
Aalto University

School of Science

Degree Programme in Security and Mobile Computing

Debopam Bhattacherjee

Stepping Stone Detection for Tracing
Attack Sources in Software-Defined Net-
works

Master’s Thesis
Espoo, June 30, 2016

Supervisors: Professor Tuomas Aura, Aalto University
Professor Markus Hidell, KTH Royal Institute of Technology

Advisor: Professor Andrei Gurtov

Aalto University
School of Science
Degree Programme in Security and Mobile Computing

ABSTRACT OF
MASTER’S THESIS

Author: Debopam Bhattacherjee

Title:
Stepping Stone Detection for Tracing Attack Sources in Software-Defined Net-
works

Date: June 30, 2016 Pages: 68

Major: Security and Mobile Computing Code: T-110

Supervisors: Professor Tuomas Aura
Professor Markus Hidell

Advisor: Professor Andrei Gurtov

Stepping stones are compromised hosts in a network which can be used by hackers
and other malicious attackers to hide the origin of connections. Attackers hop
from one compromised host to another to form a chain of stepping stones before
launching attack on the actual victim host. Various timing and content based
detection techniques have been proposed in the literature to trace back through
a chain of stepping stones in order to identify the attacker. This has naturally
led to evasive strategies such as shaping the traffic differently at each hop. The
evasive techniques can also be detected.

Our study aims to adapt some of the existing stepping stone detection and anti-
evasion techniques to software-defined networks which use network function vir-
tualization. We have implemented the stepping-stone detection techniques in a
simulated environment and use sFlow for the traffic monitoring at the switches.
We evaluate the detection algorithms on different network topologies and analyze
the results to gain insight on the effectiveness of the detection mechanisms. The
selected detection techniques work well on relatively high packet sampling rates.
However, new solutions will be needed for large SDN networks where the packet
sampling rate needs to be lower.

Keywords: Stepping stone attack, Software-defined networking, Network
function virtualization

Language: English

3

Aalto-universitetet
Högskolan för teknikvetenskaper
Examensprogram för Säkerhet samt Mobil Kommunikation

SAMMANDRAG AV
DIPLOMARBETET

Utfört av: Debopam Bhattacherjee

Arbetets namn:
Stepping Stone Detection för att sp̊ara Attack Källor i Programvarustyrd Nätverk

Datum: Den 30 Juni 2016 Sidantal: 68

Huvudämne: Säkerhet samt Mobil Kommunika-
tion

Kod: T-110

Övervakare: Professor Tuomas Aura
Professor Markus Hidell

Handledare: Professor Andrei Gurtov

Spr̊angbrädor äventyras värdar i ett nätverk som kan användas av hackare och
andra skadliga angripare att dölja ursprunget av anslutningar. Angripare hopp
fr̊an en komprometterad värd till en annan för att bilda en kedja av att kliva ste-
nar innan lansera attack p̊a själva offret värd. Olika timing och inneh̊allsbaserad
detekteringsteknik har föreslagits i litteraturen att sp̊ara tillbaka genom en ked-
ja av spr̊angbräda för att identifiera angriparen. Detta har naturligtvis lett till
undvikande strategier som forma trafiken annorlunda vid varje hopp. De undan
tekniker kan ocks̊a detekteras.

V̊ar studie syftar till att anpassa vissa av de befintliga inledande upptäckt
och mot skatteflykt tekniker för mjukvarudefinierade nät som använder
nätverksfunktionen virtualisering. Vi har genomfört de spr̊angbräda detektions-
tekniker i en simulerad miljö och använda sFlow för trafikövervakning p̊a
växlarna. Vi utvärderar detekteringsalgoritmer p̊a olika nätverkstopologier och
analysera resultaten för att f̊a insikt om hur effektiva mekanismer upptäckt. De
valda detektionstekniker fungerar bra p̊a relativt höga paketsamplingsfrekvenser.
Dock kommer nya lösningar att behövas för stora SDN nätverk där paketsamp-
lingshastigheten behöver vara lägre.

Nyckelord: Spr̊angbräda attack, Mjukvarudefinierad nätverk,
Nätverksfunktion virtualisering

Spr̊ak: Engelska

5

Acknowledgements

This work was supported by TEKES as part of the Cyber Trust program of
DIGILE (the Finnish Strategic Center for Science, Technology and Innova-
tion in the field of ICT and digital business).

I would like to thank my supervisor Prof. Tuomas Aura for providing his
invaluable support and guidance. I am also equally thankful to Prof. Andrei
Gurtov for providing useful advice and feedback on my work.

I am also grateful to my co-supervisor at KTH Royal Institute of Tech-
nology, Prof. Markus Hidell, for providing remote support.

Lastly, I would like to take this opportunity to thank my parents for their
continuous support and guidance and my wife, Taniya, for being beside me
through thick and thin.

Espoo, June 30, 2016

Debopam Bhattacherjee

Abbreviations and Acronyms

5G 5th Generation (mobile network)
APT Advanced Persistent Threat
BaaS Botnets-as-a-Service
C&C Command-and-Control
DDOS Distributed Denial of Service
DNS Domain Name System
DVR Digital Video Recorder
ForCES Forwarding and Control Element Separation
HTTP Hypertext Transfer Protocol
IDS Intrusion Detection System
IoT Internet of Things
IP Internet Protocol
IPD Inter-packet delay
IPFIX Internet Protocol Flow Information Export
IPS Intrusion Prevention System
IRC Internet Relay Chat
ISP Internet Service Provider
LTE Long-Term Evolution
LTE-A Long-Term Evolution - Advanced
MIB Management Information Base
NBI North-Bound Interface
NetFlow Network Flow
NFV Network Function Virtualization
NOS Network Operating System
NSC Network Service Chaining
P2P Peer-to-peer
RTT Round-trip time
SBI South-Bound Interface
SDN Software-Defined Networking
sFlow Sampled Flow

9

SSH Secure Shell
TCP Transmission Control Protocol
UMTS Universal Mobile Telecommunications System
VLAN Virtual Local Area Network
VoIP Voice over IP
VPN Virtual Private Network

10

Contents

Abbreviations and Acronyms 9

1 Introduction 13
1.1 Research Problem . 14
1.2 Research Methods . 14
1.3 Impact and Sustainable Development 14
1.4 Structure of the Thesis . 15

2 Background 16
2.1 Stepping Stone Attacks . 16
2.2 Software-defined Networking 17

2.2.1 OpenFlow . 18
2.2.2 sFlow . 19

2.3 Network Function Virtualization 19
2.4 SDN and NFV in 5G . 20

3 Stepping Stone Attacks 22
3.1 Significance in Today’s Internet 22

3.1.1 Panama Paper Leak - A Case Study 23
3.1.2 Surveillance Video Stream Hijacking 23
3.1.3 Anonymous Networks and Tor 24
3.1.4 Botnets as Stepping Stones 25

3.2 Detection Techniques . 26
3.2.1 Content-Based Detection 26
3.2.2 Transmission Characteristic-Based Detection 26
3.2.3 Deanonymization Techniques 28
3.2.4 Novel Techniques for Botnet Detection 29
3.2.5 Legitimate Stepping Stone Detection 30

11

4 Timing-Based Detection in SDN and NFV 31
4.1 Packet Sampling and Timing-Based Detection 32

4.1.1 Timing-Based Detection 32
4.2 Evaluation Goals . 34
4.3 Implementation Details . 35
4.4 Topologies and Sampling Rates 37
4.5 sFlow Security . 39

5 Results 41
5.1 Identification of ON/OFF Periods 41
5.2 Correlation of ON Periods . 44
5.3 Timing Based Correlation . 46
5.4 Content-Size Based Correlation 49
5.5 Edit-Distance Based Chaff Detection 50
5.6 Causality Based Chaff Detection 51
5.7 De-anonymization . 53

6 Discussions 56
6.1 Significance of the Results . 56
6.2 Limitations . 57
6.3 Future Work . 59

7 Conclusions 61

12

Chapter 1

Introduction

Stepping stones [38] are compromised hosts in a network which can be used
by attackers to evade detection. The attackers hop from one host to another
before attacking the victim host in order to hide their identities. Efficient
stepping stone detection techniques in the literature are able to identify the
intermediate stepping stones and trace connections back to the host from
which the attack originates. There are various stepping stone detection tech-
niques [11, 20, 38, 55] which are able to detect stepping stones with high accu-
racy. Newer attack strategies include using botnets for launching distributed
denial-of-service (DDOS) attacks or spamming. These strategies necessitate
detection techniques which no more rely on traffic patterns generated due
to human interaction. Various botnet detection techniques [29] such as deep
packet inspection and scanning exist. Also the advent of anonymity net-
works like Tor [41] necessitates strong deanonymization techniques in case
the attacker uses these networks for attacks.

Stepping stone detection techniques have not yet been evaluated or stud-
ied in the context of software-defined networking (SDN) [24] or network func-
tion virtualization (NFV) [2] environments. SDN is an easily programmable
network architecture which separates the control plane from the data plane.
A logically centralized controller uses the network-wide view provided by the
network operating system (NOS) to effectively configure and control the data
plane, which consists of forwarding elements (switches). NFV, on the other
hand, aims to remove dependency on middle-boxes in networks by virtualiz-
ing network functions, which can be run on virtual appliances. Naturally, the
stepping stone detection mechanisms must be adapted to these new environ-
ments. The significance lies in the fact that these technologies will be heavily
used in the upcoming 5th generation (5G) mobile network architecture, and
effective detection of attacks will make the network robust and trustworthy.

13

CHAPTER 1. INTRODUCTION 14

1.1 Research Problem

Our goal is to analyze challenges of stepping stone detection in SDN and
NFV environments, especially within upcoming 5G network architecture, as
well as conduct practical experiments demonstrating detection. We aim to
achieve the following:

1. Analyze existing stepping stone detection techniques and their appli-
cability to SDN and NFV based network architectures.

2. Propose and build an efficient SDN and NFV based architecture that
supports the stepping stone detection mechanisms.

3. Evaluate the proposed architecture on various network topologies.

1.2 Research Methods

We first theoretically analyze the stepping stone attacks and their detec-
tion techniques. We then propose an architecture to support the detection
techniques in SDN and NFV environments. In the experimental part, we im-
plement the detection techniques and evaluate their effectiveness on various
network topologies.

1.3 Impact and Sustainable Development

SDN and NFV are new avenues in computer networks. For wide-scale adop-
tion of these techniques, it is necessary to make them robust and secure.
Network monitoring plays a critical role in making any network robust. Iden-
tifying correlated connections is a part of network monitoring and helps in
identifying stepping stones and tracing back to the attacker if there is any
attack on the network devices. We believe that our study regarding detection
of stepping stones in SDN and NFV environments is an essential component
of network monitoring in SDN and NFV, which is essential for the success of
these techniques in the word of networks. There are ethical impacts of our
study on the society as we propose an architecture to detect criminal attack-
ers. Also it is our responsibility as engineers to analyze and fix vulnerabilities
of new technologies before they are deployed.

SDN and NFV enable low-cost installation and maintenance of networks.
Due to the separation of the control plane and the data plane, the net-
work devices have to perform less computation leading to energy savings.

CHAPTER 1. INTRODUCTION 15

Moreover, costly vendor-locked devices are no longer necessary and can be
replaced by low-cost Linux boxes. Hence, wide adoption of SDN and NFV
will lead to sustainable development of the technology and business. Up-
coming 5G telecommunication networks will rely heavily on SDN and NFV.
These networks will provide connectivity to millions of people who are not
yet connected to mobile networks, thus reducing the communication latency
for them.

