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ABSTRACT

This study is concerned with a new excitation system in which a voltage is induced
by the flux density harmonics of the air-gap in an auxiliary rotor winding supplying the
field winding through a rectifier. The system is brushless and self-regulated. The appli-
cability of various harmonics for producing the excitation current is studied; it has been
shown that the field current component proportional to the resulting air-gap flux can
only be obtained by means of permeance variations due to irregularities of the stator
air-gap face. The field current component proportional to the load current can be
produced by harmonics due to the stator winding distribution. Experimental studies
were made with a generator of 3 kVA size, in which the first slot harmonic was utilized
to create the excitation current. The generator has characteristics similar to those of
conventional compounded synchronous generators. The measurements show that the

method presented for calculating the terminal voltage gives a satisfactory result in
practice.
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BASIC SYMBOLS

Lower case symbols are used for the instantaneous values of electrical quantities;
upper case symbols are used for their rm.s. and average values; upper case boldface
symbols are used for phasors; lower case symbols with " are used for peak values.

A

F field winding
p fundamental
A

u

v

1 stator

2 rotor

A

4;

a

b

bk(p+ng)
bU(p+ng)

by, by, by, by
C
Ck

O

[ 5]
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Subscripts

auxiliary winding of rotor

permeance harmonic having X pole pairs
permeance harmonic having u pole pairs
harmonic due to winding distribution having » pole pairs

Symbols

area
copper area of one conductor

linear current density; number of parallel paths

flux density

flux density harmonic due to stator winding distribution having p + gQ,
pole pairs

flux density harmonic due to stator slot openings having p + g8Q,
pole pairs

flux density harmonic groups (Egs. (7)---(10))

integration constant; capacitance

capacitance (Boucherot)

abbreviation (Eq. (108))

abbreviation (Eq. (111))

integer

air-gap diameter

magnetomotive force

field current/air-gap voltage (Eq. (122))

integer

magnetic field strength

current

active current
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AR OOTT vk

short-circuit current of auxiliary winding

reactive current

direct current

field current component proportional to stator terminal voltage

phase current ‘

fundamental component of phase current

field current component proportional to voltage drop in stator leakage

reactance
field current component proportional to resulting air-gap flux

field current component proportional to stator current
direct-axis component of stator current

dimensionless fraction (Eq. (98))

equivalent rating of auxiliary winding/d.c. power
integer

compound factor

direct current/fundamental phase current for rectifier circuit
abbreviation (Eq. (72))

constant

variable (Eq. (97))

integer

Carter’s coefficient

saturation factor

integers

effective core length

ratio of reactive powers of two generators in parallel connection
mean length of one turn of the auxiliary winding

number of phases

denominator of number of slots per pole per phase reduced to lowest
terms

number of turns of a winding in series

number of conductors in one slot

frequency of rotation

order of harmonic; integer

active power

number of pole pairs

ratio of active powers of two generators in parallel connection
number of slots; reactive power

number of open slots; reactive power of generator (a)

number of slots per pole per phase
resistance



equivalent resistance of rectifier load per phase

air-gap radius

slip

numerator of number of slots per pole per phase reduced to lowest
terms

time; tooth pitch
voltage; terminal voltage (to neutral)
synchronous voltage of auxiliary winding

component of U, ; proportional to stator current

component of U,, proportional to fundamental of flux density wave
abbreviation (Eq. (95))

synchronous voltage

air-gap voltage

arithmetic mean of direct voltage

phase voltage

voltage acting on rectifier bridge below the threshold voltage

magnetic potential difference
magnetic potential difference over rotor tooth (rotor-tooth m.m.f.)

magnetic potential difference over air-gap (air-gap m.m.f.)

reactance

abbreviation (Eq. (96))

magnetizing reactance

direct-axis magnetizing reactance

quadrature-axis magnetizing reactance

leakage reactance

length of slot opening

coil pitch

load impedance

impedance defined by Eq. (104)

load impedance containing the stator resistance and leakage reactance
function (Eq. (64))

angle between reference axis and positive crest value of the vth har-
monic (Fig. 4)

electrical conductivity

air-gap length

phase difference of U, with respect to U;

equivalent air-gap

equivalent air-gap for the vth harmonic

mean air-gap length
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Pe
2%
‘P)\ ’ 90”

eccentricity of rotor

angular coordinate

permeance per unit area (specific permeance)
specific permeance having kQ, pole pairs

mean value of specific permeance

number of pole pairs of permeance harmonic

number of pole pairs of permeance harmonic; reduction factor
permeability of free space

number of pole pairs of harmonic due to winding distribution
winding factor

winding factor of stator winding for the harmonic having p + gQ,
pole pairs

slot opening factor for the vth harmonic

leakage coefficient

pole pitch; function (Eq. (64))

impedance angle of load

phase difference of I, with respect to U,

impedance angle of load containing the stator resistance and leakage
reactance

phase angle of permeance harmonic due to eccentricity
phase angle of the vth harmonic due to winding distribution
phase angle of the Ath and uth permeance harmonic, respectively

angular frequency
angular frequency of permeance harmonic due to eccentricity



1 INTRODUCTION

The magnetic flux density in the air-gap of an alternating-current machine contains
a large number of harmonics in addition to the fundamental determined by the pole
pair number of the machine. These harmonics are usually objectionable. They cause
supplementary losses, harmonics in the waveform of a generator’s voltage, parasitic
torques; they create noise; etc. In [1], [15] and [21] a method has been presented by
which the third harmonic of flux density can be utilized for the excitation of a
synchronous machine. The method involves furnishing an auxiliary winding in the stator,
having a pole pair number three times the fundamental pole pair number. The voltage
induced by the third harmonic in this auxiliary winding is rectified and supplied over
slip rings to the field winding. Measurements have shown that the voltage induced in the
auxiliary winding increases, with increasing load current of the machine, approximately
as the field current required to compensate the armature reaction. This is true within a
fairly wide power factor range; less perfectly with leading than lagging power factor.
The system is not self-regulating, however, and it needs an excitation control. It has
been proven that fast voltage control is possible by this method in transient states.

PLATTHAUS [17] demonstrated in his thesis that no special auxiliary winding is
needed: the voltage induced by the third harmonic in the armature winding may be
utilized as excitation voltage by providing an appropriate circuit.

In accordance with a suggestion made by Professor T. Pyokiri, those possibilities shall
be studied here which exist for utilizing the flux density harmonics to create the excita-
tion voltage by placing an auxiliary winding in the rotor; the type of characteristics
attainable in a generator excited in this way shall also be considered. In the study of
harmonics a particular search shall be made for those whose magnitude changes, with a
change of load, similarly as the field current required for a constant terminal voltage. If
such harmonics are found and if they are strong enough, a self-regulating synchronous
generator, requiring no slip rings or brush gear can be devised. In cases where high
reliability and low maintenance are desired a brushless generator is the best solution,
because the brush gear is the component causing the greatest need of maintenance and
most of the faults. In hazardous atmospheres no slip rings can be used owing to risk of
explosion due to sparking, unless the machine is pressurized or has a flame-proof
enclosure. Such expensive designs are avoidable by using a brushless generator.



2 SELF-REGULATION

When the load of a synchronous generator changes and there is no regulation of
excitation, the terminal voltage of the generator changes due to the armature reaction
and due to change of the voltage drops across the leakage reactance and the resistance of
the stator winding. In order to maintain a constant terminal voltage the field current
must be regulated. One means of regulating the field current is to use a so-called
compound scheme. A great number of different compound circuits is known [24]. These
can be divided into two principal groups: current addition circuits, and voltage addition
circuits.

The phasor diagram of a non-salient-pole generator is seen in Fig. 1. The stator
resistance is assumed to be negligible. U;, U; and U; are the terminal voltage, air-gap
voltage and synchronous voltage, respectively. I,jX, and I,jX,  are the voltage drops
in the stator magnetizing reactance X, and in the leakage reactance X, . The field
current I can be divided into two components, I, and I. I, produces the resulting
flux and is proportional to U,. I' compensates the armature reaction and is proportional
to the load current /,. I, can further be divided into two components I, and I (Fig. 1).

Fig. 1. The phasor diagram of a non-salient-pole
generator.

I, is proportional to the terminal voltage and lags it by 90°, while I, is proportional to
the voltage drop I, X, and is in phase with the load current. Hence the field current is

=1, -L,-I 1)
71
2
angle of the load. Good voltage control should comply with Equation (1) so that I
remains constant when the load current varies.

The phase difference of I, with respect to I, . + I' is = + ¢, where ¢ is the impedance
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The principle circuit diagram Fig. 2 shows a compound circuit where the field current
components are added. The current I, of a reactor D lags the terminal voltage U, by
90°. Thus the component [ of the field current can be composed of Ij,. The component
proportional to the load current is constituted by the secondary current of the current

transformer M. The phase difference of I, with respect to I, is the requ1red + .
When the sum of I, and I is rectified, a field current Iy is obtained.

Fig. 2. A current addition compound circuit. Fig. 3. A voltage addition compound circuit.

Another compound circuit i.e., the voltage addition circuit, is shown in Fig. 3. Here,
the required angle + ¢ is present between the secondary voltages of the voltage

transformer M, and the current transformer M,. By vectorial addition of the voltages
the necessary excitation voltage and field current are obtained. The compound circuits
of Figs. 2 and 3 are said to be regatively compounded.

If the terminals of the secondary winding of the current transformer in Figs. 2 and 3
are reversed, the phase of the field current component proportional to the load current
changes 180°. A compound machine connected in this manner is said to be positively
compounded and it has a constant power factor independent of the load when connected
to infinite busbars [5]. Positive compounding is applied in synchronous motors.



3 HARMONICS OF FLUX DENSITY IN THE AIR-GAP OF AN
ALTERNATING-CURRENT MACHINE

Harmonics of the flux density in the air-gap arise from two causes:

1. The winding is discontinuous. It is concentrated in slots and coil groups. Hence
the air-gap m.m.f. (the magnetic potential difference over the air-gap) produced by the
winding is not sinusoidal.

2. The permeance of the air-gap is not constant. Permeance variations are caused by
the stator and rotor slot openings, salient poles, magnetic saturation, and rotor
eccentricity.

In the next chapter we discuss the harmonics of the flux density distribution produced
by the air-gap m.m.f. and air-gap permeance in the general case. Subsequently, we study
the harmonics of the flux density distribution created by a distributed winding when
the air-gap permeance is constant, and finally we consider the flux density harmonics
due to the permeance variations mentioned under 2 above.

The winding is assumed to be symmetric, implying that its phase windings are
identical and uniformly distributed in space. The phase currents flowing in the stator
windings are assumed to be balanced and sinusoidal.

Regarding the fractional-slot windings the following assumptions are made:

1. There are always 2m phase spreads per pole pair, m being the number of phases;

2. There are only two kinds of phase spread, having slot numbers per pole per phase

(q, and gy, differing by 1:q, = q, + L.

By combining these phase spreads in various manners, we obtain the desired number
of slots per pole per phase. For instance, if the denominator of the number of slots/pole/
phase reduced to its lowest terms is five, there are three possible combinations for
accomplishing the winding:

L. 4, 9y b 9y 9

2.4, 9 9, 9y 9o

3. 4,3 43 dp 9o 9v

In practice, the conditions specified above are nearly always satisfied.

3.1 FLUX DENSITY DISTRIBUTION IN THE GENERAL CASE

When considering the air-gap flux density distribution, the current flowing in a
winding may be replaced by a linear current density. The linear current density is a
periodic function of time and space and can be described by a series

a=—28,sin(d —w,t —9,) )
v
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where v is the number of pole pairs and &, the amplitude of the harmonic linear current
density, w, the angular frequency, ¢, the time phase difference with respect to the
reference chosen and 9 the angular coordinate.

A linear current density distribution produces a m.m.f. in a closed magnetic circuit.
In the following the air-gap is considered to be enlarged to the degree that its permeance
is half of the permeance of the entire magnetic circuit. The magnetic potential difference
over this equivalent air-gap is an integral of the linear current density distribution
[20, p. 128]: P
v=r,fadt9=r2—5cos(v0*wut—¢p)+c ?3)

14

where C is the integration constant and r the radius of the air-gap. The ratio of the air-
gap flux density to the air-gap m.m.f,, i.e. the permeance per unit area, is called in this
paper the specific permeance of the air-gap. The specific permeance of a constant air-gap
©)is u

a=te @
The specific permeance in rotating machines is a periodic function of time and space.
It is therefore expressible as a series

A=A, +3 R, cos(ud — Wt = 9,) ®)
m

where u is number of pole pairs of the harmonic permeance, A, the mean value of the
specific permeance and 7\\# the amplitude of the uth harmonic.
The flux density is the product of the airgap m.m.f. and the air-gap specific
permeance: '
a

b=yA =[r2 7" cos(d —w,t—g,)+ C][Ao +> 7\\" cos(ud — wyt— ‘p“)] =
v I

=rA, %: 7”- cos(d —w,t—y,)+ CA, +

i
+ rz—: cos(vd — w,t — «p,)% /’i“ cos(ud — w, ¢ —g)+

v

+C3 Ku cos(ud —w, t — o)
u

v
At (2nd term)
A
+r2 2 2y 08 (P9 —(w, t w )t (0, p,)]+ (3rd term)
v .
v#t‘:l
8,,R, . . . )
+ rz 21 Ccos [i' 2}“’ - (qu“ + w")t._ (‘pv=t“ + ¢“)] + (4 term) ( )
<t
a, A
+ rz—-“—"ii% COS[(Wymsy FW I+ Gpmsy FO I+ (5th term)
<ot

+C3 Kﬂ cos(ud — w,t — 0) (6th term)
m



16

Since the vth harmonic of the linear current density and the uth harmonic of the
permeance: are due to different causes, w, is not necessarily equal to w,, nor is ¢,
necessarily equal to g, even though v and u are equal. For this reason at certain points
in the preceding expression the subscript v = £ u has been written for w, and ¢, In'each
expression the upper signs are simultaneously valid, or the lower signs.

Assuming that no unipolar flux exists in the machine, the integration constant C is
determined in accorddnce with the condition that the mean value of the flux density
over the air-gap periphery is zero:

n

bdd =0

Ot D

qurjing out the quadrature and resolving for C yields
N

r <A
C= =L 5 At 0o [(Wymsy F @)+ (fymsy ¥ 0]
() +2u

Substitution of C in (6) causeé the 2nd and 5th terms to vanish. The air-'gap flux
density distribution is therefore a sum of the following four harmonic groups:

by =rA, zﬁzcos(vﬂ—w t—y,) . . ‘ . 7
2

bu =r22—2-‘icos[(vtu)a—(w £t = @t )] - ®
v;etu A

A
by =r 2 j“z—ﬁcos #2090 — (w

(V‘t#) & X 7\\ ,
by =—— —‘“—“—*{coskﬂ + (w,_,, Fw)]t+
w=tu

— [+ (%_i“ ¥ ¢“)]] + cos [)u? [y — (Wy=gy F @I+ (10)

~ (o= (omsy ¥ 9]}

v=iy £ w“) t— (\0v=-.ty t ‘pu)] (9)

Of the double signs, the upper ones are simultaneously valid, or the lower ones. In (9)
and (10) u obtains only those values of v for which » =+ u. The second subscript A of
the specific permeance in (10) assumes all those values for which there exist permeance
waves.

