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Foreword

This thesis consists of an introduction and eight first-author articles. They treat four

different aspects of localised wave propagation: (i) a general theory of localised, periodic

pulse propagation in free space (including the special case of subluminal wave modes),

(ii) superluminal X waves that are localised and invariant under propagation, (iii)

mathematical existence of anisotropic nondiffracting waves, together with their possible

methods of generation in piezoelectric crystals, and (iv) use of radio holograms in the

generation of nondiffracting and other beams in the millimetre-wave regime.

At this point I need to comment on the terminology used. Durnin originally intro-

duced the terms ’nondiffracting wave’ and ’diffraction-free’ beam motivated by the fact

the central maximum of the beam appeared to propagate without diffractive spreading.

These names are, however, sometimes considered unfortunate for two reasons: First

of all, any finite-aperture (or finite-energy) realisation of these beams is, eventually,

bound to diffract. Hence, the term ’propagation-invariant’ is also misleading, as well as

the term ’limited-diffraction’ that suggests that these waves are only subject to minor

diffraction effects. Secondly, they are by no means nondiffracting in the sense that they

would not diffract upon incidence on any sort of grating or other obstacle. Also their

localisation is questionable: however extensive a volume (or large an area) is consid-

ered around the centre of an even mathematically ideal beam or pulse, it yet contains

a vanishing portion of the entire wave energy. This having been said, I wish to use

the more or less standard terminology on the subject and to take the freedom of using

terms such as ’nondiffracting’, ’diffraction-free’, ’localised’, ’propagation-invariant’ etc.

where I find them convenient.
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1 Introduction

Diffraction is an ever-present phenomenon that affects the propagation of waves in two-

or higher-dimensional homogeneous media: all deviations from transverse uniformity

will, eventually, corrupt the wave profile, leading to the separation of wave components

that move into different directions1. The best-known examples are the widening of a

Gaussian beam and the sinc-pattern formed by a sharply bounded square aperture.

The strength of such a deterioration is proportional to the length scale of spatial

variations of the wave field, compared with the wavelength. Pulse-like waves, formed as

wave packets comprising a continuum of wavelengths, are equally subject to diffraction.

The only wave-form totally devoid of diffractive effects was thought to be the one with

no transverse variations, i.e., a plane wave. Hence it came as a very surprise when

Durnin & al. in 1987 published an experimental measurement of a diffraction-free light

beam [1]. Its name owed to the fact that the central peak on the optical axis appeared

to defy the effect of diffraction despite its spot size on the order of a wavelength.

The properties of such a peculiar light beam were promptly searched for. It was

readily noted that a truly diffraction-free beam would require an infinite aperture. Even

though the beam intensity is peaked on the optical axis, there should be an infinite

number of side lobes (of decreasing brightness) to support the main beam. Limiting

their number unavoidably also limits the length of the ’diffraction-free’ beam, making

it, again, subject to diffraction.

Figure 1.1 illustrates the difference between an ordinary Gaussian beam and an

apertured diffraction-free beam. Although a Gaussian beam can easily be focused into

a bright focal spot, it will rapidly dissolve after the focus. A diffraction-free beam, on

the other hand, supports a long focal line, together with additional side lobes. The

total energy carried by the latter beam is, however, much higher if equal intensity is

to be achieved along the axis.

1.1 Brief history of localised waves

After Durnin’s experimental demonstration of what appeared to be a nondiffracting

beam, several physicists have been engaged in studying the properties and potential

applications of this discovery. Nevertheless, the very same wave solution had already

been published by Stratton in 1941 as a ’wave function of the circular cylinder’ [3] the

radial form of which was described by Bessel functions2,3. Hence the special functions

1Diffraction does not occur in one spatial dimension since no such separation is possible.
2Or other circular cylinder functions, depending on the radial boundary conditions.
3The same wave solution was also reckoned by van Nie in 1964 [4].
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Gaussian beam Diffraction-free beam

Figure 1.1: Gaussian beam and finite diffraction-free beam (represented
here with a Bessel-Gauss beam [2]). The central maximum of the latter
beam has the same width as the waist of the Gaussian beam. The gray-
scale shading denotes the absolute value of the wave amplitude and the
arrows denote the direction of energy propagation.

originally discovered by Friedrich Wilhelm Bessel in the early nineteenth century in the

context of indirectly perturbed planetary motion were found to describe diffraction-

free waves [5]. The elementary nondiffracting beams are, therefore, often referred to as

Bessel beams.

Independently of all these theoretical considerations, Bessel-like beams had also

been produced already in the 50’s by McLeod with the use of conical axicons [6, 7].

They were not considered nondiffracting at the time although they were known to

produce a continuous line of images from small sources. Kelly was also able to show

that their radial pattern is described by the zeroth-order Bessel function [8]. Apparently

nearly unknown to the western-world physicists (times have changed a lot since then)

Bunkin & al. had in the 80’s in Moscow used an axicon to produce ’continuous laser

sparks’ from Gaussian laser beams with a 1 GW laser (peak) power [9, 10]. In the West

in 1989, Indebetouw suggested, based on the McCutchen theorem [11], that an axicon

could be used to form a Bessel beam [12] and this was later experimentally realised by

Scott and McArdle [13].

The Acoustics society was also interested in studying Bessel beams and the first ul-

trasonic transducer was fabricated by Hsu & al. in 1989 [14]. The application potential

of nondiffracting waves was soon understood in high-resolution medical imaging [15].

A whole new research line was, however, initiated by Lu and Greenleaf with the real-

isation that the nondiffracting Bessel beams could be generalised into nondiffracting

pulses called X waves [16]. In spite of a very simple principle, namely that all fre-

quency components must propagate at the same angle with respect to the propagation

axis [17], such pulses would have been difficult to produce in optics where simultane-
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ous, coherent control is very complicated over a wide range of frequency components.

This was, however, later achieved by Saari and Reivelt in 1997 [18]. With acoustic

transducers it was hardly more difficult than with continuous-wave Bessel beams.

Many theoretical and practical questions associated with Bessel beams and X waves

have been addressed since. Most importantly, mathematically ideal waves inevitably

had properties that appeared unphysical: both wave types required an aperture of

infinite extent and also an infinite amount of energy [19]. Bizarrely, X waves also

seemed to propagate with a superluminal velocity [16]. The latter ’problem’ was solved

by understanding that the energy (or information) carried by the X wave was not, in

fact, carried by the central pulse but it was, instead, launched at some previous time

from outer regions of the aperture, thus having exactly enough time to propagate at

the speed of light. The truncation of the infinite aperture has, by now, turned into an

engineering-type question of how the truncation should be best done in order to avoid

unnecessary ripples or edge diffractions within the desired finite propagation length.

During the ten years subsequent to the discovery of the X waves, localised non-

diffracting pulses have been studied extensively. Again, however, these wave solutions

had their predecessors. In 1983, Brittingham had published the discovery of ’focus

wave modes’ that are pulse-like waves propagating in three dimensions with the speed

of light [20]. They had the peculiar property of remaining focused at all times, i.e., their

spatial envelope did not change under propagation, although the pulse within evolved

periodically. Thus, they were considered nondispersive. The original, rather cumber-

some formulation of focus wave modes was generalised by Sezginer who also showed

that no focus wave modes of finite energy can exist in free space without sources [21].

Although focus wave modes and X waves are clearly different kinds of waves, they have

very similar spectral properties, as was pointed out by Shaarawi [22]. This suggests

that they both belong to a larger class of localised waves. A theory of ’diffraction-free

pulses at arbitrary speeds’ has been presented in one of the papers constituting this

thesis [I]. Such waves comprise X waves as a special case of superluminal pulses and

focus wave modes as a case of luminal waves.

The pulse-like waves, such as X waves have reached general, albeit mainly academic

interest. Bessel beams, on the other hand, have shown application potential in several

fields. Their long and narrow focal line suggests good lateral resolution in imaging

applications and it has been the driving motivation for the nondiffracting waves research

in medical imaging; see, for instance [23] and references therein. The depth of focus and

the good transverse resolution of the focal line have also proven to be advantageous in

optical microlithography [24] and Bessel beams have also been considered for improving

the heterodyne detection efficiency [25]. Especially wide has been the interest in using
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Bessel beams in second- and higher-order harmonic generation in nonlinear optics [26].

This is due to the ease in tuning the axial wavelength of the Bessel beam in order

to meet the phase-matching criteria [27, 28]. Several other fields of applications have

recently also been considered, such as the manipulation of microscopic particles [29].

