Aalto University
School of Science
Degree Programme in Computer Science and Engineering

Maria Peltola

Implementing reliability and redundancy
in a time critical telecommunication system

Master’s Thesis
Espoo, November 16, 2015

Supervisor: Professor Heikki Saikkonen
Advisor: Miia Valtonen M.Sc. (Tech.)

A' Aalto University
|
Aalto University

School of Science ABSTRACT OF
Degree Programme in Computer Science and Engineering MASTER’S THESIS
Author: Maria Peltola

Title:
Implementing reliability and redundancy in a time critical telecommunication
system

Date: November 16, 2015 Pages: vii 4+ 108
Major: Software technology Code: T-106
Supervisor: Professor Heikki Saikkonen

Advisor: Miia Valtonen M.Sc. (Tech.)

Different distributed systems have different requirements for reliability. One way
for increasing reliability is fault tolerance. Methods for increasing fault tolerance
have been studied for decades, starting from early hardware level fault tolerance
until more recent studies for peer-to-peer and cloud computing fault tolerance.

In this paper, fault tolerance of an existing telecommunication service platform is
studied and improved. Even in the case of a failure of a single server, called a call
handler, any data should not be lost. Three sub-problems with different expec-
tations are presented: failure detection, data dissemination and takeover. The
implemented failure detection protocol is based on a basic gossip-style heartbeat
protocol. The data dissemination protocol is a gossip-style dissemination protocol
which, unlike traditional gossip algorithms, does not select its targets fully ran-
domly. Instead, known data about which call handlers have received and might
have received a message are used when selecting targets. On top of both, a simple
takeover protocol is implemented.

Testing was done in a closed environment both for the failure detection and for the
data dissemination, as well as for whole the system. The results show that failure
detection protocol is able to provide adequate detection times and accuracy. The
nature of the implemented data dissemination algorithm is very spamming by the
results. The amount of sent messages can, however, be greatly decreased with
design decisions.

Test results for whole the system indicate that the system is able to provide
over 99 % reliability even with large server crash probabilities at least up to call
handler amount 16. Unfortunately, resources in the testing environment were
limited and that is why memory problems started to occur affecting the test
results starting from 17 call handlers. That is why larger call handler amounts
could not be tested.

Keywords: gossip, failure detection, data dissemination, heartbeat algo-
rithm, fault tolerance, reliability

Language: English

i

A, , Aalto-yliopisto

Aalto-yliopisto

Perustieteiden korkeakoulu DIPLOMITYON
Tietotekniikan koulutusohjelma TIIVISTELMA
Tekija: Maria Peltola

Tyo6n nimi:
Luotettavuuden ja toisteisuuden toteutus aikakriittiseen televies-
tintdjarjestelméasn

Paivays: 16. marraskuuta 2015 Sivumaéaira: vii + 108
Paiaine: Ohjelmistotekniikka Koodi: T-106
Valvoja: Professori Heikki Saikkonen

Ohjaaja: Diplomi-insinéori Miia Valtonen

Erilaisilla hajautetuilla jarjestelmilla on eri vaatimuksia luotettavuudelle. Erés ta-
pa parantaa luotettavuutta on vikasietoisuuden kasvattaminen. Erilaisia tapoja
parantaa vikasietoisuutta on tutkittu jo vuosikymmenia. Aikaisimmat tutkimuk-
set keskittyivit pédasiallisesti laitteistotason vikasietoisuuteen, mutta viime ai-
koina péadmielenkiinnonkohde on siirtynyt vertaisverkkojen ja pilviteknologioiden
vikasietoisuuden tutkimiseen.

Tamén opinndytetyon tarkoituksena on tutkia ja parantaa olemassaolevan tele-
viestintéjérjestelmén luotettavuutta vikasietoisuudella. Padméaréand on toteuttaa
ratkaisu, joka pitdéd huolta ettei tietoa katoa puhelunkésittelijéiden vikatilanteis-
sa. Varsinainen ongelma on jaettu osa-alueisiin: virheen havaitsemiseen, tiedon
levittdmiseen ja haltuunottoon. Virheenhavaitsemisprotokolla pohjautuu juoru-
tyyliseen syddmenlyontiprotokollaan. Tiedon levittdminen on toteutettu juoru-
tyyliselld tiedonlevitysprotokollalla, joka ei valitse lahetyskohteitaan tdysin satun-
naisesti, toisin kuin perinteinen juoruprotokolla. Sen sijaan valinnassa kéytetain
hyviksi tietoa verkon jésenistéd, jotka ovat jo vastaanottaneet viestin tai ovat
mahdollisesti vastaanottaneet viestin. Puheluiden haltuunottoprotokolla on to-
teutettu hyodyntaen edellisid protokollia.

Testaus toteutettiin suljetussa ympéristossd. FErilliset testit suoritettiin
virheenhavaitsemis- ja tiedon levittdmisprotokollille. Lisédksi tehtiin koko
jarjestelmétason testeja. Virheenhavaitsemisprotokolla nédyttda tulosten perus-
teella tarjoavan riittdvan hyvan havaitsemisajan ja -tarkkuuden. Tulosten perus-
teella tiedonlevittdmisprotokolla luo paljon viestejd, mutta viestiméariin pystyy
vaikuttamaan protokollasuunnittelulla.

Koko jarjestelmén testit viittaisivat siihen, ettd yli 99 % luotettavuus saavute-
taan jopa suurilla kaatumistodennékoisyyksilla ainakin 16 puhelunkésittelijadn
asti. Testiympériston resurssit olivat rajoitetut, mistd johtuen jo 17 puhe-
lunkésittelijan testeissé esiintyi muistiongelmia, jotka vaikuttivat tuloksiin. Suu-
rempia jasenméadria ei siksi pystytty testaamaan.

Asiasanat: juorualgoritmi, virheenhavaitseminen, tiedonlevitys,
sydamenlyontialgoritmi, vikasietoisuus, luotettavuus

Kieli: Englanti

il

Acknowledgements

First of all, I want to thank Aalto University and the supervisor of this
master’s thesis, professor Heikki Saikkonen, for providing the opportunity to
do the thesis.

I am also thankful to NSF Telecom Ab for providing the base for the
interesting subject.

Finally, a special thank you goes to my wonderful fiancé, who has provided
mental support during the writing process.

Espoo, November 16, 2015

Maria Peltola

v

Contents

1 Introduction
1.1 Objectives
1.2 Structure

2 Current system and
methodology
2.1 Definitions

2.1.1 Dependability and reliability

2.1.2 Time criticality . . .

2.1.3 Correctness, failures and faults

2.1.4 Fault tolerance . . .
2.1.5 Replication

2.2 Introducing the case: a telecommunication service platform . .
2.2.1 High level - Basic functionality
2.2.2 Architecture of the example system
2.2.3 Initial state of fault-tolerance in call handlers
2.2.4 Signaling in calls between components

2.3 Methodology

2.3.1 Simple failure specification

2.3.2 System requirements
2.3.3 Thegoal

3 Fault tolerant data spreading
3.1 Studies about fault tolerance
3.2 Middleware solutions
3.3 Protocol level fault tolerance

4 Failure detection

20
20
23
26

31

5

6

Theory behind implementation
5.1 Detecting failures Lo
5.1.1 Maintaining message order
51.2 Whentostop
5.1.3 Selecting timeout for detection
5.1.4 Call handler restart
5.2 Data dissemination
52.1 Whentostop
5.2.2 Ordering of data messages
5.3 Takeover protocol L
Implementation
6.1 Components of the rumour module
6.2 Implementation of failure detection
6.3 Data messages and data dissemination
6.3.1 State change message
6.3.2 Takeover message
6.3.3 General message forward request
6.3.4 Update calls notification
6.4 Takeover
6.5 Specialcases Lo
6.5.1 Crash before responding to the messaging interface
6.5.2 Receiving messages after release
6.5.3 Controlled stopping of a call handler
Protocol testing
7.1 Testing failure detection
711 Testsetup
7.1.2 Test parameters L.
7.1.3 Running tests
7.1.4 Criteria
7.1.5 Testresults
7.2 Testing data dissemination
721 Testsetupo
7.2.2 Criteria
723 Testresults,
Black-box testing

8.1 MTestsetup
8.2 Criterla
83 Testresults

vi

34
36
38
38
39
39
40
43
43
45

48
48
51
23
23
o4
95
35
56
26
26
o7
o7

59
59
29
61
63
64
65
69
69
70
71

9 Conclusion 88

9.1 Conclusion 88
9.2 Subjects for further studies 91
A Probability of receiving a heartbeat within r rounds 101
B Presentations of messages 106

vil

Chapter 1

Introduction

In today’s world, more and more devices are becoming a part of a grow-
ing network of smart devices. This trend means that while communicating
cars, fridges or coffee makers were only science fiction not too many years
ago, nowadays smart devices are very much feasible and growing amount of
product development is done for creating them. However, intelligence, let
it be human or device intelligence, often requires information outside from
what the intelligent object itself can sense. For fulfilling the need of external
information, methods and protocols for communication are needed.

