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Pääaine: Ohjelmistotekniikka Koodi: T-106

Valvoja: Professori Heikki Saikkonen

Ohjaaja: Diplomi-insinööri Jaakko Kotimäki
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Abbreviations and Acronyms

API Application Programming Interface
CARP Common Address Redundancy Protocol
CIDR Classless Inter-Domain Routing
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
IP Internet Protocol
NDP Neighbor Discovery Protocol
NTP Network Time Protocol
RA Router Advertisement (in NDP)
RR Resource Record (in DNS)
SLAAC Stateless Address Autoconfiguration
TCP Transport Control Protocol
UDP User Datagram Protocol
VLAN Virtual LAN
YAML YAML Ain’t Markup Language
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Chapter 1

Introduction

This thesis is an attempt to improve the way in which network infrastructure
configuration is managed at the Aalto University Department of Computer
Science by utilising a data store normally used for configuration management
software. In the first chapter, we present the research problem and the con-
straints which a solution should meet, as well as describe the structure of the
rest of the thesis.

1.1 Problem statement

Managing network infrastructure configuration can quickly get cumbersome
due to the high node churn in today’s environments: virtual machines, con-
tainers or other nodes are provisioned and decommissioned regularly. Even
with a simple layer 3 infrastructure, a newly provisioned node needs at least
network addresses, default router and name server configuration, firewall
rules and DNS records. There are existing solutions to some of these prob-
lems (eg. addressing, routing and name service through DHCP), but others
require explicit configuration about the new node in the corresponding infras-
tructure service: name-to-address mappings in DNS records, address-to-rule
mappings in firewall configuration, link layer-to-network layer address map-
ping in DHCP reservations, and so on.

To reduce the network administrators’ maintenance burden and the con-
figuration error rate, we should reduce redundancy in the node provisioning
process as well as facilitate removing configuration specific to a node when
it comes to the end of its life cycle. Additionally, in the interests of being
able to understand and debug the system, it should interoperate with, not
supersede, our current network configuration management solutions.

This general idea is quite common; for example, Carpenter and Jiang [5,
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CHAPTER 1. INTRODUCTION 9

Section 2.3] recommend usage of a “suitable configuration tool” to prevent
drift between DNS records and DHCPv6 configuration.

We propose an authoritative repository-of-record for all of the network
configuration metadata for a majority of nodes: link layer addresses, network
layer addresses, firewall rules and DNS names. A natural place to store this
information is the same data store we use for the configuration management
data specific to each node, so that a single entry in that database fully de-
scribes a node. Having this data in one place, we can automatically generate
and deploy the requisite network infrastructure configurations. However, we
recognize that not every node fits one network configuration pattern, and
thus our solution must be able to coexist with existing infrastructure instead
of replacing it.

1.2 Requirements for a solution

Freeman [10] describes requirements that apply to network configuration
management systems. While they are talking about managing routers in
the context of service providers, many of the same principles do apply to
managing configuration for software necessary in an IP network. For exam-
ple: our system must have configuration error tolerance, so that a mistake
does not affect the entire network; we should consider our system the author-
itative source of truth for the desired state of the network; and the system
should protect the network against misconfigurations as well as validate that
the current state of the network matches the configuration (ie. the desired
state).

In addition to the above, we have some local requirements. Most impor-
tantly, the system must support versioning and rollback, also of configuration
changes that are not the most recent. Additionally, the system must not re-
place the existing network infrastructure management systems in place at
our site but instead coexist with them.

1.3 Structure of the Thesis

This thesis is split into separate chapters, described below.

1.3.1 Background

In the Background chapter, we take a look at the concepts this thesis is built
on, including configuration management systems and some network configu-
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ration basics. Additionally, we take a cursory look at some existing software
solutions to managing network infrastructure configuration and discuss their
suitability to the problem at hand.

1.3.2 Environment

In this chapter, we will take a look at the network infrastructure and previ-
ously used tools in the environment where we integrated our solution.

1.3.3 Implementation

We discuss the operating theory and technical details of our solution as it
was implemented as well as provide examples of its function in the fourth
chapter.

1.3.4 Evaluation

In this chapter, we discuss the degree to which our goals were met by the
implemented software and present brief analyses of certain aspects of its
performance.

1.3.5 Conclusions

In the final chapter, we present the conclusions reached by the work we’ve
done and present some opportunities for future work.



Chapter 2

Background

In this chapter, we describe some of the systems and concepts necessary to
understand the rest of the thesis, including some basic network infrastructure
as well as configuration management software, and present some existing
potential solutions to our problem and discuss their suitability.

2.1 Network infrastructure configuration

In the context of this thesis, when we say ”network infrastructure configu-
ration”, we mean the software configuration and data files necessary for the
operation and management of computer networks. More specifically we are
interested in configurations concerning protocols operating on the data link,
network and transport layers in the Open Systems Interconnection model
[12]: we wish to configure name services provided by the Domain Name
System (DNS), IP address assignment with the Dynamic Host Configura-
tion Protocol (DHCP) as well as packet filtering based on IP or transport
layer (eg. TCP/UDP) packet headers, ie. firewalling. We will describe the
different types of configurations in more detail below.