At present, the field of nondiffracting waves appears to have reached a state of

certain maturity: the novel and surprising properties of both Bessel beams and X waves

are now well understood and the main emphasis of research has moved into both

scientific and industrial applications. Nondiffracting waves, as such, remain rather

straightforward solutions to the linear wave equation. Their speciality and usefulness

lies in their focusing and tuning properties that can advantageously be used in other

fields of physics and engineering sciences as well.
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2 Periodically propagating waves

The discovery of propagation-invariant beams naturally led to the idea of similar pulses

or wave packets. Solitons are, of course, well-known for waves propagating in nonlinear

media where the nonlinearity serves to counterbalance the effect of diffraction. Simi-

larly (radial) changes in the index of refraction can be used to form a waveguide that

supports localised waves. In free space or in a linear medium, no such counterforces

are available.

Bessel beams can, however, be used to build up wave packets that retain the r−1

intensity localisation inherent to the Bessel functions of the first kind. The key feature

of localised pulses is the strict spatio-temporal coupling that may yet take several

different forms, leading to different classes of localised pulses; X waves [16] are the most

natural in the sense that they are strictly propagation-invariant. They are also bound

to have superluminal propagation velocities. If a periodical propagation invariance is

allowed, wave packets can be constructed for arbitrary velocities [I]. A special class of

these, on their own importance, are focus-wave modes that propagate at the speed of

light [20]; similar waves also exist for subluminal velocities [II].

2.1 Bessel beams

Before proceeding to more general wave-forms, Bessel beams need to be discussed

briefly since they are the main constituents of all localised diffraction-free waves in

three dimensions.

The simplest of all nondiffracting waves, i.e., the radially symmetric fundamental

Bessel beam, has the mathematical form [19]

J0(k⊥r)ei(kzz−ωt), (2.1)

where r is the cylindrical radial coordinate and z is the coordinate along the optical

axis. The radial and the axial wave vectors, k⊥ = (ω/c) sin ζ and kz = (ω/c) cos ζ ,

respectively, are determined through the cone angle ζ that defines the direction of

(phase) propagation with respect to the optical axis. Hence the angular spectrum of

the nondiffracting wave is bound to a circle of radius k⊥ in the Fourier space [12]; this

can be clearly observed from a phase-sensitive measurement of a millimetre-wave beam

in figure 2.1.

The central beam, i.e., the focal line of the Bessel beam appears to propagate indef-

initely without any diffractive spreading. The entire beam also, unavoidably, contains

side lobes whose intensity envelope decreases as r−1 when moving away from the optical

axis. This exponent has an entirely geometrical origin: the energy is radiated towards
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Figure 2.1: Measured radio-frequency Bessel beam, published in [VIII].
(a) Absolute value of Bessel beam amplitude. (b) Fourier transform of the
complex-valued beam measured. The latter is confined in the vicinity of a
circle of radius k⊥ = 11 cm−1. The displacement from the Fourier-space
origin is attributed to a 2.75◦ misalignment of the measurement plane.
The wavelength is 0.96 mm.

the axis along the cone shell illustrated in figure 2.2; an equal energy flux is carried

through each cross section of the cone shell and the flux density (intensity) is therefore

inversely proportional to the cross-sectional area4.

As the cone of energy propagation in figure 2.2 suggests, there exists a wave compo-

nent that carries energy towards the optical axis; this wave is necessarily singular since

the energy carried by such a wave component vanishes once it reaches the axis [31].

On the other hand, another wave carries energy away from the axis and these two

can be expressed in terms of the second and the first Hankel functions, respectively.

They cancel each other’s singularities and their superposition yields the physical Bessel

beam. The evolution of an apertured Bessel beam into a Hankel beam of the first kind

can be observed in figure 1.1 and also in figure 4.4 below in section 4.2.2. At the Bessel

beam waist the two Hankel beams are in complete balance; the oscillatory radial form

of the Bessel beam is due to the standing-wave interference pattern of inward and

outword propagating components. Due to the conical energy propagation, the Bessel

beams’ ability of energy transport is very different from that of ordinary Gaussian

beams [32, 33, 34].

Nondiffracting beams are generally defined as beams of which the transverse (in-

tensity) pattern remains invariant along the beams axis. The zeroth-order Bessel beam

is the only axisymmetric beam with no azimuthal energy flux. The higher-order Bessel

4No localised nondiffracting waves exist in two dimensions since the cone shell area in two dimen-
sions is independent of the distance from the axis [30].
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ζ

optical axis

Figure 2.2: Energy propagation within the zeroth-order Bessel beam.
The long white arrows indicate energy propagation along the cone shell.

functions are, however, known to provide similar waves [3, 4], and the most general

nondiffracting waves are obtained as superpositions of different orders as [12]

∞∑
n=−∞

pne
inϕJn(k⊥r)ei(kzz−ωt), (2.2)

where pn are the weights of the superposition and ϕ is the azimuthal angle in the (x, y)-

plane. Individual higher-order beams carry the topological charge n due to a phase

singularity at the origin; consequently, their amplitude necessarily vanishes along the

optical axis so as to preserve continuity. Hence they can be called rotating or spiral

nondiffracting beams [35] with optical vortices [36] and they also carry orbital angular

momentum [37].

2.2 Periodic wave modes

Periodically propagating waves are not strictly propagation-invariant although they

avoid diffractive spreading by returning to their original pattern after a certain propa-

gation distance or time. They are further allowed to rotate in-between. A systematic

approach has been introduced in [I] for all periodically evolving pulsed waves for veloc-

ities 0 < v < ∞. Their spectral characteristics vary according to whether this velocity

of propagation equals, exceeds, or is below the speed of light.

Rotationally periodic waves (RPWs) comprise beams and pulses whose amplitudes

evolve periodically along an infinite screw curve shown in figure 2.3. After a time elapse

τ , the wave has propagated the distance ξ = vτ along z, simultaneously rotating
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Figure 2.3: Periodic wave amplitude is required to regain its initial value
at multiples of the pitch ξ along the screw curve. Here γ = 2π/3.

through the angle γ and, finally, recovered its original amplitude pattern [38]. The

ratio of the axial distance and the time lapse is the velocity of propagation, v = ξ/τ .

Mathematically, the wave field obeys the condition

Φ(r, ϕ + γ, z + ξ; t + τ) = Φ(r, ϕ, z; t), (2.3)

together with the unique-valuedness condition

Φ(r, ϕ + 2π, z; t) = Φ(r, ϕ, z; t). (2.4)

The wave mode is assumed to satisfy the standard wave equation

∇2Φ =
1

c2

∂2

∂t2
Φ (2.5)

throughout the space, and hence it may be represented, for instance, as a superposition

of plane waves

φ = ei(kxx+kyy+kzz−ωt) (2.6)

that satisfy the dispersion relation k2
x+k2

y +k2
z = ω2/c2. Here ω is the temporal Fourier

(angular) frequency and it may also assume negative values. Equivalently, in cylindrical

coordinates that are a natural choice for rotation, waves can also be expressed in terms

of Bessel beams

φ = einϕJn(k⊥r)ei(kzz−ωt) (2.7)

whose dispersion relation states k2
⊥ + k2

z = ω2/c2.
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Using the Bessel-beam representation of the wave that satisfies the conditions given

by equations (2.3) and (2.4), a further restriction is obtained for kz, namely

kz,ln =
ω

v
+

2πl − nγ

ξ
≡ ω

v
+ µ, (2.8)

where l and n are arbitrary integers. They may be interpreted to be associated with the

field properties along the screw curve in figure 2.3 and on the rotations for constant z,

respectively. Subsequantly, the axial wave number is also uniquely determined through

k⊥,nl =

√
ω2

c2
− k2

z,ln. (2.9)

Two comments are in order concerning the above result: (i) It is a spectral extension

of that derived in [38] for monochromatic generalised propagation-invariant wave fields.

The essential difference is that the constant term common to all l and n in equation (2.8)

is linear in frequency ω, resulting in a definite propagation velocity5. (ii) Both X waves

and focus-wave modes are characterised with a similar coupling between the temporal

frequency and the axial (and radial) wave numbers [39]. In fact, they are both shown

to arise as special cases of the rotationally periodic waves.

