
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Kristian Hartikainen

Performance Analysis of Packet Pro-
cessing Systems

Master’s Thesis
Espoo, May 26, 2016

Supervisor: Prof. Heikki Saikkonen
Advisor: Vesa Hirvisalo D.Sc. (Tech.)

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Kristian Hartikainen

Title:
Performance Analysis of Packet Processing Systems

Date: May 26, 2016 Pages: 105

Major: Software systems Code: T-106

Supervisor: Prof. Heikki Saikkonen

Advisor: Vesa Hirvisalo D.Sc. (Tech.)

This thesis investigates the use of measurement, simulation, and modeling meth-
ods for the performance analysis of packet processing systems, and more precisely
hardware accelerated multiprocessor system-on-chip (MPSoC) devices running
task-parallel applications. To guarantee the tight latency and throughput re-
quirements, the devices often incorporate complex hardware accelerated packet
scheduling mechanisms. At the same time, due to the complexity of these sys-
tems, different software abstractions, such as task-based programming models,
are used to develop packet processing applications. These challenges, together
with dynamic characteristics of the packet streams makes the performance anal-
ysis of packet processing systems non-trivial.

We demonstrate that, with extended queue disciplines and support for model-
ing parallelism, resource network methodology is a viable approach for modeling
complex MPSoC based systems running task-based parallel applications on dy-
namic workloads. The main contributions of our work are three-fold. First, we
have extended the toolset of an existing in-house modeling and simulation soft-
ware, Performance Simulation Environment. The extensions enable modeling of
user-definable queue disciplines, which further enable flexible modeling of complex
hardware interactions of MPSoCs and the parallelism of task-based programming
models. Secondly, we have studied, instrumented, and measured the characteris-
tics of a packet processing system. Finally we have modeled a multi-blade packet
processing system with customizable workload and task-parallel application mod-
els, and run simulation experiments.

In both experiments, the model acts as expected. According to the experiment re-
sults, the resource network concept seems to be a viable tool for the performance
analysis of packet processing systems. The chosen abstraction level provides de-
sired balance between the functionality, ease of use, and simulation performance.

Keywords: performance analysis, modeling, simulation, resource net-
works, packet processing, network processing unit, data plane,
hardware accelerated scheduling

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Kristian Hartikainen

Työn nimi:
Pakettiprosessointijärjestelmien Suorituskykyanalyysi

Päiväys: 26. toukokuuta 2016 Sivumäärä: 105

Pääaine: Ohjelmistotekniikka Koodi: T-106

Valvoja: Professori Heikki Saikkonen

Ohjaaja: Tekniikan tohtori Vesa Hirvisalo

Tässä työssä tutkitaan mittaus-, mallinnus-, ja simulaatiometodien käyttöä
pakettiprosessisysteemien, tarkemmin ottaen tehtävärinnakkaisia sovelluksia
ajavien laitteistokiihdytettyjen moniydinjärjestelmien, suorityskykyanalyysiin.
Tiukoista viive- ja läpivirtausvaatimuksista johtue pakettiprosessointilaitteis-
tot sisältävät usein monimutkaisia laitteistokiihdytettyjä pakettiajoitusmeka-
nismeja. Laittestojen monimutkaisuudesta johtuen pakettiprosessointisovellus-
ten kehittämiseen käytetään usein erilaisia ohjelmointiabstraktioita, kuten
tehtävärinnakkaisia ohjelmointimalleja. Laitteston ja ohjelmiston asettamat haas-
teet yhdessä pakettivirtojen dynaamisen luonteen kanssa tekevät pakettiproses-
sointijärjestelmien suorituskykyanalyysista epätriviaalia.

Työssä havainnollistamme, että laajennettujen jonokurien ja rinnakkais-
mallinnustuen avulla resurssiverkkometodologia on toimiva lähestymistapa
tehtävärinnakkaisia rinnakkaisohjelmointisovelluksia ajavien monimutkaisten
laitteistokiihdytettyjen moniydinjärjestelmien suorituskykyanalyysiin dynaami-
silla työkuormilla. Työmme päätulokset ovat kolmiosaiset. Ensinnäkin, olem-
me laajentaneet olemassaolevan mallinnus- ja simulaatioohjelmiston, Perfor-
mance Simulation Environmentin, ohjelmointityökaluja. Laajennukset mah-
dollistavat käyttäjän määriteltävien jonokurien mallintamisen, mikä edelleen
mahdollistaa tehtävärinnakkaisia sovelluksia ajavien laittestokiihdytettyjen mo-
niydinjärjestelmien laittestovuorovaikutusten joustavan mallinnuksen. Toiseksi,
olemme tutkineet ja mitanneet erään pakettiprosessointijärjestelmän ominaisuuk-
sia. Viimeiseksi, olemme mallintaneet pakettiprosessointijärjestelmän muunnet-
tavilla työkuormilla ja tehtävärinnakkaisilla sovellusmalleilla, sekä suorittaneet
näitä simulaatiokokein.

Molempien kokeiden mallit käyttäytyvät odotetulla tavalla. Koetulosten perus-
teella resurssiverkkokonsepti vaikuttaa toimivalta työkalulta kompleksien paket-
tiprosessointijärjestelmien suorituskykyanalyysiin. Valittu abstraktiotaso tarjo-
aa toivotun tasapainon simulaation suorituskyvyn, toiminnallisuuden ja help-
pokäyttöisyyden välillä.

Asiasanat: suorituskykyanalyysi, mallinnus, simulointi, resurssiverkot,
pakettiprosessointi, laitteistokiihdytetty vuoronnus

Kieli: Englanti

3

Acknowledgements

I would like to thank my supervisor, Prof. Heikki Saikkonen, for his invalu-
able feedback during the final stages of writing this thesis.

Besides my supervisor, I would like to thank my instructor D.Sc. (Tech)
Vesa Hirvisalo, who provided me with support and feedback throughout the
project, and without whom this thesis would not have been possible.

I express my sincere gratitude to Jussi Hanhirova, who worked with me
in solving many technical difficulties, provided me with insightful comments,
and guided me throughout the project.

I would also like to thank my good friend Risto Vuorio, whose company,
both at school and spare time, over the last few years has been invaluable
for me.

Finally, I thank my family for their endless support.

Espoo, May 26, 2016

Kristian Hartikainen

4

Contents

1 Introduction 8
1.1 Problem statement . 9
1.2 Contributions . 10
1.3 Structure . 12

2 Computing Trends 14
2.1 Modern Computing . 14

2.1.1 The End of Free Lunch 14
2.1.2 Parallel Computing . 15

2.2 Big Data . 18
2.3 Virtualization . 18

2.3.1 Platform Virtualization 19
2.3.2 Operating System Level Virtualization 20

2.4 Cloud Computing . 20
2.4.1 Energy Consumption 23
2.4.2 Datacenter Networks 23

2.5 Fog Computing . 24

3 Packet Processing 26
3.1 Packet Switched Networks . 26

3.1.1 Network Components 27
3.1.2 Traffic Characteristics 28

3.2 General Packet Processing Framework 28
3.2.1 Ingress and Egress . 28
3.2.2 Processing Paths . 30
3.2.3 Packet Processing Functions 31

3.3 Processing Hardware . 33
3.3.1 Processing Elements 34
3.3.2 Parallel and Pipelined Architectures 35

3.4 Programming Models . 36
3.4.1 Intel Data Plane Development Kit 37

5

3.4.2 Open Event-Machine 37
3.5 Example Network Processing System 38
3.6 Characteristic Behavior . 39

3.6.1 Communication Latencies 40
3.6.2 Memory Characteristics 43

4 System Performance Analysis 47
4.1 Performance Analysis . 47

4.1.1 Evaluation Techniques 47
4.1.2 Performance Metrics 48
4.1.3 System Components and Environment 49

4.2 System Modeling . 50
4.2.1 Queuing Networks . 51
4.2.2 Resource Networks . 51

4.3 Simulation . 52
4.3.1 Monitoring . 53

4.4 Modeling and Simulation Software 53

5 Performance Simulation Environment 55
5.1 Toolset Overview . 55
5.2 PSE Model . 57
5.3 Monitoring . 59
5.4 Resource Network Simulator 60

5.4.1 Simulator Engine . 61

6 Mechanism For Extended Queue Disciplines 62
6.1 Service Routines . 63
6.2 Runtime Structures . 65

6.2.1 RNS Resource . 65
6.2.2 RNS Client . 66

6.3 Reserve and Select Functions 67
6.4 Discipline Examples . 68

7 Modeling a Packet Processing System 71
7.1 Hardware Model . 71
7.2 Modeling the Task Scheduler 74

7.2.1 Application Models . 74
7.2.2 Global Hardware Scheduler 75

6

8 Demonstrative Experiment and Discussion 80
8.1 Experiment Setup . 80
8.2 Experiment 1: Global Queue Interrelations 81

8.2.1 Simulation Measurements 83
8.3 Experiment 2: Queue Coremasks 84

8.3.1 Simulation Measurements 87
8.4 Experiment Analysis . 87
8.5 Discussion . 91

8.5.1 Challenges . 91
8.5.2 Discoveries . 92
8.5.3 Future Work . 92

9 Conclusions 94

7

Chapter 1

Introduction

The proliferation of Internet devices and sensors have led to a situation where
data are produced faster than can be transmitted, stored, or processed. Ma-
jority of the data is transmitted as packet streams over the packet switched
networks. Along the way, various network devices, such as switches, routers,
adapters, are used to forward and process the streams.

Packet processing devices face an enormous performance challenge. While
the amount of data being transmitted is increasing, at the same time, the
packet processing tasks, which should be done on-the-fly, have become more
and more complex. In addition to the usual forwarding, the packet processing
systems are responsible of various other functions, such as traffic management
(shaping, timing, scheduling), security processing, and quality of service. At
the same time, technology and customer requirements are rapidly chang-
ing, forcing the vendors to seek programmable solutions to achieve shorter
development cycles and more revisions.

Network processing equipment can generally be divided into three cate-
gories: easily programmable general Central Processing Units (CPU), well-
performing but hardwired Application-Specific Integrated Circuits (ASIC),
and middle-ground Network Processing Units (NPU). The focus of this the-
sis is on the middle-ground NPU devices, typically built as a multiproces-
sor system-on-chip (MPSoC). MPSoCs integrate multiple heterogeneous or
homogeneous functional units, such as processors, memory, circuits, and pe-
ripherals, on a single chip. The promise of MPSoC devices are their better
performance, functionality, and energy usage, due to the multiple intercon-
nected specialized processors.

Network processing systems are, in essence, queuing systems. Different
components of the MPSoC devices, such as network interface cards, CPUs,
and the global system scheduler, queue the packets in memory between the
processing steps. Each component fetches the packets from the memory, or

8

CHAPTER 1. INTRODUCTION 9

queues, based on certain rules that can be seen as queue disciplines.
The treatment of the packets flowing through the network processing

equipment is called packet processing. Packet processing consists of series
of functions performed, typically in parallel, on the packets. The functions
are often implemented as separate software applications. Different paral-
lel programming models, such as task-parallelism, are used to abstract the
complexity of these devices, enabling efficient application development and
portability. In the packet processing context, the task parallelism can be
seen as each task consisting of an operation (code) done on a packet (data).
Again, the task parallel programming frameworks can be seen as a set of
queues abstracting the underlying hardware.

Packet processing systems are complex. To keep up with the ever in-
creasing performance requirements, the behavior of the systems needs to
be understood. This thesis investigates the use of measurement, model-
ing, and simulation methods for the use of packet processing performance
analysis. We present a way to model complex hardware and software in-
teractions of a modern MPSoC network processing systems and task-based
parallel programming frameworks, using an extended resource networks con-
cept. Resource networks are based on the queuing networks concept, often
used for packet processing problems and other computing system modeling,
thus being a natural way of describing MPSoC systems and task-based par-
allel programming applications.

The tool chosen for the modeling and simulation is an in-house simulator
and modeling software, Performance Simulation Environment (PSE). We will
instrument and measure the characteristics of a modern packet processing
system, and build a resource network model using PSE’s built-in editors.
We extend PSE to support user definable queue disciplines, enabling more
detailed models of the systems global packet scheduler. We present two
demonstrative experiments, showing that the model and PSE extensions work
as expected. The models are simulated using PSE’s discrete event simulator
engine.

Our experiments demonstrate that, with extended custom queue disci-
plines and support for modeling task parallelism, resource network method-
ology is a viable approach for performance analysis of such packet processing
systems.

1.1 Problem statement

Packet processing system performance analysis is non-trivial for several rea-
sons. Modern MPSoC based packet processing systems are parallel pro-

CHAPTER 1. INTRODUCTION 10

cessing systems with complex hardware interactions. Understanding these
systems is difficult, due to the architectural heterogeneity, complexity, and
non-deterministic behavior. The non-deterministic behavior of the MPSoCs
is a result of parallelism, communication delays, complex memory systems,
and hardware and software scheduling mechanisms.

The nature of packet switched network data introduces strict perfor-
mance requirements for the packet processing devices: the manipulation of
the packet streams passing through the system must often be done on the
on-the-fly, while at the same time, the data volumes are often huge and
unpredictable.

The performance of the task parallel applications is heavily dependent
on the scheduling mechanism of the system. To guarantee the performance
of task parallel programming models, the scheduler has to efficiently map
the functions and minimize the context switch overhead. MPSoC devices
are inherently parallel, and the scheduling is often done globally at multiple
points of the system.

Queuing and resource networks are widely studied concepts, often used for
packet processing problems and other computing system modeling. However,
the complex hardware level interactions between the MPSoC components,
dynamic workload, and task-based parallelism methods, make the traditional
queue concepts insufficient. One way to address this problem, is to extend
resource networks with user-definable queue disciplines allowing global view
of the system, and methods for modeling parallelism.

The research problem of this thesis is: How to analyze the performance
of packet processing systems. Or more precisely: how to extend the resource
network concept to support more accurate models of hardware accelerated
many-core systems, and on the other hand, how to support modeling of task-
based parallel programming applications on dynamic workloads.

1.2 Contributions

We will present a method for modeling and simulation of the hardware accel-
erated many-core packet processing systems. We extend the in-house discrete
event simulator, Performance Simulation Environment (PSE), to enable use
of customized queue discipline algorithms. We will also model a modern net-
work processing system using the tools provided by PSE and simulate the
model by PSE’s discrete event simulation engine. The major contributions
of our work can be summarized as:

• Instrumenting and measuring the characteristics of a modern network
processing system

CHAPTER 1. INTRODUCTION 11

• Extending an existing in-house modeling and simulation framework,
Performance Simulation Environment (PSE), to support user-definable
queue disciplines through a plug-in interface

• Designing and building a PSE model of a MPSoC based packet pro-
cessing system

• Proof of concept experiment demonstrating performance analysis of
the implemented hardware model and task-based parallel application
models

Our first contribution includes setting up an environment for measur-
ing the memory and communication delays of a packet processing system.
The measurements are used to gain in-depth understanding of the system
interaction of such systems, and to further determine the correct abstrac-
tion level for our performance analysis models. The measurements consisted
of executing several micro-benchmarks using low level hardware application
programming interfaces. The automatization scripts and test programs are
documented and available to be used in further experiments on similar sys-
tems.

The extension of PSE includes a new plug-in code mechanism, which al-
lows customized queue discipline algorithms to be defined by external C-code.
The design and implementation affected nearly all parts of the underlying
simulation framework. In addition, PSE’s memory usage has been improved
to enable simulation of larger systems and workloads. Together the extension
and other improvements consisted of roughly 700 edited and 600 new lines
of code. These features are documented and available to be further utilized
by PSE users.

Our third major contribution is the implementation of simulation model
of a multi-blade network processing system. The models are based on our
insights gained from the measurement and studies of a reference system and
packet processing applications written on task-based programming frame-
works. They consists of decoupled workload, software, and hardware mod-
els, highlighting the ability to decouple the different functional parts of the
system, and enabling modularization and further reuse. The packet pro-
cessing software applications are modeled using event based programming
paradigms. The global packet scheduler, which is the key for modeling task-
based applications, is modeled using the implemented plug-in code mecha-
nism.

Finally, we have built a proof-of-concept experiment to validate the mod-
els and implemented PSE extensions. Further, it demonstrates how the im-
plemented models can be used for performance analysis of a network pro-

CHAPTER 1. INTRODUCTION 12

cessing system. With the decoupled models, we are able to easily adjust
the software parameters, affecting the sought performance metrics, such as
latency and throughput, of the system.

1.3 Structure

Chapter 2 presents an overview to the context of this thesis. It motivates
the performance analysis of packet processing systems. We will describe
the reasons that have led the IT industry to widely adopt paradigms called
cloud and fog computing. Further, we describe the cloud and fog computing
together with the relevant technologies, such as virtualization and software
defined networking, enabling these paradigms.

Next, in Chapter 3, we explain the concepts needed to understand the
functionality of modern packet processing hardware and software, and their
relation to queuing theory. We will present a more detailed view on task-
based programming framework, called Open Event-Machine, and example of
pipelined hardware architecture of network processing systems. The chapter
finishes with characteristic measurements of a network processing system to
gather in-depth understanding of such systems system.

In Chapter 4, we will present the basic concepts of performance analysis,
modeling, and simulation. We will begin by presenting different evaluation
techniques and performance metrics, further defining the components of sys-
tem under a performance study. Then, we present the basic concepts of
modeling, and queuing and resource networks, to underline their usage in
traditional packet processing systems performance analysis. Finally, we will
describe the simulation model and monitoring, with a short survey of the
existing simulation software.

Chapter 5 presents the simulation tool, Performance Simulation Environ-
ment (PSE), used in our work. The chapter begins with an overview of the
PSE’s toolset. After that, we will describe the three main components of a
PSE model. Finally, we will present the built-in discrete event simulator of
PSE.

Chapter 6 presents the implemented plug-in code mechanism for Perfor-
mance Simulation Environment. The extensions enable modeling of user-
defined queue disciplines written in C-code, and is our attempt to address
the lack of global queue scheduling, which is required to use PSE for more
detailed modeling of hardware scheduled many-core systems.

The example model of a packet processing system is presented in Chap-
ter 7. We will first describe the main characteristics of the model, and further
describe a more detailed view of the global packet scheduler functionality.

CHAPTER 1. INTRODUCTION 13

The demonstrative experiments are presented in Chapter 8. We will de-
scribe the two experiment setups used, and their measurement results. We
will analyze the experiment results and further discuss the challenges, dis-
coveries, and the future work within the topic of the thesis.

The conclusion of our work are presented in Chapter 9.

Chapter 2

Computing Trends

This chapter presents the background of this thesis and motivates the need
for, and the context of, efficient packet processing systems. We begin with an
overview of today’s challenges in hardware development, which have resulted
in the transition from traditional single threaded computing to concurrent,
multi-threaded and parallelized programming. Then, the dimensions of the
required data processing capacity are emphasized, by explaining the concept
named Big Data. Further, the characteristics of packet switched networks’
data, and further the context of packet processing, i.e. cloud and fog com-
puting, are explained.

2.1 Modern Computing

The terminology around the parallelized computation is somewhat ambigu-
ous. Throughout this chapter, we will be using the term parallel computing
as a general term referring to the opposite of single-threaded or sequential
computing, unless explicitly stated to mean the act of parallel computing,
in which multiple calculations are carried out simultaneously. The general
term comprises many different types of computing, such as concurrent- and
distributed computing, as well as the type of parallel computing itself.

2.1.1 The End of Free Lunch

Until the turn of the millennium, the main drivers for the speedups in com-
puting were the increasing CPU clock frequency and cache sizes, as well as
the execution optimizations. Faster clock speeds meant that more cycles
could be run in the same time, whereas the execution optimization enabled
more work to be done with the same amount of cycles. Further, the increas-

14

CHAPTER 2. COMPUTING TRENDS 15

ing cache sizes kept larger parts of the computation close to the CPU cores,
away from slow shared memory. [79]

A notable fact about all these drivers is that, while they lead to speedups
in parallel computing, they also provide direct speedups for sequential pro-
grams. Partly for this reason, until the end of 1990s, the majority of the
software applications were single-threaded and sequential. [79]

However, in the mid 2000s, the CPU performance gains hit the wall. De-
spite the fact that the transistor densities continued following the Moore’s
Law [61], several physical problems limited the development of higher clock
speeds. Dennard scaling, a law proposed by in 1974 stating that the power
density of transistors stays constant while the transistor themselves get smaller,
seems to be broken down around 2005. As the transistors got even smaller,
new current leakage and chip heating problems arose and the silicon industry
hit the so-called powerwall. [28, 71, 79]

These chip manufacturing challenges have led into an era of dark silicon,
meaning that we cannot afford to switch all the transistors on and off at each
clock cycle due to the power constraints. Before the power wall, the forefront
of the silicon industry was to maximize the chip speeds. However, in the era of
dark silicon, the power consumption has become perhaps the most important
performance indicator, especially in the datacenter scale computing. [7, 71,
79, 94]

And while the silicon industry are facing various hardware development
challenges, the software developers are also forced to adopt new programming
paradigms to keep up with the ever-increasing performance requirements. [79]

2.1.2 Parallel Computing

The parallelization of computing has been researched for several decades.
Before the sequential execution speedup gains hit the wall, it remained a mi-
nor but important field of research, mainly in high-performance computing.
Parallel-, concurrent-, and distributed computing quickly became the dom-
inant answers for mainstream computing, to continue enjoying the benefits
of the exponential computing speedups.