2.1.1 DNS

DNS is a well-known distributed system that is used, among other things,
to map host names to IP addresses and vice versa. It forms a global tree
hierarchy of zones, each of which may contain resource records (RRs) that
contain information about a domain name, as well as contain references to
sub-zones (delegations). The root zone has an empty label and is thus simply
called . (dot). It is defined by a well-known set of servers known as the
root name servers, and it contains sub-zones like com. and org., which

11



CHAPTER 2. BACKGROUND 12

are delegated to name servers other than the root name servers, and those
are further split into sub-zones using the same delegation mechanism. [14]
Generally organisations purchase a delegation for a second-level domain such
as example.com. and run their own name servers which serve the resource
records for that zone (eg. information about their web server under the
domain name www.example.com.).

The configuration we are interested in is the configuration for the DNS
server software that we run to serve the resource records in the zones which
are delegated to us, ie. the zones we are authoritative for, as well as the zone
files which contain the RRs themselves.

2.1.2 DHCP

DHCP is a protocol that used on IP networks to automatically assign IP
addresses and other network configuration parameters, such as the default
gateway and addresses of available recursive DNS resolvers, to devices on the
network. Addresses may be allocated from a predetermined pool of addresses
by the server software (dynamic allocation) or an administrator may assign
each client’s address (manual allocation). [9] Managing manual allocations,
that is, link-layer address to assigned IP address mappings, is the configura-
tion that we are interested in in the context of this thesis: each host should
have stable addresses assigned to it so that we may use those addresses in
DNS RRs and packet filter rules to refer to the correct host.

2.1.3 Packet filtering

Packet filtering, or firewalling, is a security mechanism that entails restrict-
ing the IP communications of hosts by blocking the delivery of packets to
their destination based on some criteria defined by the administrator. Many
network devices ranging from endpoints to routers have packet filtering fea-
tures, but in this thesis we consider the filtering rules on the gateway routers
on our networks and leave aside endpoints’ own packet filters. We wish to
use a ”default deny” policy for communications, but be able to easily allow
certain packets through the firewall to hosts in our networks: this means
we need to be able to manage filter rules for incoming traffic based on the
IP Destination header field, but for most cases we also need to filter on the
Source field as well as information in protocol headers on higher layers of the
OSI model, eg. TCP destination port.



CHAPTER 2. BACKGROUND 13

2.2 Configuration management in system ad-

ministration

In system administration, configuration management refers to the process
of ensuring that a set of networked hosts are configured in the way that
the administrator intends. Cfengine, presented by Burgess and College [4] in
1995, was the first published software tool intended to automate configuration
tasks and prevent configuration drift, ie. ensure that configuration stays
correct.

A large motivation for configuration management software has always
been the increasing number of systems that administrators need to maintain.
With the rise of cloud computing, virtualisation and containerisation tech-
nologies, this need has been emphasized even further: each virtual machine
or operating system container is its own system, ie. runs its own software
stack and network stack, which are separate from the host and other virtual
machines or containers, and need to be managed separately.

In the context of cloud computing, many different people have charac-
terized a difference in patterns for managing servers as ”pets vs. cattle”;
it’s not completely clear where this term originates, but Bias [3, slide 20]
attributes it to Microsoft’s Bill Baker. The idea is that traditionally sys-
tem administrators have kept their servers like pets, giving them names and
carefully nurturing them back to health whenever they get sick, while in a
cloud environment, servers are expendable and replaceable, like cattle. While
servers falling under both patterns do actually benefit from using configura-
tion management software, it is completely infeasible to have cattle without
configuration management.

Due to these reasons, it is now increasingly rare that a system adminis-
trator logs into a particular pet of a server to make a configuration change
with a text editor; instead many of his machines are now running configu-
ration management software that tracks changes made into a configuration
management repository and applies them to the machines.

Of course, in addition to configuration for its software stack, each virtual
machine or operating system container (host) needs to be supported by the
network infrastructure. A host may have multiple network interfaces, per-
haps attached to different networks, but usually needs at least one. A host
connected to a network is a node in that network. Since a host with a single
network interface connected to a single network is one node, the terms are
often used interchangeably.

If we assume the simple case where each node is a host, the amount of
required network infrastructure configuration is similar to the amount of con-
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figuration required for the hosts’ software stacks. Additionally, since hosts are
provisioned and decommissioned often in virtualisation and containerisation
environments, the node churn is high. This underscores the need to man-
age network infrastructure configuration with software, applying principles
similar to those used in managing the configuration on the hosts themselves.

2.3 Existing solutions

Of course, our need for a solution to help manage the configuration of network
infrastructure daemons with respect to each other and to node life cycles is
not unique, and there are existing tools and solutions that can help with
the problem. We take a look at a few and the specific problems they solve
below, keeping in mind our own requirements and evaluating the solutions
with respect to them.

2.3.1 Dynamic DNS updates

Instead of keeping resource records for all domain names in static zone files,
there is a mechanism that may be used to automatically add records for
names called DNS Update, proposed by Vixie et al. [16]. It is usually per-
formed by the DHCP server in a configuration where there is a dynamic
pool of addresses that may be assigned to DHCP clients: when the server
assigns an address to a client for a duration (ie. gives the client a lease on
the address), it will also request the DNS server to add a type A resource
record for a domain name that is, for example, derived from the host name
the client sent in a DHCP option and a configured domain suffix. This way,
when a host joins the network, it will automatically be assigned a DNS name
that can be used to connect to it. DHCP servers that implement this feature
often refer to it as ”Dynamic DNS update” or ”DDNS update”.