Although waves determined by equations (2.8) and (2.9) are perfectly acceptable

free-space solutions of the wave equations, they suffer from several drawbacks. The

velocity of propagation is here implicitly assumed positive and hence the wave on the

whole propagates along positive z. If the wave concerned is intended to be excited

with a planar aperture, all its Bessel-beam constituents must also carry energy along

positive z so as to satisfy the Sommerfeld radiation condition [40]. For a positive

(negative) angular frequency, this also requires a positive (negative) wave number kz;

yet this is by no means guaranteed by the dispersion relation involved. This criterion of

causality is known to cause problems for focus-wave modes [41]. Limiting the frequency

further to those ω that satisfy
kz

ω
> 0 (2.10)

allows the wave field to be causally excited using a planar aperture.

Another problem arises from the spatial extent of the aperture. The amplitudes of

periodic waves are only localised as r−1/2 and, as time goes on, the excitation is needed

for arbitrarily large values of r. If the temporal aperture is bounded, the wave field

generated will retain it periodic form only for a finite length of propagation.

5As mentioned in [I], this velocity of propagation sometimes becomes ambiguous for monochromatic
fields.
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The Fourier representation of the wave field in real space now has the form

Φ(r, ϕ, z; t) =
∑
l,n

[
ei[nϕ+(2πl−γn)z/ξ]

×
∫

aln(ω)Jn(rk⊥,ln)e
iω(z/v−t)dω

]
,

(2.11)

where the frequency ranges in the integrals are individually limited, depending on l and

n. This representation is characteristic to all localised pulses: The wave is decomposed

into single-mode waves, of which the envelopes propagate with the predefined velocity

of propagation v; the periodicity properties required are fulfilled with the phase factor.

The dispersion relation for rotationally periodic waves, given by equation (2.8), fixes

the radial and the axial wave numbers uniquely to the frequency and the remaining

degree of freedom is the Fourier spectrum given by aln(ω).

Mathematically, no constrains were imposed on the shape of the propagating wave

field. The requirement of periodic propagation, with or without rotation, leads to

the axial dispersion relation for each mode, given by equation (2.8). However, the

resultant fields, especially for single-mode waves with fixed l and n, feature clear wave-

front structure. This is due to the single-valued dependence of both the axial and

radial wave numbers on frequency since, consequently, each frequency has a dominant

direction of energy propagation, given by the group velocity.

While the pulse centre moves along the optical axis, it is, in fact, all the time

reconstructed by the wave fronts approaching the axis with the speed of light. The

apparent velocity of propagation is only determined through the time elapse between

the wave focusing at z and at z+ ξ, see figure 2.4. Hence the propagation of a localised

periodic pulse only arises from a synchronous formation of the focal spot along the

optical axis and, consequently, neither energy nor information is actually carried by

the pulse itself.

Rotationally periodic waves satisfying a more stringent condition than that given

by equation (2.3) can be classified into the following subclasses: Uniformly propagating

waves carry a constant amplitude along the screw curve, hence they are limited to

l = 0. Nondiffracting waves (or X waves) are further required to propagate linearly

with no rotation; they also obey γ = 0. Self-imaging waves recover their form with no

rotation, hence they also have γ = 0 but unlimited values of l. Rotationally invariant

waves have n = 0 and are, consequently, independent of the value of γ. All these wave

forms are summarised in table 1.
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superluminal field luminal field

subluminal field

ξ=τv

τc

ξ=τc

τc

ξ=τv

τc

Figure 2.4: Superluminal (v = 2c), luminal (v = c), and subluminal
(v = c/2) pulses. Here τ is the time needed for the pulse centre to move
the distance ξ along the optical axis. Dashed lines denote local wave fronts
that are to constitute the new pulse after the time τ .

2.3 Nondiffracting X waves

Of all periodically propagating waves, X waves are the most widely studied, and they

also perhaps constitute the most straightforward generalisation of Bessel beams into

localised pulses since, ideally, they propagate uniformly devoid of any changes in their

amplitude pattern. Alternatively, as put by their discoverers, X waves are multiple

frequency waves but they are nondiffracting in both transverse and axial directions [16].

The X waves, similarly to Bessel beams, are characterised by a frequency-

independent cone angle ζ that determines the directions of both the phase propa-

gation and the energy flow with respect to the optical axis. Their name owes to the

subsequent conical form which, on a meridional place, is seen as an X-shaped intensity

pattern, see figure 2.5. The axial and the radial wave numbers satisfy kz = ω
c
cos ζ and

k⊥ = ω
c
sin ζ , respectively. This is, however, only a special case of rotationally periodic

waves with v = c/ cos ζ and µ = 0. The latter condition6 requires that l = 0 and γ = 0,

6The requirement is actually that µ = (2πl − nγ)/ξ = 0 which also holds for n = 2πl/γ. This is a
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Wave type γ n l

General RPWs free free free

Uniformly propagating waves free free l = 0

Nondiffracting waves γ = 0 free l = 0

Self-imaging waves γ = 0 free free

Rotationally invariant waves - n = 0 free

Table 1: Classification of different rotationally periodic waves (RPWs).
If n is bound to zero, the rotational parameter γ plays no role. Therefore,
it is omitted from the rotationally invariant waves.

as indicated in table 1. The X waves can only exist for superluminal propagation ve-

locities since v = c/ cos ζ ≥ c; luminal waves with µ = 0 are merely wave packets made

out of plane waves that propagate along z, while no subluminal waves may exist for

µ = 0.

(a)

(b)

Figure 2.5: (a) Three-dimensional illustration of an X wave. The conical
structure of an X wave is not the same as in figure 2.2; here energy and the
cone propagate along the normal of the cone. (b) X wave in the meridional
plane. Small arrows show the propagation of the energy while the large
arrow denotes the propagation of the entire wave pattern.

Nondiffracting X waves have a particularly simple mathematical form as a wave

mere redundancy since the actual wave fields are identical, being both periodic along a screw curve
and constant along a line parallel to the optical axis.
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packet of Bessel beams

ΦX = einϕ

∫ ∞

0

a(ω)Jn

(
ω sin ζ

c
r

)
eiω(z/v−t)dω, (2.12)

where the integral is limited to positive frequencies only (the field itself is described

accordingly as a complex-analytic function). The exact spatial shape of the X wave

depends on the Fourier frequency spectrum chosen. Effects of the X-wave spectrum

are analysed in detail in [III]; a suitable set of spectra can also be used to find an

orthogonal set of X waves [IV].

As for Bessel beams, the main characteristic properties of X waves are understood

in terms of the scalar theory. The proper electromagnetic treatment of X waves is,

nonetheless, sometimes preferred and it can be obtained, for instance, by considering

the scalar X wave as a Hertz potential [42]. Vector X waves can also be found by the

direct use of vector Bessel beams [43, 44] whose polarization modes [45] are inherited by

the corresponding X waves. The situation becomes more complicated in the presence

of anisotropy where Bessel beams, themselves, have to be modified.

2.4 Focus-wave modes

Focus-wave modes were perhaps the first localised pulses discovered that are based on

Bessel beams although this relation was not noted until later. They were first presented

for the transverse electric mode of full Maxwell’s equations7 [20]. The original focus-

wave modes were reformulated (and rederived) using a clever choice of variables [21]:

z − ct and z + ct. The envelope of the wave is allowed to depend only on the former

(together with x and y), while the latter only gives rise to a phase factor. This forces

the wave envelope to propagate undisturbed along z at the speed of light. The simplest

of the focus wave modes is, in fact, a moving (transversely) Gaussian pulse modulated

by a plane wave [47]

Φ = eik(z+ct) e−kr2/[z0+i(z−ct)]

4πi[z0 + i(z − ct)]
(2.13)

The wave profile at the waist of a general focus wave mode can be determined arbitrarily

and it will further fix the entire wave, together with a real parameter used in the phase

factor [21]; a complete set of focus-wave modes is obtained with Hermite-Gaussian

transverse profile.

7This solution was later found to have discontinuities, across which Maxwell’s equations were not
met [46].
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The focus-wave modes also hold a strict connection between the temporal and the

spatial spectra; they have been demonstrated to satisfy [48]

ω =
ck2

⊥
4β

+ cβ, (2.14)

where β is a characteristic constant. Using the notation of periodic waves, this is

equivalent to a luminal wave with µ = −2β. Considering a nonrotating focus-wave

mode, this is equivalent to an l = −1 mode with the periodic distance ξ = π/β.

Focus-wave modes but suffer from one major problem: they are not necessarily

causal or, to be more precise, they cannot necessarily be excited with a planar aperture.