The parallel computing type refers to computing in which subparts of a
program are solved at the same time. Concurrent computing, on the other
hand, executes multiple computations on overlapping time periods. In dis-
tributed computing, the overlapping or simultaneous executions are carried
out on multiple computers connected to each other.

There exist many different forms of parallel computing, often divided
into four high level categories: bit-level, instruction-level, task, and data

CHAPTER 2. COMPUTING TRENDS 16

Figure 2.1: Intel CPU trends. The transistor density follows the Moore’s
Law, while the growth of CPU speed have stopped. [79]

CHAPTER 2. COMPUTING TRENDS 17

parallelism. Parallelism can be implemented in both software and hardware
levels. [20]

Bit-level parallelism refers to increasing the processor word size, thus
reducing the needed number of instructions to be executed. In instruction
level parallelism, the processor executes multiple instructions at the same
time. Instruction level parallelism can happen in both hardware or software
level. [20]

The data parallelism refers to the simultaneous execution of the same
function, on multiple cores, across the elements of the input data. Modern
graphics processing units (GPU’s), often implemented as wide single instruc-
tion, multiple data (SIMD) principle, are examples of data parallelism. [20]

In contrast to data parallelism, task parallelism refers to execution of
multiple cores of (possibly) completely different functions, across the same
or different input data. In a typical multi-core processor, task parallelism is
achieved by executing different threads or processes, on each core. [20]

Another form of parallelism, specific to the context of network processing,
is called Packet-level parallelism. Network packets are typically processed on
packet-by-packet basis. Most network packets are independent of each other,
except for the ordering constraint for packets belonging to the same flow,
thus enabling different forms of parallelism to be implemented in network
processing units. [55]

Introducing parallelism into the computing brings various new challenges
in the software development. For example, the lack of a global clock, and
possible failure of components demands extensive care from the developers,
on top of the already challenging software development. Different frameworks
and methods have been implemented, to ease the software development of
efficient parallel applications. The focus of this thesis is on task level paral-
lelism, especially in the context of packet processing applications. We will
present a view of a task-based programming framework, called Open Event-
Machine, more comprehensively in Subsection 3.4. [7]

While implementing parallel systems is challenging for software develop-
ers, there are also clear limitations in the speedup gains that these methods
can achieve. Amdahl’s Law states the rather obvious maxima in the speedup
that the program can achieve by scaling the computation over N proces-
sors. Suppose that the parallelizable proportion of a program is P (and thus
the non-parallelizable proportion being P-1), then the maximum speedup, as
denoted by Amdahl’s Law, is: [6]

1

(1− P) + P
N

The implication of Amdahl’s Law is that the speedup of a computer

CHAPTER 2. COMPUTING TRENDS 18

program is always limited by the program’s non-parallelizable proportion,
thus bringing new challenges to the utilization of the available computing
resources.

2.2 Big Data

The Internet traffic volumes are growing rapidly. For the first time, in 2010,
the number of devices connected to the Internet (12.5 billion) passed the
world’s human population (6.8 billion). This growth is explained by the
number of mobile devices (mobile phones and tablets, especially in developing
countries), and the proliferation Internet of Things (IoT) devices and sensors.
Cisco projects the number of mobile devices connected to the Internet, to
grow up to 50 billion through 2020. IoT devices and sensors included, this
number will double to over 100 billion. [29]

According to EMC corporation sponsored IDC study [82], the size of
the digital universe is estimated to grow ten-fold, from 4.4 zettabytes to 44
zettabytes, between 2013 and 2020. The data comes from several different
sources and in many different forms. At the same time the processing re-
quirements are growing. Everyday end users are expecting services to be
delivered in higher quality near real-time, and growing number of industry,
medical, and other performance critical applications are depended on the
processed data.

With the enormous data masses, data diversity, and with complex pro-
cessing requirements, often referred as Big Data, the traditional data process-
ing methods become inadequate and the new performance analysis solutions
become more important.

2.3 Virtualization

Virtualization is an act of dividing a common set of computing resources into
a multiple isolated execution environments. It enables multiple operating
systems to be run, in parallel, on a single processing unit, thus alleviating
the efficiency problems of parallel computing.

Before the existence of multi-user operating systems and the rapid drop
in hardware cost around 1980s, the virtualization was used to allow multi-
ple users to share the same mainframe hardware. Until the end of 1990s, it
remained mainly a practice of computing industry and academic research,
often requiring special hardware with explicit support for virtualization.
VMWare’s introduction of virtualization to the x86 architecture [89] and

CHAPTER 2. COMPUTING TRENDS 19

the personal computer industry introduced the benefits of virtualization to
the wider masses. [10, 14]

2.3.1 Platform Virtualization

In the traditional, non-virtualized system, the hardware platform resources
are controlled by a single operating system. Virtualization introduces a new
layer, the hypervisor (also referred as virtual machine monitor), to the soft-
ware stack. The hypervisor lies underneath the existing software compo-
nents, abstracting the hardware inputs, outputs, and the behavior for the
use of multiple operating systems. The virtualized system is called a virtual
machine. [10, 14, 83]

The benefits of the virtualization are numerous, mainly due to the soft-
ware implementation of the virtual machines. It enables scalability and flex-
ible migration of computation loads across different infrastructures, leading
to improved hardware utilization, dynamic resource allocation and manage-
ment, isolation, security, and automation. [66]

The virtual machines can be live migrated over to another physical ma-
chine. While the non-virtualized systems are often under utilized, the flex-
ibility of software enables the machines often to be run on optimal usage
level. Maintenance costs can be reduced by software automation and security
can be increased by additional software services, such as workload isolation.
These benefits have encouraged companies to seek savings, by adopting vir-
tualization in various contexts, ranging from the desktops and datacenters
to network switching. [66, 83]

To enable fully functional virtualized environments, the virtualization of
different system components, such as CPU, memory, I/O, and storage, need
to be considered. CPU virtualization techniques are often divided into three
categories: binary translation (full virtualization), paravirtualization, and
hardware-assisted virtualization. [14, 41, 66]

Full virtualization refers to a method where the communication between
the virtualized operating system (guest) and the underlying host operating
system is (nearly) completely emulated, meaning that the virtual hardware is
functionally identical to the underlying machine. Unmodified guest operating
systems can be run similarly as on native hardware, as the virtualization
layer completely decouples them from the underlying hardware. On the
other hand, the complete emulation of the hardware instructions induces
performance overhead to the full virtualization. [10, 14, 41]

In paravirtualization, instead of emulating the hardware environment, the
guest operating systems are executed in isolated environments. It enables the
communication between the guest operating system and the hypervisor, and

CHAPTER 2. COMPUTING TRENDS 20

thus improving the performance and efficiency of the virtualization. [10, 41]
However, paravirtualization requires modifying the guest operating sys-

tem kernel to enable direct communication with the virtualization layer mon-
itor. For this reason, paravirtualization compatibility and portability is lim-
ited, and it can cause significant support and maintainability costs. [10, 41]

Hardware assisted virtualization introduces new hardware features to ease
the virtualization. A common method is to provide a new privilege level be-
low the ring 0, to allow the guest operating system to intercept and emulate
privileged operations of the underlying hardware. Hardware assisted vir-
tualization removes the need for binary translation and paravirtualization,
thus, at least theoretically, solving many of the current virtualization prob-
lems. [41, 66]

2.3.2 Operating System Level Virtualization

Running multiple operating systems on single hardware, as done with hypervisor-
based virtualization, comes with the cost of efficiency. In many scenarios,
such as high performance computing, game hosting, or MapReduce [21], the
overhead from running multiple kernels on the same machine becomes a
problem. Another common method for server virtualization is to run the
virtualization layer within the operating system. [77, 92]

Operating system level virtualization is based on the kernel’s ability to
support multiple isolated user-space instances, or software containers. In-
stead of emulation, programs running in containers consume the host oper-
ating system’s standard system call interface, resulting in negligible virtual-
ization overhead compared to hypervisor-based virtualization. The drawback
of container-based virtualization is its inflexibility; each guest must be run-
ning on the same operating system kernel as the host machine. [77, 92]

Examples of operating system level virtualization implementations in-
clude for example Linux Containers (LXC) [19], Linux-VServer [24], OpenVZ [63],
and Docker [60]. While most of the container implementations seem to
achieve near-native performance, the management capabilities, such as, per-
formance isolation, vary between them.

2.4 Cloud Computing

Cloud computing paradigm provides a shared pool of easily configurable and
flexible computing resources via convenient, on-demand network access. One
of the driving forces for cloud computing has been its promise of economics of
scale. Virtualization techniques enable cloud computing centers, compared

CHAPTER 2. COMPUTING TRENDS 21

to traditional on-premise solutions, to be built using cheaper hardware, cool-
ing, electricity, network capacity and smaller number of administrators per
computer. At the same time, it alleviates the problem of inefficient resource
usage, caused by the challenges discussed in Section 2.1.1. [58]

According to the definition of The National Institute of Standards and
Technology, cloud computing is composed of five essential characteristics (on-
demand self-service, broad network access, resource pooling, rapid elasticity,
and measured service), three service models (software as a service, platform
as a service, and infrastructure as a service), and four deployment models
(private cloud, public cloud, community cloud, and hybrid cloud). [58]

The on-demand self-service characteristic means that the consumer of
the service can provision computing resources, such as server time and net-
work storage, automatically without requiring human interaction with each
service provider. Broad network access requires the service to be available
over the network and accessible using standard mechanisms, which promote
use by heterogeneous platforms such as mobile phones, tablets, laptops, or
personal computers. Resource pooling refers to virtualization techniques dis-
cussed in Section 2.3. Rapid elasticity means that the consumer is able to
elastically and automatically, provision and release the seemingly unlimited
resources on demand. The last characteristic, measured service, refers to the
automatic control and optimization of the resources by metering the usage
of the services. [58]

The characteristics of cloud computing make it tempting for both cus-
tomers and service providers. From the customer perspective, it provides
advantages of high computing power, cheap service costs, high performance,
flexible scalability and accessibility as well as high availability. It reduces
the up-front infrastructure costs for companies, allowing them to focus on
their core businesses instead of on infrastructure, and getting their applica-
tions running faster, with improved manageability and less maintenance. On
the other hand, it provides completely new business models for the service
providers. [25, 58]

The three service models divide the cloud services into logical levels based
on the computing layers provided by the cloud service. Figure 2.2 presents the
comparison these levels together with the on-premise solution. On-premise
solution refers to model where the customer manages the complete compu-
tation stack.

The lowest of the three levels, Infrastructure as a service (IaaS) model,
provides the customer the services, which abstract the details of typical hard-
ware resources and operating systems. The computing resources are typ-
ically abstracted using a hypervisor, such as VirtualBox, KVM, Hyper-V
that runs the virtual machines visible to customers as guests. Examples of

CHAPTER 2. COMPUTING TRENDS 22

Figure 2.2: A comparison of the three cloud service models and on-premise
solution. Figure from [54]

IaaS providers are Amazon Web Services [62] and Rackspace [69]. [58]
In the next service level, Platform as a service (PaaS) model, the service

provider takes care of the platform-level middleware and runtime compo-
nents. These components typically include programming-language execution
environment, databases, and web servers. Google AppEngine [74] and Win-
dows Azure Platform [70] are examples of PaaS providers. [58]

Software as a service (SaaS) model provides, on top of the IaaS and PaaS,
the management of the application and data level. The customers access the
software from cloud clients, typically web browsers via personal computers,
laptops, tablets or smartphones. SaaS has become a common model for
delivering wide range of different applications, such as Facebook [30], Sales-
force [73], and Google Gmail [80]. [58]

Private Cloud infrastructure is hosted internally by a company or orga-
nization, targeting a specific set of customers. Private clouds are typically
more affordable to setup and offer more flexibility, while also providing the
companies full privacy on their data and applications. Public Cloud, on the
other hand, is exposed to any customer over a public network. The data,
applications and other resources are stored over the service provider’s data
center, and thus the security has to be considered. The underlying infras-
tructure is often similar between these two models. [58]

The cloud service can also be a combination of the public and private

CHAPTER 2. COMPUTING TRENDS 23

clouds. This kind of deployment model is referred to as a hybrid cloud. Hy-
brid cloud allows the utilization of the flexibility and cost of the public cloud
solutions, while at the same time maintaining the security sensitive data in
their own infrastructure. Community cloud refers to cloud infrastructure
that is shared between multiple organizations, typically with common se-
curity, jurisdiction, and compliance concerns in mind. Community clouds
can be hosted and managed either internally or externally from the sharing
organizations. [58]

2.4.1 Energy Consumption

The power consumption has become the major concerns in the design of
today’s warehouse scale datacenters. In 2005, the world’s server power de-
mand (including cooling and auxiliary infrastructure) was about 14,000MW,
resulting in about $7.2B electricity costs. Majority of these costs come from
cooling, which is the consequence of the heat generated by the computing
resources such as CPU, memory, storage, and networking. [31, 52]

Virtualized datacenters can greatly increase the usage rates of computing
resources, decreasing the total server energy consumption. However, the
benefits of cloud computing are tightly coupled to the scale of the individual
datacenters. While the total energy consumption is reduced, the energy usage
of individual datacenters is often huge. [40]

The datacenter costs can be optimized by more efficient hardware imple-
mentations and increased usage rates, but companies also have to consider
different non-technical solutions. The design and construction of warehouse
scale datacenters should be treated similarly to traditional factories. Size,
location, and physical design of the datacenter can have considerable effect
on the costs. [40]

Google’s Summa datacenter is a good example of the scale of the cloud
datacenter. Google, a company residing in California, invested over $200M
to build a datacenter in Hamina, Finland. The benefits from Finland’s en-
ergy infrastructure, cold climate, developable land and available work force,
outweighed all the negative qualities of building the datacenter on the other
continent, nearly 9000km away from the company’s head quarters. [35]

2.4.2 Datacenter Networks

For compatibility and cost reasons, datacenter networks are often built from
commodity Ethernet switches and routers (scaling out), rather than from ex-
pensive high-end hardware (scaling in). Due to the limits in the switch port

CHAPTER 2. COMPUTING TRENDS 24

densities even in the high-end hardware, the traditional single rooted topolo-
gies are replaced with multi-rooted tree topologies such as fat-tree or leaf-
spine. Multi-rooted network design allows scaling the data center networks’
bisection bandwidth by adding new spine switches into the network. [3, 84]

Cloud computing datacenters can consist of hundreds of thousands of
servers, supporting large variety of services, such as high performance com-
puting, MapReduce [21], and web services. Many of these applications have
several inter-dependent components divided across the servers. Thus, the
inter-node network bandwidth has become the major bottleneck in data cen-
ters. [3]

To efficiently utilize datacenter resources, and to answer the required
performance guarantees, efficient network traffic load balancing mechanisms
are needed. Several different proposals, such as CONGA [5], Presto [39], and
Hedera [4], have been made to overcome the issues of traditional hash based
schemes.

2.5 Fog Computing

While the benefits of Cloud Computing provide efficient alternative to the
traditional on-premise solutions, there are certain issues, which have to be
addressed to enable a new breed of ever demanding applications and ser-
vices. Characteristics, such as mobility, geo-distribution, location awareness
and low latency are intractable to achieve due to the centralized nature of
cloud computing. The proliferation of devices and sensors has led to a situa-
tion where the data are produced faster than can be transmitted, stored, or
processed. [12, 85]

Fog computing is an extension to the traditional cloud computing archi-
tecture, where parts of the cloud computing services, mainly computation,
storage, and networking, are carried out in the edge of the communication
network. It is defined to provide the following characteristics on top of the
existing cloud computing architectures: low latency and location awareness;
wide-spread geographical distribution; mobility; very large number of nodes,
predominant role of wireless access, strong presence of streaming and real
time applications, heterogeneity. [12]

High virtualization and efficient stream processing are the key elements
for successful fog computing.

Until recently, the typical network architectures have been implemented
on proprietary or special purpose hardware. The growing networking traf-
fic and competition in communication services have led to the development
of software based solutions. Software based solutions enable flexible and

CHAPTER 2. COMPUTING TRENDS 25

extensible networking, and measure up the tight standards for stability, pro-
tocol adherence, and quality, previously achieved only with the hardware
solutions. [50]

The main enabling technologies of fog computing are the software-defined
networking (SDN), and further the network functions virtualization (NFV).
Software defined networking separates the data plane and the control plane
functionalities of the network, making the data plane switches simple packet
forwarding devices, while leaving the routing decision control logic for the
control plane. Thus the network control becomes directly programmable,
centrally managed, programmatically configurable, and vendor agnostic, amongst
many other benefits from softwareization. [50]

SDN is often complemented with network functions virtualization. In
NFV, the network devices are virtualized (using similar techniques as dis-
cussed in Section 2.3) and the network functionalities of the devices are im-
plemented in software packages. [23]

Long Term Evolution (LTE) [75] and Evolved Packet Core (EPC) work as
a natural platforms for the fog’s edge data centers. Small cloud stations can
be deployed to the EPCs, and the routers can be utilized as the virtualization
infrastructure. This also enables the application services to be co-located
where needed. [85]

Chapter 3

Packet Processing

Packet processing refers to the methods and concepts applied to transport
data packets through the various network elements in a communication net-
work. The network routers, switches, and other devices, such as computers
and smartphones, all have their own packet processing subsystems to manage
the packet traversal between the network elements. This thesis focuses on
the packet routing equipment in the middle of Internet backbone.

This chapter presents the general methodology of packet processing and
network processing systems. We begin by describing the general packet pro-
cessing framework used in network processors. After that, we present the
packet flow handling methods, emphasizing the importance of packet buffer-
ing and queuing theory in the packet processing. Further, we present an
overview of the hardware architecture and task-based programming models
used in packet processing systems.

Finally we will have a closer look on a specific network processing unit,
and instrument the system to obtain the required understanding to choose
the abstraction level for the performance analysis model. Two different mea-
surements will be done: one to measure the communication latencies, and
another to measure the memory latencies and throughput.

3.1 Packet Switched Networks

Packet switching refers to a method of transmitting data in separate, suit-
able sized blocks, called packets, between the links of a telecommunications
networks. The importance of packet switched networks is increasing in ev-
ery part of the communication networks, which is explained partly by the
Internet itself being an enormous packet switched network.