1.4 Structure of the Thesis

The rest of the thesis is structured as follows: Chapter 2 introduces the con-
cepts of stepping stone attacks, SDN, NFV and the significance of SDN and
NFV in 5G networks. Chapter 3 discusses stepping stone attacks in fur-
ther detail along with the existing detection techniques. Chapter 4 explains
our approach to adapting the existing stepping stone detection techniques to
SDN and NFV environments, as well as the experimental implementation.
Chapter 5 presents the experimental results along with their interpretation
while chapter 6 discusses the significance of the results along with the limi-
tations of the current study and future directions. Chapter 7 concludes the
thesis.

Chapter 2

Background

In this chapter, we give an overview of stepping stone attacks, SDN, NFV
and the role of SDN and NFV in upcoming 5G networks.

2.1 Stepping Stone Attacks

In order to remain anonymous and evade detection, attackers establish long
chains of connections from one compromised host to another and finally at-
tack the victim host as shown in Figure 2.1. These intermediate compromised
hosts are called stepping stones, and the family of attacks is known as step-
ping stone attacks. In order to identify the source of the attack, one needs
to correlate the stepping stones in the chain and the connections between
them. There are various ways in which stepping stones can be detected.
Early detection techniques were content based [38]. The newer ones rely on
timing-based detection techniques [1, 45, 54, 55]. This is because advanced
attackers encrypt traffic at each intermediate node, which make detecting
stepping stones based on correlated content impossible. Zhang et al. [55]
propose a timing-based detection technique which relies on the interactive
pattern of human typing, which generates traffic with periods when data
flows and periods when there is no data. The former is called an ON pe-
riod while the latter is called an OFF period. Connections are identified as
correlated if their ON/OFF periods are highly correlated based on timing.

Jitter and Chaff Attackers can evade the timing-based stepping stone
detection strategies by deliberately introducing random jitter and chaff in
the generated traffic at some or all of the intermediate hosts. Random delay
or jitter, introduced at an intermediate host, results in the distortion of
ON/OFF period timings. Chaff packets or random padding added between

16

CHAPTER 2. BACKGROUND 17

Figure 2.1: A typical stepping-stone attack.

two adjacent stepping stones result in increased number of ON periods or ON
periods with longer duration. Both these techniques hinder the detection
of stepping stones. Various anomaly detection techniques [11] have been
proposed which detect jitter and chaff in interactive traffic. These can be
used to augment the timing based stepping stone detection techniques.

2.2 Software-defined Networking

SDN is an emerging network architecture [31] where the data plane and
the control plane are separated to make the network easily and dynamically
configurable and programmable. As shown in Figure 2.2, the network archi-
tecture has 3 tiers: the application tier, the control tier and the infrastructure
tier. The control tier consists of the logically centralized controller, which
provides a network-wide view of the forwarding elements and their states to
the application tier via north-bound interfaces (NBI). Distributed routing
protocols are replaced in SDN by algorithms that make use of the global
view of the network. The centralized control plane is the single point of con-
figuration for the network administrators. The controller in turn manages
the forwarding elements. Hence, the traffic can be dynamically shaped by
the administrators without configuring the individual forwarding elements.
NOX1, POX2, Floodlight3 and OpenDaylight4 are some widely used open-
source SDN controllers.

The wide range of applications residing in the application tier, including
load balancers, monitoring applications and intrusion detection systems use
the network wide view provided by the control tier to monitor and control
the data plane. These applications can use the NBI to specify network-level
requirements to the controller. The controller translates the requirements
into instructions for the forwarding elements.

1http://www.noxrepo.org/
2http://www.noxrepo.org/pox/about-pox/
3http://www.projectfloodlight.org/floodlight/
4https://www.opendaylight.org/

CHAPTER 2. BACKGROUND 18

Figure 2.2: Overview of SDN architecture.

The infrastructure tier (data plane) consists of forwarding elements which
typically forward packets based on layer-2 and layer-3 headers and are known
as switches. The controller communicates with the switches using south-
bound interfaces (SBI). The SBI is used by the controller to send instructions
to the switches and by the switches to consult the controller when they are
not able to make the forwarding decision based on the previous instructions.
Some of the well-known SBIs are OpenFlow [30], Forwarding and Control
Element Separation (ForCES) [13] and SoftRouter [25].

2.2.1 OpenFlow

OpenFlow is currently the most widely used SBI. OpenFlow controllers com-
municate with OpenFlow compliant switches in the data plane through a
control channel specified by the OpenFlow standard [3]. The controller in-
stalls flow entries to the flow tables of the switches. Each flow table entry
contains match header fields, counters and actions (forward, drop, modify
fields, etc.). The switches match incoming packets with the flow table entries,
increment the counters and take the corresponding actions. The controller
can control the routing behaviour of the switches by inserting, updating or
deleting flow table entries.

CHAPTER 2. BACKGROUND 19

2.2.2 sFlow

sFlow [34] is a traffic monitoring technique in networks. Low cost sFlow
agents are installed in the switches which sample packets and forward sam-
pled data to a data collector for analysis. sFlow defines the sampling tech-
niques used in the sFlow agents, the sFlow management information base
(MIB) used by the sFlow collector (analyzer) to control the sFlow agents
and the format of the data forwarded by the sFlow agents to the collector.

OpenFlow and sFlow are complementary technologies. OpenFlow is an
SBI for the SDN environments which configures the switches by translating
user requirements into instructions and installing flow entries into the flow
tables of the switches. sFlow, on the other hand, provides an API for net-
work monitoring and opens up the possibility of performance aware network
management and provisioning.

Cisco’s NetFlow [8] and IPFIX (IETF’s alternative to NetFlow) [9] serve
a similar purpose to sFlow by forwarding flow records to an analyzer. A flow
in NetFlow and IPFIX context refers to the set of packets with similar at-
tributes. The switches sample packets, decode the headers to retrieve values
of header fields like the source and destination IP addresses and source and
destination ports, hash the decoded values to identify the flow in the flow
cache, and update the flow with new values. On termination of the flows,
the flow records are flushed from the cache and forwarded to the analyzer.

sFlow5, in contrast to NetFlow and IPFIX, samples packets and forwards
the sampled header information to the collector. The collector is responsible
for decoding and analyzing the data. sFlow also provides a polling mech-
anism which periodically sends the values of the interface counters to the
collector. This simplified sampling and forwarding mechanism reduces the
performance overhead in the switches. Thus, sFlow is lightweight and does
not consume resources by maintaining a flow cache in the switches. Its design
also emphasizes scalability.

2.3 Network Function Virtualization

Network functions include switching, tunnelling, monitoring, service assur-
ance, signalling and security functions. These network functions are imple-
mented in proprietary hardware appliances which consume space and power
in the network. Moreover, these hardware boxes require special skills to be
administered and may result in vendor lock-in. Network function virtual-
ization or NFV [5] aims to virtualize these network functions by leveraging

5http://blog.sflow.com/2012/05/software-defined-networking.html

CHAPTER 2. BACKGROUND 20

virtualization techniques and commodity hardware. NFV facilitates the en-
try of software players in the networking market. Virtual network functions
are built with software running on commodity hardware. These network
functions can be instantiated in any part of the network without installing
specialized hardware. NFV makes scaling up, scaling down and evolution of
the network functions more flexible.

NFV and SDN are complimentary but independent concepts. NFV aims
to provide virtualized network functions while SDN aims to separate the
control and data planes in the network. Both these technologies aim to
enhance network performance, simplify maintenance and dynamically control
and provision network resources. Both NFV and SDN aim to use commodity
hardware and switches to lower the overall cost of networking.

2.4 SDN and NFV in 5G

Fifth generation mobile network or 5G [27] is the next generation of telecom-
munication networks that is expected to provide extremely high bandwidth,
low latency and highly robust connectivity to human users as well as the In-
ternet of Things. Interconnections between the cellular networks and other
wireless access infrastructures, forming heterogeneous networks (HetNets),
will characterize 5G networks. Integrating satellite communication and sup-
plying data from distributed sources to cloud-based big-data applications
are some of the challenges 5G aims to solve. Robustness and resilience are
necessary in order to support this varying range of services efficiently.

Adoption of SDN in mobile networks [19] helps to isolate the data plane
from the control plane and eases the development of applications that provide
network-level services at the application tier via NBI. The SDN controller
performs network management using its global view of the network. This en-
ables dynamic on-demand allocation of resources and network virtualization.
NFV aims to replace dedicated hardware devices by software-based network
function implementations deployed in virtualized infrastructure. The net-
work providers can easily roll out new services on these hyper-flexible and
programmable networks.

SDN and NFV may be used to provide network service chaining [19],
which aims to provide chains of services in the network processing path. As
SDN pulls out the management functions from network devices and places
them in a software-based controller and NFV pulls out the network functions
from hardware devices and builds them into software running on commod-
ity servers, no additional hardware is required to provide network service
chaining in SDN and NFV environments. Instead, the chaining can be im-

CHAPTER 2. BACKGROUND 21

plemented and configured in software.

Chapter 3

Stepping Stone Attacks

In this chapter we describe stepping stone attacks in detail, discuss the rel-
evance of the stepping stone attacks in today’s networks and the various
techniques for detecting stepping stones. Finally, we identify the significance
of the attacks in SDN and NFV environments.

3.1 Significance in Today’s Internet

Stepping stone attacks have existed since the early days of the Internet.
Attackers try to hide their identity behind a chain of intermediate nodes
compromised earlier while launching attacks on further victims. Also, an
external intruder might compromise one host in an administered network
by exploiting some vulnerabilities and use the host as a launch pad to gain
useful insight about the network and hosts lying within it. Intrusion detection
systems (IDS) and forensic analysis try to identify the node from which the
attack was conducted. Once the node is detected, it is identified to be the
launch-pad for the attack and the real attacker lies somewhere else. Hence,
at each step, an intermediate node or stepping stone has to be detected until
the first node in the chain is found. It is evident that identifying each of
the stepping stones in a long chain in the Internet is extremely difficult.
Individual organizations or even Internet Service Providers (ISPs) may not
be able to get the data (log files in intermediate nodes, timing of packets,
size of packets, etc.) necessary for the detection due to the heterogeneous
nature of the Internet with so many stakeholders involved. Hence most of
the studies in this field restrict the scope to the detection of stepping stones
within a single administrative domain.

The first significant study [38] in this field was published in 1995 by
Staniford-Chen and Heberlein. They used content-based thumbprints, which

22

CHAPTER 3. STEPPING STONE ATTACKS 23

are summaries of contents similar to checksum to identify two different in-
teractive connections with similar content. Content-based techniques lost
importance as it became possible to encrypt content at each intermediate
node. Since then, a lot of studies have been conducted which try to detect
stepping stones in a chain based on timing as well as packet-size correlation.
A lot of these studies consider random jitter and chaff deliberately inserted
by the attacker in the traffic to make detection difficult.

Most of the papers in this domain have been published 10-15 years ago.
This raises a question whether stepping stone attacks have become irrelevant.
In the following sub-sections we present a few counter-arguments. We present
cases of advanced persistent threats (APTs) and APT-type attacks where the
attacker has access to a part of the network where he stays for a long time
in order to steal data.

3.1.1 Panama Paper Leak - A Case Study

In the Panama Papers Leak incident [6, 36, 40] in April 2016, attackers
gained access to the email server of a Panama-based firm. According to
the speculations, the external attacker exploited vulnerabilities in the email
server to compromise it. The attacker then exploited this compromised server
as a stepping stone to gain more knowledge of the internal network and steal
highly confidential documents revealing client information. This attack is an
example of APT where the attacker has spent a long time in the internal
network of the company undetected, interactively exploring the network and
eventually stealing terabytes of data. The nature of the attack is similar
to stepping stone attacks where attack traffic as well as stolen data pass
through a chain of stepping stones before reaching the victim and the attacker
respectively.

