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The one-dimensional digital waveguide structures based on finite difference time domain (FDTD) formulations provide a
flexible approach for real-time sound synthesis of simple one-dimensional (1-D) structures, such as a vibrating string. This
paper summarizes the basic 1-D FDTD waveguide theory, carries out the stability analysis of the model, and presents a
sufficient condition for the stability. The simulation of frequency-independent losses has also been covered. The formation
of the traveling waves and initialization of the 1-D FDTD waveguides are investigated. The methods shown in the paper
may be used to interconnect the 1-D FDTD waveguides to other model-based sound synthesis structures, such as digital
waveguides that are based on the traveling wave solution of the wave equation.

INTRODUCTION

The research on model-based sound synthesis has pro-
vided novel DSP tools for emerging virtual acoustics and
entertainment audio. A recent development is the for-
mulation of one-dimensional (1-D) waveguides for im-
proved sound synthesis using the finite differences in the
time domain (FDTD) [1]. The technique is essentially
a generalization of the digital waveguide mesh [2, 3] in
one-dimension, and it is useful for model-based sound
synthesis of 1-D structures, e.g. vibrating strings. A gui-
tar string model has been shown to run in real-time on a
typical desktop computer [1]. With the increasing com-
putational power, in the near-term future the technique
may provide an extension to the wide-spread physical
modeling synthesis methods, such as digital waveguide
synthesis® . At the present, however, the method has a
broad range of problems to be solved.

The need for the stability analysis of the 1-D FDTD model
has been pointed out in [1]. Moreover, it is desirable to
relate the basic parameters of the model to physical quan-
tities. A key element in the interaction of the 1-D FDTD
waveguide with other models, such as DWGs, is the abil-
ity to formulate the traveling waves at any instant. In
addition, the initialization of the model provides a tool
for understanding of the model dynamics. These require-
ments are the motivations for the present paper.

The structure of the paper is as follows. After review-
ing the 1-D FDTD waveguide theory in Section 1, we

1We will refer to a digital waveguide presented in [4] as DWG
henceforth to avoid confusion. The DWGs are based on the traveling
wave solution of the wave equation, whereas 1-D FDTD waveguides do
not presume the form of the solution. An excellent review of the DWG
theory can befound in [5]

present the stability analysis of the model structure and
derive a sufficient condition for the stability in Section 2.
Section 3 shows the similarity of the model to the finite
difference simulation of lossy wave equation. The result-
ing physically meaningful model parameters ensure the
numerical stability. The topic of the next section is the
calculation of the traveling waves and the formation of
initial states of the model. Finally, in Section 5, we dis-
cuss how these methods can be applied to sound synthesis
and indicate possible future directions of the research.

1. BASIC THEORY OF 1-D FDTD WAVEGUIDES

The formulation of the 1-D FDTD waveguides originates
from the finite difference approximation of the wave equa-
tion in a one-dimensional lossless medium [6]:

Yt = C2 Yz (1)

where y is the displacement, ¢ and z are temporal and
spatial variables, respectively. The propagation speed is
given by ¢ = /T'/u, where T is the tension of the string
and p is its linear mass density. The following central
difference schemes for even order partial derivatives can
be used for discretization of Eq. (1) [7]:

Yo i+ At — 2Yzt + Yz t—At
~ l ) l 2
Yt A2 2)
Yow R Yz4+Az,t — 2Aym,2t + Yo—Az,t (3)
T

In the discrete form, the temporal and spatial variables
may be denoted as k = z/Ax and n = t/At, where At
and Ax are the temporal and spatial sampling intervals,
respectively. The sampling intervals cannot be chosen
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arbitrarily; the Von Neumann stability condition [7, 8]
dictates the following constraint

At

— <1 4

CAx - @

The choice ¢ = Az /At eliminates the truncation error
and numerical dispersion [7]. In this case, the term yy, ,,
vanishes and the discrete solution of Eq. (1) yields

Ykontl = Yh-1,n + Ye+1,n — Yk,n—1 (5)

Note that this choice is valid in the case of an ideal string.
If the medium is non-ideal, spatial oversampling may im-
prove the simulation accuracy.