First, the flux density distribution comprises the same harmonics (bl) as the linear
current density distribution. In the following, these are termed harmonics due to the
stator winding distribution. Secondly, the linear current density and the permeance
harmonics in combination produce a large number of harmonics (by, by, byy) With
different numbers of pole pairs and different angular frequencies. These shall be called
harmonics due to the permeance variations.
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Starting from the same initial condition, namely that there is no unipolar flux,
FROHNE [8, p. 131 --- 134] has arrived at a conclusion partly at variance with the above-
stated. In addition to the harmonics (7)--(10) he found one further harmonic group,
which is unipolar. This clearly contradicts the initial condition stated above.

32 FLUX DENSITY DISTRIBUTION IN A CONSTANT AIR-GAP

The mean value A, of the speclﬁc permeance function (5) states the specific perme-
ance of the equwalent air-gap (8 ):

A =X

A, 5?
The equivalent air-gap is a function of the pole-pair number of the m.m.f. wave; it has
therefore the subscript v. The equivalent air-gap can be calculated from the equation

8" = ke, 6 . Qi

where 8 is the actual air-gap. The coefﬁc1ent k. takes into account the slot openings and
the coefficient £, , the saturation. The coefﬁclent k. is often called Carter’s coefficient;
it can be calculated by a method presented in [19, p. 177). The saturation factor &, can
be calculated from the equation

Jow

ke = 2v,,5

where f , is the total m.m.f. of the vth harmonic and v, the part thereof acting on
one air-gap.
The vth harmonic of the air-gap m.m.f. produces a harmonic flux density
b, = Ay, = %ﬂ- v,
v .
The flux density contains same harmonics as the m.m.f. These harmonics due to the
stator winding distribution are proportional to the stator current. It is therefore possible

to use these harmonics to produce the field current component proportional to the load
current, which is required for self-regulation.

3.2.1 M.m.f. of an alternating-current winding
‘ 3.2.1.1 Double-layer wmdmgs ,

A symmetrical double-layer winding as has been defined at the beginning of Chapter 3,
may only produce harmonics in-accordance with the equation [23, p. 82]

:—,= N(2mg+ 2) for even N . (12)
22 % (2mg + 1) for odd N (13)
g =0, 1,2, ...
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where m is the number of phases and N the denominator of the number of slots per pole
per phase, reduced to its lowest terms,

T

=N

The double signs in Eqs. (12) and (13) are chosen to be + or — to make the equations
yield the positive sign for the fundamental (y/p = + 1). The ratio of the harmonic pole
pairs v to the fundamental pole pairs p is commonly called the order of the harmonic.
In this study the number of harmonic pole pairs v is also, for simplicity, referred to as
the order of the harmonic.

If the coil axis of the first coil in a given coil group is adopted as reference (Fig. 4),
the vth m.m.f. harmonic of the entire winding will comply with the equation [23, p. 83]

v, =9, cos(d, —wt—¢+8,) (14)

g is the angle shown in the phasor diagram of Fig. 1 in that phase to which the selected
first coil belongs, and @, is an angle depending on the design of the winding and
determined by addition of the individual coils’ m.m.f.’s. Eq. (14) is true in coordinates
stationary with reference to the stator. When the rotor is rotating at angular velocity

w/p, the following relationship applies between the stator and rotor coordinates 9,
and 9,:

d
a JO

]
QE——— ,’V!  —— ' .
f Fig. 4. a) The m.m.f. distribution of one coil.
b b) The location of the reference axis in the
i centre of the first coil in a given coil group.

w
9, =9, ——t+a
2 17 p
where « is the angle between the stator and rotor reference axes at + = 0. When the

time basis is chosen to make the reference axes coincide at the instant ¢ = 0, the angle
« is zero, and

02=ol—$t (15)

This transformation will be used for conversions from the stator to the rotor coordinates
and vice versa. Hence, the vth m.m.f. harmonic in the rotor reference frame is

v, =9, cos[v02 - (1 - %) wt—yp+ Bv] (16)
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Assuming the slot to have a negligible width, the m.m.f. distribution is stepped and
the amplitude of the vth m.m.f. harmonic is

69=%ﬂ;ﬁusv§1 17)

where [ is the r.m.s. phase current, N, the number of conductors in a slot, a the number
of parallel paths and £, the winding factor. The winding factor and the order v/p of the
harmonic together with their signs have to be substituted in Eq. (17). The current 7 has
a negative value for generator operation and a positive value for motor operation.

In actual truth the slot has a finite width, and there is no abrupt change of the air-gap
m.m.f. at the slot; on the contrary, the change occurs gradually across the slot opening,
as shown in Fig. 5. In practice, the part ab may be replaced by a straight line, implying
analysis of a curve of trapeze shape. The factor by which the coefficients of the Fourier
series of the square wave should be reduced in order to find the coefficients of the
Fourier series of a trapezoidal wave is [26, p. 31]
sin (—p— X4 E)

p 12
VXq T
p T2

Ew = (18)

where x, is the width of the slot opening and 7 the pole pitch. This slot opening factor
influences the amplitudes of the first slot harmonics and of the higher harmonics. For
lower harmonics the coefficient is nearly unity.

: ol
b v

| iy

Fig. 5. The change of the air-gap m.m.f. at the ‘ {

slot opening. <

Winding factor

In the following, the winding factors and the angle B, in Egs. (14) and (16) are given
for different double-layer windings. The equations have been derived in [23, p. 87---97].
The winding factors contain the pitch factor but not the slot-opening factor defined in
Eq. (18). The order of a given harmonic ¥/p has to be substituted in the equations
together with its sign.
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Interger-slot winding, N = 1

where y is the coil pitch.

Fractional-slot winding, N = 2

(v om
£ = ;%l(_(l;——im_;)j) sm(pz -,% %) for odd »/p
p 4mq
g, =t cos(z %) _e,in(2 2 E) for even v/p
2qcos(; —::u;) pmql '
Bv=%%;”(%—1$é) for any v/p

(19)

(20)

@1

(22)

(23)

The winding contains phase spreads of two different widths. The upper sign is valid when
the reference axis is placed in the centre of the larger phase spread, and the lower sign

when it is placed in the centre of the smaller phase spread.

Fractional-slot winding, N = 4

The phase spreads are

3
B =49y
and
1
qb=q¥z

The upper sings are valid for windings with a slots/pole/phase number representable by
q = K + 1/4, where K is an integer; the lower signs are valid for windings with ¢ =
K — 1/4. An analogous rule is valid for the subsequent equations, too. The sequence of
phase spreads is q, qy, q;, 9. The sequence is valid both for consecutive phase spreads

independent of the phase and for consecutive phase spreads in one phase.

If the first coil group definéd by the reference axis has g, slots per pole per phase,

the winding factor and the angle B, are
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sm(z %) » T
g = p sin(—'L 5) for odd v/p 24)
4¢Isin(z -"——) pma
p 8mq
cos(z EL) »
g o=t ——Lvasin (; '7);3 %) for even v/p (25)
os(¥ T
4 s(p mq)
sm(l L -2 1)
g = PV 2"; p v27r sm(p—z ;y‘; %) for fractional vjp  (26)
4 sin(—- e - t— ’“)
Ty 8mq " p 2
8, = % r% 5(% —-17 4% for any v/p (27)

Fractional-slot winding, N = §

In this case the windings may be divided into three groups, differing mutually as
regards number of slots/pole/phase and sequence of the phase spreads. The slot number
per pole per phase in the first coil group is again denoted with 9,

a) ¢ = K £ 1/5. The phase spreads are

.
% =93

and
—q71
qb q 5

The sequence of the phase spreads is 4a 9p 9y 9p 9p- The same order also holds good
for phase spreads in ene phase.

In this case the winding factor and the angle B, can be calculated from the equations

v m ’
w3
£ = __;ﬂ —sin (” ;’;'l’_q ’2') for odd v/p (28)
qum( = ——) P
p 10mq
v m 14
sm(-— m o v T
£, = P p sin(——y— —) for fractional v/p (29)
quin(ﬂ L 17). pmq 2
p 10mq p "/
C_mivl_ 4 |
8, = % -~ .;i(q_ -1 :5) for any »/p (30)
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b) ¢ = K  2/5. The phase spreads are

3

qa=qi§

and 2
qb=q;§

and the sequence of phase spreads is q, ¢y, 4, 4y qy- The sequence of phase spreads in
the same phase is now different, q, q, qp 49y 4. The winding factor and the angle
B, are

l2 2]
___ \pam (K_Z_E
£ sin{> 7 ) for odd v/p (31)

) for fractional v/jp (32)

- 2m) for any »/p (33)

¢) ¢ = K = 2/5. The numbers of slots per pole per phase are the same as under b),
but the sequence of phase¢ spreads is now q, q, 4y, 4, 9. The sequence of phase spreads
in one phase is q, q, q, 9y 9p- The winding factor and the angle §, are

sin(z %) - " T
g o=———P A [2cos( ———) - 1] sin (— . —) for odd v/p (34)
’ qum(ﬁ m ) p Smq p mq 2
p 10mq
(v m v
sm(—%“") v v vym
£, = P 2 [ZCos(— ot 417)— l]sin(— > —) 35)
5qsin(3 T_+L29 ) pomq p pmaz
p 10mq p for fractional v/p
B, =%r_i;;”<%_ lxg%_.zm) for any v/p (36)

Fractional-slot winding, arbitrary N

The absolute value of the winding factor can be represented by a universally applicable
equation. However, the sign of the winding factor and the phase of the harmonic cannot
be ascertained thereby.
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For every double-layer winding having ¢ = K * 1/N and for all the other windings
having phase spreads distributed as uniformly as possible over the machine’s periphery,
such as e.g. the manner presented for the winding with N = § under b) above,

vV T
sin(— —-—)
gl = | ——B-2ML g (1 A —’25) for odd vp 37)
' Nqsin(— ———) pmq
! p 2Nmq

The winding factor obtains, also for fractional and even-numbered harmonics, only the
same values as for odd harmonics. The same values recur at a uniform spacing with
respect to |v/pl.

3.2.1.2 Single-layer windings

‘Single-layer windings may also have the same values of N as double-layer windings.
For reasons of manufacturing technique, however, usually only integer-slot windings or
fractional-slot windings with N = 2 are made. Accordingly, the following considerations
are confined to such windings. In addition, of the fractional-slot windings only the
three-phase variety is considered, since they are rarely made with a greater number
of phases. Two-phase windings are also omitted because they cannot be made symmetrical
with a single-layer fractional-slot winding. Fractional-slot windings can be divided into
windings with half coils” and windings with “whole coils”.

Equations (16) and (17) are also valid for the m.m.f. of a single-layer winding [23,
p. 103]. In contrast, the orders of the m.m.f. harmonics are not always the same as in the
corresponding double-layer winding: they depend not only on the value of N but also
on the manner in which the winding has been made.

Integer-siot winding

A single-layer integer-slot winding produces the same m.m.f. harmonics as a double-
layer integer-slot winding. The equations (19) and (20) of the double-layer winding are
also valid for the winding factor and for the angle B, of the corresponding single-layer
winding. :

Fractional-slot windihg, N=2
a) Windings with half coils

Fig. 6 shows an example of a winding with 2,5 slots per pole per phase, two whole
coils and one half coil belonging to each coil group. Both half coils of two adjacent coil
groups occupy the same slot. The current pattern of the double-layer winding producing
the same m.m.f. distribution as the single-layer winding of Fig. 6 is shown for comparison
in Fig. 7. Thus, a single-layer winding can be replaced, as regards the m.m.f. harmonics
and winding factors, by a double-layer winding, having the coil pitch
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Fig. 6. A single-layer fractional-slot winding with 2,5 slots per pole per
phase, made with half coils. .

xxl- 'Ix X xl'

x o x
T x1e - o]x x]. - <|=x

x x]e o
x

Fig. 7. The current pattern of the double-layer winding corresponding
to Fig. 6.

y=3q— 2 (38)
The orders of the harmonics are
v

> =3+l g=0, t1, 2, ... (39)

The winding factors can be calculated from (21) and (22), taking into account Eq. (38):

w3

2gsin( % 2-) snly g 3 foroddvjp  (40)
p 12q
mga o
b Mcos(z —"—) sm(; 6q —2—) for even v/p (41)
p 12q

The reference axis must be placed in the centre of the first coil of a given coﬂ group
of the corresponding double-layer winding. For the double signs the rule stated after
Eq. (23) is valid. Eq. (23) is valid for the angle §,.

b) Windings with whole coils

Contrary to the preceding chapter, the winding may also be made, using only whole
coils. In that case the winding consists of two types of coil groups, having slot numbers
per pole per phase differing by 1. Both coil groups spread over four poles. It follows
that the smallest number of poles is four. As an example, a fractional-slot winding with
2,5 slots per pole per phase is shown in Fig. 8. In any one phase, a larger and smaller
coil group alternate. The coils of the larger coil group can be considered as composed of
coils of constant width, the width of the coils being
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Fig. 8. A single-layer fractional-slot winding with 2,5 slots per pole per phase, made with whole
coils.

1
yi=34-3 @2)

Correspondingly, the coil pitch of the narrower coil group is
1

y,=3¢+ 2 (43)
The orders of harmonics are
v 1
p__5(3g+1) g=0, 1, £2, ... (44)
The winding factor and the angle 3, are
(2 )
£ = __\p6/ sin(z —1 E) for odd vip 45)
Y 2qsin(£ L) p 6 2
p 12
v
cos(— E) vegq—1n
£ = ——PV—-"— sin(; ﬁgq— 5) for even v/p (46)
2082 73]
w23
£ =7 __2%i = ¢‘4—1q for fractional v/p “7)
B, = % ;"i(% —-17 %) ‘ - for any v/p (48)

Of the double signs, the upper sign is chosen when the reference axis lies in the centre
of the larger phase spread, and the lower sign when the reference axis is placed in the
centre of the smaller phase spread.

3.2.2 Slot harmonics

The winding factor is a periodic function with regard to the order of the harmonic.
The values of the winding factor are regularly recurring. Harmonics having a winding
factor equal to that of the fundamental are called slot harmonics. Their orders are
123, p. 96]
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§=2mqg+1=gg+1 g=tl1, £2, ... (49)

where Q is the number of slots.

Slot harmonics always occur in pairs. The pair of waves obtained from Eq. (49) with
g =% 1 is called the first slot harmonic. Correspondingly, the second slot harmonic is
obtained with g = + 2. One wave of the pair rotates in the same direction as the
fundamental, and the other rotates in the opposite direction.

3.3 HARMONICS OF FLUX DENSITY DISTRIBUTION DUE TO
THE PERMEANCE VARIATIONS

3.3.1 Harmonics due to rotor eccentricity

Consider the flux density harmonics which appear in an air-gap when the permeance
variations are exclusively due to the rotor eccentricity.