However, Dynamic DNS updates with ISC BIND are normally config-
ured for only certain zones, which are then usually not managed by other
means; one has to disable dynamic updates for a zone to modify the zone
files manually [6, Section 4.2.1], and our current approach, detailed in the
next chapter, of always generating all of our zone files from source data cer-
tainly presents a problem in that scenario. We could use a specific sub-zone
that is dynamic-enabled and not edit that through our existing tooling, but
that would mean the FQDNs of the managed nodes changing and becoming
longer, which we do not want. The source of truth for the zone contents also
becomes less clear when using dynamic updates: the current state may be
queried from BIND, but it becomes more difficult to tell why a certain record
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holds a certain value.

2.3.2 dhcpctl in ISC DHCP

The ISC DHCP server software has a feature called dhcpctl, which may be
used to query and modify the configuration and state of the DHCP server
daemon at runtime. It is implemented on top of OMAPI (Object Manage-
ment Application Programming Interface), which uses TCP to communicate
with the server implementing the objects to manage. [7, 8]

We could conceivably use dhcpctl to add and remove host objects to
the running DHCP server when adding nodes to our network, but there are
similar problems in this approach as there are with Dynamic DNS updates
- the source of truth is no longer our version controlled data, because the
runtime configuration state can change by other means.

2.3.3 Foreman

Foreman is a web application that provides many features related to server
life cycle management, eg. automatic provisioning of virtual machines, in-
cluding creating DNS records and DHCP reservations. Further, it integrates
with several commonly used configuration management tools: for example,
it can process and store reports generated by Puppet agent runs as well as
provide node classification (the process of selecting which classes of config-
uration should apply to each node). To manage the DNS zones and DHCP
configuration, it has components called Smart Proxies that translate HTTP
requests, initiated by the administrator using the web interface, to the ac-
tual operations on different components of network infrastructure. For ISC
BIND and DHCP, the Smart Proxy implementations actually use Dynamic
DNS Updates and dhcpctl (described above); the idea is that the web ap-
plication sends a HTTP request to the Smart Proxy, which then modifies the
state of the desired service through APIs specific to that service.

It is quite close to an acceptable solution to manage our infrastructure,
but it fails on several key requirements we outlined in chapter 1. To use it
for DNS record management, we would have to make it the sole authority
for the zones it’s in use with due to the problems with Dynamic DNS Up-
dates described above, meaning that it does not coexist with our existing
infrastructure. The DHCP Smart Proxy has a similar issue. Additionally, to
actually simplify the management of our nodes and consolidate the configu-
ration into one place, we would have to use the node classification features
as well. Otherwise, decommissioning a node would require removing it from
our current node classification data store as well as Foreman.
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Lastly, even if we were to replace large parts of our existing network
infrastructure management tools with Foreman, using its database as the
sole source of truth for our network configuration, we would not get version
control and rollback for that configuration (as of Foreman version 1.11),
and are thus forced to conclude that Foreman is, in our environment, an
unsuitable solution for the problem this thesis attempts to solve.



Chapter 3

Environment

In this chapter, we describe the environment where we integrated our solu-
tion: its network infrastructure as well as tools and methods used to manage
it.

Layer 3 infrastructure configuration is managed using methods similar to
the ”Generate Everything” approach described by Schönwälder et al. [15].
Our solution will not change that, but consolidates the configuration for
certain types of nodes into one place.

3.1 Usage patterns

Since our environment is the computer science department in a university, a
common use-case is that the system administrators provide application plat-
forms for research groups, projects and the like. Most often, this means a
guest virtual machine with an operating system installed and co-maintained
by the system administration, to which the customer has root access, but
there are exceptions as well. These virtual machines all need network infras-
tructure configuration to function, but of particular interest is their life cycle.
The applications rarely need to run indefinitely, so to conserve resources and
avoid potential security issues, requests for such a platform come with an
expiration date, after which the platform is to be decommissioned. However,
since it is difficult to predict the future, this date is rarely correct, and when
it arrives, the customer must be consulted again as to whether they still need
it. Automating this process would save a considerable amount of time and
effort.
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3.2 Network segmentation

In our environment, there are 17 different link-layer (Ethernet) networks.
Each link-layer network has exactly one corresponding network layer address
block per network layer protocol, ie. one for IPv4 and one for IPv6. The
networks are segregated using VLAN tagging on switches and routers.

3.3 Routing and firewall

Each host on every network has a default router on the same link, configured
on clients through DHCP for IPv4 and NDP RAs for IPv6. This default
router is at an address shared by two firewall machines using CARP for
redundancy. For further fault tolerance, each shared address is on a VLAN
tagged network link over two LACP-aggregated 10GbE links.

The router machines run OpenBSD and provide traffic shaping and fire-
walling through pf, a stateful packet filter shipped with OpenBSD. We have
two machines for high availability reasons: firewall states are synchronized
between the machines with pfsync, and CARP is used to manage which
machine has the default gateway addresses on the network, thus providing
automatic failover.