3.1.2 Surveillance Video Stream Hijacking

In Figure 3.1, digital video cameras send the video streams to a storage
device. An external attacker might gain access to the camera by exploiting
a vulnerability after which he can forward the video streams to an arbitrary
location in the Internet. Here, a compromised host in the intranet acts as a
launch pad or stepping stone. Videos can be delta compressed and only the
changes from one frame to the next are forwarded to the storage device. In
this case, the network traffic might have inherent ON (data) and OFF (no
data) periods. The attacker may also want to watch a live stream and only
enable it intermittently.

CHAPTER 3. STEPPING STONE ATTACKS 24

Figure 3.1: Video stream hijacking

3.1.3 Anonymous Networks and Tor

The aim of anonymous networks like Tor [41] is to provide anonymity to the
users. Generally, such a network consists of a set of relay servers operated by
volunteers. In the Tor network1, the traffic between the client and each relay
node is symmetrically encrypted using keys generated through authenticated
key exchange protocols. There are three relay nodes in a path and each node
decrypts the top layer of encryption and forwards the decrypted content to
the next node in the path. The last relay node in the path removes the
last layer of encryption and forwards data to the destination. This layered
encryption scheme helps users to attain privacy and security as well as evade
censorship. The anonymity is directly related to the number of users in the
network and increases with the size of the population.

The Tor client is a free software and it is used to fetch the list of available
relay nodes from the directory server and to select a random path to the desti-
nation through the Tor network. Hence attackers can use this anonymization
network to launch attacks and hide behind the relay nodes. The intermediate
nodes can reside within the target network or outside it. Figure 3.2 depicts
the scenario where an attacker, in order to hide his identity, channels the
attack traffic through one gateway followed by one or more external stepping
stones back to the network through another gateway before attacking the
victim. In this case, it is important to correlate the connections carrying
attack traffic in order to identify and isolate the attacker and the stepping

1https://www.torproject.org/about/overview.html.en

CHAPTER 3. STEPPING STONE ATTACKS 25

stones.

Figure 3.2: Hiding identity behind an external stepping stone

3.1.4 Botnets as Stepping Stones

A botnet is a collection of hosts, which are typically geographically dis-
tributed, under the control of a hacker, and used mainly for malicious pur-
poses. Hosts become infected by malware like worms, Trojans or rootkits
that turn them into bots. Generally, the bot client is downloaded to the
host by Trojans or rootkits. The bot client communicates with one or more
command and control (C&C) servers. This communication is sometimes pre-
ceded by a DNS resolution phase. The C&C layer lies between the attacker
and the bots and is used to hide the attacker identity. This layer is responsi-
ble for relaying the commands from the attacker to the bots using protocols
like Internet Relay Chat (IRC) [22] and HTTP. Peer-to-peer botnets use pro-
tocols like Kademlia [26] to control the bots. These bots are used to launch
attacks such as distributed denial of service, spamming and port scanning.

Botnet-as-a-Service (BaaS) [4] is a new criminal service model which
enables attackers to rent a botnet or a subset of it from the botnet controller.
The attacker may launch attacks using the rented botnet as a launchpad.
The C&C proxy layer hides the identity of the attackers even if the botnet
is detected and taken down.

CHAPTER 3. STEPPING STONE ATTACKS 26

3.2 Detection Techniques

Various studies have been conducted on how to effectively detect stepping
stones. As the attackers started using more advanced techniques like botnets
and anonymity networks, studies continued to identify bots and deanonymize
the attacker. Stepping stones can exist in legitimate computer systems and
people use stepping stones for regular activities. Studies show that some of
the existing detection techniques can erroneously identify legitimate Voice
over IP (VoIP) traffic [43] and gateways [15] as stepping stones. It is im-
portant to reduce these and other false-positive cases. It is also important
to identify legitimate and attack stepping stones and to analyze their traffic
patterns and other properties.

3.2.1 Content-Based Detection

Early studies [38, 46] focussed on analyzing the payload of packets to detect
stepping stones. Staniford-Chen and Heberlein proposed a thumbprint based
solution [38]. The thumbprints are very short summaries of contents over a
certain period in a connection, which are generated and stored at individual
nodes within the network. When an intrusion is detected, these thumbprints
are used to correlate connections and identify the chain of stepping stones.
The authors also identified the properties which thumbprints should have.
The effectiveness of the content-based detection techniques is limited by the
fact that connections can be encrypted between the intermediate stepping
stones.

3.2.2 Transmission Characteristic-Based Detection

Stepping stone detection techniques may rely on timing and size of packets
in different connections. Timing based approaches use various parameters
like inter-packet delay (IPD) and round-trip time (RTT).

Timing-based detection techniques Zhang and Paxson [55] proposed
a detection technique which relies on packet size and timing to correlate
connections in a chain of stepping stones in order to identify the stepping
stones. The timing-based algorithm tries to identify ON (data) and OFF (no
data) periods in a connection and is motivated by the spacing between human
keystrokes in an interactive terminal, which follows Pareto distribution. If
there is no data for time Tidle, then it signifies the onset of an OFF period.
An OFF period ends when the next data packet arrives. If the ending times

CHAPTER 3. STEPPING STONE ATTACKS 27

of two OFF periods in two different connections differ by ≤ δ seconds, they
are said to be correlated. A constraint here is that the sink of one connection
should be the source of the other connection. Two different connections are
said to be correlated if

OFF 1,2

min(OFF 1,OFF 2)
≥ γ

where OFF 1,2 denotes the number of correlated OFF period endings, OFF 1

denotes the number of OFF periods of the first connection, OFF 2 denotes
the number of OFF periods of the second connection, and γ is a control
parameter. The study takes into account the causality constraint according
to which a packet can leave a node only after it arrives at the node. Some
other refinements relate to the consideration of consecutive correlated OFF
periods and reduce the number of false positives. The approach is unable
to distinguish legitimate stepping stones from ones used for attacks, which
results in a lot of false positives.

Yang and Huang [52] proposed a detection technique based on the anal-
ysis of the RTT of connections. As the length of a chain of stepping stones
increases, the RTT increases following a step function. Hence, the length
of the chain can be estimated by analyzing various RTT values. Other sim-
ilar detection techniques [39, 48] use principal component analysis, neural
networks, etc.

Packet count-based detection techniques He and Tong [20] proposed
a detection technique which does not depend on timing. They assumed that
the memory in any host is bounded, the timing delays are bounded and the
packets are ordered. They used a counting-based algorithm with linear time
complexity to detect stepping stones.

Thumbprinting Yang and Huang [51] proposed the idea of using tem-
poral thumbprints in detecting stepping stones. Temporal thumbprints or
T-thumbprints are sequences of temporal gaps between adjacent packets in
an interactive TCP connection. The real-time algorithm tries to correlate
T-thumbprints in order to identify consecutive connection pairs in a chain of
stepping stones.

Watermarking Wang et al. [46] proposed an active stepping stone de-
tection technique called Sleepy Watermark Tracing. When an intrusion is
detected, watermarks are injected into the backward connection and collab-
oration with routers along the chain of stepping stones leads to the identifi-
cation of the source of the chain. The technique does not use resources when

CHAPTER 3. STEPPING STONE ATTACKS 28

no intrusion is detected. It can detect stepping stones even if no data is
transferred through the chain of connections. The watermarking technique
was later used by several other proposals [33, 35, 44].

Anomaly-based detection techniques Crescenzo et al. [11] argued that
active injection of jitter and chaff may decrease the chance of stepping stone
detection with the timing-based algorithm proposed by Zhang and Pax-
son [55] (see page 26). Jitter or delay of more than δ, when introduced
in at least one of the stepping stones, prevents the algorithm from correlat-
ing OFF periods. Typically δ is a time-span of a few milliseconds. Deliberate
injection of chaff packets, on the other hand, reduces the value of γ thus mak-
ing the algorithm ineffective. Hence, the algorithm should be complemented
by three anomaly detection techniques. Naive stepping stone attacks are
detected by the timing-based algorithm, while anomaly detection techniques
identify connections with jitter or chaff as anomalous.

Response-time based anomaly detection uses the fact that a packet in
the forward direction of a connection should be followed by a packet in the
reverse direction within some time window. The method marks connections
as anomalous (due to jitter) when they do not follow this principle. Edit-
distance based anomaly detection builds on the idea that the sequence of ON
and OFF periods in the forward direction of a connection should be similar
to the sequence in the backward direction and have low edit-distance values.
Injecting chaff packets results in the increase of this distance value and leads
to the identification of anomalous connections. Causality based anomaly
detection is based on the idea that, in a normal interactive connection, every
pair of consecutive ON periods in the forward direction of the connection
is associated with exactly one ON period in the backward direction, and
vice versa. This detection technique can identify connections with chaff as
anomalous.

3.2.3 Deanonymization Techniques

There are ways to deanonymize anonymous network traffic. For example,
in case of Tor networks, if an observer can view the traffic on the first link
(between user and the first Tor relay) and on the last link (between the Tor
exit node and the destination), the traffic can be correlated based on timing. 2

2https://www.torproject.org/docs/faq.html.en

CHAPTER 3. STEPPING STONE ATTACKS 29

3.2.4 Novel Techniques for Botnet Detection

Deep packet inspection Deep packet inspection includes header scan-
ning, payload scanning, knowledge of various protocol (IRC, HTTP, etc.) se-
mantics and classification based on this knowledge. BotHunter [17] identifies
bots by mapping the activities to various stages observed in a bot life-cycle.
BotSniffer [18] aims to identify communication of bots with C&C servers.
Tools exist to classify network applications and map malicious activities in
order to detect bots.

Scanning traffic Botnets with peer-to-peer communications for C&C may
be detected using tools like BotMiner [16], which rely on correlating peer-to-
peer communication with malicious activities. The tool identifies clusters of
hosts with similar peer-to-peer communication and clusters from activities
like port scanning and spamming. These clusters are then correlated to
identify botnets. The tool uses Snort [37], an intrusion detection system, to
detect the malicious activities.

DNS based detection There are various DNS based botnet detection
techniques of varying complexity. Villamaŕın-Salomón and Brustoloni [42]
used Bayesian probability theory to identify bots of the same botnet by ana-
lyzing the DNS queries they make over time. Choi et al. [7] identified bots by
clustering hosts based on similarities in their DNS queries. Yadav et al. [50]
focused on detecting domain flux techniques used by various botnets. Domain
flux is a technique to dynamically generate domain names that identify C&C
servers or proxies. The domain names can range from random alphanumeric
strings to dictionary words. In the former case, the detection techniques rely
on the fact that the distribution of alphanumeric characters are different in
randomly generated strings and normal domain names. In the latter case,
multiple metrics are required. Another study [12] shows ways to detect C&C
communication that is tunnelled through DNS messages.

Spam-bot detection Botnets are often used to send spam emails, and this
property can be used to identify the bots. A study by Xie et al. [49] focuses on
identifying URLs in spam emails. Obfuscated URLs are detected by regular
expression validators. Another study [14] aims to identify C&C servers after
detecting the spamming bots. This study tries to model legitimate emails
and spam emails and identify spams based on the distance to these models.

Communication analysis A study [23] on communication analysis for
botnet detection relies on the ports to which individual hosts connect, fan-in

CHAPTER 3. STEPPING STONE ATTACKS 30

patterns, flow models of IRC and HTTP communications, and periodicity of
communications. Another study [28] analyzes random walks in communica-
tion graphs and is mostly concerned with P2P C&C communication.