Two border-line cases of the rotor eccentricity may be distinguished, which 1nvar1ably
occur simultaneously in practice, but of which one may be the decisive factor. The
rotor may be concentric with regard to the shaft but eccentric in the air-gap, as shown
in Fig. 9 a (so-called static eccentricity). The other border-line case is that of eccentricity
of the rotor with regard to the shaft, combined with concentric placement of the shaft
in the air-gap, Fig. 9b (so-called dynamic eccentricity).

Fig. 9. a) A statically eccentric rotor. b) A dynaxﬁically eccentric rotor.

In the case of Fig. 9a the length of the air-gap, in rotor reference frame, is a function
of space and time. In the case of Fig. 9b, again, the lenght of the air-gap in the rotor
reference frame is not time-dependent, but only a function of space. We denote the
distance between the centres of the rotor and of the stator bore by €. Then the air-gap
conforms to a curve of the kind shown in Fig. 10. If € is small, compared with the air-gap
diameter, the specific permeance of the air-gap in the rotor reference frame is roughly

= Ho
A= 8, — €cos(P, + w.t — o) , (50)
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where §, is the mean air-gap length and ¢, the (mechanical) angle shown in Fig. 10.
When the eccentricity is static, the angular frequency w, equals the rotor speed which
is wfp in synchronous operation. In the case of dynamic eccentricity, w, is zero.

In order to express (50) as a series, as in (5), A is expanded into a Taylor series:

U € S
A=§:-{1+Ec08(t92 +we’““’e)+(5:) 2 [1+

+cos (29, + 2w t — 2<,a€)]+ }

Fig. 10. The air-gap length of an eccentric rotor.

The series converges if € < 8. If ¢/ 8, is small, the higher powers of €/8 , may be ignored
and A is roughly

)

o

A =£¢[1 + ai cos (9, + w,t — m] (51)
(]

The sum of the linear current density distributions produced by the stator and rotor
windings may be represented by a series in accordance with (2), Considering only those
harmonics which a stator winding can produce, the angular frequency in the rotor
reference frame is

v
wv=(l—!—’)w

and the vth linear current density harmonic is
av=-—é‘vsin[m92—(l—’—‘:) wt—tp,,] ‘ (52)

Those current harmonics which fulfill the condition » * 1 # 0 produce, together with
the specific permeance (51), flux density harmonics in accordance with (7) and (8):

by = g b, cos [vv32 - (1 - S) wt — ¢p] (53)
by = g 5%; b, cos{(v t1)9, — [(l - ;V)w t we] t—(p,% «pe)} (54)

The amplitude of the vth harmonic is

5 8, uor8, My, s
b”=rA°—vz=3R—vZ=_b:9_v” ' (55)
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where §, is obtained from (17). When calculating the fundamental (v = p) the sum
of the stator current and the rotor current referred to the stator is substituted in (17)
for the current /; otherwise (v.> p) the stator current only is inserted. It is then assumed
that the rotor does not suppress the harmonics produced by the stator winding.

The harmonics of Eq. (53) are harmonics appearing in the constant §, air-gap. Eq.
(54) represents the additional harmonics caused by eccentricity.

Integer-slot windings always fulfill the condition » £ 1 # 0 if the number of pole
pairs is greater than 1. In contrast, fractional-slot windings may also produce sub-
harmonics having a pole pair number = 1, while the pole pair number of the machine
is > 1. In this case, and always if the pole pair number of the machine is 1, there exist
harmonics in accordance with (9) and (10):

by = 5;—031 cos {202 - [(l—-;l)-) w + we]t — (¢, + ‘f’e)} _ (56)
by =— —‘II (5%)2 31 cos{n?2 —[wei [(1 - 1_17) w— we]]t + [0t (v, — ‘Pe)]} 67

3 is the amplitude of that harmonic present in the constant & air-gap whose pole pair
number is 1, and it can be calculated from (55). Accordingly, in two-pole machines 3 is
the amplitude .of the fundamental.

The fundamental flux density wave is stationary with reference to the rotor. In
contrast, the harmonics produced by the eccentricity (Eq. 54 » = p)

by = 25 bycos [(p £ 1)9,7 w.t— (0, t 0,)] | (58)

have an angular frequency w, in the rotor reference frame. When dynamic eccentricity
is concerned, w, is zero, while in the case of static eccentricity w, equals w/p. The
frequency diminishes rapidly with increasing pole number. The amplitude of the
harmonic can be made rather high on the other hand. It should thus be possible, in high-
speed machines, to use the harmonic (58) to produce the excitation voltage component
proportional to the fundamental of the flux density distribution.

According to the foregoing, the stator winding produces harmonics proportional to
the load current which are now, with eccentric rotor, represented by Eq. (53). The
permeance harmonics caused by the eccentricity, too,. produce flux density harmonics
which are proportional to the load current (Eq. (54), » v > p). However, the amplitudes
€/(28,, ) ,) of these harmonics are smaller than those (b ) of the harmonics due to the
stator wmdmg distribution. The angular frequencies of the harmonics produced by the
permeance variations and of those produced by the stator winding differ little if the pole
numbers are closely equal. It is therefore manifestly unprofitable to use the harmonics
proportional to the load current, produced by the eccentricity, for generating an
excitation voltage.

In the cases in which the stator winding develops a m.m.f, harmonic with pole pair
number 1, harmonics in accordance with (56) and (57) are also produced. Owing to the
great wave-length, the field winding suppresses these harmonics so that they are not
proportional to the load current. They are proportional to the fundamental of the flux
distribution in two-pole machines, in which case and with static eccentricity, they might
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be used to produce the excitation voltage component which should be proportional
to the fundamental of the flux density wave. In the case of dynamic eccentricity the
angular frequency of these harmonics is zero with reference to the rotor.

3.3.2 Hamonics due to saturation

Consider the flux density harmonics which appear in an air-gap when the variations
of permeance are due to saturation alone.

Owing to saturation, the permeability of iron varies from tooth to tooth. The satura-
tion can be taken into account by increasing the actual air-gap (8) so much that, imagining
the m.m.f. of the entire magnetic circuit as acting on this increased, so-called equivalent
air-gap (5"), the flux density distribution in the equivalent air-gap equals that in the
actual air-gap. '

The saturation of the stator and rotor yokes can be taken into account by adding
to the air-gap length a constant &,, Fig. 11. The teeth reach their highest saturation
close to the peak value of the flux density. Accordingly, the air-gap has its largest
apparent length at this point, Fig. 12. The permeance harmonics due to saturation have
the same speed as the fundamental of the flux density wave. It follows that the specific
- permeance of the air-gap may be formally written in the rotor reference frame as

A=A, + 3R, cos(ud, - ) (59)
m

where u=k-2p, k=1,2,3,...

{4
35

Fig. 11. The apparent increase of the air-gap Fig. 12. The apparent increase of the air-gap
due to saturation of the yoke. due to saturation of the teeth.

The resulting linear current density wave (52) due to the stator and rotor windings
produces, with the specific permeance (59), harmonics in accordance with (7) and (8):

by =>b, cos[m’2 - (l - 1) wt — «p,,]
K p :

>

bn=§§%$p7\.%005[(”*#)192—(1“5) wf—(%'-t«ﬁu)]

vetp
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Eq. (55) is valid for 3 Fractional-slot windings may produce even-numbered harmonics,
in which case » * u may also be zero (u is an even number). Then there exist in the
air-gap, in addition to the preceding flux density waves, harmonics (9) and (10):

_ L1g A, #
bIII = — g 5 btﬂ A cOs [i 2”0 - (1 - ;) wt — (‘pp:t“ * (p#)]
@=1u) A
' 1, AA ty
=tp)

Of the double signs, the upper ones are valid for the permeance harmonics having a pole
pair number 4 = v, and the lower signs are valid for those harmonics with a pole pair
number yu = — .

The angular frequency of the fundamental of the flux density wave and that of the
harmonics proportional to the fundamental (v = p) in the rotor reference frame is zero
for all wave groups (b - byy). Therefore it is not possible, with the aid of saturation,
to obtain an excitation voltage component proportional to the fundamental.

The harmonics of the air-gap m.m.f. produce together with the permeance harmonics,
flux density harmonics proportional to the stator current, which are represented by the
wave groups by - by (v > p). However, the amplitudes of these harmonics are small.

3.3.3 Harmonics due to salient-pole rotor

When the stator is smooth and the rotor has salient poles a similar expression as that
for 'saturation (Eq. (59)) is also valid for the specific air-gap permeance. The pole pairs
of the permeance harmonics are also the same as in conjunction with saturation har-
monics, i.e., 4 = k-2p (k = 1, 2, 3, ...). The flux density harmonics are then of the
same type as the harmonics produced by saturation. For the same reasons as in the case
of saturation harmonics, the flux density harmonics due to saliency are not suitable
for producing an excitation voltage either.

3.3.4 Harmonics due to slot openings
3.3.4.1 Slotted stator

Consider first the flux density harmonics due to the slot openings of the stator. The
rotor is assumed to be smooth and the permeability of iron infinite.

The maximum value of the permeance occurs at the centre of the tooth and the
minimum value at the centre of the slot opening. It follows that the pole pair numbers
of permeance harmonics are multiples of the slot number. The angular frequency is zero
in the stator reference frame, and hence the specific permeance may be formally
written as '

A=A, +}kj Acoroos k0,9, —wq) k=1,23,... (60)
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In the rotor reference frame the specific permeance is, according to the transformation

(15),

k
A=A, +% Ao cos (kQ,ﬂ2 + —gi wt — wkol) (61)
The mean value of the specific permeance is
u
= to
Ao k. 6

where k; is Carter’s coefficient of the stator and § the air-gap length at the tooth.
The resulting linear current density wave (52) due to the stator and rotor windings

produce harmonics together with the specific permeance (61) in accordance with (7)
and (8):

b = Z b, cos [m92 - (1 — g) wt — go,,]

lo>>
[~}

ZZ

These equations contain all harmonics produced, because the symmetrical integer- and
fractional-slot windings under consideration cannot produce any harmonics in accordance
with (9) and (10) which occur when v £ kQ, = 0. This can be seen as follows.

A symmetric double-layer winding produces m.m.f. harmonics in accordance with
(12) and (13):

A2 co s[(v £kQ,)9,— (1 - ;)’i *%21) wt = (p, * ‘kal)] ©2)

Y
p
where ¢ = 2 for even N and ¢ =1 for odd N. For simplicity the double signs in Egs.

(12) and (13) are omitted, since they have no effect on the result. Expressing Q, in the
form

=1
—N(2m3+c)

T
Q, =2pm N
we obtain

vile=%(2mg+c)ik-2pmr%

Equating » + kQ, to zero and resolvmg for g we get

g =t kT — E ‘
Since k and T are integers and c is either 1 or 2, and m > 1, g is always a fractional
number. Therefore there exists no such integer g and also no such m.m.f. harmonic for
which » + k@, = 0. In the samé way it can be demonstrated that also a single-layer
winding cannot produce a m.m.f. harmonic with » + kQ, = 0.
The slot openings produce m.m.f. harmonics in accordance with (62). For v = p the
numbers of harmonic pole pairs p + kQ, are same as those of the pole pairs of slot
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harmonics due to the winding distribution, Eq. (49). The harmonics due to slot openings

rotate at the same speed as the slot harmonics and both types therefore affect each

other. All the other harmonics due to slot openings (v # p), too, are superposed on the

harmonics due to the stator winding distribution. This can be seen as follows.
According to the foregoing a double-layer winding produces harmonics

(2mg + ¢)

Z |-

y
p
One of these, say »', generates together with the kQ, th permeance harmonic flux
density harmonics
U U N T

VtkQ, =K @mg + )£ k- 2pm N
Another harmonic due to the winding disiribution, say v, has the same number of pole
pairs as v £ kQ, ie., v =% kQ,. Therefore,

' T
%(2mg+c)=§(2mg +c)ik-2pmﬁ-

and resolving for g
g=g kT

For every integer g there exists an infinite number of integer pairs g, k which satisfy
this equation. Then also for every harmonic v produced by the stator winding distribu-
tion there exists an infinite: number of harmonics produced by slot openings whose
pole pair number »' £ kQ, equals v. The harmonics produced by slot openings have the
angular frequency in the rotor reference frame, according to (62),

=12 ) (1Y)

that is, the angular frequency equals that of the vth harmonic. An infinite number of
harmonics due to slot openings is therefore superposed on the harmonics produced by
the stator winding distribution. It is also seen from the foregoing that the slot openings
produce only those harmonics which are due to the stator winding distribution. In the
same way it can be shown that when the stator winding is a single-layer winding the
slot openings produce only those harmonics which the stator winding generates.

ZWEYGBERGK [26, p. 55] has demonstrated that the resulting slot harmonic is com-
posed of the slot harmonic due to the stator winding distribution, on which an infinite
number of harmonics due to the slot openings is superposed. This phenomenon is
accordingly also encountered with harmonics other than the slot harmonics.

For calculating a fixed slot harmonic, an infinite number of harmonics has to be
geometrically added. Owing of the different amplitudes and phases of these harmonics
it is difficult to write a closed expression for the slot harmonics. In each individual case,
however, the amplitude of the resulting slot harmonic can be calculated from (62),
taking into account a large enough number of terms. Taking into account only the first
term may result in a considerable error, as ZWEYGBERGK {26, p. 57] has shown.
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Concerning the calculation of amplitudes of the permeance harmonics due to the
slot openings numerous papers have been written, which may be divided into three
groups. In the first group the solution is accomplished graphically with the aid of an
orthogonal field map or by experimental measurements. In the second group the specific
permeance is assumed to conform to a simple function, e.g. a square wave, wherein the
specific permeance is zero at the slot opening [9], or has there a small constant value
[12] and has the value uy/8 at the tooth. In the third group the solution is based on
the conformal mapping. In these cases it is always assumed that the air-gap diameter,
the depth of the slot and the permeability of iron are infinite. In practice the depth
of the slot can be regarded infinite if it exceeds 1,5 times the slot opening [6]. By
conformal mapping, however, no explicit permeance function can be obtained. On the
other hand, closed expressions can be derived for the minimum and mean values of the
permeance. Between the minimum and the maximum (u,/8) located at the centre of the
slot and at the centre of the tooth, respectively, WEBER [25] has assumed the specific
permeance to conform to the function sin2" (Q, 8,), where

2!

n=———
Xa1

rounded to the nearest integer, ¢, the tooth pitch and x,, the width of the slot opening.