In addition the routers also implement DHCP relaying for DHCPv4,
which is described below.

3.4 Address assignment

The general address assignment policy for our networks is that unless ab-
solutely necessary, statically configured addresses are not used. Instead, we
utilise link-layer addresses to generate or reserve persistent IP addresses for
our nodes.

For IPv4, we have one DHCP server, which is only connected to one
network. This means that we need relay servers in every other network
since DHCP requires link-layer broadcast messages to function. The address
assignment policy means that each node connecting to the network must have
its MAC address in the DHCP server configuration, mapped to an address
allocated for that node. The largest exceptions to this are workstation or
”office” networks, which need to support devices other than those managed
by system administration, eg. BYOD (Bring Your Own Device).

For IPv6, we use stateless address autoconfiguration (SLAAC); the router
machines advertise a specific /64 CIDR prefix on each link. We do not cur-
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rently use DHCPv6, instead opting to fix DNS names to SLAAC addresses
based on MACs or statically configuring addresses where necessary (for ex-
ample, for failover scenarios).

3.5 Name service

Despite having seventeen networks, the environment only has two DNS name
servers: one authoritative for all delegated zones (including reverse zones),
and the other a slave for the same zones. These servers also provide a recur-
sive resolver for hosts in our networks.

The DNS server software we use is ISC BIND. To configure it, there’s an
old in-house software solution which generates zone files from its own config-
uration format. This kind of solution is common and makes DNS easier to
get right: for example, it automates generation of reverse (ie. PTR) records
for all configured hosts and automatically updates SOA serial numbers.

3.6 Configuration management

The configuration management software system in use at our site is Puppet.
With Puppet, we use Hiera, a hierarchical data store, as the storage for
configuration data: while Puppet manifest files describe how to accomplish
a certain configuration (ie. they are code, in the Puppet language), Hiera
provides the parameters for that configuration (ie. it is data). Hiera contains
information necessary to classify nodes (ie. assign Puppet classes to them) as
well as customise certain aspects of configuration created by Puppet on the
nodes. For example, we have a Puppet class which manages configuration
for ntpd, the Network Time Protocol (NTP) daemon, on each node. The
class is generalised such that we can apply it to every node, but modify the
set of NTP servers added as peers by changing the Hiera data on a per-node
or per-domain basis, based on the lookup hierarchy.

Hiera is able to use many different storage backends for its data, but
because of the history and searchability features offered by version control
systems as well as our administrators’ familiarity with Unix tools for text
manipulation, we are using a version controlled repository of YAML files as
the backend.
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3.7 Continuous integration

Currently, our network infrastructure configuration lives in version control
repositories, separated by configuration type: we have one repository for
DNS resource records and name server configuration, one for DHCP address
assignments and DHCP server configuration, and one for firewall rules. The
version control software provides us with the ability to roll back each indi-
vidual change and helps to understand the existing configuration (eg. one
can use ’blame’ to help in figuring out why some configuration line exists).

To deploy configuration changes made by administrators into production,
we use simple git hooks as a continuous integration tool. When an admin-
istrator pushes a change to the master branch of a network infrastructure
repository, new configuration is built and syntax-checked by the system, and
if the resulting configuration seems valid, it is automatically deployed to the
production machine(s) running the corresponding service. This process is
described in more detail in subsections for each infrastructure configuration
type below.

It is evident that when using a system like this to manage network in-
frastructure configuration, provisioning a new node (or removing an old one)
is an operation that requires many distinct configuration changes: assign IP
addresses, create DNS resource records for them, add DHCP reservations and
create new firewall rules. Our system aims to make node provisioning and
decommissioning simpler for the most common use cases, while still keep-
ing the flexibility of separate repositories to facilitate configuration for more
specialized use cases.

3.7.1 DHCP repository

As described above, our address assignment policy necessitates link-layer
(MAC) address to IPv4 address mappings in the DHCP server configura-
tion. The configuration lives in a git repository, and is edited by adminis-
trators on their workstations. The configuration is split into two files: a base
configuration file that defines basic operating parameters such as networks,
domain names and address pools, and a supplementary file containing the
IPv4 address to MAC mappings in a custom format: each line contains one
one MAC address and one IPv4 address, separated by whitespace.

When an administrator pushes a change to the central git server, a
post-receive hook executes to mirror the change the production DHCP
server machine, using another push. The production machine executes a dif-
ferent post-receive hook, which transforms the IPv4-MAC -mappings into
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the host definition format expected by the DHCP server software (using an
awk program), concatenates these host definitions with the base configura-
tion file and syntax-checks the resulting configuration file using the server
software’s configuration parser (dhcpd -t). If the file is valid, it is installed
into the appropriate path and the DHCP server software is restarted. If it
is not valid, the server continues running with the old configuration and an
error message is displayed so that the administrator who pushed the change
knows they should fix it.

3.7.2 DNS repository

The in-house software solution we use for DNS zone file generation, men-
tioned above, is called simply make-dns, and is a perl program written over
the span of many years. It supports other kinds of resource records as well,
but most relevant for this thesis are the A and AAAA record types for host
forward declarations, as well as the matching reverse (PTR) records. With-
out delving further into this program, its output is a configuration file for
ISC BIND (named.conf) as well as zone files for all forward and reverse
zones it is configured to be responsible for, which are referenced in the BIND
configuration file.