26

CHAPTER 3. PACKET PROCESSING 27

3.1.1 Network Components

The Open Systems Interconnection (OSI) model is a standard conceptual
model, which characterizes the communication functions involved in a gen-
eral network communications of computer system. The model defines seven
hierarchical layers of functional elements, between the physical interconnec-
tions (layer 1) and the software applications (layer 7). [45]

The Internet Protocol Suite, or Transmission Control Protocol / Internet
Protocol (TCP/IP), is a set of core protocols for the Internet and similar
packet switched networks. It provides end-to-end data communication and
specifies data packetizing, addressing, transmission, routing, and receiving in
the packet network. In addition to TCP and IP protocols, it provides sev-
eral other network and transmission layer functionalities. The functionalities
are divided into four abstraction layers: application layer, transport layer,
internet layer, and link layer. [13]

Internet Protocol (IP) is an essential Internet layer protocol of the In-
ternet Protocol Suite. It provides the necessary addresses and (unreliable)
delivery mechanisms for datagrams between the transmission endpoints. It
is a connectionless, best-effort protocol with no error control, sequencing, or
end-to-end reliability, but rather contains only the functions for packet frag-
mentation and delivery through the network. The packets in the IP protocol
can be forwarded independent of other packets, forwarding them on-the-fly
by routers. [22]

A packet refers to the unit of data transmitted across the network. Pack-
ets consist of two parts: the header information and the payload data. Net-
work routers use the header information to direct the packet to destination
system, whereas the payload is extracted and used by the application soft-
ware. All the higher layer protocols in the TCP/IP stack are encapsulated
in the IP-packet’s payload section. [22]

In conventional IP-based network architecture, the packet processing equip-
ment and functionality is partitioned into three components: management
plane, control plane, and data plane. [16]

The control plane refers to the parts of the routing architecture, which
carries and consumes the control packets needed to describe the network
topology and correctly route the actual data packets. The control packets
originate from and are destined for a router. [16, 93]

The data plane, often referred as forwarding plane, deals with the actual
data forwarding in the network. It defines the part of the routing architec-
ture, which decides destination and takes action for the data arriving to it.
The decision is typically determined by a look-up table, which the incoming
packet is compared to. The management plane carries the traffic used for

CHAPTER 3. PACKET PROCESSING 28

the administrative tasks of the network. [16, 93]

3.1.2 Traffic Characteristics

The nature of the high-speed packet processing entails new types of con-
straints to the computing; advanced stream processing systems are needed
to process the data on-the-fly in the vicinity of the sources. [12]

In the traditional von Neumann model of computing [87], the computation
is carried out by modifying the data stored in memory. However, the growing
volumes of data and strict latency requirements, require not only distributing
the computation, but also changes the nature of it more towards stream
processing. The manipulation of the data streams passing through the system
must often be done on the on the fly. [12, 81]

In packet switched networks, the data streams are called flows. Flows rep-
resent the data in specific time periods between specific network end-points.
A single flow contains a large number of packets. The Internet Protocol allows
each individual packet of a stream to be processed in any order, leaving the
ordering of the packets to the end devices. This characteristic makes packet
processing applications look like ideal for a parallel computing. However,
protocols such as TCP/IP (accounting over 80% of the Internet traffic [32]),
have significant performance reductions due to reordering of packets in a sin-
gle stream. For this reason, the packet processing systems often have built-in
schemes, such as specialized queue management and buffering, to efficiently
keep flow specific packets traversing through the queues in order. [36, 53]

3.2 General Packet Processing Framework

A general packet processing framework consists of three primary aspects:
packet processing functions, packet direction (ingress, egress, or combination
of both), and packet processing paths. These three aspects are depicted in
Figure 3.1. The packets enter the system from the left, from the physical line
interface (ingress direction), and follow either the slow or the fast path. The
packets are then forwarded either to the switch fabric or back to the physical
line interface (egress direction). [34]

3.2.1 Ingress and Egress

Ingress and egress refer to the packet processing done for the packets entering
the network processor from the network, or packets leaving the network pro-
cessor to the network, respectively. Ingress and egress processing, although

CHAPTER 3. PACKET PROCESSING 29

Figure 3.1: A general packet processing framework. Figure from [34]

not necessarily being clearly separated in modern systems, play an important
role in the network processing units. The unclear separation of these phases
is due to the various different implementations in today’s network processing
units. Some processors have one processing direction, from packet input to
its output, possibly happening through the same interface. Other implemen-
tations might not have distinguishable elements that target ingress or egress
processing. [34]

Figure 3.2 outlines the basic two-part equipment implementation scheme,
called half-duplex, for packet ingress-egress processing. The first part of the
picture depicts the line cards for receiving/transmitting the packets from/to
the network. The second part consists of switching fabric, service cards, and
other processing functions and mechanisms that packets go through inter-
nally.

Half-duplex processing consists of two dedicated processors for each direc-
tion. The functions executed on the ingress packets and egress packets can be
distinguished, in which case the network processing unit often consists of sep-
arated processing paths for the two ways. Typical ingress processing tasks
consists of, for example, error checking, classification, traffic management,
header manipulations, and prioritization and queuing. Packet egress tasks,
on the other hand, include checksum calculation, address lookup, packet for-
warding, segmentation and fragmentation, traffic management, and packet
prioritization and queuing. [34]

CHAPTER 3. PACKET PROCESSING 30

Figure 3.2: Two part ingres-egress scheme. Figure from [34]

3.2.2 Processing Paths

In many cases, the packets flowing through the network processing unit need
to be processed at wire speed, meaning that the number of packet leaving
and arriving the processing unit must be equal at certain time interval. The
introduction of increasing Ethernet speeds imposes strict constraints for the
network processors. While the control- and management plane traffic can
often be processed with fairly non-trivial solutions, the main bottleneck, to
keep up with the scalability of optical transmission technology, is the data
plane processing. [34]

The comparison of the speeds of Ethernet based transport networks and
the processor speeds gives a perspective of the packet processing require-
ments. A typical Ethernet link in the network backbone, with 100Gbps
speed and minimum frame size of 64 bytes, leaves the packet processing sys-
tem 6.7ns to process each packet. [34]

Even in the most trivial packet processing applications, this processing
requires several different processing steps. For each packet, the network pro-
cessor must execute complex packet parsing, to parse destination address and
port. Then, based on this information, the processor executes several searches
to retrieve the destination details from the memory, possibly containing hun-
dreds or thousands addresses. It is evident that completely software based
slow path solutions are insufficient to answer these requirements. [34]

CHAPTER 3. PACKET PROCESSING 31

Fast path architecture refers to a path through a computer program,
which incorporates smaller number of instructions or other optimization
methods, compared to the normal path. In packet processing systems, the
vast majority of packets require very little processing. Thus, the data pro-
cessing is often split into two, referring to the data plane and control plane
processing: fast path and slow path. [1, 34]

The typical slow path of the packet processor is run on top of an operating
system stack. The fast path layer processes packet outside the operating
system environment, often with hardware acceleration, thus avoiding the
overheads occurring from the thick software stack. This leaves only a small
number of packets that require special processing, to be forwarded to the
slow path able to do more complex processing. Typical examples of slow path
packets in IP network are IP options and ARP packets. In MPSoC based
packet processing systems, the processing cores can often be dynamically
configured to run fast path or slow path. [1, 34]

3.2.3 Packet Processing Functions

Packet processing functions are separate tasks, following each other, in the
packet processing path of packet processor. These functions can be catego-
rized, for example, as framing, parsing and classification, search/lookup/for-
warding, packet modification, compression and encryption, and queuing and
traffic management. [34]

The packet processing starts with the packet entering the network pro-
cessor through the network interface controller’s ingress port, immediately
followed by the packet framing. Framing assures that packets or datagrams
can be correctly extracted from the incoming data frames. The incoming
data frames are tested for correctness, to make sure all the bits in the frames
are received correctly. If necessary, the framing functions attempt to fix the
bits of the incorrect frames. Finally the integrity of the frames is validated,
to make sure that all the packets’ content arrived correctly. [34]

Framing is done similarly in the egress direction, in order to assure cor-
rectness of out going packets. In the outgoing framing phase, the needed
headers are attached or modified, proper terminals and trailers are added
to the packet data, and error detection and correction information is ap-
pended. [34]

After framing, the packet is parsed and classified, meaning that the net-
work processing unit inspects the packet data in order to understand its type,
and then classifies it according to the application requirements. Parsing and
classification are two combined subtasks, sometimes carried out either sepa-
rately or together, depending on the system. [34]

CHAPTER 3. PACKET PROCESSING 32

Packet parsing can be very simple and trivial, or it can be a complex task
requiring unique language to describe and dedicated hardware to execute the
process. Parsing means of identifying the relevant fields in the incoming data
packet. These field’s values are then used for either further packet parsing
or classification, which is why these two are sometimes tied together. [34]

Classification refers to the functions that categorize the packets into sep-
arate flows, by the rules defined in the system. Each packet belonging to
a specific flow, then take the same processing steps. Packet classification
can be stateful or stateless, static or dynamic, and the fields to be classi-
fied have variable of fixed lengths and offsets. In stateless classification, the
decision is made solely based on the packet content, independent of other
packets. In stateful classification, the system state changes based on the
processed packets, and affect the classification decisions. In static classifi-
cation all the classification criteria are predefined, and the rules are fixed.
In dynamic classification, on the other hand, the classification criteria and
rules are computed based on, for example, incoming packet or system’s state.
Packet classification can be implemented in hardware or software, depending
of the required complexity. [34]

Search and lookup functions are not packet processing phases themselves,
like the other discussed packet processing functions. Rather, they are atomic
operations used during the packet processing, such as classification, forward-
ing, or any other phase. Almost every packet processing activity starts with
an IP-lookup, thus making the search and lookup functions are probably the
most important packet processing operations, in terms of effect to process-
ing speed, in packet processing. Various different solutions, often referred
to as search engines, have been developed to enable searches at wire speeds.
Search engines are software processes or hardware solutions, often packed in
separate co-processors. [34]

In the packet modification phase, the network processor drops or modifies
the packet being processed, or possibly generates new packets as specified by
the application. Packet modification is one of the key operations in many
packet processing applications, especially in the ones other packet forwarding.
Packet modification phase is also used for some traffic analysis, management
and statistics collection tasks. [34]

Some packet processing systems compress and encrypt the packets before
they leave the system. Compression and encryption are often done in the
access network processors, whereas in the trunks of the network core, the
packets just flow through. Compression is typically used in networks and
applications where the bandwidth is limited, and security is used for privacy,
data integrity, and authentication purposes. [34]

Finally, in the packet transmission phase, queuing, prioritization, and

CHAPTER 3. PACKET PROCESSING 33

traffic management are used to make sure the traffic patterns are as expected.
The traffic management process forwards the packets to appropriate output
queues and schedules them for transmission, according to the line and receiver
conditions, and the parameters, such as priorities, of the packets. Traffic
management is also used to meter the packets, and transmit the packets on
a desired rate and burstiness. Due to the complexity of traffic management,
it is often implemented by a dedicated traffic manager co-processor. In some
cases, packets incoming to the system also go through a traffic management
phase. [34]

3.3 Processing Hardware

Traditionally, the focus in the development of network equipment – switches,
routers, and various other middleboxes – has been to achieve high perfor-
mance with very limited packet processing functionalities. The network
appliances and middleboxes have typically been deployed on special pur-
pose Application-Specific Integrated Circuits (ASIC) hardware, mainly due
to high performance requirements compared to the hardware development,
and the absence of extensibility and flexibility requirements. [26]

However, the required network functionality is becoming increasingly so-
phisticated. In addition to the traditional layer 2 and layer 3 routing and
switching tasks, the network elements are required to handle more demanding
tasks (e.g. application acceleration, encryption, and intrusion detection) all
the way to layer 7. These extensions often require modified per-packet pro-
cessing on the router data plane, and as the specialized network processors
are difficult to extend and program, both industry and research are seeking
new, more flexible networking solutions. [26, 27]

On the other extreme of the design spectrum, are the software routers
built from general-purpose operating systems and x86 hardware platforms.
The main promise of the software routers is their extensibility in the software
and hardware development: the system’s network functionalities, both in the
data and control plane, can be modified fully by the software, thus mitigating
the hardware design and development burden of the network developers. [26]

The software routers also enable several other properties of the general
purpose computer ecosystem. Huge manufacturing volumes and widespread
supply and support chain allow much cheaper hardware prices. The rapid
advances in commodity semiconductor technology, such as the state-of-the-
art power management features, can provide significant advantages over the
slow hardware upgrade cycles of the traditional ASIC based systems. [26]

The challenge with the full software routers is the scaling the approach

CHAPTER 3. PACKET PROCESSING 34

to high-speed networks. Between these two extremes exist design solutions,
Network Processing Units (NPU), which offer much of the programmability of
commodity hardware and the performance of specialized ASIC systems. [26]

The focus of this thesis is on the middle-ground network processors, be-
tween the specialized ASIC solutions and general purpose x86 hardware,
which are used for mid- and high-level used for communication, datacenter,
and higher OSI-level applications, and in some cases for the Internet core
networking. Thus, this section’s point of view is on these elements.

In high-speed networking environments, a single network processing unit
is not sufficient for executing all the different processing functions, but in-
stead, different parallel processing and multiprocessor architectures are often
considered. Nearly all network processing units today are multiprocessor
system-on-chip architectures, meaning that they are built from several small
processors working in parallel, co-operating, on the same silicon chip. The
programmable processor of the network processing unit is referred to as pro-
cessing element. [34, 64]

3.3.1 Processing Elements

Various architectural design choices can be made at different system levels.
The programmable processing elements themselves can be designed in several
ways. The basic requirements for processing element are a basic instruction
set, memory and a data path suitable for multi-element environment opera-
tion. [34]

A processing element can implemented in many forms, and the archi-
tecture depends much of the intended environment. They can be reduced
Instruction Set Computing (RISC) CPUs (typically programmable), or ded-
icated hardware units (typically non-programmable) for specific packet pro-
cessing tasks, such as classification, per-flow queuing, buffer and traffic man-
agement, which require wire-speed processing. [34]

Processing elements can operate independently, or be grouped into func-
tional blocks. Similarly as in the design of network processors, there is often
a trade-off between the functionality and flexibility of processing element,
and the speed. Whether the processing elements are complex multi-threaded
units, or small and simple, in typical network processor architecture, the goal
is to achieve high performance by maximizing the utilization of the on-chip
elements. Thus the elements should be configured to correspond the needs
of the network processor. [34]

Hardware accelerators and co-processors refer to state machines that are
specialized to a certain packet processing tasks, such as cyclic redundancy
check, search and lookups, or security. Hardware accelerators operate inde-

CHAPTER 3. PACKET PROCESSING 35

pendently of the network processor’s processing elements, and are called as a
functional unit from other elements. Co-processors are hardware accelerators
that are themselves programmable. [34]

3.3.2 Parallel and Pipelined Architectures

The arrangement, or topology, of processing elements can be divided in two
fundamentally different approaches: parallel and pipeline architectures. De-
pending on the application, the topology can consists of multiple homoge-
neous or heterogeneous processing elements, organized in parallel, pipeline,
or a combination of these two. Figure 3.3 depicts the four different combi-
nations of the architectures. [34]

In pipelined architecture (Figure 3.3a), several (homogeneous or hetero-
geneous) processors are organized in one after each other, forming a number
of processing steps that every packet goes through. The pipeline is often
implemented by heterogeneous processing elements, each of which do part of
the total packet processing work. The advantage of the pipelined architecture
is to have a dedicated, specialized processing element for packet processing
tasks. Also, a fully pipelined architecture forces the packets to be ordered
in the same order as they enter, making the behavior of the packet stream
more predictable. In an ideal pipeline, each stage should require the same
time to perform. The packet processing tasks, however, are often complex
and dynamic by their nature, and in heterogeneous implementations different
elements require separate programming models. Thus the pipeline implemen-
tations are often more difficult than a typical parallel architecture. [34]

The parallel processing (in this context) refers to a topology where several
processing elements work in parallel on the packets dedicated to them. In
the extreme case (Figure 3.3b), the entire packet processing is done by the
same processing element. The extreme case is typically implemented on
homogeneous, “general purpose” packet processors capable of executing all
the required packet processing tasks. [34]

It is typical to combine these to approaches into parallel pipeline of pro-
cessors (Figure 3.3c) or pipeline of parallel processors (Figure 3.3d). In a pool
of parallel pipeline, each incoming packet is directed to one of the pipelines,
which processes in steps, until the processing is finished. This configura-
tion is a compromise between strict parallel processors and strict pipeline of
processors, allowing each pipeline to execute different subtasks. [34]

In a pipeline of parallel processors, pipeline consists multiple processing
steps carried out with a multiple parallel elements. Typically, the processing
elements within each parallel step are homogeneous, whereas the elements
between different steps can be heterogeneous. The time taken for processing

CHAPTER 3. PACKET PROCESSING 36

PE PE PE PE

(a) Pipeline

PE

PE

PE

PE

(b) Parallel

PE

PE

PE

PE

(c) Parallel pipeline

PE

PE

PE

PE

(d) Pipeline of parallel

Figure 3.3: Different processing element architectures

can vary between the stages and between the processors of each stage, while
reducing the waiting times for the processing, and the need of synchronization
and buffering. [34]

The parallel configuration is typically used for higher layer networking
applications, where as the pipeline configurations are used in line cards that
require high-speed processing at low layer networking applications.

3.4 Programming Models

Programming of the high-speed packet processing systems is challenging,
due to the parallel nature of the hardware, and the dynamicity of the packet
streams. Generic software frameworks are often used to abstract the under-
lying hardware complexity, and ease the parallel application development.
Abstractions try to hide the details of hardware implementation from ap-
plications developers, providing ease of development and portability of code
through different hardware implementations.

We will further present two different software frameworks, Intel Data
Plane Development Kit (DPDK) and Open Event-Machine (OpenEM), used
for packet processing development. Both of these frameworks share the same
fundamental idea of abstraction: they provide software queues, which are
mapped to the hardware components of the system. Software queues provide
flexible way of scheduling and ordering the packets between the processing
cores between the packet processing tasks.

The difference between the frameworks is their level of abstraction and the
method of describing parallelism. Intel DPDK provides lower level abstrac-

CHAPTER 3. PACKET PROCESSING 37

tions targeted for Intel hardware. OpenEM, on the other hand, is a higher-
level abstraction, which implements more strict queue types and higher-level
scheduler on top of the lower queue abstraction frameworks, such as DPDK
for Intel hardware. In this thesis, we are mainly interested in the OpenEM
type task-based parallel programming models.

3.4.1 Intel Data Plane Development Kit

Intel Data Plane Development Kit (DPDK) provides a clean application pro-
gramming interface and a set of coherent libraries and drivers, for Intel x86
processors. It has a generic support for many CPU’s and network interface
controllers ranging from Intel Atom processors to Intel Xeon processors. It
supports system with and without non-uniform memory access (NUMA),
and any number of processing cores. [44]

DPDK runs as a Linux user-space application, utilizing the pthread li-
brary. Similarly to many other packet processing frameworks, DPDK imple-
ments a run-to-completion model, to minimize the process-switching over-
head. The model removes the typical operating system scheduler, mitigating
the context switch overhead. All the devices must be accessed by polling,
thus eliminating the interrupt overhead. The packets can be passed between
the cores, enabling more efficient and flexible core usage. [44]

DPDK’s Environment Abstraction Layer (EAL) abstracts the hardware
environment from applications and libraries, enabling hardware agnostic im-
plementation of packet processing applications. EAL provides services such
as core affinity and assignment procedures, memory management, atomic and
lock operations, and bus accesses, and interrupt handling. These features are
exposed as programming libraries. [44]

DPDK has an active ecosystem around it, with wide vendor support. It is
also well documented and includes several software examples demonstrating
the best practices for data plane architectures, application profiling, and
performance tuning. [44]

3.4.2 Open Event-Machine

Open Event Machine (OpenEM) is an event-driven programming framework
for multi-core dataplane applications, developed by Nokia Solutions and Net-
works (NSN). It has been designed to ease the implementation of event and
packet processing applications for different MPSoC devices. One of main
drivers for the development of OpenEM has been easy integration with mod-
ern hardware accelerators. [88]

CHAPTER 3. PACKET PROCESSING 38

The key concepts of OpenEM framework are execution objects, events,
queues, and the scheduler. Execution objects are the main building blocks the
OpenEM application. They are the run-to-completion functions, describing
the processing logic of the application. Each execution object has one or more
queues attached to it. The scheduler selects the events from the queues, based
on the global interrelations of the queues. When the event is selected from
the queue, the corresponding execution object is attached to the processing
core, and the event is passed to it as a parameter. Once the execution
object finishes its run, the scheduler chooses a new event from the queues
similarly. [88]

The OpenEM framework itself is easily portable across different hardware.
As the OpenEM specification is based on used lower level queue abstrac-
tions, such as DPDK, it can easily be implemented on platforms supporting
queue abstraction frameworks. Some hardware vendors, such as Texas Instru-
ments [43], offer ready-made OpenEM support on their hardware. OpenEM’s
reference implementation is based the Intel DPDK framework. [88]

From the programmer’s perspective, OpenEM’s event-driven program-
ming model relates closely to actor based programming models such as Er-
lang [86] and Akka framework [2]. While the use cases for these frame-
works are completely different, and thus cannot directly be compared with
OpenEM, it is worth mentioning their message passing support. Support
for combined inter-node and intra-node parallelism has potential benefits for
efficient scaling in the future. HCMPI [17] is an example of experimental
framework that combines task-parallelism with message passing. OpenEM’s
current specification does support inter-node messaging, however it is not
clearly defined.

3.5 Example Network Processing System

Typical network processing units are optimized for high-performance, high-
bandwidth, and low power consumption software-defined control-plane and
data-plane applications.

The ingress and egress processing are handled by separate processing
elements, having input processors that work together to manage the received
packets, and to perform required processing before scheduling the packets to
application cores. Once the required ingress computation is done, an input
processor sends the packet’s work entry to the scheduling unit to be scheduled
for processing.

The egress functions are handled similarly by specific packet transmis-
sion units. When a core finishes a packet processing, it notifies the output

CHAPTER 3. PACKET PROCESSING 39

processor that the packet is ready for transmission. The output processor
then directly copies the packet data from the shared memory into its internal
memory, optionally computes checksums for the packet header, transmits the
packet, and optionally frees the packet data from the memory.