As shown explicitly with the simplest of focus waves, it is essentially radiated in the

direction opposite compared to the intended direction of pulse propagation [41]. Focus-

wave modes do not violate the relativistic causality in principle [49], but they contain

two parts, one that carries energy along +z and one that carries energy along −z. Hence

the excitation of a focus-wave mode requires parallel apertures between which the wave

can be made to propagate [50]. With the use of the angular-spectrum representation,

the two wave components can be treated separately; in fact, a suitable choice of pulse

parameters makes the forward-propagating component overly dominant [51].

2.5 Other localised wave modes

Rotationally periodic waves considered above constitute, however, only one variety of

localised waves while many others also exist. Although they are not, in principle,

within the subject of this thesis, some of them are here described briefly due to their

close relations to the rotationally periodic waves.

Pulsed Bessel beams8 [53] retain their transverse shape since they are constructed

in such a way that the radial wave number is independent of frequency. Hence they are

naturally generated by all devices that explicitly feature a constant transverse wave

number, such as on-axis holograms [54, 55] and acoustic nondiffracting-beam transduc-

ers [56]. Their dispersion relation is kz(ω) =
√

(ω/c)2 − k2
⊥ (compared with equation

(2.8)) and the entire wave factorises into the transverse Bessel-beam distribution and

the propagating axial part. The latter, however, is subjected to a ’spatially-induced’

group-velocity dispersion due to the nonlinear frequency dependence of the axial wave

number.

Acoustic directed-energy pulse trains [47] are constructed from focus wave modes

by superposing waves continuously over the free parameter β in equation (2.14). This

8Terminology here is not very well established, and the term ’pulsed Bessel beams’ has also been
used for optical nondiffracting waves [52].
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leads to finite-energy pulses that remain essentially invariant over a finite length of

propagation. Similar electromagnetic directed-energy pulse trains [57] are obtained

using a scalar field (identical to the acoustic field) as a Hertz potential. As a special

case, this method yields modified power-spectrum pulses [57].

Paraxial beams and pulses are described using the Fresnel diffraction integral and

they can be applied to describe wave propagation, provided that all wave components

propagate within a small angle from the optical axis. Bessel-Gauss beams [2] are Bessel

beams modified with a Gaussian aperture, which is often a natural choice since Bessel

beams are in many cases created using an optical system to transform an incident

Gaussian beam into a nondiffracting wave [58, 59]. Bessel-Gauss beams can also be

generalised to propagating pulses [60].

The propagation of a Bessel-Gauss beam is twofold: If the Gaussian envelope only

covers the central Bessel lobe (or a part of it), the beam is nearly Gaussian and it

is dominated by the Gaussian angular spread. For a large Gaussian profile contain-

ing several Bessel fringes, the beam appears an apertured Bessel beam dominated by

the Bessel cone angle [2] that carries a finite energy flux9. On the other hand, stan-

dard Laguerre-Gaussian modes can be used to represent scaling nondiffracting waves

(again, in the paraxial regime) that maintain their spatial form, yet they scale with

the enveloping Gaussian beam [62].

9Although the Gaussian envelope ensures a finite energy flux within Bessel-Gauss beams, their
aperture is still, yet highly localised, infinite in principle. Finite-aperture versions of a plane wave,
Gaussian, Bessel-Gauss, and Bessel beams have been analysed numerically in reference [61].
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3 Acoustic waves in anisotropic crystals

Research on acoustic (or elastic) waves in piezoelectric crystals is nowadays an im-

portant field for several applications, e.g., radio-frequency resonators, band-pass fil-

ters, and other microwave devices, see, for instance, a recent survey in reference [63].

Subsequently, new techniques for acoustic-wave imaging have also been developed

[64, 65, 66] for experimental research on anisotropic waves in crystals where the lattice

strongly influences the acoustic wave propagation. In [V] it is shown that, theoretically,

anisotropic crystals can also support nondiffracting wave modes and in [VI] a scheme

is presented for the generation of nondiffracting beams with the use of transducers

similar to those employed in commercially available acoustic resonators.

Wave propagation in the presence of a strong anisotropy essentially differs from

that in isotropic media. The formation of wave fronts may display folds and cusps

that are evidence for an energy propagation very much deviated from the direction of

phase propagation. In particular, some directions of the crystal lattice are able to focus

(divergingly) strong energy fluxes, and they can be observed through the formation of

caustics, i.e., directions of singular phonon focusing. Properties of anisotropic wave

propagation are naturally described in terms of the slowness- and group-velocity sur-

faces characteristic to each individual crystal; see, e.g., Refs. [67, 68] and the phonon

focusing is a direct consequence of the geometrical curvature of the slowness surface.

Acoustic nondiffracting waves inherit the characteristic properties of the specific

anisotropic crystal in which they propagate. Hence their properties can be described

with transverse slowness and velocity curves that provide physical insight into their

propagation [VI]. Treatment of anisotropic nondiffracting waves is not, however, limited

to acoustic waves in crystals; an identical formalism may be used for electromagnetic

waves in the presence of birefringence [69].

3.1 Anisotropic wave propagation

Acoustic wave propagation in (linear) anisotropic crystals is described using the ani-

sotropic wave equation [64, 70, 71]

3∑
l,m,n=1

cklmn
∂

∂xl

∂

∂xn
Um(x1, x2, x3; t) =

∂2

∂2t
Uk(x1, x2, x3; t), (3.1)

where the Ui are the x = x1, y = x2, and z = x3 components of local displacements,

cklmn is the stiffness tensor (tensor of elastic moduli) characteristic to the material, and

ρ is the mass density. Plane-wave solutions

u(r; t) = Uei(k·r−ωt), (3.2)
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to the above equations are obtained from the Christoffel (eigenvalue) equation

3∑
l,m,n=1

cklmnklknUm = ρω2Uk. (3.3)

If the material used is piezoelectric, equation (3.3) is further modified by replacing

the tensor of elastic moduli with the piezoelectrically stiffened moduli c̃klmn, see refer-

ence [71] for details10.

Since there are three linearly independent directions of displacements in solids, there

are also three linearly independent polarizations for plane waves propagating along each

direction. Their phase velocities are usually different, and they are often named the

longitudinal (L), the fast transverse (FT), and the slow transverse (ST) modes, in the

order of decreasing phase velocity. In the presence of a weak anisotropy, their names

refer to their dominant polarization components. In nondispersive crystals11, plane

waves are often described using the slowness vectors s = k/ω instead of wave vectors;

the length of the slowness vector equals the inverse phase velocity of the given plane

wave. Allowing the direction of the slowness vector to vary freely, the vectors trace

three slowness surfaces characteristic to each crystal, see figure 3.1.

Propagation of laterally or temporally limited wave packets is known to be described

by the group velocity V = [∂ω/∂kx ∂ω/∂ky ∂ω/∂kz ] that is a vector normal to the

surface spanned by the slowness vectors. Due to nondispersiveness, the wave vector

and the group-velocity vector satisfy V · k = ω or, equivalently, V · s = 1. They are

not, however, necessarily collinear, as in isotropic media; the group-velocity component

along the wave vector equals the phase velocity but it often also contains a transverse

component.

The slowness and group-velocity relation causes somewhat surprising phenomena.

The slowness surfaces are, in fact, defined such that along a radial direction from

origin, the first allowed slowness belongs to the L mode and the two subsequent modes

to the FT and ST surfaces, in this order. Although the slowness surfaces are commonly

named as the L, FT, and ST modes, they are not necessarily separate from each other.

Especially, the transverse modes (that are identical for isotropic waves, except for

polarizations) are often in contact with each other and it is possible to move smoothly

10The stiffening of the elastic moduli depends on the direction of the wave vector and may hence
only be applied to the Christoffel equation and not to the anisotropic wave equation that must be
explicitly coupled to the electric potential to include piezoelectric effects.

11Acoustic phase velocities in crystals are usually independent of the frequency, provided that the
wavelength is much longer than the interatomic separation; acoustic vibrations are therefore considered
nondispersive [72].
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Figure 3.1: Slowness and group-velocity surfaces of quartz. The two
transverse surfaces are not actually separate; the sharp tips on the north
poles are due to a conical interconnection between the surfaces. The non-
convex regions on the two transverse slowness surfaces creates folds on the
corresponding group velocities; the longitudinal slowness surface is convex
and, consequently, the group-velocity surface is smooth.

from one surface to another, as can be seen in figure 3.1. While the slowness vectors are

allowed to move around all directions, the corresponding group-velocity vectors span

group-velocity surfaces. Even though the slowness surfaces are smooth12, the group

velocity sometimes develops sharp folds. This is due to the fact that there are possibly

several wave modes that propagate energy along the same direction.

