioned) illuminations are used, we are able to produce

accurate reconstructions of both optical parameters in elaborate targets.

Moreover, the matrix-free approximation of the Jacobians reduces the

computational cost so that we are able to produce reconstructions with

huge data vectors (about 100 000 – 200 000 entries) on dense unstruc-

tured FE meshes with computational times comparable to those reported

in Publication II.

IV: Compensation for geometric modeling errors by electrode
movement in electrical impedance tomography

In Publication IV we consider the modeling errors resulting from an in-

accurately known domain shape in the context of EIT (see Section 3.1).

It is well known that mismodeling of the geometric measurement set-

ting can easily ruin the conductivity reconstruction if not taken into ac-

count [9, 15, 65]. Instead of the full reconstruction of the domain boundary

(see [30, 31] for this approach), we propose that the incorrect shape of the

reconstruction domain can be compensated by letting the electrode loca-
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tions and sizes alter. To theoretically support this claim, we prove that in

two dimensions the CEM is approximately conformally invariant.

In the numerical studies a basic adaptation of the Gauss–Newton itera-

tion (Algorithm 3) is employed with Gaussian priors for all the parameters

(the conductivity and contact resistances as well as the electrode positions

and shapes). We demonstrate that in two dimensions the approach func-

tions as expected with both simulated and real-life data. However, we also

observe that a similar technique does not, in general, give good results in

three dimensions.
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Errata

Publication I

On page B63 after the equation (3.4) the domain of the function r should

be R+.

Publication II

On page 6 after the equation (3.6) the domain of the function r should be

R+.
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