Our example system consists of multiple application cores, with several
hardware acceleration units for enhanced packet processing and minimized
software development complexity. The packet management accelerators of-
fload the actual packet processing cores from many general packet receive,
buffering, buffer management, flow classification, quality of service, and
transmit processing. The accelerator functions can be customized using soft-
ware, and accessing the configuration registers. Together with the hardware
acceleration units, the processing cores can handle most of the processing
requirements of all the way through layer 2 to layer 7 in the standard OSI
model [45].

One of the key features of the unit is its global packet scheduling unit,
which is responsible or the packet scheduling and synchronization. It frees
the actual packet processing applications, running on the application cores,
from the complex packet scheduling and ordering tasks. The cores execute
a loop, and when a core is ready for the next packet, it requests work from
the scheduler, which then schedules the next work based on the quality of
service priority and work group.

The scheduler has efficient locking mechanisms for protecting the critical
regions without explicit software locking, and allows packet processing to be
done in parallel or atomically, while still maintaining the packet flow order.
The processing cores can also be dedicated for specific flows. One of our goals
is to be able to model the scheduling functionality with PSE, as it is one of the
key elements in the packet latency and throughput when processing several
flows at the time.

The network processing unit provides several memory policies for opti-
mized multi-core packet processing. The cores often have dedicated L1 data
and L1 instruction cache, and a shared L2 cache. Different cache features and
policies are offered, for example to avoid unnecessary data writes after the
packet transmission, and to automatically send the received packet header
to L2 cache and the packet data to main memory, bypassing the L2 cache.

3.6 Characteristic Behavior

This section presents characteristic behavior of the system, providing in-
depth knowledge required choosing the correct modeling abstraction level.
Some of the system characteristics are simple enough to be obtained directly

CHAPTER 3. PACKET PROCESSING 40

Swap Blade

input

ou
tpu

t

Forward Blade

input
pr

oce
ss

ou
tpu

t

input

pr
oce

ss

ou
tpu

t

Traffic Generator

ou
tpu

t

input

process

Figure 3.4: The setup used to measure the communication latencies. The
communication between the nodes, packet processing on the main cores, and
the input and output processing, are marked with the dashed arrows, solid
black arrows, and orange arrows respectively. The probes present the points
of measurement.

from the literature, while others are either unavailable, or are presented in an
unusable form to be used in the simulation model. The missing communica-
tion and memory related parameters are obtained by measuring the example
hardware. These are discussed in the following sections, respectively.

3.6.1 Communication Latencies

By communication latencies, we refer to the time in the input and output
phase of the packet processing, between physical receive/transmit ports and
the actual core processing, as described in Section 3.5. We will include the
times spent in the scheduler unit for both of these metrics, as due to our
resource constraints, we were unable to do the measurements with the re-
quired detail to break down these delays. Also, for our modeling purposes,
it is accurate enough to assume that the input and output phases consume
equal amount of processing time.

The input and output phase latencies are measured by generating traffic
from external machine, and passing it through two identical network pro-
cessing units back to the generator itself. The measurements were done at
two independent points in the processing path, to validate the accuracy of
the measurements.

In Figure 3.4, the rectangles represent three different computing units
(traffic generator, forward unit, and swap unit), and the probes present the
points of time measurements. The traffic generator is a typical desktop com-
puter running Ubuntu operating system, and the traffic was generated by
Mausezahn [37]. Both of the network processing units are running Linux
operating systems.

CHAPTER 3. PACKET PROCESSING 41

64 128 256 512 1024 1500
packet size [B]

la
te

nc
y

Figure 3.5: Abstract latency of the input and output phase of the example
unit. On each box, the central mark is the median, the edges of the box are
the 25th and 75th percentiles. Both of the axes are on logarithmic scale.

The packet is first generated at the packet generator and sent to the
forward unit at time td0. Forwarding unit receives the packet at time tr10, does
the required processing and forwards the packet to the swap unit at time
td10. The swap unit receives the packet at time tr2, does the same processing
as the forward unit (except with different destination address), and forwards
the packet back to the forward unit at time td2. Finally the forward unit
receives the packet at time tr11 and forwards it to the traffic generator at time
td11, which marks it received at time tr0. The time tf spent in the input and
output phase of one unit is then

tf ≈
tr11 − td10 − (td2 − tr2)

2
. (3.1)

We measured the times for packet sizes of 64B, 128B, 256B, 512B, 1024B,
and 1500B, repeating the measurement for each packet 10000 times. Fig-
ures 3.5 and 3.6 present the statistics of the resulting times tf for the different
packet sizes.

As shown in the Figure 3.5, the time spent in the input and output phase
of the unit is roughly linear regarding to the packet size. The variation of the

CHAPTER 3. PACKET PROCESSING 42

Latency
0

50

100

150

200

F
re

qu
en

cy

64B

Latency
0

20

40

60

80

100
128B

Latency
0

20

40

60

80

100

120
256B

Latency
0

20

40

60

80

100

120

140

F
re

qu
en

cy

512B

Latency
0

20

40

60

80

100

120

140
1024B

Latency
0

20

40

60

80

100

120

140
1500B

Figure 3.6: Abstract latency frequency histograms for each packet size, along
with a normal density function with parameters, estimated with maximum
likelihood method from the data.

CHAPTER 3. PACKET PROCESSING 43

data is relatively small on all packet sizes. The trend of the latency with re-
spect to the packet size corresponds to the trend of the values measured with
at the external traffic-generator (which causes constant overhead regardless
of the packet size). The corresponding plots for the external traffic-generator
measurements are omitted for clarity.

As seen from both of the Figures 3.5 and 3.6, there exist points with
unexpectedly large deviation from the rest of the group. These deviations
seem to be independent of the packet size, and thus we assume that the
scheduling unit causes them. This behavior is also statistically incorporated
in the simulation model.

The only packet size dependent operations in the input and output phases
are the memory transfers done for the actual packet data between the memory
(L2/RAM) and IN or OUT. All the other operations are done based on
the packet header, thus requiring constant amount of time regardless of the
packet size.

Since we cannot make a distinction between the input and output phase,
in the simulation model presented further, we will adjust the input/out-
put phase amount so that they consume the IN and OUT units for the
amount that corresponds the constant term of equation 3.2. The variable
(non-constant) term is caused by the memory copies in the input/output
phases, and is proportional to the packet size.

The input and output delays used in the simulation model are estimated
by fitting a linear model to the data, using least square estimate. The deter-
mination coefficient of the estimate R2 = 0.997. The delay for the input and
output phase are divided evenly, resulting in

tin = tout =
1

2
(0.0018

1

B
∗ packet size+ 1.036). (3.2)

3.6.2 Memory Characteristics

Memory delays were measured using Multi-core Processor Architecture and
Communication (MPAC) benchmarking library [48]. Both, latency and through-
put were measured using different dataset sizes and number of threads. Each
test was run with 200,000 repetitions.

Figure 3.7 presents the latency characteristics for different packet sizes
and thread counts. Notice that the y-axis the graph is logarithmic. As
expected, the memory latencies grow together with the size of the write.
The transition between the memory levels can be seen as the jumps in the
latency graph. With 128B - 1KB write sizes both the read and write arrays
fit in the L1 cache (32KB), and thus the latency per repetition is independent

CHAPTER 3. PACKET PROCESSING 44

0 10 20 30 40 50 60 70
threads

la
te

nc
y

pe
r

re
pe

tit
io

n

128B
256B
512B
1KB
2KB
4KB
8KB
16KB
32KB
64KB
128KB
256KB
512KB
1MB
2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB

Figure 3.7: Abstract memory latency of the example unit across number
of threads for integer data type (32bit), measured by MPAC. The latencies
for different packet sizes are marked with colors as shown in the legend (in
bytes). The y-axis is presented in logarithmic scale.

CHAPTER 3. PACKET PROCESSING 45

0 10 20 30 40 50 60 70
threads

th
ro

ug
hp

ut

128B
256B
512B
1KB
2KB
4KB
8KB
16KB
32KB
64KB
128KB
256KB
512KB
1MB
2MB
4MB
8MB
16MB
32MB
64MB
128MB
256MB

Figure 3.8: Abstract memory throughput of the example unit across number
of threads for integer data type (32bit), measured by MPAC. The throughput
for different packet sizes are marked with colors as shown in the legend (in
bytes).

of the thread count. With write sizes above 2KB, some of the writes hit L2
cache, increasing the latency as the thread count increases. Similarly, the
step from L2 cache to RAM can be seen 128KB, 256KB, 512KB, 1MB, and
2MB write sizes, where both write and read arrays completely fit in the L2
cache with 8, 4, 2, 1 and 1 threads, and move to RAM beyond that.

The write latencies also thrash beyond 32 threads, especially for the cache
sizes. This does not affect the main core memory accesses in the model, as
only 32 threads are used for packet processing. However, these numbers work
as a reference when modeling the memory communication of other units such
as the scheduler.

Figure 3.8 presents the throughput characteristics for different packet
sizes and thread counts. Again, as expected, the maximum throughput is
achieved with 1KB write lengths and 32 threads, when both the write and
read arrays fit in the caches. The write throughput scales linearly with 128B
- 1KB write sizes for up to 32 threads, with 2KB - 64KB up to 16 threads,
and for 256KB, 512KB, and 1MB, write sizes up to 8, 4, and 2 threads
respectively. The transitions between the memory levels are similar as in
the latency graph. Again, a clear thrashing can be seen with more than 32

CHAPTER 3. PACKET PROCESSING 46

threads.

Chapter 4

System Performance Analysis

In this thesis, we study and evaluate the performance analysis methods of
a modern packet processing system. This chapter introduces the modeling,
measurement, and simulation methods used in our work.

We will start by introducing the common performance analysis methods
and metrics, and then further examine the modeling and simulation tech-
niques. Further, we present the queuing and resource networks, which are
fundamental concepts for modeling packet processing systems. We will de-
scribe the basic concepts of simulation, the primary method for solving more
complex networks needed to model modern packet processing systems. We
end the chapter with a short survey of the existing simulation software.

4.1 Performance Analysis

For almost every computer system – whether it is a high performance appli-
cation on the cloud [46] or an army fuel-supply system [72] – the performance
is one of the most sought-after criteria. To achieve the highest performance
for the lowest cost, different performance evaluation techniques are required
at different system life cycle stages. The choice of evaluation criteria and
techniques used to evaluate the system performance vary between systems.
These two choices are discussed in the following subsections. [47]

4.1.1 Evaluation Techniques

Performance evaluation can be done using various techniques. These tech-
niques are generally divided into three categories: analytical modeling, simu-
lation, and measurement. The former two techniques are based on symbolic
models of the real-life system, whereas the measurements are done on the

47

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 48

system itself. Analytical approaches use mathematical methods to solve the
model, and simulation imitates the operation of the system by executing the
model on a simulator [9]. Measurements are done by instrumenting the real
system with various hardware and software tools. [47]

No strict programmatic rules can be given to select the right technique.
However, there are some considerations that can be used to guide the deci-
sions: system life-cycle stage; available resources, such as time, money and
tools; required level of accuracy; trade-off evaluation; and salability. [47]

The life-cycle stage of the system is usually the first to consider. In early
design stage, the evaluation is often done using analytical methods or simula-
tion, as it is impossible to measure a yet non-existing system. Measurements
are, thus, often used for improving existing systems. [47]

Available resources also dictate the technique selection. Running the
measurements and simulations are often more time consuming [33] than the
analytic approach, and the required time can be difficult to predict. They
both also require special equipment and tools, which are expensive and need
special skills to operate. The analytical methods are generally considered less
time consuming and less expensive than measurement and simulation. [47]

An important thing to note about the simulation software is their paral-
lelization. Managing the events of, and monitoring during, the simulation,
in addition to the challenging in parallel computing itself, make the scaling
of simulation software extremely complex. [33]

The required level of accuracy should also be considered. For analytical
models to be solvable, they often have to be very simple abstractions of the
original system. Thus, the results of the analytical methods are often ap-
proximate and less accurate than simulation or measurement. Similarly to
analytical methods, simulations are abstract, but often much closer to the
real system. Even measurements, despite being most accurate of these meth-
ods, can produce results that do not agree with the actual system behavior.
The accuracy of simulations and measurements can often be enhanced by
spending more time and money on them. [47]

Different evaluation techniques are often used together. Taking advantage
of two or more methods simultaneously can be used to validate and verify
the analysis results. On the other hand, different methods can be used to
complement each other to enhance the analysis process. [47]

4.1.2 Performance Metrics

Every performance study needs a set of performance criteria or metrics, which
vary with the service provided by the system. Service requests made to the
system produce different outcomes: the system either performs the service –

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 49

correctly or incorrectly – or refuses to perform it. The metrics associated with
these outcomes are called speed, reliability, and availability, respectively. [47]

When the service result is correct, the performance metrics are used to
measure the responsiveness, productivity and utilization of the system. For
example, in a network packet processing system, responsiveness could be
measured as the packet response time, productivity as the throughput, and
utilization as the percentage of time the cores are busy. [47]

If the service result is incorrect, the metrics describe the probabilities of
the error, for example, how probably an unintentional packet drops or out-
of-orderings occur. When the system fails to perform requested service, it is
helpful to classify the different causes of failure, and determine the probability
and the duration for each. [47]

It should be noted that many systems provide multiple services, and the
number of metrics can be large. Also, different evaluation techniques pro-
vide different metrics at different times of the service. For example, some
simulators allow white-box-like view of the system states during the simula-
tion, whereas, with analytical methods, the details of the system are often
unavailable. [47]

4.1.3 System Components and Environment

In performance analysis, a system can be defined to be a set of objects that
work together, in regular interaction or interdependence, to accomplish some
goal or purpose. Every system is a subsystem of broader system environment,
whose changes can affect the system. For every performance analysis study,
a boundary between the system and its environment must be set. [9]

For example, computer systems are often enormously complex. Design-
ing them as a hierarchy of smaller subsystems, and combining them with
compatible interfaces help manage their complexity. In a study of a net-
work processing system, the higher-level system can be viewed to consist of
several processors, auxiliary memory, memory controllers, and other smaller
subsystems. These subsystems can further be viewed as a set of smaller
subsystems of subsystems: the processor has several processing cores, each
core consists of different functional units, and each functional unit consists
of logical circuitry. [9]

The objects of interest in a system are called entities, which are associ-
ated with a set of attributes. An activity is a specified length time period.
A system state completely describes the system at any given time of a spe-
cific study. The state might be changed by immediate occurrences called
events. The events affecting the system are divided into two groups by their

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 50

source: endogenous events occur within the system under study, and exoge-
nous events occur in the system environment. [9]

Continuing with the above example, each of the mentioned components
can be seen as the entities of the system. There are several activities and
events at different levels of the system. At the higher level, these can be seen
as the packets flowing through the system: writes and reads to the memory,
execution on different processors, and queuing for the processor time. At a
lower level, these could be the computation done by the logical units or the
flipping of the transistors’ state.

Systems can be categorized into discrete and continuous systems, as per
the type of their state change. In a discrete system, the state changes only
at a discrete time points, and in a continuous system, the state change is
continuous over time. In practice, almost every system is a combination of
both continuous and discrete changes. These systems are often classified by
their dominant type. [9]

4.2 System Modeling

Model is a representation of either hypothetical or real-life system under
study. By the definition a model should be a simplified representation of the
original system. It should represent the studied system with enough detail
to provide relevant conclusions and, at the same time, only consider those
details that affect the investigated problem. The decision between the level
of accuracy and abstraction usually requires knowledge of the system under
modeling. [9]

Like with the system representation, the basic building blocks of the
model can be defined as entities, attributes, activities and events. The model
does not necessarily contain the exact replica of the components of the sys-
tem, but rather simplified components that represent the system with enough
detail. [9]

In the example study of network processing unit, the likely goals would be
to determine the packet throughput and latency of the system. In that case,
the system could be modeled with sufficient accuracy by omitting all the lower
level details of the CPU. On the other hand, a detailed performance study of
a specific CPU might require even the minute details of the functional units
or logical circuitry. [42, 57]

The models may be categorized as being static or dynamic, and deter-
ministic or stochastic. Static models represent steady-state time-invariant
systems, whereas the dynamic models represent systems as time-variant. De-
terministic models contain no random variables, meaning that for the known

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 51

set of inputs the result, of solving the model, will result in a unique set of
outputs. Stochastic models on the other hand include random variables, thus
leading to a random set of outputs. [9]

Models can further be divided into discrete and continuous, analogously
with the discrete and continuous systems described in Section 4.1.3. How-
ever, it is possible to model continuous systems with discrete models, and
vice versa. Just as the real-life systems, the models can be a mix of both
continuous and discrete models. [9]

4.2.1 Queuing Networks

Network structures are often used for describing the models. For exam-
ple petri nets [68], markov chains [11], queuing networks [11], and resource
networks [59] are widely researched model definitions with a well-developed
theory for analyzing the system behavior.

Queue based modeling schemes are inherent in packet processing systems
performance analysis. As presented earlier, the software running on top of
complex MPSoC hardware are in essence queue abstractions, used to hide
the complex hardware interactions of the system. Queuing networks is a
specific modeling concept, in which the system under study is represented
with a restricted set of building blocks: tasks, queues, resources, and routes.
Queuing theory models the behavior of the tasks arriving the system at
random inter-arrival periods. [11]

The resource queues can have various scheduling policies, defining the
order in which tasks are delivered to the resources. The policies are referred
to as queue disciplines. The queue disciplines are the main components to
models different behaviors of a queuing system. A model consists of simple
queuing disciplines, such as first in first out (FIFO), last in first out (LIFO),
priority, or shortest task first, can often be solved analytically to find the
equilibrium or transient state of the system. [11]

However, models of systems such as packet processors often require more
complex policies, to correctly mitigate the system under study. Thus, solving
the queuing networks often require approximate methods, such as simulation,
to be solved. Queuing networks can be used to describe various systems,
and many different problems have well studied, efficient queuing networks
solutions for them. [11]

4.2.2 Resource Networks

Unfortunately, the lack of simulation time task routing logic and detailed
monitoring, and confined resource descriptions, make queuing networks un-

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 52

suitable for more complex computing system studies. To overcome these
challenges, for the studies and experiments of this thesis, we have chosen
a modeling tool, which incorporates the resource networks modeling con-
cept. [11]

Resource networks extend the queuing networks concept by decoupling
the network into resource usage network and resource provision network,
and introducing a passive resource type. The resource usage network is a
directed graph, describing the possible paths and resource usage requests for
the tasks. Resource provision networks are similar to the traditional queuing
networks, describing the available resources and their interconnections in the
system. Resource networks also enable new task control mechanisms such as
fork-join and branching. [59]

Thus, resource networks support modeling resource requests, dynamic
scheduling and different load balancing schemes. These techniques enable
modeling of more complex interactions of parallel systems with dynamic
workload and resource usage. Due to the dynamicity introduced by the
flexibility, resource networks are also often solved by simulation. [59]

4.3 Simulation

This section describes the basic principles related to simulation. Despite
most of the examples in this chapter being about computing, simulation is
widely studied and used method also in several other contexts. The con-
cepts described below, e.g. entities, attributes, or activities, have different
realizations from system to system.

Simulation is an artificial imitation of the operation of a real-life system
over time. The system behavior is studied by developing a simulation model,
based on a set of assumptions concerning the characteristics and functions
of the system. The assumptions are presented in mathematical, logical, and
symbolic relationships between the objects of interest of the system. An
artificial operation history is generated by executing the simulation model,
generally on a simulator program, with respect to system input and time.
Data are collected from the simulation similarly as if the real system was
being measured.

Three different simulation advancement designs are presented in [67]:
event-advance, unit-time advance and activity based. In event-advance de-
sign the system state changes only when the event occurs. Thus the system
state advances from snapshot to snapshot, meaning that the state is un-
changed between two successive events. In unit-time advance design, the
master clock is advanced in fixed time increments. Activity based design is

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 53

a continuous design method, which models the system as a set of conditions
that determine when the activities start or stop. [67]

4.3.1 Monitoring

To make conclusions about simulation, the information about the simulation
system needs to be gathered. Similarly to the measurement-based techniques,
the system is instrumented and the data are saved during the execution. The
constructed simulation model is simulated, and the execution is monitored
to gather metrics of interest. [47, 67]

There are two generally used approaches for gathering simulation metrics:
trace-based and on the fly. The tracing approaches produce raw data from
the execution, which are then often post-processed in suitable way. In on-
the-fly approaches, the simulator program aggregates the data during the
simulation, thus reducing the amount of output. [47, 67]

4.4 Modeling and Simulation Software

In [8], Austin et al. present three drivers for measuring simulator software
model: performance, flexibility, and detail. Performance refers to the amount
of simulation the model per resources. Flexibility describes how customizable
the simulator software is, in terms of modeling. Lastly, detail refers to the
level of abstraction used in the simulator. In theory, simulator software
could exist, that fulfills all these characteristics at the same time. However,
in practice, at least one of them is missing. [8]

Partly because of this, no single general-purpose simulator exists. On
the contrary, there is a multitude of different simulators design with different
goals in mind. On a high-level, the simulator software can be categorized as
cycle accurate, functional, and high-level simulators.