The anisotropy of wave motion leads to the following, quite unexpected phenomena,

illustrated in figure 3.2:

Beam steering The anisotropic beam-steering effect arises from the fact the group-

velocity vector may have a component perpendicular to the wave vector. If an acoustic

beam of finite width is generated, predominantly having the wave vector k, the beam

energy and its cross-sectional envelope actually travel along V , thus moving partially

sidewise [73]. This effect is, in fact, analogous to dispersive waves where a (temporally)

12Slowness surfaces may be taken smooth but this can require joining the surfaces together, such
that a smooth movement along one surface continues onto the other on.
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Figure 3.2: Beam steering, internal diffraction and phonon focusing in
anisotropic solids, illustrated schematically in 2 dimensions. (a) In beam
steering, the beam moves laterally relative to k. (b) In internal diffraction,
two different wave components propagate to the right and their mutual
interference gives rise to an interference pattern. (c) Strong phonon focus-
ing occurs along the diagonal directions of the inner slowness curve, i.e.,
the outer wave front. Note that the wave fronts have the shapes of the
group-velocity curves.

localised wave packet propagates at the group velocity, instead of the phase velocity.

Internal diffraction Internal diffraction is, despite its somewhat misguiding name,

an interference effect. If a wave is generated with a time-harmonic perturbation, plane-

wave-like oscillations start to propagate along each spatial direction. Along a fixed

direction, such waves are observed whose group-velocity vectors point in that direction.

If the associated slowness surface is not convex, there may exist several wave vectors

that all share a common direction of group velocity, and they are all observed at

the same point. Since they have, however, different wave vectors, their superposition

displays an interference pattern that is called internal diffraction. If, on the other

hand, a wave is launched as an instantaneous pulse, the wave fronts correspond to the

expanding group-velocity surfaces. In the latter case, waves moving along the same

direction cross the observation point at different times.
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Phonon focusing Wave energy in anisotropic crystals is often strongly focused in

certain directions relative to the crystal orientation. This effect is observed if the wave

is excited with a rather isotropic source that gives rise to equally strong plane-wave

components in each k direction. Since the plane waves, however, propagate along V ,

the wave energy concentrates in directions where several k-values have a nearly equal

V . When the curvature vanishes altogether, the energy flux diverges (in the geometrical

optics approximation [74]) for an infinitely small point source. This is called a caustic.

Physically, all sources have a finite size and integrating over the source region cancels

the divergence, yet the relative phonon-flux level can still achieve a value one hundred

times larger than the average [68].

3.2 Nondiffracting waves

Just like for ordinary isotropic waves, anisotropic waves are also nondiffracting provided

that all the wave components share an equal phase velocity along the beam axis.

This prevents the components from mutually dephasing, which would change their

interference pattern. In terms of slowness, each wave must have the same slowness

along z (the z axis being the beam axis); in figure 3.3 the slowness surfaces have been

cut at sz = constant, the inverse phase velocity along the beam axis. The intersection

of a slowness surface with the sz = 1/v plane is a slowness curve whose geometry

already determines the shape of a nondiffracting beam or a pulse. For isotropic waves,

this slowness curve is merely a circle as shown in the illustration of a measurement in

figure 2.1.

Nondiffracting wave modes are superpositions of plane waves that all satisfy sz =

1/v, i.e., kz = ω/v,

u =

∫ ∫
A(ω, θ)U(θ)eiω[sx(θ)x+sy(θ)y+szz−t]dθdω. (3.4)

Here the θ-integral extends over one or more slowness curves in the sz = 1/v-cut plane,

and the ω integration covers different frequency components. The arbitrary function

A(ω, θ) represents the weight of each plane-wave component. We choose θ as the

arc-length parametrisation of the slowness curve(s) while all other contributions are

included in the weight function A(ω, θ). The polarization U(θ) is only defined up to

a complex constant factor by the Christoffel equation (3.3), and it should be chosen

continuous along the slowness curve, i.e., the integration path. If only a nondiffracting

continuous-wave beam is considered, the angular frequency ω assumes a constant value

and the corresponding integral can be omitted.
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Figure 3.3: Three nested slowness surfaces of crystalline quartz cut along
sz = 64 µs/m, i.e., v = 12.5 km/s.

On a plane z = constant, a nondiffracting wave appears to behave like a two-

dimensional wave13 whose properties depend solely on the shape of the slowness surface

in the (sz = 1/v)-plane. In analogy with ordinary anisotropic waves in three dimen-

sions, a radial velocity V⊥ can be defined that is normal to a slowness curve and also

satisfies V⊥xsx + V⊥ysy = 1. Hence it essentially acts like a group velocity, though it

does not describe actual energy propagation. A radial velocity curve is produced cor-

responding to the slowness curve, and it directly yields the shape of the nondiffracting

wave in the (x, y)-plane, see figures 3.4 and 3.5.

More insight into the structure of nondiffracting waves is obtained by studying

the asymptotic form of the wave [VI]. Although the wave is globally a superposition

of plane waves with a common sz, it turns out that, away from the axis, only those

wave components that carry energy directly towards the axis or away from it locally

contribute to the wave pattern. The above-mentioned radial wave-front velocity is, in

fact, obtained using this approach. This expansion also reveals the effects of internal

diffraction and phonon focusing. If the slowness surface is not convex there are, again,

several plane waves to move along the same radial direction and that may interfere,

causing internal diffraction. The phonon focusing also becomes explicit since the am-

plitudes of a plane-wave component not only depend on the weight A(θ) but also on

13This is indeed an anisotropic variant of the fact that an arbitrary two-dimensional wave solution
has a one-to-one correspondence with a nondiffracting solution in three dimensions; the time depen-
dence of the former is effectively changed to a (z cos ζ/c− t)-dependence of the latter, together with a
radial scaling r → r sin ζ [75]. Hence the propagation along z appears trivial for ideal nondiffracting
waves.
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Figure 3.4: Longitudinal (L), fast transverse (FT), and slow transverse
(ST) pulse modes in quartz. (left) Three-dimensional shape of the propa-
gating pulse, (right) their approaching cross sections (back planes in left,
z > vt). Both pulses correspond to the slowness cuts in figure 3.3. The
cross sections are directly obtained from the radial-velocity curves in fig-
ure 3.5.
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Figure 3.5: Three slowness curves and the corresponding radial veloc-
ity curves for quartz. Only the ST mode has a nonconvex slowness and,
consequently, its velocity curve exhibits folds associated with wave front
caustics. The radial velocity curves readily provide the drifting cross sec-
tions (z < vt); the approaching cross sections in figure 3.4 are obtained
after inversion (x → −x, y → −y).

the inverse square root of the slowness curvature. Consequently, phonons concentrate

along the directions of the locally flat slowness surface.

3.2.1 Generation of anisotropic NDWs

The existence and propagation of nondiffracting acoustic waves in anisotropic crystals

can be conceived in terms of the slowness surface and plane-wave superposition. An

intuitive understanding of the energy propagation associated is further obtained using

the asymptotics of the waves where only a few plane waves locally constitute the

wave pattern. Physical generation of such waves yet gives rise to several problems

that impede experiments on nondiffracting waves. At the time of writing, anisotropic

nondiffracting waves have not yet been produced or measured in crystals, to the best

of my knowledge. Hence, a means of their excitation and detection is proposed here

and it is also discussed in [VI].

A well-established method of wave generation in piezoelectric crystals is the use

of electric transducers laid on one of the crystal surfaces. Interdigital transducers, in

particular, have been widely studied due to their important applications in microwave

filter technology. Interdigital transducers are periodic (or, sometimes, quasi-periodic)

linear arrays of metallised strips onto which a radio-frequency current is driven. Due

to the piezoelectric effect, the oscillating electric potential excites acoustic waves for
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which the period on the surface is determined by the period of the transducer. Inter-

digital transducers are almost exclusively applied for producing surface-acoustic waves

although they can also transmit bulk waves (see, for instance, references [76, 77], and

the brief discussion in the Appendix F of reference [78]). While surface waves attenuate

exponentially inside the crystal, hence preventing wave energy from leaking away from

the transducer [79], bulk waves generated are, essentially, plane waves that propagate

into the depth of the crystal.