But there are many cases in which it is not enough to know only methods
of communication. Capability to know if messages have reached their target
or to use another service when one is unavailable might be essential for a
system to fulfill its purpose. This is the case especially in systems of one
growing market: telecare services. If considering, for example, a system in
which a machine sends to a center information about a person’s heartbeats,
it is crucial to be sure that the information reaches the target, or else the
lost messages might be a matter of life and death, literally. This is where
reliability studies step in.

Reliability has been studied for decades on several levels for different kind
of computing systems. Earliest studies mainly featured hardware level and
low-level network fault tolerance, and the most recent studies have largely
been examining cloud systems and peer-to-peer algorithms. There are nu-
merous different kind of faults that can be disastrous in systems. While the
systems are still becoming more and more complex, the amount of possible
failures raises together with the system complexity. Furthermore, the diver-
sity of distributed systems is wide. Systems have their own specifications
requiring tolerance of certain kind of failures and certain kind of behaviour
in the case of failures. Therefore, a single ”one-solution-fits-all” is difficult,
if not possible, to find. Instead, solutions are usually requirement specific.

CHAPTER 1. INTRODUCTION 2

1.1 Objectives

The main objective of this paper is to study how reliability of an asyn-
chronous, time critical system can be improved by increasing fault tolerance
of the system. The base method for increased fault tolerance lies in replica-
tion of processes. This work examines three major questions:

1. How network member failures are detected, and which components
should be responsible of failure detection?

2. Which structures and protocols provide the expected reliability for data
spreading?

3. How a system should behave in the case of failures?

An already-existing telecommunication service platform is used for exam-
ining these questions. The system provides the actual system specifications
and expectations through which possible fault tolerance methods are evalu-
ated. A solution is then implemented and tested for the example system.

1.2 Structure

Chapter 2 introduces the bases for this work. The most relevant terms are de-
fined, the example system is described and the objectives are stated. Chapter
3 presents some of studies about fault tolerance techniques in general, and
different failure detection techniques are viewed in the Chapter 4. Fault tol-
erance of the example system is then improved, and the solutions is explained
on a theoretical level in Chapter 5. Practical implementation of protocols
and the structure of the implementation are then presented in Chapter 6.
Implementation is tested both with whole system tests and with tests for
data dissemination and failure detection protocols separately. Test results
are presented in Chapter 7 for the protocol specific tests and in Chapter 8
for the system tests. Finally, the test results and the used mechanisms are
analyzed in the Chapter 9.

Chapter 2

Current system and
methodology

This chapter first defines some of the most important terms. Later, the ex-
ample system is introduced by shortly explaining its purpose and the current
architecture. Then it is examined what are the biggest problems with the
current system architecture, and how to try to solve them.

2.1 Definitions

This section defines terms as they are used in this paper. The relationship
between different terms can be seen in Figure 2.1. Two main terms covering
the subject of this paper are correctness and dependability. They both con-
sist, among others, of reliability and availability, which are the main goals in
this paper. The figure presents correctness and dependability as unconnected
properties, however, correctness could be considered to be a property of de-
pendability. Undesired circumstances which should be avoided or handled are
faults, errors and failures. Means for handling these circumstances include
validation, meaning how to reach confidence; and procurement, meaning how
to provide the ability to deliver a service correctly. [41]

Fault tolerance provides methods for a service to continue working by
its specification even in the presence of faults. Fault avoidance consists of
methods for preventing faults by construction. Error removal strives to re-
move errors with verification if they occur. Error forecast aims to estimate
the presence or consequences of error occurrences. It is noted in [41] that
dependability is only achieved with a combination of these means. All faults
are not predictable and preparing for faults in fault avoidance requires that
all possible faults are known in advance. Also, all errors can not simply be

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 4

removed, because in some cases an action is required from the system ad-
ministrator, for example in hardware problems. Faults cannot be tolerated
or removed if they are never detected by evaluation. [41]

The two means for reliability examined in this paper are replication as
a method for fault tolerance, and failure detection as a method of error
forecasting.

2.1.1 Dependability and reliability

Dependability is a collective term which defines the quality of service. The
criteria for the quality is that the service should work by its specifications and
process required actions for a defined duration [35, 41]. Dependability can
be described and quantified through several sub-factors, and there are dif-
ferent ways for classifying the sub-factors. In International Electrotechnical
Commission Technical Committee (IEC TC) 56 standards [36] the sub-factors
are defined to be reliability, maintainability and maintenance support. Along
[41], reliability and availability are the two main measures of dependability.
Reliability is presented as a measure for continuity of a service; the system
continuously processes correctly for the expected duration. Availability is
described as a presentation of readiness for correct service. In addition to
these two, [4] presents some more factors: safety, meaning there are no catas-
trophic consequences from actions or environments; integrity, meaning there
are no improper system alterations; and maintainability, as capability and
readiness for modifications and repairs.

Reliability has been defined in Online Electrotechnical Vocabulary of In-
ternational Electrotechnical Commission [35] to mean the ability of some
system to perform required actions correctly for a given time interval.

2.1.2 Time criticality

In [37] the most important characteristics of a time critical system are ability
to satisfy the time constraints and capability to guard the system against
faulty execution. In this paper the time constraints define that a response
to any message is expected to be received in a moderate time. Time that
it takes to produce a response should not take more than several seconds,
maximum. Exact time limits do not exist, however, the longer it takes, the
more probable it is that an end user gets tired of waiting and thus the system
has failed to serve its purpose.

5

METHODOLOGY

CHAPTER 2. CURRENT SYSTEM AND

‘[17] ut pejuesoxd o1y Aifiqepuadop
UO poseq ST 9913 9], "Poul[Iopun ST Iojdeyo SIY} Ul Pouyop WL} [Per 'SulIe) pasn Jo sdrysuorje[oy] :1°g oINS

(Buiwwe.boid
Aouepunpay uoisian-N "6°9) toneonday
(reuondo) ndino 1981100 Ausiang
ndjno Joj spwidwi | saonpoud 80118
SpoyisN

uonyeoyioads walshs
UIYIM SYIOM 8DIAISS
‘uoniuyeqg

Bunseoaloy Joug |eAowal 1013 ERVEIE O BTIEE] BOUEBPIOAR }ne4
mmmsmO\./ mmmsmO\./

salnjie4 slou3 sjine4 uonepliep juswiaindolid

,|_L

syuawuredu) suespy sainsesp\

Aungeurejurepy

)

Riligepusdsaq sssulpeay Aununuod

INoIABYSQ }091100
woly uoneiraq

SSau0alI0)

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 6

2.1.3 Correctness, failures and faults

In [13] correctness is used to describe that a system behaves along its ser-
vice specification. A system is correct as long as its system specification is
followed. Terms fault and failure can then be defined through correctness to
be actions, happenings or changes in an environment such that without any
means of specific fault handling, the system is not correct anymore.

The definitions of terms fault and failure are partially related. In [22]
they are presented as that fault leads to an incorrect state by specification,
and failure “restricts the system to perform its required functions”. In [41]
the difference between failures, faults and errors is presented explaining the
relation between the terms: failures are events that affect services, errors
are system internal undesired events, and faults are undesired properties
or events that might raise errors and later failures. Also, an example of the
difference is given: designer’s mistake is one kind of a fault, which then causes
an error (i.e. erroneous computation) which results in failure (i.e. wrong
calculation result is used, which leads to unexpected results). Definitions by
IEC 60050, electrotechnical vocabulary [35] define a failure as a termination
of correct performance of required functions, and a fault as a state in which
a service is unable to perform required functions.