The lowest level cycle accurate simulators are mainly used in low-level
hardware designs, and micro-architecture optimizations. At this level, the
hardware execution can be modeled precisely, at the cost of simulation speed.
As the simulation is carried out on software, it is typically orders of magni-
tudes slower than the execution on real hardware. They are also difficult to
maintain, and thus, in many applications this level simulators are too fine
detailed. The hardware models at these levels are typically described with
special purpose hardware design languages such as VHDL or Verilog. [65, 90]

One abstraction level higher, functional simulators are used to simulate
the system architecture together with execution of program binaries. They
are typically used to measure how applications behave on certain hardware.

CHAPTER 4. SYSTEM PERFORMANCE ANALYSIS 54

For example, GPGPU-Sim and Barra, used to simulate NVIDIA graphics
processing units, are functional simulations. They both can execute CUDA
code, and thus can be used to evaluate the performance of different GPU
software implementations. Most of the simulation related to existing MPSoC
devices are done on the functional level. [56]

While cycle accurate and functional simulators are important part of de-
sign and optimization of hardware and software, in many situations, higher-
level simulation is needed. On higher level, the applications and hardware
are of presented with coarse abstractions of the underlying system details, to
enable early design space exploration of non-existing systems.

This thesis provides an example of a discrete event simulator, PSE, used
for modeling packet processing applications in fog computing context. How-
ever, the breadth of different systems in fog and cloud computing field is
enormous, and PSE is only one example amongst many others. Again, these
simulators are build on different abstraction levels, ranging from more de-
tailed (functional) simulators for specific computing units in datacenters, to
higher level simulators capable of simulating interrelations of multiple full
scale datacenters.

There are several simulators targeted for simulation of cloud comput-
ing datacenters on different level. CloudSim [15] is an extensible toolset for
modeling and simulation of cloud computing infrastructure and application
services, originally released and developed by the University of Melbourne.
CloudSim can be used for simulating large-scale datacenters, virtualized
server hosts with customizable provisioning policies, energy-aware compu-
tational resources, data center network topologies and message-passing ap-
plications. Companies such as Hewlett Packard use CloudSim for simulating
resource provisioning, energy efficiency, optimization, and further research.

Various different projects extend the CloudSim API for advanced cloud
computing simulations. For example, CloudSimEx [18] enables MapRe-
duce [21] simulation capabilities and parallel simulations, Cloud2Sim [49]
enables simulation execution on multiple distributed servers, and CloudAn-
alyst [91] enables simulation of large-scale cloud applications in terms of
geographic distribution of both servers and workloads.

Some simulator software, such as Greencloud [51], are designed for the
measuring the energy and power consumption of different datacenter setups.
GreenCloud provides tools for simulating CPI, memory, storage, and net-
working resources, with Independent energy models for each resource. It
also supports virtualization and virtual machine migration, and full TCP/IP
implementation.

The next chapter present a more detailed view of the modeling and simu-
lation framework, Performance Simulation Environment, used in this thesis.

Chapter 5

Performance Simulation Environ-
ment

This chapter describes a more detailed view of modeling and simulation
framework, Performance Simulation Environment (PSE), and its usage for
performance analysis of a packet processing system. We begin with an
overview of PSE concepts and tools, and continue by describing the three
components of a PSE model. After that, we go through the simulation and
monitoring of PSE applications.

5.1 Toolset Overview

PSE is a toolset and simulation environment for dynamic performance analy-
sis of, initially designed but not limited to, parallel computing systems. The
tools consist of graphical model editors, compiler tools, and discrete event
simulator runtime. Figure 5.1 depicts the organization of the PSE tools.

The graphical model editors – workload editor, wle; task graph editor,
tge; sequence chart editor, sce; and resource network editor, rne – are used
to build and edit the PSE model representation of a system. Each model
editor has a corresponding compiler (wlc, tgc, scc, and rnc, respectively),
which is used to compile the textual model representations into C-code.

Figure 5.2 presents the workflow from the modeling into an executable
simulation model. First, the graphical editors are used to describe the model
components. These components are then compiled into C-code using PSE
compilers. Finally, the compiled C-files and the built-in simulator runtime
libraries are compiled into an executable simulator program, using generic
C compiler such as GCC [78]. The resulting program can be run on top of
Linux operating system on commodity hardware.

55

CHAPTER 5. PERFORMANCE SIMULATION ENVIRONMENT 56

wle
wlc

tge, sce
tgc, scc

rne
rnc

→ Input parameters

→ Resource usage model

→ Resource provision model

Model editors
and compilers

Simulation model
components

Executable simulation model

libraries RNS Discrete Event Simulator

Figure 5.1: PSE toolset includes the model editors, compiler tools and the
simulator runtime libraries.

rne
→provision (.rn)

tge
→usage (.tg)

wle
→workload (.wl)

rnc
→provision (.h, .c)

tgc
→usage (.h, .c)

wlc
→workload (.h, .c)

libraries
gcc
→runtime (.o)

gcc
→executable

Figure 5.2: PSE compilation workflow.

CHAPTER 5. PERFORMANCE SIMULATION ENVIRONMENT 57

avg_q

IN

avg_q OUT

avg_util

avg_util

core NW

avg_util
avg_q

server
route route route route

eNb [10]

route
avg_q avg_q

vehicle CPU [10000]
route

avg_q

eNb CPU [10]vehicle LTE [10000]

Figure 5.3: An example of resource provision model from a vehicle communi-
cation experiment. The model contains six active resource nodes presenting
the resources needed for the communication between the vehicles and the
cloud datacenter. The probes are used to gather data from the simulation.
Figure from [38]

5.2 PSE Model

PSE models the system under study as a resource network. The complete
model consists of three main components: resource provision model, resource
usage model and workload model. Each of the components is presented
as directed graphs, where the nodes represent model entities and the arcs
represent the possible flow directions of the tasks.

The resource provision model represents the available system resources,
for example computer hardware. The graph nodes represent resource entities,
and arcs represent the possible usage order of the resources. The resources
are consumed by the tasks, generated by the workload model and guided by
the resource usage model.

Figure 5.3 presents an example of a resource provision model. The model
is from PSE’s example experiment [38] setup, where vehicles communicate
with a cloud datacenter through LTE base stations and core network. There
are six resource nodes, representing the vehicle CPU and LTE resources,
the LTE basestation’s evolved node B [75] (eNb) CPU and communication
resources, and the core network and server resources.

A resource can be either active or passive. Active resources provide ser-
vice and introduce service delay to the tasks using them. An example of
active resource could be a processor core, which can serve certain amount of
processing cycles per unit time. Passive resources do not induce direct delay
to the jobs, but their possession is required to access certain other resources.
Memory partitions could be an example of passive resource. The example in

CHAPTER 5. PERFORMANCE SIMULATION ENVIRONMENT 58

retransmission?

IN

use vehicle LTE

eNb alert?

OUT

vehicle_tx use eNB

use eNb link

global alert?

use eNb CPU

use core NW

use eNB's

use eNB'suse server

use eNb link

use vehicle CPU

use vehicle LTEuse core NW

input

eNb_rx

eNb_tx

use vehicle CPU

outputvehicle_rx

server_rx

server_tx

use vehicle LTE

eNb2_rx

Figure 5.4: An example of resource usage model from a vehicle communi-
cation experiment. The rectangles present resource usage nodes. Figure
from [38]

the Figure 5.3 contains only active resources.
The resource usage models can be presented as message sequence charts

or tasks graphs. We omit the discussion of the sequence chart in this thesis.
Task graph is a presentation of the resource usage of the tasks arriving to the
system. The nodes in the task graph can be divided into three categories:
execution nodes describe the resource usage events and activities, branching
nodes conditionally guide the tasks through the graph, and fork/join nodes
present task subdivision. The arcs present the flow of control in the system.

Figure 5.4 presents the resource usage model of the vehicle example pre-
sented above. The rectangle nodes consume the resources from the resource
provision model presented in the Figure 5.3. The branching nodes are pre-
sented as the parallelograms. Note that only one of the paths is taken after
each parallelogram.

The workload model generates tasks, which traverse through the system
according to the rules defined in the resource usage model, consuming the
resources defined in the resource provision model. The nodes in the workload
graph describe the task generating processes, and the arcs define the rela-
tionships between them. The graph representing the workload model must
be acyclic.

The event spawn rate can be constant or random (specified for exam-
ple with probability distribution). When an event is spawned, it progresses
through the resource provision model triggering the resource usages, thus
getting delayed.

CHAPTER 5. PERFORMANCE SIMULATION ENVIRONMENT 59

Figure 5.5: The graphical user interface of the resource network editor. The
actual resource network model is presented in the middle, and the toolbar
on the left.

5.3 Monitoring

PSE has flexible, built-in, monitoring support, which offers both trace-based
and on-the-fly monitoring. The monitoring is controlled by attaching probes
to the nodes and vertices of the simulation model nodes. It can be done on all
the three model levels and practically every simulation system state change
can be captured. There are essentially two different types of probes in PSE:
the trace probes for trace-based measurements, and the metric probes for
on-the-fly measurements.

In the resource provision model, the probes can be attached to two dif-
ferent parts of the resource, to measure either the resource utilization, or its
queue size. The trace probes capture every change in the resource utilization
or queue size, whereas the metric trace produce aggregate only the descrip-
tive statistics. The descriptive statistics currently include mean, standard
deviation, minimum, maximum, sum, and total number of tasks that passed
through.

In the resource usage model, the probes can be attached to the model
edges, producing a time stamped trace whenever a task travels the edge.
The timing can be either absolute time with respect to the global system
time, or relative to the process start time. The metric probes can be used
to capture the average times of all tasks relative to the start of the process.

CHAPTER 5. PERFORMANCE SIMULATION ENVIRONMENT 60

scheduler

workload tasks

sig
nal signal

create

task

yield
yield

resource usage

Figure 5.6: The thread cycle of performance simulation environment’s re-
source network simulator engine.

Probes in the workload model are used to control the grouping of the resource
usage and resource provision probes.

The probe output is written in a text file defined in the probe node at-
tributes. The trace probes write the output in Comma-Separated Values [76]
format, and the metrics traces write a standard descriptive statistics output.
Using the trace based probing can substantially slow down the simulation, as
the output files easily grow very large, slowing the writing. Thus, whenever
the complete trace log is not needed, it is recommended to use the metric
based probing. Figure 7.1 in Section 7.1 presents examples of probes attached
to core-, memory- and scheduler units in the hardware model as well as the
in- and out- probes in the software model.

5.4 Resource Network Simulator

Performance Simulation Environment provides a discrete event simulator en-
gine, named resource network simulator (RNS). The final simulator program
is created by compiling the RNS runtime libraries together with the generated
simulation model code. The simulator engine manages the simulation execu-
tion, i.e. tracks the global simulation time, schedules tasks and manages the
system monitoring.

The simulator inputs are generated by the workload model, which spawns
a new system thread for each generated input. The input can be either a
control input or an actual workload task. The former of these are used for
the simulation control, for example changing or resetting the simulation time
or monitoring metrics. The latter are the actual task entities presented in
Section 7.1.

CHAPTER 5. PERFORMANCE SIMULATION ENVIRONMENT 61

5.4.1 Simulator Engine

Figure 5.6 represents the model of execution in the RNS engine. The RNS
scheduler, running in an infinite loop in its own thread, signals the workload
threads or the task threads, based on the trigger time. RNS advances in the
event-advance manner, meaning that the thread with the smallest trigger
time, based on the scheduler’s internal bookkeeping, gets always executed
first.

The workload threads spawn new tasks to the actual task-pool, according
to the code generated from the workload model. The execution of the task-
pool threads advance the actual simulator, consuming the resources based
on the values defined in the resource usage model. The actual code that is
consumed by the threads is generated by compiling the application models
with references to the workload model, hardware models and the runtime
libraries. Each time a thread’s task encounters an event that is dependent
on the other thread’s execution, it yields the execution back to the scheduler
thread, which then signals the thread, again, with the smallest trigger time.

Chapter 6

Mechanism For Extended Queue
Disciplines

This chapter presents the implemented plug-in code extensions for Perfor-
mance Simulation Environment. The extensions enable modeling of cus-
tomized queue disciplines written in C-code, and is our attempt to address
PSE’s lack of global queue scheduling.

The implementation is based on our observations, presented in the pre-
vious chapters, of the implementations of networks processing systems and
the task-parallel packet processing applications: the systems are essentially
controlled through queue abstractions, while the queues are also inherent in
the PSE’s resource network models. However, what PSE lacks, is the abil-
ity to control the execution time behavior of the resource provision nodes
(hardware) through the interdependent resource usage nodes’ (application)
attributes.

The implemented mechanism enables investigation of task-based paral-
lel programming applications, linking the described software and hardware
functionality with each other. This again enables the performance analysis
of task-parallel applications running on hardware scheduled MPSoC devices.

We begin this chapter by explaining the PSE’s service routines, which
guide the resource usage between the resource usage and resource provi-
sion models. Then we present the runtime structures, RNS Resource and
RNS Client, which are relevant to understand the implementation of the
custom queuing functions. Then we present the requirements for the select
and reserve functions used to implement the queuing policies. Finally, we
describe example implementations of two simple disciplines: first-come-first-
serve and highest-priority-served-first.

62

CHAPTER 6. MECHANISM FOR EXTENDED QUEUE DISCIPLINES63

6.1 Service Routines

The main interface between the threads executing the resource usage code,
and the resource provision models, are the five RNS service routines: RNS demand device,
RNS use device, RNS reserve resource, RNS delay process, and RNS release resource.
The functions are used to implement both the active and passive resource
usage at the runtime.

Listing 6.1: RNS demand device

1 void RNS demand device(RNS Device ∗d, double service amount,
2 char ∗taskname, char ∗group, uint64 t pc) {
3 ...
4 RNS use device(d, service amount/d−>speed, taskname, group, pc);
5 ...
6 }

RNS demand device routine in Listing 6.1 is a simple wrapper routine,
which converts the demanded service amount (service amount) into corre-
sponding service time, based on the device entity speed (d->speed). It then
calls the RNS use device routine with the resulting service time.

Listing 6.2: RNS use device

1 void RNS use device(RNS Device ∗d, double service time,
2 char ∗taskname, char ∗group, uint64 t pc) {
3 ...
4 position = RNS reserve resource(d−>resource, taskname,
5 group, pc, &DEFAULT QUEUE ATTRS);
6 RNS delay process(d−>resource−>name, service time);
7 RNS release resource(d−>resource, taskname, group, position);
8 ...
9 }

RNS use device in Listing 6.2 reserves the resource, delays the process
(i.e. the task) and immediately releases the resource for other processes.

Listing 6.3: RNS reserve resource

1 uint64 t RNS reserve resource(RNS Resource ∗r, char ∗taskname,
2 char ∗group, uint64 t pc,
3 RNS Queue Attribute ∗attrs) {
4 RNS Client ∗queue = NULL;
5 uint64 t position, processing position;
6 ...
7 r−>reserve(r, pc, &queue, &position, attrs);

CHAPTER 6. MECHANISM FOR EXTENDED QUEUE DISCIPLINES64

8 ...
9 set client(queue, position, RNS current process, usage group, pc, attrs);

10 ...
11 if (queue == r−>waiting queue) {
12 ...
13 RNS yield();
14 ...
15 processing position = RNS current process−>scheduled to;
16 } else if (queue == r−>processing queue) {
17 ...
18 processing position = position;
19 }
20 r−>processing queue[processing position].processing = 1;
21 ...
22 return processing position;
23 }

Listing 6.3 summarizes the RNS reserve resource routine. Whenever the
process executing the resource usage code consumes a resource (passive or
active), the RNS reserve resource -function gets called. In the case of passive
resource, the call happens directly in the generated resource usage code.
If the requested resource is active, the RNS reserve resource call happens
through the RNS use device or RNS demand device functions.

RNS reserve resource calls the reserve function bound to the resource
entity as explained further. The reserve function assigns the task either to
the resource’s processing queue or waiting queue. If the reserve function
assigns the task to the waiting queue, the thread yields the execution back
to the scheduler.

Listing 6.4: RNS delay process

1 void RNS delay process(char ∗name, double seconds) {
2 RNS Event event;
3 ...
4 event.trigger time = RNS simulated time + seconds;
5 event.process = RNS current process;
6 ...
7 RNS Heap insert(event);
8 RNS yield();
9 ...

10 }

RNS delay process function, presented in Listing 6.3, delays the given
process for the time defined by the seconds parameter and generates an event

CHAPTER 6. MECHANISM FOR EXTENDED QUEUE DISCIPLINES65

that will be triggered when the requested service has ended.

Listing 6.5: RNS release resource

1 void RNS release resource(RNS Resource ∗r, char ∗taskname,
2 char ∗group, uint64 t release index) {
3 ...
4 new index = r−>select(r, release index);
5

6 if (r−>waiting count == 0 || new index == RNS LARGE) {
7 // None of the waiting clients satisfy the select constrains, e.g. core group
8 unset processing(r, release index);
9 } else {

10 move to processing(r, release index, new index);
11

12 event.trigger time = RNS simulated time;
13 event.process = r−>processing queue[release index].process;
14

15 RNS Heap insert(event);
16 }
17 ...
18 }

RNS release resource function, shown in 6.3, selects the next process to
be executed from the resource queue, based on the resource’s queue disci-
pline function. The selected process is inserted in to the heap of schedulable
processes, and thus gets immediately scheduled.

6.2 Runtime Structures

6.2.1 RNS Resource

Each resource entity in the PSE resource provision model definition cor-
responds to a RNS Resource runtime variable. The runtime resources are
initialized in the beginning of the simulation, based on the code generated
from the resource provision entity. Listing 6.6 presents the RNS Resource
struct.

Listing 6.6: RNS Resource struct.

1 struct RNS Resource {
2 uint64 t id;
3 char ∗name;
4 RNS Probe ∗probes[RNS SMALL];

CHAPTER 6. MECHANISM FOR EXTENDED QUEUE DISCIPLINES66

5 uint64 t probe count;
6 char ∗group name;
7

8 uint64 t (∗select)(struct RNS Resource∗, uint64 t);
9 uint64 t (∗reserve)(struct RNS Resource∗, RNS Client∗∗,

10 uint64 t∗, RNS Queue Attribute∗);
11 uint64 t capacity;
12 RNS Client ∗processing queue;
13 uint64 t processing count;
14 RNS Client waiting queue[RNS LARGE];
15 uint64 t waiting count;
16 };

The id is a unique identifier for the resource, determined by the RNS
runtime. The name, capacity, and group name are defined by the attributes
in the model entity. The probes array contains the references to the probe
structs attached to the resource entity.

The processing queue, and the waiting queue present the data structures
used to store the references to the clients that are being processed by and
waiting for the resource, respectively. The size of the processing queue is
determined, at runtime, by the capacity parameter defined in the resource
provision model. The size of the waiting queue is fixed, defined by the built-
in RNS LARGE constant. processing count and waiting count are initialized
to 0, and present the number of clients in the respective queues.

The two function pointers, select and reserve, are the actual functions
used to implement the queue disciplines for the resource. The values of
these pointers are determined by the discipline, file, select function, and re-
serve function in the resource entity’s attributes.

The possible values for discipline attribute are: CUSTOM, to use custom
disciplines determined in the external plug-in files; or one of FCFS, LCFS,
HPSF, LRSF, to use the built-in disciplines. If the discipline attribute is
set to use the built-in disciplines, the model entity’s file, select function, and
reserve function can be left blank, and the correct pointers for the select and
reserve functions are set automatically.

If the discipline is set to CUSTOM, then the pointers to the discipline
functions are set to the functions named by the values of select function and
reserve function parameters found in the file named by the file parameter.

6.2.2 RNS Client

RNS Client is the runtime representation of the task consuming a resource.
The RNS Client struct is shown in the Listing 6.7. The process field is a

CHAPTER 6. MECHANISM FOR EXTENDED QUEUE DISCIPLINES67

pointer to the RNS process that reserved the resource. usage group is used
for trace probe grouping, and pc is the old priority attribute left here for the
backwards compatibility. In the current version of PSE, the priority should
be specified in the attrs field, together with all the other attributes to be
used in the select and reserve functions. The processing parameter specifies
whether the client is currently being processed or not.