The relation ¢ = Az /At is a principal condition in the
DWG theory, and Eq. (5) is the one-dimensional equiva-
lent of the V—dimensional rectangular DWG-mesh [3]:

1 2N
Ye,n+1 = N JZI Yjm — Yk,n-1 (6)

The 1-D FDTD waveguide is a generalization of the solu-
tion in Eq. (5). It has been defined as the following DSP
structure [1]

Yentl = 9 Yb—1,n + Gf Ykttn + Glkn1 (7)

In [1], it has been shown that the parameters g,j, gy » and
ay can be used for simulating the losses, scattering and
fractionally positioned terminations. However, the deter-
mination of the parameters that ensure the stability has
not been carried out in the original formulation. The next
section derives a sufficient condition for the stability of
the 1-D FDTD model for the case g} = g, = g.

2. STABILITY ANALYSIS OF 1-D FDTD WAVEG-
UIDES

The stability analysis of FDTD schemes is based on the
Von Neumann analysis [8]. The method basically decom-
poses the states of the FDTD schemes into complex si-
nusoidal functions of the spatial frequency £ so that the
scheme can be presented by means of an amplification
function H(&). The necessary and sufficient condition
for bounded output is that the roots A; of the amplifica-
tion function are on or inside the unit circle.

The Von Neumann method has usually been used in FDTD
simulations to determine the grid density or to analyze
the numerical dispersion [7, 2, 3]. The difference in the
present analysis is that we have a predetermined grid den-
sity governed by a fixed (Az, At) pair and we are seeking
the parameters that ensure the stability of the model.
With the assumption that g,': =g, =g anda; = a,and
by inserting F(yk.») = A"e"™’ where § = Az¢and F(.)
is the spatial Fourier transform operator, Eq. (7) yields

A —2)\gcosf—a=0 (8)
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The roots of this quadratic equation are

A1,2 =gcosf £+/g%cos? 0+ a 9)

In the ideal case of Eq. (5), where g = 1 and a = —1, the
roots become

A1,2 = cosf £ v/cos?f —1 = cosf Fusinf

Thus
A =13 =1

so that the scheme is stable for all spatial frequencies.
A sufficient condition for the stability of the 1-D FDTD
scheme is

a:_g2 ’ |g|S1 (10)

In this case, Eq. (9) yields
A1,2 = gcosf £1gsind (11)

so that
A2l =g (12)

It is worth noting that the sufficient condition of Eq. (10)
results in a frequency-independent amplification function
|H(£)| = g. The condition is not necessary; there are
other parameter values that result in a stable model. The
stable parameter examples given in [1], which were ex-
perimentally found, exhibit slight deviations from Eg. (10).
These deviations may be generalized as a = —g? + €
where € is a small positive number. The parameter ex-
amples given in [1] correspond to € = 2.75 x 10~*
and e = 2 x 10~%. In both cases, the model remains
passive and stable. However, since e # 0, the amplifi-
cation function H (£) exhibits humps around the DC and
Nyquist frequency? , as discussed in [1]. Such a small
offset necessarily makes the amplification function fre-
quency dependent.

0 02 0.4 0.6 0.8 1
e/m

Figure 1: The magnitude of the amplification function
when g = 0.93and a = —¢g% + € = —0.8599, where
€ = 0.005. The model is passive and stable, however the
amplification function is frequency-dependent.

The effect of a small offset is illustrated in Fig. 1, which
presents the magnitude of the amplification function when

2gtrictly speaking, we mean the spatial frequency £. However the
relation ¢ = Az /At alows the discussion to be vaid for the temporal
frequency w aswell.
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g =0.93anda = —g?+€ = —0.8599, where e = 0.005.
The condition |H ()| < 1 is satisfied, however, the fre-
quency components around DC and Nyquist do not decay
at all. The sufficient condition of Eq. (10) prevents such
non-decaying components.