The change deployment process is nearly identical to the one described
above for DHCP: the git server’s post-receive hook mirrors the change
onto the production DNS server machine, which then executes its own hook
to generate the configuration and zone files with make-dns. These files are
then syntax checked with a tool shipped with the name server software,
named-checkconf -z, and installed if there are no errors.

3.7.3 Firewall configuration repository

The firewall configuration is stored in git just like the other types of config-
uration, but does not contain a ”build step”; the final pf configuration files
are stored as-is in the repository and edited by hand by administrators.

Changes are deployed in a similar manner to the other configuration types,
that is, the version control server pushes the new commits it receives to
both of the production firewall machines using a post-receive hook. The
production machines then run syntax checks on the configuration using pfctl

-n, and load the configuration if the checks pass. We can do this because
pf loads ruleset and configuration changes atomically without affecting its
operation or existing states [11, slide 11].
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3.7.4 Configuration change workflow

Our system administrator team has a strong Unix background, and thus
our existing workflows for making configuration changes most often involve
making the changes with a text editor (or suitable Unix utilities for text
processing for bulk changes) to clones of the git repositories described above,
and then pushing those changes to the version control server, which executes
the hooks necessary to bring the changes into production. As we are quite
comfortable with this process and because it lends itself well to bulk changes
and history analysis through the version control software, we would like to
preserve a similar workflow. However, with the environment as described,
provisioning a new node takes multiple steps: the administrator must make
changes in several separate configuration repositories and make sure they
match the others. Decommissioning a node is similarly cumbersome, and
forgetting some of the steps leads to configuration errors, so it is prudent
that we find a better way to manage nodes with limited lifetimes.



Chapter 4

Implementation

In this chapter we discuss the implementation of our software solution and
the methods with which it functions. We discuss each type of infrastructure
configuration separately and describe how we integrated our software with the
existing tooling. Some example listings in this chapter contain lines longer
than would fit on the page, and are thus broken into multiple lines. Since
line breaks are significant in eg. YAML, we annotate line breaks added for
readability in listings with the ¬ symbol as the last character of the broken
line, which is then continued on the next line.

Due to the difficulty of naming things, we call our software simply hgen,
because it uses Hiera data files as input to generate configuration for other
components. We refer to it using that name later in this thesis.

4.1 Integration with the configuration data

store

As described in Chapter 3, we store configuration management data in Hiera,
a hierarchical key/value data store. However, node network configuration
should by nature be unique to each node: it makes no sense to assign one IP
address to all nodes running a certain operating system, for example. Thus,
since we do not have any notion of hierarchy for nodes, we do not actually
query Hiera for the data necessary to generate our network infrastructure
configuration. Instead we store the requisite data in the Hiera data store,
but neither Hiera nor Puppet need to use it.

Since our configuration data store happens to be a version controlled
repository of YAML files, we can apply the same type of continuous integra-
tion tooling here as we do for the different network infrastructure configura-
tion types. When a commit changing a node’s data is pushed to the version
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control service, we can run our software to generate new supplementary con-
figuration files for each network infrastructure service, and if they differ from
previously generated version, deploy them to production.

4.2 Example node data file

In the following sections, we will discuss how the different types of configu-
ration are generated. We will give example outputs based on the example
node data file shown in listing 4.1; it is not annotated, but we describe the
function of each input item the relevant sections.

Listing 4.1: flashman.niksula.hut.fi.yaml, a YAML data file describing
a node

mac: 00:19:99: e8:e8:8a

ip_addrs:

- 130.233.41.137

slaac_prefix: 2001:708:20: e336 ::/64

pf_rules:

- pass proto tcp from { 89.27.121.152 ¬
2001:14 ba:21ee :5601::/64 } to port ssh

4.3 IP address assignment and DHCP

For IPv4 addresses, we want to assign one address per MAC and configure
it with DHCP for each node. In order to do this, we store two pieces of
data for each node in Hiera: these are the link-layer address (MAC address)
and the assigned IPv4 address for the node. For simplicity, each data file
describes a node that has exactly one link-layer address – this is of course
inaccurate for many nodes in the real world, but it strikes a good compromise
in that it is true for a majority of the nodes we actually want to manage
with this system, and simplifies the system considerably. Networked hosts
may, of course, have multiple network interfaces and thus multiple link-layer
addresses: in such cases we can create additional node files that only contain
information relevant to hgen (that is, no Puppet classes or Hiera keys used
in configuration management), or just use our existing systems instead.

In the case of IPv6, we don’t actually need to generate any configuration
for address assignment, since SLAAC is part of the protocol and does the job
for us. It is possible to extend the system to generate DHCPv6 configuration
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in the same way as above for IPv4, though, but that was not a requirement
in our environment.

When our software is run, it generates a supplemental configuration file
for the ISC DHCP Server dhcpd, the DHCP server software we use. This
configuration file contains a host definition mapping for each node, mapping
one MAC address to an IP address. If the resulting supplemental config-
uration file differs from what is currently deployed, the integration system
proceeds to run syntax checks on the new configuration and deploys it to
production.