This function can be expanded into a finite series resembling a Fourier series when n is

an integer. The ratio of the amplitude to the mean value of the specific permeance is

[8, p. 142] n ( 2n )
oL~ (- l)k-z(kc—l)—?z;—)k (©3)
« n
Carter’s coefficient is calculated from
k= 64)
1—18

in this case, where 7 is a function of ¢,/x,, and § a function of X4,/8, Fig. 13.
Although the permeance function cannot be gained in an explicit form by conformal
mapping, this may be numerically accomplished. The families of curves in Figs. 14--17
have been calculated by FREEMAN [6]. In these the interaction of adjacent slots has
been taken into account. The families of curves have been presented in terms of relative
values. The ordinate. Ale/Ao is the amplitude of the harmonic, divided by the mean
value. In the curves representing the mean value of permeance (Fig. 14), the ordinate is
Agl(ug/8), ie., the inverse of Carter’s coefficient. The abscissa X4/t, is the ratio of
slot opening to tooth pitch, and the parameter x,,/6 is the slot opening to air-gap ratio.
With semi-closed slots, saturation of iron ensues first in the tips of the tooth. This can be
taken into account by enlarging the slot opening. This so-called equivalent slot opening
is approximately calculable by the method described by NORMAN [16]. The largest slot
opening appears between the teeth in which the flux has its maximum. It follows that
the magnitude of the equivalent slot opening varies from tooth to tooth. ZWEYGBERGK
[26, p. 62] has shown that, although the saturation of the tooth tips has an effect on
the air-gap permeance, it does not influence the slot harmonics. This is supported by
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Fig. 14. The mean value of the specific air-gap Fig. 15. The first harmonic of the specific air-
permeance. gap permeance due to slotting.

measurements performed by KEHSE [10] and FROHNE [8]. In contrast, saturation of the
teeth has a considerable effect on Carter’s coefficient and thereby on the amplitudes of
the fundamental and of the lower harmonics.

FROHNE measured [8] the first three harmonics due to slotting in a test machine.
He verified that Weber’s method gives results in fair agreement with measurements (error
about 10 %). A simple square-wave permeance function, in which the specific permeance
is assumed to be zero at the slot opening and constant at the tooth, also yields satis-
factory results for the first slot harmonic (error —10---—20%). For higher harmonics the



35

A A
) Nl | T
0,3 / 03
2
0,2 / 0,2 b 2N
t ) / ¥ V
0,1 /y 0. /- '§
X
O 02 03 045 / A }; 7 [ o7 06z 03 0 4
A O, T 5
~ [ — - \\ s 17
N ~0 \\ Yo
NN \
-0,2 A\ ~_] -0,2 2
-03 ﬁ.L\. 7 -03 @
~04 ’ Q / -04

Fig. 16. The second hammonic of the specific Fig. 17. The third harmonic of the specific air-
air-gap permeance due to slotting. gap pemmeance due to slotting,

method is useless, however. FREJTICH and SIEGL [7] verified by measurements that the
curves calculated by FREEMAN [6] produce values in close agréement with measurements.

Excitation voltage component proportional to the fundamental of the flux density
distribution is obtainable from the harmonics (62) produced by the stator slot openings
(v = p). A disadvantage of these harmonics is the large number of pole pairs (p * kQ,)
in that the small pole pitch may cause difficulties in manufacture. Secondly, these
harmonics have a high angular frequency kQ, w/p and the reactance of the auxiliary
winding may therefore attain a high value. An advantage of these harmonics is their
high amplitude, which is easily altered at the design stage by changing the width of the
slot opening. ‘

From the harmonics (62) produced by the slotting it is also possible to obtain an
excitation voltage component proportional to the stator current (v # p). The amplitudes
of the harmonics are small, however, '

3.3.4.2 Slotted rotor

When the stator is smooth and slot openings are only provided in the rotor, Eq. (60)
is valid for the specific air-gap permeance if ¥, and Q, are substituted for ¢, and Q,.
The equation thus obtained has the same form as the specific permeance function (59)
due to the saturation. Hence, for the same reasons as in the case of saturation, it is not
possible to obtain an excitation voltage component proportional to the fundamental
of the flux density distribution, and the amplitudes of the harmonics proportional to
the stator current are small.
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3.3.4.3 Slotted stator and rotor

ZWEYGBERGK [26, p. 60] has presented an approximate method for determining the
specific air-gap permeance when there are slots in the stator and rotor both. According
to him, the specific air-gap permeance contains harmonics [k,Q, * k,Q,l in addition to
the pole pairs k, Q, and k,Q, appearing when the stator or rotor alone is slotted. The
vth m.m.f. harmonic produces together with the specific permeance the same harmonics
as in one-sided slotting and, in addition, harmonics with pole pairs v £ k0, % k,0,|
and havmg the angular frequency {1 — (vt k,Q,)/plw in the rotor reference frame. The
upper sign’in the expressioni of the angular ﬁrequency and the first double sign in that
of the pole pair number are simultaneously valid, as are also the lower signs. The second
double sign in the pole pair number can be arbitrarily chosen, whereby four harmonics
in all are obtained. The permeance harmonics |k, @, * k,Q,l due to double-sided slotting
are small as regards their amplitude, because they are proportional to the product of two
amplitudes of permeance harmonics, which are usually small in practice [26, p. 60].

3.3.5 Harmonics due to shaped stator air-gap face

Permeance harmonics of the same kind as those due to stator slot openings are also
produced when the stator is salient or deviates in other ways from a smooth surface, as
illustrated by Fig. 18. In Fig. 18a the stator surface is undulating. In Fig. 18 b, open
slots regularly alternate with very small slot openings or totally closed slots. A third
possibility would be to provide the stator with slot wedges, some of them magnetic
conductors and other ones non-magnetic.

The solution according to Fig. 18 a involves high manufacturing costs. However, any
required permeance wave having a desired lenght and height is thereby easily obtained.
Furthermore, the harmonic content of the permeance can be kept low by means of an
appropriate design.

The solution seen in Fig. 18b is simple as regards the manufacturing process. A study
is made in the following concerning the kind of harmonics, referring to their order
and angular frequency, which can possibly be produced by this method. :

a b -
Fig. 18. Two means to produce permeance variations by shaping the stator air-gap
face: a) an undulating air-gap surface, b) partly open and partly semi-closed slots.
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Let Q, be the number of open slots. These slots are spaced at a regular distance.
The intervening slots are closed. The open slots produce permeance harmonics with k@,
pole pairs, which in their turn, together with the fundamental m.m.f. wave give rise to
harmonics p * kQ,. One of these is desired to have the same wave-length as the vth
harmonic due to the stator winding distribution, that is

p + kQ. =p
Resolving for Q,,
_le(_ |
Q.—|k(p l)l | (65)

The ratio of all stator slots Q, to Q,

= Pk | (66)

—1

i

- BRY

has to be an integer to make the open slots recur at regular intervals. When a three-
phase stator winding is concerned and the fundamental of the permeance wave (k = 1)
is considered, the following ratio has to be an integer:

Q 64

= 67
A P ©n
p
For an integer-slot winding
§=6g+1 (=0,%1,%2,..)
hence
Q4
Q, sl

When the stator carries a three-phase integer-slot winding, the number of slots per pole
per phase must be divisible by g to give an integer Q,/Q,. For instance for g = 1,
producing the — 5th and + 7th harmonics, every gth slot has to be open. All harmonics
cannot be produced by this method if we confine ourselves to the fundamental of the
permeance wave. For instance, with ¢ = 3 the — 11th and + 13th harmonics, for which
g =t 2, are not obtainable.

For a three-phase fractional-slot winding with N = 2,

=3g+1 (g=0,%1,£2,..)
hence
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It follows that the numerator T of the slots per pole per phase figure has to be divisible
by g. The — 2nd and + 4th harmonics are obtained with g = * 1. In this case every Tth
slot must be open. The — Sth and + 7th harmonics are produced when g = 2. Being
an odd number T is not divisible by 2, and the fundamental of the pexmeance wave
is not able to produce the — 5th and + 7th harmonics.

The angular frequency of the harmonics p + kQ, produced by the permeance har-
monics together with the fundamental m.m.f. wave is, in the rotor reference frame

k
wpth,=7Q‘w= f—l‘w (68)

The angular frequency therefore equals that of the vth harmonic due to the stator
winding.

It is thus found that by using closed and open slots in the stator the permeance
harmonics due to the slotting may be utilized in producing harmonics having pole pairs
and angular frequencies equal to those of the harmonics due to the stator winding distri-
bution.

34 APPLICABILITY OF HARMONICS IN PRODUCING EXCITATION VOLTAGE

It has been shown above that the permeance variations due to the slot openings of
the stator, or more generally to irregularities of the stator’s air-gap face produce flux
density harmonics proportional to the fundamental of the flux density distribution and
travelling with reference to the rotor. Furthermore, the static eccentricity of the rotor
produces harmonics proportional to the fundamental of the flux density distribution.
The other harmonics proportional to the fundamental all rotate at the rotor speed.
Since the static eccentricity, as viewed from the rotor, may also be considered an
irregularity of the stator face, the excitation voltage component proportional to the
fundamental is only obtainable by the aid of permeance variations due to irregularities
of the stator face.

The m.m.f. harmonics produce, together with the constant component of the perme-
ance wave, flux density harmonics (harmonics due to the stator winding distribution),
which are proportional to the stator current. By the aid of these harmonics the second
requisite component of excitation voltage may thus be obtained. The m.m.f. harmonics
also produce, together with ‘the harmonic content of the permeance, flux density
harmonics proportional to the stator ‘current, but the amplitudes of these harmonics
are smail.

In order to obtain self- regulatlon it is required, in addition to the proportionalities
presented above that the phase difference between the two components of the excitation
voltage is 90° + ¢. It is investigated in the following whether it is possible to obtain this
required phase difference with the aid of the harmonics due to the slotting and of the
slot harmonics due to the stator winding distribution.
~ When the stator reference frame is placed to have its origin at the centre of a stator
* slot, it can be shown {2] that the angle B, in the m.m.f. equation (14) is the same for
the fundamental and for the slot harmonics. We denote this value by B, Thus the slot
harmonics due to the stator winding distribution are in the stator reference frame



39

V2 #y mq Ny, p
by(pson =7 ot O E1p+sQD Ee(p+gQn 1 p+20,

69)
cos[(p + 809 —wt—e+h]

The addition of k as a subscript indicates harmonics due to the winding distribution.
The origin lying at the centre of a slot, the angle ¥xq in Eq. (60) is

Yrqr = k7

The flux density harmonics produced by the stator slot openings and the fundamental
of the m.m.f. distribution are, in the stator reference frame, according to (62) and (15)

14 '
buprs) = 3 bp . toos [(p+80) 9, —wt—yp+B,—gr]  (70)

b>>

where k = 1, 2, 3, ... in (62) has been replaced by g =+1, 2, i .. The addition of u
as a subscript mdlcates harmonics due to the slotting.

At a fixed point in the air-gap the flux density varies as a sinusoidal functlon of time,.
and the flux densities (69) and (70) can be represented by the corresponding phasors
Bip+gon 304 By, .01 Fig. 19. The machine operates, in the figure, as a generator
with a lagging power factor. As can be seen from the phasor diagram, the flux density

B.
Fig. 19. The phasor diagram of a synchro- U (pegQ)

nous machine; By P 1) are slot har-
monics due to the winding distribution
and B u(p+gQ1) ¢ harmonics due to the
slot openings.

harmonics due to the slotting augment those winding slot hannor;i.cs which rotate in
the same direction as the fundamental (g > 0) and, depending on the case, either augment
or diminish those rotating in the opposite direction (g < 0). At a leading power factor
the reverse is true. From the phasor diagram we also see that the phase difference
between the flux density harmonics due to the slotting and the slot winding harmonics
rotating in the direction of the fundamental equals that between the excitation current
component I’ requlred to compensate the armature reaction and the resulting excitation
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current I,. Hence the amplitude of the resulting slot harmonic rotating in the direction
of the fundamental is proportional to the field current I, independent of the phase
of the load cuirent, if only the ratio of the flux density components by (p+gQry and

bu(p,ng) is correct. By using this flux density harmonic to produce the excitation
voltage, self-regulation can be obtained.

If all slots are not open the phase difference between the harmonics due to slot
openings and the harmonics due to the winding distribution can be changed by changing
the location of open slots. Then the angle ¢, in the equation of the specific permeance
changes. It is thus also possible to obtain self-regulation with harmonics lower than the
slot harmonics.

According to Chapter 2 a negatively compounded machine can be changed into a
positively compounded one by turning the phase of the excitation current component
proportlonal to load current through 180°, that is by reversing the terminals of the
current transformer. As seen from Fig. 19, the phase of the component proportional
to the load current changes by 180° if we use the slot harmonic rotating in the direction
opposite to that of the fundamental (g < 0), and the compound is then positively
connected. However, a machine has to be initially designed for either negative or positive
compounding and the design cannot be changed in a completed machine because the
pole pair number of the auxﬂlary winding is not the same for negative and positive
comipounding.

As is evident from the foregoing, several flux density harmonics may be used to
obtain self-regulation. Which one of them is most useful is decided by the height of the
voltage induced by the harmonic in the rotor auxiliary winding and by the reactance
value of the auxiliary wirding. These are influenced by the amplitude of the harmonic,
by its speed with reference to the rotor and by its wave-length., Furthermore, the wave-
length has an effect on how many phases there can be accommodated in the rotor.
Moreover, the losses in the auxiliary winding due to the rectifier load depend on the
number of phases of the auxiliary winding. These things are studied in the following.



4 RECTIFICATION
4.1 EQUIVALENT RATING

In following an infinite bus is assumed to supply the rectifier implying that the a.c.
voltage remains sinusoidal under load. The inductance of the d.c. circuit is assumed to
be large enough to preclude fluctuation of the direct current. In the case of the excita-
tion circuit under investigation the first assumption is not strictly valid: the inductance
of the auxiliary winding causes the voltage to deviate from sinusoidal waveform when
this winding is loaded. In contrast, the inductance of the field winding is large enough
to render the second assumption valid in practice.

The current in the a.c. circuit i$ composed of rectangular sections. The fundamental
of this current alone produces power together with a sinusoidal voltage. The harmonics
of the current, however, cause losses in the auxiliary winding of the rotor.

Consider the copper loss of the auxiliary winding when the copper area 4 at disposal
for the winding is fixed. Denote the number of phases by m and the number of turns
in one phase by N,,. The copper area of one conductor is

A
4 = 2mN,,
and the resistance of one phase winding

N, 2

=--AtAm _ ZAm 2, :
R, = 74, A mN%, = K,mN%, (7))

2l

= ZAm

Kl vA (72)

where 7 is the electrical conductivity of the conductor and I, the mean length of one
turn. The abbreviation K, is a constant, independent of the number of phases.
The phase voltage of the auxiliary winding is

\Uv =K, Nyt (73)

where K, is a constant, independent of the number of phases.
The copper loss is obtained by the aid of (71) and (73):

N ‘
Py=mI?R, = ‘Kf (mI,U)R 74)

where I, is'the 1.m.s. value of the phase current. ‘The most favourable rectifier connection,
as regards the temperature rise of the auxiliary winding, is that which has the smailest
ratio of copper loss to d.c. power. Instead of the numerical value of the loss its square
root may be used. Thus, according to (74), for the most favourable connection the ratio
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ml U
= vy :

K LU, (75)
is minimum; I, is the direct current and U, the arithmetic mean of the direct voltage.
The power mI U, is, in rectifier circuits supplied from a transformer, the equivalent
rating of the transformer’s secondary winding. In the following the power ml, U, is
called the equivalent rating of the auxiliary winding.