There are a huge amount of different kind of faults and failures. That
is why classifying them helps in defining which kind of faults and failures
are expected to occur. In researches, different kind of classifications are
presented. In [25] and [41] they represent many factors through which faults
can be classified according to different view-points. The most relevant ones
for this paper are divisions between physical, design and interaction faults,
and whether it is a permanent fault or a temporary fault.

Faults can also be classified based on what are the consequences, that
is, which kind of failure it causes. In [22] a simple classification into two
different types of failures is done. They present fail-stop failures in which
the processing ends or becomes prevented, and byzantine failures, in which
processing might produce incorrect output.

Another classification for failures is presented in [5]: crash, send-omission,
general omission and arbitrary failures. A crash failure is an event in which
after the first failure, the system fails to produce output indefinitely, until
the system is restarted or the root cause for the fault is otherwise fixed [13].
Omission failures are problems in communication. In send-omission failures,
a system fails to produce and send a response, and in general omission failures
the system fails to read, and thus also to output the expected result [5]. The
most varying failures are arbitrary failures, also called Byzantine failures, in
which the behaviour is unexpected and incorrect, but it might not be seen by

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 7

an outside observer because messages might not get lost. The system might,
for example, due to some calculation errors, produce unexpected output. [5]

2.1.4 Fault tolerance

Fault tolerance means that the system is able to tolerate some certain spe-
cific classes of failures so that when a fault is observed, the system works
as its failure specification describes. Fault tolerance is one of four methods
for achieving dependability, the other three being fault-avoidance, as how to
prevent faults; error-removal, as how to minimize the presence of occurred
errors; and error-forecasting, which tries to estimate occurrences and conse-
quences of errors. [41]

In [3] different types of fault-tolerance are introduced based on how a
system should behave in the presence of faults: masking, non-masking and
fail-safe fault-tolerance. Masking fault-tolerance is the strictest: a process
should continue working by its specifications. In non-masking fault tolerance,
in the case of a failure, a process might be perturbed and for a while it is not
correct, however it then recovers back to correct. Fail-safe fault-tolerance is
the least strict: when a failure occurs, a process is still correct as per the
minimal safety specification, but it might enter into a state in which it is
not correct as per whole the system’s specifications. The process might, for
example, lose liveliness. [3]

In [45] fault-tolerance is divided into three categories following the di-
vision of a system into a three-level hierarchy: application level, operating
system level and hardware level. Hardware level fault tolerance most often
is achieved by pure redundancy: using several of same kind of components.
Operating system fault-tolerance might be used for example for masking disk
controller failures. Application level is the highest abstraction level of the pre-
sented, and there are several ways for implementing toleration also for lower
level programs: redundancy, masking, atomicity, fault-tolerant algorithms
etc. In [22] even higher system level is mentioned: architectural level. While
application level examines one process and errors and exceptions happening
in the scope of the process, architectural level examines several processes and
their interaction.

2.1.5 Replication

Replication is a fault tolerance method in which one or more replicates of a
process are created in a multi-process system. All replicates of a node know
the same data so they all are able to do the same action with the same output

[23].

CHAPTER 2. CURRENT SYSTEM AND

METHODOLOGY 8

Viewpoint Perspective Explanation and examples
Phenomenological Physical Some. hardware part in a system stops
case Wo.rkmg, for example broken processor
Human-made: Failures caused by programmers, such
design as bad choices in algorithms, some spe-
cial cases are not considered
Human-made: Failures caused by users and program-
interaction mers, user does something which is not
accepted and which is not taken into
account by programmers
. Permanent Action is required by admin or other
Persistence .
processes in order to recover from the
failure, for example broken hardware
Temporary The failure might disappear without
anyone or anything intervening, for ex-
ample temporary congestion in network
causing packet drops
Crash failures Process stops working altogether, for
Consequences example caused by too long power out-

age

Send-omission

Process fails to send a response, for ex-

failures ample caused by route to the target not
found
General Process fails to receive, and thus also

omission failures

to respond, for example caused by con-
nection breakage while reading

Arbitrary
failures

Any failure which might not cause
crash or omission, for example because
of some bit errors, the result of calcu-
lations and thus the response from a
process is wrong and unexpected, or a
message of wrong form

Table 2.1: Possible faults classes, combination of the most important view-
points of Laprie [41] together with the failure definitions presented by

Bazzi&Neiger [5]

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 9

There are several replication techniques which can be classified in dif-
ferent ways. Homogeneous and heterogeneous replications are presented in
[23]. In heterogeneous replication, replicates’ implementations differ, how-
ever, they have been implemented using the same specification, thus they are
functionally the same. Replicates in homogeneous replication are identical
copies of each others at the beginning of the system execution. Replication
techniques can, additionally, be classified depending on how the replication
happens and what are the roles of replicates.

e Active replication, also called state-machine approach, is a tech-
nique in which all replicates are equal in a hierarchy level, playing the
same role without centralized control. All replicates are synchronized,
and they process requests parallel. All of the replicates also return
responses. [29, 65]

e Passive replication, also called primary-backup strategy, means repli-
cation in which only one of the replicates is working as the primary.
The primary receives requests and processes them. Then the primary
sends update messages to other replicates, called backups. Backups re-
turn an ACK message to the primary, and after having received ACKs
from all living backups, the primary returns the response. [29, 65]

e Semi-active replication, also called leader/follower replication, is a
term used for replication technique in which replicates have different
roles: there is one primary and others are backups. However, when
receiving a request, all replicates process them independently, but only
the primary returns a response to the request sender. [65]

e Semi-passive replication is a technique for lowering the reconfig-
uration costs of passive replication in the case of the failure of the
primary replicate. In semi-passive replication, there is one primary
replicate, others being backups. The primary receives requests and
updates backups, which then send ACKs as responses back to the pri-
mary. A major difference between semi-passive and passive replication
is that the primary is selected again for each client request, based on
rotating coordinator paradigm. [17]

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 10

2.2 Introducing the case: a telecommunica-
tion service platform

The base for the architecture and protocol selection in this paper is an ex-
isting telecommunication service platform. This section presents the system
and its architecture. Additionally, the objectives of this paper are explicated.

2.2.1 High level - Basic functionality

The starting point for this work is a telecommunication service platform
called Tempo, developed by a telecommunication company named NSF Tele-
com Ab. The system offers a wide amount of different communication chan-
nels:

Voice calls

Short message service (SMS) message sending

Unstructured supplementary service data (USSD) message sending and
receiving

System integration over simple object access protocol (SOAP) and Rep-
resentational State Transfer (REST)

Event data record (EDR) creation for these communication channels is pro-
vided for monitoring and billing purposes. Some of the most important
features of the system are presented in Table 2.2.

The aim for the recent development has been creating a system for critical
communication, which creates more importance for the system reliability and
availability.

2.2.2 Architecture of the example system

The system consists of different architectural components presented in Fig-
ure 2.2 each having a different function. All persistent data needed by the
system is saved in a replicated database, to which all components have an
access.