3. THE RELATION OF THE 1-D FDTD MODEL
TO THE LOSSY WAVE EQUATION

Having established a sufficient condition for the stability
in the previous section, we present the finite difference
approximation of the lossy wave equation. The presen-
tation is similar to that in [7], however our aim is to re-
late the 1-D FDTD model parameters to physical quan-
tities, rather than analyzing the numerical dispersion of
the scheme. The losses can be simulated by a term that is
proportional to the velocity [6, 7]. In this case, the wave
equation becomes

Yir + 21y = P Yaa (13)

where ¢ = /T /u, by = 1/7 is a frequency-independent
decay constant, and 7 is the time constant for which the
amplitude of the wave decays to 1/e of its initial value.
The first order time derivative in Eq. (13) can be approx-
imated using the following difference scheme [7]:

Yen+1 — Yk,n—1 4

Y = AL + O(At?) (14)
where O(.) denotes the order of the approximation er-
ror. The central difference scheme is preferred to other
schemes, e.g., the forward and backward differences which
are O(At?) [8]. Inserting the first and second order cen-
tral differences into Eq. (13), the recursion becomes in
the lossy case

Yknt1 = 9 Wk+1,n + Yk—1,n) + @QYk,n—1 (15)

where .
- 16
9= 1A (16)
and 1—-b;At
s _ _1—haAt
T I At (17)

Eqg. (15) is the special case of Eq. (7) for g,j =g, =9
and a;, = a for all k. The parameter b, directly controls
the decay rate of the synthetic tone.

In the following, we present an example where the sam-
pling frequency is fs = 1/At = 22050 Hz, and the fun-
damental frequency of the waveguide is f = 441 Hz. The
1-D FDTD waveguide given by Eqg. (15) has been initial-
ized with an ideal pluck (see Section 4) at the middle of
the string. The initial amplitude has been set to unity. The
choice b; = 1 corresponds to a decay time 7 =1/b; =1
S. The g and a parameters are obtained by Eqg. (16) and
Eq. (17), respectively.
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Figure 2: Lossy 1-D FDTD waveguide simulation. The
synthetic tone exhibits an exponential decay and has an
amplitude equalto 1/eatt =7 =1s5.

Figure 2 shows the amplitude envelope of the synthetic
tone (only the positive part of the envelope is shown).
The dashed line in the figure represents 1/e of the initial
amplitude. The synthetic tone exhibits an exponential de-
cay, and intersects the dashed lineatt =7 =1s.

The loss parameter & is in agreement with the stability
condition of Eq. (10)

9 b2 At?

S ~ 2 A 42
i= 0"+ G b A7 a+O@B2AL)  (18)

where the approximation is obtained by Taylor series ex-
pansion. The neglected term is typically much smaller
than the e examples given in Section 2. For instance, if
by = land 1/At = f, = 22050 Hz, the error between
the a and a is of the order 10~°.

The mean-square error (MSE) between two synthetic tones
obtained with @ and & is depicted in Fig. 3. The MSE is
less than 109, with a maximum at time ¢ = 7. In this
case, and in all other practical cases, this error is negli-
gible and g and a parameters obtained by Eq. (16) and
Eq. (17), respectively, result in a stable model.

8

100

Time ()

Figure 3: The mean-square error between the tones syn-
thesized with parameter a of Eq. (10) and parameter & of
Eq. (17).

So far we discussed frequency-independent losses. The
frequency-dependent losses can be simulated by inserting
another loss term which is proportional to the third order
time derivative in Eqg. (13). In this case the difference
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equation becomes implicit and approximations have to be
made [7]. The resulting structure is far more complex
than the 1-D FDTD model, and it will not be discussed
further here.

4. TRAVELING WAVESAND INITIAL STATES

The equivalence of DWG formulation and finite differ-
ence approximation in the lossless case has been previ-
ously shown in [5]. In this section we work the same
problem other way around and discuss how to obtain the
traveling waves in an 1-D FDTD waveguide at the time
step n. We also relate the formation of initial states at
n = 0 to this formulation. For the clarity of the dis-
cussion, we consider the lossless case, given by Eq. (5).
The method outlined here can also be used for the general
model of Eq. (7).

We assume that yj ,—1 and yy,, are available after the
calculation of y ,41 for all £ and n. During the discus-
sion, we will implicitly refer to the spatio-temporal grid
of the 1-D FDTD waveguide, illustrated in Fig. 4.

n+l
O

n-1

O
k-1 k k+1

Figure 4: The spatio-temporal grid of the 1-D FDTD
waveguide.