4.2 m-PHASE RECTIFICATION

An m-phase half-wave rectifier circuit is shown in Fig. 20. The arithmetic mean of
the direct voltage is )

UV

/\ Y
1st e [ 1st I,

v

2nd phase 20d phase  —P——Pt—
3rd phase _ 3rd ihose i
| | 1o
- k= Do e S ST
mth phase mith ihase b~ D -
oL
U v 0
‘/_\ It }/\ "It
Load Load
Fig. 20. m-phase half-wave rectification. Fig. 21. m-phase full-wave rectification.
.
s ;
UG=V2—=U, | (76)
m

The r.m.s. value of the phase current is
I

I,= 7% o )

The ratio of equivalent rating to d.c. power is

_mUd, T »
K= U1, - ]/2 . (78)
v m sin —
; m

An m-phase full-wave rectifier circuit is sthn in Fig. 21. When the number of phases
is even, the pulses in the direct voltage number m; when the number of phases is odd
the pulses number 2m. The arithmetic mean of the direct voltage is the same in both
cases:
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.
sin —

ﬂ”‘ U, (79)

m

U, =2V2

The r.m.s. value of the phase current is

2
I, = ‘/Z I, (80)
and the ratio of equivalent rating to d.c. power is

mé/'vlv _ T 1)
thy 2V/m sin % '

Eqgs. (78) and (81) are valid for a balanced m-phase winding with its phases spaced
by 2m/m electrical radians. This condition is not true for a two-phase winding. The two-
phase winding is in reality a four-phase winding of which phases 1 and 2 are used
(Fig. 22 a), or phases 1 and 3 and phases 2 and 4 respectively have been connected in
series (Fig. 22b).

For single-phase full-wave rectification, m in (81) equals 2. This is because the single-
phase voltage may be imagined as composed of the difference of two voltages with a
phase difference of 180°. In single-phase half-wave rectification the direct current cannot
be assumed completely free of pulsation. When the load is a pure resistive load, the
ratio of equivalent rating to d.c. power is 72/(2v/2) = 3,5.

o]

~ Fig. 22. a) A star-connected four-phase winding. b) A four-phase winding
connected to constitute a two-phase winding.

As can be seen from Eqgs. (78) and (81), the equivalent rating to d.c. power ratio
with half-wave rectification is twice that of the corresponding full-wave rectification.
The smallest equivalent rating is required when three-phase full-wave rectification is
used (K = 1,05), and it follows that this is the most favourable connection as regards
the temperature rise of the auxiliary winding.



43 REPLACING THE RECTIFIER LOAD BY AN EQUIVALENT
RESISTANCE LOAD

If the alternating voltage is assumed to remain sinusoidal when the rectifier is con-
nected to a load and if the overlap of current is ignored, the alternating voltage and the
fundamental of the alternating current are in phase. In studies concerning the funda-
mental of the current alone the rectifier load may be replaced by an equivalent star-
connected resistance load (Fig. 23). The resistance per phase is

vi

where U, is the phase voltage and I, the r.ms. value of the fundamental of the
alternating current.

2@ —-ﬂ—l—ﬂ—‘ 2nd ﬁ R’ .
o e R
' . .

O e, W S - {4
mth #se = **‘"-)i'-* mth phase R
B pemmtanty |
| i |
|
a : b

Fig. 23. Replacing a rectifier load (a) by its equivalent resistance (b).

With m-phase half-wave rectiﬁcation the fundamental a.c. is

2 ¢
Ivl=-\;_—1tsmr—n- (82)

The equivalent resistance for half-wave rectification is obtained using Eq. (76):

s
” 2
m_ 7 1 U m R (83)
m

T ™ L msin I
" m m

"7'

where R is the load resistance of the d.c. circuit.
With m-phase full-wave rectification the fundamental a.c. is

22 . m
1,,,=—"—‘/—1tsm; (84)
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Using Eq. (79), the equivalent resistance for full-wave rectification is obtained:

m

m - ™ R (85)

. m
8msin? —
m

R = 1 m K 1
202 sinlzvz smlr-
m

m

~ LQ

The a.c. power losses in the equivalent resistance equal the d.c. losses in the true circuit.
In the following considerations the rectifier load is replaced by its equivalent resistance.



5 AUXILIARY WINDING OF THE ROTOR
5.1 EQUIVALENT CIRCUIT FOR THE AUXILIARY WINDING

The velocity of the flux density harmonics due to the stator current is not equal to
the rotor speed. Therefore the harmonics together with the auxiliary winding in the
rotor constitute a wound-rotor induction machine, in which the rotor circuit acts on
the rectifier load. The current in the rotor auxiliary winding suppresses harmonics, in the
first place all those which have the same number of pole pairs as the auxiliary winding.
However, from this no increase of the stator current ensues, nor any change of the
rotor speed, as in an induction machine. The magnitude of the stator current is inde-
pendent of the load of the auxiliary winding. Hence the imagined induction machine
is supplied by an ideal current source.

The following basic equations are valid for a slip-ring machine [3, p. 218}

U =5LZ,+L,Z,
U,=L1Z,, +sI,Z,
where U, is the stator phase voltage, U, the phase voltage between slip-rings, I, the

stator current, I, the rotor current, and s the slip. When the iron loss is ignored, the
impedances are

Z, =jX, = magnetizing reactance in the saturation state concerned

Z,, =R, +j(X,, + X)) = no-load impedance from the stator side

Z,, =R, +js(X,, + X,,) = no-load impedance from the rotor side
The equations are valid when the numbers of phases in the stator and rotor are equal

and the numbers of effective turns are equal Nyt = 2tE2p)' These presumptions

have no effect on the universal applicability of the equations, but they simplify the
equations.

When the stator current is constant, the equivalent circuit satisfying the equation
for U, above, and shown in Fig. 24, is obtained for the rotor circuit. The induced

Zn |, X oz Ra

U; =1,5Z, : l U, Uy Uy

O -0

Fig. 24. The equivalent circuit for the rotor Fig. 25. The equivalent circuit for the auxiliary
circuit of an asynchronous machine. winding of the rotor.
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voltage Uy =I,sZ, is an ideal voltage source generated by the stator current. The
frequency applicable for the reactances is the slip multiplied by the stator frequency,
i.e., the frequency in the rotor circuit. Hence the equivalent circuit per phase shown
in Fig. 25 is obtained for the auxiliary winding of the rotor. It is the normal equivalent
circuit for a synchronous machine, where X, is the magnetizing reactance, X, the
leakage reactance, X, the synchronous reactance (X, = X,,, + X,,), and R, the
resistance, all values per phase. The flux density harmonic produced by the stator
winding induces the voltage U, ;.

The auxiliary winding of the rotor may thus be considered like a normal synchronous
generator, and in the first place like a non-salient-pole generator. Even if the machine
has salient poles, the generator composed of the auxiliary winding in the slots of the
pole shoes.is most nearly a non-salient-pole machine because the air-gap is constant or
almost constant within the area of several consecutive poles, depending on the form of
the pole shoe.

5.2 BUILD-UP OF SELF-EXCITATION

When a generator is started up, there is at first in its air-gap a residual flux density,
which together with the permeance variations of the air-gap produces a flux density
harmonic &,. This induces in the auxiliary winding a voltage, which in its turn causes
a small field current. If the field current augments the residual flux, the field current
supplied by the auxiliary winding increases to a value determined by the saturation and
by the impedance of the circuit composed of the auxiliary winding and the field winding.

The small residual voltage acting on the rectifier bridge can be increased by con-
necting a capacitor C, shown in Fig. 26, in parallel with the rectifier bridge (so-called
Boucherot circuit). Below the threshold voltage, the resistance of the diodes in the
forward direction is nearly infinite. Then the voltage U, acting on the bridge is

Re

Fig. 26. The rotor circuit with Boucherot capacitor Cy .

UAf

0= T (86)
jw,Cy [RA + ](XA - ‘*’uck)]

U

If the resistance of the auxiliary winding is small, and choosing X, = 1/(w,Cy), the
voltage U, according to (86) is high and the diodes become conducting.
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The capacitor C, also has another significance. It reduces the variations of the field
current due to changes in the field winding resistance owing to varying temperature. The
field current in Fig. 26 is, namely,

U
Y 7 S (o | LET O T IV LA
where K|, is the direct current divided by the fundamental phase current for the connec-

tion under consideration (in Fig. 26, K, =n/2v/2) and R’ the equivalent resistance of the
rectifier load. If X, = 1/(w,C;) and R is small

1

87

., ,
Iz =K, 7&1 (88)

i.e., the field current is independent of the field winding resistance.

5.3 FIELD CURRENT SUPPLIED BY THE AUXILIARY WINDING

We now consider what current is produced with different harmonics and values of
the number of turns N,, in the circuit shown in Fig. 25 when the load consists of the
equivalent resistance R’ of the rectifier load. The winding resistance R A is imagined to
be part of the load resistance R'. Denote the leakage coefficient of the winding by Op.
The leakage reactance is then

Xao = 0aXam

0, is assumed to be constant, independent of the harmonic. It is further assumed that
the amplitudes of the different flux density harmonics can be made equal. The equivalent
air-gap 5: is assumed to be the same for all harmonics.

The circuit under consideration is shown in Fig. 27. The current in the circuit is

Ups

=R TT (89)

UAf

—-
( XA =)$l:n+XA6 I

Fig. 27. Simplified equivalent circuit for the
excitation circuit.

The induced voltage U, is [18, p. 209]
Uy = 712— “ NpkanDLB, (90)

where £, is the winding factor of the auxiliary winding for the »th harmonic, D the
air-gap diameter and L the (effective) length of the rotor core.
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The magnetizing reactance of an m-phase winding having v pole pairs is [18, p. 322)
By W
Xpm =7 5%~ (Naia,)? DL o1
14

The angular frequency w, in (90) and (91) is

(-3
p

We introduce abbreviations for U,; and X ,:

W, = w

1—n
Upg = Upy Ny, 92)
1—n
Xa =XA1N}\t l‘ n2 l (93)
where
n=2 (94)
14
1 w o
Uas = P (a0 DLD, 95)
Xa=(U+0) 28 =8, pr (96)
v P
Substituting U, ¢ and X, in (89) we get
’ XBR'I,W“ Il—-n
: n
I= F Y YW ]
JRIX V” x“{v“) (1 2n)
R n
Denote o ,
2
k =£A112_’IYM : . o 7
and form the ratio
I - +kin(1—n) '
T (T ©8)
QR Xay

The current is now presented as a dimensionless fraction (7), which is a function of n
and &, which latter k is a function of N,, alone. 7'is shown in Fig. 28 as a function of
n with k as parameter. -

When £ is constant, the current has two extremes. One lies in the range 0 <n< 1
and the other at a negative value of n. With constant n, the current has an extreme value
with regard to k. The extreme points are obtained from the equations
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3 _ (1 —2n)[n* + k2(1 — n?)] — n(1 —n)[2n3 —k2(1 —n)] _
on vk V[n* + k2(1 — n)?P =0

o n* + k2(1 —n)? — 2k2(1 —n)? _

k- n(l1—n) 2vVk VInF + k21 - n)2p =0
or simplified
n4
Al k) S | 99)
= 100
={—ny B (100)

For simplicity the absolute value signs are omitted, since they have no effect on the
location of the extreme but only the type of extreme value. The solution of the set of
equations (99), (100) is

{n =0
k=0
This is not, however, the solution for the zero points of the partial derivates because
the denominator of the derivates becomes zero at these values. Therefore the current
has no extreme as a function of the two variables n and k. From (99) we may determine
the value of n which gives the current its extreme value when X is constant. The solution

cannot be explicitly written. With constant n the value of k at which the current attains
its extreme value can be solved from (100):

On the other hand, according to (97) and (93),

p=XmNie _ _m? X,
R~ [1-ni R

It follows that at the extreme point of ‘the current X, must equal R'. The points
satisfying this condition are located, in Fig. 28, on the envelope of the family of curves.
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The magnitude of the current is then

I _yi=al (101),

U 2
/3 XAy

As can be seen from this, and also from Fig. 28, the current increases infinitely when n
approaches infinity.

Hence, if we disregard the amplitude of the harmonic, the highest field current is
obtained by designing the auxiliary winding for the highest possible harmonic order.
When the amplitude of the flux density harmonic is taken into account, the first slot
harmonic is obviously the most advantageous. The first harmonics may be of the same
order of magnitude in amplitude as the first slot harmonics-and even higher. As can be
seen from Eq. (101), the amplitudes of the first harmonics should, however, be much
hlgher than those of the slot harmonics in order that the first harmonics could mamtam
higher field currents than the slot harmonics.

If the auxiliary winding cannot maintain a sufﬁclent field current the reactance of
the auxiliary winding can be whoily or partly compensated by connecting a capacitor
in series with each phase winding of the auxiliary winding. Then the highest field current
is generated by the harmonic inducing the highest voltage U, .. Accordmg to Eqs (92)
(95), (55) and (17) U ¢ is proportional to the product

Une~iai {15 =1

When {n| > 5, [I/n — 1} = 0,85 .- 1,2 i.e. |1/n — 1] varies rather little, whereas £, /in]|
varies greatly with different harmorucs depending on the winding technique. Particu-
larly for the first slot harmonics £,/In| is high. For lower harmonics an appropriate
winding design (high &) enables ‘;‘,,/Inl to be made equal in magnitude with the first slot
harmonics and even higher. The- first slot harmonic is, however, more favourable in that
owing to the higher frequency smaller capacitors are required than for the lower
harmonics.

In the case of the Boucherot circuit (Fig. 26) the equation (88) is valid for the field
current at resonance. The highest field current is then obtained with the harmonic for
which U,¢/X, is highest. For harmonics with equal amplitudes U At/ X is, according
to (92) and (93), the greater the higher harmonic under consideration. Hence when the
amplitudes of the harmonics are also taken into account, the first slot harmonic is the
most advantageous also in the Boucherot circuit.

5.4 DESIGN CONSIDERATIONS

Synchronous generators are usually provided with a daxhper winding. In a:machiné
excited by harmonics the damper winding must be devised so as to cause no suppression

of the harmonic (») utilized for excltatlon The number of slots of the damper wmdmg
then has to be
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\/ VAR

Fig. 29. A damper winding, which does not suppress the »th hamonic.

Vv‘
0=x

where k is an integer. The vth harmonic then always induces in all bars of the damper
winding a voltage having the same phase and the same magnitude (Fig. 29), whereby
no damping current is produced. The slot pitch of the damper winding will then be
multiple of the slot pitch of the auxiliary winding. It follows that the damper winding
may be placed in the same slots with the auxiliary winding. If the auxiliary winding is
designed for the first. slot harmonic, the highest possible slot.-number of the. damper
winding is

0=0,%p

If the auxiliary winding is made for lower harmonics, then the slot number of the
damper winding will be small. For instance for the 5Sth harmonic the highest possible
number of slots of the damper winding would be 5p while the normal slot number is
(10---20)p. This causes poor characteristics of the damper winding.