The DHCP server’s main configuration file, dhcpd.conf is still owned
by the previously existing system, and it has been modified to contain an
include directive to support our new system’s supplemental file. Changes
to the continuous integration tooling or other supporting code of the DHCP
configuration repository are not necessary, since the repository hooks gener-
ate different files (although syntax-checks are always run on the combination
of both).

Using the example node data file from listing 4.1, hgen generates the lines
shown in listing 4.2 into the supplemental dhcpd configuration file.

Listing 4.2: Example DHCP reservation in dhcpd.hgen.conf

host flashman.niksula.hut.fi. {

hardware ethernet 0:19:99: e8:e8:8a;

fixed -address 130.233.41.137;

}

4.4 DNS Resource Records

Each node data file is named after a fully qualified domain name, eg. flash-
man.niksula.hut.fi.yaml. Using this name, DNS records are generated by
creating input lines to our existing system make-dns: A records for all IPv4
addresses of the node, AAAA records for all its IPv6 addresses (including the
address derived from the MAC address using modified EUI-64 per SLAAC;
the value of slaac prefix is taken from the input data as the network pre-
fix for this) as well as reverse PTR records for both address families. An
example of the generated input to make-dns is shown in listing 4.3 - us-
ing this input, make-dns generates the forward A and AAAA records into the
niksula.hut.fi. zone file, as well as reverse PTR records into the matching
reverse zone files. As make-dns was already an existing system at our site
before this thesis, we do not describe its operation further here.
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Listing 4.3: Example make-dns input lines generated by hgen

fqdn flashman.niksula.hut.fi. 130.233.41.137

fqdn flashman.niksula.hut.fi. ¬
2001:708:20: e336 :219:99 ff:fee8:e88a

4.5 Firewall rules

Firewall rules are a natural thing to want to manage with our new system,
because it provides life cycle management for nodes: when a node is decom-
missioned, any firewall holes opened for its addresses should be closed.

Instead of making up a syntax of our own, we opted to use the excellent
pf syntax directly. In the data store for each node, we have an array called
pf rules, where each entry must be a valid input line to pfctl in an anchor
context. For example, consider the following additional configuration for
the node flashman.niksula.hut.fi in Listing 4.4; we take the pass lines
verbatim and place them inside an anchor that matches on packets to the
node’s addresses (which must be defined in the same file; we explicitly do
not want to resolve names to generate the configuration or to load it). The
resulting generated configuration will be as in Listing 4.5.

Listing 4.4: Firewall rules in YAML file

pf_rules:

- pass proto tcp from { 89.27.121.152 ¬
2001:14 ba:21ee :5601::/64 } to port ssh

Listing 4.5: Generated lines in pf.hgen.conf

table <flashman.niksula.hut.fi.> const { ¬
130.233.41.137 ¬
2001:708:20: e336 :219:99 ff:fee8:e88a }

anchor "flashman.niksula.hut.fi." to ¬
<flashman.niksula.hut.fi.> {

pass proto tcp from { 89.27.121.152 ¬
2001:14 ba:21ee :5601::/64 } to port ssh

}

We do not place these lines directly in the main configuration file pf.conf,
because that file is version controlled in a different repository, and it was
one of our goals to interoperate with existing systems. Instead, we attach
the generated file (called pf.hgen.conf) as a loaded anchor from our main
configuration file (see Listing 4.6)
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Listing 4.6: pf.conf lines to load our generated anchor

anchor "hgen" to <mynets >

load anchor "hgen" from "/etc/pf/pf.hgen.conf"

Our end result is thus an anchor that contains, for each node, a constant
table and an anchor that is matched for packets destined for the addresses
in the corresponding table. Using anchors in this fashion makes sure that
we cannot break the entire ruleset with a configuration error, and that most
errors in a single node’s configuration will not affect other nodes (an exception
being a misconfigured IP address). Additionally, this way, we can update
the generated ruleset without having to reload the main configuration file by
using the -a option for pfctl [2], further improving both the fault tolerance
and the performance of applying configuration changes.

Once a node is decommissioned, the generated file will no longer refer to
the table nor the anchor associated with it, causing pf to remove the table [1,
persist flag].

4.6 Modifications to existing integration pro-

cesses

Because our software runs syntax checks against all the separate repositories’
configuration when changes are made, we now depend on the state of those
repositories as well. This presents a problem in our existing environment,
since the changes to separate configuration repositories are mirrored by the
version control service to production nodes before being built. If there is a
detectable configuration error, such as a syntax error, the production node
will not deploy the change. However, the erroneous configuration will still
exist in the repository on the version control server, and will cause syntax
checks run by our software to fail even if there are no errors introduced by a
later change to the configuration data.

To solve this, we improved our continuous integration processes for the
repositories in question. Where previously the automated syntax checks
were made on the production machines just before deploying, they are now
executed by the version control service when a change is pushed using a
pre-receive hook. This way, if a change causes the automated checks to
fail, that change is not accepted by the version control service and thus the
combined state of the repositories on the version control server is always
valid.