Media gateway is an element which is connected to the outer world: public
switched telephone network (PSTN), mobile network and voice over internet
protocol (Voice over IP, VoIP) trunks. Communication to outer world is
done using session initialization protocol (SIP) for signaling and Real-time
Transport Protocol (RTP) for transferring voice or video data. Additionally,

CHAPTER 2. CURRENT SYSTEM AND

METHODOLOGY 11

Feature Description

SMS, USSD, | Different channels for transferring data/voice

Voice channels

Call screening | Which calls are allowed and how different call cases

and barring

should be handled

Speed dial calls

Short numbers which work within a defined group as
aliases for other, usually longer, phone numbers

Call routing, for-
ward and trans-
fer

Calls can be forwarded or transferred to another number
than the original called number either calendar based, as
a result of unanswered call, as a result of do not disturb
feature or during a call

Calling line
identification
restriction

presentation

and

Anonymous caller numbers, and showing other (allowed)
number other than the actual number of the calling
phone

Group calls

One or more numbers behind one group number are
called parallel or sequentially, when the group number
is called

Interactive Voice
Response (IVR)

Automatic menu with announcements which allows the
caller to select the next action using DTMF

Call queues and

Music on hold is played for a caller until an attendant

attendant picks up the call from a queue for answer or forward
Intelligent Message queues with retry policy in the case of message
machine-to- delivery fails

machine mes-

sage delivery

Provisioning Records from each call and message delivery are created

for provisioning purposes

Priority calls

Allowing high priority calls to go through even if other-
wise the maximum allowed amount of concurrent calls
is achieved

Table 2.2:

Some of the most important features of Tempo

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 12

Media
Call handl
gateway AGL AMI AGI, AMI, cormmand =l handler
Messaging
interface AGI, AMI, command
Media Call handler
gateway
A
AGI, AMMcommand [
[..]
Media Call handler
gateway Command
v
Application
programrming
interface

Figure 2.2: The component of the example system, showing N > 3 call
handlers. Communication between call handlers is not presented.

a media gateway provides a VoIP proxy, which handles registrations for VoIP
clients known by the system. Media gateways also take care of channel
actions of all voice calls. One channel is created for each end party (i.e. caller
and callee). Channel actions include, among other things, connecting caller
and callee channels, playing announcements and music-on-hold or reading
dual-tone multi-frequency signaling (DTMF) inputted by the call parties.
The data of calls in RTP messages is also handled by a media gateway.

The brains of the system is called call handler. A call handler maintains
information about all currently active or waiting actions on different com-
munication channels in memory. When receiving notifications about state
changes for state-based communication channels, a call handler analyzes the
notifications and decides what to do in which case. For example, when re-
ceiving a notification related to a call telling that a DTMF selection is done
by the caller, a call handler then analyzes the received information. Based on
the call case, it then decides what should be done: should a call be started,

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 13

forwarded, rejected, hanged up et cetera.

The inner architecture of a call handler is module based. Handling of
different tasks has been divided into separate modules, which are all part of
the same process. Modules can be dynamically loaded and unloaded. The
modules are able to communicate with each other using internal messages.

Application programming interface exists for providing a way for fetching
information from the system using representational state transfer (REST).
It provides a restricted possibility to affect call flows from applications such
a web interface. The possibility is needed for example for dispatcher calls.

Messaging interface is a component easing communication between het-
erogeneous components of the system. It forwards notifications about changes
in communication channels to call handlers, and responses from them back
to the original information sender. Messages are delivered to call handlers
using Transmission Control Protocol (TCP) and so the messaging interface
knows if forwarding a message to a call handler succeeded. Thus the messag-
ing interface is able to make sure that a message is never sent to a crashed
call handler. Also, if a response to a message is not received from a call
handler within a defined timeout, the messaging interface sends the message
to another call handler.

In this paper, an abstract version of the messaging interface is used for
better examining the behaviour of call handlers. In the abstraction, the
messaging interface selects randomly a call handler to which a message is sent.
The selection is done by randomly picking one call handler from all active
call handlers. When getting a response to a message, the messaging interface
forwards the response back to the correct component. The point of interest
of this paper is in communication between call handlers and thus media
gateways, command interfaces and messaging interfaces can be considered to
be a “black box” from which messages are received, and to which responses
need to be returned.

Worth noting is that even if messaging interface appears as a single point
of failure in the Figure 2.2, the actual implementation of messaging interface
is redundant. In this paper, the messaging interface is only presented as one
component for removing the need for presenting how communication with
duplicated messaging interfaces is implemented.

In addition to already presented components, there are other components
which take care of other communication channels. Short Message Service
(SMS) gateway allows sending text messages. Unstructured Supplementary
Service Data (USSD) gateway enables both sending and receiving USSD
messages. Call handlers provide an interface for SMS and USSD sending,
and take care of creating event data records of sent and received SMS and
USSD messages.

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 14

While the example system is able to handle different messaging channels,
this paper mostly concentrates on calls. The reason for this selection of focus
is the difference in the nature of the messaging ways. Calls are more difficult
for the system to handle because of their real-time session-like nature: there
are different states a call can have, and the state can change during a call. As
opposed to calls, SMS and USSD messages are only one-time actions from
the point of call handlers. While USSD is real-time connection, too, the
connection is handled by the USSD gateway, and it is thus out of the scope
of this paper. SMS messages also are not time dependent: when sending a
SMS, one cannot be sure when the SMS will be received.

SIP Application SIP Application
Server (AS) Server (AS)

]

Service/Application Layer

Home Media
Subscriber Resource
Service (HSS) Function (MRF)

Call Session

Control Function

(CSCF)

Media Gateway
Control Function
Control/IMS Layer (MGCF) /
Media Gateway [~
(MGW)

Public Switched
Telephone Network (PSTN) /

Internet Protocol (IP) Public Land

Mobile Network (PLMN)

Access Network

Figure 2.3: A simplified presentation of IMS layers by 3GPP specification.

The example system can be presented through the architecture of Inter-
net Protocol Multimedia Subsystem (IMS) from 3rd Generation Partnership
Project (3GPP) [1], of which a simplified presentation can be seen in Fig-
ure 2.3. Call handlers are working on the service/application layer, while

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 15

the components of black box, apart from the messaging interface, are mainly
components of the control layer.

2.2.3 Initial state of fault-tolerance in call handlers

Currently, reliability in the system is achieved with two identical call handlers
residing on different servers. One of them is the designated main call handler,
which handles all calls and processes all messages as long as it is running.
The other call handler is a warm backup, meaning that the process is running
and ready for handling calls, but it does not contain copy of the data known
by the main call handler. The call handlers are unable to communicate with
each other.

Lack of communication between the main and the backup call handlers
causes that no data is shared and the duplicates are not in a consistent
states. As a result, if backup has to take over handling messages, it starts
from empty state. Knowledge on all possibly ongoing calls at the time of
crash is lost. In the best case, depending on its case and its state, a call
itself is not necessarily interrupted, because RTP and channel handling is
processed in a media gateway. However, even in the best case, the event
data records about the calls are lost, and thus there might not be any traces
of the calls once they end.

A missing record is problematic for three reasons. First of all, operators
cannot charge for calls for which a record is not found. In some countries,
records are also required by law and by other requirements of telecommuni-
cation authorities to be created and preserved. Thirdly, especially in critical
systems it is crucial to know what happened during a call: was the call
answered or not.

2.2.4 Signaling in calls between components

An example is presented to shed a little bit light on how exactly the system
is behaving during a call and in which cases call status is changing and
messages are exchanged between the black box and a call handler. Call party
A calls an Interactive voice response (IVR) number. The call is answered and
announcement is played asking A to select something with DTMF. A then
presses 5. The call is forwarded to a call party B, who answers the call.
After a while, B hangs up.

For the sake of simplicity, A is calling from a VoIP phone and B is an-
swering in a VoIP phone. That way there is not need to include any trunks
or other elements in the image. Figure 2.4 shows the messages going from

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 16

phones to media gateway and vice versa and from media gateway to call han-
dler and vice versa. Signaling between phones and media gateway uses stan-
dard session initialization protocol (SIP) as presented in the standard [55].

(" calleeB (" callerA O\ gpmvire (" Blackbox Call handler
Starts call Begin
oot oA Call allowed? Forwards? Fetch VR call settings and
onnect to
SIP response: 100 Trying announcements
SIP response: 180 Ringing
SIP response: 200 OK
SIP: ACK
Call Answered
o Update call state in memory
RTP
Plays
announcements
— —_— and waits for input.
Notices DTMF '5'
Men Item Selected '5
Check selection > call should be forwarded to B. Is forwarding to
Connect to B B allowed? Create 1st EDR about the VR call.
SIP: INVITE
SIP response: 100 Trying
SIP response: 180 Ringing
Answers the call SIP response: 200 OK
SIP: ACK
Call Answered
Update call state in memory
ok
RTP
RTP w
3] Takescareof
. i connecting
.) R Voice channels
RTP . of Aand B
Hangs up SIP: BYE
siP respcnsé' Call Released
Create EDR about the call between A and B.
o Remove call from memory
SIP: BYE
SIP response: 200 OK \ /

Figure 2.4: Message passing between components and phones and a simplified
presentation of the inner functionality of the components in the example call
case. SIP signals in the figure follow SIP standard [55].