The harmonics due to the stator winding distribution induce in the stator winding
a voltage of the fundamental frequency. The slot openings of the stator too, or more
generally the irregularities of the stator surface, give together with the air-gap m.m.f.
rise to flux density harmonics having the fundamental frequency in the stator coordi-
nates. Hence the harmonic used for excitation causes no harmonics in the voltage wave-
form. However, the stator slot openings influence the harmonic voltages induced in the
stator winding by the rotor harmonics. These voltages are not of the fundamental
frequency. The stator slot openings strengthen in particular the harmonics with a pole
pair number equal to that of the stator slot harmonics. There are many means to suppress
harmonics in the voltage curve [20, p. 530]. Skewing the slots of.the damper winding
by one stator slot pitch eliminates the first slot harmonic from the voltage curve. A
skewness equivalent to half of the slot pitch eliminates the second slot harmonic, and
so on. The same effect is obtained by skewing the pole shoes. These means cannot be
efficiently utilized in the excitation circuit under consideration if the auxiliary winding
is made for the first slot harmonic, because skewing by one stator slot pitch makes the
winding factor of the auxiliary winding to be zero for the first slot harmonic. Using a
small skewness, however, the higher slot harmonics may be suppressed to a certain extent.

The same effect as with skewing may be obtained by displacing the N poles by 1/4
stator slot pitch in one direction and the S poles by the same. distance in the other.
This method is also appropriate for a machine excited by the first slot harmonic. Then
the phase difference between the voltages induced in the auxiliary windings located in
adjacent poles is 90°. The auxiliary winding may therefore be made as a two-phase
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winding, one phase winding consisting of the single-phase windings located in the N
poles and the other phase winding consisting of those in the S poles. However, the second
slot harmonic cannot be eliminated by this method. On the other hand, the higher
harmonics are usually small enough to have a negligible disturbing effect.

A highly effective means to suppress the slot harmonics in the voltage curve is to
use an appropriate fractionalslot winding in the stator. This method is also applicable
in a generator excited by harmonics. The first slot harmonic, and with a pole pair number
of the generator in excess of two also higher slot harmonics, can always be suppressed
by using a proper fractional-slot winding. _ _

When the generator falls out of step the fundamental of the flux density distribution
moves with' respect to the rotor. Also with unbalanced load a flux density wave having
a wave-length equal to that of the fundamental is encountered, but which rotates in the
opposite direction. These waves should not, however, induce in the auxiliary winding
any voltage which might impose a dangerous overvoltage on the rectifier. Connecting
the coils of the auxiliary winding in series within the range of two pole pairs precludes
the occurrence of such voltages. This is seen as follows. :

Denote the coil sides of the auxiliary winding located in the range of two consecutive
poles of the machine by running numbers 1.--k (Fig. 30). The geometric angle between

mn@m

Fig. 30. Voltages induced in the coil sides of the
auxiliary winding by the fundamental of the
flux density wave.

the coil sides is 7/v, where v is the number of pole pairs of the auxiliary winding. The
fundamental flux density wave induces in the coil sides the voltages

U, =7,
U,=0, eipmly

U3 = Ul e_jzpﬂlv

U, = UiG—Dpme _ . o=iCwlp—Dpmp
In the series connection the sum of the induced voltages is

U=U,—U,+Ust ..~ U, =U,(1—e PV  g=R2Pml 3 . _ e~i@p—vpaly  (102)
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The expression (102) is a geometrical series having the sum

—j2n
U=y, 1+ oo = 0
since the numerator is always zero.

A fractional-slot winding may produce subharmonics, for which the inverse value of
the order, i.e. p/v, is an odd integer. For these the sum of the series (102) is not zero
but kU,, as is easily seen from Eq. (102). However, the subharmonics are not suitable
for producing the excitation voltage, as was observed in Chapter 3.3.1.

If parallel paths are provided in the auxiliary winding, then each path must have
vp coil groups in series in order that the fundamental at unbalanced load, or when the
machine falls out of step, might not induce a voltage in the auxiliary winding Hence the
greatest number of the parallel paths is p.

Summary. It has been shown that several harmonics may be used to produce the
excitation voltage. The highest harmonic which is practical is obviously the first slot
harmonic, since for higher ones the pole pitch of the harmonics is so small as to render
the 'making of the auxiliary winding highly difficult. The slot harmonics are more
favourable than the lower harmonics in that, as has been shown previously, the auxiliary
winding is able to supply a higher current with the slot harmonics than with lower
harmonics. Then, if the harmonic used for excitation is not strong enough in a generator
of standard construction, the requisite artificial augmentation of the slot harmonics
is at a minimum. Secondly, when slot harmonics are used all stator slot openings are
equal, while in the case of lower harmonics being used part of the siots must be closed,
or other means must be used to achieve the desired permeance variation. Considering
the damper winding, the slot harmonics are more advantageous in that with them it is
possible to make the number of damper bars equal to that of conventional generators.
In contrast, for the lower harmonics the number of damper bars remains rather small.
As regards suppression of the slot harmonics in the stator voltage waveform, the lower
harmonics are superior to the slot harmonics because when the slot harmonics are used
the slots of the rotor cannot be efficiently skewed, which is one of the most common
procedures. With lower harmonics also this method may be used. On the other hand,
an appropriate fractional slot winding may always be used to eliminate the first slot
harmonic from the stator voltage waveform also when the excitation voltage is induced
by the slot harmonics.



6 LOAD CHARACTERISTICS
6.1 FIELD CURRENT

In the following an expression of the field current is derived, in terms of the air-gap
voltage (U;) and the load of the generator when the auxiliary winding is made for the
first slot harmonic.

The equivalent circuit for the excitation circuit is as shown in Fig. 31 when a capacitor
C is used to compensate part of the reactance of the auxiliary winding and another
capacitor Cy is used to assure the build-up and to eliminate the effects of the field
resistance variations. From Fig. 31 the field current is

Xa R, C '
'T X L
U ( C, -I- R:

Fig. 31. The equivalent circuit for the excitation circuit.

U
I. = ’ AL —
F=Ky \/[RA +R(1—w,GX, +CJ/OP +[X, — 1/(w,C) + RAR’wVCk]2 (103)
=K _gAf.
t Zg
where

Zg = VIR, ¥ RU— 0,0 X5 T COF + (X, — 1(@,0) ¥ R\Rw,C P (104)

Ujg is calculated from (90), where 3, is composed of the component proportional to
the fundamental flux density wave and of that proportional to the stator current.
According to (70), the former is

A
A 1A 1
bu(p*Ql) =3 bp AAQO— (105)
The air-gap voltage induced by the resulting flux is [18, p. 209]
w DL
U= Ewluby (106)

Substituting ﬁu(le) (105) and from (106) ﬁp in (90) gives a voltage component U Afo
proportional to the fundamental flux density wave:
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1 91 éapanPac &
Urts = 5 U;=C, U; 107
AR T 2p+0, Ny A,y (107)

1 01 bagronNar Ao
C, =— 108

172 PtQ; &Ny A, (108)
The amplitude of the slot harmonic proportional to the stator current is according to
(69)

o N2 My maNy
k@+Qn) — [ 8;"’Q1 a,

Substituting zkwn in (90) gives a voltage component U, proportiohal to the load
current: -

€1 Q) EeerQu) p+0, I, (109)

Ho Qg 1 m,q;N
Ua =T B+ 0, )25" Eagrap begran Eipron Nae—' g — DL =C;Iy - (110)
_k O aN
@=% (p ®+0F s" - Eagran Eepran Eipran Vas i py @i

Denote the stator current component along U; by l" and the component at right angles
to U; by I, (Fig. 32). I, generates in the auxiliary winding a voltage component in

Fig. 32. The phasor diagram of a salient-pole
synchronous machine.’

phase with U,g,, and I, generates a voltage component perpendicular thereto. Uj,¢
is therefore

Upe = VCUF GI + GLY

R K

(112)
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Substituting (112) in (103) gives

TK,C —
Iy = V(—Z‘;‘U‘ + Klglh) + (Kyul,)? (113)
where
K. C
— 2t
K, uz, (114)
u is a reduction factor, which is for a non-salient-pole machine [18, p. 366]
3 Nu
115
m= ;7*- v (115)

where &g, is the winding factor of the field winding for the fundamental and Ny the
number of tumns of the field wmdmg in series. The factor u does not affect / because
the same terms in the expression of the field current have been multiplied and divided
by it. The value of K, is only reduced by u to have a more practical magnitude, as it
will be found later.

The phasor diagram of the excitation circuit has also been shown in Fig. 32. The
component I, of the field current is

K,.C | :
Iy, = —ZJ—FJ U; (116)
If, at changing load, the field current is regulated so that I remains constant, then the
‘air-gap voltage U;, which is proportional to I, also remams constant. The change of the
field current then compensates the effect of the armature reaction and the field current
component proportional to the load current is

I' = ul, (117)

i.e., the factor K| in Eq. (113) must be 1. Owing to the changes of the voltage drops
in the stator leakage reactance and resistance, the field current must be regulated (at a
lagging power factor) in excess of what the equation (117) indicates, Hence, in order that
the terminal voltage might be constant, K| must be >1. The factor corresponding to K,
in a conventional compound generator is called the compound factor. . .

Denote the load impedance of the generator per phase with

Z, =2 o ' (118)
which contains the stator resistance and the leakage reactance of the generator. Then
_Uscosr—p) __ Uycosey

I, Z, Z, (119)
o Uiéiri(u — L) _ VUi'vsin«pL
I.lr “' ZL ZLv ) (120)

Subsututmg (119) and (120) in (113),

i '\ 2 o "\ 2
Ig=U, V(K XSy ok, M) + (px, “ﬂh) =6Uu, (121)
Wz, Z, Z,
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where
i 2 2
6= B+ ux, 0" 1k, 23] 122)
ZF ZL ZL

Eq. (121) represents the relation between the field current /, the air-gap voltage U, and
the load impedance Z; [eL-

6.2 VOLTAGE EQUATIONS OF A SYNCHRONOUS GENERATOR

When determing the operating point of the generator the magnetic saturation must
be taken into account, since the internal operating point is determined by the intersection
of the magnetization characteristic and the “impedance line” of the excitation circuit
similardy as in a d.c. shunt generator, as will be seen later. For simplifying the calculations
we assume that the rotor is not saturated by its leakage flux, in which case the mag-
netizing reactance can be calculated by the aid of the magnetization characteristic from
the equation

U.
Xpa=H f: (123)

where the point (U, I,) of the magnetization curve is the internal operating point of
the machine.
The voltage equations of the synchronous machine in a steady-state condition are
[18, p. 396] '
U =R, +iX,))I, + iXmqly +iX g — Xmg) g + Ug (124)

U = U~ Ry + X)) = i Xpq Iy + i (X g — X o) i + Up (125)
X
Up = —:‘1 Ig (126)

where X mq is the quadrature-axis magnetizing reactance and 7, the direct-axis compo-
nent of the stator current. Fig. 32 represents the phasor diagram corresponding to Eq.
(124). The phase difference of U, with respect to U, is denoted by 3.

Dividing the voltage equation (125) into two components, one along U; and the
other perpendicular to U;, we have

1,=1,+il, (127)

Iig = (1y sind; — I, cos8,) ei®i= /) (128)
= I,,5in28;, — I, sind,cos8; — j(I ,sind;cosd; — I, cos? §;)

Substituting (127) and (128) in (125) gives in the component presentation

X
Ui=X;ng — Xnq)sin 8;c0s 8; I\, — (X q€0828; + X, sin? 8) I + —zﬂ cosd; Iy (129)

X
0 =(desin26i+qucoszsi)lu—(de—qu)sin81c038i11r+——;‘lm sind;J (130)
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I, I, It and U; can be eliminated from the set of equations (119), (120), (129) and
(130) and the angle 8, can be determined. The result is

8; = arctan _)_(__q__(_)ii’l__ @131)

+ X sinyg

6.3 DIRECT-AXIS MAGNETIZING REACTANCE

The direct-axis magnetizing reactance X, can be calculated by the aid of the
magnetization curve from Eq. (123). On the other hand, X, 4 corresponding to a definite
load impedance Z; can be determined by eliminating I, I, Iy and U; from the set
of equations (119), (120), (121) and (129). The result is

Z;, — (sin;cos8;cosp; — sin? 8, sinpp ) X,

Xma =76 (132)
_1;1_ cos§; — sind; cos §; cos g — cos? 8, sin gy
For a non-salient-pole machine X,y = X,,, = X, and from (132)
X = Zy (133)

m

—z— €os &; — sinyy

6.4 TERMINAL VOLTAGE

The terminal voltage of the generator when used as an isolated generator may be
calculated in broad outline as follows:

1. Calculate C, (108), C, (111) and K; (114).

2. Calculate G (122) corresponding to the given load.

3. Calculate §; (131). For a salient-pole machine X, - may be assumed to be constant,
independent of the saturation, since the reluctance of the magnetic circuit in the
quadrature axis is determined by the air-gap. For a non-salient-pole machine
Xmq = Xma = A, and the saturation has to be taken into account as presented
in 4 below.

4. Calculate, for a salient-pole machine, X, ; from (132) or for a non-salient-pole
machine, X, from (133)..For the non-salient-pole machine X, must be iterated
to satisfy simultaneously the equations (131) for 8, and (133) for X_,.

5. Find the point (U, » Iy) on the magnetization curve satisfying (123), i.e., find the

intersection of the magnetlzatlon curve and the straight line (123)

. Calculate I, (119) and I,, (120).

. Calculate the terminal voltage U, from the equation

U1=Ui+(R1+jX10)(Ilg+qu) (134)

The quantities C,, C,, K| and G calculated in items 1 and 2 are functions of the
saturation. It was stated in Chapter 3.3.4.1 that the saturation does not have any great
effect on the slot harmonics and hence on the factor C,. In contrast the saturation
effects the lower harmonics through a change of Carter’s coefficient. When these

~ A
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harmonics are used for producing the excitation voltage, C, is a function of the satura-
tion. It will be shown later in connection with measurements (Chapter 8.2.3), that also
with the slot harmonics C; depends to some degree on the saturation, while it is true
that the linear range extends far into the saturation range.

C, is, according to Eq. (111) inversely proportional to the equivalent air-gap 5:. In
the case of the first slot harmonic and of higher harmonics the flux passes only a short
distance through iron and the air-gap constitutes the major part of the magnetic circuit.
A single-phase winding for the first slot harmonic and its flux pattern are schematically
shown in Fig. 33. The pole pitch of the first slot harmonic is approximately half of the

ST

stator tooth pitch. As a consequence the flux of the slot harmonic is not compelled to
make the circuit of the stator slot: its path may close through the tooth end. The part
of the magnetic circuit subject to saturation consists of the rotor teeth. The saturation
of the rotor teeth is determined by the fundamental of the flux density distribution.
The teeth coinciding with the crest value of the air-gap flux density are most strongly
saturated. According to measurements (Chapter 8.2.2) 6: can be roughly calculated
from the equation

Fig. 33. The flux pattern produced by the rotor
auxiliary winding made for the first slot har-
monic.