Detection using SDN A study [47] in this area has proposed a botnet
detection technique specific to the architecture of SDN and the separation
of data plane and control plane. The botnet detection components consist
of generic templates, flow collector, multistage filtering, bot detection engine
and attack prevention. The system uses IPFIX and customized templates
for capturing useful flow information at the switches. The flow collector uses
customized storage templates for storing the flow records reported by the
switches. The multistage filtering is a five-stage process that filters out in-
formation related to normal traffic. The botnet detection engine uses various
machine learning techniques in order to identify botnets with varying com-
munication patterns. Both spatial and temporal communication patterns
are taken into consideration to detect bots as well as botnets. The attack
prevention component isolates an identified bot by configuring access control
policies in the OpenFlow switch.

3.2.5 Legitimate Stepping Stone Detection

Users sometime use stepping stones legitimately for various activities. Not
all chains of stepping stones are created with malicious intent. These cases
need to be filtered out in stepping stone detection mechanisms which trig-
ger a response, such as isolation of the stepping stones or the first node in
the chain. A relevant study [10] has proposed an anomaly-based legitimate
stepping stone connection detection technique to be used in conjunction with
the prevalent timing-based detection techniques in order to reduce the false
positive rate. The study uses a component that stores information regarding
normal behaviour and provides reference data to the anomaly detection com-
ponent. The study fails to document further details regarding the reference
data and what information might be useful to construct such reference data.

Chapter 4

Timing-Based Detection in SDN
and NFV

SDN and NFV are technologies that will be heavily used in future commu-
nication networks, and it is important to enable techniques for monitoring
them. As discussed in Chapter 2, the architecture is different from that of
traditional networks. The data plane and the control plane of an SDN are
separated, and the network relies heavily on virtualized network functions.
Stepping stone attacks are also possible in these new environments. The
packets between consecutive stepping stones flow through the switches in
the data plane programmed by the controller.

Challenges The challenge is that, in SDN, the often used south-bound pro-
tocols (e.g. OpenFlow [3]) are not suitable for traffic monitoring. The con-
troller can gather flow-level statistics using these protocols but cannot gather
useful monitoring information on individual connections. Instead, one has to
use protocols such as NetFlow/IPFIX and sFlow to gain detailed knowledge
about the traffic passing through the individual switches in the data plane.
As discussed already in Chapter 2, sFlow is more scalable than the other
alternatives. Switches can be configured to sample header information at a
specific rate and to forward that information to a collector. Regarding step-
ping stone detection, the challenges include removing redundancy from the
collected data, identifying connections and ON/OFF periods of those con-
nections from the sampled data, and correlating connections based on the
collected information.

In this chapter, we explain the packet sampling and timing-based detection
of stepping stones. We also set the evaluation goals of our experiments
and present the implementation details. We also discuss about the various

31

CHAPTER 4. TIMING-BASED DETECTION IN SDN AND NFV 32

network topologies which we have considered in our experiments and the
sFlow security model in general.

4.1 Packet Sampling and Timing-Based De-

tection

We rely on the switches in the data plane for sampling packets and forwarding
header information to a central collection and analysis module. The switches
should be able to operate at varying packet sampling rates. We aim at
real-time identification of stepping stones and, hence, it is important for
the switches to immediately forward the sampled information to the analysis
module. Any delay will have considerable impact on the detection procedure.
Therefore, a packet sampling and reporting mechanism with no caching and
delay is preferred.

4.1.1 Timing-Based Detection

The sampled header information is analyzed to identify stepping stones by
correlating connections. First the ON and OFF periods of connections are
identified. Then these periods of different connections are correlated. The
connections should be consecutive, i.e., the source of one connection should
be the destination of another connection. Finally, consecutive connections
are correlated based on the period correlation. The analyzer module uses the
same sampled header information to identify connections that are anomalous
due to jitter and chaff.

Identification of ON/OFF periods As discussed in Chapter 3, inter-
active connections can be structured into ON (data) and OFF (no data)
periods based on keystroke spacing of the user which can be described by
a Pareto distribution. It has been observed [32] that 25% of keystrokes are
500 milliseconds or more apart. Similar to the solution proposed by [55], we
consider a connection to enter an OFF period when there is no data for Tidle.
An OFF period ends and an ON period begins when the first data packet
arrives after the onset of the OFF period. When inter-packet spacing is less
than Tidle, each data packet contributes to the size of the content transferred
in the corresponding ON period.

Correlating ON/OFF periods Zhang et al. [55] proposed that two OFF
periods of two different connections are correlated if their ending times differ

CHAPTER 4. TIMING-BASED DETECTION IN SDN AND NFV 33

by a value≤ δ milliseconds. As the connections are characterized by alternate
ON and OFF periods, there is no difference in correlation based on the ending
times of OFF periods or the starting times of ON periods. In our study, two
ON periods of two different connections are correlated if their starting times
differ by a value ≤ δ seconds. While correlating ON periods, we order the
pair of ON periods {a, b} by a happens after relationship. In this case, b
happens after a, that is, the ON period b starts no later than δ seconds after
the onset of ON period a. We do not correlate ON periods of the forward
and reverse legs of the same connection.

Correlating connections The timing-based correlation score of two con-
nections is given by

ON 1,2

min(ON 1,ON 2)

where ON 1,2 denotes the number of correlated ON period starts, ON 1 de-
notes the number of ON periods of the first connection and ON 2 denotes
the number of ON periods of the second connection. The first and second
connections are ordered by the happens after relationship between their ON
periods as discussed above. The content-size based correlation score is based
on the idea that, for two correlated connections, if the content size increases
from one ON period to the next of one connection, it would increase cor-
respondingly for the other connection. For this purpose, we only consider
those pairs of ON periods which are correlated. The score is given by

Matches found

Number of correlated ON period pairs − 1

Two connections are identified as correlated if both

timing-based correlation score ≥ γtiming

and
content-size based correlation score ≥ γcontent-size

where γtiming and γcontent-size are tunable parameters.

Handling jitter and chaff We aim to adapt the anomaly-based jitter and
chaff detection techniques proposed by Crescenzo et al. [11] to the environ-
ment under consideration. Response-time based anomaly detection, used for
detecting deliberately inserted jitter in the attack traffic, does not work in a
sampled environment as the technique relies on mapping each packet in the
forward leg of a connection with its response in the reverse leg of the same

CHAPTER 4. TIMING-BASED DETECTION IN SDN AND NFV 34

connection based on round trip times calculated using the Jacobson-Karel’s
algorithm [21]. In an environment that relies heavily on sampling, this map-
ping cannot be effectively performed. Edit-distance based anomaly detection
and causality based anomaly detection, as discussed in Chapter 3, can be
adapted to this environment because of the fact that these chaff detection
techniques rely on analyzing ON and OFF periods in interactive connections
rather than individual packets and their responses.

De-anonymization We aim to de-anonymize an attacker who uses an
anonymity network to hide his identity. If the victim host and the attacker
host both lie within the network while the anonymity network is external to
the network, the first link and the last link in the chain of stepping stones
can be monitored. If these two links can be correlated considering the sec-
tion of intermediate nodes and links as a black box, the attacker can be
de-anonymized. Hence we aim to correlate any arbitrary pair of connections
and analyze the correlations. End-to-end deanonymization is more difficult
than step-by-step correlation because jitter accumulates along the path, but
it requires fewer sampling points in the network.

4.2 Evaluation Goals

Evaluation goals of our experiments are as follows:

• Estimate values of Tidle for which sufficient number of ON/OFF periods
of a connection can be identified in different network topologies for
varying packet sampling rates.

• Estimate values of δ for which ON/OFF periods as well as connections
can be effectively correlated in different network topologies for varying
packet sampling rates.

• Verify whether the γtiming value of 0.3 (as estimated by Zhang et al. [55])
is correct for identifying correlated connections.

• Estimate γcontent-size value for effective content-size based correlation.

• Analyze the effectiveness of edit-distance based and causality-based
chaff detection techniques in different network topologies for varying
packet sampling rates.

• Evaluate the possibility of de-anonymization by correlating arbitrary
connection pairs in different network topologies for varying packet sam-
pling rates.

CHAPTER 4. TIMING-BASED DETECTION IN SDN AND NFV 35

4.3 Implementation Details

Emulation Environment We used Mininet1 as the primary tool for emu-
lating the necessary environment. Mininet is a popular tool for experimenting
with SDN and OpenFlow and runs virtual hosts, switches and links on top
of the same operating system kernel. Although the components are created
with software rather than real hardware, real network behaviour can be repli-
cated in this virtual environment. It is possible to create different network
topologies and to ssh [53] to the virtual hosts. The virtual switches support
OpenFlow as well as sFlow protocols.

sFlow packet sampling fits our implementation as the switches immedi-
ately forward the sampled header information without caching. The sFlow
sampling rate and polling rate can be configured for the switches. These
rates can be adjusted to fit the type of the network (bandwidth, traffic vol-
ume, etc.) so that the sFlow collector is not flooded with sFlow datagrams.
As different sampling rates are used, the probability that a packet travers-
ing a specific switch will be sampled and reported to the collector varies.
For example, if the sampling rate is 1 in s packets, then the probability of
a particular packet getting sampled is 1/s. Hence, if packets have to pass
through n switches on average, the probability of a packet being sampled in
at least one of the n switches is 1− ((s− 1)/s)n which increases with n for a
fixed value of s. On the other hand, for a fixed average number of switches
n, the probability of a packet being sampled in at least one of the switches
decreases with increase in the sampling rate s.

There is also a related trade-off which should be considered while design-
ing network monitoring systems for SDN environments. If the probability of
a packet being sampled increases beyond a threshold, it may result in flood-
ing at the sFlow collector and hence reduce the scalability of the system.
Hence, monitoring strategies have to be devised which can gain sufficient
insight from sampled data and make the monitoring system truly scalable.

Technologies used Mininet uses by default a reference controller which
installs flow entries to the flow tables of the switches through the SBI. We
require a framework to monitor the network in order to identify the stepping
stones as OpenFlow counter values do not provide sufficient information.
Hence, an sFlow controller is needed to gather traffic-related metadata from
the switches (sFlow agents). We used Node.js2 to implement the sFlow con-

1http://mininet.org/
2https://nodejs.org/en/

CHAPTER 4. TIMING-BASED DETECTION IN SDN AND NFV 36

troller and MongoDB3 as the forensic data store for traffic data.
In our study, we have used Mininet 2.2.1, Open vSwitch 2.0.2, OpenFlow

1.0 and sFlow 5.0. For the forensic data store we have used MongoDB 3.2.4.

Implementation As shown by Figure 4.1, the sFlow controller can be
logically divided into two different modules: the sFlow collector and the
data analyzer. The modules interact with the forensic data store to store
and retrieve traffic data and to store correlation information. An application
can retrieve information about correlations and stepping stones from the
forensic data store.

We implemented two different versions of the data analyzer. The ver-
sion which is discussed here detects stepping stones in real-time based on
the sFlow datagrams forwarded by the sFlow capable switches in the net-
work. Another version of our application analyses captured network traces,
simulates sFlow sampling and identifies stepping stones.

Figure 4.1: The architecture.

The sFlow agents embedded in switches can be configured to modify the
sampling and polling rates. The sFlow agent extracts header information

3https://www.mongodb.org/

CHAPTER 4. TIMING-BASED DETECTION IN SDN AND NFV 37

from the sampled packets, marshals the header information into sFlow data-
grams and sends the datagrams immediately to the sFlow collector. The
sFlow collector module extracts the header information from the sFlow data-
grams and stores the information in a data-store to be used by the data-
analysis module in order to correlate connections and detect stepping-stones.

The data-analysis module works on the traffic data collected by the data-
collection module. It fetches the raw traffic data comprised of header in-
formation and removes redundancy introduced by multiple sFlow agents in
the path of a packet sending the same header information. Then it tries
to match these headers with existing connections between the hosts. Once
the matching has been done, the header information is used to update the
connection data. The individual connection information is used to correlate
the connections. The knowledge gained by this module can be used by an
intrusion prevention system (IPS) application, which may instruct the SDN
controller to isolate stepping stones and to restrict traffic generated at these
stepping stones.