2.3 Methodology

Defining fault specification is needed for improving fault-tolerance. The spec-
ification should answer at least questions that which failures are expected to
occur and what level of fault-tolerance is expected. Additionally, the ex-
pected system properties need to be defined. The expected system prop-
erties play an important role as criteria when protocols for implementing
fault-tolerance are decided and later evaluated.

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 17

2.3.1 Simple failure specification

The four failure classes as presented in [5] are crash, send-omission, gen-
eral omission and Byzantine failures. For the example system, the expected
failures to happen are crash and omission failures.

In the example system, crash failures mean that either a call handler
has stopped unexpectedly, or a server has stopped working. Permanence
of the failures depends on a case. In cases such as hardware failures, the
failure might be permanent; they are not fixed on their own and interaction
is required from a system administrator. On the other hand, in simple server
restarts, for example as a result of temporary power cut, the failure is only
temporary. Crash failures are caused by both physical and design faults.

Send-omission and general omission failures mean that one call handler is
unable to send or receive messages from any other component. Root causes
of omission failures might be either permanent, for example in the case of a
broken network card, or temporary, for example if connection is temporarily
lost.

Byzantine failures are excluded in this paper. Detecting and surviving
them would require message data validation and process tracking, which are
out of the scope of this paper. However, since most of the messages are
heavily dependent on existing information about ongoing calls, some arbi-
trary failures in which message data is changed, are noticed when a message
is being processed by a call handler. In this case, the message is just ignored.
Also, handling arbitrary or byzantine failures reliably would require a slightly
different approach. Researches have shown that tolerating k byzantine fail-
ures requires (2k+ 1) nodes [22]. Because of leaving Byzantine failures out of
the scope, from now on the term ”failure” is used to mean only crash failures
and omission failures.

This paper mainly concentrates on architectural level of the system. Thus
it is assumed that media gateways and messaging interfaces, ”the black box”,
always work correctly. Their fault tolerance is a subject for another study. It
is also assumed that any fault on other levels (i.e. hardware, operating system
and software/node levels) will cause symptoms similar to crash, omission or
arbitrary failures on the architectural level.

Expected behaviour for the example system is that even in the presence
of failures, end users should hardly notice any difference in the service. The
example system as a whole should continuously satisfy the system specifica-
tion. This is achieved with masking fault tolerance. If failures are faced, the
system should still be able to hide the failures from end users.

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 18

2.3.2 System requirements

Using the example system in critical communication creates high expectancy
for how much reliance can be put on the system. That is why two the most
important properties for the system are reliability and availability, the main
factors of dependability. Reliability for the example system means that after
a call starts, it should be correctly handled until the end of the call. Thus
call duration is the time frame for the inspection of reliability. Even in the
case of a call handler crash, no call should be lost. Availability prospect
expects that when a new call is to be started, there should not be a situation
in which there are not any call handlers available for handling the call.

A part of reliability is the timeliness of the system. Because of time
criticalness, not responding sufficiently fast violates the system specification.
For the end users, slow responses from call handlers appear as delay. It may
result in users getting tired of waiting. The maximum allowed time within
which a response from call handlers should be received can be assumed to
be some seconds, or a minute in maximum. The expected response time,
however, is also a message-dependent attribute. For example, when a call is
beginning or ending, the response time can be a bit longer than in the case
of call answer, because they appear in a different way for a user.

Another important property for the architecture is limited scalability with
continuous supported node amount. The architecture should allow any call
handler amount [2, N], in which N is some tens, maximum. Supporting larger
amounts of call handlers is not necessary, because the point of this paper is to
increase fault-tolerance, not to increase processing capacity. Also, any need
for large call handler amounts is not expected.

Other call handlers have to be able to continue where another call handler
was at the point of its crash. Thus data consistency in node memories is a
major property. A problem arises from the fact that the system is unsyn-
chronized. Implementing strict data consistency could cause major decrease
in the efficiency of the system. That is why only loose, eventually consistent
system can be expected. Data in the memory of call handlers does not need
to be in a consistent state at each moment, as long as it eventually is. Also,
because of time criticalness, ”eventually” should not be a long time.

Another desired property is efficiency. The selected methods should not
cause excessive overhead to the system. Additionally, for the sake of simplic-
ity, the network is assumed to be equal between any node: delay caused by
network in message transfer is assumed to be equal. The assumption zones
out the need to consider networking distances between call handlers.

CHAPTER 2. CURRENT SYSTEM AND METHODOLOGY 19

2.3.3 The goal

A short recapitulate about the starting point: There are call handlers in an
asynchronized system. Call handlers are located on separate servers and thus
they do not share the same computing resources. They are also connected to
each other via an unweighted network. At the current state of the system,
fault-tolerance is provided by a warm backup call handler.

The desired goal is to find a way to create replicated system which allows
using any call handler amount up to some small N, and which allows parallel
processing of different calls on different call handlers. Additionally, on top
of the replication, a protocol for call takeover in the case of a call handler
failure is needed. For a complete system with the desired properties, three
sub-problems have to be solved:

1. Architecture of the system and messaging protocols.
How data is disseminated between call handlers?

2. Failure detection.
How failures of single call handlers are detected?

3. Failure handling.
On top of the other two questions, the third question is that when
data has been disseminated and a failure is detected, how the other
call handlers should react to the detection? Who takes over the control
of the calls of a failed call handler?

Different topologies and protocols for creating fault-tolerance in distributed
systems have been studied a lot for decades from different point of views and
for different kind of systems. Having already-defined expected properties in
mind helps in examining through the studies for finding suitable solutions.

One important note to keep in mind when examining topologies and pro-
tocols is that for better reliability, single points of failure should be avoided
at any time. Single points of failure would not only cause unnecessary risks
which are undesirable in systems which heavily require reliability, but also
could possibly be bottlenecks in communication.

Chapter 3

Fault tolerant data spreading

A problem in improving reliability of a system is that there are numerous
ways for doing it. Methods for improving reliability of a single process consist
mostly of algorithm design and preparing for different failures. However, it
can only be done up to a certain point. After that, reliability can mostly
be increased by replicating the processes, which allows access to the service
even if one member process of it is completely unavailable.

In a replicated system, there are more than one member which are able to
provide the same service. If one of the members becomes unavailable, others
or one of the others is able to continue providing the service, and downtime
does not occur or only occurs for a really short time. A major challenge in
replicated systems is how to spread information between members reliably.
Without data dissemination, different members would have different knowl-
edge on the current situation. If the provided services depend on the current
situation, the results might differ depending on which member is contacted.

3.1 Studies about fault tolerance

The earliest studies are mostly oriented toward studying hardware level fault
tolerance and failure tolerance of network topologies in the case of reli-
able communication in multiple processor systems. Computers were not as
evolved as they are now a couple of decades ago, from which time a lot of
studies about network topologies are found. The selection of a network topol-
ogy had a lot of importance in communication, when computers’ capability to
connect outside was restricted by the amount of Input/Output ports. A wide
spectrum of different properties are used in different studies for evaluating
the solution: connection amount, path lengths, messaging complexity, time
restrictions, performance, fault tolerance, maintainability and extensibility,

20

CHAPTER 3. FAULT TOLERANT DATA SPREADING 21

to name some.

One of the most researched network topologies is based on De Bruijn
graph, discovered in 1946 by Nicolaas De Bruijn, originally called the graph
T-nets [16]. The graph is based on P,-cycle, n > 2, which is an ordered cycle
of 2™ bits. The bits are ordered such that any permutation of n bits can be
found from the P,-cycle exactly once. For example, when n = 2, possible bit
sequences are 00, 01, 10, 11, and the only sequence containing all of them
exactly once is 0011. Since the bits are in an ordered cycle, 0011 is exactly
the same sequence than 0110, 1100 or 1001. De Bruijn graph is then formed
by first setting all possible permutation of n length bit series as the nodes of
the graph. The nodes are then connected with unidirectional edges following
the rule: for two nodes A and B, if the last n — 1 bits of A are the same as
the first n — 1 bits of B, then edge is added from A to B. [16]

The graph can be extended by allowing the use of other digits in addition
to zeros and ones in a cycle. The amount of accepted digits is presented with
r. In the extended case, the total amount of nodes in a De Bruijn graph is
r™, in which both r and n are positive integers. De Bruijn graph can then
be presented as D(r, n). As a result of how the graph is formed, there are
self-loops: nodes from which there is an edge back to the node itself. There
are always 7 self-loops in a graph with 7" nodes. [58]

In many topology studies based on de Bruijn graph, the self loops are
removed or otherwise ignored. Varying fault tolerances for different versions
of De Bruijn graphs are achieved. One such a topology based on De Bruijn
graph is examined in [21] for node connectivity: shift and replace graph
(SRG). Directions of edges are removed and thus the edges become bidirec-
tional. Also, self-loops and multiple edges between same nodes are elimi-
nated. The approach achieves fault tolerance of (2r — 3) for node amount
r™. Other proposed solutions based on De Bruijn graph include load balanc-
ing technologies for multiprocessor networks [50, 57], distributed hash tables
[15, 43] and networks-on-chips [32, 33].

