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1. Introduction

1.1 Summary

In Blind Source Separation (BSS) problems, the goal is to estimate a

set of signals, called sources, while having access only to combinations

of those sources (the mixtures). The most widely studied class of BSS

problems is Independent Component Analysis (ICA), which assumes that

the sources are statistically independent.

Let there be N sources, which are stacked into a vector s(t), and P mixed

signals, stacked into a vector y(t). Then, if the mixture process is linear,

instantaneous, and noiseless, one can write y(t) = Ms(t), where M is

called the mixing matrix.

This thesis deals with a specific instance of linear and instantaneous

BSS called Separation of Synchronous Sources (SSS). Two complex sig-

nals are considered (fully) synchronous if the difference of their argu-

ments, or phases, does not change with time.1 While SSS itself is not

specific to a particular domain, the motivation for this problem comes

from neuroscience. Many studies in neuroscience have found that syn-

chrony between brain regions is fundamental for normal information pro-

cessing in the human brain, such as learning and memory. Furthermore,

abnormal synchrony patterns have been associated to pathologies such as

schizophrenia and Alzheimer’s.

Studies of synchrony in the neuroscience community have, in some cases,

been invasive. Electrodes are placed, usually in mice, and the synchrony

between brain regions is measured. Extra-cranial signals, such as the

1This will be defined formally in section 3.2.2, along with definitions of partial
synchrony and some mathematical properties of synchrony. We also discuss there
how this can also be applied to real signals instead of complex ones.
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ones obtained through an electroencephalogram (EEG) or magnetoencephalo-

gram (MEG), are an alternative and attractive way to study the synchrony

of the brain. The non-invasive character of these signals makes them

suitable, for example, for diagnostics in human medicine. EEG and MEG

signals are the result of a mixing process, and in this thesis we show

that this mixing process can destroy synchrony information. Therefore,

some researchers have employed BSS techniques, in particular ICA, to

extract the original sources from these mixtures, and subsequently ana-

lyze the synchrony between the estimated sources. We argue that it is

questionable to use ICA algorithms, which assume independent sources,

to estimate synchronous sources, because they are highly dependent. Ide-

ally, one would like to use algorithms which directly estimate synchronous

sources.

In SSS, a different assumption is made: instead of assuming indepen-

dence of the sources, as in ICA, it is assumed that the sources are phase-

synchronous, which is a particular type of dependency. We shall show two

theoretical properties which illustrate a significant parallelism between

SSS and ICA:

1. In ICA, if the sources, denoted by the vector s, are statistically inde-

pendent, any linear combination ŝ = Gs, where G denotes a square

matrix, such that the components of ŝ are independent, must be such

that ŝ = s, up to permutation, scaling and sign change, under some

mild assumptions. We will show that a similar property exists for SSS,

also under mild conditions: if the sources s have perfect synchrony, any

linear combination ŝ = Gs, with square G, in which the synchrony be-

tween components of ŝ is perfect must be such that ŝ = s, again up to

permutation, scaling and sign change, with the added requirement that

G is non-singular. While this requirement exists in ICA as well, we

will see that it introduces an additional difficulty in the design of SSS

algorithms which is not present in most ICA algorithms.

2. Whitening has been proven to yield significant advantages as a pre-

processing step for ICA; we will show that this is the case for SSS as

well, albeit with smaller benefits. In ICA, in the absence of additive

noise, whitening reduces the problem to a search for an orthogonal ma-

trix. In SSS, even in the absence of noise, it makes the problem better

conditioned, but the search space remains the full space of matrices of

10
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appropriate dimension. This is another property of SSS which makes it

fundamentally harder than ICA.

In addition to proving these two properties and comparing them to their

ICA counterparts, we will characterize and tackle SSS itself, namely in

the following fronts:

• We show that sources which have perfect synchrony can be described

in a particular mathematical form, and propose two algorithms to solve

the SSS problem.

• We propose an algorithm called Independent Phase Analysis (IPA) which

uses property 1 above and directly tries to maximize the synchrony of

the estimated sources, ŝ = WTy, where y are the mixtures, as a function

of the unmixing matrix W. To prevent W from becoming singular, we

use an appropriate term in the objective function that penalizes singular

solutions.

• We also propose Phase Locked Matrix Factorization (PLMF), an algo-

rithm which exploits the particular mathematical form that perfectly

synchronous sources can be put in. It computes M̂ and ŝ, the esti-

mates of the mixing matrix and sources, respectively, which minimize

the squared error between the observed data y and the product M̂ŝ.

Unlike IPA, PLMF has theoretical guarantees which prevent the occur-

rence of singular solutions. In fact, it will be shown that any global

optimum of PLMF’s cost function corresponds to correct estimations of

M and s, up to permutation, scaling and sign change, under mild as-

sumptions.

Experimental comparisons, using simulated data, show that PLMF gen-

erally obtains superior results when compared to IPA, and illustrate the

limits where PLMF’s performance degrades below a reasonable level, thus

pointing directions for future improvements. These algorithms are also

compared to ICA, showing that existing ICA algorithms fail to solve the

SSS problem. Furthermore, an initial exploration towards real applica-

tions is performed with IPA, using pseudo-real MEG data, which are con-

structed from actual MEG data but in such a way that the true sources

are known.

11
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To this author’s best knowledge, this thesis presents the first consoli-

dated framework for blind source separation of synchronous signals, con-

tributing with the problem formulation, theoretical properties of the prob-

lem, two algorithms for its solution and their theoretical properties, and

experimental tests of those algorithms. The following chapters present a

summary of this work, on which a total of nine papers were published in

peer-reviewed journals and conferences.

1.2 Contributions

The contributions of this thesis can be roughly divided into two groups.

1.2.1 Problem Formulation and Characterization

This group of contributions concerns the SSS problem itself. The list of

contributions is:

1. Characterizing the SSS problem’s solutions. In particular, establishing

that the usual BSS indeterminacies of permutation, scaling and sign

change are present, and that they are the only indeterminacies for non-

singular solutions under mild conditions,2

2. Establishing that, unlike ICA, SSS can have singular solutions, which

are undesirable.

3. Showing that solutions of this problem can be decomposed in a partic-

ular way using matrix factorization.

4. Showing that prewhitening results in a bound in the condition number

of the equivalent mixing matrix. This can be interpreted as an upper

bound on the “difficulty” of the SSS inverse problem.

1.2.2 Separation Algorithms

The second group of contributions regards the proposal of algorithms

to solve the problem formulated in the previous subsection. The list of

contributions is:
2We call singular solutions those where the unmixing matrix W is singular.

12
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1. Proposing Independent Phase Analysis (IPA), a separation algorithm

which directly exploits contribution 2 from the previous subsection to

find a non-singular solution. This contribution is a significant extension

of work that was initially done by Jan-Hendrik Schleimer.

2. Proposing Phase Locked Matrix Factorization (PLMF), another separa-

tion algorithm which exploits contribution 3 of the previous subsection

to find a suitable matrix factorization of the data which yields the origi-

nal sources.

3. Implementing both algorithms in MATLAB.

4. Showing, with simulated data, that both algorithms outperform source

separation techniques not tailored for SSS, such as ICA methods.

5. Creating pseudo-real MEG data and demonstrating the usefulness of

IPA on it. To the author’s best knowledge, real-world data where these

algorithms could be tested can be collected with current technology, but

is not publicly available and their acquisition is non-trivial.

6. Showing that, under certain conditions, all global minima of PLMF’s

cost function correspond to a solution which recovers the original sources.

1.3 Publications

The work in this thesis has resulted in the publication of nine peer-

reviewed papers. An extended version of one of these papers was also

published, as well as an arXiv supplementary material containing the

proofs of some statements. Except where noted, the author of this thesis

contributed in the following ways:

• Algorithms and problem formulation: In all papers, the design of

the algorithms proposed in this thesis and the formulation of the SSS

problem were done jointly with the author’s supervisors, Ricardo Vigário

and José Bioucas-Dias.

• Theorems: In all papers, choosing which results should be proven

13
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was done jointly with the supervisors. The proofs were all done by the

present author, with feedback from his supervisors.

• Experiments and code: In almost all cases, implementation of the al-

gorithms (in MATLAB) and performing the experiments leading to the

results shown in the papers was done by the present author. An excep-

tion is a re-implementation of the code of PLMF, performed by one of the

supervisors, which resulted in a significantly faster code.

• Papers: In all cases, the present author initially wrote all papers, and

then incorporated suggestions from his supervisors at later stages.

These eleven publications are listed below, alongside a brief description

of each. Copies of these papers can be found at the end of the document, in

the order listed below. Citations of these publications appear as [Publi-

cation N], where N is a roman numeral, to distinguish them from publi-

cations from other authors, which are not attached to this document, and

which appear without bold and with regular numerals, as in [1]. There-

fore, [Publication I] and [1] refer to different publications.

1. M. Almeida and R. Vigário. Source Separation of Phase-Locked Sig-

nals. In Proceedings of the Independent Component Analysis Conference

(ICA), pages 203-210, 2009 [Publication I]. This paper presented a

novel cost function for an algorithm which would, in subsequent publi-

cations, become IPA. It yielded very significant improvements relative

to work by Jan-Hendrik Schleimer [71], which can be considered the

earliest version of IPA.

2. M. Almeida, J. Bioucas-Dias, and R. Vigário. Independent Phase Anal-

ysis: Separating Phase-Locked Subspaces. In Proceedings of the Latent

Variable Analysis Conference (LVA), pages 189-196, 2010 [Publication

II].3 This paper presents further improvements on the IPA algorithm.

The version of the algorithm presented in this paper is the one that is

also presented in [Publication III].

3. M. Almeida, J.-H. Schleimer, J. Bioucas-Dias, and R. Vigário. Source

Separation and Clustering of Phase-Locked Subspaces. IEEE Trans-

3The LVA conference is the same as the ICA one; it simply changed name.
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actions on Neural Networks, 22(9):1419-1434, 2011 [Publication III].

This is the main publication about IPA. It contains a description of the

algorithm, as well as more extensive experimental results on simulated

data. This paper also presented, for the first time, the theorem stating

that all non-singular solutions yield the original sources.4 Some proofs

were skipped due to lack of space; they are available in an arXiv paper

[Publication IV].

4. M. Almeida, J.-H. Schleimer, J. Bioucas-Dias, and R. Vigário. Source

Separation and Clustering of Phase-Locked Subspaces: Derivations and

Proofs. arXiv:1106.2474 [stat.ML], available at http://arxiv.org/abs/

1106.2474 [Publication IV]. This arXiv paper contains the proofs from

[Publication III] which were skipped due to lack of space.

5. M. Almeida, J. Bioucas-Dias, and R. Vigário. Separation of Phase-

Locked Sources in Pseudo-Real MEG Data. EURASIP Journal on Ad-

vances in Signal Processing, 32, 2013 [Publication V]. In this paper

we tested IPA on pseudo-real data from real MEG data and concluded

that IPA could separate synchronous sources in such data. In this paper

we also presented an optimization strategy for IPA where the regular-

ization to avoid singular solutions is progressively made weaker, so that

in the limit one can avoid regularizing and thus be in the conditions of

the theorem presented in [Publication III].

6. M. Almeida, R. Vigário, and J. Bioucas-Dias. Phase Locked Matrix Fac-

torization. In Proceedings of the European Signal Processing Conference

(EUSIPCO, pages 1728-1732, 2011 [Publication VI]. This paper dis-

cussed the earliest form of the PLMF algorithm. It used an unrealistic

assumption: it assumed that the phase of one of the sources was known.

7. M. Almeida, R. Vigário, and J. Bioucas-Dias. Estimation of the Com-

mon Oscillation for Phase Locked Matrix Factorization. In Proceedings

4This paper also presents two other algorithms, called Referenced Phase Anal-
ysis (RPA) and Phase Synchronization Cluster Analysis (pSCA), both originally
proposed by Jan-Hendrik Schleimer [69, 70]. The author of this thesis reimple-
mented these two algorithms and performed all the experiments shown in [Pub-
lication III]. The present author also corrected minor errors in the expressions
for the gradients in those two algorithms. However, the two algorithms were left
mostly unchanged from their original forms, and they are not considered contri-
butions.
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of the International Conference on Pattern Recognition Applications and

Methods (ICPRAM), pages 78-85, 2012 [Publication VII]. This paper

removed that assumption and presented what ended up being called the

“1-stage” PLMF, where all variables are estimated simultaneously. Out

of roughly 150 papers presented at this conference, 12 were selected to

have extended versions published in the Springer Proceedings in Math-

ematics & Statistics. This paper was among the 12 selected [Publica-

tion VIII].

8. M. Almeida, R. Vigário, and J. Bioucas-Dias. Phase-Locked Matrix Fac-

torization with Estimation of the Common Oscillation. In Mathematical

Methodologies in Pattern Recognition and Machine Learning, pages 51-

66. Springer, 2013 [Publication VIII]. This is the extended version

of the previous paper. It was published in the Springer Proceedings in

Mathematics & Statistics. It presents significantly more thorough ex-

perimental results than [Publication VII]. The previous paper was

peer-reviewed, but there was no further peer-review towards this ex-

tended version.

9. M. Almeida, R. Vigário, and J. Bioucas-Dias. The Role of Whitening

for Separation of Synchronous Sources. In Proceedings of the Latent

Variable Analysis Conference (LVA), pages 139-146, 2012 [Publication

IX]. This paper presented the upper bound on the condition number of

the equivalent mixing matrix if prewhitening is performed.

10. M. Almeida, J. Bioucas-Dias, R. Vigário, and E. Oja. A Comparison

of Algorithms for Separation of Synchronous Subspaces. Bulletin of the

Polish Academy of Sciences: Technical Sciences, 60:455-460, 2012 [Pub-

lication X]. This paper compared the performance of multiple methods

to separate subspaces of synchronous sources.

11. M. Almeida, R. Vigário, and J. Bioucas-Dias. Separation of Synchronous

Sources Through Phase Locked Matrix Factorization. IEEE Transac-

tions on Neural Networks and Learning Systems, 25(10):1894–1908, 2014

[Publication XI]. This is the main publication about PLMF. It presents

a novel form of PLMF with two subproblems, which we call the “2-stage”

approach. In the first subproblem, one of the variables is estimated from

a relaxed version of the original problem. In the second subproblem,
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this variable is kept fixed and the remaining ones are estimated. This

paper also presents theorems stating that all solutions of both subprob-

lems are desirable ones. Finally, the algorithm is extensively studied

on simulated data, and comparisons are made between ICA, IPA, and

the 1-stage and 2-stage versions of PLMF, concluding that the latter is

clearly superior in performance.

While all the above papers are pertinent for this thesis, the author con-

siders the three journal papers [Publication III], [Publication V] and

[Publication XI] as the most important ones. The first and third ones

contain the main theoretical results and both algorithms, while the sec-

ond one presents early work towards application of these algorithms in

real situations.

1.4 Document Organization

This dissertation is composed of an introductory part plus a list of pub-

lications at the end. In accordance with the rules of both Universities in-

volved in this dissertation, the set of two parts needs to be self-sufficient.

The introductory part, composed of chapters 1 to 7, contains most of the

contributions: only the proofs of the theorems and some experimental re-

sults were omitted from the introduction, but they can be found in the

publications in appendix.

This thesis is organized as follows. We begin with a brief introduction to

Blind Source Separation in Chapter 2. Special focus is given to Indepen-

dent Component Analysis, since it is the most widely used BSS problem,

and because some SSS theoretical results have ICA counterparts.

We then formally introduce phase synchrony in Chapter 3. We show

how the phase of a real signal can be computed through the construction

of a complex signal. We present a brief motivation from a neuroscience

perspective, and mathematically define synchrony to prepare its use in

the algorithms that follow.

Chapter 4 contains this thesis’ original contributions. First, the SSS

problem is formalized and discussed, without considering which algorithm

will be used to solve it. Two main results are presented: a theorem stat-

ing that, like ICA, SSS is a well-posed problem; and another theorem

quantifying the effect of whitening on the “difficulty” of SSS. This chapter

also presents the two algorithms that are proposed to solve SSS: IPA and
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PLMF. PLMF has some interesting theoretical properties, which are also

discussed in this chapter.