Similar transducers can be conceived of also being capable for producing nondiffract-

ing beams. Since, asymptotically, only a few wave components essentially contribute

along each radial direction, a piezoelectric transducer should be designed to excite

these particular waves. This idea is strongly analogous to the use of diffractive el-

ements (computer-generated holograms) in optics to form nondiffracting waves [54]:

Hankel beams locally appear like plane waves and they are known to transform into

Bessel beams after a certain distance of propagation. Hence it suffices to produce their

correct transverse periodicity, i.e., the transverse wave number k⊥, on the surface of

the hologram/transducer that, consequently, also determines the axial wave number

kz.

Nondiffracting-wave transducers are, however, in many respects far more compli-

cated than ordinary linear interdigital transducers or diffractive elements and they

need to be carefully designed. One of the main problems is that, generally, a periodic

transducer creates six different plane waves instead of the one intended. This is due

to the existence of the three polarization modes (L, FT, and ST), and all these occur

both along k⊥ and −k⊥. Sometimes even the multiples of radial wave vectors appear

if the corresponding wave components are not evanescent. A complicated transducer

with several elements within one period is likely to allow the exclusion of some of these;

another alternative is to design the transducer such that the spurious extra modes do

not overlap with the desired beam in the region were they are detected. This leads to

a stringent aperture optimisation, see figure 3.6.

Nondiffracting waves propagating within a crystal are most naturally detected on

one of the crystal surfaces. The actual nondiffracting beam generated by the transducer

in figure 3.6 is merely the central circular spot on the opposite surface of the crystal.

Interferometric scanning can be used to measure oscillations along the surface normal

with a lateral xy-resolution ≈ 1 µm and an amplitude threshold ≈ 0.1 nm [65, 80].
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Figure 3.6: Sketch of an aperture-optimised transducer for exciting an
L-mode nondiffracting beam in quartz with sz = −64 µs/m (the direction
of wave propagation is along negative z). (a) Transducer structure: white
denotes grounded electrodes and gray the driving electrodes (bondings
must be supplied separetely). The length of the local transducer period
scales with inverse frequency, while the shape of the aperture only depends
on the intended spot size. (b) The transducer is fabricated on the top
surface of the crystal and the wave field generated can be observed on
the bottom surface. Several spurious modes are observed in addition to
the intended nondiffracting L-mode spot in the centre. (c) Origin of the
spurious modes. At each location, the transducer produces two counter-
propagating L, FT, and ST modes that all propagate in the direction of
the corresponding group-velocity vector.
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4 Radio-hologram techniques

Holograms, in the original sense introduced by Gabor in 1948 [81], are photographic

plates capable of recording the entire single-frequency optical field, including its phase,

superposed with a coherent reference beam. Holography used to refer to the recon-

struction of the wave front when the hologram was illuminated with a beam similar to

the original reference beam. The observed light field is a reproduction of the original

image, created by diffraction from the grating pattern on the holographic film. The

computational power developed in the 60’s and 70’s allowed the numerical synthesis of

holograms that were used to construct wave fields without any ’original’ images; the

grating pattern on the hologram was designed numerically to transform the incident

wave field into the desired field [82]. These were called computer-generated holograms,

or diffractive optical elements.

The use of radio holograms, i.e., computer-generated holograms in the radio-wave

frequencies, began in the 1990’s with the primary application of transforming a Gaus-

sian radio beam into a plane wave, to be used in a compact antenna test range (CATR)

at 119 GHz [83, 84]. Optical holograms have provided one of the most important meth-

ods for producing Bessel beams [54]. Within this thesis, radio holograms have been

synthesised to experimentally study the generation and propagation of nondiffracting

radio-frequency waves [VII] and other beam-forms [VIII]. Although holograms usually

provide smaller efficiencies than instruments used in refractive optics, such as lenses and

axicons14, they allow for more complex shaping of the transmitted beams. High-order

Bessel beams were indeed first produced with holograms [55] and highly-refined polar-

ization gratings have recently been shown to be capable of generating Bessel beams of

different polarization states [86].

Radio waves have one particular advantage in comparison with optical measure-

ments, namely that it is rather straightforward to measure the phase of the field prop-

agating, in addition to its amplitude or intensity. In the optical regime, this is only

achieved with complicated interferometric instruments. The existence of the phase in-

formation allows detailed analysis of the wave field measured, such as the study of the

angular spectrum already illustrated in figure 2.1 in section 2.1.

4.1 Diffractive elements

The function of a (thin) radio hologram is described in terms of a complex-valued

transmittance T (x, y) that relates the incident electromagnetic field to the transmitted

14Radio-wave Bessel beams have also been produced with axicons [85].
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field through

Etr(x, y) = T (x, y)Einc(x, y). (4.1)

This form implicitly assumes that the polarization of both fields is the same, and often

it is taken to be linear and constant across the entire hologram. Two stages must

be addressed in the hologram synthesis: (i) finding the proper transmittance required

for the construction of the desired field and (ii) designing a hologram structure that

produces it. A nonamplifying hologram is bound to |T | ≤ 1; this is, however, often an

artificially high upper bound, as will be noted below.

Two types of holograms are usually studied separately. Amplitude holograms op-

erate based on the reflection or attenuation of the transmitted field, with no explicit

modulation of the phase. The amplitude holograms fabricated here consist of a di-

electric mylar film covered with a copper layer, onto which the hologram pattern is

etched. The copper layer acts as an ideal conductor, effectively reflecting all the inci-

dent field. This allows, within the limits of scalar diffraction theory, a binary amplitude

modulation of the transmitted beam15. Hologram structures are often locally periodic

and, consequently, the beam is diffracted into several distinct diffraction orders; the

first order is here used for the desired beam. According to scalar theory, the maxi-

mum transmittance obtained is bound to |T1| ≤ 1/π although the actual value may be

slightly larger when rigorous electromagnetic theory is used.

Phase holograms are made of dielectric material alone and their operation is based

on the phase modulation of the beam transmitted. We have used both the commercial

material Obomodulan(R) (designed for high-quality milling) and Teflon; the hologram

pattern is milled on the surface of a substrate plate. By varying the thickness of

the plate locally, the optical length of the field within is changed, introducing local

changes in the phase of the beam. Once again, the first diffraction order is used

and the transmittance is limited to |T1| ≤ 2/π. Higher efficiencies compared with

the amplitude holograms are usually obtained since no field is necessarily blocked or

reflected by the phase hologram16.

4.1.1 Choosing the desired transmittance

There are several alternatives for how to obtain the desired transmittance function

T (x, y) or, equivalently, the desired transmitted electromagnetic field. Two methods

15Finite thickness of the holograms, however, deteriorates the pure binary modulation and the actual
effect of the hologram must be found using more precise methods.

16Some reflections always occur on a dielectric surface but this is often a minor effect in comparison
to the reflections caused by an amplitude hologram.
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θ=33˚ m=1

m=0

m=-1

z'

z

desired
field

x
x'

Figure 4.1: Schematic of the radio-hologram geometry. The beam desired
is produced in the m = 1 diffraction order, 33◦ from the hologram normal,
the angle being chosen such that only the m = 0 and m = ±1 orders are
formed. Once the three beams have separated, the desired m = 1 beam
may be shaped by the hologram optimisation. The boundary diffractions
have been excluded here.

are considered here briefly: inspection (sometimes very practical) and back propaga-

tion.

If the desired beam form is simple enough, the transmittance may be obtained

through inspection. If the hologram is designed to form a plane wave that propagates

along z′ (see figure 4.1 for the convention of coordinates), the desired beam is

Etr = Aeikz′ = Aeik(x sin θ+z cos θ)
∣∣∣
z=0

= Aeikx sin θ, (4.2)

where A is a constant amplitude (see below) and the above expression is the field on

the hologram surface. Hence the transmittance needed is obtained from T (x, y) =

Etr(x, y)/Einc(x, y), where the incident field is assumed to be known. There are two

issues that have to be considered here. The field is produced in the first diffraction

order (defined through the angle θ) and the constant amplitude must not exceed its

efficiency. Using binary quantized amplitude and phase holograms, these limits are

approximately A . 1/π and A . 2/π, respectively. The hologram also necessarily has

a finite aperture whose boundaries limit the field produced. To avoid perturbations
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caused by a sharp boundary, the edges must be tapered to allow a smooth decrease of

the amplitude to zero. The beam quality is nonetheless bound to deteriorate for large

distances.