In addition to De Bruijn based topologies, other regular graphs have
been studied for fault-tolerant communication, as well. The topologies in-
clude different kind of cubes, hypercubes, Cayley digraphs, and other regular
digraphs. One such a regular digraph network topology is presented in [51].
It provides near-optimal fault tolerance. When r is the amount of accepted
digits and n is the amount of digits in a permutation, the number of nodes
in the digraph is r”. A path between any two nodes can always be found,
and the maximum length of the path is (2n —1). The number of connections
per a node is fixed, however, depending on the value of r, the amount might
be either r or r + 1. Fault tolerance achieved by the topology is (r — 1) or
r. [51]

CHAPTER 3. FAULT TOLERANT DATA SPREADING 22

Different variations of hypercubes have been studied. Typically, hyper-
cubes require node amount of N = WP?_ in which W and D are positive in-
tegers, D is the amount of dimensions and W is the amount of nodes in each
dimension (width of a dimension) [7]. One such a hypercube is Boolean n-
cube, in which there are N = 2" processors placed one in each of the corners.
Two hypercube presentations are presented in [7]: generalized hypercube and
generalized hyperbus. An advantage in them is that the proposed structures
allow almost any number N. The structures are also highly fault tolerant
and have small average message distances. Generalized hyperbus structure
has N communication buses, and each node is connected to two adjoining
buses. The worst case distance between nodes depends on the amount of
buses. Having only two connections per node makes the generalized hyper-
bus cheap when it comes to network costs, but fail tolerance is fairly bad: a
node is out of function if both of its buses are out. Generalized hypercube
provides better fault tolerance. In the generalized hypercube, the total num-
ber of processors is presented as a product of m;’s: N = m, X m,_1 X ...xmq,
when m; > 1 for 1 < ¢ < r. The total number of connections per a node is
L =3""_,(m; —1), and the total amount of connections in the structure is
% x L. Fault tolerance of the structure is (L — 1) and the worst-case distance
between any two nodes is (r 4+ 1). [7, 11] Another proposition for improving
fault tolerance in hypercubes is made in [11]. A k-safe hypercube has been
developed to tolerate maximum of (2¥(W — k) — 1) faulty nodes, in which W
is the dimension of the cube and k presents k-safeness: each not-faulty node
must have at least k not-faulty neighbours. [7, 11]

Combinations of De Bruijn and hypercubes, named Hyper-De Bruijn,
have been proposed, too, for finding the ideal solution for fault tolerance
and shortest path routing. De Bruijn graph is extended to high degree and
combined with hypercube by first connecting nodes using De Bruijn graph
constructing rules, then using hypercube constructing rules. One such a
graph is Hyper-De Bruijn-Aster presented in [46]. If De Bruijn graph is pre-
sented as D(dpg, Mpa + Nra), as opposed to the previously presented D(r,n),
and a hypercube is presented as H(mpq + npa), then Hyper-De Bruijn-Aster
is presented as H D % (mpq, dpa, npa). Total amount of nodes is then 2mdd)he,
and the achieved fault tolerance is mpq + 2dpg + 2. [46]

A special case of topologies is a fully connected topology in which all nodes
can communicate directly with each other. Fault tolerance of fully connected
networks is easy to estimate: since there are n nodes, and (n—1) connections
between nodes, maximum of (n — 2) failures are tolerated. However, the
performance in fully connected networks might be bad for one node.

Also hierarchical topologies have been studied, most commonly tree topolo-
gies. Fault tolerance of binary-tree-networks is examined in [52]. In [40], two

CHAPTER 3. FAULT TOLERANT DATA SPREADING 23

typical tree solutions are examined: star and non-homogeneous tree. Star is
a two-level tree with homogeneous nodes: one root node and all other nodes
are leaves. In non-homogeneous tree, nodes on different levels of the tree are
not of the same type, for example the nodes in different levels may present
main CPU, I/O controllers and 1/O devices. Also, designing optimal edge
fault-tolerant supergraphs of these two is investigated. Presented solutions
provide near-minimum overhead, but they might not work in all cases. Also,
for achieving k-edge fault tolerance in non-homogeneous tree, there must be
k+1 edges from each node. For a simple k-edge fault-tolerant supergraph, if
there is only one root node, there must be 2k + 1 global nodes for providing
fault tolerance of k. Global nodes are connected to all the other nodes in the
graph. [40]

3.2 Middleware solutions

Middleware can be used as solution for a wide range or problems: message
passing, message spreading, load balancing or fault tolerance. An advantage
in middleware is that it might ease implementing interconnection between
nodes, especially between heterogeneous nodes.

There are different paradigms for middleware: message queues [66], invocation-
based request/reply and event-based publish/subscribe [49]. The function-
ality of message queues is to forward messages to one or more clients with
some specific rule, without caring if the receiver is interested about the mes-
sages [66]. In request /reply middleware, clients send requests to middleware
and receive responses, thus the communication is only one-to-one [49]. Pub-
lish/subscribe middleware provides solutions for both one-to-one connections
and unnecessary messages sending: clients subscribe to the middleware and
announce what kind of messages they are listening. Whenever receiving a
message, middleware publishes it to all interested subscribers. Thus pub-
lish /subscribe offers many-to-many communication [49, 66].

One of the much used standards in general purpose middleware is Com-
mon Object Request Broker Architecture, CORBA. “Traditional” CORBA
itself does not guarantee message passing within time limits or fault toler-
ance, but fault-tolerant version of CORBA has been designed: Fault Tolerant
CORBA. The object of Fault Tolerant CORBA is to provide high level of
reliability with the means of redundancy, fault detection and recovery, and
the standard requires that there are no single point of failures and it offers
several fault tolerance strategies. The standard also defines requirements,

limitations and basic fault tolerant mechanisms that must be implemented
in a Fault Tolerant CORBA system. [47]

CHAPTER 3. FAULT TOLERANT DATA SPREADING 24

A lot of generally used, fault tolerance providing middleware exist. One
is Apache ActiveMQ, by The Apache Software Foundation [61]. It is a cross
language Java Message Service provider which offers a lot of features. Apache
ActiveMQ has a failover transport layer which can be used for providing
several addresses, which are then used if the main address is out of reach.
ActiveMQ provides the core functionality for JBoss A-MQ), previously Fuse
Message Broker, by Red Hat Inc. [54]. JBoss A-MQ is able to notice if
some nodes are out of reach. Thus it works as an outside monitor for fault
tolerance on node failures. JBoss A-MQ also provides fault tolerance methods
to hande the cases of a message broker failures [38]: a fault tolerance protocol
for selecting a new broker, and master/slave groups.

CORBA complying middleware, Apache ActiveMQ, JBoss A-MQ along
with many other general purpose middleware are usually mainly targeted for
message passing or load balance. However, middleware primarily designed for
providing fault tolerance have been studied as well. Distributed systems have
their own expectations about properties and requirements, so also studies
about fault tolerance providing middleware have different premises about
the target usage.