Experimental tests with simulated data are presented for both algo-

rithms in chapter 5; also, some results with pseudo-real MEG data, which

are considerably more realistic than the simulated data, are shown for

IPA.

Chapter 6 discusses future research directions in considerable detail.

Conclusions are drawn in chapter 7. Finally, all publications related to

this work are presented in Appendix.

18



2. Blind Source Separation

2.1 Inverse Problems

Consider some physical phenomenon which is taking place, and some

sensors that are placed to take measurements about the phenomenon.

The direct problem is the one of computing what one would measure in

the sensors, given the state of the experiment. The inverse problem is

the problem of computing the state of the experiment given the measure-

ments from the sensors. Blind Source Separation is an inverse problem,

as we discuss below.

As an example, we briefly discuss the well-known cocktail party prob-

lem. In this conceptual problem, several people in a room are talking with

one another, and some microphones are scattered throughout the room.

The microphones capture sound coming from all the people that are talk-

ing, making it difficult to obtain the voice of one person directly from one

of the microphones. In this situation, the direct problem would consist of

computing the signals measured by each microphone, assuming that we

know exactly the sound waves generated by each person, each person’s

location in the room, the room layout, and so on. While the computations

for the direct problem may be non-trivial, conceptually it is a straightfor-

ward problem. The inverse problem in this situation involves finding the

speech signals produced by each person using the signals measured by

the microphones. Conceptually, inverse problems are much harder than

their direct counterparts, often being ill-posed without further assump-

tions about the experimental setup.

Formally, the signals measured at the sensors are known as mixtures,

mixed signals, or sensors; we will use these terms interchangeably. The

unknown signals which, when mixed, originate the measurements are

19



Blind Source Separation

usually called sources. We adopt this terminology here, and now proceed

to define the notation used throughout this work.

In this work, we assume that all sources and sensors are one-dimensional

discrete-time signals sampled at times t = 1, 2, . . . , T , that sources are

numbered from 1 to N , and that sensors are numbered from 1 to P . Let

yi(t) denote the discrete-time signal measured at sensor i, and sj(t) the

discrete-time signal emitted by source j. A rather general BSS problem

states that

yi(t) = f(s1(1), . . . , s1(t), . . . , sN (1), . . . , sN (t)), (2.1)

where f(·) is a function which depends on the experimental setup.1 The

measurement at sensor i and time t can depend on the signals of all the

sources at all time instants up to the instant considered at the sensor.

Two assumptions can be made which tremendously simplify this prob-

lem. The first one is that the information travels instantaneously from

the sources to the sensors, making this an instantaneous BSS problem.

Such problems follow a model of the form

yi(t) = f(s1(t), . . . , sN (t)), (2.2)

i.e., the signal at sensor i and time t only depends on the signals of the

sources at the same time instant.

The second assumption is linearity: if a problem is instantaneous and

linear, its model is of the form

yi(t) =
N∑
j=1

mijsj(t), (2.3)

where mij is a mixing coefficient which describes how the signal at sensor

i depends on source j.

The contributions in this thesis assume that the model in (2.3) holds;

this model is further explored in section 2.2. However, it is important to

remark that relevant work has been done using other kinds of models.

For example, nonlinear ICA has been used for image separation using

instantaneous but nonlinear models (the exact form is not that of equation

(2.2), since the sources and sensors are 2D signals) [42, 4]. Furthermore,

convolutive BSS problems are an important subclass, where the model is

1This is not completely general. BSS problems can deal with signals which are
more than one-dimensional, such as images. Also, the function f could depend
explicitly on the time t, if the mixing process itself varies with time. We do not
consider these two possibilities.
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of the form

yi(t) =
∑

j∈{1,...,N},τ∈{1,...,t}
mijτsj(t− τ). (2.4)

Convolutive BSS is linear but non-instantaneous, and has been used in

applications such as the cocktail party problem and sound source local-

ization, which in fact is similar to the cocktail-party problem, except that

the goal is to locate the sound sources (which can be done from the coeffi-

cients mijτ ) and not to estimate the source signals sj(t). A good overview

of convolutive BSS methods is available in [64].

2.2 Linear and Instantaneous BSS

Linear and instantaneous BSS is the simplest of all the models pre-

sented in the previous section, and is the model used throughout this

work. Under this model, the signal measured at time t on sensor i, which

we denote by yi(t), is given by equation (2.3). We have one equation of this

form for every sensor i and every time instant t. We thus have P ×T such

equations.

It is common to combine these equations using matrix notation. Define

y(t) ∈ R
P , s(t) ∈ R

N and M ∈ R
P×N as follows:

y(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1(t)

y2(t)
...

yP (t)

⎤
⎥⎥⎥⎥⎥⎥⎦ , s(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

s1(t)

s2(t)
...

sN (t)

⎤
⎥⎥⎥⎥⎥⎥⎦ and M =

⎡
⎢⎢⎢⎢⎢⎢⎣

m11 m12 . . . m1N

m21 m22 . . . m2N

...
... . . . ...

mP1 mP2 . . . mPN

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(2.5)

Matrix M is called the mixing matrix. The P equations of the form (2.3),

corresponding to the same time instant t, can be compactly expressed as

y(t) = Ms(t), (2.6)

and this can be done for each time instant t, thus there are T equations.

These T equations can be further compacted into a single equation. De-

fine Y ∈ R
P×T and S ∈ R

N×T as follows:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1(1) y1(2) . . . y1(T )

y2(1) y2(2) . . . y2(T )
...

... . . . ...

yP (1) yP (2) . . . yP (T )

⎤
⎥⎥⎥⎥⎥⎥⎦ and S =

⎡
⎢⎢⎢⎢⎢⎢⎣

s1(1) s1(2) . . . s1(T )

s2(1) s2(2) . . . s2(T )
...

... . . . ...

sN (1) sN (2) . . . sN (T )

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(2.7)
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We shall use a slight abuse of notation and sometimes call the matrix Y

the sensor data, or sometimes simply sensors. S will be called source data

or sources. The T equations of the form (2.6) can be compacted into a

single equation:

Y = MS. (2.8)

Usually, the objective of BSS is to find the sources S, using only the

data from the sensors Y, although in some cases the goal might be to find

the mixing matrix M. In either case, BSS is an ill-posed problem. Equa-

tion (2.8) makes the reasons for this clear: in general, there is an infinite

number of pairs (M,S) which, when multiplied, yield the observed data

Y. It is, therefore, necessary to make some assumptions on the sources

S, on the mixing matrix M, or on both, to make the problem well-posed.

Different BSS problem make different assumptions:

• By far, the most well-known BSS problem is Independent Component

Analysis (ICA). Its fundamental assumption is that, at each time instant

t, the value of each source sj(t) is a realization of a random variable Sj ,

and that the random variables S1, S2, . . . , SN are statistically indepen-

dent. ICA will be briefly discussed in Section 2.3; further analysis is

deferred to that section.

• A generalization of ICA is Independent Subspace Analysis (ISA). Its

fundamental assumption is that there are several sets of sources, which

are usually called subspaces. Sources in the same subspace can be mu-

tually dependent, but the set of sources in a subspace is independent

from the set of all other sources. While ICA can be considered a ma-

ture field, ISA is currently being actively researched. It will be briefly

discussed in Section 2.4.

• Non-negative Matrix Factorization (NMF) can also be viewed as an in-

stance of BSS, although the literature does not always cast it as such. Its

fundamental assumption is that the entries of both the mixing matrix

M and the source data S are non-negative. Despite being now around

ten years old [36, 52], NMF is a very active area of research, with ap-

plications in, e.g., acoustic signal processing [44, 45] and hyperspectral

unmixing [53]. However, this topic is not central to the work presented

in this thesis, and it is not discussed further.
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• The topic of this thesis, Separation of Synchronous Sources (SSS), is also

an instance of BSS. The fundamental assumption is that the sources

have perfect phase synchrony with one another. SSS will be the subject

of Section 4.

One can draw several parallelisms between SSS and the well-known

case of ICA. For this reason, we now provide a brief overview of ICA.

2.3 Independent Component Analysis

The term “Blind Source Separation” began to be used in the early 1990s

(see, e.g., [41]), while the term “Independent Component Analysis” be-

came widespread a few years later [17]. However, ICA began to take

form in the early 1980s, in France, with works by Hérault, Jutten, and

Ans [32, 34, 7, 33]. In [43] (an excellent historical overview, including

comments from many pioneer researchers in the field), Jutten places the

birth of BSS in 1982. According to [38], despite earlier works present-

ing solutions to the problem which would become known as ICA (such as

[33]), a major turning point in the history of ICA was the publication, in

1995, of an approach based on the infomax principle [10, 9], which drew

wider attention to the field. ICA can now be considered a mature field of

research, with the ICA conference, created in 1989 and occurring every 18

months until 2009, and then the LVA/ICA conference2 from 2010 onwards,

gathering around 150 researchers from the field.

ICA has seen wide application, even in situations where the indepen-

dence assumption is not satisfied. Examples of applications are the re-

moval of artifacts from neurophysiological signals [54, 87] and modeling

the receptive fields of neurons of the primary visual cortex [11], among

many others. Good overviews of ICA include [38, 16, 18].

As was said above, ICA, in its typical form, is a linear and instantaneous

BSS problem which assumes that sj(t), and consequently yi(t), are real-

izations of random variables. Specifically, the sources sj(t) are assumed

to be i.i.d. realizations of random variables Sj , with S1, S2, . . . , SN being

statistically independent. It turns out that this independence assumption

is enough to make the problem “sufficiently well-posed”, in a sense that

will be rigorously defined below.

For simplicity, throughout this section the number of sources is assumed

2LVA stands for the more general designation “Latent Variable Analysis”.
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to be equal to the number of sensors, i.e., P = N , and the mixing matrix

M (which is square for P = N ) is assumed to be invertible. Most results

in this section can be generalized to the case where one has more sensors

than sources (P > N ), which is called the overdetermined case. The case

where the number of sensors is smaller than the number of sources (P <

N ), which is called underdetermined, is considerably harder to tackle.

One of the most important aspects of ICA is that it is still technically ill-

posed, in the sense that there are still infinite solutions to equation (2.8),

even if the independence assumption is verified. However, the following

theorem precisely characterizes the ill-posedness of ICA [17]:

Theorem 2.3.1. Let ŝ ≡ Gs be a set of signals resulting from a linear com-

bination of sources s, with square G, and let these sources be statistically

independent as per the ICA model. Furthermore, assume that at most one

of the components of s is Gaussian, and that none of them has a degenerate

point-like distribution. The components of ŝ are statistically independent

if and only if ŝ = DPs for some diagonal matrix D ∈ R
N×N with nonzero

entries in its diagonal, and some permutation matrix P ∈ R
N×N .

This theorem formalizes the previously mentioned statement that ICA

is “sufficiently well-posed”. While the problem is ill-posed, in the sense

that finding independent estimated sources ŝ does not imply that ŝ = s,

all those solutions correspond to situations where each component of ŝ de-

pends only on a single source. Specifically, the following indeterminacies

exist:

• The order of the sources cannot be determined. This happens because

the order of the terms in the sum of Equation (2.3) can be changed with-

out affecting the value of the sum. Equivalently, one can permute the

rows of matrix S and apply the same permutation to the columns of M

without affecting the product MS. In the matricial notation of Equation

(2.8), it is equivalent to considering a new mixing matrix M̃ ≡ MP−1

and a new source matrix S̃ ≡ PS, where P ∈ R
N×N is some permutation

matrix. This is called the permutation indeterminacy.

• The scale of the sources cannot be determined. This happens because

one can, in Equation (2.3), apply scaling factors αj �= 0 to each source sj

and apply the inverse scaling 1
αj

to all mixing coefficients involving that

source, m1j , . . . ,mPj , without affecting the resulting mixture signals. In

the matricial notation of Equation (2.8), it is equivalent to considering
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a new mixing matrix M̃ ≡ MD−1 and a new source matrix S̃ ≡ DS,

where D ∈ R
N×N is some diagonal matrix with non-zero entries in its

diagonal. This is called the scaling indeterminacy.

• The previous indeterminacy can involve negative scaling factors, which

result in changes of sign of the estimated sources. While this is already

included in the previous case, this is sometimes referred separately as

the sign indeterminacy.

These indeterminacies are very common in linear and instantaneous

BSS. However, note that they may depend on the specific problem. For

example, in Non-Negative Matrix Factorization, where the matrices M

and S are assumed to have non-negative entries, the sign indeterminacy

does not exist. Usually, the way to deal with these indeterminacies is

that one aims at finding an unmixing matrix W such that the estimated

sources, given by ŝ ≡ WTy = WTMs, are a permutation and scaling of

the original sources, since the order and scale are impossible to deter-

mine. Equivalently, the gain matrix WTM, should be a permutation of a

diagonal matrix with nonzero elements in the diagonal.

If one could simply “maximize the independence” of the estimated sources

ŝ as a function of W, then the previous theorem would ensure that all

global optima, where the estimated sources are independent, would be

good enough as long as the order and scale of the sources were not impor-

tant. It is important to remark, however, that the notion of “maximizing

the independence” of the estimated sources glosses over a lot of the re-

search put into ICA. In fact, it is not easy to measure the independence

of a set of random variables when one only has access to a set of real-

izations. ICA algorithms replace independence with other criteria which

approximate independence, such as kurtosis, negentropy, and time-lagged

correlations, among others. The exploration of these flavors of ICA is out-

side the scope of this work; good overviews can be found in [38, 16, 19].

We now describe two very common and very useful preprocessing steps

for ICA. Let E[y] denote the expected value of the random vector y, and

E[yyT ] denote its covariance. In practice, the mean E[y] and covariance

E[yyT ] are unknown. If a sufficient number of time samples is avail-

able, these can be well approximated by their estimators, < y > and
T

T−1 < yyT >, where < . > denotes the time averaging operator. ICA

is usually preceded by centering the data, i.e., removing its mean. This
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step returns for each time t a new vector given by ỹ(t) ≡ y(t) − E[y].

Equivalently, one can subtract E[y] from every column of matrix Y. For

simplicity, we shall assume that centering has been applied to the data.

Also, it is normally useful to perform prewhitening of the data: this

step applies a linear transformation to the data such that their covariance

matrix, after the transformation, is the identity matrix. Let

CY ≡ E[yyT ] (2.9)

denote the covariance matrix of the data.3 Consider the eigendecomposi-

tion of CY,

CY = VDVT , (2.10)

where D is a diagonal matrix containing the eigenvalues of CY in some

order, and V is an orthogonal matrix (VVT = VTV = I) containing the

eigenvectors of CY in the corresponding order.

Then, prewhitening can be performed by multiplying the data Y on the

left by the matrix

B ≡ D− 1
2VT . (2.11)

It is easy to see that the covariance of the whitened data z, given by

z ≡ By, is the identity matrix:

E[zzT ] = E[ByByT ]

= BE[yyT ]BT

= D− 1
2 VTV︸ ︷︷ ︸

≡I

DVTV︸ ︷︷ ︸
≡I

D− 1
2

= D− 1
2DD− 1

2

= I. (2.12)

An important consequence of prewhitening is the following result [38].

Theorem 2.3.2. Let y ≡ Ms be a set of measurements resulting from a

linear combination of sources s, with invertible M, and let these sources

be statistically independent as per the ICA model. Furthermore, assume

that at most one of the components of s is Gaussian. Let z ≡ By = BMs

denote the result of prewhitening the sensor data. Then, there exists an

orthogonal matrix W ∈ O
N×N such that the components of ŝ ≡ WT z are

statistically independent.

3Recall that the data have been centered, and therefore their mean is zero.
Therefore, we can use the terms “correlation” and “covariance” interchangeably.
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Theorem 2.3.2 states that, if prewhitening is performed, we can find

a set of independent sources ŝ by searching for an orthogonal matrix.

Note that ŝ is a linear combination of the original sources s, because

ŝ ≡ WT z = WTBy = WTBMs. Therefore, Theorem 2.3.1 ensures that

after prewhitening one can solve the ICA problem (in the absence of noise)

by searching for an orthogonal matrix. While the literature on ICA usu-

ally discusses prewhitening as well [38, 16, 18], it should be emphasized

that while prewhitening is a useful preprocessing step for ICA, it is not

part of it, nor is it indispensable.