51 ~ "5—;’}1 ke b | (135)
where 5 and 7, are the air-gap m.m.f. and the rotor-tooth m.m.f., respectively, at the
crest value of the flux density. For harmonics lower than the slot harmonics the sum
of the stator and rotor tooth m.m.f.’s and the stator and rotor yoke m.m.f.’s must be
substituted for ¥,, in (135).

The compound factor K; (114) is proportional to the ratio C,/Z . The terms of Z
depending on the saturation are the magnetizing and the harmonic leakage reactance
of the auxiliary winding. Both are inversely proportional to 6:. If the Boucherot circuit
presented in Chapter 5.2 is used, Zp =~ X, . Because the leakage part of X, (except
the harmonic leakage reactance) is independent of the saturation, X, decreases somewhat
slower than C, with increasing saturation. There is then some decrease of C,/Zg with
increasing saturation. '

The terms of G (122) depending on the saturation are K; and the ratio C,/Z.
According to the foregoing, C, increases a little and Z decreases with increasing satura-
tion. Accordingly C,/Zy increases with increasing saturation. It follows that the field
current component (I,) proportional to U; increases with increasing saturation and
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decreases with decreasing saturation. This is an undesired feature in view of a constant
terminal voltage. On the other hand, as has been stated before, C,/Zy and K|, which is
proportional to it, decrease with increasing saturation. The field current component
(uKI,) proportional to the load current therefore increases more slowly than directly
proportionally to the load current if the saturation (U,) shows a tendency to rise. This
is a favourable feature in view of a constant voltage; it partly compensates the effect
exerted on the terminal voltage by the change of C,/Z.

Taking into account the dependence of the equivalent air-gap 8: on the saturation,
the terminal voltage in separate duty can be calculated in accordance with the diagram
shown in Fig. 34,

6.5 EFFECT OF SPEED CHANGE ON THE TERMINAL VOLTAGE

In the foregoing the characteristics of the excitation arrangement were studied
assuming a constant speed. If the network is small, e.g. a stand-by network, there is
some variation of speed at load changes. The power control of prime movers is usually
based on changing the speed.

Depending on the nature of the load, different voltage characteristics of the generator
are desired. If mainly an active load is concerned, such as lighting load, the voltage
should be constant, independent of the frequency. With a reactive load, especially with
an asynchronous motor load, the voltage/frequency ratio is often desired to remain
constant. Then the flux of the motor and its maximum torque remain constant at
varying speed.

The terminal voltage of the generator under investigation with different speeds and
loads can be determined by the computation method presented in Chapter 6.4. It is
only necessary in the calculations to take observe that the factor C, and the reactances
are directly proportionat to the frequency. Furthermore, the magnetization curve must
be reduced to be consistent with the new speed. These changes have been taken into
account in the diagram shown in Fig. 34, In the followmg the no-load voltage is
considered as a function. of the speed.

At noload, Z; in infinite and G (122), §; (131), and X, (132) or (133) are

K, C
G =—Z!-1- (136)
F
§,=0 (137)
X . =x =& : (138)
md m G ‘

The noJoad voltage is found as the intersection of the straight line (123) and the
magnetization curve. Equating the right-hand sides of Egs. (123) and (138) we get

Substituting G (136) and takmg into account that the terminal voltage U, equals U, at
no-load:
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U= Ui= g o (139)

The relation between the no-load voltage and the speed depends on the properties of Z .
The following extremes are possible: ‘

1. Z; ~ constant. This is possible if the main terms of Z r are the resistances. The
reactance X, of the auxiliary winding is then compensated by a capacitor C
(Fig. 31). The compensation is complete (X, = 1/(w,C)) at a given speed, whence
follows that Zy can only be constant within a given speed range. When Zg is
constant, the straight line (139) is independent of the speed (in Fig. 35 the
straight line (1)). The operating point becomes unstable at the speed at which the
straight line (1) coincides with the initial linear part of the magnetization curve.
In Fig. 35 the minimum point is denoted by M,. The no-load voltage varies slightly
more strongly than directly proportionally to the speed, curve a in Fig. 36.

M

M;

n
Fig. 35. Magnetization curves at different speeds, Fig. 36. No-load voltage (U 1) vs. speed (n): a)

ny.> ny > ny > ng. Determining the no-load Zy ~constant, b)) Zg ~'n, ¢) Zp ~ 1/n, and d)
voltage. ) the excitation circuit in accordance with Fig. 31.

2. Zg is proportional to the speed if the reactance of the auxiliary winding is the
main term of Z. Because the slope of the line (139) and.the magnetization curve
are both directly proportional to the speed, the intersections (in Fig. 35 points A,
B, and C) all occur at the same value of the field current. The no-load voltage is
then directly proportional to the speed, curve b in Fig. 36.

3. Zg is inversely proportional to the speed if the capacitor C is the main term of Z F
With -increasing speed the slope of the line (139) decreases, so that the no-load
voltage increases faster than in case 1, where the slope was constant. In analogy,
the voltage decreases faster with decreasing speed than in case 1, curve c in Fig. 36.
The unstable point (M, ) now occurs at a higher speed than in case 1.

We shall now consider the kind of no-load properties inherent in the circuit of Fig. 31.
In order that the temperature sensitivity might be low, the resistance of the auxiliary
winding should be small, as has been said before. The variations of the field winding
resistance are eliminated by the capacitor C;. When R , is small, Z is according to (104)



Zp = VIR'(1~ w,G X + GO + [X — 1/(w,O)F (140)
In order that the variations of R’ might be eliminated, there must be at rated speed

whence
1
Ze =X, — 142
F AT o C (142)

Since X, > 1/(w,C) (Eq. (141) is not valid otherwise), Z is approximately directly
proportional to the speed close to the nominal operating point. Then also the no-load
voltage is directly proportional to the speed.

With decreasing speed the first term- of the square root expression (140) increases.
Then Z decreases slower than directly proportionally to the speed. At a given speed
the line (139) coincides with the initial linear part of the magnetization curve (line (2)
in Fig. 35), whereby the operation becomes unstable. The minimum point is denoted
by M, in Figs. 35 and 36.

When the speed exceeds the resonance speed determined by Eq. (141), the first term
of the square root expression (140) increases. Zy then increases faster than directly
proportionally to the speed. At a high enough speed the line (139) coincides with the
initial linear part of the magnetization curve (line (3) in Fig. 35). The operation becomes
unstable at the point M,.

Close to the point M, there exists a range where the no-load voltage is nearly constant.
The excitation circuit can be designed so that the nominal operating point lies within
this range. It is true, though, that we are.then at a distance from the resonance point
(141), in which case the variations of the resistance are not eliminated.

If the power factor of the load is constant (e.g. with a lighting load), the voltage can
be made sufficiently constant by choosing a proper compound factor. If the speed is
constant and the compound factor is high enough-the terminal voltage increases at
resistive -and reactive load when the load increases. On the other hand the increasing
load causes lowering of the speed by a few per cent. Then at the resonance point (141)
the no-load voltage decreases. The fall of voltage may then be compensated by means
of a proper compound factor.

A transient state precedes the above-considered steady-state condition following a
load change. The harmonic excitation circuit under investigation has the character of a
compound scheme and it is expected to act like a compound scheme in transient states.
This was also found to be true in measurements (Chapter 8.3.3). Since an ample literature
exists concerning the properties of the compound generator in various transient states,
among other things, [4], [S], [13], and [14] and since the excitation scheme under
consideration does not essentially differ from this in its nature, no closer study of
transient phenomena is made in this paper.



7 PARALLEL OPERATION.

The active power sharing between parallel generators is determined by the regulators
of the prime movers. The active power sharing is therefore a problem independent of the
characteristics of the generator and it is not considered here. On the other hand the
reactive power sharing between parallel generators is determmed by the characteristics
of the generators and their regulators.

Consider two generators equipped with the excitation scheme under examination.
The generators are loaded with a common passive load Z /. Denote one of the generators
by the subscript a and the other by the subscript b. As a consequence of the parallel
connection,

U, =U, =0, " (143)
Ujcosy

In = Iu + Ibn = Z (144)
U.si

I=I,+1, = _Lzsln_‘p_ (145)

Further, the active power sharing, i.e. the ratio of the active powers (), is determined
by the regulators of the prime movers:

P, I
p=pr=7" (146)
P b Iba
Denote the unknown ratio of the reactive powers by /
- Q, I
] =21 =8t 147
Qb Ibr ( )
From Egs. (144), (145), (146), and (147) the load of generator a is obtained:
VAT ]7"" — (148)
2 .
cos ¢+ 1+T\) sin‘ ¢
I 5 —
@, = arctan 7:— = arctan (% i—i—% tamp) (149)
and the load of generator b:
U Z
Z, = 1 =7 = (150)
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¢ = arctan ?” arctan (i—}? tan sO) (151)
ba

In addition to the reactive power supplied to the load, a transfer of reactive power
may occur between the generators. The reactive powers of the generators are determined
so that the terminal voltages are equal. The reactive power sharing can be calculated by
iterating I (147) to make the terminal voltage of generator a when used as an isolated
generator on the load (148), (149) equal to that of generator b when used as an isolated
generator on. the load (150), (151). Next, the reactive currents can be resolved from the
set of equations (145), (147).

The magnitude of the reactive currents depends on the saturation characteristics of
the generators. Sufficiently accurate designing of the saturation characteristics is a highly
difficult problem in practice. It follows that generators with the excitation scheme under
consideration cannot be driven in parallel when negatively compounded. The same is
true for conventional compounded generators. However, parallel operation of conven-
tional compounded generators is possible e.g. by connecting the ficld windings in
parallel and supplying them from a common compound exciter. Then, the generators
being identical, the field currents are equal and no current will circulate in the machines.
This scheme can also be used with generators of different size if the resistances of the
field windings are properly dimensioned.

In the excitation scheme under investigation the field windings cannot be connected
in parallel if the generators are not provided with brushgear. The absence of such gear is
precisely an advantage of the system.

Parallel operation is possible by connecting one of the generators to be negatively
compounded and the others to be positively compounded. The negatively compounded
machine constitutes an “infinite bus” and supplies the reactive power required. The
positively compounded generators supply mainly the active power and operate with a
constant power factor. Similarly, parallel operation of the excitation scheme under
consideration on an infinite bus is only possible with positive compounding.



8 EXPERIMENTAL INVESTIGATIONS
8.1 EXPERIMENTAL GENERATOR

For testing the harmonic excitation scheme under consideration an experimental
generator, designed as follows, was built.

Rating: 3 KVA, 3-phase 280 V, Y-connected, 6,1 A, 50 Hz, 1500 r/min. The generator
had no fan, and the windings were not impregnated in view of easier changes. Therefore
the nominal load could not be determined by a temperature-rise test. The rating of a
salient-pole generator with identical outer dimensions of the lamination was taken to
represent the nominal load.

Stator: length 103 mm, effective length L = 104,5 mm, outer diameter = 235 mm,
air-gap diameter D = 180 mm, air-gap length § = 0,74 mm, number of slots @, = 30,
number of poles 2p = 4, slots per pole per phase ¢, = 2,5, stator winding as shown
in Fig. 6, single-layer fractional-slot winding, chorded on the average 7/7,5, number of
conductors per slot Ny, = 26, number of turns in series per phase N,, = 130, diameter
of conductor = 14 mm, material copper, winding factor for the fundamental Ep =
0,952, slot-opening factor (18) for 16th harmonic (slot harmonic) Ee(p*‘Ql) =0,953. The
stator slot dimensions are seen in Fig. 37. To enable the relation between the two
components of the field current to be changed, the stator slot opening was dimensioned
in excess of what is correct on the basis of the relation of the field current components;
partly magnetic and partly non-magnetic slot wedges were employed. The magnetic slot
wedges were made of lengths of iron wire 0,5 mm thick, which were molded in resin
to make a wedge. The density of these wedges was found by measurement to be
5,2 kg/dm3. Adequate voltage characteristics were obtained when the magnetic slot
wedges had a length of 47 mm. All measurements reported below are valid for this
length of the magnetic wedges unless otherwise stated.
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Fig. 37. Stator slot dimensions of the experi- Fig. 38. Rotor slot dimensions of the experi-
mental generator (in millimetres). mental generator (in millimetres).
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- Rotor: non-salient-pole rotor, length = 103 mm, air-gap diameter = 178,5 mm. Field
winding: number of slots = 32, coiled slots = 24, number of conductors per slot = 130,
number of turns in series N, = 1560, all poles connected in series, diameter of con-
ductors = 0,85 mm, material copper, winding placed on the bottom of the slot, winding
factor for the fundamental EFP = 0,790, reduction factor u = 0,213; the rotor slot
dimensions are seen in Fig. 38. Auxiliary winding: The winding supplying the field
winding was made for the first slot harmonic rotating in the same direction as the
fundamental. The winding was a one-phase full-pitch winding, number of slots = 64,
every second slot being the upper part of the field winding slot and the rest being the
smaller slots between the greater slots of the field winding (Fig. 38); number of poles =
64, number of slots per pole per phase = 1, number of conductors per slot N, = 33,
number of turns in series N,, = 1056, diameter of conductor = 0,85 mm, material
copper, winding factor £, ;, = 1,0.

For the measurements, the generator was fitted with two pairs of slip rings, one for
the field winding and the other for the auxiliary winding.

The no-load magnetization and short-circuit characteristics and the induced voltage
in the auxiliary winding at no-load are shown in Fig. 39. The generator was separately
excited in all -instances. The measurements were made with and without magnetic slot
wedges. The magnetic wedges did not influence the magnetization nor the short-circuit
curyves within the accuracy of measurement. On the contrary, they had an effect on the
induced voltage of the auxiliary winding.
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Fig. 39. The experimental generator’s magnetization curve
~3uU p Stator line voltage), short-circuit curve (I lk) and voltage
induced in the auxiliary winding (U A) at no-load.



69

Carter’s coefficient is, according to RICHTER [19, p. 173], k. = 1,16. The value is
calculated without magnetic wedges. Carter’s coefficient with the magnetic wedges can
be calculated as set forth in [11]. In this case the influence of the wedges on Carter’s
coefficient was small, seeing that the open-circuit curves were equal with and without
magnetic wedges. For this reason the value 1,16 obtained above is used for Carter’s
coefficient in the following calculations.

8.2 CIRCUIT ELEMENTS
8.2.1 Resistances

The temperature of the windings averaged 50°C in the measurements. The resistances
in direct current corrected to this temperature are: resistance of the stator phase winding
R; = 1,118, resistance of the field winding R = 22,4 Q, and resistance of the auxiliary
winding R, = 12,6 Q. The frequency in the auxiliary winding is 750 Hz. The ratio of the
effective resistance to d.c. resistance is found according to [19, p. 245] to be 1,07. In the
calculations the value R, =1,07-12,6 Q = 13,5 Q shall be used for the resistance of the
auxiliary winding.

8.2.2 Reactances

Leakage reactance of stator winding. In the calculation of the terminal voltage it is
assumed in Eqs. (124) --- (126) that the rotor is not saturated by its leakage flux. The
error incurred may be partly eliminated by using, instead of the stator leakage reactance,
the so-called Potier reactance. A Potier reactance of 2,02 was measured by Fisher-
Hinnen’s method [22] at the rated voltage (280 V).