The forensic data store stores the necessary information for forensic anal-
ysis of the data. Although the header information received by the collector
module gets temporarily stored here, the data store gets rid of unnecessary
data and stores only meaningful data like period correlation information and
connection correlation information, which can act as evidence in forensic
analysis.

4.4 Topologies and Sampling Rates

Figure 4.2: Single Switch or Star Topology

We consider four different topologies in our experiments: single switch or
star topology, tree topology, linear topology and clos topology. The average
number of switches between two hosts varies between the topologies. If the
sFlow packet sampling rate is set to 1 in n packets and the average number of

CHAPTER 4. TIMING-BASED DETECTION IN SDN AND NFV 38

switches between two end hosts is s, then the probability of a packet getting

sampled in at least one of the switches is 1−
(n− 1

n

)s
.

In the single switch or star topology of Figure 4.2, every packet has to
traverse a single switch before it can get delivered to the destination host.
Hence, if the sFlow packet sampling rate is 1 in n packets, the probability of
an individual packet getting sampled is 1/n.

Figure 4.3: Tree Topology

In the tree topology of Figure 4.3, we have used h1, h3, h2 and h4 as
the consecutive hops in our experiments. Hence, every packet has to traverse
through 3 switches before it gets delivered to the destination host. If the
sFlow packet sampling rate is 1 in n packets, the probability of a packet

getting sampled in at least one of the 3 switches is 1−
(n− 1

n

)3
.

Figure 4.4: Linear Topology

In the linear topology of Figure 4.4, if host h1 sends a packet to host
h5, the packet traverses through 5 switches and hence the probability of it

getting sampled is 1−
(n− 1

n

)5
when the packet sampling rate is set to 1 in

n packets.
In the clos topology of Figure 4.5, there are 5 switches between host h1

and h7 along any of the possible paths. Hence, following the same argument

CHAPTER 4. TIMING-BASED DETECTION IN SDN AND NFV 39

Figure 4.5: Clos Topology

as in the case of linear topology, the probability of a packet sent from h1 to

h7 getting sampled is 1−
(n− 1

n

)5
when the packet sampling rate is set to

1 in n packets.

4.5 sFlow Security

The deployment of network monitoring raises a number of security issues
which need to be addressed. sFlow does not have any security mechanism
and relies on proper deployment and configuration.

sFlow traffic is sent unencrypted to the collector. Casual eavesdropping
as well as spoofing of datagrams are possible. To eliminate these issues,
sFlow datagrams should be sent through an isolated channel. VLAN or VPN
tunnels can be used to create these secure isolated channels. The solution
is deployment specific and in our experiments we have simply forwarded the
unencrypted traffic through the network to the collector. However, in our
implementation, we check the sequence numbers of the headers encapsulated
in the sFlow datagrams to remove possible redundancy or spoofed packets.

Analysis of the sFlow datagrams can reveal sensitive information about

CHAPTER 4. TIMING-BASED DETECTION IN SDN AND NFV 40

the network activities of a user. Although sampling of packets at the switches
and limiting the number of header bytes encapsulated by the sFlow datagram
prevents leakage of sensitive information to some extent, only the network ad-
ministrators with proper rights should be allowed to access the forensic data
store for forensic analysis. Nevertheless, network monitoring itself makes the
network more robust and less vulnerable to attacks.

Chapter 5

Results

In this chapter we present the results gathered while experimenting with
stepping stone detection in different network topologies and varying sFlow
packet sampling rates. Each experiment is run 100 times and the graphs plot
results with 3 bars. The middle bar represents the average while the upper
and lower bars depict the range in 95% of the cases.

5.1 Identification of ON/OFF Periods

From Figures 5.1, 5.2, 5.3 and 5.4, it is evident that the number of ON
periods for a specific volume of traffic decreases with an increase in Tidle in
the different topologies. Nevertheless, a Tidle value of 500 milliseconds leads
to the identification of sufficient number of ON periods in the tree, linear
and clos topologies. Even though the number of ON periods for Tidle set to
500 milliseconds is less than 10 in this specific case of the star topology, the
value should be high enough for effective analysis of interactions done over
considerable periods of time.

It is also evident that the number of ON periods increases with the in-
crease in the number of sampling switches between two stepping-stone hosts.
In our experiments, the packet sampling rate was set to 1/10. For packet
sampling rate of 1/1, with the same generated traffic, 15 ON periods were
identified when Tidle was set to 500 milliseconds. We attribute the increase
in the number of ON periods for packet sampling rate of 1/10 in most of
the topologies to the fact that some packets within a longer ON period were
not sampled by any of the switches, which divided the single ON period into
multiple smaller ON and OFF periods.

41

CHAPTER 5. RESULTS 42

0

10

20

30

40

50

Single Switch Topology

h1 → h2

T_idle (in milliseconds)

N
um

be
r

of
 O

N
 P

er
io

ds

100 200 300 500

Figure 5.1: Effect of varying Tidle on the number of ON periods of connections
for single switch or star topology. Packet sampling rate is 1/10.

0

10

20

30

40

50

Tree Topology

h1 → h3

T_idle (in milliseconds)

N
um

be
r

of
 O

N
 P

er
io

ds

100 200 300 500

Figure 5.2: Effect of varying Tidle on the number of ON periods of connections
for tree topology. Packet sampling rate is 1/10.

CHAPTER 5. RESULTS 43

0

10

20

30

40

50

Linear Topology

h1 → h5

T_idle (in milliseconds)

N
um

be
r

of
 O

N
 P

er
io

ds

100 200 300 500

Figure 5.3: Effect of varying Tidle on the number of ON periods of connections
for linear topology. Packet sampling rate is 1/10.

0

10

20

30

40

50

Clos Topology

h1 → h7

T_idle (in milliseconds)

N
um

be
r

of
 O

N
 P

er
io

ds

100 200 300 500

Figure 5.4: Effect of varying Tidle on the number of ON periods of connections
for clos topology. Packet sampling rate is 1/10.

CHAPTER 5. RESULTS 44

5.2 Correlation of ON Periods

In Figures 5.5 and 5.6, we present the observed number of correlated ON
periods between two consecutive connections in a chain of stepping stones
in a tree topology. Here the attacker hops from host h1 to h2 and then to
h3 and generates attack traffic. The number of correlated ON periods in
consecutive connections h1→ h2 and h2→ h3 increases with the increase in
δ. In the non-sampled case, low values of δ in the range of 1-3 milliseconds are
sufficient to correlate ON periods. With a packet sampling rate of 1/10, a δ
of 100 milliseconds is necessary to identify correlations between ON periods.
Nevertheless, higher values of δ should be avoided in order to keep the false
positive rate low.

0

3

6

9

12

15

Tree Topology

h1 → h3 → h2; Packet Sampling Rate: 1/1

δ (in milliseconds)

N
um

be
r

of
 C

or
re

la
te

d
O

N
 P

er
io

ds

1 2 3

Figure 5.5: Effect of varying δ on the correlation of ON periods in a tree
topology. Tidle is 500 milliseconds.

In Figures 5.7 and 5.8, we observe the number of correlated ON periods
for attack traffic trace generated in a clos topology. Here the attacker hops
from host h1 to h7 and then to h3. From the graphs, we can observe that
the number of correlations of ON periods between consecutive connections
h1→ h7 and h7→ h3 increases with the value of δ. When packet sampling
rate is 1/1, the correlation is quite high for very low values of δ similar to the
tree topology. Also, when packet sampling rate is set to 1/10, the number of

CHAPTER 5. RESULTS 45

0

3

6

9

12

15

Tree Topology

h1 → h3 → h2; Packet Sampling Rate: 1/10

δ (in milliseconds)

N
um

be
r

of
 C

or
re

la
te

d
O

N
 P

er
io

ds

10 50 100

Figure 5.6: Effect of varying δ on the correlation of ON periods in a tree
topology. Tidle is 500 milliseconds.

0

3

6

9

12

15

Clos Topology

h1 → h7 → h3; Packet Sampling Rate: 1/1

δ (in milliseconds)

N
um

be
r

of
 C

or
re

la
te

d
O

N
 P

er
io

ds

1 2 3

Figure 5.7: Effect of varying δ on the correlation of ON periods in a clos
topology. Tidle is 500 milliseconds.

CHAPTER 5. RESULTS 46

0

3

6

9

12

15

Clos Topology

h1 → h7 → h3; Packet Sampling Rate: 1/10

δ (in milliseconds)

N
um

be
r

of
 C

or
re

la
te

d
O

N
 P

er
io

ds

10 50 100

Figure 5.8: Effect of varying δ on the correlation of ON periods in a clos
topology. Tidle is 500 milliseconds.

correlations is high for δ value of 100 milliseconds. Hence, the observations
are similar for the tree and clos topologies and can provide us with possible
values of δ to be used in different topologies and sampling rates.

5.3 Timing Based Correlation

The timing-based correlation score of two consecutive connections in a step-
ping stone chain in a tree topology increases with δ as depicted in Figures 5.9
and 5.10. The attacker hops from host h1 to h2 and then to h3. The timing-
based correlation scores for the two consecutive connections h1 → h2 and
h2→ h3 in the non-sampled case are higher than the threshold γtiming value
of 0.3 for δ in the range of 1 to 3 milliseconds. 1 being the highest possible
value, the correlation score saturates for δ value of 2 milliseconds at a high
value of 0.867. For packet sampling rate of 1/10, the scores are much lower
even for much higher δ values but increase monotonically with δ. For δ set
to 100 milliseconds or more, the correlation score lies above γtiming and the
connections are correlated.

From Figures 5.11 and 5.12, it is evident that running similar experiments
in the clos topology results in observations similar to the tree topology. The

CHAPTER 5. RESULTS 47

0

0.2

0.4

0.6

0.8

1

Timing Based Correlation

Tree Topology: h1 → h3 → h2; Packet Sampling Rate: 1/1

δ (in milliseconds)

T
im

in
g

B
as

ed
 C

or
re

la
tio

n
S

co
re

1 2 3

Threshold
(γ) = 0.3

Figure 5.9: Effect of varying δ on the timing based correlation score in a tree
topology. Tidle is 500 milliseconds.

0

0.2

0.4

0.6

0.8

1

Timing Based Correlation

Tree Topology: h1 → h3 → h2; Packet Sampling Rate: 1/10

δ (in milliseconds)

T
im

in
g

B
as

ed
 C

or
re

la
tio

n
S

co
re

10 50 100 200

Threshold
(γ) = 0.3

Figure 5.10: Effect of varying δ on the timing based correlation score in a
tree topology. Tidle is 500 milliseconds.

CHAPTER 5. RESULTS 48

0

0.2

0.4

0.6

0.8

1

Timing Based Correlation

Clos Topology: h1 → h7 → h3; Packet Sampling Rate: 1/1

δ (in milliseconds)

T
im

in
g

B
as

ed
 C

or
re

la
tio

n
S

co
re

1 2 3

Threshold
(γ) = 0.3

Figure 5.11: Effect of varying δ on the timing based correlation score in a
clos topology. Tidle is 500 milliseconds.

0

0.2

0.4

0.6

0.8

1

Timing Based Correlation

Clos Topology: h1 → h7 → h3; Packet Sampling Rate: 1/10

δ (in milliseconds)

T
im

in
g

B
as

ed
 C

or
re

la
tio

n
S

co
re

Threshold
(γ) = 0.3

10 50 100 200

Figure 5.12: Effect of varying δ on the timing based correlation score in a
clos topology. Tidle is 500 milliseconds.