Let σmax(M) and σmin(M) denote the largest and smallest singular val-

ues of matrix M.4 The condition number of M is defined as

ρ(M) =
σmax(M)

σmin(M)
. (2.13)

The condition number of a matrix with at least one nonzero element al-

ways belongs to the set [1,+∞)∪{+∞}. In particular, orthogonal matrices

have ρ = 1, and singular matrices have ρ = +∞.

The condition number of a mixing matrix can be considered an indicator

of the difficulty of the corresponding inverse problem.5 Problems where

the mixing matrix has a high condition number are usually harder to solve

than problems with a smaller condition number. Theorem 2.3.2 ensures

that, if prewhitening is performed, ICA is reduced to a search for an or-

thogonal matrix, which has ρ = 1. This will not be the case for SSS. Thus,

in a a certain sense, SSS can be considered a “harder” inverse problem

when compared to ICA. We shall return to this interpretation later, when

we discuss the effect of whitening on SSS.

2.4 Independent Subspace Analysis

The goal of this thesis is to study the problem of separating sources

with a particular kind of dependency: they are assumed to be perfectly

synchronous. In reality, however, this assumption limits the applicability

of the theory and of the methods developed here. In fact, in real-world

4For square Hermitian matrices, σmax(M) and σmin(M) are equal to |λmax(M)|
and |λmin(M)|, respectively, where λmax(M) and λmin(M) are the eigenvalues of
M with the largest and smallest absolute values, respectively.
5While essentially all linear inverse problems involve a matrix whose function is
similar to the function of our mixing matrix, in many cases it does not correspond
to a mixing of signals and therefore is not called “mixing matrix”. We still call it
“mixing matrix” for brevity.
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situations it is unlikely that one only has sources which are perfectly

synchronous with one another. It is more realistic to consider situations

where (approximately) synchronous sources of interest may be considered

independent of all other sources present in the mixing process. A brief

motivation from a neuroscience perspective will be presented in section

3.2.1.

In this section we explore a generalization of ICA where, instead of as-

suming independence between individual sources, one assumes indepen-

dence between groups of sources, and sources within each group may be

dependent. This generalization is called Independent Subspace Analysis

(ISA). If some of these groups’ dependency is strong phase synchrony, as

may be the case in the human brain, a two-step procedure where ISA

is employed to separate the groups, and SSS is employed to extract syn-

chronous sources from their respective groups, may be adequate.

In ISA one assumes that there are sets of sources, called subspaces,6,

where each set is independent from the set of sources not belonging to the

subspace. Sources within each such set are not necessarily independent.

In mathematical notation, the vector of sources, s, is assumed to have the

form

s ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

s1

s2

...

sK

⎤
⎥⎥⎥⎥⎥⎥⎦ , with sk ≡

⎡
⎢⎢⎢⎣
sk1
...

skNk

⎤
⎥⎥⎥⎦ , (2.14)

where s1, s2, . . . , sK are called the K subspaces of s. We use Nk to denote

the dimension of each subspace; note that they must obey N1+ . . .+NK =

N , where N is the number of sources, i.e., the dimension of s. The critical

assumption in ISA is that the vectors s1, s2, . . . , sK are statistically inde-

pendent. As mentioned above, the components of each subspace vector sk

need not be independent.

If N1 = N2 = . . . = NK = 1 and K = N , all subspaces have dimension 1

and we recover the ICA case. In the other extreme, where K = 1, only one

subspace is present, and no independence assumption exists. Source sep-

aration, in this case, is sometimes called Dependent Component Analysis

(DCA), a field with its own active research community (see, e.g., [47] and

references therein). SSS is a form of DCA.
6Technically, “subspaces” is the term for all possible linear combinations of
sources in one of these sets. In the literature it is common to also call a “sub-
spaces” to each set of sources. We will employ this slightly abusive terminology.
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Assume that it is known that a certain set of observations y(t) is the

result of a mixture of sources s(t), of dimension N , using a mixing matrix

M: y(t) = Ms(t). Assume also that s follows the ISA assumption: the N

sources can be partitioned into a number of sets K ∈ {1, . . . , N} and the

different sets are independent. ICA can be motivated as the minimization

of the mutual information between the scalar sources [38, chapter 10]:

minMI(ŝ1, . . . , ŝN ), (2.15)

where ŝi is the estimate of the i-th source. In the presence of subspaces,

one natural generalization would be to minimize the mutual information

between the various subspaces:

minMI(ŝ1, . . . , ŝK)

This approach has seen some use. However, it presents two problems:

• In general, this approach is a combinatorial optimization problem [13],

since one does not know which of the estimated sources should be grouped

together [3, 66] when defining the subspaces. One can then test all pos-

sible groupings, but they grow very quickly with N : the problem rapidly

becomes intractable.7Alternatively, one could solve a discrete optimiza-

tion problem by following, e.g., a greedy approach to cluster the esti-

mated sources, an approach that is not guaranteed to yield the optimal

solution.

• This approach involves the computation of the entropy of random vec-

tors of dimension Nk. Such computation is non-trivial for Nk ≥ 2 [8],

further increasing the complexity of this approach. Nevertheless, this

approach has been tackled, e.g., by estimating the entropy of multi-

dimensional components using minimum spanning trees [66], or using

variational Bayes approaches [3].

We now divide the general ISA problem, of recovering the original sources

when subspaces are present, into three successive parts. The first part is

called inter-subspace separation. The goal of this first part is to obtain a

demixing matrix Winter, such that the gain matrix, G = WT
interM, is a

permutation of a block diagonal matrix with blocks corresponding to the

7The number of partitions of a set with n elements is called the n-th Bell number,
Bn. One has B0 = B1 = 1 and Bn+1 =

∑n
i=0

n!
i!(n−i)!Bi. The first few elements are

1, 1, 2, 5, 15, 52, 203, 877 [2].
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subspaces. For example, suppose that there are three subspaces (K = 3),

the first of which has three components (N1 = 3), while the second and

third subspaces have two components each (N2 = N3 = 2). In this case,

the goal is to find a matrix Winter of the form WT
inter ≡ PBinter, where P

is a permutation matrix and Binter is such that

BinterM =

⎡
⎢⎢⎣
U1 03×2 03×2

02×3 U2 02×2

02×3 02×2 U3

⎤
⎥⎥⎦ .

Here, 0m×n is the m-by-n zero matrix, U1 is a 3-by-3 invertible matrix,

and U2 and U3 are 2-by-2 invertible matrices. After this step, each entry

of the random vector xinter ≡ WT
intery is a linear combination of sources

from one subspace only.

The second step is called subspace detection. The goal is to permute the

entries of the random vector xinter so that the first N1 entries of xinter are

linear combinations of sources from the first subspace, the next N2 entries

are linear combinations of sources from the second subspace, and so on.

Formally, we multiply xinter by a suitable permutation matrix, Q. Finding

Q is, in general, a combinatorial problem. In the case of SSS, we used a

simple heuristic [Publication III] to perform this step, with reasonable

results.

After the subspace detection is completed, one can define

y1 ≡ Q(1:N1 , :)xinter (2.16)

y2 ≡ Q(N1+1:N1+N2 , :)xinter (2.17)
... (2.18)

yK ≡ Q(N−NK+1:N , :)xinter, (2.19)

where Q(a:b , :) is a matrix composed of the rows a to b of matrix Q. Thus,

yk is a Nk-dimensional vector containing linear combinations of the sources

of the k-th subspace.

The third and last step is called intra-subspace separation. It involves

finding square matrices Wk ∈ R
Nk×Nk such that sk = (Wk)Tyk, up to per-

mutation, scale and sign change. There are K such matrices to be found,

and each can be estimated separately once inter-subspace separation and

subspace detection have been performed. This step requires some knowl-

edge about the sources under study or about their interdependency within

the subspace. If we know that the interdependency is strong synchrony,

SSS algorithms could be employed to perform this step.
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Sadly, there is no consensus in the available literature on what the term

“Independent Subspace Analysis” means. Some authors (cf., [62, 78]) de-

fine ISA as the task of performing all three steps, while others (cf., [39, 73])

define the same term as solving only the first step or the first two steps.

To prevent confusion, we shall define Full ISA as the task of performing

all three steps, and Partial ISA as the task of performing only the first

step.

Both full and partial ISA have seen increasing interest from the scien-

tific community in recent years. While these problems are usually called

“Independent Subspace Analysis” [29, 39, 66, 83], other names have been

used, such as “Subspace Independent Component Analysis” [73], “Inde-

pendent Vector Analysis” [1], and “Multidimensional Independent Compo-

nent Analysis” [15], among others. ISA was first proposed for fetal electro-

cardiogram extraction [21]; another important early work is [15]. It has

also been applied to capturing inter-subject variability in functional mag-

netic resonance imaging (fMRI) [1], natural image analysis [37] and anal-

ysis of cosmic microwave background radiation [50], among other fields.

Relevant theoretical results have been published about this topic, such

as sufficient conditions on the distribution of the sources for full ISA to be

achievable through maximization of kurtosis [78] or through minimiza-

tion of mutual information [62]. A general discussion of contrast func-

tions can be found in [63]. Under the (quite restrictive) conditions stated

in these works, then, simple ICA algorithms which maximize kurtosis

(such as some variants of FastICA) or minimize mutual information (such

as Infomax) can be safely used to perform the first and third steps of full

ISA, even though the assumption of independence of the sources is vio-

lated. In other words, one can recover the original sources by applying

methods which do not consider subspaces at all; one can, if desired, group

the recovered sources into subspaces a posteriori.

Dedicated algorithms for partial ISA have also been proposed; see, e.g.,

[39] and [73]. Techniques for subspace detection have also been recently

presented [29]. We performed a comparison of ICA and ISA algorithms for

partial ISA where the interdependency in each subspace is perfect syn-

chrony [Publication X]. The best-performing algorithm was FastICA,

which outperformed two other ICA algorithms as well as three ISA ones.

Some researchers have focused on specific types of sources. For example,

in [51], second-order statistics are used to perform ISA, and a model is

derived for multidimensional Gaussian sources.
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The conjecture that full ISA can be solved by using simple ICA and after-

wards grouping the sources into subspaces is called ISA separation prin-

ciple [79]. This conjecture has been proven for certain source types (see

[79] for an overview), and recent works such as [49] suggest that it may

be true for a broad class of sources.
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3. Phase Synchrony

Unlike ICA, in which we assume that the sources are statistically in-

dependent, in Separation of Synchronous Sources (SSS) the underlying

assumption is that the sources have a very particular kind of depen-

dence: they are perfectly synchronous. In this section, we provide a brief

overview of the concepts of phase and phase synchrony. We begin by dis-

cussing how to obtain the phase of a real signal, and then provide precise

definitions of synchrony which will be used in the following chapters.

3.1 From Real to Complex Signals: The Analytic Signal

In many real-world applications, including the analysis of EEG and

MEG signals from the brain, the measurements are real-valued. How-

ever, all the methods proposed in this thesis will require us to compute

the phase of the signals presented as input. In this section we discuss an

important question: how can we define the phase of a real signal s(t)?

Typically, this step is performed by obtaining a complex signal x(t) from

the given real signal, and defining the phase of the real signal s(t) as the

argument, or angle, of the complex signal x(t). This reduces the question

of the previous paragraph to a new question: how should we define this

complex signal?

Let the original signal be decomposed as s(t) = a(t) cosϕ(t), where a(t)

is the amplitude of the signal and ϕ(t) is its phase. Our goal is to know

under which conditions we can create a complex signal x(t) equal to x(t) =

a(t)eiϕ(t); we will say that this is a “meaningful” complex signal, and that

its phase is “meaningful” as well. Furthermore, the function mapping s(t)

to x(t) should be a linear function, such that a linear combination of real

signals yields the same linear combination of the corresponding complex

signals.
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Let S(ω) denote the Fourier transform (FT) of s(t), given by

S(ω) ≡
∫ +∞

−∞
s(t)e−iωtdt, for ω ∈ R, (3.1)

and let X(ω) be the FT of x(t). Note that s(t) = 1
2a(t)(e

iϕ(t) + e−iϕ(t)) =

1
2(x(t) + x∗(t)), where ∗ denotes complex conjugation. Using basic FT

properties [61, section 4.6], the FTs of s(t) and x(t) are related through

S(ω) = 1
2(X(ω) +X∗(−ω).

Suppose now that the support of X(ω) is contained in R
+. In that case,

the support of X∗(−ω) is contained in R
−, and X(ω) can be obtained from

S(ω) through

X(ω) = 2U(ω)S(ω), (3.2)

where U(ω) is the step (or Heaviside) function:

U(ω) =

⎧⎪⎨
⎪⎩
1 if ω ≥ 0

0 if ω < 0.

Therefore, we can construct X(ω) by computing the FT of s(t) and mul-

tiplying it by the step function U(ω). To obtain x(t), which is called the

analytic signal, we merely need to compute the inverse Fourier transform

(IFT) of X(ω), given by

x(t) ≡ 1

2π

∫ +∞

−∞
X(ω)eiωtdt, for t ∈ R. (3.3)

An important question remains to be discussed: for which real signals do

the corresponding analytic signals x(t) equal x(t) = a(t)eiϕ(t)? This ques-

tion is fundamental for this thesis, since apart from the few real-world

cases that are intrinsically well represented by complex-valued signals,

those will be the signals that our methods can be applied to.

The crucial step in obtaining the analytic signal is the assumption that

the support of X(ω) only contains positive frequencies. For example, con-

sider a signal defined as

s(t) = a(t) cos(ω0t) (3.4)

where a(t) is some non-negative signal, and ω0 is a positive real number.

By the shift property of the FT, the FT of s(t) is given by

S(ω) =
A(ω − ω0) +A(ω + ω0)

2
, (3.5)

where A(ω) is the FT of a(t).

Suppose that the following condition holds:

A(ω) = 0 for |ω| ≥ ω0. (3.6)
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In this case, A(ω + ω0) = 0 for ω > 0, and the FT of the analytic signal of

s(t) (equation (3.2)) yields

X(ω) =

⎧⎪⎨
⎪⎩
0 for ω < 0

A(ω − ω0) for ω > 0,

and the corresponding analytic signal is

x(t) = a(t)eiω0t.

The phase of x(t) is its argument, and since a(t) is real and non-negative,

its argument is simply equal to ω0t, the argument of the cosine function in

the definition of s(t) (equation (3.4)). Therefore, in this case the analytic

signal preserves the phase of the real signal in a meaningful way.

In the general case, where ϕ(t) is not constant, the signals for which

the analytic signal contains a meaningful phase are those for which the

support of X(ω) is contained in R
+. Note that the analytic signal is given

by the product of the amplitude, a(t), and the complex exponential of the

phase, eiϕ(t). In particular, if the support of the FT of a(t) is the interval

[Amin, Amax] and the support of the FT of eiϕ(t) is the interval [Pmin, Pmax],

it is sufficient to have

Amin + Pmin > 0 (3.7)

for the phase of the analytic signal to be meaningful.

An important remark must be made about the extraction of phases of

linear combinations of signals. Since this thesis deals with measurements

which result from linear mixtures of sources, one must show that the an-

alytic signal of a mixture of those sources is equal to the corresponding

mixture of the analytic signals of the sources. In mathematical terms, we

must show that, if

y(t) =
∑
j

sj(t), (3.8)

then the analytic signal of y(t), denoted by ỹ(t), will obey

ỹ(t) =
∑
j

s̃j(t), (3.9)

where s̃j(t) is the analytic signal of the j-th source. The proof is straight-

forward: one must merely note that the analytic signal x̃(t) is a linear

function of its input signal x(t), since the operations in equations (3.1),

(3.2) and (3.3) are all linear.

We can therefore conclude that in any situation where one deals with

signals which are the result of linear mixtures of sources, all of which have
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non-negative amplitudes and obey condition (3.7), the analytic signal can

be employed as a procedure which allows us to extract meaningful phases

from real signals.

3.2 Phase Synchrony

The original motivation of this work was to develop source separation

algorithms appropriate to the study of synchrony in brain electrophysi-

ological signals, such as the electroencephalogram (EEG) and the mag-

netoencephalogram (MEG). An in-depth overview of neuroscience is com-

pletely out of the scope of this thesis. The following subsection intends to

provide a starting set of references for a reader unfamiliar with this field,

motivate why synchrony is relevant for neuroscience, and why it is an in-

teresting topic in itself. A reader interested in neuroscience fundamentals

may find [30] to be a good starting point.