Because the version control server runs the same operating system version
as our production DNS and DHCP servers, implementing the pre-receive
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hook was quite trivial: we just install matching versions of the software on the
version control server. However, we cannot check the validity of the firewall
configuration on the version control server, because the firewall configuration
parser does not run on that same operating system; it is integrated into
OpenBSD. While ripping out just the parser feature from pfctl and porting
that to run on other operating systems would technically be possible, it would
likely require considerable effort, and such a port would have to be maintained
to accommodate changes in pf delivered by future OpenBSD versions. Thus,
to ensure compatibility with the production firewall, the firewall repository’s
pre-receive hook uses ssh to run the configuration checks on the actual
production machine before accepting changes. In theory, this compromise
introduces an undesirable dependency on the firewall machine being up to
the version control service, but in practice it is not so bad because the firewall
machines have failover redundancy (and in fact the client doing the push most
likely contacted the version control server through the firewall because of how
our network is segmented, so it is not likely that both are down).



Chapter 5

Evaluation

In Chapter 1, we defined the requirements that must be met for a solution
to be acceptable. We will evaluate our system as implemented against each
of those requirements below.

5.1 Error tolerance

Our system fails early when presented with a configuration that results in an
error detectable by static checks run against the final generated configuration
files. The extent of these checks depends on the consuming software, because
we use their existing tools as described Chapter 4. If an error is detected,
the whole configuration change is never applied, because the version control
service rejects it.

Of course, syntactically valid configuration can be erroneous as well, for
example if the administrator making the change makes a mistake, or if we
encounter a bug. Such mistakes are not allowed to affect the entire network,
however, so our solution makes sure that any misconfiguration of a node’s
firewall rules can only affect traffic destined for that node, because all the
generated rules are contained in anchors that match only IP packets whose
destination address is one of the node’s addresses. Further, if hgen generates
rules that affect the entire parent anchor, perhaps as the result of a bug, all
nodes whose firewall rules are managed by hgen may have their connectivity
affected, but critical network services remain online, because the parent an-
chor is loaded with a lower preference than the rest of the rules in the main
ruleset (in pf, the last matching rule wins).

However, misconfigurations of MAC or IP addresses in nodes may well
affect other nodes, even ones not managed by hgen. If an administrator sets a
node’s MAC or IP address in hgen to one that is already used in our network,
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both nodes’ connectivity may fail. We mitigate the issue somewhat for IP
addresses at run time in the DHCP server: it is configured to send an ICMP
Echo Request (”ping”) to addresses before it gives a lease to clients, refusing
to give the lease if someone responds to the ping. However, there will still
be duplicate DNS PTR records for the address, and there is no mitigation
in place against duplicate MAC addresses. In practice duplicate addresses
have not been a problem in our environment, but if they ever become one,
further work is required to skip nodes whose addresses conflict with others
- it is trivial to check duplicates among the nodes we manage with hgen,
but integration with the other existing systems with respect to duplicate
detection presents a larger problem.

5.2 Source of truth

Our software is not the single source of truth about the desired network state,
since the other extant management tools have just as much or more authority
in the final configuration. However, the system we should evaluate is actually
not just the software written for this thesis; rather, it is the combined system
of the existing tools and the software we wrote that integrates and cooperates
with them. This cumulative system is in fact authoritative for the DNS RRs,
DHCP reservations and firewall rules in our environment - no inputs other
than the git repositories described in Chapter 3 as well as hgen affect the
final state of each program’s configuration.

5.3 Versioning and rollback

Because our system’s source of truth comprises only git repositories as de-
scribed above, versioning changes, branching and merging, arbitrary rollback
as well as history analysis is very simple: we can use git itself as well as any
of the numerous extant tools that work with it.

5.4 Integration to existing systems

By design, our system does not replace the existing utilities in use for man-
aging our network infrastructure configuration: even after deploying hgen,
all of the previous tools still work like they used to (but with stricter error
checking). This makes it easy to migrate any number of nodes under hgen’s
management at any time – although we will certainly not do so for every
node, because one size does not fit all.
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5.5 Performance

As hgen only needs to be run when an administrator makes a configuration
change, and as a result of a run, generates configuration to be used by other
software, there are two aspects of performance we should consider: the impact
on the runtime performance of the network infrastructure software caused by
using configuration generated with hgen (compared to the previous situation,
where configuration was either generated with the existing systems or hand-
written by administrators), and the time it takes for our software to run once
with respect to the number of nodes it is managing (ie. its scalability).

5.5.1 Runtime impact

Since hgen generates input for our DNS configuration generator, the output,
ie. the input zone files for the ISC BIND software, are identical to what they
would be had we not used hgen at all. That means there is no runtime cost
for using hgen - we only incur a cost at configuration change time, when we
have to regenerate the zone files.

The same principle applies to DHCP: hgen generates identical configura-
tion directives to what we’ve been using in the past for ISC dhcpd, meaning
there is no runtime cost there either.

The packet filter, pf, is a little different, however. Contrary to what we
were doing without hgen, we now load an additional layer of anchors into
the ruleset. Before, we were placing node-specific rules inside one anchor in
the main ruleset, but with hgen we are actually using two layers of anchors:
one in the main ruleset, and one per each node inside the first anchor. The
per-node anchors have associated filtering rules, so we do incur a non-zero
cost at ruleset evaluation - pf has to first evaluate the anchor’s filter rule (to
see if the traffic is destined for the node), and if so, then evaluate all rules
inside that anchor.