4.1. Traveling slope waves
Recall that, in the continuous case
9y(z,t)
Ox

The superscripts r and I denote the right-going and left-
going traveling waves, respectively, and s(z,t) = y,(z,1)
is a slope wave in the above expression. The time deriva-
tive of the displacement is given by

Oy(=,1)

ot

=y (z—ct)+y (x+ct) = s"(x—ct)+5' (x+ct)

= yl(x—ct) +yl(z+ct)
= ¢(s'(x +ct) — s"(x — ct))
From this equation pair we obtain the slope waves
Oy(z,t) 10y(z,1)

S Oz c Ot (19)
sz, 1) 3@/;:;,75) éay(aai,t) (20)
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In digital simulation, spatial derivatives can be approxi-
mated by the following central difference scheme

Ye+1n — Yk—1.n 4
S Tt A 21
Yo T O(AY) (D)
and time derivatives can be approximated by a similar
expression previously given in Eq. (14). The digital slope
waves in the lossless 1-D FDTD waveguide thus are

Ye+1,n — Yk—1, Yen+1 — Ykn—1
Sz,n _ n n n n (22)
2 2
1 Ye+1,n — Yk—1,n Yen+1 — Yken—1
Sk,n = 9 + 2

These expressions can be made explicit by inserting y, 41
from Eqg. (5) into Eq. (22) so that

Sk = ~Yk—1,n + Ykn-1 (23)

Si},n = Ye+i,n — Ykn—1
A slope wave can be converted to any other wave by
means of digital operations [4]. Before demonstrating the
traveling waves in the 1-D FDTD waveguide, we will dis-
cuss the initial state formation. The different initial state
conditions presented below provide a generalization of
the experimental cases discussed in [1].

4.2. Initial states

A second-order equation such as the wave equation needs
two initial conditions. For strings, the initial displace-
ment yo(z) and the initial velocity vo(z) provide a natu-
ral choice of the initial variables.

In an inifite string, the displacement is given by [6]

ylz,t) = % [yo(z — ct) + yo(z +ct)] (24)

+ 2%[5(:1:+ct) — S(z — ct)]

where )
5@ = [ vofa)da (25)

In a finite string, yo(¢) and S(¢) behave differently at the
boundaries. For instance, at a rigid boundary z = 0, i.e.,
Vt; y(0,t) = 0, the following conditions apply [6]

Y0(¢) = —yo(=¢) (26)

5(¢) =5(=9) 27)

In words, these conditions mean that the traveling waves
due to yo(x) are reflected with a sign inversion at a rigid
boundary, whereas the traveling waves due to vo(z) are
reflected without sign inversion.

In plucked-string simulations yo(z) is usually set to an
ideal triangular shape, and vg(x) is assumed to be zero.
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However, measurement results indicate that a string has a
non-vanishing initial velocity at the release time [9, 10].
Since the 1-D FDTD waveguide simulates the displace-
ment of the string, for any spatially bandlimited function
yo(z) € L2 it follows that

Yk,0 = Yo(Z)|o=kaz = yo(kAx) (28)

In words, the first initial state is the sampled initial dis-
placement. In the following, we discuss how to set the
second initial state y; _; according to a given vo(z). In
all the demonstrations below, the sampling frequency is
fs = 44100 Hz, the fundamental frequency of the string
is fo = 220.5 Hz, and rigid boundary conditions are im-
posed.

4.2.1. Zero-velocity excitation

Consider Eq. (22) at the time n = 0. Since vo(z) is
zero, the temporal derivatives in Eq. (22) vanish so that
the slope waves satisfy

52,0 = 32,0 (29)
From Eq. (23) we get the second initial state as

Y1 = Yk+1,0 ; Yk—1,0 (30)

6
Position k

Figure 5: The displacement of the string at various time
instants n. The initial displacement is a triangular func-
tion, and the initial velocity is zero.