CHAPTER 5. RESULTS 49

timing-based correlation score is above the threshold value (γtiming) of 0.3 for
very low values of δ in the range of 1-3 milliseconds when packet sampling rate
is 1/1. Hence correlated connections could be effectively identified. When
sFlow packet sampling rate is set to 1/10, effective correlation is possible for
δ values of 100 milliseconds and higher. We should keep in mind that very
high values of δ, on the other hand, leads to increase in the rate of false
positives and should be avoided.

5.4 Content-Size Based Correlation

0

0.2

0.4

0.6

0.8

1

Content-size Based Correlation

Connection Types

C
or

re
la

tio
n

S
co

re

Unrelated Related

Figure 5.13: Content-size based correlation score for related and unrelated
connections.

Content-size based correlation is used as a second check in order to reduce
the number of false positives. Even if two unrelated connections generate a
very high timing based correlation score, it is unlikely that the content sizes
over the ON periods would show a similar pattern for the connections. Fig-
ure 5.13 presents the graph which depicts that this additional measure is
effective and the differences in scores between unrelated and related connec-
tions is high. In case of connections which are unrelated, the score lies near
to the ideal value of 0.5 with an average score of 0.627 in the 95th percentile.
In case of related connections the average content-size based correlation score
is 0.894 which is near the ideal score of 1. These observations motivate us
to set the threshold value γcontent-size for content-size based correlation to

CHAPTER 5. RESULTS 50

0.8. Connection pairs should be marked as correlated if and only if both the
timing-based correlation score and the content-size based correlation score
lie above the defined thresholds.

5.5 Edit-Distance Based Chaff Detection

0

0.3

0.6

0.9

1.2

1.5

Edit-distance Based Chaff Detection

Tree Topology: h1 → h3 → h2 → h4; Chaff at h3 → h2

Packet Sampling Rate, Chaff Condition

E
di

t D
is

ta
nc

e

1/1, no chaff
1/1, chaff

1/10, no chaff
1/10, chaff

Threshold = 1

Figure 5.14: Edit distance based chaff detection in sampled and non-sampled
environments in tree topology.

Edit-distance of an interactive connection is high if the attacker inserts
chaff in the traffic. The threshold distance is 1 and a connection is marked
as anomalous due to chaff if the observed edit-distance is more than this
threshold. In our experiments, the attacker establishes an ssh session in a
tree topology from host h1 to h4 using intermediate hosts h3 and h2 as
the stepping stones. The attacker then introduces chaff in the connection
h3→ h2 in the stepping stone chain h1→ h3→ h2→ h4. The same attack
traffic trace is fed to our application for both sampled and non-sampled cases.
We run our experiments for traffic with chaff and no chaff. As depicted in
Figure 5.14, the detection technique is able to identify anomalous connections
effectively in a tree topology. The difference between the edit distances when
there is chaff and when there is no chaff is higher when packet sampling rate
is 1/1. Nevertheless, even when the sFlow packet sampling rate is set to
1/10, the edit-distance lies above the threshold when there is chaff.

CHAPTER 5. RESULTS 51

0

0.3

0.6

0.9

1.2

1.5

Edit-distance Based Chaff Detection

Clos Topology: h1 → h7 → h3 → h5; Chaff at h7 → h3

Packet Sampling Rate, Chaff Condition

E
di

t D
is

ta
nc

e

Threshold = 1

1/1, no chaff 1/10, no chaff
1/1, chaff 1/10, chaff

Figure 5.15: Edit distance based chaff detection in sampled and non-sampled
environments in clos topology.

In clos topology (Figure 5.15), we ran similar experiments. Here the step-
ping stone chain is h1→ h7→ h3→ h5 and chaff is deliberately introduced
in the attack traffic at h7→ h3. Observations are similar to those in the tree
topology, and the edit distances for the connection h7 → h3 lie above the
threshold distance of 1 when there is chaff in the attack traffic. The differ-
ence of scores in case of chaff and no chaff is smaller when the sFlow packet
sampling rate is set to 1/10 but the detection mechanism is still effective
enough to mark connections with chaff as anomalous.

5.6 Causality Based Chaff Detection

Causality based anomaly score of an interactive connection is low if there
is exactly one ON period in the reverse leg of the connection between two
consecutive ON periods in the forward leg and vice versa. When the attacker
inserts chaff in the attack traffic, the score increases and the connection is
marked as anomalous once the score rises above the threshold value of 0.67.
We executed the detection mechanism on captured attack traffic trace in the
same way as discussed in the previous section on edit-distance based chaff
detection. As evident from Figure 5.16 and 5.17, the detection technique
is effective when the packet sampling rate is 1/1 and the connections with
injected chaff are marked anomalous. When the sFlow packet sampling rate

CHAPTER 5. RESULTS 52

0

0.2

0.4

0.6

0.8

1

Causality Based Chaff Detection

Tree Topology: h1 → h3 → h2 → h4; Chaff at h3 → h2

Packet Sampling Rate, Chaff Condition

C
au

sa
lit

y
B

as
ed

 A
no

m
al

y
S

co
re

1/1, no chaff 1/10, no chaff
1/1, chaff 1/10, chaff

Threshold = 0.67

Figure 5.16: Causality based chaff detection in sampled and non-sampled
environments in tree topology.

0

0.2

0.4

0.6

0.8

1

Causality Based Chaff Detection

Clos Topology: h1 → h7 → h3 → h5; Chaff at h7 → h3

Packet Sampling Rate, Chaff Condition

C
au

sa
lit

y
B

as
ed

 A
no

m
al

y
S

co
re

Threshold = 0.67

1/1, no chaff 1/10, no chaff
1/1, chaff 1/10, chaff

Figure 5.17: Causality based chaff detection in sampled and non-sampled
environments in clos topology.

CHAPTER 5. RESULTS 53

is 1/10, this detection technique is ineffective and the anomaly score lies
below the threshold value even in positive cases. Hence, when lower packet
sampling rates are enabled, edit-distance based chaff detection mechanism
should be implemented in order to effectively detect anomalous connections
with injected chaff.

5.7 De-anonymization

0

0.2

0.4

0.6

0.8

1

De-anonymization (Packet Sampling Rate: 1/1)

Tree Topology: h1 → h3 → h2 → h4; Correlation between h1 → h3 and h2 → h4

δ (in milliseconds)

T
im

in
g

B
as

ed
 C

or
re

la
tio

n
S

co
re

1 2 3

Threshold
(γ) = 0.3

Figure 5.18: Effect of varying δ on the timing based correlation score of two
non-consecutive connections in a stepping stone chain in a tree topology. Tidle
is set to 500 milliseconds.

We tried to correlate first (h1 → h3) and last connection (h2 → h4)
in a chain of stepping stones (h1 → h3 → h2 → h4) in a tree topology.
Figures 5.18 and 5.19 present the timing based correlation scores in the 95th
percentile for the first and last connections when sFlow packet sampling is
1/10 and 1/1. When packet sampling rate is 1/1, the timing-based correlation
scores are higher than the threshold value (γtiming) of 0.3 for positive cases for
very small values of δ in the range of 1-3 milliseconds. However, when packet
sampling rate is 1/10, the timing-based correlation scores do not rise above
the threshold value even for higher values of δ like 100 and 200 milliseconds.

In the clos topology, we tried to correlate the first and last links in a
chain of connections h1 → h7 → h3 → h5 in a similar way. When sFlow
packet sampling rate is 1/1, the connections h1 → h7 and h3 → h5 are

CHAPTER 5. RESULTS 54

0

0.2

0.4

0.6

0.8

1

De-anonymization (Packet Sampling Rate: 1/10)

Tree Topology: h1 → h3 → h2 → h4; Correlation between h1 → h3 and h2 → h4

δ (in milliseconds)

T
im

in
g

B
as

ed
 C

or
re

la
tio

n
S

co
re

50 100 200

Threshold
(γ) = 0.3

Figure 5.19: Effect of varying δ on the timing based correlation score of two
non-consecutive connections in a stepping stone chain in a tree topology. Tidle
is set to 500 milliseconds.

0

0.2

0.4

0.6

0.8

1

De-anonymization (Packet Sampling Rate: 1/1)

Clos Topology: h1 → h7 → h3 → h5; Correlation between h1 → h7 and h3 → h5

δ (in milliseconds)

T
im

in
g

B
as

ed
 C

or
re

la
tio

n
S

co
re

Threshold
(γ) = 0.3

1 2 3

Figure 5.20: Effect of varying δ on the timing based correlation score of two
non-consecutive connections in a stepping stone chain in a clos topology. Tidle
is set to 500 milliseconds.

CHAPTER 5. RESULTS 55

0

0.2

0.4

0.6

0.8

1

De-anonymization (Packet Sampling Rate: 1/10)

Clos Topology: h1 → h7 → h3 → h5; Correlation between h1 → h7 and h3 → h5

δ (in milliseconds)

T
im

in
g

B
as

ed
 C

or
re

la
tio

n
S

co
re

Threshold
(γ) = 0.3

50 100 200

Figure 5.21: Effect of varying δ on the timing based correlation score of two
non-consecutive connections in a stepping stone chain in a clos topology. Tidle
is set to 500 milliseconds.

effectively correlated with timing-based correlation scores lying above the
threshold value of 0.3 for low values of δ in the range of 1-3 milliseconds.
When sFlow packet sampling rate is 1/10, the timing-based correlation score
lies above the threshold value of 0.3 for δ set to 200 milliseconds. Hence,
for high values of δ, we can effectively correlate a pair of non-consecutive
connections in sampled environments. But we should keep in mind that high
values of δ also leads to higher rates of false positives.

Chapter 6

Discussions

In this chapter we discuss the results presented in the previous chapter. We
try to find out the significance of the results along with the shortcomings.
We also discuss possible future work in this field.

6.1 Significance of the Results

Detection based on sufficient data Consecutive connections in stepping
stone chains were effectively detected in the different topologies for sFlow
packet sampling rates of 1/1 and 1/10. The numbers of detected ON periods
and correlated ON periods were sufficient to identify stepping stones.

Content-size based second level check Content-size based correlation
reduces the number of false positives. This technique correlates the content
sizes of two connections’ correlated ON periods. A low correlation score in-
dicates that timing-based detection may have generated a false positive case.
This technique is a new proposal and was not part of the previous solu-
tions. This additional step in the detection mechanism reduces the chances
of generating false positive alarms.

Effective detection of anomaly due to chaff Edit-distance as well as
causality based chaff detection techniques adapt well to the SDN environment
when sFlow packet sampling rate is 1/1. For lower packet sampling rate of
1/10, causality based chaff detection becomes ineffective. Edit-distance based
chaff detection is, however, effective even in this case.

De-anonymization is a possibility In our experiments, the stepping-
stone detection techniques effectively correlate non-consecutive connections

56

CHAPTER 6. DISCUSSIONS 57

in a chain of stepping stones when sFlow packet sampling rate is 1/1. When
sFlow packet sampling rate is 1/10, the timing-based correlation score for
non-consecutive connections falls below the threshold value in the tree topol-
ogy. However, in the clos topology the timing-based technique effectively cor-
relates non-consecutive connections in a chain of stepping stones. The reason
for this phenomenon is that, in our experiments, there are fewer switches be-
tween two consecutive stepping stones in the tree topology than in the clos
topology. For packet sampling rates less than 1/1, the probability of a packet
getting sampled at least once increases with the number of switches between
the host and the destination. We should keep in mind that clos is a more
realistic topology than the tree topology in data-center networks.

Application to non-interactive network traffic As discussed in 3.1.2,
attackers can steal video streams by compromising the storage device in a
network. Delta-compressed video streams generate a traffic pattern which,
although non-interactive in nature, exhibits ON (data) and OFF (no data)
periods. Hence, the same detection techniques can be applied to identify the
stepping stone, which in this case is the compromised host, by correlating
consecutive connections in the chain. This can be used to detect that the
video stream is leaking out to the Internet.