Before discussing synchrony in the neuroscience domain, it is important

to remark that synchrony is prevalent in many other physical systems,

such as organ pipes, electrical circuits, laser beams, astrophysical objects,

some types of fireflies, and even among humans and members of other

mammal species. More examples, as well as very good overviews of the

mathematical formulation of synchrony, can be found in [46, 65, 77].

3.2.1 Neuroscience Motivation

The number of neurons in the human brain was originally grossly es-

timated to be around 1011 [89, 6]. Recent, precise estimates place this

number around 8.6 × 1010 [35]. The firing of a neuron involves the travel

of an action potential along its axon. These action potentials trigger the

release of neurotransmitters in the connections between neurons (called

synapses), and these in turn cause electrical potentials in the post-synaptic

neurons. While the electrical or magnetic activity of a single post-synaptic

potential is not measurable through the skull, if multiple neurons fire

simultaneously, and if their post-synaptic receptors (the dendrites) are

aligned, this activity may be measurable as an EEG or MEG signal. Good

overviews of the physical phenomena behind EEG and MEG signals can

be found in [31, 59, 72].

The neuroscience community has shown a great deal of interest in syn-

chrony. While researchers had measured synchrony in mammal brains in
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Disorder Anomalies in neural synchrony

Schizophrenia
Reduction of local- and

long-range synchronization

Epilepsy
Increase in local synchrony; evidence for

a reduction in long-range synchronization

Autism
Reduced functional connectivity;

preliminary evidence for impaired neural synchrony

Alzheimer’s disease
Reduced neural synchrony during resting state;

evidence for reduced functional connectivity

Parkinson’s disease
Increase in neural synchrony in the basal ganglia,

but also between subcortical-cortical structures

Table 3.1. Neurological pathologies associated with anomalous synchrony patterns of the
human brain. Adapted from [84, Table 1].

the late 1980s [27], to the author’s knowledge, widespread interest from

neuroscientists began in the mid 1990s [20], and the second half of that

decade saw several experimental verifications that hinted at the role of

synchrony in the brain. Two of the most impactful works are, perhaps,

[82] and [48]. Of particular relevance to this thesis, as motivating factors,

are the verification that the scalp conducts electrical activity and that,

therefore, the EEG signals can be considered to be a mixture of sources

from inside the scalp [60], and the finding of correlations between sev-

eral pathologies and anomalous synchrony patterns in the brain [84]. Ta-

ble 3.1 presents a list of some pathologies and of the corresponding syn-

chrony anomalies.

Today, synchrony continues to be an active area of research in the neu-

roscience community. Many influential researchers consider phase syn-

chrony a fundamental mechanism for understanding the human brain

[74, 23, 24, 90, 25], and it has been found to be involved in many brain

functions. Findings include:

• An involvement of synchrony in the processing of learning from mis-

takes, which appears to be similar between rodents and humans [56].

• Preliminary evidence that the hippocampus, one of the central areas

in the brain, “tunes” into different frequencies depending on the need

to use path memorization (≈35 Hz) or visual landmarks (≈60 Hz) in

orientation [14]. There is now speculation that synchrony plays a role
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in prioritizing different sources of information.

• Indications that the memorization of smells, at least in rodents, is con-

nected to synchronized activity between the entorhinal cortex (part of

the medial temporal lobe) and the hippocampus, with a frequency around

20 Hz [40].

Also, despite the fact that the association between synchrony and some

pathologies has been known for quite a while [84], recent findings keep

challenging old knowledge. For example, recent data suggest not only a

reduction in local and long-range connectivity in schizophrenia, but also

an increase in connectivity in the brain’s default mode network [67, 88].1

Apart from synchrony, researchers have used other criteria to measure

connectivity in the brain. Among these, coherence is a popular choice. For

example, [86] applied ICA to MEG recordings and then measured coher-

ence between the resulting sources (in subsequent work [55], a similar

approach was presented replacing coherence with synchrony). [57] pro-

posed using the imaginary part of coherence to detect interaction between

brain regions, although this was not used to perform source separation.

In subsequent work, the same group proposed a BSS technique based on

diagonalization of anti-symmetrized cross-correlation matrices [58]. BSS,

in particular ICA, has also seen widespread use as a tool for artifact re-

moval in EEG [54] and MEG [87].

A popular measure of synchrony in neuroscience studies is the Phase

Locking Factor (PLF), sometimes also called Phase Locking Value (PLV)

(see, e.g., [81, 80, 68, 22, 76]). It is introduced in the next section.

3.2.2 Phase Locking Factor

This section provides a formal way to measure synchrony between two

signals. Unlike in section 3.1, in this section and the remainder of the

document, all signals are discrete-time signals.

Given a complex discrete-time signal s(t), we define its phase as its

argument: φ(t) ≡ arg[s(t)]. Consider now two signals, sj(t) and sk(t),

with phases φj(t) and φk(t), respectively, and define their phase lag as

1The default mode network is part of the rest-state network, a network of regions
in the brain that have increased activity when humans are not performing any
specific task. The activity in these regions is measurably reduced when humans
engage in tasks.
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Δφjk(t) ≡ φj(t) − φk(t). The Phase Locking Factor (PLF) between these

two signals is defined as

�jk ≡
∣∣∣∣∣ 1T

T∑
t=1

eiΔφjk(t)

∣∣∣∣∣ =
∣∣∣〈eiΔφjk(t)

〉∣∣∣ , (3.10)

where 〈·〉 is the time average operator. The PLF has the following proper-

ties:

1. 0 ≤ �jk ≤ 1;

2. �jk = 1 if and only if eiΔφ(t) does not depend on t. This is equivalent

to Δφ(t) being constant modulo 2π. A third equivalent statement is

that the phase of each source is equal to a source-dependent and time-

independent term plus a source-independent and time-varying term:

φj(t) = φj + φ(t).

3. In particular, the PLF of a signal with itself is 1: �jj = 1.

4. �jk is invariant to the scale of the signals: if sj is multiplied by αj and

sk is multiplied by αk, where αj and αk are two nonzero complex scalars,

then the PLF between αjsj and αksk is the same as the PLF between sj

and sk.

�jk = 0 occurs, by definition, if and only if
∑T

t=1 e
iΔφjk(t) = 0. Unlike the

�jk = 1 case which is equivalent to a precise characterization of the two

signals, the case �jk = 0 can correspond to vastly different situations. In

the limit where the observation period T tends to +∞, and under ergodic-

ity conditions, the following cases, among many others, yield zero PLF:

• φj(t) = 0, and φk(t) uniformly distributed in [0, 2π);

• φj(t) and φk(t) are both uniformly distributed in [0, 2π) and are statisti-

cally independent;

• Δφjk(t) = αt where α is not a multiple of 2π.

For a finite observation period T , even these cases may yield non-zero

values of �jk, which will tend to become smaller as the observation period

grows larger.
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We can now provide a precise definition of the term “synchrony”: if �jk =

1 we say that signals sj(t) and sk(t) are perfectly synchronized; if �jk = 0

we say that they are perfectly unsynchronized; if 0 < �jk < 1 we say that

they are partially synchronized.

40



4. Separation of Synchronous Sources

We now have all the elements to formally state the Separation of Syn-

chronous Sources problem: a linear and instantaneous BSS problem, fol-

lowing model (2.3), is called a Separation of Synchronous Sources (SSS)

problem if all pairs of sources are assumed to have pairwise PLFs of 1.

We will later consider perturbed versions of this problem and still call it

SSS.

One of the main motivations behind this work is the empirical verifica-

tion that mixing destroys synchrony information, a fact which we verified

empirically in multiple works. Consider, for example, the sources depicted

in the top-left panel of figure 4.1, adapted from [Publication V]. These

sources have pairwise PLFs of 1 with one another, as depicted in the top-

right panel. If these sources are mixed using a 3× 3 matrix whose entries

are random and drawn from a Uniform(−1, 1) distribution, a typical re-

sult is shown in the bottom-left panel of the figure. As shown on the

bottom-right panel, the PLFs of these mixtures are no longer equal to 1,

although signals 2 and 3 still exhibit a rather high mutual PLF. One of the

main results in this work is a proof that, in the presence of perfectly syn-

chronous sources, mixing will always result in imperfectly synchronous

sources (theorem 4.1.1), showing that the example in figure 4.1 is not a

coincidence. Another main result of this work is the design, implemen-

tation and analysis of two algorithms to solve the SSS problem. The two

algorithms are very different in their philosophy:

• In Independent Phase Analysis (IPA), the basic rationale is as follows:

Theorem 4.1.1 states that, under certain conditions, maximizing the

pairwise PLFs will yield a solution equal to the original sources, apart

from the usual indeterminacies. IPA explicitly maximizes an objective

function which is the sum of the squares of all pairwise PLFs, plus a
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Figure 4.1. Top row: The real part of the three original sources (left) and PLFs between
them (right). Bottom row: The real part of the three mixed signals (left) and
PLFs between them (right). On the right column, the area of the square in
position (i, j) is proportional to the PLF between the signals i and j. There-
fore, large squares represent PLFs close to 1, while small squares represent
values close to zero. In this example, the second and third sources have phase
lags of π

6
and π

3
radians relative to the first source, respectively.

regularization term which penalizes singular solutions.

• In Phase Locked Matrix Factorization (PLMF), the basic rationale is

as follows: if the sources are synchronous, then they can be expressed

as a product of matrices with specific properties, which are presented

below. PLMF explicitly models the sources as such a product and tries

to estimate each factor separately. In doing this, singular solutions are

automatically avoided.

These algorithms are explained in more detail in the next subsections,

along with their theoretical properties and experimental results. Through-

out this section, all signals are assumed to be complex-valued.

4.1 Problem Definition and Identifiability

A crucial aspect of SSS is that it is “sufficiently well-defined” in a sense

similar to the one in which ICA was, but with different assumptions. The

following theorem and corollary (both derived in [Publication III]1) es-

tablish that fact.

Theorem 4.1.1. Consider a set of N sources which follow the SSS model,

1The proof of the corollary was somewhat unclear in [Publication III]. For that
reason, we present it here again in a clearer form.
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such that sk(t) ≡ Ak(t)e
i(φ(t)+φk). Also, consider a linear combination of

those sources, given by ŝ = Gs with square G. Furthermore, assume that:

1. None of the sources and none of the linear combinations are identically

zero.

2. φ1, φ2, . . . are all distinct modulo π.

3. The amplitudes Ai(t) are linearly independent (i.e., the matrix A, with

entry (i, t) given by Ai(t), has maximum row rank) and positive.

Then, if the components of ŝ have the form

ŝj(t) = Cj(t)e
i(φ(t)+αj), (4.1)

with positive amplitudes Cj one necessarily has, for every j, that ŝj = Lsk

for some k, where L is a non-zero real number. Equivalently, each row of

G has exactly one non-zero element.

Corollary 4.1.2. In the conditions of theorem 4.1.1, the following two

statements are equivalent:

1. For all j �= k, ŝj and ŝk are linearly independent.

2. G is non-singular and is thus a permutation of a diagonal matrix with

nonzero diagonal elements.

In particular, to successfully extract all the original sources up to permu-

tation, scale and sign change, G must be non-singular.

Proof. Proving 1 =⇒ 2 is trivial: suppose G is singular. Since each of its

rows has at most one non-zero element, then two of its rows (say, rows j

and k) have non-zero elements in the same column (say, column �). This

immediately implies that ŝj = gj�s� and ŝk = gk�s�, and thus ŝj and ŝk are

linearly dependent.

We now prove that 2 =⇒ 1. This is also straightforward: if for a certain

pair j, k, we have ŝj = Lŝk, then by theorem 4.1.1 these two mixtures must

both be equal to the same source up to scale and sign: ŝj = Lŝk = Ks�.

This means that rows j and k of G both have exactly one nonzero element

in the �-th column, thus making G singular.
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This theorem and corollary state that, if we find a linear combination of

the original sources with the form (4.1), and if the assumptions are met,

then we have found the original sources up to the typical BSS indetermi-

nacies. Note, however, the specific form of (4.1): the linear combinations

ŝ have exactly the same common oscillation φ(t) as the original sources s.

We will use a theorem presented later (theorem 4.3.3, in section 4.3.4) to

show that, under mild assumptions, all linear combinations with pairwise

PLFs of 1, i.e., combinations of the form

ŝj(t) = Cj(t)e
i(ψ(t)+αj), , (4.2)

must have ψ(t) = φ(t) + β, where β is some real number. Since β can be

absorbed by the αj phase offsets, one can actually state that one can only

find linear combinations of the sources which have pairwise PLFs of 1 if

those linear combinations have the form (4.1).

Therefore, this theorem and corollary assert that, similarly to the ICA

case, in SSS the sources can be recovered through maximization of the

PLF, with the permutation, scale and sign indeterminacies. The require-

ments on the data are quite different from those of ICA, though. Let us

now take a closer look at those requirements:

1. ICA is identifiable only if one has at most one Gaussian source – no

such constraint is needed for SSS.

2. On the other hand, SSS’s identifiability requires that no pair of sources

be either in-phase or in anti-phase.

3. SSS’s identifiability also requires that the amplitudes of the sources be

linearly independent.

4. SSS’s identifiability also requires that the gain matrix G is non-singular.

Since the mixing matrix M is assumed non-singular in BSS problems,

this requires that the demixing matrix be non-singular. While this is

also a requirement for ICA identifiability, we shall see later that fulfill-

ing this requirement is considerably harder in SSS algorithms.

The reader is referred to the proof of theorem 4.1.1 [Publication III] for

the mathematical reasons for requirements 2–4. We now present simple

counterexamples illustrating why each of these requirements is needed.
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Example 4.1.3. Let s1 and s2 be two signals exactly in-phase, with a phase

lag of zero:

s1(t) = a1(t)e
iφ(t)

s2(t) = a2(t)e
iφ(t), (4.3)

with a1(t) = 1 and a2(t) = 2 + t, with t = 1, 2, · · · , T . Let

G =

⎡
⎣ 1 1

−1 1

⎤
⎦ , (4.4)

and thus ŝ1(t) = b1(t)e
iφ(t) and ŝ2(t) = b2(t)e

iφ(t) with b1(t) = 3 + t and

b2(t) = 1 + t. Clearly, all requirements are satisfied except that the phase

lag is not different from 0 modulo π.

Since b1(t), b2(t) > 0 for all t, the PLF between ŝ1 and ŝ2 is 1. However,

ŝ1 and ŝ2 are not equal to the original sources s1 and s2, even considering

permutation, scaling and sign indeterminacies.

Example 4.1.4. Let s1 and s2 be two signals with linearly dependent am-

plitudes and with a phase lag Δφ /∈ {0, π}:

s1(t) = a(t)eiφ(t)

s2(t) = 2a(t)eiφ(t)+Δφ, (4.5)

with t = 1, 2, · · · , T . Let

G =

⎡
⎣ 1 1

−1 1

⎤
⎦ . (4.6)

Clearly, all requirements are satisfied except that the amplitudes of the

sources are linearly dependent.

Since

ŝ1(t) = a(t)
[
eiφ(t) + 2eiφ(t)+Δφ

]
= a(t)eiφ(t)

[
2eiΔφ + 1

]
(4.7)

ŝ2(t) = a(t)
[
−eiφ(t) + 2eiφ(t)+Δφ

]
= a(t)eiφ(t)

[
2eiΔφ − 1

]
, (4.8)

the PLF between ŝ1 and ŝ2 is 1. However, ŝ1 and ŝ2 are not equal to the

original sources s1 and s2, even considering permutation, scaling and sign

indeterminacies.

Example 4.1.5. Let s1 and s2 be any two signals, and let

G =

⎡
⎣1 1

1 1

⎤
⎦ , (4.9)

Clearly, all requirements can be made to be satisfied except that the mixing

matrix is singular.
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We have ŝ1(t) = ŝ2(t) = s1(t) + s2(t). Since the PLF of a signal with itself

is 1 (see equation (3.10)), the PLF of signals ŝ1 and ŝ2 is 1. However, ŝ1
and ŝ2 are not equal to the original sources s1 and s2, even considering

permutation, scaling and sign indeterminacies.