Adaptive middleware for fault tolerance in satellite distributed comput-
ing and in other space applications is presented in [22]. Each node, on-board
computers in this case, consist of one on-board unit and one adaptive mid-
dleware. They form a master/slave type of a group, with one master and
one or more slaves, master being the on-board computer with the smallest
identification number. On-board units communicate with each other through
a multicast communication bus, as well as middlewares communicate with
each other through another multicast communication bus. Also, each on-
board unit communicates with the middleware which locates on the same
computer. Middleware detects any unit faults and sends fault messages to
other middleware when noticing a failure. They take care of isolating the
faulty unit and reconfiguring the other group members. Then middlewares
of not-faulty units inform their associated units about the changes in group.
Now the master on-board computer redistributes tasks between not-faulty
members. Estimations about the achieved fault tolerance have not been pre-
sented. [22]

An event-based middleware architecture for large-scale distributed sys-
tems is presented in [49]. There are two types of components in the basic
case: event clients and event brokers. Clients are nodes that can publish mes-
sages and that can subscribe to listen some kind of messages. Brokers are
the actual presented middleware part of the system. Brokers are connected
with each other in an arbitrary topology, and clients can subscribe to any of
them as a publisher or as a subscriber. Any publication is transformed into

CHAPTER 3. FAULT TOLERANT DATA SPREADING 25

a message which is passed through the network using some event dissemi-
nation tree for finding all relevant interested subscribers. An architecture is
proposed which adds rendezvous nodes to the network. Rendezvous nodes
are special brokers which are known to all publishers and to all subscribers,
and they handle advertisements and subscriptions. At least one rendezvous
node exists for each event type, and they are replicated throughout the net-
work. [49]

In [68], a robust middleware for adding fault tolerance to parallel and
distributed systems while achieving high efficiency is presented. The solution
is based on a dynamic robust embedding/allocation middleware scheme. The
idea of the solution is that at least most of the healthy processes could be
used for computation, and the used processes are searched for again when new
failures occur. Some opportunistic strategies for selecting healthy processors,
that are used in computing in case of faulty processors, are presented. The
middleware often finds some submesh of the original system, and in the
proposed solutions, the sub-mesh usually is a grid mesh. [68]

Another middleware for fault tolerance has been proposed for complex
distributed simulation applications in [63]. The goal of the system is to
maintain availability and reliability. The system is based on Fault Toler-
ant CORBA, and so its structure is largely similar to it. The system can
dynamically allocate needed resources for achieving desired reliability. [63]

Having high availability and low overhead as the goal, [34] presents a
middleware with deterministic algorithm for clouds. In the case of node
failures, the middleware automatically allocates fault-free backup nodes for
the system. The proposed solution uses active replication, thus all replica
nodes have the same role. Middleware monitors the system, and when it
notices that utilization of resources exceed some predefined threshold, it adds
a new node from existing nodes to serve the resource. [34]

Another middleware with low latency designed to provide fault tolerance
in cloud systems is presented in [69]. It protects the system against crash and
timing failures by replicating the application processes using leader /follower
replication. Each process is a part of a process group, and there is a virtual
connection between groups. Virtual connection is presented as a full-duplex,
many-to-many communication, in which all members of a group listen to the
same virtual port. Special Low Latency Messaging Protocol is used for the
actual message passing between groups, in which ACK message is expected
within time limit, else timeout occurs and retransmission is tried. Middle-
ware ranks the members with 1, 2, 3, ... and takes care that each mem-
ber in a group knows their group members and knows which is the leader.
The rank also determines the timeout for detecting failures in preceding
leader/followers: the larger the rank, the longer the timeout. In implementa-

CHAPTER 3. FAULT TOLERANT DATA SPREADING 26

tion and tests, the middleware produced overhead from 15 % to 55 %. Fault
tolerance of the system is not further studied. [69]

Also, middleware solutions for heterogeneous networks are designed, for
example in [12, 64], and for cases in which nodes cannot interact with each
other easily [22]. Because of their preparation for heterogeneous systems,
middleware solutions often offer only loose coupling for different elements
in a network. Also, generally message queues do not necessarily provide
persistence of messages [66].

3.3 Protocol level fault tolerance

During recent years, cloud and peer-to-peer services have become more typ-
ical types of services. A problem especially in peer-to-peer networks is that
members might pop in and out at a fast rate. That is why finding inter-
connection architecture which would be dynamic, scalable and reliable has
become even more important.

A number of different applications for protocols which allow dynamic
connections have been studied, for example: replicated database management
[18], scalable services architecture [44], protocol for group multicasting [8, 30,
31], and failure detection or threshold crossing detection [20, 42, 67]. One
category of programs for which dynamic, fault tolerant and time critical
protocols are developed is multi-player games. They often require that all
members of a network must know the current situation. As an example,
the design architecture of one peer-to-peer solution for synchronizing game
clocks in a network of unsynchronized members is explained in [6]. Other
such studies are done for example in [56], [24] and [14].

A widely studied method containing a huge amount of protocols is gossip
protocol, also called epidemic protocol. The names come from how the proto-
col spreads messages in a network. Messages can be thought to be rumours
which then spread from one node to another as if the nodes were gossiping.
Another way to think about it is to consider how epidemics are spreading in
population: it infects new people (at least seemingly) randomly. [28, 31]

An abstraction named ”Flat Gossip” protocol is presented in [31] for
examining general properties of gossip protocols. In flat gossip, there are N
members in a network, and one rumour is delivered for log(/N) rounds. Each
round, group members send rumours to b other, randomly selected, members.
Thus each member of a network has a probability of P =1— 15 * (1 +0(1))
of receiving the rumour, when N is amount of nodes and b is the amount of
nodes to which the message is sent. [31]

Gossip protocols, in general, provide good fault tolerance, because of

CHAPTER 3. FAULT TOLERANT DATA SPREADING 27

their probabilistic nature. Fault tolerance is achieved because randomization
of message targets increases the probability that a message finds another
route around a possibly faulty connection [31]. However, gossip protocols
with biased target selection exist, too. Usually the advantage of the biased
selection is that it guarantees that a message is received by all members
within bounded time, while the basic gossip only promises that with a high
probability all members receive all rumours. One biased way for determining
the target node is round robin. In round robin protocol, the target is selected
using equation Target]ID = SourcelD +r, 1 < r < N, in which r is the
current round and N is the node amount [53]. A variation of round robin is
binary round robin, which eliminates redundant gossiping. Then the target
node is selected with equation TargetID = SourcelD + 2"1 1 < r <
loga(N) [53].

Efficiency of gossip protocols is another subject worth examination. In
flat gossip, messages are sent to random nodes for r rounds, so it is very
likely that some nodes receive the same messages more than once. Trans-
ferring these duplicate messages requires resources without giving additional
advantage to the forwarding nodes. That is why one problem in gossip pro-
tocols is the increased network overhead and messaging complexity. Also,
research is most often done on gossip protocols in synchronous systems, and
asynchrony of system might cause the protocols to be even less efficient or
reliable [28]. Gossip protocols without fixed round amount exist, too.

Two gossip protocols for multicasting are described in [30] and [31]: hier-
archical gossiping algorithm and adaptive dissemination. Both are based on
leaf box hierarchy in which each node is a member of a leaf box. Both also
decrease network overhead, however while adaptive dissemination guarantees
high reliability, hierarchical gossiping decreases reliability slightly compared
to flat gossip. In the hierarchical gossiping algorithm, the messages are passed
for logo N rounds in leaf box hierarchy, in which N is an estimated amount of
members in a group. The probability that all members receive a rumour is
m(logk (N) —1), in which K is a small constant and 7(j) presents the proba-
bility that there is a direct path from any member s to all other members in
its subtree of height j, using only archs of the subtree. Adaptive dissemina-
tion is a combination of leaf box hierarchy and some basic gossiping protocol,
for example flat gossip. In the adaptive dissemination, multicasting node first
sends a message to itself and a hop count is included to the message. The
count is increased every time the message is forwarded. Targets are selected
by taking one random node from each leaf box. Messages are forwarded for
logk N —1 rounds, and receiver always sends an acknowledgement. When the
final round has been done, or if acknowledgement is not received, a gossip
message is sent and it is forwarded using the selected gossip protocol, such as

CHAPTER 3. FAULT TOLERANT DATA SPREADING 28

flat gossip. The achieved fault tolerance is at least as good as the reliability
in the used basic gossiping protocol. [30, 31]