6.2 Limitations

Impact of packet sampling on the stepping stone and anomaly de-
tection techniques The timing and content-size based stepping stone de-
tection techniques as well as the edit-distance and causality based chaff detec-
tion techniques are affected by sFlow sampling. When the packet sampling
rate is set to 1/10, the scores of these detection techniques decrease in all the
topologies. In large networks, sFlow packet sampling rates must be much
lower than 1/10 to reduce monitoring traffic.

Lack of incorporation of specifics of SDN and NFV environment
In our solution, we have not used any property of SDN or NFV which helps
in making these detection techniques more effective. Rather, our approach
has been naive in trying to find out ways in which existing solutions can be
adapted to this new environment. sFlow is a protocol used for monitoring
networks in general, and we have used it here alongside OpenFlow. It might
be possible to develop new techniques that integrate fully with the SDN and
NFV environments.

CHAPTER 6. DISCUSSIONS 58

Limited scalability of the solution We have assumed in our study that
a single sFlow collector module will be able to accept all sFlow datagrams
sent from the switches in the network and that a single analyzer module will
be able to effectively detect all correlations in real-time. In large networks,
this might not be the case, and a more scalable solution would be required.
Multiple collector and analyzer modules may need to work in parallel on
the same forensic data store. Even the data store itself may have to be
distributed.

Use of data store leads to lot of disk accesses The forensic data store
was implemented using MongoDB, which is accessed by both the collector
and analyzer modules. This leads to a lot of disk access. Use of a distributed
memory-based caching system like memcached1 may reduce the latency of
disk access.

Continuous bandwidth consumption Our implementation is based on
the idea of continuous network monitoring in order to collect forensic data
related to the correlation of connections. This results in continuous consump-
tion of network bandwidth as the switches forward sFlow datagrams to the
collector. If more of the processing was done at the switches, the bandwidth
requirements could be radically reduced.

Lack of real traces and estimate of false positives We simulated
stepping stone attacks in different topologies with Mininet. The collected
traffic trace was used to analyze the effectiveness of the implemented stepping
stone detection techniques. Real attack traces in SDN environments would
have increased the accuracy of our results.

The stepping stone detection techniques do not differentiate between at-
tackers and stepping stones in legitimate communication. False positive in
our study means two uncorrelated connections reported by the detection
mechanisms to be correlated. In our experiments, we did not find a single
false positive case. However, if we also considered stepping stones in legiti-
mate communication as false positives, there would be many cases.

Moreover, we found a large number of false negative cases for sFlow sam-
pling rates lower than 1/1. Also, causality based anomaly detection mech-
anism, unlike edit-distance based anomaly detection mechanism, becomes
ineffective at lower sFlow sampling rates and does not mark connections as
anomalous even in the presence of chaff in the network traffic.

1https://memcached.org/

CHAPTER 6. DISCUSSIONS 59

6.3 Future Work

Scalability The solution can be modified to be more scalable. One can de-
sign distributed collector and analyzer modules. In that case, a distributed
co-ordination mechanism should be implemented in order to synchronize
these applications. Distributed memory cache like memcached can be used
to reduce the number of disk accesses by the distributed applications.

Reactive design As we have observed, detection of correlated connection
pairs is more efficient at higher packet sampling rates. The detection mecha-
nisms perform poorly when the packet sampling rate is reduced. In order to
solve this problem, it is important to identify alternative mechanisms to col-
lect useful information. For example, one may try to incorporate the sFlow
polling mechanism or counter values from OpenFlow in the solution. The
challenge is that it is easy to collect data at the flow level but difficult to
collect data about individual connections within aggregate flows.

Figure 6.1: IDS triggered reactive stepping stone detection mechanism

An alternative solution might be to make the stepping stone detection
mechanism reactive as shown in Figure 6.1. One can use triggered stepping

CHAPTER 6. DISCUSSIONS 60

stone detection instead of continuous monitoring. The deployed IDS, on
detection of an attack in an end host, triggers the stepping stone detection
mechanisms and enables sFlow forwarding in the switches. For a short period
of time, the switches forward all header information to the collector to be
analyzed by the analyzer module. Once the chain of stepping stones is identi-
fied or the detection mechanism times out, sFlow reporting is disabled in the
switches and the detection applications are deactivated. Nevertheless, this
scheme might generate a huge amount of redundant traffic in a very short
period of time if not efficiently designed. For example, in a clos topology
(Figure 4.5) all traffic between hosts passes through the access layer switches
or the switches closest to the hosts. Hence, it should be sufficient to enable
sFlow in these switches only, thus saving bandwidth. This reduces generated
network traffic. Further, an intelligent optimized scheme might be designed
to selectively enable sFlow reporting in the switches to assist the stepping
stone detection mechanisms.

Botnet detection In our current study, we have only considered detec-
tion of stepping stones where the traffic is interactive. Botnets, as already
discussed in Chapter 3, can also be used by attacker to launch attacks in a
network, and there are various existing techniques to detect bots and bot-
nets. The proposed architecture can be used to analyze the sampled header
information, which might reveal potential bot activities and trigger botnet
detection mechanisms in SDN and NFV environments.

Chapter 7

Conclusions

In a network of connected hosts, attackers may hop from one compromised
host to the other to form a chain of stepping stones before attacking the
victim. Stepping stone detection techniques exist to identify the attacker
by tracing back through the chain of stepping stones. There are content-
matching based [38, 46] active and passive detection techniques for un-encrypted
traffic. With the advent of secure shell or SSH, various timing based detec-
tion techniques [1, 45, 54, 55] have been proposed. Furthermore, the attackers
may try to avoid the detection. For this reason, Crescenzo et al. [11] proposed
various anomaly detection techniques to mark connections with deliberately
inserted jitter and chaff as anomalous. All of these detection techniques work
on interactive traffic where the attacker uses remote terminal sessions to hop
from one host to the next.

Stepping stone attacks are still relevant in today’s world of automated
botnets and malware. In advanced persistent threats or APTs, the attacker
spends a lot of time exploring the target network only to steal critical data.
In APTs and similar attacks, the attacker often exploits vulnerabilities in a
server or host that is within the target network but accessible from outside,
compromises it, and uses it as a stepping stone to gain more knowledge o the
internals of the network and to launch new attacks. Another typical scenario
could be an attacker hijacking live video steams (Figure 3.1) from camera
devices and using a compromised host in the target network to relay them to
the outside. Here the traffic pattern is also similar to interactive traffic with
ON/OFF periods due to the delta compression of the video streams.

SDN and NFV are new avenues of computer networks currently being
adopted by the industry. They make the networks programmable and easy
to manage. In this study, we investigated how to adapt the stepping stone
detection techniques to fit this new model of networks. For network monitor-
ing, we used the sFlow protocol. In our simulations, we used sFlow enabled

61

CHAPTER 7. CONCLUSIONS 62

Open vSwitches as the forwarding elements. We presented an SDN-based ar-
chitecture (Figure 4.1) which can be implemented to monitor the data plane
for correlated connections and stepping stones. The sFlow enabled switches
sample packets passing through them and forward the header information to
a central collection and analysis module. The data analysis module removes
redundancy in received information and maps sampled headers to connec-
tions. It also identifies ON and OFF periods in connections in order to cor-
relate them. The timing based stepping stone detection techniques as well as
the anomaly-based chaff detection techniques have been implemented within
our analyzer module. Correlations and anomalies are detected in real-time
and stored in a forensic data store for future reference.

Our implementation could effectively correlate connections and detect
stepping stones for the relatively high packet sampling rates of 1/1 and 1/10.
The implemented chaff detection techniques also perform well under similar
conditions. Nevertheless, with lower sampling rates, the analyzer misses
out critical information and hence the detection becomes ineffective. One
solution could be to make the detection mechanism reactive, in which case
higher sampling rates for shorter periods of time might be affordable. We
also successfully correlated non-consecutive connections in a stepping stone
chain. The same technique can be used to correlate the first and last links
in an anonymity network to expose an attacker that logs back to its own
network via an anonymity service such as Tor.

Future work should be aimed at making the solution scalable. A dis-
tributed sFlow controller is needed in large networks. The existing central-
ized solution should be modified to fit the distributed model. A distributed
in-memory cache can be used in place of the forensic data store, which will
reduce the number of disk accesses and enhance the performance of the de-
tection mechanisms.

We conclude by claiming that our work can act as a starting point for
researchers in the field of network monitoring and stepping stone detection
in SDN and NFV environments.

Bibliography

[1] Blum, A., Song, D., and Venkataraman, S. Detection of inter-
active stepping stones: Algorithms and confidence bounds. In Recent
Advances in Intrusion Detection, E. Jonsson, A. Valdes, and M. Alm-
gren, Eds. Springer, 2004, pp. 258–277.

[2] Bo, H., Gopalakrishnan, V., Lusheng, J., and Seungjoon, L.
Network function virtualization: Challenges and opportunities for inno-
vations. IEEE Communications Magazine 53 (2015), 90–97.

[3] Braun, W., and Menth, M. Software-defined networking using
OpenFlow: Protocols, applications and architectural design choices. Fu-
ture Internet 6 (2014), 302–336.

[4] Chang, W., Wang, A., Mohaisen, A., and Chen, S. Characteriz-
ing botnets-as-a-service. In ACM SIGCOMM Computer Communication
Review (2014), vol. 44, ACM, pp. 585–586.

[5] Chiosi, M., Clarke, D., Willis, P., Reid, A., Feger, J., Bu-
genhagen, M., Khan, W., Fargano, M., Cui, C., Deng, H.,
et al. Network functions virtualisation: An introduction, benefits, en-
ablers, challenges and call for action. In SDN and OpenFlow World
Congress (2012), pp. 22–24.

[6] Chirgwin, R. ‘Panama papers’ came from email server hack at
Mossack Fonseca. http://www.theregister.co.uk/2016/04/05/email_

server_hack_led_to_mossack_fonseca_leak/. [Online; posted 05-April-
2016].

[7] Choi, H., Lee, H., and Kim, H. BotGAD: detecting botnets by
capturing group activities in network traffic. In Proceedings of the Fourth
International ICST Conference on COMmunication System softWAre
and middlewaRE (2009), ACM, pp. 2:1–2:8.

63

http://www.theregister.co.uk/2016/04/05/email_server_hack_led_to_mossack_fonseca_leak/
http://www.theregister.co.uk/2016/04/05/email_server_hack_led_to_mossack_fonseca_leak/

BIBLIOGRAPHY 64

[8] Cisco Systems. Introduction to Cisco IOS NetFlow - a
technical overview. http://www.cisco.com/c/en/us/products/

collateral/ios-nx-os-software/ios-netflow/prod_white_

paper0900aecd80406232.html. [Online; accessed 05-February-2016].

[9] Claise, B. Specification of the IP flow information export (IPFIX)
protocol for the exchange of IP traffic flow information. RFC 5101,
IETF, January 2008.

[10] Daud, A. Y., Ghazali, O., and Omar, M. N. Stepping-stone
detection technique for recognizing legitimate and attack connections.
In Proceedings of the 5th International Conference on Computing and
Informatics, ICOCI 2015 (2015), pp. 440–446.

[11] Di Crescenzo, G., Ghosh, A., Kampasi, A., Talpade, R., and
Zhang, Y. Detecting anomalies in active insider stepping stone attacks.
Journal of Wireless Mobile Networks, Ubiquitous Computing, and De-
pendable Applications (JoWUA) 2, 1 (2011), 103–120.

[12] Dietrich, C. J., Rossow, C., Freiling, F. C., Bos, H.,
Van Steen, M., and Pohlmann, N. On botnets that use DNS
for command and control. In 2011 Seventh European Conference on
Computer Network Defense (2011), IEEE, pp. 9–16.