Requirements 2 and 3, that the amplitudes be linearly independent and

that phase lags be different from 0 modulo π, can be considered mild re-

quirements: they will be met in the vast majority of situations. Note,

however, that in practice we will always be dealing with a finite observa-

tion period T . In that case, as will be empirically shown in section 4.3, the

performance of SSS algorithms is stable for phase lags that are far from

0 and pi, but degrade as they approach those values.

Requirement 4 is much more profound. It corresponds to a fundamental

difference between ICA and SSS:

• In ICA, if the mixing matrix is non-singular, “maximizing independence”

poses no risk of leading the algorithm towards singular unmixing ma-

trices, since a signal is not independent of itself.2

• In SSS, even with a non-singular mixing matrix, maximizing the PLF

poses the risk of leading the algorithm towards singular matrices, since

a solution with ŝ1 = ŝ2 = . . . = ŝP trivially makes all PLFs equal to 1.

Therefore, some means must be employed to prevent this from happen-

ing.

We shall see in section 4.2 that this requirement is, to some extent, a

drawback of IPA, one of the SSS algorithms proposed in this thesis.

4.2 Algorithm: Independent Phase Analysis

Independent Phase Analysis (IPA) explicitly maximizes the PLF of the

estimated sources as a function of the demixing matrix W. Let ŝ(t) ≡
WTy(t) denote the vector of estimated sources, let ŝj(t) denote the j-th

estimated source, and let Δφ̂jk(t) denote the phase lag between estimated

sources j and k. These estimated quantities are, naturally, functions of

2In fact, ICA algorithms do not maximize independence, but rather optimize
some surrogate of it. Even so, the most frequently used ICA algorithms do avoid
singular solutions. In some of them, the search is reduced to the space of orthog-
onal matrices, which immediately avoids singular matrices.
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the demixing matrix W – this dependency will sometimes be omitted for

clarity in the following. The PLF between estimated sources j and k,

denoted by �̂jk, is given by:

�̂jk(W) ≡
∣∣∣∣∣ 1T

T∑
t=1

eiΔφ̂jk(t)

∣∣∣∣∣ =
∣∣∣〈eiΔφ̂jk(t)

〉∣∣∣ . (4.10)

This estimated PLF is also a function of W, since Δφ̂jk is a function of it.

IPA maximizes the following objective function:

J(W) ≡ (1− λ)
∑

j �=k; j,k=1,...,N

�̂2jk(W) + λ log | detW|. (4.11)

The first term of J(W) is the sum of the squares of all PLFs between pairs

of different sources.3 The second term is a regularization term which we

will discuss further below.

IPA constrains the rows of W to have unit Euclidean norm. The set of

N × N matrices whose rows have unit norm will be denoted as S. Thus,

the optimization problem to be solved in IPA is

max
W∈S

J(W) (4.12)

We proved [Publication IV] that the gradient of J relative to a column

wj of the matrix W is given by

∇wjJ = 4
1− λ

N2

N∑
k=1

�̂jk

〈
sin

[
Ψ̂jk −Δφ̂jk(t)

] Γ(t)

Yj(t)2

〉
wj , (4.13)

where Sj ≡ |ŝj | where ŝj is the j-th estimated source, φ̂j ≡ angle(ŝj)

and Δφ̂jk(t) ≡ φ̂j(t)− φ̂k(t) is the instantaneous phase difference between

two estimated sources, Ψ̂jk(t) ≡ 〈Δφ̂jk(t)〉 is the average phase difference

between two estimated sources, and Γ(t) = yh(t)y
T (t)−y(t)yh

T (t), where

yh = Imag(ỹ) is the imaginary part of y. Γ(t) is a matrix that can be

pre-computed, before the optimization of J(W), because it depends only

on the data.

4.2.1 Regularization

Let us temporarily focus on the case λ = 0. For this case, we have

0 ≤ J(W) ≤ N(N − 1). The reason for this is that each �̂2jk term in the

summation is between 0 and 1, and there are N(N − 1) such terms.

3Note that, since the PLF of a signal with itself is always 1, we could include the
case j = k in the summation without changing the solution.
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If the assumptions of the SSS problem hold (i.e., if the original sources

have PLFs of 1 with one another and the mixing is linear and instanta-

neous), then one global maximizer of J(W) corresponds to the case where

the estimated sources are equal to the original sources. This will yield

�̂jk = �jk = 1 for all j, k, and this is the maximum value each of the �̂jk

can take. This case corresponds to making WT = M−1, up to permuta-

tion, scaling and sign change.

Theorem 4.1.1 ensures that the solution WT = M−1 is the only one

where det(W) �= 0, apart from permutation, scaling and sign change. In

more rigorous terms, there are multiple non-singular solutions of the form

WT = PDM−1, where P is some permutation matrix, and D is a diagonal

matrix with nonzero entries in its diagonal.4 We call all solutions of this

form desirable solutions of IPA. However, there are many other global

maximizers of J(W), which have det(W) = 0. For example, there are N

solutions of the form

ŝ1 = ŝ2 = . . . = ŝN = si, (4.14)

for some i ∈ {1, . . . , N}. This solution corresponds to making all estimated

sources equal to the i-th true source. It is equivalent to having a matrix

W such that the gain matrix has all entries in the i-th row equal to 1

and all other entries equal to zero. It is simple to see that this is a global

maximizer for λ = 0: all estimated sources are equal to one another, thus

their pairwise PLFs are all equal to 1. Apart from these N solutions, there

are many other ones, which are not good solutions, in the sense that they

are global maximizers of J(W), for λ = 0, but do not recover the original

sources. We call undesirable solutions all global maximizers of J(W) that

are not desirable solutions. Theorem 4.1.1 ensures that all undesirable

solutions have det(W) = 0.

The fact that the maximizers of the first term of J(W) can correspond to

desirable or undesirable solutions is the motivation for the second term,

which explicitly penalizes undesirable solutions: these solutions make the

second term equal to −∞, whereas desirable solutions make it finite. The

parameter λ controls the tradeoff between the first term and the regular-

ization one.

The previous reasoning motivates the fact that 0 < λ < 1 is a better

choice than λ = 0. However, there is a significant disadvantage in using

regularization: Theorem 4.1.1 characterizes the maximizers of the first

4The diagonal entries of D are not free: they must be such that the rows of W
have unit norm.
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term, but the objective function now also contains a regularization term.

Theorem 4.1.1 now does not characterize solutions for this case. In gen-

eral, for 0 < λ < 1, maximizers of J(W) will not exactly correspond to

desirable solutions.

The requirement for the columns of W to be normalized can now be

justified: if W was not constrained, | detW| could be made arbitrarily

large, without affecting the first term, by scaling the columns of W.

4.2.2 Optimization Strategy

The existence of multiple solutions for λ = 0 shows that IPA is not a

concave optimization problem [13] and we have verified, in practice, that

optimizing IPA is difficult if a fixed value of λ is used. Using small values

(or zero) for λ tends to yield singular solutions often. Ideally, one would

wish to avoid undesirable solutions, which would force us to use relatively

large values of λ, but one would also wish the assurance, through Theo-

rem 4.1.1, that a solution with detW �= 0 is a desirable one, which would

force us to use λ = 0. To reconcile these two aspects, we proposed in [Pub-

lication V] that the value of λ should start at a relatively large value, and

be decreased throughout the optimization, such that at the end λ is zero.

The reasoning is that the initial stages, with large λ, force W away from

undesirable solutions; the later stages, with smaller λ, corresponds to the

optimization of functions which are progressively better approximations

of the first term, and are therefore expected to yield results that are pro-

gressively closer to desirable solutions, yielding a desirable solution in the

final step, with λ = 0. We have no theoretical guarantee that this method

will yield a desirable solution. However, we have verified in practice that

it yields much better results than using a fixed value of λ, as shown in

section 5.1.

In the results that follow, each epoch with a fixed λ is optimized with 200

iterations of gradient ascent, as shown in table 4.1. After this, MATLAB’s

implementation of BFGS is run until convergence. The solution found in

this manner is used to initialize the optimization with the next value of λ.

4.3 Algorithm: Phase Locked Matrix Factorization

As discussed in the previous section, non-regularized IPA (λ = 0) suffers

from the drawback of allowing undesirable solutions, and regularized IPA
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INDEPENDENT PHASE ANALYSIS

1: Input y(t), η, kmax

2: ỹ(t) ← analytic signal of y(t) (eqs. (3.1), (3.2), (3.3))

3: ϕj(t) ← angle(ỹj(t)), j = 1, . . . , N

4: Yj(t) ← |ỹj(t)|
5: Initialize W ∼ N (0, 1); set k = 1

6: repeat

7: ˆ̃s(t) ← WT ỹ(t)

8: ΔW ← Eq. (4.13)

9: W ← W + ηΔW

10: wj ← wj/‖wj‖, j = 1, . . . , N

11: k ← k + 1

12: until (‖ΔW‖ < ε) or (k > kmax)

Table 4.1. Pseudocode for the fixed-λ version of IPA using gradient ascent. The varying
λ version merely runs the fixed version until convergence multiple times with
decreasing values of λ.

(λ > 0) suffers from a bias due to the regularization term. These disadvan-

tages motivated us to design, in a more principled way, an SSS algorithm

which would guarantee exact separation. Phase Locked Matrix Factor-

ization (PLMF), the algorithm detailed in this section, accomplishes this,

and yields substantially better separation results than IPA.

4.3.1 General Approach

Whereas IPA tries to estimate the unmixing matrix W directly from the

data, PLMF is based on a factorized model of synchronous sources. Let us

decompose, elementwise, the complex-valued sources into their absolute

values and arguments:

S = A�Φ, (4.15)

where the entries of A are real-valued and non-negative, those of Φ are

complex-valued and have unit absolute value, and the symbol � denotes

elementwise (or Hadamard) product. We call A and Φ the sources’ ampli-

tudes and phases, respectively.

If the sources S are perfectly synchronous, then the phases Φ can be

further decomposed as

Φ = zfT , (4.16)
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where z and f are complex-valued vectors of sizes N and T , respectively,

and whose entries all have unit absolute value. To see why this decompo-

sition is always possible, recall from section 3.2.2 that, if a set of sources

are perfectly synchronous, then the phase of the j-th source could be writ-

ten as φj(t) = φj + ψ(t). Equation (4.16) follows from setting the j-th

element of z as eiφj , and the t-th element of f as eiψ(t). Notice that there

are more assignments that uphold equation (4.16): one can also set the

j-th element of z to eiφjeiγ and the t-th element of f to eiψ(t)e−iγ , for any

real scalar γ. This is a new indeterminacy, specific to PLMF, which we

call the rotation indeterminacy. Note that, while these assignments yield

different factors z and f , they do not alter the sources S.

Consecutively applying equations (2.8), (4.15) and (4.16) yields, for syn-

chronous sources and no observation noise,

Y = M[A� (zfT )]. (4.17)

If one defines Dz as a N ×N diagonal matrix with diagonal entries equal

to the entries of z, and analogously defines Df as a T × T matrix with

diagonal entries equal to the entries of f , then equation (4.17) can also be

written as

Y = MDzADf . (4.18)

The basic idea behind PLMF is to minimize the squared error of this

model relative to the observed data:

min
M,A,z,f

1

2
‖Y −MDzADf‖2F , (4.19)

s.t.: 1)max
i,j

|mij | = 1

2)|zj | = 1 for all j

3)|ft| = 1 for all t

where ‖ · ‖F is the Frobenius norm. The first constraint forces the largest

absolute value among all elements of M to be 1, a constraint that we shall

discuss further below. The second and third constraints force z and f to

have entries with unit absolute value. M and A are real, while z and f

are complex ones.5

5We also experimented adding the constraint A ≥ 0, since our experiments will
use amplitudes which obey this constraint. However, adding this constraint
makes the algorithm sometimes become “stuck” with many entries of A equal
to zero and unable to depart from that situation, even when the true matrix has
only positive entries.
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Let the term desirable solutions denote all solutions such that the sources

S = DzADf are equal to the original sources up to permutation, scaling

and sign change. Suppose that the data Y are indeed generated accord-

ing to the PLMF model (4.17). Then, the true solution (i.e., the values

of M,A, z, f used to generate the data) clearly makes the cost function

in equation (4.19) attain its minimum possible value of zero. That solu-

tion also obeys constraints 2 and 3, by construction. The true solution will

probably not obey constraint 1; however, it is easy to obtain a new solution

that obeys it, by multiplying M by an appropriate scalar and dividing A

by the same scalar. Since the sources are only affected by a scaling factor,

this new solution is a desirable one.

There is, therefore, a global minimizer of the objective function of (4.19)

which yields a desirable solution. Constraint 1 ensures that there is no

scale indeterminacy, but due to the permutation and rotation indetermi-

nacies, there is in fact an infinite number of desirable solutions, all of

which minimize the cost function in (4.19).

The PLMF problem is non-convex [13]. There are two reasons for this:

• The cost function involves the product of several variables.

• The feasible sets, i.e., the sets of values of the variables which obey

constraints 1, 2, and 3, are not convex sets.

One of the results in this thesis is that, under certain conditions, all global

optima of this problem correspond to desirable solutions, as will be shown

further below.

The basic PLMF algorithm iteratively solves the minimization problem

in (4.19). Each iteration is a sequence of four steps. At each step, three of

the four variables are kept fixed, and the minimization problem is solved

with respect to the remaining variable. This is known in the literature

as a Block Nonlinear Gauss-Seidel (BNGS) method [28], or Block Coor-

dinate Descent, or Alternating Optimization, and it is not guaranteed to

converge to the optimal solution in general. It does converge under some

assumptions [28], which are not met in our case. We discuss this aspect

further in section 6.2.

The first version of PLMF tackled the minimization problem in (4.19)

directly, i.e., optimizing on all four variables using the BNGS method.

However, we have since shown that PLMF can also be solved by finding a
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correct value for f by solving a relaxed version of (4.19).6 This value of f is

then kept fixed, and the BNGS method is then applied to optimize on the

three remaining variables M,A, z. To distinguish these two approaches,

when necessary, we will refer to the first one as the “1-stage” PLMF and

to the second one as the “2-stage” PLMF. Whenever we do not make a

distinction, we will be referring to the second version.

Experimental comparisons have shown that the 2-stage PLMF outper-

forms the 1-stage version. The reason for this, which we verified experi-

mentally, is that 1-stage PLMF yields local minima frequently; the 2-stage

version is not immune to this, but returns local minima less often. Hence,

we now proceed to discuss only the 2-stage version; the 1-stage version

was presented in [Publication VI].

4.3.2 First subproblem

In the first stage of 2-stage PLMF, the goal is to estimate the common os-

cillation f up to the rotation indeterminacy. This estimation is performed

by solving the subproblem

min
H,A,f

1

2
‖Y −HADf‖2F , (4.20)

s.t.: 1)max
i,j

|hij | = 1

2)|ft| = 1 for all t,

where H can be any complex matrix with the same dimensions as M, as

long as the largest absolute value among its entries is 1, to fulfill con-

straint 1, and f is complex with entries having unit absolute value, as

before. This formulation collapses the product MDz from (4.19) into the

matrix H, which is now allowed to be any complex matrix. Note that,

despite the fact that we minimize relative to H,A, and f , the purpose is

only to estimate f . The values found for H and A are discarded. Since the

product of a real matrix M and a complex diagonal matrix Dz does not

span the space of all complex matrices, the minimization problem (4.20)

is a relaxation of (4.19).

If the sources exactly follow the model in equation (4.18), a factorization

of the form Y = HADf always exists, since the true factorization is a spe-

cial case of it. The following theorem, proven in [Publication XI], shows

6Recall that, due to the rotation indeterminacy, there are infinite correct values
for f . The method finds one of them.
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that if Y = HADf (in particular, if the sources follow the model in equa-

tion (4.18)), then finding a solution of (4.20) yields a correctly estimated

f , apart from a sign indeterminacy which can be easily compensated, and

from the rotation indeterminacy.