Listing 6.7: RNS Client struct.

1 struct RNS Client {
2 RNS Process ∗process;
3 RNS Probe ∗usage group;
4 uint64 t pc;
5 RNS Queue Attribute ∗attrs;
6 int processing; // 1 processing, 0 not processing
7 };

Each time a process reserves resource, the corresponding RNS Client
entity’s attrs field, at the RNS Resource’s processing or waiting queue, is
set to the values described by the node in the resource usage model. The
RNS Queue Attribute fields are determined in the compile time, based on
the attributes determined in the resource usage model’s nodes.

6.3 Reserve and Select Functions

As explained above, the queue discipline functionality is determined by the
two functions: the reserve function and the selection function. These two
functions must follow certain rules and definitions to guarantee the proper
scheduling and simulation behavior. The definition of the reserve and select
functions are shown in the Listings 6.8 and 6.9, respectively.

Listing 6.8: The definition of the reserve function.

1 uint64 t reserve(RNS Resource ∗r,
2 RNS Client ∗∗queue,
3 uint64 t ∗position,
4 RNS Queue Attribute ∗new client);

The reserve function is called from the RNS reserve resource function
when the task requests the resource for the first time. The parameter r
represents the requested resource entity, and the new client is the client re-
questing for the resource. The reserve function needs to perform the following
tasks:

CHAPTER 6. MECHANISM FOR EXTENDED QUEUE DISCIPLINES68

• Set the queue to point to either the processing queue or the waiting
queue of the resource r

• Assign an integer to the position, presenting an empty position in the
queue

• (Optionally) reorganize the waiting queue

• Return 0 in case of success, else return -1

All the necessary information required to implement the queuing decision
can be accessed through the resource r, the new client, as described above.

The select function, in the Listing 6.9, is called each time the resource
is released by a client currently holding it. The parameters of the select
function determine the resource that is being released (r), and the index at
the processing queue that the previous client was placed at (release index).
Based on the resource parameter r and the release index, the selection func-
tion needs to return an index of the client to be moved to the processing
queue. The waiting queue items with index greater than the returned index
will be automatically shifted to fill the empty element in the queue.

Listing 6.9: The definition of the select function.

1 uint64 t select(RNS Resource ∗r, uint64 t release index);

6.4 Discipline Examples

The following subsections present examples of two queue discipline imple-
mentations: first-come-first-serve (FCFS), and highest-priority-served-first
(HPFS). Both of these functions are simple, and built-in the PSE runtime.
They are used here to exemplify the use of reserve and select functions.

Both of the disciplines use the same reserve function, represented in List-
ing 6.10. The function first checks if the number of clients being processed
by the resource is smaller than its capacity.

If so, the function continues by iterating over the resource’s processing
queue elements until it encounters an empty processing slot. It then assigns
the queue variable to point to the resource r ’s processing queue, and the
position variable to point to the element index i.

If all the processing slots are reserved the function assign the queue vari-
able to point to the resource’s waiting queue, and the position variable to
point to the first empty index.

CHAPTER 6. MECHANISM FOR EXTENDED QUEUE DISCIPLINES69

Listing 6.10: The reserve function used for FCFS and HPSF disciplines.

1 uint64 t reserve(RNS Resource ∗r,
2 RNS Client ∗∗queue,
3 uint64 t ∗position,
4 RNS Queue Attribute ∗new attrs) {
5 uint64 t i;
6

7 if (r−>processing count < r−>capacity) {
8 for (i=0; i<r−>capacity; i++) {
9 if (!(r−>processing queue[i].processing)) break;

10 }
11 ∗queue = r−>processing queue;
12 ∗position = i;
13 } else {
14 ∗queue = r−>waiting queue;
15 ∗position = r−>waiting count;
16 }
17 return 0;
18 }

Listing 6.11 represents the select functions used for the FCFS and HPSF
disciplines. The select function for the FCFS is simple, and does not use any
resource or queue parameters for its decision. It always returns 0, represent-
ing the index for the first element in the waiting queue.

The HPSF select function uses the client priorities, defined in the resource
usage model nodes, to make the scheduling decision. It iterates through all
the clients in the resource’s waiting queue, and keeps track of the client with
highest priority. After the iteration is over, it returns the index of the client
with highest priority.

Again, in both cases, the RNS release resource automatically shifts the
clients, with index larger than the selected, to fill the empty slot.

Listing 6.11: The select functions for FCFS and HPSF disciplines.

1 uint64 t FCFS select(RNS Resource∗ r, uint64 t release idx) {
2 return 0;
3 }
4

5 uint64 t HPSF select(RNS Resource∗ r, uint64 t release idx) {
6 RNS Client client;
7 uint64 t best = INT MIN;
8 uint64 t current;
9 uint64 t index, i;

10

CHAPTER 6. MECHANISM FOR EXTENDED QUEUE DISCIPLINES70

11 for (i = 0; i < r−>waiting count; i++) {
12 client = r−>waiting queue[i];
13 current = client.attrs−>queue priority;
14 if (current > best) {
15 best = current;
16 index = i;
17 }
18 }
19 return index;
20 }

Chapter 7

Modeling a Packet Processing Sys-
tem

In this chapter, we present an example model of a pipelined network pro-
cessing system running OpenEM based task-parallel applications. First, we
will introduce the high-level model components and entities. The reference
values, gathered from the measurements presented in Section 3.6, are then
plugged in to the model and the relevant details are discussed. Finally, we
describe the implementation of the scheduler unit using the PSE plug-in
interface.

7.1 Hardware Model

We created a high-level simulation model of a network processing system
with Performance Simulation Environment. As our interests are mainly in
the applications’ and scheduler unit’s effect on the packet throughput and
latency, we will not model the specific details of all the hardware compo-
nents. Some of the components, such as the input and output phases, and
the memory models, are modeled statistically. Figure 7.1 shows a layered
representation of the main components of the final model: workload, hard-
ware, and software. The workload model and software model’s application
steps vary between different applications, and are not fixed part of the hard-
ware model per se, but rather presented here to give a full example of the
model.

The workload model, at the top of the picture, consists of two packet
streams. The TRAFFIC GENERATOR node activates the two stream nodes,
which again generate packets that enter the software layer. The workload
nodes contain parameters, such as the application id’s, that are used to con-

71

CHAPTER 7. MODELING A PACKET PROCESSING SYSTEM 72

WORKLOAD

SOFTWARE

HARDWAREschedulerscheduler

Figure 7.1: Graphical presentation of the PSE model of a network process-
ing system. The workload model (top) generates network packets, which
then flow through the software model (middle), consuming the hardware re-
sources (bottom). The orange arrows represent an example of a packet’s path
through the software model, and the blue arrows the resource usage at each
software model node.

CHAPTER 7. MODELING A PACKET PROCESSING SYSTEM 73

trol the packet flows in the software model.
The software model is divided into several submodels. The top software

level model consists of packet input, packet processing and packet output
submodels. The submodel view of the packet input and packet output are
omitted from the picture for the sake of simplicity, as in both of these phases,
the core and memory usage is linearly dependent on the packet size with
additional Gaussian noise. In the input phase, the packet consumes specific
amount of core cycles for the header processing, and copies the packet header
and the packet data to the memory. Packet output node copies the packet
from the memory, and consumes certain amount of clock cycles for the packet
checksum calculations.

The packet processing submodel is presented in the middle software layer.
The select app node forwards each of the packets to one of the two packet
processing application, based on the application id attribute defined in the
workload model. The queue nodes represent the core scheduling done by the
scheduler hardware unit. The packets arriving in the upper application have
priority of 1, and they can be processed in parallel. In the application below,
there are 2 atomic queues with priority 3. When the packet receives the
passive resource from scheduler, it can enter the actual processing applica-
tion, called execution object (eo). The execution objects are submodels that
consume core cycles and memory similarly to the packet input and packet
output submodels presented above. The scheduler/core passive resource is
released inside each execution object.

The hardware model is a simple one level model containing no submodels.
In the bottom left hand corner, there are IN and OUT devices providing
processor cycles for the packet input and packet output phases. The only
passive resource node, scheduler, provides core access resources, which can be
released with the core release node. The application cores are shown in the
top left corner of the hardware layer. There are 32 cores, and a specific L1
cache access for each of them. The L2 and RAM memory resources provide
the delay for reading and writing to memory.

The probes, attached to the scheduler unit, the cores, and the memory
nodes, are used to gather statistics from the execution. Each of the units has
two probes, one to measure the resource usage, and the other to measures the
queue for the corresponding resource. In this hardware model, the routing
nodes (squares) and the edges connecting the resources do not have any
functional meaning.

CHAPTER 7. MODELING A PACKET PROCESSING SYSTEM 74

7.2 Modeling the Task Scheduler

The scheduler unit has an important effect on the tasks’ throughput times,
as it controls the order in which the tasks get service from the application
cores. This section first describes the application nodes used to model the
scheduler unit, and then the actual plug-in functions used to implement the
scheduling functionality on the hardware model level.

When modeling the applications on PSE, it is helpful to consider the flow
from the task’s perspective. When a task has passed the input processing,
it is put into the scheduler queue to wait to be scheduled on the application
cores. Each time a core finishes its previous task, it requests for a new work
from the scheduler-unit, which then schedules a task based on the flow quality
of service priority and work group.

7.2.1 Application Models

Each packet processing application consists of two parts: the scheduler queue
node, and the actual processing. The software layer in Figure 7.1 presents
an example of two main applications. The second application is divided into
two sub-applications. The parameters for the first application’s queue and
execution object are shown in the Listings 7.1 and 7.2, respectively.

Listing 7.1: The attributes of the scheduler queue.

1 queue 2 [atomic]
2 name:core require
3 type:reserve
4

5 queue type:atomic
6 queue id:eo2queue
7 queue priority:3

The first line in Listing 7.1 specifies the display title for the node, as shown
in the Figure 7.1. The name and type attributes specify that the resource
usage is passive, and the required resource provision entity is core require,
i.e. the scheduler. The parameters on lines 5-7 define the parameters that are
used in the custom scheduling code on the hardware level. The queue type
value atomic specifies that two nodes entering the scheduler from the same
resource usage node, cannot be processed simultaneously. The queue id is
used to keep track of the tasks being processed, and queue priority is used
to globally prioritize tasks between the queues.

Listing 7.2: The attributes of execution object.

CHAPTER 7. MODELING A PACKET PROCESSING SYSTEM 75

1 eo2
2 name:APP2EO2
3 type:submodel
4 file:app2/eo2.tg

The execution object node parameters are shown in the Listing 7.2. It
is a simple submodel node. It specifies the display title, and the name of
the submodel to be used. The file attribute specifies the file that defines the
submodel. Note that, each execution object submodel needs to release the
scheduler/core resource, as shown in the Figure 7.1.

7.2.2 Global Hardware Scheduler

To model the processing cores’ run-to-completion behavior, the scheduler unit
is modeled as a passive resource. Each time a task is entering a processing
application, it first acquires the passive scheduler resource. The amount of
available passive scheduler resources is equal to the processing cores in the
system, and a task cannot use processing core without holding the scheduler
resource.

The scheduler unit model requires the use of custom scheduling functions.
These are modeled using PSE’s custom plug-in interface, presented in Chap-
ter 6. The functionality is implemented in two custom functions, written
in C-code: the selection function, and the reserve function. The resource
node parameters are changed to use these functions. The parameters of the
scheduler node used in the example model are presented in the Listing 7.3.

Listing 7.3: The attributes of the scheduler node to determine the custom
scheduler.

1 scheduler
2 name:core require
3 capacity:32
4

5 discipline:CUSTOM
6 file:custom/scheduler.h
7 select function:CUSTOM select
8 reserve function:CUSTOM reserve

The first three lines specify the node title, name, and capacity. The ca-
pacity is set to the amount of available processing cores, meaning that no
more than 32 tasks can be processed simultaneously. The discipline param-
eter CUSTOM, on line 5, specifies that a custom scheduler is used instead of
the built-in scheduling functions. The file parameter specifies the path of the

CHAPTER 7. MODELING A PACKET PROCESSING SYSTEM 76

C header file that declares the scheduling functions. The select function and
the reserve function parameters specify the two functions that are required
to implement the scheduling logic.

The reserve function is called each time a task enters a resource usage
node in the resource usage model, and it determines whether the task can
immediately be served, or if it has to wait for the service. If the task can be
processed immediately, it is inserted to the processing queue of the resource,
and to the waiting queue otherwise. If the task gets put to the waiting queue,
the reserve function also needs to reorder the queue.

Listing 7.4 describes the reserve function used to model the scheduler.
The function takes four input arguments: r contains the data of the re-
source being reserved; queue is a pointer whose value is assigned either to
the processing queue or the waiting queue; position is a pointer, whose value
is assigned to the position in the queue; new client holds the parameters,
defined in the workload and resource usage models, of the new task.

Listing 7.4: The CUSTOM reserve function for scheduler.

1 uint64 t CUSTOM reserve(RNS Resource ∗r, RNS Client ∗∗queue,
2 uint64 t ∗position, RNS Queue Attribute ∗new client) {
3 uint64 t i, j;
4 char ∗queue id = new client−>queue id;
5 int atomic, flow already processing;
6 RNS Client client;
7

8 atomic = (!strcmp(new client−>queue type, ”atomic”));
9

10 // first try to place the client in the processing queue
11 if (r−>processing count < r−>capacity) {
12

13 /∗
14 ∗ Find the correct place to position the client
15 ∗ 1) check if the resource in position i is in use
16 ∗ 2) check that two clients from the same atomic queue wont get processed
17 ∗ 3) check if the client’s coremask allows processing on this core
18 ∗/
19 j = r−>capacity + 1;
20 flow already processing = 0;
21 for (i=0; i<r−>capacity; i++) {
22 client = r−>processing queue[i];
23

24 if (client.processing) {
25 if (atomic &&

CHAPTER 7. MODELING A PACKET PROCESSING SYSTEM 77

26 !strncmp(client.attrs−>queue id, queue id, strlen(queue id))) {
27 flow already processing = 1;
28 break;
29 } else continue;
30 }
31 if (CHECK COREMASK(new client−>queue coremask, i)) j = i;
32 }
33

34 if (j <= r−>capacity && !flow already processing) {
35 ∗queue = r−>processing queue;
36 ∗position = j;
37 return 0;
38 }
39 }
40

41 /∗ no suitable cores (available or accepted by this client’s coremask),
42 place the client to waiting queue ∗/
43 ∗queue = r−>waiting queue;
44

45 /∗ find the first waiting client with higher priority,
46 place the client right before it ∗/
47 for (i=0; i<r−>waiting count; i++) {
48 client = r−>waiting queue[i];
49 if (client.attrs−>queue priority > new client−>queue priority) break;
50 }
51

52 // move the clients
53 for (j=r−>waiting count; j>i; j−−) {
54 r−>waiting queue[j] = r−>waiting queue[j−1];
55 }
56

57 ∗position = i;
58

59 return 0;
60 }

On the lines 11-39, the reserve function attempts to place the task in
the processing queue. The if-statement, on line 11, checks if the resource
capacity is full. If there are available cores, then the processing conditions
are checked, by going through all the cores, as shown in the for-loop on lines
21-32. If the new task’s flow is marked atomic (in the reserve node in resource
usage graph), and another task from the same flow is being processed on one
of the cores (if-condition on lines 25-26), then the for-loop breaks, and the

CHAPTER 7. MODELING A PACKET PROCESSING SYSTEM 78

task gets set to the waiting queue. If a core is not processing, and the flow’s
coremask permits processing on the core (if-condition on line 31), we assign
core’s index to variable j. Finally, if there is available core (j is smaller
or equal than the resource capacity) and none of the tasks from the same
atomic flow are being processed, we set the queue to point to the resource’s
processing queue, and the position to the variable j, and return.

If the processing conditions are not met, i.e. the execution goes past the
if-block, then the task is set into the waiting queue. Line 43 assigns the
queue to point to the waiting queue of the resource. The for-loop on lines
46-48 finds the first task with larger priority, at index i, and the for-loop on
lines 51-53 moves all the higher priority tasks one step further on the queue.
Finally the index i is assigned to position, and the function returns.

Each time a core ends a processing of a task, a new task is selected for
the processing, using the custom select function. Listing 7.5 shows the code
used for the select function to model the scheduler.

Listing 7.5: The CUSTOM select function for scheduler.

1 uint64 t CUSTOM select(RNS Resource ∗r, uint64 t release index) {
2 uint64 t i, j;
3 RNS Client waiting;
4 char ∗qid;
5 int already processing, atomic;
6

7 for (i=0; i<r−>waiting count; i++) {
8 waiting = r−>waiting queue[i];
9

10 if (!CHECK COREMASK(waiting.attrs−>queue coremask, release index)) continue;
11

12 atomic = (!strcmp(waiting.attrs−>queue type, ”atomic”));
13

14 if (atomic) {
15 qid = waiting.attrs−>queue id;
16

17 already processing = 0;
18 for (j=0; j<r−>capacity; j++) {
19 client = r−>processing queue[j];
20 if (!client.processing) continue;
21 if (j == release index) continue;
22 if (strncmp(client.attrs−>queue id, qid, strlen(qid))) continue;
23 already processing = 1;
24 break;
25 }

CHAPTER 7. MODELING A PACKET PROCESSING SYSTEM 79

26

27 if (already processing) continue;
28 }
29

30 return i;
31 }
32 return RNS LARGE;
33 }

CUSTOM select takes the resource r, and the index of the released core
release index as an input. The outer for-loop, starting at line 7, goes through
all the tasks in the waiting queue, and finds the first task that satisfies the
processing constraints, similarly as the reserve function. Line 10 checks if
the waiting task’s coremask allows the task to be processed on the core. If
the waiting task’s flow is atomic (line 12), we need to go through all the
processing cores to check that there is no task being processed from the
same flow (lines 18-24). If the task was not atomic, or no tasks from the
same flow were being processed, the function returns the index of the task in
the waiting queue. Otherwise we move to the next waiting task and repeat.
If no task from the waiting queue can be scheduled, the function returns
RNS LARGE. The RNS automatically moves the clients when it removes
the task from the waiting queue.

Chapter 8

Demonstrative Experiment and
Discussion

This chapter presents two demonstrative simulation experiments done on
the NPU model presented in Chapter 7. The goal of the experiments is
to demonstrate how the parallel mechanisms of a task based-programming
model, i.e. queue types, priorities, and coremasking, affect the scheduler,
and hence the packet throughput and latency. At the same time, it validates
our NPU model and the PSE’s implemented plug-in-code functionality.

In the first experiment, we will use the global queue information to control
the resource provision based on global queue priorities and disciplines defined
in the software queues. The second experiment presents the use of queue
coremasks, to control the use of specific hardware resources, through the
software model.

8.1 Experiment Setup

Both experiments are run on the hardware model represented in Figure 8.1.
The model consists of six active resources. The IN and OUT units are con-
sumed by the input and output phases of the packet flow, respectively. Each
32 processing cores have a L1 cache associated with it, and the L2 cache and
RAM are shared between the cores. The cores are served as first come first
serve basis, as the scheduling logic is taken care of by the scheduler unit.

The scheduler unit uses the custom scheduling functions presented in
Section 7.2.2, enabling the use of atomicity, queue priorities, and coremasks.
The core release is a typical release node referring to the scheduler unit.

The same high level software model is used for the both experiments, as
seen in the Figures 8.2 and 8.7. The Packet Input and Packet Output nodes

80

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION81

L2 access

RAM access

scheduler util

scheduler queue

RX

X

TX

X

X

IN

X

OUT

X

core[32] 1.5GHz

core release

core require (scheduler)

X

X

L1 access

X

Figure 8.1: Resource provision model (hardware) used in the experiments.

consume the IN and OUT units as discussed in Section 3.6, delaying the
packets relative to their size, according to the equation 3.2. The workload
and packet process submodels are unique for both experiments.

We gather two different metrics of the system. First, we are interested
in the core utilization and queue lengths for each processing step. These are
measured by the probes attached to the scheduler unit as shown in hardware
model in Figure 8.1. Secondly, we are interested in the packet latencies.
They are measured by calculating the time difference between the out probe
and the in probe (Figures 8.2 and 8.7) for each packet. All the probes write
absolute traces of the packets.