Figure 5 represents a simulation, where v (z) = 0 and

10

1— B30 40 < k<60
= - = 31
Yk0 {0 otherwise (31)

corresponding to a triangular pulse in the middle of the
string. As the simulation proceeds, two traveling waves
propagate towards opposite directions. The amplitudes
of the traveling waves are equal to one-half of the initial
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10 20 30 40 50 60 70 80 90

Position k
Figure 6: The traveling waves yi . (dashed curve)
and yfm (dash-dotted curve), and the displacement yy, ,,

(solid line) as calculated by the 1-D FDTD waveguide at
time instantn = 7.

displacement. The rigid boundary conditions invert the
traveling waves, in accordance with Eqg. (26).

Figure 6 depicts the displacement and traveling waves at
the time step n = 7 in the experiment above. The trav-
eling slope waves are obtained by Eqg. (23), and they are
converted to the displacement waves using numerical in-
tegration (in this experiment a cumulative sum has been
used). For the real-time implementation, a leaky integra-
tor can be used to perform the integration [4].

4.2.2. Zero-displacement excitation

If yo(x) = 0, Eq. (22) becomes a zero identity and it
is not possible to obtain y,,_1. Nevertheless, vo(z) can
be approximated using the following forward difference
scheme

00(2) = yile—o ~ % +0(A%)  (32)

Since yx,0 = 0, it follows that
Yk,—1 ~ —Atvg(kAx) (33)

Figure 7 illustrates a simulation where the initial velocity
is a smooth function (21-point Hamming window) cen-
tered at £ = 50. The simulation begins with a zero dis-
placement at n = 0. As the simulation proceeds, two
traveling waves propagate towards opposite directions. In
this case, traveling waves are not inverted at the bound-
aries, in accordance with Eq. (27).

It should also be noted that the forward difference scheme
is not as accurate as the central difference scheme and the
approximation error manifests itself by very low ampli-
tude oscillations.

4.2.3. An arbitrary excitation

If both yo(x) and wo(z) are non-zero, the 1-D FDTD
waveguide can be initiated by superposition of the two
conditions above, i.e.,

Yro = Yo(kAx) (34)
b1 = Yk+1,0 ';yk—l,o _ At (kAz)
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Figure 7: The displacement of the string at various time
instants n. The initial displacement is zero, and the initial
velocity is a Hamming function.

Figure 8 depicts the simulation results corresponding to
such a case. In this simulation, the initial displacement
is an ideal pluck at one third of the string, and the initial
velocity has been adopted from [9]. The simulation re-
sults are in accordance with the observations presented in
[9, 10].

40 60
Position k

Figure 8: The displacement of the string at various time
instants n. The initial displacement is an ideal pluck, and
the initial velocity is a smooth function resembling the
measured initial velocity in [9].

5. CONCLUSIONS

The powerful features of 1-D FDTD waveguide models
have been previously introduced in [1]. The present pa-
per documents our explorations on the mathematical the-
ory of the method. In particular, a sufficient condition
for the stability is obtained and the relation of the model
parameters to the physical parameters have been demon-
strated. The traveling slope waves have been formulated,
and it has been shown that each traveling wave depends
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only on two cells in the spatio-temporal grid of the 1-D
FDTD waveguide. The formation of the initial states has
been related to the traveling wave formulationat n = 0.
One powerful aspect of the 1-D FDTD waveguide is its
inherent capability to model instantaneous phenomena,
such as the interactions between the string and the ex-
citer, or nonlinearities arising from tension modulation
and string-fretboard collision. These capabilities deserve
proper experimentation in the near-term future.

Like many other model-based plucked string synthesis
structures, 1-D FDTD waveguides produce tones that sound
dull and synthetic in the absence of an instrument body
model. The research on body modeling, therefore, needs
to be conducted in parallel to research on the 1-D FDTD
waveguide theory.

The formulation presented here may open new paths to
explore the interaction between 1-D FDTD models and
other model-based sound synthesis structures, e.g., DWGs.
The locality of the traveling waves in Eq. (23) encourages
us to work on special terminations that convert the dis-
placement states of the 1-D FDTD waveguide to the trav-
eling waves that can be used in DWGs, and vice versa.
Using these special terminations, it will be possible to
construct a hybrid model that combines the efficiency of
the DWG structures with the instantaneous interaction ca-
pabilities of the 1-D FDTD waveguide. A thorough ex-
ploration of this possibility is left for future work.
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