Theorem 4.3.1. Let Y = H1A1Df1 with H1 ∈ C
P×N , A1 ∈ R

N×T , Df1 ∈
D
T
1 , where D

T
1 is the set of T -by-T diagonal complex matrices whose diago-

nal entries have unit absolute value, and H1 has full column rank. If there

is another factorization of the same form, Y = H2A2Df2, then one neces-

sarily has Df2 = EDf1 where E ∈ D
T
1 is a diagonal matrix whose diagonal

elements belong to the two-element set {−eiγ ,+eiγ}, where γ is some real

number.

This theorem only ensures a “quasi-identifiability” of f , since Df is de-

termined up to multiplication by matrix E. This means that we may not

obtain the true Df , for two reasons (which may occur simultaneously):

1. The first possibility is that all entries of Df are multiplied by eiγ , i.e.,

all its entries are rotated by an angle γ. This ambiguity corresponds to

the rotation indeterminacy.

2. The second possibility is that some entries of the estimated Df are mul-

tiplied by +1 and some by −1. This means that some entries of Df are

estimated with the wrong sign.

The first issue does not need to be solved at this point, since the rotation

indeterminacy does not affect the estimated sources. It will be compen-

sated when we estimate z, in the second subproblem (section 4.3.3).

The second issue can easily be solved if the common oscillation f is

smooth, i.e., if it varies slowly with time. In that case, it is natural to

expect that ft+1 is not very different from ft. Therefore, to correct this

sign estimation, we compute, for t = 1, . . . , T − 1, the quantity

|fR(t)− fR(t+ 1)|+ |fI(t)− fI(t+ 1)|, (4.21)

where fR(t) is the real part of the t-th entry of f , and fI(t) is the imaginary

part of that entry. It is easy to show that, if ft+1 = −ft, then this quantity

lies between
√
2 and 2. For a smoothly varying f , we expect the values of

(4.21) to be small if there is no change of sign from time t to time t+1, and

to be �
√
2 if such a sign change occurs from t to (t+1). In our simulations
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we determine that there is a change in sign when

|fR(t)− fR(t+ 1)|+ |fI(t)− fI(t+ 1)| > 1. (4.22)

In the tests presented in section 5.2, this simple procedure successfully

captures all sign changes. However, if f is not sufficiently smooth, better

phase unwrapping techniques must be employed [12].

4.3.3 Second subproblem

The first subproblem yields an estimate of f . To motivate the second

subproblem, let us take the source model (4.18) and multiply both sides of

the equation by the inverse of Df , on the right. Note that the inverse of

Df is its complex conjugate: Df
∗ = Df

−1. This yields

YDf
∗ = MDzA. (4.23)

The second subproblem attempts to minimize the squared difference be-

tween both sides of this equation:

min
M,A,z

1

2
‖YDf

∗ −MDzA‖2F , (4.24)

s.t.: 1)max
i,j

|mij | = 1

2)|zj | = 1 for all j.

One again has identifiability in this second subproblem, as shown by the

following theorem, which was derived in [Publication XI].

Theorem 4.3.2 (Identifiability of M,A,z). Let YDf
∗ = MDz1A1 with

M1 ∈ R
P×N , Dz1 ∈ D

N
1 , A1 ∈ R

N×T , where R
N×T denotes the set of N -by-T

matrices with real entries. Further assume that the phases of all sources

are different from one another modulo π (in other words, that two entries

eiα and eiβ of the diagonal of Dz1 never satisfy eiα = eiβ nor eiα = −eiβ),

and that A1 has maximum row rank. If there is another factorization of

the same form, YDf
∗ = M2Dz2A2, then one necessarily has M1 = M2,

Dz1 = Dz2, and A1 = A2, up to permutation, scaling, and sign change.

Importantly, note that this theorem does not state that Dz is estimated

up to rotation. This ensures that the rotation indeterminacy, which was

a potential issue from the first subproblem, is no longer an issue. At the

end of the second subproblem, if a global minimum of problem (4.24) is

found, the theorem ensures that one will have a solution M,A, z, f such
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that YD∗
f = MDzA, or equivalently, such that Y = MDzADf up to per-

mutation, scaling and sign change. While two different solutions may

have vectors z and f which differ by arbitrary rotations, the two theorems

ensure that both pairs (z, f) yield the same sources.

This theorem assumes that all the arguments of the entries in the diag-

onal of Dz are different modulo π. A similar theorem can be proven for

a more general case where k diagonal elements violate this assumption,

whereas the remaining (N−k) obey it. In that case, Dz is still identifiable.

However, only (N −k) rows of A and the corresponding (N −k)-by-(N −k)

block of M are identifiable. In other words, only the (N − k) sources with

distinct phase values (modulo π) are identifiable; the remaining sources

will, in general, be mixed with one another in the estimated sources. A

sketch of this proof was presented in [Publication XI] (see footnote 9).

4.3.4 Global identifiability

Given that both subproblems of PLMF are identifiable (or quasi-identifiable

for the first one), one may naturally ask the question: is the original prob-

lem in (4.19) identifiable? In other words, if we find a solution of that

problem (not necessarily with PLMF), can we be sure that we found the

original sources up to the usual indeterminacies? By combining the two

Theorems 4.3.1 and 4.3.2, the answer turns out to be affirmative, with one

additional assumption. Along with the assumptions of both theorems, one

also needs that the amplitudes A are non-negative, as shown by the fol-

lowing theorem, which was also derived in [Publication XI].

Theorem 4.3.3. Let Y be data generated according to the model in equa-

tion (4.18) with all the elements of A non-negative, and let Y = M1Dz1A1Df1

be a factorization of the data such that the entries of A1 are non-negative,

the constraints of problem (4.19) are satisfied, M1 has full column rank,

the phases of the entries of z1 are different modulo π, and A1 has maximum

row rank. Let Y = M2Dz2A2Df2 be another such factorization. Then, the

two factorizations are equal up to permutation, scaling, and rotation.

This theorem also shows that there is no loss of generality in the as-

sumption, in theorem 4.1.1, that the common oscillation of the mixed sig-

nals is equal to the common oscillation of the sources, if the sources’ am-

plitudes are positive. Recall that we proved that, for the case where the

number of sources is equal to the number of mixed signals, if the sources
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were given by

sk(t) ≡ Ak(t)e
i(φ(t)+φk), (4.25)

then, under the assumptions of theorem 4.1.1, the only way to construct a

linear combination y = Ms such that

yj(t) = Cj(t)e
i(φ(t)+αj) (4.26)

was to have yi = Ksj for some i and j, where K is a non-zero real number.

At the time, we noted that (4.26) enforces a very particular form for the

mixtures y, since their common oscillation, φ(t), must be equal to that of

the sources s.

Using Theorem 4.3.3, it is straightforward to show that this must be the

case, and therefore that no generality was lost in 4.1.1. One merely needs

to decompose the sources according to 4.18:

S = DzsAsDfs , (4.27)

and similarly decompose the data as

Y = DzyAyDfy . (4.28)

Note that Theorem 4.1.1 assumes that the mixtures y have a PLF of 1,

therefore the factorization (4.28) must exist.

We then use the equality Y = MS and plug in equation (4.27) to obtain

Y = MDzsAsDfs . (4.29)

Finally, we use the fact that the left-hand sides of equations (4.28) and

(4.29) are the same, to obtain

DzyAyDfy = MDzsAsDfs . (4.30)

One can now use theorem 4.3.3 for the two factorizations in (4.30) to

show that the common oscillation for the linear mixtures, Dfy , must be

the same as that of the sources, Dfs . This implies that no generality is

lost in assuming that any linear combinations of the sources that have a

PLF of 1 must be of the form (4.26).

4.3.5 Optimization Strategy

The PLMF algorithm is presented in Table 4.2. We now explain in fur-

ther detail how each of the two subproblems is tackled. We employ the

BNGS method in both optimizations; in the first subproblem, we ran-

domly initialize the variables Ĥ, Â and f̂ , and iteratively optimize relative
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to each of them, while keeping all others fixed (lines 4-8 of Table 4.2). Sim-

ilarly, for the second subproblem, we randomly initialize M̂, Â and ẑ and

optimize each of them while keeping all others fixed (lines 15-19 of Ta-

ble 4.2). The use of BNGS has a great advantage: problems (4.20) and

(4.24), which are hard to directly solve, in particular due to the presence

of products of variables, are solved through an iteration of constrained

least-squares problems, which we optimize in a simple, albeit suboptimal,

procedure. There is a downside: BNGS is not guaranteed to converge. We

discuss this aspect further in section 6.2.

The two subproblems (4.20) and (4.24) are convex in some variables and

non-convex in other variables. Instead of trying to find the global min-

imum for a certain variable at each iteration, we chose to always solve

for each variable without enforcing any constraints, then projecting that

solution onto the feasible set; this projection is an approximation of the

true solution. Our choice is motivated for three reasons: simplicity, be-

cause like this all variables are optimized in a similar way; speed, which

allowed us to run the extensive experiments shown in section 5.2; and

the quality of the results in those experiments. Note that, while this is a

sub-optimal procedure, the fact that the two subproblems are non-convex

in some variables would prevent us from having a guaranteed optimal

solution.

Each iteration of the Gauss-Seidel method simply involves solving an

unconstrained least squares problem, which we solve using the Moore-

Penrose pseudoinverse. After finding the solution of the unconstrained

problem, that solution is “projected” into the space of feasible solutions.

For example, in the first subproblem, solving for H (line 5) is done without

taking the first constraint of (4.20) into account. After the unconstrained

solution is found, H is multiplied by a scalar so that the largest absolute

value of its elements becomes exactly 1. All variables, in both subprob-

lems, are handled in a similar manner.

We use the values of the cost functions of problems (4.20) and (4.24) as

imperfect indicators of the goodness of a solution. For this reason, each

subproblem is solved multiple times for given data Y; we then keep only

the solution which yielded the lowest cost value for that subproblem (lines

10 and 21 of table 4.2), to partially cope with the possible existence of non-

absolute minima.
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PHASE LOCKED MATRIX FACTORIZATION

1: Given: data Y, MaxRunsf , MaxIterf , MaxRunsM,A,z, MaxIterM,A,z

I: ESTIMATION OF f

2: for run ∈ {1,2,. . .,MaxRunsf }, do
3: Randomly initialize Ĥ, Â, f̂

4: for iter ∈ {1,2,. . .,MaxIterf }, do
5: Solve minimization (4.20) for H

6: Solve minimization (4.20) for A

7: Solve minimization (4.20) for f

8: end for
9: end for

10: From the MaxRunsf solutions, choose the one which yields

the lowest value of the function being minimized in (4.20)

11: Store f and discard H and A

12: Correct sign of f by detecting values of (4.21) greater than 1

II: ESTIMATION OF M, A, z

13: for run ∈ {1,2,. . .,MaxRunsM,A,z}, do
14: Randomly initialize M̂, Â, ẑ

15: for iter ∈ {1,2,. . .,MaxIterM,A,z}, do
16: Solve problem (4.24) for M

17: Solve problem (4.24) for A

18: Solve problem (4.24) for z

19: end for
20: end for
21: From the MaxRunsM,A,z solutions, choose the one

which yields the lowest value of the function

being minimized in eq. (4.24)

22: return M,A, z, f

Table 4.2. The Phase Locked Matrix Factorization algorithm.
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4.4 The Effect of Whitening in SSS

Theorem 4.1.1 can be considered the SSS version of Theorem 2.3.1,

which establishes identifiability conditions for ICA. In this section we

present an SSS version of Theorem 2.3.2, showing that prewhitening yields

some advantages when performing SSS. This result was originally pre-

sented in [Publication IX].

Let Cov[yyT ] denote the covariance matrix of the mixtures. Prewhiten-

ing [38] involves multiplying the data Y on the left by the matrix

B ≡ D− 1
2VH , (4.31)

where D is a N×N diagonal matrix containing only the nonzero eigenval-

ues of Cov[yyT ] in its diagonal, V is a P×N matrix with the corresponding

eigenvectors in its columns, and (·)H denotes the conjugate transpose of

a matrix. Then, the equation BY = BMS defines a new BSS problem,

with new data BY which now has N rows.7 The new mixing matrix BM

is called the equivalent mixing matrix, and is now square.

In SSS, the mixing matrix M is real but the data Y are complex. There-

fore, if B is defined as in (4.31), the equivalent mixing matrix BM is, in

general, complex. Thus, without whitening, one is searching for a real

P × N mixing matrix (or equivalently, a real N × P unmixing matrix);

with whitening one has to search for a complex N ×N mixing matrix (or

a complex N ×N unmixing matrix). We now show how one can transform

this into a search for a real N ×N mixing (or unmixing) matrix.

We split the data matrix Y into its real part YR ≡ real(Y) and its imag-

inary part YI ≡ imag(Y), and define SR and SI in a similar way for the

source matrix S. Since M is real, the initial complex problem Y = MS

can be turned into an equivalent real problem in two different ways:⎡
⎣YR

YI

⎤
⎦ =

⎡
⎣M 0

0 M

⎤
⎦
⎡
⎣SR

SI

⎤
⎦ or [YR YI ] = M [SR SI ] . (4.32)

We call the first formulation the “vertically stacked form” (VS form) and

the second one the “horizontally stacked form” (HS form). Clearly, any

of these two formulations is equivalent to the original one, in the sense

that a solution for either of them is transformable into a solution for the

original problem.

7In the presence of additive noise, all eigenvalues of Cov[yyT ] will be nonzero.
Even in that case, this reasoning remains valid if noise levels are low and only
the N largest eigenvalues are used to construct D.
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Recall from section 2.3 that the condition number can be used as an

indicator of the difficulty of an inverse problem. The following theorem

states that, in SSS, this difficulty is bounded above if prewhitening is per-

formed. One can apply the whitening procedure to the left-hand side of

either the VS form or the HS form, both of which are real. Both of these

methods would yield the same upper bound for the condition number of

the equivalent mixing matrix in the theorem that follows. We have empir-

ically found, however, that the condition number of the equivalent mixing

matrix is, on average, farther from the upper bound presented ahead (and

thus, that the matrix is better conditioned) if the HS form is used. There-

fore, we focus on that formulation only.

The upper bound for the condition number of the mixing matrix after

whitening is given by the following theorem, derived in [Publication IX].

Theorem 4.4.1. Let SRI ≡ [SR SI ] and YRI ≡ [YR YI ]. Let B be the

result of applying the procedure from equation (4.31) to YRI . Let aj(t) =

|sj(t)| and φj(t) = angle(sj(t)). Furthermore, suppose that the following

assumptions hold:

• M and S both have maximum rank.

• There is no additive noise; thus, Y = MS holds.

• aj(t), are i.i.d. realizations of a random variable which we denote by Aj ;

• Aj is independent of Ak for j �= k;

• φj(t), are i.i.d. realizations of a random variable which we denote by Φj ;

• Aj is independent of Φk for any j and k, including j = k;

• All Aj have the same distribution (we denote by A a generic random

variable with that distribution);

• sj and sk have maximum PLF, i.e., they have a constant phase lag; this

implies that there exists φ(t), independent of j, such that

φj(t) = φj + φ(t) for all j and t;

• For each value of t, φ(t) is random, and uniformly distributed in [0, 2π);
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note, however, that φ(t) does not need to be i.i.d..

Then, the condition number of the equivalent mixing matrix, denoted by

ρ(BM), obeys

ρ(BM) ≤
√
1 +N

E[A]2

Var[A]
, (4.33)

where N is the number of sources, E[·] is the expected value operator and

Var[·] is the variance operator. Furthermore, this upper bound is tight,

meaning that in some cases equation (4.33) holds with equality.

In the ICA case, prewhitening ensures that we can restrict the search

to orthogonal unmixing matrices. Equivalently, the equivalent mixing

matrix after prewhitening is guaranteed to have a condition number of

1. In SSS, the condition number of the equivalent mixing matrix can

be larger than 1, but it is bounded above by a value which depends on

properties of the amplitudes of the sources.

In [Publication IX], we presented experimental results confirming the

validity of this bound, by randomly generating mixing matrices and sources

which obeyed the assumptions of the theorem, for a few types of sub- and

super-gaussian distributions. We then applied prewhitening and com-

puted the condition number of the equivalent mixing matrix, verifying

that the upper bound is correct and that it is tight.