This simple approach, however, fails for Bessel-beam holograms. Binarisation algo-

rithms often assume that the transmitted field locally behaves like a plane wave; Bessel

beams are, effectively, superpositions of two counter-propagating plane waves, which

is a much more complicated situation. This would not necessarily be a problem for

on-axis holograms that use the zeroth diffraction order, but it complicates the off-axis

holograms employed. A Bessel-beam field can nevertheless be obtained if the Bessel-

function profile is replaced with the second Hankel function [31] that corresponds to a

conical wave that approaches the optical axis, i.e., the z′-axis, in the cone angle ζ . Once

it crosses the axis, the beam is changed to the outward-propagating first Hankel func-

tion and their mutual superposition is the Bessel beam desired. The divergence of the

Hankel beams generated is easily removed on the optical axis by replacing the Hankel

functions further with their asymptotic expansions far from the origin, modified such

that their amplitude remains finite17. The maximum amplitude and the boundaries

must be handled similarly as in the above case of the plane waves.

If the field to be produced is only defined at a certain finite distance L from the

hologram along the direction of the first diffraction order, the field on the hologram

must be found by back-propagating the field onto the hologram. This method also

has the advantage of directly handling the boundary effects: the final boundary is

determined by the back-propagated field18. If the electric field at z′ = L is given by

E(x′, y′, z′ = L) and its Fourier transform is Ẽz′=L(kx, ky), the field at an arbitrary

point is obtained using the angular spectrum [40]:

E(x′, y′, z′) =
1

2π

∫ [
Ẽz′=L(kx, ky)e

i
√

k2−k2
x−k2

y(z′−L)
]
ei(kxx+kyy)dkxdky. (4.3)

Inserting here the hologram coordinates x′ = x cos θ, y′ = y and z′ = x sin θ, the

field transmitted by the hologram is obtained. This operation can be evaluated quite

efficiently with the use of FFT algorithms.

The back-propagation scheme can be used, for instance, to reduce boundary effects.

Radio holograms used for antenna testing are required to produce a high-quality plane

17This causes only minor perturbations on the field since, in any case, the field near the optical axis
would not behave locally like a plane wave. Secondly, point-like (or small) defects create spherical
perturbation whose amplitude decreases in proportion to the inverse of distance.

18Actually, the aperture is to be defined, for instance, where the transmitted amplitude drops to
1% of the maximum, which limit may further be tapered.
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wave over the area of the receiving antenna19. Hence the field at z′ = L is to be a plane

wave of constant amplitude and phase, tapered to vanish smoothly outside a disc of a

certain radius. This field is then propagated back onto the hologram in order to find

the transmitted field required. The resulting field is no longer a tapered plane wave

but it has diffractive phase and amplitude variations. These, however, should exactly

cancel once the field propagates from the hologram to the plane z′ = L. Much more

complicated holograms can also be designed using back propagation, such as the one

producing a radio field shaped in the form of the characters ‘HUT’, see section 4.2.3.

4.1.2 Quantisation of the hologram structure

Hologram quantisation schemes are usually based on the assumption that both the

incident field Einc and the transmitted field Einc vary slowly, except for a linear phase

on the hologram surface. This is equivalent to assuming near (x0, y0) an incident

wave of the form Einc = E1e
i[k1x(x−x0)+k1y(y−y0)] and a transmitted wave of the form

Etr = E2e
i[k2x(x−x0)+k2y(y−y0)]. Using the abbreviations kx = k2x − k1x, ky = k2y − k1y,

and k⊥ =
√
k2

x + k2
y, the rotation angle cos θ = kx/k⊥ (hence sin θ = −ky/k⊥), and

local grating coordinates x−x0 = ξ cos θ+ η sin θ and y− y0 = −ξ sin θ+ η cos θ yields

Einc(ξ, η) = E1e
i(k1ξξ+kηη)

Etr(ξ, η) = E2e
i(k2ξξ+kηη)

T (ξ, η) =
Etr

Einc

=
E2

E1

eik⊥ξ,

(4.4)

where k1ξ = k1x cos θ−k1y sin θ, k2ξ = k2x cos θ−k2y sin θ, and kη = k2x sin θ+k2y cos θ.

Most importantly, the hologram grating modulates the phase only along ξ since the

phase dependence along η is identical for the incident and transmitted fields. The

transmittance has the periodicity L = 2π/k⊥ and this is also the local periodicity of

the hologram structure.

The electromagnetic field on both sides of the hologram20 can now be expressed

19The compact antenna test range (CATR) holograms have not, however, been designed using this
method but rather a parametrised iterative algorithm especially tailored for synthesising plane-wave
holograms, see, for instance, in reference [83].

20The polarization of the field is ignored in this discussion. Although it plays an important role
in the actual implementation of the synthesis algorithms, general principles can be described without
explicit reference to the polarization.
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Figure 4.2: (a) Arbitrary periodic grating scatters an incident plane
wave into several distinct transmitted and reflected diffraction orders. (b)
Grating structure used in radio holograms. Copper stripes layed on a
dielectric mylar film essentially reflect all incident waves while the slots in-
between allow the radiation be transmitted. (c) Part of a vortex-generating
hologram where black denotes copper stripes and white slots.

using the Rayleigh expansions [87]

Ez<0 = E1e
i(k1xξ+kηη) +

∞∑
n=−∞

Rne
i(kξnξ+kηη−kznz)

Ez>0 =

∞∑
n=−∞

Tne
i(kξnξ+kηη+kznz),

(4.5)

where kξn = k1ξ + n2π/L and kzn =
√
k2 − k2

ξn − k2
η. The sums extend over different

diffraction orders, either propagating or evanescent, and Rn and Tn are the reflection

and transmission coefficients of each order, respectively, see figure 4.2.

Assuming that the field is measured far enough from the hologram such that the

diffraction orders have spatially separated as in figure 4.1, only the transmittance T1

of the first diffraction order contributes to Etr. By construction, it also has exactly

the correct phase term since kξ,n=1 = k1ξ + 2π/L = k2ξ. In order to find the required

transmission coefficient T1, the hologram structure must be modeled, either using a

simplified scalar theory or a rigorous theory that models the entire electromagnetic

field within the hologram grating, thus taking into account the finite thickness of the

structure. Several algorithms for this purpose have been developed within diffractive

optics [87].

Choosing the proper structure for a grating period is an inverse problem in the
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sense that for a given structure it is possible to find the required coefficient T1 but,

beyond the scalar theory, there are no simple methods to invert the procedure. Hence

a limited family of structures is often chosen, such as binary gratings that have one

rectangular groove of a variable thickness and width per period. The transmission

may then be calculated for different values of the parameters and the optimal choice

be taken. In particular, the phase of the transmission T1 can always be matched to

coincide with the phase of the field required, Etr, with the use of a translation of the

grating structure [88]. Each family of structures still has a maximum transmission

amplitude that can not be exceeded. Within these constraints, a binary grating can be

used to produce an arbitrary transmittance. The more degrees of freedom is allowed

for the family of different structures, the more energy can usually be directed into the

first diffraction order; in this sense the binary grating is still limited in applicability.

4.2 Experimental results

Several different types of holograms have been produced and measured in order to test

and verify the synthesis methods employed and to experimentally study the propaga-

tion of apertured electromagnetic beams. A radio source of the frequency 310 GHz

(wavelength λ = 0.97 mm) and of linear polarization was used and all measurements

in this section were obtained using scalar-theory amplitude holograms. The measure-

ment setup and details (together with some further experiments not mentioned here)

are described in [VIII].

4.2.1 Plane-wave vortex

Electromagnetic vortices are radio-wave fields that contain phase singularities where

the field amplitude necessarily vanishes [36]. The trajectory of the singularity in the

centre of a circular radio-wave field is a straight line21 and it can thus be used to align

the electromagnetic beam.

A hologram was synthesised to produce the radio field

E(r′, ϕ′) = W (r′)eiϕ′
, (4.6)

where r′ is the radial coordinate and ϕ′ is the azimuthal angle in the beam coordinates.

The exponential term produces the phase singularity at r′ = 0 while the amplitude

W (r′) is a constant disc of radius 10 cm, tapered on the boundary to reduce edge

diffraction. Although the amplitude is not explicitly required to vanish at r′ = 0, it is

necessarily bound to do so during the actual beam propagation.

21For more complex situations, see, e.g., reference [89].
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16cm 24cm 34cm

44cm 54cm 64cm

74cm 84cm 94cm

Figure 4.3: Propagation of an electromagnetic vortex. The vortex core
remains unchanged while the rest of the apertured field develops diffraction
rings. Area illustrated in each figure is 6 cm × 6 cm and the gray scale is
linear in field amplitude.