However, ruleset evaluation only happens for packets that create a new
state in the state table (eg. TCP SYN segments). In figure 5.1 we present on
a logarithmic scale the rate of state searches versus the rate of state inserts
in the state table. Every packet processed by the firewall will first cause
a state search, so the number of state searches is equal to the number of
packets processed by the firewall. If there is no state matching the packet,
the ruleset needs to be evaluated to know whether or not allow the packet,
and if it is allowed, it will create a state, ie. cause a state table insertion.
Blocked packets and packets filtered with stateless rules (rules specifying no

state) do not cause state table insertions, but we do not particularly care
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Figure 5.1: pf state table searches and insertions per second over a six-month
period, log10 scale
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if blocked packets get delayed. Statelessly passed packets do incur a penalty
we might care about, but in practice we use them very rarely, and even then
usually with the quick option, stopping ruleset evaluation before it hits the
anchor generated by hgen. The graph tells us that only a very small minority
of packets processed by our firewalls during a six-month period caused state
insertions; the rest were either blocked, passed statelessly or found in the
state table and thus short-circuited without needing to evaluate the ruleset;
pf’s state table is a red-black tree, so lookup complexity is just O(logn) for
n existing states [1, 13], and using hgen does not affect the number of states
created.

Given this, we can assert that the runtime cost of using hgen is marginal
in our environment.

5.5.2 Scalability to a large number of nodes

While runtime cost is negligible, we should also consider the time it takes to
process a configuration change made by an administrator. To that end, we
measured our software’s consumed CPU time in both user and kernel mode
for various generated sets of node data files. The results are presented in
figure 5.2, where the number of nodes in the dataset is on the X axis and the
kernel and user CPU times are on the Y axis.

From the graph we can tell that the increase in node data files causes a
linear increase in the amount of consumed CPU time, ie. the complexity of
running our program is O(n) where n is the number of node data files.

The wall-clock runtime of our program is very close to the sum of the user
and kernel times. Since our program is single-threaded, this result means that
the program is CPU-bound. If we wanted to improve its runtime, we could
either attempt to parallelize it or optimize the hot paths. A quick analysis
using cProfile, a profiler shipped with Python, reveals that 82 percent of
the runtime of the program with 65536 input files was spent in PyYAML, the
third party YAML parsing library we chose. However, our copy of PyYAML is
using a pure-Python parser; it is also possible to build a copy with bindings
to LibYAML, a C implementation of a YAML parser and emitter. We did not
measure the impact of doing so, because the runtime of the program against
our current production dataset is low enough to not be a problem, but if it
ever becomes one, building a copy of PyYAML with LibYAML bindings is a
low-hanging fruit to tackle.
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Chapter 6

Conclusions

In this thesis we presented a software system for managing network infras-
tructure configuration on a per-node basis, without replacing existing tools or
infrastructure. This system greatly reduces the effort system administrators
have to expend in several situations involving network nodes with limited life-
times in our environment, in particular commissioning and decommissioning
nodes: Previously these actions required several separate changes to different
configuration repositories, as discussed in chapter 3. The workflow is similar
and still familiar to our system administrators: we make changes using a text
editor or Unix text processing tools, commit those changes to git and push
them to the version control server in order to deploy them to production, but
now we only need to do so once: all the information that comprises a node
is stored in just one repository, for most nodes. Importantly, this prevents
configuration errors caused by residual configuration concerning nodes that
have been decommissioned.

In the previous chapter, we evaluated our solution against the criteria we
set in chapter 1, and it passed all the requirements. It is reasonably error
tolerant in that it confines many types of configuration errors in a node’s
configuration specifically to that node without affecting the others, it forms
the authoritative source of truth for network infrastructure configuration
when combined with our previously existing tools, it integrates well with
those tools and it supports versioning, rollback and history analysis extremely
well thanks to git.

We believe our implementation presents a suitable solution for the prob-
lem stated in chapter 1, and it does so with little to no runtime performance
impact, as discussed in chapter 5. It fits our workflows and requirements bet-
ter than existing solutions we evaluated, because as discussed in chapter 2,
those solutions fail some of the requirements we set, unlike our implementa-
tion.
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We have deployed the software and requisite version control hooks onto
our production servers, and the system is working well.

6.1 Future work

While we consider our system suitable for production, there are some short-
comings with it. They are not critical, however, so we are not fixing them
for this thesis but instead consider them avenues for further work.

A nice addition to our system would be to add a built-in method for
IP address management; currently IPv4 addresses have to be reserved using
other systems, and the node data files need to match. Optimally, node
provisioning would not require that additional step either.

Configuration generation performance is acceptable, but it would likely
not be terribly difficult to improve either. If the number of nodes we manage
grows by an order of magnitude or more, this is definitely something we
should do.

We currently store expiration dates for nodes in our data files, and hgen

does warn about nodes that have expired when an administrator makes a
configuration change, but periodically checking and reporting automatically
would be a further improvement to our node life cycle processes.

Finally, while not directly related to the system presented in this thesis,
we could move more nodes’ configurations under hgen management to make
managing their life cycle easier in the future. Because our system coexists
with existing tools, this can be done whenever and in as large or small batches
as is desired.
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