The assumptions of theorem 4.4.1 are quite restrictive, and will prob-

ably not be obeyed in most practical situations. Nevertheless, we have

empirically found that even in such situations, prewhitening improves

the quality of the results of SSS, and improves the convergence time of

the separation methods. This was shown for PLMF in [Publication XI].

In the results that follow, prewhitening was always applied to the data

before any separation algorithm was used.
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5. Experimental Results

5.1 IPA Results

Results obtained with various versions of IPA have been presented in

four papers [Publication I], [Publication II], [Publication III], [Pub-

lication V]. For conciseness, we present only the two most significant re-

sults, and omit some details; the reader can consult the above references

for more information.

Comparison of IPA with other BSS techniques on simulated data

In [Publication III] we tackled the problem of full ISA where the de-

pendency within each subspace was perfect synchrony. Our goal was to

show that IPA could successfully be used as the third step (intra-subspace

separation). For this, we generated data that obeys the ISA model. We

then used TDSEP1 [91] for the first step (inter-subspace separation) and

a simple heuristic for subspace detection. Since perfectly synchronous

sources are strongly dependent, we did not expect TDSEP to be appropri-

ate for the third step. Our goal was to study whether applying TDSEP to

separate subspaces, and then using IPA to separate within each subspace,

was effective.2

In order to study this, we randomly generated 300 sets of 12 sources,

1TDSEP is an algorithm which separates sources based on the principle that
independent sources should have E[si(t)sj(t + τ)] = μτδij , where μτ is a real
number that depends on the time lag τ , and δij is Kronecker’s delta. TDSEP
constructs multiple time-lagged correlation matrices Cτ whose (i, j) element is
E[si(t)sj(t+ τ)] and performs joint diagonalization on them to estimate the orig-
inal sources.
2These results were obtained with a constant λ optimization strategy. The vary-
ing λ strategy detailed in section 4.2.2 was only proposed later, in [Publication
V].
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Figure 5.1. Example dataset with subspaces of dimensions 3,3,2,2,1,1. First row: Origi-
nal sources (left) and PLFs between them (right). Second row: Mixed signals
and PLFs between them. In the second column, the numbers denote the
indexes of the sources, and the area of each square is proportional to their
pairwise PLF.

grouped in 6 subspaces. The subspaces have sizes 3, 3, 2, 2, 1, 1, and the

sources were such that different subspaces could not simply be separated

through a bandpass filter (see the right panel of figure 5 of the paper). We

also generated corresponding mixing matrices randomly. An example of a

set of sources generated this way is depicted in Figure 5.1.3

As an illustration of the need for specific techniques for separating syn-

chronous sources, figure 5.2 shows the results of applying FastICA to the

set of signals from figure 5.1. The results are quite poor, since the sources

are very strongly dependent. This kind of result was consistently obtained

throughout our experiments with synchronous sources.

We applied TDSEP to each of the 300 sets of mixed signals. Then, a

simple heuristic procedure was applied to estimate the subspaces present

in the data.4 If subspaces could be detected, IPA was applied on each of

these estimated subspaces. Otherwise, the result of TDSEP was returned

with no further processing.

The above procedure, which we denote TDSEP+IPA, was compared with

simply applying TDSEP to the sets of mixed signals with no further pro-

3The specific way in which the sources and mixing matrices were generated can
be found in [Publication III].
4We used a hard threshold on the matrix containing the pairwise PLFs. Several
values of the threshold are swept; if any of them returns a block-diagonal struc-
ture, the subspace structure corresponding to those blocks is considered correct.
Otherwise, we consider that the subspaces cannot be detected.

64



Experimental Results

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
12
11
10

9
8
7
6
5
4
3
2
1

2 4 6 8 10 12

2

4

6

8

10

12
2 4 6 8 10 12

2

4

6

8

10

12

Figure 5.2. Result of FastICA applied to the dataset of figure 5.1. Top: Sources estimated
by FastICA. Bottom left: PLFs between the estimated sources. Bottom right:
Estimated gain matrix. It is clear that FastICA is not adequate for the prob-
lem.
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Figure 5.3. (Left) Histogram of the signal-to-noise ratio (SNR) between the sources found
by TDSEP and the original sources. (Right) Similar histogram for the sources
found by IPA.

cessing (i.e. no subspace detection and no application of IPA to the de-

tected subspaces). To measure the quality of the output, we measured

the signal-to-noise ratio (SNR) of the estimated sources relative to the

corresponding true sources. We compensate the permutation indetermi-

nacy using a simple heuristic, and then define the SNR of source i as

10 log10
E[(αŝi)

2]
E[(αŝi±s2i ]

, where the real scalar α and the ± sign are chosen to

maximize the SNR value. This ensures that these SNR values are inde-

pendent of permutation, scaling, and sign, as is common in source sep-

aration contexts. We then compute the average SNR over all estimated

sources. Histograms of the average SNRs of the 300 runs are shown in

figure 5.3. The average output SNR is 16.78 dB for TDSEP and 24.18

dB for TDSEP+IPA. These results show that IPA was able to perform an

effective separation within the subspaces separated by TDSEP.

The result of these two procedures (TDSEP+IPA and TDSEP only) for

the set of sources and mixtures in figure 5.1 is shown in figure 5.4. These
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two results correspond to the modes of the histograms from figure 5.3, and

thus they can be considered typical results. It can be seen that TDSEP is

quite successful in separating the subspaces, but that it does not correctly

estimate the original sources – this observation is what led us to use TD-

SEP as a subspace-identification method. It can also be concluded that

IPA performs a correct separation within the subspaces.

We also tested the sensitivity of both approaches to additive noise. To

that effect, we added random Gaussian white noise to each of the 300

sources with SNRs of 60, 50, 40, 30, and 20 dB (to avoid confusion with

the SNR as a quality measure, we use the term “output SNR” for that

measure and “input SNR” for the measure of the noise added to the mix-

ture). We then repeated the two procedures above for each of these sets of

300 signals. Figure 5.5 shows the average output SNR of the 300 runs, for

each input SNR level. It can be seen that both TDSEP+IPA and TDSEP

alone yielded similar results, and rather poor ones (output SNR around

11 dB), when the input SNR was 30 dB. For SNR values below 30 dB, TD-

SEP+IPA actually yields worse results than TDSEP by itself, whereas for

an input SNR above 30 dB, TDSEP+IPA performed better than TDSEP

alone.

This set of results shows that TDSEP+IPA is capable of separating syn-

chronous sources with significantly better results than other BSS meth-

ods in low-noise situations. They also show that even moderate levels

of noise hinder TDSEP+IPA’s ability to successfully separate this type of

sources.

Application of IPA to pseudo-real MEG data

The second set of results illustrates a more realistic test of IPA; it was

presented in [Publication V]. Ideally, one should validate an SSS algo-

rithm on real-life data. For this, one would need a set of real-world signals

which were the result of a mixture of synchronous sources; one would also

need direct measurements of those sources, or knowledge of the mixing

matrix (or both), to be able to assess the quality of the separation results.

For example, for EEG or MEG, we would need not only the EEG/MEG

recordings from outside the scalp, but also simultaneous acquisitions of

the sources from inside the scalp. We are not aware of any dataset where

these acquisitions were simultaneously performed. On the other hand,

simulated data, such as the data used in the previous set of results, can

only go a certain length in showing the usefulness of an algorithm in real
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Figure 5.4. First row: Sources resulting from TDSEP. Note that the inter-subspace PLFs
(second row, left) are very close to zero, but the intra-subspace PLFs are not
all close to 1. Furthermore, the intra-subspace separation is poor, as can be
seen from inspection of the gain matrix estimated by TDSEP (second row,
right). Third row: Results found after applying IPA to each subspace. The
estimated sources are very similar to the original ones. This is corroborated
by the PLFs between the estimated sources (fourth row, left) and the final
gain matrix (fourth row, right). The permutation of the sources was man-
ually corrected. White squares represent positive values and black squares
represent negative values.
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Figure 5.5. Effect of noise on separation quality, for TDSEP+IPA and for TDSEP alone.

situations.

In an attempt to obtain the best of both worlds, we generated a set of

pseudo-real data from actual MEG recordings. By doing this, we were

able to generate a set of sources on which we knew the true sources and

the true mixing matrix, while still using sources that were of a nature

similar to that of the signals one observes in real-world MEG. We begin

by summarily describing the process that we used to generate a data set

with perfectly synchronous sources. We then explain how we modified

these data to analyze non-perfect cases as well.

We began by obtaining a realistic mixing matrix, using the EEGIFT

software package and a real-world EEG dataset5 it includes to obtain a

64× 20 mixing matrix. In each run, we then selected N random rows and

N random columns, and formed the N × N mixing matrix by taking the

corresponding submatrix.

The second step involved obtaining a set of physiologically plausible

sources which obey the SSS model. For this, we used the MEG dataset

previously studied in [87], and selected N sources at random from its 122

channels. These N sources were bandpass filtered using a filter with zero

phase. The passband was 18-24 Hz, which is of a width similar to fil-

ters used in typical MEG studies [85]. We then computed the Hilbert

transform of each of these bandpass-filtered sources and extracted their

amplitudes and phases.

To generate sources which were phase-locked, we generated new pseudo-

5This is not a typo. We did use an EEG dataset to obtain the mixing matrix
and an MEG dataset to obtain the sources. This was intended only as a proof-of-
concept with more realistic data, therefore we do not believe this to be a serious
issue.
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Figure 5.6. The process used to generate the pseudo-real MEG sources.

real sources which used the amplitudes of the original sources, but whose

phases were phase-lagged versions of the first source’s phase. As an ex-

ample, suppose that N = 4. The first pseudo-real source was equal to

the first original channel. We replaced the phase of the second of these

channels with the phase of the first channel with a constant phase lag of
π
6 radians. The phase of the third channel was replaced with the phase of

the first channel with a constant phase lag of π
3 radians, and that of the

fourth channel with the phase of the first channel with a lag of π
2 radians.

The amplitudes of the four sources were kept as the original amplitudes of

the four random channels themselves. The process is illustrated in figure

5.6.

The above procedure yielded sources which exactly obeyed the SSS model.

To study situations which deviated from the model, we multiplied each

each sample t of each source j by eiδj(t), where the phase jitter δj(t) was

drawn from a random Gaussian distribution with zero mean and stan-

dard deviation σ. We tested IPA for σ from 0 to 20 degrees, in 5 degrees

steps. One example with σ = 5 degrees is shown in figure 5.7, and one

with σ = 20 degrees is shown in figure 5.8. 100 different datasets were

generated for each of these phase jitter values, by selecting at random

different rows and different columns from the original 64× 20 mixing ma-

trix, and by selecting at random different channels from the original 122

channels of the MEG data.

Figure 5.9 shows the output SNR and Amari Performance Index6 as a

function of the phase jitter for N = 4. It can be seen that for phase jitter

values from 0 (jitterless case) to 5 degrees (mild jitter) there was virtually

no loss of performance. The performance at a jitter of 10 degrees was

already deteriorated but still acceptable with an average output SNR of

6The Amari Performance Index is another quality measure for source separa-
tion. It measures how different the gain matrix WTM is from a diagonal matrix.
Please see [5] for a formal definition.
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Figure 5.7. Example of a dataset where σ = 5 degrees. Only a short segment of the
signals is shown, for clarity. Top row: original sources (left) and PLFs be-
tween them (right). Middle row: mixed signals (left) and PLFs between them
(right). Bottom row: estimated sources, after manual compensation of per-
mutation, scaling, and sign (left); PLFs between them (middle); and the gain
matrix WTA (right). The gain matrix is virtually equal to the identity ma-
trix, indicating a correct separation.
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Figure 5.8. Similar to figure 5.7, but with σ = 20 degrees. The gain matrix has significant
values outside the diagonal, indicating that a complete separation was not
achieved. Nevertheless, the largest values are in the diagonal, corresponding
to a partial separation.
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Figure 5.9. Result of applying IPA to pseudo-real MEG data with N = 4, with varying
phase jitter: Signal to Noise Ratio (left) and Amari Performance Index (right).

Figure 5.10. Effect of applying IPA to pseudo-real MEG data with varying phase lags
between the sources, with N = 2: Signal to Noise Ratio (left) and Amari
Performance Index (right).

27 dB. The quality of the separation then gradually deteriorated until 15

degrees (strong jitter), after which performance remained at a low level.

We added the noise after the bandpass filtering; we expect that results

would be better if the noise had been added before that filtering step.

We also studied the effect of the phase lag between the sources. For this,

we used N = 2, and generated 100 data sets at random as above, with

phase lags of π
12 , 2π

12 , 3π
12 , 4π

12 (i.e., multiples of 15 degrees). The results are

shown in figure 5.10. The results show that phase lags of π
6 and below

yield significant variability in performance, with the error bars including

SNR values from around 60 dB to under 20 dB. In contrast, values of π
4

and above yield consistently good results.

We also studied how results varied with the choice of N , by generating

100 datasets for each of N = 2, 3, 4, 5. Phase lags were multiples of π
6 .7

The results, shown in figure 5.11 are quite surprising: while performance

was consistently good for N = 3, 4, 5, with only slight deterioration as

N increased, there was a significant decrease in performance for N = 2.

We do not have a solid explanation for this fact. Our conjecture, which

remains open, is that the presence of some pairs of sources with larger

phase lags (for example, for N = 4, the first and third sources had a phase

7In other words, for N = 2, sources had phase lags of 0 and π
6 . For N = 3 they

had phase lags of 0, π
6 and π

3 , and so on.
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Figure 5.11. Effect of applying IPA to pseudo-real MEG data with varying values of N :
Signal to Noise Ratio (left) and Amari Performance Index (right).

λ 0.025 0.05 0.1 0.2 0.4

SNR
fixed 17.5 ± 21.2 27.5 ± 18.0 34.4 ± 4.3 27.2 ± 3.6 13.5 ± 5.5

varying 48.9 ± 8.7

API
fixed 0.795 ± 0.570 0.369 ± 0465 0.048 ± 0.057 0.079 ± 0.027 0.327 ± 0.097

varying 0.013 ± 0.015

Table 5.1. Values of Signal to Noise Ratio (SNR) and Amari Performance Index (API) for
jitterless data with N = 3, for various fixed values of λ, as well as for the
varying-lambda strategy detailed in the text. While the best fixed value, λ =

0.1, yields decent results, the results using a varying value of λ are consistently
better, with a large margin.

lag of π
3 and the first and fourth sources had a phase lag of π

2 ) aids in the

separation of all the sources, including the ones with small phase lags.

Finally, we compared the varying-λ strategy (which was used for all the

above results) with a fixed-λ strategy. Results are shown in table 5.1 for

N = 3. While the best fixed λ yielded a decent separation quality, with an

average output SNR close to 35 dB, using a varying λ yielded much better

results, with an average output SNR of almost 50 dB.

Globally, these results illustrate that IPA can handle realistically simu-

lated signals and that it is robust to a variation in the number of sources

up to, at least, N = 5. They also illustrate that it can handle phase lags

of π
4 and above. Results also show that IPA can handle mild deviations

from the true SSS model, by exhibiting some robustness to phase jitter.

Even in cases with strong phase jitter, the imperfectly separated sources

were normally closer to the true sources than the original mixed signals.

Finally, the results show that the varying λ strategy yielded big improve-

ments in separation quality, when compared to any strategy with a fixed

λ.

5.2 PLMF Results

Results obtained using PLMF with simulated data were reported in

[Publication VI], [Publication VII], [Publication VIII], [Publica-

tion XI]. PLMF was most extensively studied in [Publication XI]. In
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that paper, we studied the effect of several variables (number of sources,

number of sensors, amount of additive noise, amount of phase jitter, num-

ber of time samples, and more) by starting from a “central case” where

PLMF yielded good results, and changing one of these variables at a time,

to find how the algorithm’s performance varied with each of them. We

report the most important experimental results from that paper in what

follows.

We used a noisy variant of the source model in expression (4.18) to gen-

erate the data. This variant accomodated two deviations from the noise-

less case: the presence of additive noise and of phase jitter. The model

used to generate the data was

Y ≡ M(A� (zfT )� J) +N, (5.1)

where J is a N × T matrix of complex values with unit absolute value,

representing phase jitter, and N is a P × T matrix of complex values rep-

resenting additive sensor noise. If all entries of J are equal to 1 and all

entries of N are equal to zero, we recover the noiseless and jitterless model

of Equation (4.18).