Reactance of auxiliary winding. The sum of the magnetizing and harmonic leakage
reactances can be calculated by the aid of the magnetic field energy generated by the
winding in the air-gap. The distribution of the field strength produced in the -air-gap
by a current { is shown in Fig. 40. The magnetic field energy in the equivalent air-gap
8" is

v

=% Hoh?TA LS, =—’§§—,%DLN§,,;'2 (152)
14
whence the sum of the magnetizing and harmonic leakage reactances X , ., is obtained:
2, W 1 u
Xpm =4 =7 E,,Q w,DLN?, : (153)
heh/ . Mo
”‘LQ'}—("j_—ﬂ'
1 Ca=TDQ

Fig. 40. The magnetic field strength in the air-gap produced
by a current i flowing in the auxiliary winding.
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The unsaturated value of X, = is obtained when 6;’ =k 5. Substituting the values of the
experimental generator, we have

Xpm = 1109

The slot leakage reactance of the auxiliary winding is calculated according to [19,
p. 268] X, = 78,9 Q, the tooth-top leakage reactance [20, p. 90] X, = 12,802, and
the end-winding leakage reactance [20, p. 91] X, =4,3 €2 (length of the end-winding =
70 mm). The leakage reactance and the synchronous reactance of the auxiliary winding
are

Xpo=Xpy + Xp, + Xay = 9609
Xy =Xyt X, = 2060

Results of measurement. The synchronous reactance of the auxiliary winding can be
determined from the equation

U.\2
S LI
Ak

where U, is the terminal voltage at no-load and /,, the short-circuit current of the
auxiliary winding when the generator is separately excited. U, and I, were measured
as a function of the stator current with load power factors zero lagging, and unity. The
field current was regulated to maintain a constant air-gap voltage U;. For determing U,
a search coil was attached to the air-gap surface.

The reactance measured as a function of the field current, with U; and the power
factor as parameters, is shown in Fig. 41. The point on each curve (except on the curve
for U; = 0) measured with the smallest field current corresponds to the no-load condition,
ie. to I, = 0. When U; = 0, the stator winding was three-phase short-circuited.

200
5(1 B'U=0
a g e —— |
180y = 0
BV j?““’-— —
160 200vF 250V \"“‘\\\\‘\
280v/. S
300V/ | T
140 T
120
100 :
0 1 o2 3A I

Fig. 41. Measured reactance (X ,) of the auxiliary winding vs. field current
(Ip), with air-gap voltage (Ui) and power factor (cosy) as parameters.
—— cosy = 0 lag, —~x— —x——"cosy¢ =1.
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As seen from Fig. 41, X, is constant when U; and the power factor are constant and
Ig < 1,7 -2 A. When the load current is high enough to make Iz >1,7 - 2 A, X, begins
to decrease. It follows that when / < 1,72 A and when the resulting flux is constant
(ie., U; is constant) the equivalent air-gap 5;’ is constant for the first slot harmonic.
When the field current exceeds the limiting point, the leakage flux of the rotor begins
to saturate the rotor teeth and 5;’ increases, causing X, to decrease. Fig. 42 shows
schematically the leakage flux pattern of the rotor. The saturation caused by the leakage
flux is strongest in the tooth denoted with A.

Fig. 42. The leakage flux of the rotor. The tooth
A is most strongly saturate.

As can be seen from Fig. 41, the reactance of the auxiliary winding decreases when
the resulting flux increases (when U; increases). This is due to the saturation of the rotor
teeth, especially at the maximum of the air-gap flux density. Because the saturation of
the teeth varies along the rotor surface, the saturation is difficult to calculate. In addition,
the saturation depends on the phase of the load current as can also be seen from Fig. 41.
The inverse value of the equivalent air-gap of the first slot harmonic and the magnetizing
reactance at no-load conform approximately to the formula

kc(S _ XAm _ 96
)

Z XAm, unsat 95 + 922
where 9,, is the tooth m.m.f. of the rotor and D5 the m.m.f. of the air-gap k.5 at the
centre of the pole, and X, yne is the unsaturated value of X .

According to Fig. 41 the unsaturated value of X, (U; ~ 0) is about 185 Q. The
calculated value was 206 §2, that is, slightly higher. Assuming that the calculated leakage
reactance X ,, = 96 Q is correct, the unsaturated magnetizing reactance is found to be
XAm, unsat — 89 Q2.

The ratio X,,,/89 Q2 calculated from the results of measurement is displayed as a
function of the no-load field current in Fig. 43. The function ¥5/(§5 + 9,,) computed
according to RICHTER [19], [20] in terms of the no-load field current has been entered
in the same diagram. The functions X , ,,/89 2 and P;/(9; + ¥,,) have a similar character.
However, ¥3/(J; + ¥,,) shows a somewhat stronger dependence on the saturation than
X pom/89 Q2.
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1,2

Ratio

0,2

0 1 2 3A
No-load field current

Fig. 43. a) The ratio of the magnetizing reactance X 5., of the auxiliary
winding to the value 89 Q calculated from results of measurement,

b) the ratio Oa/(96+022), c) the ratio C,/15,7 X calculated from

results of measurement, and d) the function k.8 /8, used in calculating
the terminal voltage. All ratios presented as functions of the no-load
field current.

8.2.3 Factor C,

From Fig. 15 we obtain, without magnetic slot wedges, /’in/A0 = 0,16 when x,/t; =
0,16 and x,,/8 = 4,05. Further, according to Eq. (108), C, = 0,58.

The factor C, is according to Eq. (107) the ratio of the induced voltage of the
auxiliary winding to the induced voltage of the stator winding at no-load when the
generator is separately excited. Fig. 44 shows the measured terminal voltage (U ) of the
auxiliary winding as a function of the stator line voltage (v/3 U ;) at no-load and at rated
speed, with and without magnetic slot wedges. As can be seen from the figure, the
relation between U, and U, is linear over a wide range. When U, exceeds 2303V,
the voltage of the auxiliary winding increases at a rate faster than linear and C, increases.
With magnetic slot wedges this non-linearity is slightly stronger than with non-magnetic
wedges. Obviously the magnetic wedges are saturated to a certain degree, causing an
apparent increase of the slot opening.

From Fig. 44 we obtain, in the range U, = 0 - 230//3V without magnetic slot
wedges,

= Ya = 0,62
C, U, 0,
which is slightly in excess of the calculated value. With magnetic wedges we obtain
from Fig. 44, C; = 0,49 in the range Uu =0 ---230/‘\/3 V, and at the rated voltage
U, = 280/v/3 V we have C; = 0,55.
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Fig. 44. Measured voltage (U ) of the auxiliary winding vs. stator line
voltage (V3 U,) at no-load; separate excitation.

8.2.4 Factor C,

The factor C, is, according to Eq. (111), a function of the saturation (6;'). The
unsaturated value is obtained from Eq. (111) with air-gap £6:

C, = 15,1 V/A

According to Eq. (110) C, is the ratio of the voltage component U g of the
auxiliary winding induced by the stator current and of the stator current I,. The
measured voltage of the auxiliary winding, as a function of the stator current, is
displayed in Fig. 45 at a load power factor of zero lagging. The field current was
regulated to maintain a constant air-gap voltage U;. The measurements were performed
with several values of U,. C, is the slope of the tangent of the family of curves obtained,
because at zero p.f. lag the voltage components induced in the auxiliary winding, of
which one is proportional to U; and the other is proportional to I,, are in phase, and
with a constant U; the stator current I, alone causes a change of the voltage of the
auxiliary winding. As can be seen from Fig. 45, the function U,q = f(/,) is at small
voltages (U; ~ 0 - 150/+/3 V) linear, independent of the load current. Within this range
C, depends only on the voltage. At higher voltages (U; > 150//3 V) the relation U Afk =
f{,) is linear with small currents, becoming non-linear for higher currents. At the
limiting point the field current is about 2 A, at which current the magnetizing reactance
Xam Was also found to become saturated owing to the rotor leakage flux. The unsatu-
rated value of C, is found from the measurements at small voltages to be C, = 15,7 V/A,
which is slightly higher than calculated (15,1 V/A).

Fig. 43 shows C, /15,7 V/A calculated from the initial slopes of the measured curves,
as a function of the no-load field current. The function thus obtained is similar to X', |
and to Ps/(95 + P,,). This is exactly as should be, since they are all proportional to 1/,
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Fig. 45. Measured terminal voltage (U a) of the auxiliary winding vs.
stator current (Il), with air-gap voltage (V3 Uy as parameter. The
load power factor is zero lagging and the generator is separately
excited.

8.3 TERMINAL VOLTAGE
8.3.1 Terminal voltage as a function of load current

The terminal voltage of the generator as a function of the load current at various
power factors is shown in Fig. 46, the generator being separately excited with a constant
current.

The measurements with self-excited mode were performed using the capacitors
C=1,70pF and C; = 0,98 uF. C, was chosen to ensure a safe build-up. The nominal
operating point was within the range where a small decrease of the speed had little
influence on the terminal voltage. The rectifier and capacitors were mounted on the
rotor, so that the slip rings would not interfere with the measurements. The measured
load characteristics and those calculated according to Chapter 6.4 at three different
power factors are shown in Fig. 47. In the calculations k05/6;' was assumed to conform
to the two straight lines drawn in Fig. 43, which present a satisfactory fit with the
measured X, . and C, curves. Instead of the no-load field current, the resulting field
current [, corresponding to the internal operating point was used in the calculations.
I, determines the saturation state at load. The increasing saturation due to the rotor
leakage flux at higher load currents was not taken into account. The value C,=157V/A
was used for non-saturation C,, the value X, ,n; = 89 Q for non-saturation X,
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Fig. 46. The measured load characteristics of the experimental generator
when excited separately by a constant field current.

and the value X, =96 €2 for the leakage reactance. A constant value C, = 0,55 measured
at the rated voltage was used for the factor C,.

According to the measurements as well as the calculations the voltage of the generator
remains satisfactorily constant within the range /;, = 0. I,(/,5 = rated current),
except at zero p.f. lead. At lagging power factors the deviation from the rated voltage
is +3,6% - —1,8%. At zero p.f. lead the voltage declines to zero at a load current
about I, = 4 A, but the voltage once again builds up when the capacitor load is aug-
mented. A similar characteristic is also obtained by calculation. It is true, though that
the calculated voltage did not become zero at /; =4 A. This is due to the fact that the
calculating method does not satisfactorily account for the great changes of saturation
occurring in the case under consideration when the voltage decreases strongly. When the
load current is in excess of the rated current, the terminal voltage begins to fall at unity
p.f. and at lagging power factors. In this range the calculated curves differ considerably
from the measured curves. This is because in this range the saturation of X, and of
C, also depend on the load current, as has been observed previously, and this phenome-
non is not taken into account in the calculations.
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Fig. 48. No-load line voltage of the experimental generator vs. speed.
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8.3.2 Terminal voltage as a function of speed

The measured terminal voltage of the generator, as a function of the speed at no-load,
is shown in Fig. 48, the generator being self-excited. The characteristic has a nature
qualitatively like that obtained in Chapter 6.5. Fig. 48 also contains the same charac-
teristic calculated according to the diagram of Fig. 34 (Z = ). The constants and the
function k06/5: used in the calculations are the same as in the preceding chapter. The
calculated curve shows a satisfactory fit with the measured curve.

8.3.3 Sudden load change

The oscillograms in Fig. 49 reveal the behaviour of the generator when the rated
inductive current (6,2 A, p.f. zero) is suddenly connected and disconnected. With a pure
inductive load the change of the field current is greatest. The change of the speed is small,
because the change of the active power is nearly zero. The terminal voltage initially
falls by the amount of the voltage drop in the transient reactance. After the sudden
change, the voltage begins to rise and aperiodically reaches the steady-state value; the
time for recovery to within 2,5 % of the rated voltage is about 0,2 s. The alternating
component induced in the field winding by the d.c. component of the stator current
is observable in the field voltage. When current is supplied to the load, the field voltage
mean suddenly changes by an amount equalling the excitation voltage component
proportional to the load current. On disconnection of the load the transient phenomena
are similar, but reversed. The recordings resemble the corresponding oscillograms of a
conventional compounded generator [14].

Fig. 49. The stator current (i), field voltage (ug) and stator line voltage (u ) when an inductive load
(I; = 6,2 A, p.f. zero lagging) is connected and disconnected. The generator is self-excited.
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Fig. 50. The stator terminal voltage at no-load Fig. 51. The stator terminal voltage when the

when the generator is self-excited; a) voltage to generator is self-excited and loaded by the rated

neutral, b) line voltage. current (6,2 A) at unity power factor; a) voltage
to neutral, b) line voltage.

8.3.4 Terminal voltage waveform

The waveform of the terminal voltage of the generator at no-load is shown in Fig. 50
when the generator is self-excited. In Fig. 51 the corresponding curves are shown when
the generator supplies the rated current at unity power factor. As can be seen from the
figures, a strong second slot harmonic is induced in the terminal voltage. It is suppressed
to some degree at load. The harmonic analyses of the line voltages are represented in
Table 1. All harmonics exceeding 0,5 % of the fundamental at no-load or at load have
been taken into account. Table 1 also states the analyses of the line voltage when the
generator is separately excited. The second slot harmonic is somewhat stronger with
self-excitation than with separate excitation.

Table 1. Harmonic analyses of generator line voltage.
a. Self-excitation b. Separate excitation

Full load current, unity

No-load
Frequency power factor

Hz a b a b
% % % %
50 100 100 100 100
150 1,3 0,8 1,0 1,5
250 1,0 1,0 0,6 0,5
350 - 01 0,6 0,5
1450 9,4 7,1 2,7 1,6
1550 7,1 3,6 1,9 1,5

2950 0,6 0,4 - -

3050 0,1 0,5 - -




9 CONCLUSIONS

It has been shown that it is possible to construct a brushless self-regulated synchronous
generator excited by harmonics of the flux density distribution. The field current
component proportional to the resulting flux can only be produced by permeance
variations due to irregularities of the stator’s air-gap face. The field current component
proportional to the load current can be produced by harmonics due to the stator winding
distribution. The first slot harmonic is most useful in that with its aid the highest field
current is obtained, and it is possible to make the number of damper-bars equal to that
in conventional generators. A drawback of the first slot harmonic is the great number
of poles, whereby it may become more difficult to make the auxiliary winding for the
slot harmonic than for a lower harmonic. Moreover, fewer methods are available for
elimination of harmonics from the stator terminal voltage in the case of slot harmonics
than in that of lower harmonics.

The stator terminal voltage depends on the saturation of the generator. The measure-
ments performed with an experimental generator show that the method presented for
calculating the terminal voltage gives a satisfactory result in practice.

Parallel operation on an infinite bus is possible with positive compounding, in which
case the generator acts at a constant power factor. Several generators with harmonic
excitation can be connected in parallel if one of the generators is negatively compounded
and supplies the required reactive power, while the other generators are positively
compounded.

Manuscript received 1973—-06-26
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