8.2 Experiment 1: Global Queue Interrela-

tions

The first experiment consists of two different simulations and measurements.
We will first demonstrate a packet processing application, whose throughput
is limited due to the bottleneck occurring from a slow atomic processing. The
application is then modified, extracting part of the atomic execution object

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION82

select app parallel 2 (A)

 parallel 3 (C)

 parallel 2 (E)

atomic 1 (B)

 atomic 1 (D)

eo1 eo2

eo3

eo4

eo5

fork join

OUTIN

Packet Input Packet ProcessPacket Output
drop?

out probein probe

TRAFFIC GENERATOR

Stream [512B]

Figure 8.2: Workload and resource usage (software) models used in the first
experiment. The atomic queue in the upper application (application 1) pro-
duces a bottleneck to the system. The application 2 below removes this
bottleneck by extracting part of the processing into parallel.

into parallel, thus breaking the bottleneck.
The workload model consists of a single packet stream, which is gener-

ated from a two level workload model, presented at the top in Figure 8.2.
The TRAFFIC GENERATOR node triggers its child node with interval
RNS random uniform(5∗ 10−5, 15∗ 10−5) seconds, and lifetime of 0.05 sec-
onds. The child node creates 512B packets with interval 5.1 ∗ 10−8 ∗
RNS random lognormal(−10, 0.9) seconds for 4 ∗ 10−5 seconds.

The two different applications used in the experiment are shown in the
software model after the select app-node. The lower and upper application
are referred as application 1 and application 2, respectively. The application
selection is done in the workload model by the AppId attribute.

Application 1 consists of two processing steps, both consuming CPU and
memory for the range of 5000 clock cycles. The first step consists of parallel,
priority 2 queue (A), and the second one is done atomically with priority 1
queue (B). Application 2 is a modified version of the first packet processing
application, where the second processing step is split into parallel and atomic
steps. The release nodes are omitted from the software model for clarity.

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION83

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
simulation time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

qu
eu

e
le

ng
th

#104

Figure 8.3: Application 1: The number of tasks in the scheduler/core queue,
with respect to simulation time, from the second resource usage queue.

8.2.1 Simulation Measurements

The system was simulated using both applications separately, and the data
from the probes were post-processed. We grouped the number of tasks in
the scheduler/core queue, by the processing step.

Figures 8.3 and 8.4 present the data from the first simulation using the
packet processing application 1. Figure 8.3 describes the number of tasks in
the scheduler/core queue, which are from the atomic resource usage queue,
with respect to simulation time. The corresponding graph for the first queue
is omitted, as none of that tasks from it end up in the waiting queue. Fig-
ure 8.4 presents the latency of each packet through the whole system.

As shown in the Figures, the processing in the second execution object of
application 1 is so heavy that the tasks accumulate into the waiting queue,
and thus the packet latency keeps growing until the workload ceases.

The second application modifies the system by parallelizing part of the
atomic processing. Figures 8.5 and 8.6 present the data from the second ap-
plication simulation. Figure 8.5 shows the number of tasks in the scheduler/-
core queue, which are from the atomic resource usage queue, with respect to
simulation time. Figure 8.6 presents the latency of the packets through the
whole system. Neither of the parallel queues have tasks in the waiting queue

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION84

0 0.5 1 1.5 2 2.5
packet id #104

0

0.5

1

1.5

2

2.5

3

3.5

la
te

nc
y

[7
s]

#104

Figure 8.4: Application 1: Latency of the packets through the system.

of the scheduler/core during the simulation.
As the shown in the Figures 8.5 and 8.6, the latencies of the second

application stay within 22µs, reducing the queue length below 40 over the
whole simulation period.

8.3 Experiment 2: Queue Coremasks

The second experiment demonstrates the packet flow control via queue core-
masks. The experiment consists of two packet flows and dedicated application
processing them, as presented in Figure 8.7. The first packet stream (pre-
sented as orange), presents a higher OSI-level application data, such as video
stream, which is processed on a heavy execution object. The second stream
(presented as blue), on the other hand, consists of packets whose processing
is done on fast processing application with strict latency requirements.

The TRAFFIC GENERATOR node triggers its child nodes with in-
terval RNS random uniform(5 ∗ 10−5, 15 ∗ 10−5) seconds, and lifetime of
0.05 seconds. Stream 1 and Stream 2 create 512B packets with interval
6.1 ∗ 10−7 ∗ RNS lognormal(−10, 0.9) and 10−6 ∗ RNS lognormal(5, 10)
seconds for 4 ∗ 10−5 and 10−5 seconds, respectively. The heavy application

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION85

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
simulation time

0

5

10

15

20

25

30

35

qu
eu

e
le

ng
th

Figure 8.5: Application 2: The number of tasks in the scheduler/core queue,
from the second resource usage queue.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
packet id #104

10

12

14

16

18

20

22

la
te

nc
y

[7
s]

Figure 8.6: Application 2: Latency of the packets through the system.

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION86

select app

parallel 1

parallel 3 heavy eo

light eo

OUTIN
Packet Input Packet Process Packet Output

drop?

in probe out probe

TRAFFIC GENERATOR

Stream 2 [512B]Stream 1 [512B]

Figure 8.7: An overview of the workload and software models used in the
experiment 2. The orange and blue paths present the paths of the pack-
ets through the system. Each of the flows has its own packet processing
application.

consumes the CPU and memory for a total of about 50000 cycles per 512B
packet, while the light application packets are processed for tenth of that, in
4500 cycles.

We will again perform two different simulations and measurements. The
first one is carried out by allowing the heavy application to be processed
on all the 32 processing cores. Despite the light flow being processed on
higher priority queue, the processing of the heavy flow has an effect to the
worst-case latency of the light flow packets. This happens due to the run-to-
completion model of the cores, where light flow packets may have to queue
for a core while the heavy tasks finish. In the second simulation, the heavy
application processing is limited to 30 cores, dedicating two cores for the
light application.

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION87

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
packet id #104

100

150

200

250

300

la
te

nc
y

[7
s]

Figure 8.8: Latencies of the heavy flow packets, without coremask.

8.3.1 Simulation Measurements

The system was simulated with and without the limited coremask on the
heavy application processing cores. The data from the probes were then
post-processed. Figures 8.8 and 8.9 present the data from the simulation
without coremask, for the heavy and light flow, respectively. The latency of
the heavy flow packets is between 80µs and 340µs throughout the simulation.
The throughput of the heavy application is 0.214GBps.

In the second simulation, we use a modified coremask for the heavy ap-
plication, i.e. dedicating one of the cores for the light application processing.
The resulting latencies of the heavy and light flow are presented in Fig-
ures 8.10 and 8.11, respectively. The light flow’s worst-case packet latencies
stay below 12µs. The throughput of the heavy application is 0.212GBps.

8.4 Experiment Analysis

The experiments present a proof of concept of the implemented PSE’s plug-in
code mechanism and the model of the reference NPU. In both experiments,
the model acts as expected.

The first experiment presents the use the global queue information to

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION88

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
packet id #104

10

15

20

25

30

35

40

45

50

55

60

la
te

nc
y

[7
s]

Figure 8.9: Latencies of the light flow packets, without coremask. The worst-
case latencies are almost ten-fold compared to the best-case.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
packet id #104

100

150

200

250

300

350

la
te

nc
y

[7
s]

Figure 8.10: Latencies of the heavy flow packets. One of the cores is dedicated
for the light flow.

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION89

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
packet id #104

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

la
te

nc
y

[7
s]

Figure 8.11: Latencies of the light flow packets. One of the cores is dedicated
for the light flow. The worst-case latencies are less than 50% higher than of
the best-case.

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION90

control the resource provision based on global queue priorities and disciplines.
As seen in the Figures 8.3 and 8.4, the second processing step produces a
bottleneck to the system. This happens due to the atomicity of the second
processing queue, forcing heavy processing of the packets one at a time. By
dividing the atomic processing step into a smaller atomic part and larger
parallel part, the latency of the system should be reduced, as the atomic
part of the processing can be done faster, and the cores can fully be utilized
by the heavier parallel part of the second processing step. The measurements
results of the second application, as shown in the Figures 8.5 and 8.6, validate
this behavior.

The second experiment presents the use of queue coremasks, to control
the use of specific hardware resources, through the software model. As shown
in the Figure 8.9, without limiting the coremask, the light flow packets can
be processed in 8µs at best. However, in the worst-case, when all the cores
are processing heavy flow packets, the light flow packet latency is almost ten-
fold compared to the best-case latency, 61µs. By dedicating a processing core
for the light flow, we sacrifice the throughput of the heavy flow in order to
reduce the worst-case latency of the light flow. As shown in the Figure 8.11,
changing the coremask in the software model removes the bottleneck from
the system. The light flow’s worst-case packet latencies can be reduced to
less than 50% higher than of the best-case, while the heavy flow’s throughput
drops only 2% compared to the non-coremask processing.

The experiments also highlight the PSE’s ability to decouple the hardware
and software model. All the changes in the experiment applications can be
done easily through the four software model files. Once the resource provision
model and the high level resource usage models are built, the application
developers can prototype the system with by modifying only the software
and workload parts of the model corresponding the real software applications
written in task-based programming models, such as Open Event-Machine.
At the same time, the hardware developers can work on the model parts
corresponding to the real hardware.

According to the experiment results, the PSE’s resource network concept,
extended with user-defined queue disciplines, seems to be provide the desired
flexibility, both in the abstraction level and the modularity, for modeling
complex hardware and software co-scheduled many-core systems, such as
the reference network processing unit. More importantly, the plug-in code
mechanism extends to any resource network based simulation task, providing
flexibility, hopefully allowing even more complex systems to be modeled.

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION91

8.5 Discussion

8.5.1 Challenges

Performance analysis of packet processing systems involves various chal-
lenges. Our work began with the instrumentation of an example packet
processing system, but due to the hardware difficulties, we chose to proceed
with modeling and simulation methods. The tool, Performance Simulation
Environment, used for the study was chosen mainly because of our previous
experience with it. The modeling work begins with the proper understanding
the different components, such as the hardware, software, and workload of
the system under study.

Understanding typical MPSoC based packet processing systems is diffi-
cult, due to the architectural heterogeneity, complexity, and non-deterministic
behavior. Our study focused on the packet processing system’s hardware
packet scheduling unit, and the ability to abstract hardware on Open Event-
Machine type parallel programming frameworks. We also executed various
measurement experiments to gather more detailed characteristics of the hard-
ware memory and ingress- and egress unit behavior. Instrumentation faces
the same challenges as any other parallel application development.

Different parallel programming frameworks are used to abstract the hard-
ware from the software application development. To understand the actual
applications’ effect on the packet processing systems, the underlying runtime
frameworks must also be understood. In our work, one of the challenges
was to understand the queue based Open Event-Machine implementation,
and especially the global scheduler functionality and implementation on dif-
ferent platforms. Also, the actual packet processing functions needed to be
understood, in order to create realistic application models.

Hardware system models are difficult to simulate on software; efficient
simulation of inherently parallel hardware models requires non-trivial paral-
lelization of the simulator, which has been widely studied research topic for
decades. Finding appropriate model abstraction level is essential. On one
hand, abstraction level affects the simulation execution time and accuracy of
the results. Too detailed models are intractable and require time consuming
simulations, while too high-level abstractions hide the sought characteristics
of the system, resulting in inadequate results. On the other, it affects the
complexity of model construction and reusability. Higher abstraction levels
are used more and more often, as the systems under study are becoming
more complex.

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION92

8.5.2 Discoveries

In this thesis, we created a model of an MPSoC based packet processing
system, running Open Event-Machine type task-parallel packet processing
applications on dynamic workloads. The goal of Open Event-Machine is to
decouple the hardware and software from each other, and further enable code
and performance portability between different systems.

By the implemented user-definable queue disciplines, Performance Simu-
lation Environment (PSE), enables flexible adjustment of modeling abstrac-
tion levels. We chose to focus on the hardware packet scheduler unit of the
system, and modeled it behavior on a level that enables performance analysis
of Open Event-Machine applications on dynamic workloads. The chosen ab-
straction level hides the details of hardware level memory behavior, but still
provides accurate details of Open Event-Machine’s software level queues.

The abstraction level, naturally, limits the parallelization possibilities of
the underlying simulator engine. When the functionality of the hardware
scheduler is modeled, even on high abstraction level as done in our work, the
modeling of the hardware parallelism on software eliminates the simulation
performance. Also, the use of interrelated global queues increases the data
dependencies between the simulation executions, resulting in difficulties in
the parallel simulation execution. The problem is common when simulat-
ing hardware on software. In our experiments, the simulation performance
suffered mostly due to the custom select and reserve functions. The choice
to model Open Event-Machine’s queue system accurately was intentional,
despite its obvious effect on simulation performance.

As our experiments demonstrate, the resource network paradigm ex-
tended with custom queuing disciplines and support for modeling task par-
allelism, is adequate tool for performance analysis of network processing
systems, running Open Event-Machine based task-parallel applications on
dynamic workloads. PSE separates the workload, software, and hardware
models, highlighting the ability to decouple the different functional parts of
the system, and enabling modularization and further model reuse.

8.5.3 Future Work

There exist several directions for future research around the topic of this
thesis. As we have shown in this work, the resource network methodology,
extended with user-definable queue disciplines and support for modeling par-
allel systems, can be used to model more modern MPSoC based network pro-
cessing units. The user-defined queue disciplines provide desired flexibility
to the PSE’s modeling and simulation abstraction level. However, in order

CHAPTER 8. DEMONSTRATIVE EXPERIMENT AND DISCUSSION93

to meet the modeling and simulation requirements of larger systems, such as
full scale datacenter networks or complex IoT applications, PSE needs to be
further developed.

Simulation of large-scale models faces the same challenges as any large
scale application. Due to the growing memory and computing resources
requirements, the resource usage of PSE needs to be improved.

Despite the more efficient data structures and single threaded execution,
simulator software faces the same problems as any other computer software:
efficient scaling requires parallelization of the software. Parallelization of
discrete-event simulator software is a wide research topic itself, and faces
multiple challenges, not only the ones faced with parallelization in general,
but also the simulators’ nature makes the problem non-trivial. The paral-
lelization of PSE could be done in several ways. With the current imple-
mentation of the PSE, the conservative parallel simulation (the simulation
threads advance conservatively) approach seems to be most viable solution.
However, to enable more advanced parallelization methods, e.g. variations
of optimistic and conservative approaches, parts of the simulator core needs
to be rewritten, as the current version of PSE does not support any history
of the simulation.

Another future research topic around resource networks is the support
for virtualization. Virtualization is an important topic in today’s computing,
and for example large-scale cloud- and fog datacenters are contingent on the
efficient virtualization methods. Performance analysis methods need to adapt
to support the needs to further understand these systems. A natural way
to model virtualization with resource network concept, would be to add a
new virtualization model layer between the resource utilization and resources
provision models.

Chapter 9

Conclusions

This thesis investigated the use of measurement, simulation, and modeling
methods for the performance analysis of MPSoC based packet processing
systems running task-parallel applications. The motivation behind our work
was to enable more accurate modeling of task-parallel software abstractions,
such as Open Event-Machine, on the resource network concept.

We approached the problem by extending the toolset of an existing in-
house modeling and simulation software, Performance Simulation Environ-
ment. The extensions enable modeling of user-definable queue disciplines,
which further enable flexible modeling of complex hardware interactions of
MPSoCs and the parallelism of task-based programming models.

We studied, instrumented, and measured the characteristics of a packet
processing systems. Based on our findings, we modeled a multi-blade packet
processing system with customizable workload and task-parallel application
models, and run simulation experiments.

The experiment results suggest that resource network concept, extended
with global user-definable queue disciplines, is a viable tool for the perfor-
mance analysis of packet processing systems. The chosen abstraction level
provides desired balance between the functionality, ease of use, and simu-
lation performance. However, further research is required in order to scale
such a method to support ultra-large-scale simulations.

94

Bibliography

[1] 6Wind. Fast path architecture, 2016. URL http://www.6wind.com/

products/6windgate/optimized-architecture/. Accessed 6.4.2016.

[2] Akka. Akka framework. URL http://akka.io/. Accessed 6.4.2016.

[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity data center network architecture. In Proceed-
ings of the ACM SIGCOMM 2008 Conference on Data Communica-
tion, SIGCOMM ’08, pages 63–74, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-175-0. doi: 10.1145/1402958.1402967. URL http:

//doi.acm.org/10.1145/1402958.1402967.

[4] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling
for data center networks. In Proceedings of the 7th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI’10,
pages 19–19, Berkeley, CA, USA, 2010. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1855711.1855730.

[5] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis
Matus, Rong Pan, Navindra Yadav, and George Varghese. Conga: Dis-
tributed congestion-aware load balancing for datacenters. In Proceedings
of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages 503–
514, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2836-4. doi:
10.1145/2619239.2626316. URL http://doi.acm.org/10.1145/2619239.

2626316.

[6] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), pages
483–485, New York, NY, USA, 1967. ACM. doi: 10.1145/1465482.
1465560. URL http://doi.acm.org/10.1145/1465482.1465560.

95

http://www.6wind.com/products/6windgate/optimized-architecture/
http://www.6wind.com/products/6windgate/optimized-architecture/
http://akka.io/
http://doi.acm.org/10.1145/1402958.1402967
http://doi.acm.org/10.1145/1402958.1402967
http://dl.acm.org/citation.cfm?id=1855711.1855730
http://doi.acm.org/10.1145/2619239.2626316
http://doi.acm.org/10.1145/2619239.2626316
http://doi.acm.org/10.1145/1465482.1465560

BIBLIOGRAPHY 96

[7] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A
Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams,
et al. The landscape of parallel computing research: A view from
berkeley. Technical report, EECS Department, University of California,
Berkeley, December 2006.

[8] T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure for
computer system modeling. Computer, 35(2):59–67, Feb 2002. ISSN
0018-9162. doi: 10.1109/2.982917.

[9] Jerry Banks. Discrete-event system simulation. Pearson Education,
Upper Saddle River, N.J, cop. 2010. ISBN 978-0-13-815037-2.

[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the
art of virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, October
2003. ISSN 0163-5980. doi: 10.1145/1165389.945462. URL http://doi.

acm.org/10.1145/1165389.945462.

[11] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S Trivedi.
Queueing networks and Markov chains: modeling and performance eval-
uation with computer science applications. John Wiley & Sons, 2006.
ISBN 978-0-471-56525-3.

[12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
First Edition of the MCC Workshop on Mobile Cloud Computing, MCC
’12, pages 13–16, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1519-7. doi: 10.1145/2342509.2342513. URL http://doi.acm.org/10.

1145/2342509.2342513.

[13] Robert Braden. Requirements for internet hosts-communication layers,
1989. URL https://tools.ietf.org/html/rfc1122. Accessed 25.4.2016.

[14] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sugerman,
and Edward Y. Wang. Bringing virtualization to the x86 architecture
with the original vmware workstation. ACM Trans. Comput. Syst., 30
(4):12:1–12:51, November 2012. ISSN 0734-2071. doi: 10.1145/2382553.
2382554. URL http://doi.acm.org/10.1145/2382553.2382554.

[15] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF
De Rose, and Rajkumar Buyya. Cloudsim: a toolkit for modeling and

http://doi.acm.org/10.1145/1165389.945462
http://doi.acm.org/10.1145/1165389.945462
http://doi.acm.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
https://tools.ietf.org/html/rfc1122
http://doi.acm.org/10.1145/2382553.2382554

BIBLIOGRAPHY 97

simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and Experience, 41(1):23–
50, 2011.

[16] H. Jonathan Chao and Bin Liu. High Performance Switches and
Routers. Wiley-IEEE Press, 2007. ISBN 0470053674.

[17] Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent Cavé,
Milind Chabbi, Max Grossman, Vivek Sarkar, and Yonghong Yan. In-
tegrating asynchronous task parallelism with mpi. In 27th IEEE In-
ternational Symposium on Parallel and Distributed Processing, IPDPS
2013, Cambridge, MA, USA, May 20-24, 2013, pages 712–725, 2013.
doi: 10.1109/IPDPS.2013.78. URL http://dx.doi.org/10.1109/IPDPS.

2013.78.

[18] CloudSimEx. Cloudsimex, 2012. URL https://github.com/Cloudslab/

CloudSimEx. Accessed 7.4.2016.

[19] Linux Containers. Linux containers, 2013. URL https://

linuxcontainers.org/. Accessed 7.4.2016.

[20] David E. Culler, Anoop Gupta, and Jaswinder Pal Singh. Parallel
Computer Architecture: A Hardware/Software Approach. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1st edition, 1997. ISBN
1558603433.

[21] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113,
2008.

[22] Stephen E Deering. Internet protocol, version 6 (ipv6) specification,
1998. URL https://tools.ietf.org/html/rfc2460. Accessed 25.4.2016.

[23] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris,
V. Stavroulaki, J. Lu, C. Xiong, and J. Yao. 5g on the horizon: Key chal-
lenges for the radio-access network. IEEE Vehicular Technology Maga-
zine, 8(3):47–53, Sept 2013. ISSN 1556-6072. doi: 10.1109/MVT.2013.
2269187.