We generated 1000 datasets for each set of parameters studied. For each

dataset, a mixing matrix M was randomly generated, with each entry uni-

formly distributed between -1 and 1, the vector of phase lags z was gener-

ated as [0,Δφ, . . . , (N−1)Δφ]T (Δφ is determined below), and the common

oscillation f was generated as a sinusoid: f = [0, exp(iΔt), exp(i2Δt), . . . , exp(i(T−
1)Δt)]T , with T = 100 and Δt = 0.1. While this was a very specific

choice (a phase which grows linearly with time), it is representative of

the smoothly-varying f case which is treated in that paper. We have em-

pirically verified that PLMF worked well with other choices for f as long

as they were smoothly-varying (otherwise, the correction of phase jumps,

mentioned at the end of section 4.3.2, became unreliable).

The amplitude A was generated as the result of lowpass filtering a

Gaussian white noise signal. Specifically, we began by generating ran-

dom Gaussian white noise of length T . We then took the discrete cosine

transform (DCT) of that signal, kept only the 10% of coefficients corre-

sponding to the lowest frequencies, and took the inverse DCT of the re-

sult. We then added a constant to this filtered signal to ensure that it was

non-negative8, and the result became a1(t), the first row of A. The pro-

8While the algorithm presented in this work does not require positive ampli-
tudes, we compared it to other algorithms which do require this assumption.
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Figure 5.12. Top: the real part of a typical set of four sources generated as described in
the text, with no phase jitter. Bottom: the real part of a corresponding set
of eight mixtures, with an input signal-to-noise ratio (SNR) of 20 dB. The
horizontal axis measures time in samples. Note that in most of the following
experiments, only 100 points were used.

cess was repeated, with different random initializations, for each of the

remaining rows of A.

One example of a set of signals generated in this manner is depicted in

figure 5.12, where we present an extended time period (T = 500) to better

illustrate the structure of the signals.

The paper [Publication XI] studied the effect of the following vari-

ables:

• Additive noise N, as measured by the signal-to-noise ratio (SNR) of each

mixture. The energy of the noise in each channel was selected so that all

channels had the same SNR, which is called the input SNR. We studied

the cases of an SNR of 80, 60, 40, 20, and 0 dB.
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• Phase jitter J. We studied two types of jitter:

– The first case was jitter where each entry of J was of the form eiδ,

where δ was independently drawn from a Gaussian distribution with

zero mean and standard deviation σiid. We studied the cases of σiid =

0, 0.02, 0.04, . . . , 0.1. We name this i.i.d. jitter, since the jitter for time t

and for source k was independent from the jitter in any other entry of

J.

– The second case is called correlated jitter. We generate a matrix Q in

a similar manner to the way in which we generated the amplitude A,

except that positivity was not enforced, and that we kept the lowest

2% of coefficients of the DCT, instead of the lowest 10%. This yielded

a very slowly varying signal. We then generated the jitter J as eiQ,

where the exponential is taken elementwise. This resulted in a jitter

which was slow-varying. While in a statistical sense the sources are

uncorrelated, due to the finite observation time T , this jitter is cor-

related from one source to another. In the context of this correlated

jitter, we will use the symbol σcorr to denote the standard deviation of

the Gaussian white noise used in the generation of the jitter.

• Phase lag Δφ. We studied the cases of Δφ = π/50, 2π/50, . . . , 12π/50.

• Number of sources N and number of sensors P . We studied the cases

N = 2, 4, . . . , 10, with P = N and with P = 2N .

• Number of time samples T . We studied the values T = 100, 200, 400, 800.

It would have been extremely cumbersome to compute and show results

for all possible combinations of the above variables. To avoid this while

still studying all variables, we studied a “central case” where PLMF per-

formed very well, and then changed the above variables, one at a time. In

total, we studied 64 different cases. The central case had N = 4 sources,

P = 8 sensors, T = 100 time samples, an input SNR of 80 dB, no jitter,

and a phase lag of Δφ = π/10.

We first applied both IPA and PLMF to 1000 datasets in each of four

situations, all of which had N = P = 2 sources and sensors, and no phase

jitter: low noise and large phase lag (input SNR of 80 dB, Δφ = π/3), low
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Figure 5.13. Comparison of FastICA, IPA, one-stage PLMF, and two-stage PLMF. Error
bars correspond to plus or minus one standard deviation. The two-stage
PLMF algorithm clearly dominates the other two algorithms, except for one
situation (Δφ = π/3, input SNR of 20 dB) where it is essentially tied for
first place with one-stage PLMF.

noise and small phase lag (input SNR of 80 dB, Δφ = π/10), moderate

noise and large phase lag (input SNR of 20 dB, Δφ = π/3), and moderate

noise and small phase lag (input SNR of 20 dB, Δφ = π/10). We also

compared with the first variant of PLMF [Publication VII], in which all

four variables are estimated simultaneously, and with FastICA [38].

The results are shown in figure 5.13. Apart from one situation where

both versions of PLMF are tied, these results show a clear superiority of

2-stage PLMF when compared to the other two SSS algorithms. FastICA

performed poorly, as expected, given that the sources were strongly inter-

dependent.9

In other experiments [Publication XI], we showed how PLMF per-

formed when each of the above variables was varied. We concluded that,

unlike IPA, the performance of PLMF decreased gracefully with the input

SNR (see figure 5.14), since the separation quality was only 2-3 dB below

the input SNR, except for low-noise cases (input SNR of 80 and 60 dB), in

which the separation quality was nevertheless very good (65 and 55 dB,

respectively).

PLMF can handle very small phase lags. Figure 5.15 shows how the

separation quality varied with the phase lag Δφ. For most values of this

parameter, the separation quality was very high. However, it became pro-

gressively lower when Δφ approached zero, where the hypothesis of The-

9We used the MATLAB FastICA implementation available from
http://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml. All parameters were
left at their default values, except for the nonlinearity option where we tried
all possibilities. All such options yield very similar results; the results reported
here use the default option.
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Figure 5.14. Separation quality versus input SNR. Under heavy noise, PLMF can recover
the sources with about as much noise as they had in the input.

Figure 5.15. Separation quality versus phase lag. PLMF’s results are, in general, good,
but they deteriorate progressively as one approaches the case where Δφ =

0, where theorem 4.3.2 fails to hold.

orem 4.3.2 fails to hold. Nevertheless, this deterioration in performance

was gradual, and was only relevant for very small phase lags (smaller

than 2π
50 , or 7.2 degrees, which yielded a separation quality of 23.7 dB).

We also concluded that, in low-noise situations, having as many sensors

as sources (P = N ) was enough to obtain a good separation: little benefit

is brought by having P > N . However, that benefit became significant in

the presence of noise. Figure 5.16 shows the effect of varying the number

of sources N and the number of sensors P . Generally, the quality of the

results decreased with increasing N , which is expected since the size of

the problem variables M, A and z increases. When there was very little

noise (input SNR of 80 dB), there was little benefit in doubling the number

of sensors from P = N to P = 2N . However, when there was considerable

noise (input SNR of 20 dB), that benefit became significant, especially for
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Figure 5.16. Separation quality versus number of sources (N ), number of sensors (P ),
and input SNR.

P = 4, 6, 8 where the improvement exceeded 10 dB.

Finally, we observed that PLMF did not handle the presence of phase

jitter well. Even small amounts of jitter brought the performance from

around 65 dB to 30 dB, and larger amounts lowered it further. The paper

presents a more involved discussion explaining that the effect of i.i.d. jit-

ter can probably be mitigated using lowpass filtering of f as post-processing,

after f is estimated, whereas correlated jitter cannot be mitigated that

way.
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In this chapter we present a few directions for future work based on the

research presented above. Some of these directions were already studied

in a limited depth, and we present suggestions to deepen them.

6.1 Tests on Real-Life Data

We begin this section by briefly discussing an important aspect which

was not dealt with in this thesis: validation using real-world data. Indeed,

perhaps the most important future development would be the acquisition

of non-simulated data, and the testing of the algorithms proposed here on

those data. The study with pseudo-real data, presented in [Publication

V], can be considered a step in this direction; however, those pseudo-real

data were generated in such a way that they exactly followed the SSS

model, or only deviated from it in controlled ways. Real-life data may

deviate from the model in other ways, and only tests on those data can

tell how the proposed algorithms perform in such situations.

Acquisition of real-life data in an EEG or MEG context, in a form that

allows the assessment of the performance of the proposed algorithms, is

not easy, for several reasons:

• Expensive equipment is required.

• Mixture data can be acquired from the outside of the skull, but the

sources, which are needed to assess the algorithms’ performance, must

be acquired from inside the skull. Invasive procedures are, therefore,

necessary.

• Neuroscience experts are required, to ensure that data are acquired
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from areas which are expected to exhibit synchrony, and to help in eval-

uating the results.

It was not possible to acquire such data in this thesis’ work. Neverthe-

less, it is certainly important to test SSS algorithms in real-world data.

A non-invasive, but also less conclusive approach is to collect only data

from the outside of the skull, apply SSS to those data, and see whether

the resulting sources “make sense”. This eliminates the invasiveness re-

quirement, but makes neuroscientists’ input even more important. This

approach has been followed in [86], which applied ICA to MEG recordings

and then measured coherence between the resulting sources. A similar

approach was followed in [55], which measured synchrony instead of co-

herence. Other works, such as [58], which used BSS with non-synchrony

criteria to extract sources, also follow this approach.

Another possibility is to validade these algorithms on another domain

where SSS’s assumptions are (approximately) valid. One such domain

might be music. Musical instruments which are playing the same tone

will have the same fundamental frequency, and should therefore have

perfect phase synchrony. It is possible that the algorithms presented

here can be applied to the separation of instruments playing the same

tone, and subspace versions of these algorithms may be used to separate

sets of instruments playing different tones. If the music being played is

known, this knowledge can be incorporated in a variant of the PLF mea-

sure known as n : m synchrony [82]. Finally, the domain of multipath

communication systems [26] may find the techniques proposed here, or

adapted versions of them, useful.

6.2 Improvements on PLMF

One future direction that was briefly discussed in [Publication XI] con-

sists in turning each of PLMF’s subproblems into a sequence of convex

problems. More specifically, the goal is to have an equivalent, or near-

equivalent, formulation, such that the optimization in each variable is a

convex problem. In its present state, the first subproblem in PLMF (prob-

lem (4.20)) is not solved through a sequence of convex problems: it would

be necessary that H, A and f each lie in convex sets, and that is not true

for H and f . The second subproblem (problem (4.24)) is also not solved

through a sequence of convex problems for a similar reason involving M
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and z.

Let us discuss why one should be interested in doing this. There is con-

siderable theoretical work on BNGS methods. In particular, [28] gives

sufficient conditions for the following property: if a BNGS method con-

verges to some limit solution, then that limit solution is a critical point of

the problem. Turning each of PLMF’s subproblems into a sequence of con-

vex problems (or more specifically, ensuring that the feasible set for each

variable is a closed, non-empty, convex set) would allow direct applica-

tion of this theorem, ensuring that if the algorithms for each subproblem

converged, we would have found critical points of the subproblems.

6.3 Generalizing PLMF for subspaces

The algorithms presented in this thesis could be adapted to work with

subspaces. One possibility would be to incorporate them into a full ISA

framework, using a first step which is agnostic to synchrony (i.e., it does

not use synchrony information at all) to separate subspaces, followed by a

second step which uses synchrony to separate within a subspace. In [Pub-

lication III], we used an approach of this kind, where the synchrony-

agnostic first step was TDSEP, and the second step was IPA. The refer-

ences presented at the end of section 2.4 illustrate that in some situations

this is possible using ICA methods as the first step.

However, if it is known that the dependency within each subspace is syn-

chrony, and that sources from different subspaces are not synchronous, it

makes sense to develop algorithms which exploit this information. One

possible advantage is that these algorithms may not require full indepen-

dence between sources in different subspaces.

6.4 Partial Synchrony

While sources with partial synchrony were tackled with the algorithms

presented in this work, the model assumes that the sources have full syn-

chrony. Yet another improvement would involve devising a model which

does not make this assumption. It is likely that this would lead to tech-

niques quite different from the ones presented here.

One possibility is to consider a Bayesian framework under which the

phase of source j, at time t, is no longer given by the product of zj and
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f(t), but rather by the product of zj and fj(t), where fj(t) is, for example,

a Gaussian random variable centered at f(t), with some variance. As the

variance tends to zero we recover the perfectly-synchronous model of SSS.

6.5 Partial ISA

Some work was developed in the study of the ISA separation principle

(defined at the end of section 2.4) for a particular type of sources. Since

some details of the proof are not finished, it is omitted, and the result is

here presented as a conjecture.

The conjecture is the following: by minimizing the sum of the entropies

of the individual estimated sources, one can solve Partial ISA, for sources

which are a sum of Gaussian components with zero mean. Formally, con-

sider the usual BSS model, y = Ms, where sets of sources are independent

as in (2.14), repeated here for convenience:

s ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

s1

s2

...

sK

⎤
⎥⎥⎥⎥⎥⎥⎦ , where sk ≡

⎡
⎢⎢⎢⎣
sk1
...

skNk

⎤
⎥⎥⎥⎦ . (6.1)

We consider only sources of a particular type: Gaussian mixture densities

where each Gaussian component has zero mean. Concretely, the proba-

bility density functions (PDFs) of the subspaces are assumed to be given

by

p(sk) =
∑
i

αikN(sk|0,Aik). (6.2)

Furthermore, let ŝ = Wy denote the estimated sources, and assume that

the data y have been pre-whitened. Our conjecture is that any solution of

min
W

N∑
i=1

H(ŝi) (6.3)

s.t. WTW = I

yields a gain matrix WTM which is a permutation of a block diagonal

matrix, with blocks corresponding to each of the subspaces, as exempli-

fied in section 2.4. Consequently, each estimated source will be a linear

combination of true sources from a single subspace.

If this conjecture turns out to be true, its applicability is considerable.

If each Gaussian component could have an arbitrary mean, sources of the
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form (6.2) could approximate any density in a broad class of densities ar-

bitrarily well as the number of Gaussian components increases, a result

which has been known for over forty years [75]. Future work in this di-

rection would involve determining the veracity of this conjecture, by pre-

senting a fully correct proof or a counter-example. Furthermore, it would

be relevant to characterize which densities can be well approximated by

densities of the form (6.2), and investigating what is the intersection be-

tween those densities and densities which describe sources with perfect

synchrony.
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7. Conclusions

In this thesis we have studied the problem of Separation of Synchronous

Sources, an instance of blind source separation where the sources exhibit

perfect synchrony. Since synchrony is present in many topics in neuro-

science, and EEG/MEG signals can be considered mixtures of underlying

sources, SSS is a relevant problem for this field. SSS had not been studied

before; this thesis presents the first formalization of the problem. Previ-

ously, to separate synchronous sources, researchers were forced to use

algorithms which make inadequate assumptions about the sources (such

as ICA, which assumes independence of the sources).

It was shown that SSS is sufficiently well-defined, like in the case of ICA.

Unlike ICA, singular solutions are an issue in SSS, and they should be

taken into consideration when designing algorithms. We showed that pre-

whitening results in a bound on the condition number of the equivalent

mixing matrix, ensuring a relatively well-conditioned numerical problem.

We presented two algorithms to solve SSS problems: IPA, which penal-

izes singular solutions through regularization, and PLMF, which factor-

izes the sources using a matrix factorization model which automatically

avoids singular solutions.

Experimental tests with simulated data showed that both approaches

yield very significant improvements in separation quality compared to

ICA algorithms. Within the SSS algorithms, PLMF yielded significantly

better results than IPA in experimental comparisons. PLMF also pos-

sesses better theoretical properties.

The contributions in this thesis allow, for the first time, the separation of

synchronous sources within a grounded theoretical framework, with ap-

propriate algorithms which yield good separation quality and avoid sin-

gular solutions, and in the case of PLMF, with identifiability guarantees.

Some directions for further work were presented, which illustrate that
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the topic is far from being solved and present interesting research topics

for the future.
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