[13] Doria, A., Hadi Salim, J., Haas, R., Khosravi, H., Wang, W.,
Dong, L., Gopal, R., and Halpern, J. Forwarding and control
element separation (ForCES) protocol specification. RFC 5810, IETF,
March 2010.

[14] Ehrlich, W. K., Karasaridis, A., Hoeflin, D. A., and Liu, D.
Detection of spam hosts and spam bots using network flow traffic mod-
eling. In 3rd USENIX Workshop on Large-Scale Exploits and Emergent
Threats (2010).

[15] Gilbert, J. I. Scalable wavelet-based active network stepping stone
detection. DTIC document, 2012.

[16] Gu, G., Perdisci, R., Zhang, J., Lee, W., et al. BotMiner: Clus-
tering analysis of network traffic for protocol-and structure-independent
botnet detection. In Proceedings of the 17th USENIX Security Sympo-
sium (Security’08) (2008), pp. 139–154.

[17] Gu, G., Porras, P. A., Yegneswaran, V., Fong, M. W., and
Lee, W. BotHunter: Detecting malware infection through IDS-driven

http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html

BIBLIOGRAPHY 65

dialog correlation. In Proceedings of the 16th USENIX Security Sympo-
sium (Security’07) (2007), pp. 167–182.

[18] Gu, G., Zhang, J., and Lee, W. Botsniffer: Detecting botnet
command and control channels in network traffic. In Proceedings of
the 15th Annual Network and Distributed System Security Symposium,
NDSS (2008).

[19] Hakiri, A., and Berthou, P. Leveraging SDN for the 5G networks:
Trends, prospects and challenges. In Software Defined Mobile Networks
(SDMN) - Beyond LTE Network Architecture, M. Liyanage, A. Gurtov,
and M. Ylianttila, Eds. WILEY, 2015, ch. 5, pp. 61–80.

[20] He, T., and Tong, L. Detecting encrypted stepping-stone connec-
tions. In IEEE Transactions on Signal Processing - Volume 55, Issue 5
(2007), IEEE, pp. 1612 – 1623.

[21] Jacobson, V. Congestion avoidance and control. In ACM SIGCOMM
Computer Communication Review (1988), vol. 18, ACM, pp. 314–329.

[22] Kalt, C. Internet relay chat: Client protocol. RFC 2812, IETF, April
2000.

[23] Karasaridis, A., Rexroad, B., and Hoeflin, D. A. Wide-scale
botnet detection and characterization. USENIX HotBots 7 (2007).

[24] Kirkpatrick, K. Software-defined networking. Commun. ACM 56, 9
(Sept. 2013), 16–19.

[25] Lakshman, T. V., Nandagopal, T., Ramjee, R., Sabnani, K.,
and Woo, T. The SoftRouter architecture. In ACM SIGCOMM Work-
shop on Hot Topics in Networking (2004).

[26] Maymounkov, P., and Mazieres, D. Kademlia: A peer-to-peer
information system based on the xor metric. In Peer-to-Peer Systems.
Springer, 2002, pp. 53–65.

[27] Members of the 5G Infrastructure Association. 5G vision.
Tech. rep., 5G Infrastructure Association, February 2015. Supported by
the European Commission.

[28] Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., and
Borisov, N. BotGrep: Finding P2P bots with structured graph anal-
ysis. In USENIX Security Symposium (2010), pp. 95–110.

BIBLIOGRAPHY 66

[29] Nechaev, B., and Gurtov, A. Internet botnets: A survey of detec-
tion techniques. In Case Studies in Secure Computing - Achievements
and Trends, B. Issac and N. Israr, Eds. Auerbach Publications, 2014,
ch. 20, pp. 405–424.

[30] Open Networking Foundation. OpenFlow. https://www.

opennetworking.org/sdn-resources/openflow. [Online; accessed 04-
February-2016].

[31] Open Networking Foundation. SDN architecture overview. Tech.
Rep. ONF TR-504, Open Networking Foundation, November 2014.

[32] Paxson, V., and Floyd, S. Wide area traffic: the failure of Poisson
modeling. IEEE/ACM Transactions on Networking (ToN) 3, 3 (1995),
226–244.

[33] Peng, P., Ning, P., Reeves, D. S., and Wang, X. Active timing-
based correlation of perturbed traffic flows with chaff packets. In Dis-
tributed Computing Systems Workshops, 2005. 25th IEEE International
Conference on (2005), IEEE, pp. 107–113.

[34] Phaal, P., Panchen, S., and McKee, N. InMon Corporation’s
sFlow: A method for monitoring traffic in switched and routed networks.
RFC 3176, IETF, September 2001.

[35] Pyun, Y. J., Park, Y. H., Wang, X., Reeves, D. S., and Ning,
P. Tracing traffic through intermediate hosts that repacketize flows.
In INFOCOM 2007. 26th IEEE International Conference on Computer
Communications (2007), pp. 634–642.

[36] Risen, T. Mossack Fonseca blames Panama papers leak
on hackers. http://www.usnews.com/news/articles/2016-04-06/

mossack-fonseca-blames-panama-papers-leak-on-hackers. [Online;
posted 06-April-2016].

[37] Roesch, M., et al. Snort: Lightweight intrusion detection for net-
works. In 13th Systems Administration Conference (LISA’99) (1999),
vol. 99, USENIX, pp. 229–238.

[38] Staniford-Chen, S., and Heberlein, L. T. Holding intruders ac-
countable on the internet. In Proceedings of the 1995 IEEE Symposium
on Security and Privacy (Washington, DC, USA, 1995), IEEE Com-
puter Society, pp. 39–49.

https://www.opennetworking.org/sdn-resources/openflow
https://www.opennetworking.org/sdn-resources/openflow
http://www.usnews.com/news/articles/2016-04-06/mossack-fonseca-blames-panama-papers-leak-on-hackers
http://www.usnews.com/news/articles/2016-04-06/mossack-fonseca-blames-panama-papers-leak-on-hackers

BIBLIOGRAPHY 67

[39] Strayer, T. W., Jones, C., Schwartz, B., Edwards, S., Mil-
liken, W., and Jackson, A. Efficient multi-dimensional flow correla-
tion. In 32nd IEEE Conference on Local Computer Networks (LCN’07)
(2007), IEEE, pp. 531–538.

[40] Temperton, J., and Burgess, M. The security flaws at the heart of
the Panama papers. http://www.wired.co.uk/news/archive/2016-04/

06/panama-papers-mossack-fonseca-website-security-problems. [On-
line; posted 06-April-2016].

[41] The Internet Defense League. Tor project: Anonymity online.
https://www.torproject.org/. [Online; accessed 03-February-2016].

[42] Villamaŕın-Salomón, R., and Brustoloni, J. C. Bayesian bot
detection based on DNS traffic similarity. In Proceedings of the 2009
ACM symposium on Applied Computing (2009), ACM, pp. 2035–2041.

[43] Wang, X., Chen, S., and Jajodia, S. Tracking anonymous peer-
to-peer VoIP calls on the internet. In Proceedings of the 12th ACM
conference on Computer and communications security (2005), ACM,
pp. 81–91.

[44] Wang, X., Reeves, D. S., Ning, P., and Feng, F. Robust network-
based attack attribution through probabilistic watermarking of packet
flows. Tech. rep., Technical Report TR-2005-10, Department of Com-
puter Science, NC State Univ, 2005.

[45] Wang, X., Reeves, D. S., and Wu, S. F. Inter-packet delay based
correlation for tracing encrypted connections through stepping stones.
In Computer Security - ESORICS 2002, D. Gollmann, G. Karjoth, and
M. Waidner, Eds. Springer, 2002, pp. 244–263.

[46] Wang, X., Reeves, D. S., Wu, S. F., and Yuill, J. Sleepy water-
mark tracing: An active network-based intrusion response framework.
In Trusted Information. Springer, 2002, pp. 369–384.

[47] Wijesinghe, U., Tupakula, U., and Varadharajan, V. Botnet
detection using software defined networking. In Telecommunications
(ICT), 2015 22nd International Conference on (2015), IEEE, pp. 219–
224.

[48] Wu, H.-C., and Huang, S.-H. S. Performance of neural networks in
stepping-stone intrusion detection. In Networking, Sensing and Control,

http://www.wired.co.uk/news/archive/2016-04/06/panama-papers-mossack-fonseca-website-security-problems
http://www.wired.co.uk/news/archive/2016-04/06/panama-papers-mossack-fonseca-website-security-problems
https://www.torproject.org/

BIBLIOGRAPHY 68

2008. ICNSC 2008. IEEE International Conference on (2008), IEEE,
pp. 608–613.

[49] Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., and
Osipkov, I. Spamming botnets: signatures and characteristics. In ACM
SIGCOMM Computer Communication Review (2008), vol. 38, ACM,
pp. 171–182.

[50] Yadav, S., Reddy, A. K. K., Reddy, A., and Ranjan, S. Detect-
ing algorithmically generated malicious domain names. In Proceedings of
the 10th ACM SIGCOMM conference on Internet measurement (2010),
ACM, pp. 48–61.

[51] Yang, J., and Huang, S.-H. S. Correlating temporal thumbprint
for tracing intruders. In Proceedings of 3rd International Conference on
Computing, Communications and Control Technologies (2005), pp. 236–
241.

[52] Yang, J., and Huang, S.-H. S. Matching TCP/IP packets to detect
stepping-stone intrusion. International Journal of Computer Science
and Network Security 6, 4 (2006), 269–276.

[53] Ylonen, T. The secure shell (SSH) transport layer protocol. RFC
4253, IETF, January 2006.

[54] Yung, K. H. Detecting long connection chains of interactive terminal
sessions. In Recent Advances in Intrusion Detection, A. Wespi, G. Vigna,
and L. Deri, Eds. Springer, 2002.

[55] Zhang, Y., and Paxson, V. Detecting stepping stones. In Proceed-
ings of the 9th Conference on USENIX Security Symposium - Volume 9
(Berkeley, CA, USA, 2000), SSYM’00, USENIX Association.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Research Problem
	1.2 Research Methods
	1.3 Impact and Sustainable Development
	1.4 Structure of the Thesis

	2 Background
	2.1 Stepping Stone Attacks
	2.2 Software-defined Networking
	2.2.1 OpenFlow
	2.2.2 sFlow

	2.3 Network Function Virtualization
	2.4 SDN and NFV in 5G

	3 Stepping Stone Attacks
	3.1 Significance in Today's Internet
	3.1.1 Panama Paper Leak - A Case Study
	3.1.2 Surveillance Video Stream Hijacking
	3.1.3 Anonymous Networks and Tor
	3.1.4 Botnets as Stepping Stones

	3.2 Detection Techniques
	3.2.1 Content-Based Detection
	3.2.2 Transmission Characteristic-Based Detection
	3.2.3 Deanonymization Techniques
	3.2.4 Novel Techniques for Botnet Detection
	3.2.5 Legitimate Stepping Stone Detection

	4 Timing-Based Detection in SDN and NFV
	4.1 Packet Sampling and Timing-Based Detection
	4.1.1 Timing-Based Detection

	4.2 Evaluation Goals
	4.3 Implementation Details
	4.4 Topologies and Sampling Rates
	4.5 sFlow Security

	5 Results
	5.1 Identification of ON/OFF Periods
	5.2 Correlation of ON Periods
	5.3 Timing Based Correlation
	5.4 Content-Size Based Correlation
	5.5 Edit-Distance Based Chaff Detection
	5.6 Causality Based Chaff Detection
	5.7 De-anonymization

	6 Discussions
	6.1 Significance of the Results
	6.2 Limitations
	6.3 Future Work

	7 Conclusions