[24] Benôıt Des Ligneris. Virtualization of linux based computers: the linux-
vserver project. In High Performance Computing Systems and Applica-
tions, 2005. HPCS 2005. 19th International Symposium on, pages 340–
346. IEEE, 2005.

http://dx.doi.org/10.1109/IPDPS.2013.78
http://dx.doi.org/10.1109/IPDPS.2013.78
https://github.com/Cloudslab/CloudSimEx
https://github.com/Cloudslab/CloudSimEx
https://linuxcontainers.org/
https://linuxcontainers.org/
https://tools.ietf.org/html/rfc2460

BIBLIOGRAPHY 98

[25] Marios D Dikaiakos, Dimitrios Katsaros, Pankaj Mehra, George Pallis,
and Athena Vakali. Cloud computing: Distributed internet computing
for it and scientific research. Internet Computing, IEEE, 13(5):10–13,
2009.

[26] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and
Sylvia Ratnasamy. Routebricks: Exploiting parallelism to scale software
routers. In Proceedings of the ACM SIGOPS 22Nd Symposium on Oper-
ating Systems Principles, SOSP ’09, pages 15–28, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-752-3. doi: 10.1145/1629575.1629578.
URL http://doi.acm.org/10.1145/1629575.1629578.

[27] N. Egi, J. Du M. Dobrescu, B.-G. Chun K. Argyraki, K. Fall, G. Iannac-
cone, A. Knies, M. Manesh, L. Mathy, and S. Ratnasamy. Understand-
ing the packet processing capabilities of multi-core servers. Internet
draft, EPFL, February 2009. URL http://routebricks.org/papers/

rb-sosp09.pdf.

[28] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the end of multicore scal-
ing. In Proceedings of the 38th Annual International Symposium on
Computer Architecture, ISCA ’11, pages 365–376, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0472-6. doi: 10.1145/2000064.2000108.
URL http://doi.acm.org/10.1145/2000064.2000108.

[29] Dave Evans. The internet of things: How the next evolution of the
internet is changing everything. CISCO white paper, 1:1–11, 2011.

[30] Inc. Facebook. Facebook, 2016. URL http://www.facebook.com. Ac-
cessed 24.03.2016.

[31] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power pro-
visioning for a warehouse-sized computer. In Proceedings of the 34th
Annual International Symposium on Computer Architecture, ISCA ’07,
pages 13–23, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-706-
3. doi: 10.1145/1250662.1250665. URL http://doi.acm.org/10.1145/

1250662.1250665.

[32] C Fraleigh, S Moon, C Diot, B Lyles, and F Tobagi. Packet-level traffic
measurement from a tier-1 ip backbone. Sprint ATL, Burlingame, CA
Sprint ATL Technical Report TR01-ATL-110101, 2001.

http://doi.acm.org/10.1145/1629575.1629578
http://routebricks.org/papers/rb-sosp09.pdf
http://routebricks.org/papers/rb-sosp09.pdf
http://doi.acm.org/10.1145/2000064.2000108
http://www.facebook.com
http://doi.acm.org/10.1145/1250662.1250665
http://doi.acm.org/10.1145/1250662.1250665

BIBLIOGRAPHY 99

[33] Richard M. Fujimoto. Parallel discrete event simulation. Commun.
ACM, 33(10):30–53, October 1990. ISSN 0001-0782. doi: 10.1145/
84537.84545. URL http://doi.acm.org/10.1145/84537.84545.

[34] Ran Giladi. Network processors: architecture, programming, and imple-
mentation. Morgan Kaufmann, 2008. ISBN 0080919596, 9780080919591.

[35] Google. Google summa, 2016. URL https://www.google.com/about/

datacenters/inside/locations/hamina/. Accessed 6.4.2016.

[36] S. Govind, R. Govindarajan, and J. Kuri. Packet reordering in network
processors. In 2007 IEEE International Parallel and Distributed Pro-
cessing Symposium, pages 1–10, March 2007. doi: 10.1109/IPDPS.2007.
370287.

[37] Herbert Haas. Mausezahn. URL http://www.perihel.at/sec/mz/. Ac-
cessed 25.7.2015.

[38] J. Hanhirova and V. Hirvisalo. Pse – performance simulation environ-
ment. Technical report, Aalto University, School of Science, 2014.

[39] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter,
and Aditya Akella. Presto: Edge-based load balancing for fast datacen-
ter networks. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM ’15, pages 465–
478, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3542-3. doi:
10.1145/2785956.2787507. URL http://doi.acm.org/10.1145/2785956.

2787507.

[40] Urs Hoelzle and Luiz Andre Barroso. The Datacenter As a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Mor-
gan and Claypool Publishers, 1st edition, 2009. ISBN 159829556X,
9781598295566.

[41] Chris Horne. Understanding full virtualization, paravirtualization and
hardware assist. White paper, VMware Inc, 2007.

[42] C.J. Hughes, V.S. Pai, P. Ranganathan, and S.V. Adve. Rsim: simulat-
ing shared-memory multiprocessors with ilp processors. Computer, 35
(2):40–49, Feb 2002. ISSN 0018-9162. doi: 10.1109/2.982915.

[43] Texas Instruments. Open event machine library user guide.
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/bios_mcsdk/

latest/index_FDS.html, 2012. Distributed with OpenEM library.
Accessed 22.5.2015.

http://doi.acm.org/10.1145/84537.84545
https://www.google.com/about/datacenters/inside/locations/hamina/
https://www.google.com/about/datacenters/inside/locations/hamina/
http://www.perihel.at/sec/mz/
http://doi.acm.org/10.1145/2785956.2787507
http://doi.acm.org/10.1145/2785956.2787507
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/bios_mcsdk/latest/index_FDS.html
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/bios_mcsdk/latest/index_FDS.html

BIBLIOGRAPHY 100

[44] Intel. Data plane development kit documentation. URL http://dpdk.

org/doc/guides/index.html. Accessed 6.4.2016.

[45] ISO/IEC 7498-1:1994. Information Technology — Open Sys-
tems Interconnection — Basic Reference Model: The Basic
Model. ISO/IEC 7498-1:1994, ISO, Geneva, Switzerland, Novem-
ber 1994. URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=20269.

[46] K.R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, Harvey J. Wasserman, and N.J. Wright. Performance analysis
of high performance computing applications on the amazon web services
cloud. In Cloud Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference on, pages 159–168, Nov 2010.
doi: 10.1109/CloudCom.2010.69.

[47] Raj Jain. The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation and modeling. Wiley,
New York, 1991. ISBN 978-0-471-50336-1.

[48] M.H. Jamal, G. Mustafa, A. Waheed, and W. Mahmood. An extensible
infrastructure for benchmarking multi-core processors based systems.
In Performance Evaluation of Computer Telecommunication Systems,
2009. SPECTS 2009. International Symposium on, volume 41, pages
13–20, July 2009.

[49] Pradeeban Kathiravelu and Luis Veiga. Concurrent and distributed
cloudsim simulations. In Modelling, Analysis & Simulation of Com-
puter and Telecommunication Systems (MASCOTS), 2014 IEEE 22nd
International Symposium on, pages 490–493. IEEE, 2014.

[50] H. Kim and N. Feamster. Improving network management with software
defined networking. IEEE Communications Magazine, 51(2):114–119,
February 2013. ISSN 0163-6804. doi: 10.1109/MCOM.2013.6461195.

[51] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. Greencloud:
a packet-level simulator of energy-aware cloud computing data centers.
The Journal of Supercomputing, 62(3):1263–1283, 2010. ISSN 1573-0484.
doi: 10.1007/s11227-010-0504-1.

[52] Jonathan G. Koomey. Estimating total power consumption by servers
in the U.S. and the world. Technical report, Lawrence Derkley National
Laboratory, February 2007.

http://dpdk.org/doc/guides/index.html
http://dpdk.org/doc/guides/index.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=20269
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=20269

BIBLIOGRAPHY 101

[53] V. P. Kumar, T. V. Lakshman, and D. Stiliadis. Beyond best effort:
router architectures for the differentiated services of tomorrow’s internet.
IEEE Communications Magazine, 36(5):152–164, May 1998. ISSN 0163-
6804. doi: 10.1109/35.668286.

[54] Wely Lau. A comprehensive introduction to cloud computing,
2011. URL https://www.simple-talk.com/cloud/development/

a-comprehensive-introduction-to-cloud-computing/. Accessed
7.4.2016.

[55] Björn Liljeqvist. Visions and facts–a survey of network processors. Elec-
tronic Engineering, Chalmers, 2003.

[56] U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso. A survey of
performance modeling and simulation techniques for accelerator-based
computing. IEEE Transactions on Parallel and Distributed Systems,
26(1):272–281, Jan 2015. ISSN 1045-9219. doi: 10.1109/TPDS.2014.
2308216.

[57] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full
system simulation platform. Computer, 35(2):50–58, Feb 2002. ISSN
0018-9162. doi: 10.1109/2.982916.

[58] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of
cloud computing. Technical report, Gaithersburg, MD, United States,
2011.

[59] Daniel A. Menascé, Virǵılio A. F. Almeida, and Larry W. Dowdy. Capac-
ity Planning and Performance Modeling: From Mainframes to Client-
server Systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.
ISBN 0-13-035494-5.

[60] Dirk Merkel. Docker: Lightweight linux containers for consistent devel-
opment and deployment. Linux J., 2014(239), March 2014. ISSN 1075-
3583. URL http://dl.acm.org/citation.cfm?id=2600239.2600241.

[61] G. E. Moore. Cramming more components onto integrated circuits.
Proceedings of the IEEE, 86(1):82–85, Jan 1998. ISSN 0018-9219. doi:
10.1109/JPROC.1998.658762.

[62] James Murty. Programming Amazon Web Services. O’Reilly, first edi-
tion, 2008. ISBN 9780596515812.

https://www.simple-talk.com/cloud/development/a-comprehensive-introduction-to-cloud-computing/
https://www.simple-talk.com/cloud/development/a-comprehensive-introduction-to-cloud-computing/
http://dl.acm.org/citation.cfm?id=2600239.2600241

BIBLIOGRAPHY 102

[63] OpenVZ. Openvz, 2013. URL http://www.openvz.org. Accessed
7.4.2016.

[64] Ioannis Papaefstathiou, Theofanis Orphanoudakis, George Kornaros,
Christopher Kachris, Ioannis Mavroidis, and Aristides Nikologiannis.
Queue management in network processors. In Proceedings of the con-
ference on Design, Automation and Test in Europe-Volume 3, pages
112–117. IEEE Computer Society, 2005.

[65] David A Patterson and John L Hennessy. Computer organization and
design. Morgan Kaufmann, pages 474–476, 2007.

[66] Michael Pearce, Sherali Zeadally, and Ray Hunt. Virtualization: Issues,
security threats, and solutions. ACM Comput. Surv., 45(2):17:1–17:39,
March 2013. ISSN 0360-0300. doi: 10.1145/2431211.2431216. URL
http://doi.acm.org/10.1145/2431211.2431216.

[67] Harry Perros. Computer simulation techniques: The definitive in-
troduction!, 2009. URL http://www.csc.ncsu.edu/faculty/perros/

/simulation.pdf.

[68] James L Peterson. Petri net theory and the modeling of systems. 1981.

[69] US Rackspace. Inc., the rackspace cloud, 2010.

[70] Tejaswi Redkar, Tony Guidici, and Todd Meister. Windows Azure Plat-
form, volume 1. Springer, 2011. ISBN 1430235632, 978-1430235637.

[71] Juergen Ributzka. Concurrency and synchronization in the modern
many-core era: Challenges and opportunities. PhD thesis, 2013.

[72] Ihsan Sabuncuoglu and Ahmet Hatip. The turkish army uses simulation
to model and optimize its fuel-supply system. Interfaces, 35(6):474–482,
2005. doi: 10.1287/inte.1050.0173.

[73] Salesforce. Salesforce, 2016. URL http://www.salesforce.com. Accessed
24.03.2016.

[74] Dan Sanderson. Programming google app engine: build and run scalable
web apps on google’s infrastructure. ” O’Reilly Media, Inc.”, 2009.

[75] Stefania Sesia, Issam Toufik, and Matthew Baker. LTE - The UMTS
Long Term Evolution: From Theory to Practice. Wiley Online Library,
2nd edition, 2011. ISBN 0470660252, 978-0470660256.

http://www.openvz.org
http://doi.acm.org/10.1145/2431211.2431216
http://www.csc.ncsu.edu/faculty/perros//simulation.pdf
http://www.csc.ncsu.edu/faculty/perros//simulation.pdf
http://www.salesforce.com

BIBLIOGRAPHY 103

[76] Y. Shafranovich. Common format and mime type for comma-separated
values (csv) files, 2005. URL https://tools.ietf.org/html/rfc4180.
Accessed 25.3.2016.

[77] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and
Larry Peterson. Container-based operating system virtualization: A
scalable, high-performance alternative to hypervisors. In Proceedings
of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, EuroSys ’07, pages 275–287, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-636-3. doi: 10.1145/1272996.1273025. URL
http://doi.acm.org/10.1145/1272996.1273025.

[78] Richard M Stallman and GCC DeveloperCommunity. Using The Gnu
Compiler Collection: A Gnu Manual For Gcc Version 4.3. 3. 2009.
ISBN 144141276X, 9781441412768.

[79] Herb Sutter. The free lunch is over: A fundamental turn toward con-
currency in software. Dr. Dobb’s Journal, 30(3), 2005.

[80] Ryan Teeter and Karl Barksdale. Google Apps for Dummies. John Wiley
& Sons, 2011. ISBN 0470189584, 978-0470189580.

[81] William Thies, Michal Karczmarek, and Saman Amarasinghe. Compiler
Construction: 11th International Conference, CC 2002 Held as Part of
the Joint European Conferences on Theory and Practice of Software,
ETAPS 2002 Grenoble, France, April 8–12, 2002 Proceedings, chap-
ter StreamIt: A Language for Streaming Applications, pages 179–196.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. ISBN 978-3-540-
45937-8. doi: 10.1007/3-540-45937-5 14. URL http://dx.doi.org/10.

1007/3-540-45937-5_14.

[82] Vernon Turner, John F Gantz, David Reinsel, and Stephen Minton. The
digital universe of opportunities: Rich data and the increasing value of
the internet of things. IDC Analyze the Future, 2014.

[83] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C.M.
Martins, Andrew V. Anderson, Steven M. Bennett, Alain K?gi, Felix H.
Leung, and Larry Smith. Intel virtualization technology. Computer, 38
(5):48–56, 2005. ISSN 0018-9162. doi: http://doi.ieeecomputersociety.
org/10.1109/MC.2005.163.

[84] A. Vahdat, M. Al-Fares, N. Farrington, R. N. Mysore, G. Porter, and
S. Radhakrishnan. Scale-out networking in the data center. IEEE Micro,
30(4):29–41, July 2010. ISSN 0272-1732. doi: 10.1109/MM.2010.72.

https://tools.ietf.org/html/rfc4180
http://doi.acm.org/10.1145/1272996.1273025
http://dx.doi.org/10.1007/3-540-45937-5_14
http://dx.doi.org/10.1007/3-540-45937-5_14

BIBLIOGRAPHY 104

[85] Luis M. Vaquero and Luis Rodero-Merino. Finding your way in the fog:
Towards a comprehensive definition of fog computing. SIGCOMM Com-
put. Commun. Rev., 44(5):27–32, October 2014. ISSN 0146-4833. doi:
10.1145/2677046.2677052. URL http://doi.acm.org/10.1145/2677046.

2677052.

[86] Robert Virding, Claes Wikström, and Mike Williams. Concurrent Pro-
gramming in ERLANG (2Nd Ed.). Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK, 1996. ISBN 0-13-508301-X.

[87] John Von Neumann. First draft of a report on the edvac. IEEE Annals
of the History of Computing, (4):27–75, 1993.

[88] Carl Wallén, Petri Savolainen, Krister Wikström, and Matias Elo. Open
event machine introduction. URL https://sourceforge.net/projects/

eventmachine/files/Documents/EM_introduction_1_0.pdf/download.
Accessed 6.4.2016.

[89] Brian Walters. Vmware virtual platform. Linux J., 1999(63es), July
1999. ISSN 1075-3583. URL http://dl.acm.org/citation.cfm?id=

327906.327912.

[90] Vincent M Weaver and Sally A McKee. Are cycle accurate simulations
a waste of time. In Proc. 7th Workshop on Duplicating, Deconstructing,
and Debunking, pages 40–53, 2008.

[91] B. Wickremasinghe, R. N. Calheiros, and R. Buyya. Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing environ-
ments and applications. In Advanced Information Networking and Ap-
plications (AINA), 2010 24th IEEE International Conference on, pages
446–452, April 2010. doi: 10.1109/AINA.2010.32.

[92] M. G. Xavier, M. V. Neves, and C. A. F. D. Rose. A performance com-
parison of container-based virtualization systems for mapreduce clus-
ters. In Parallel, Distributed and Network-Based Processing (PDP),
2014 22nd Euromicro International Conference on, pages 299–306, Feb
2014. doi: 10.1109/PDP.2014.78.

[93] L. Yang, R. Dantu, T. Anderson, and R. Gopal. Forwarding and control
element separation (forces) framework. Technical report, United States,
2004.

http://doi.acm.org/10.1145/2677046.2677052
http://doi.acm.org/10.1145/2677046.2677052
https://sourceforge.net/projects/eventmachine/files/Documents/EM_introduction_1_0.pdf/download
https://sourceforge.net/projects/eventmachine/files/Documents/EM_introduction_1_0.pdf/download
http://dl.acm.org/citation.cfm?id=327906.327912
http://dl.acm.org/citation.cfm?id=327906.327912

BIBLIOGRAPHY 105

[94] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud comput-
ing: state-of-the-art and research challenges. Journal of Inter-
net Services and Applications, 1(1):7–18, 2010. ISSN 1869-0238.
doi: 10.1007/s13174-010-0007-6. URL http://dx.doi.org/10.1007/

s13174-010-0007-6.

http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1007/s13174-010-0007-6

	Cover page
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Contributions
	1.3 Structure

	2 Computing Trends
	2.1 Modern Computing
	2.1.1 The End of Free Lunch
	2.1.2 Parallel Computing

	2.2 Big Data
	2.3 Virtualization
	2.3.1 Platform Virtualization
	2.3.2 Operating System Level Virtualization

	2.4 Cloud Computing
	2.4.1 Energy Consumption
	2.4.2 Datacenter Networks

	2.5 Fog Computing

	3 Packet Processing
	3.1 Packet Switched Networks
	3.1.1 Network Components
	3.1.2 Traffic Characteristics

	3.2 General Packet Processing Framework
	3.2.1 Ingress and Egress
	3.2.2 Processing Paths
	3.2.3 Packet Processing Functions

	3.3 Processing Hardware
	3.3.1 Processing Elements
	3.3.2 Parallel and Pipelined Architectures

	3.4 Programming Models
	3.4.1 Intel Data Plane Development Kit
	3.4.2 Open Event-Machine

	3.5 Example Network Processing System
	3.6 Characteristic Behavior
	3.6.1 Communication Latencies
	3.6.2 Memory Characteristics

	4 System Performance Analysis
	4.1 Performance Analysis
	4.1.1 Evaluation Techniques
	4.1.2 Performance Metrics
	4.1.3 System Components and Environment

	4.2 System Modeling
	4.2.1 Queuing Networks
	4.2.2 Resource Networks

	4.3 Simulation
	4.3.1 Monitoring

	4.4 Modeling and Simulation Software

	5 Performance Simulation Environment
	5.1 Toolset Overview
	5.2 PSE Model
	5.3 Monitoring
	5.4 Resource Network Simulator
	5.4.1 Simulator Engine

	6 Mechanism For Extended Queue Disciplines
	6.1 Service Routines
	6.2 Runtime Structures
	6.2.1 RNS Resource
	6.2.2 RNS Client

	6.3 Reserve and Select Functions
	6.4 Discipline Examples

	7 Modeling a Packet Processing System
	7.1 Hardware Model
	7.2 Modeling the Task Scheduler
	7.2.1 Application Models
	7.2.2 Global Hardware Scheduler

	8 Demonstrative Experiment and Discussion
	8.1 Experiment Setup
	8.2 Experiment 1: Global Queue Interrelations
	8.2.1 Simulation Measurements

	8.3 Experiment 2: Queue Coremasks
	8.3.1 Simulation Measurements

	8.4 Experiment Analysis
	8.5 Discussion
	8.5.1 Challenges
	8.5.2 Discoveries
	8.5.3 Future Work

	9 Conclusions