The beam was measured at several distances from 16 cm to 94 cm in order to study

the propagation of the vortex, see figure 4.3. The vortex core itself is seen to remain

unchanged until the approximate distance of 70 cm, after which ripples start to develop

in the vicinity of the core. The phase singularity, however, remains in the core and the

amplitude vanishes at the singularity. The rest of the disc is subject to edge diffractions

and increasing diffraction rings are observed. Comparison with simulations attribute

the rings to the aperture radius and to the particular tapering used.

4.2.2 Bessel beam

Propagation of the Bessel beam was investigated with the use of a zeroth-order Bessel-

beam hologram. The hologram was designed to produce only the inward-propagating

component of the beam in order to yield a diamond-shaped area of the Bessel beam,
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Field amplitude, 31 cm Field amplitude, 41 cm 

Field phase, 31 cm Field phase, 41 cm 

31cm 41cm

hologram
Hankel Hankel

Bessel

Figure 4.4: Apertured Bessel beam. Areas illustrated are 9.6 cm × 9.6 cm.

see figure 4.4. The hologram was tapered both in the center and on the outer aperture

boundary; the central tapering increases the total efficiency since, otherwise, the highest

amplitude would be produced there and the transmittance in the outer regions should

be reduced accordingly.

The beam measured at the waist shows a clear Bessel-beam structure that vanishes

approximately at the geometric boundary caused by the aperture. The phase is binary,

reflecting the fact that the beam is, in fact, created as a standing-wave pattern of

the inward and of the outward propagating components. The phase ripples near the

corners are due to the nearly vanishing field whose phase varies stochastically in the

measurement. The field following the geometric waist retains its Bessel-beam character

at the centre but, in the outer regions, it transforms into a Hankel-type wave. This is

observed both in the amplitude and in the phase: the superposition pattern vanishes

and it is transformed into a decreasing r−1/2 amplitude while the binary phase is
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Desired field
Measured field produced

with a hologram

Figure 4.5: Field produced with a back-propagation designed hologram.
Area illustrated is 16 cm × 8 cm. This measurement has been published
in [90].

simultaneously changed into a linearly increasing phase.

4.2.3 Custom-made wave field

We produced a custom-made hologram in order to verify the applicability of the back-

propagation scheme for radio holograms. The desired radio field was composed of the

letters ‘HUT’ (standing for Helsinki University of Technology) and the hologram was

designed to form this field pattern at the distance of 1 m from the hologram. The

desired field together with the final measurement are shown in figure 4.5.

The text HUT is clearly identified in the measured field, despite the external field

noise. The transmittance obtained with the use of the back propagation was highly

complicated and the measured field proves the usefulness of the back-propagation de-

sign method. Rigorous optimisation of the hologram structure should yield yet an

improved contrast to the field produced.
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5 Summary

The physical phenomena considered in this thesis are, in principle, electromagnetic

and acoustic wave propagation in homogeneous, linear, and nondispersive media, in

particular in free space and in anisotropic crystals. The phenomenology of waves is,

however, rich and it gives rise to wave forms of very specific properties, such as both

axial and radial localisation or propagation invariance.

In this thesis, the concept of rotationally periodic waves is introduced and applied

as a framework for the analysis of waves that remain localised under propagation in

free space; both the nondiffracting waves and the focus-wave modes belong to this

class of waves. Rotationally periodic waves can also be understood as pulsed variants

of self-imaging fields that have been widely studied using diffractive optics. The key

feature underlying their properties is the synchronous generation of conical waves that

approach the optical axis so as to continually reconstruct the exact pulse profile. Phys-

ically, no propagation invariance may occur endlessly since the waves should eventually

be launched arbitrarily far from the axis, requiring an infinite-size apparatus; practi-

cally, these waves can still be formed for a long-enough propagation distances to allow

their use in experiments and applications.

Two more specialised issues are also considered in this thesis: (i) The theoretical

treatment of nondiffracting waves is extended to anisotropic media where the phenom-

ena inherent to strong anisotropy are also portrayed in the nondiffracting waves. (ii)

Radio holograms have been used to experimentally verify the propagation of Bessel

beams, as well as of other types of radio beams. These two specific cases are to exem-

plify different fields of physics where propagation-invariant waves are producible and

appliable.
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[24] M. Erdélyi, Z. L. Horváth, G. Szabó, Z. Bor, F. K. Tittel, J. R. Cavallaro, and

M. C. Smayling, Generation of diffraction-free beams for applications in optical

microlithography, J. Vac. Science & Techn. B 15, pp. 287–292 (1997).

[25] K. M. Iftekharuddin and M. A. Karim, Heterodyne detection by using a diffraction-

free beam: tilt and offset effects, Appl. Opt. 31, pp. 4853–4856 (1992).

[26] M. Nisoli, E. Priori, G. Sansone, S. Stagira, G. Cerullo, and S. D. Silvestri, High-

brightness high-order harmonic generation by truncated Bessel beams in the sub-

10-fs regime, Phys. Rev. Lett. 88, p. 033902 (2002).



- 41 -

[27] T. Wulle and S. Herminghaus, Nonlinear optics of Bessel beams, Phys. Rev. Lett.

70, pp. 1401–1404 (1993).

[28] B. Glushko, B. Kryzhanovsky, and D. Sarkisyan, Self-phase-matching mechanism

for efficient harmonic generation processes in a ring pump beam geometry, Phys.

Rev. Lett. 71, pp. 243–246 (1993).
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Abstracts of publications I–VIII

I We consider periodically propagating pulses, devoid of diffractive spreading. They

may feature arbitrary velocities of propagation but their spectral characteristics

vary according to whether they are luminal, subluminal or superluminal. The

wave modes introduced are closely related to the X waves and the focus wave

modes, but they allow a frequency-dependent cone angle and they are not lim-

ited to the speed of light.

II We introduce subsonic nondiffracting waves which — unlike the ordinary su-

personic nondiffracting waves — evolve periodically under propagation. Such

pulse-like waves have a subsonic uniformly propagating ‘core’, which is modu-

lated by a supersonic plane wave. The subsonic core may also be considered an

envelope for a truncated Bessel beam and subsonic nondiffracting waves may be

used to describe signal propagation within Bessel beams.

III A unified spectral and temporal representation is introduced for nondiffracting

waves. We consider a set of elementary broadband X waves which spans the

commonly considered nondiffracting wave solutions. These basis X waves have a

simple spectral representation which leads to expressions in closed algebraic form

or, alternatively, in terms of hypergeometric functions. The span of the X waves is

also closed with respect to all spatial and temporal derivatives and, consequently,

they can be used to compose different types of waves with complex spectral and

spatial properties. The unified description of Bessel-based nondiffracting waves

is further extended to include singular Neumann and Hankel waves, or Y waves.

We also discuss connections between the different known nondiffracting wave

solutions, and their relations to the present unified approach.

IV Nondiffracting pulses are spatially and temporally localized wave fields that un-

dergo no diffractive spreading under propagation through homogeneous media.

We introduce an orthogonality condition for nondiffracting pulses and present an

orthogonal set of X waves which possess temporal spectra of the form (polyno-

mial in ω)×e−αω. The newly introduced Bessel-X pulses and X-wave transforms

are discussed in the framework of orthogonal X-wave bases.
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V The concept of nondiffracting waves is generalized to encompass bulk-acoustic

waves within crystalline media. We introduce acoustic Bessel beams and general-

ized X waves for anisotropic elastic materials. Detailed numerical predictions for

propagation-invariant bulk-acoustic beams of various orders, and also X pulses,

are presented for experimental verification. The materials parameters used have

been chosen appropriate for quartz, the most important material for acoustic

device applications.

VI Recently, the physics of ballistic phonon propagation in anisotropic crystals has

been studied with new phonon-imaging methods. In this paper we consider non-

diffracting waves that can propagate in anisotropic crystals and analyze their

properties that emerge specifically due to the anisotropy. We further present a

detailed generation and detection scheme for the experimental verification of the

wave modes considered.

VII A computer-generated binary amplitude hologram is used to transform an initial

Gaussian electromagnetic field with spherical phase front at 310 GHz into a non-

diffracting Bessel beam. The beam profile is measured with the help of a near-field

scanner. In contrast to the situation in the optical region, both amplitude and

phase information is readily obtainable from the generated field.

VIII Holograms — diffractive elements — are designed and fabricated for shaping

millimetre-wave radio fields. Methods for the synthesis of hologram elements are

discussed and several beam shapes are tested: plane waves, radio-wave vortices,

and Bessel beams. Here we present an overview of the methods applied and

results obtained with quasi-optical hologram techniques using both amplitude

and phase holograms.
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