Typical systems which need reliable data dissemination are replicated
databases, for which data dissemination methods have been studied for decades.
Use of gossip-based solutions for maintaining consistency in replicated database
is examined in [18]. The study presents two gossip-based protocols for repli-
cation: anti-entropy and rumour mongering. Anti-entropy can be viewed as
a version of flat gossip with b = 1. Each site selects regularly another site
with which it shares its whole contents. If differences occur, they are solved.
Rumour mongering allows update-based replications: new updates are the
subjects of rumours. The study also presents a randomized anti-entropy
algorithm which provides performance improvements. [18]

Study [8] presents bimodal multicast: a gossip protocol named pbcast. It
contains two steps: unreliable, hierarchical broadcast and anti-entropy proto-
col. First, processes send a multicast to other processes using an unreliable
multicast method. During the second step, some anti-entropy protocol is
used for the duration of some unsynchronized rounds for correcting losses of
messages in the first step. [§]

Karp et al. in [39] present a push-pull protocol for rumour spreading.
Each round, every node selects randomly another node to which it connects.
These two nodes can exchange information to both direction. Every round,
nodes have to decide whether they push (tell about new rumours) or pull
(ask for new rumours). Lower limits for needed forward rounds are thus
achieved, compared to traditionally push-type gossip algoritms, such as flat
gossip. However, the nodes should be producing messages sufficiently often,
otherwise pull-operations are only waste of messaging capacity. [39]

Another protocol for rumour spreading is presented in [19]. Each member
in a network has some identification (ID) in a cyclic ID space. When a
member receives a new rumour that it did not know yet, it selects the next
target node randomly. Two-way communication is allowed. The receiver
member uses it for acknowledging its readiness to receive rumour and for
informing if it already knew the rumour. After that, the sender nodes selects
the next target for the rumour using the following rule: If the previous
receiver knew the rumour already, the rumour is next sent to the successor
of the previous receiver. Otherwise, the next target is selected randomly.
The rumour is sent until there have been R + 1 members which already
knew the rumour. R is a parameter which can be a function of the total
node amount. The presented protocol is not very robust against adversarial
node failures: if many consecutive nodes fail (at least R + 1), the protocol
might fail to spread the rumour for all nodes. A solution for the problem is
presented: when successful and unsuccessful connections to other nodes are

CHAPTER 3. FAULT TOLERANT DATA SPREADING 29

differentiated, a node first finds a random node to which it successfully sends
the rumour. Only after that it continues sending the rumour as defined.
Nodes also keep track on how many unsuccessful calls were made. [19]

Three gossip protocols specifically for asynchronous systems are presented
in [28]: Epidemic Asynchronous Rumor Spreading (EARS), Spamming Epi-
demic Asynchronous Rumor Spreading (SEARS) and Two-hop Epidemic
Asynchronous Rumor Spreading (TEARS). In EARS, processes maintain
Informed-list which contains that which processes have been informed about
which rumours. After having gathered rumours, a process selects randomly
another process to which all rumours are sent. Then the target process is
added to the Informed-list, and the known informed processes are recorded
in the message for telling that they have already received the rumour. When
the original sender process detects that all other processes have received all
rumours, it enters into a shut-down state. In the shut-down state, it receives
and sends messages normally for @(ﬁ log n) rounds, when n is the amount
of nodes and f is amount of possible failures. During the shut-down phase,
it sends information that all processes have already received the rumours. If
new rumours are not received during the shut-down phase, the process stops
sending messages and becomes quiescent. If noticing a new rumour at any
time, the process exits shut-down or quiescent state. Achieved time com-
plexity is O(n%flog%(d +4)) and message complexity is O(n log®n(d + §)).
d is the relative process speed and d is communication delay. [28]

SEARS is a constant-time gossip protocol and a variant of EARS. In
SEARS, each process selects a large set of other processes to which they send
all the rumours. Also, shut-down state is shortened. A counter is added to
each rumour, such that rumour initiating process sets it to zero. On every
step, a process increases the counter when forwarding the message. After the
counter of a rumour exceeds some threshold, the rumour can be ignored, and
processes in quiescent state do not wake for sending the rumour anymore.
Achieved message complexity is O(e(’f—:)log n(d+0)) for any constant € < 1
when f < n/2. [2§]

The basic idea behind another constant-time protocol TEARS is that it is
enough if only majority of processes receive a rumour; this gossip type is also
called majority-gossip. There are two stages. The first stage is that each
process sends its rumour to about ©(¥n log n) other random processes.
During the second stage, processes forward the messages, received during
the first stage, again to ©(/n log n) other, randomly selected processes as
second-level messages. Determining when to send these second-level messages
is based on two rules. The rules are based on how many of the messages from
the first stage are received. Achieved time complex is O(d + §) time and

CHAPTER 3. FAULT TOLERANT DATA SPREADING 30

message complexity is O(n"/*log?n) with high probability, when f < n/2.
[28]

Use of gossip protocols for data dissemination between players in online
games has been studied recently, too. One of the studies is done by Ferretti
et al. [24], in which use of three different push-type gossip protocols are
studied. In the first protocol, the probability of dissemination is fixed, and
it is thus called fixed probability gossip. In the second protocol, the amount
of neighbours to which to send the rumour is fixed. The third protocol is
a probabilistic broadcast. They conclude that the use of gossip protocols
allows fast dissemination and high responsiveness, however, when using low
gossip probabilities, all members might not receive all rumours. [24]

Another study about usage of adaptive gossip in unstructured network
in multiplayer online games is done in [14]. Three different gossip protocols
are examined. The first protocol is simple: when receiving a new rumour, a
member sends it to another member n with probability of v,,, for each member
n except itself and the one from which the rumour was received. A method
for calculating v, is given. The second presented protocol is an adaptive
dissemination threshold protocol. Each member maintains a dissemination
threshold value 7, for other members. The third protocol is based on the
second protocol. A difference is that instead of only one threshold value for
each node, a set of arrays, one array for each neighbour, is maintained. It
is noted with simulations that adaptive strategies achieve better results in
coverage and in delay of dissemination compared to non-adaptive ones, such
as fixed probability or probabilistic broadcast. [14]

Chapter 4

Failure detection

Two main properties of failure detectors are specified in [10] to be complete-
ness and accuracy. Completeness expects that any crashed process is even-
tually suspected of being faulty. Accuracy defines that not-faulty processes
should not suspected of being faulty. However, it is noted that fulfilling both
of these properties at the same time is impossible for failure detectors in an
asynchronous systems. The reason is that distinguishing a slow process from
a failed process is impossible. The problem of differentiating the two cases
causes that perfect accuracy cannot be achieved. [10]

In addition to using middleware as failure detectors, also algorithmic
methods can be used. One method is using heartbeats. The basic idea
of heartbeat protocols is that processes send periodically heartbeat mes-
sages which tell others that the sender is still alive. The simplest version
of heartbeat is a protocol, in which a heartbeat message is sent periodically
to neighbours. Each process then keeps track that when one was the last
heartbeat received. If long enough time has passed since the last heartbeat,
the corresponding process is marked as suspected. This is a timeout based
heartbeat.

A heartbeat protocol without timeouts is presented in [2]. Again, a heart-
beat message is sent periodically for telling that the sender is still alive.
Processes maintain a counter for each other processes, and when receiving a
heartbeat message, the counter corresponding to the sender is increased. If
a process crashes, its counter will eventually stop increasing. [2]

Because of the general properties of gossip protocols, one much studied
application for them is failure detection. Gossip protocols are resilient and
do not dependent on the state of a single processes. That is why they are
also able of routing around faulty connections between any two processes,
and most often provide high probability for complete distribution. Gossip
protocols are also highly scalable, and they do not make assumptions about

31

CHAPTER 4. FAILURE DETECTION 32

networks. [59] These properties are favourable for spreading heartbeat mes-
sages.

One such a gossip-based, heartbeat utilizing, failure detection protocol
is presented in [9]. The protocol is called piggyback protocol because it
allows sending rumour information in application-generated messages. An-
other heartbeat-based failure detector gossip protocol is presented in [20]. It
is designed to detect crash failures in wireless ad-hoc and mesh networks. In
the proposed protocol, detection time is adapted from the times of previous
heartbeat messages, and estimations about the arrival of next heartbeat mes-
sages are done. Adaptability is also used in [60], in which adaptive timeouts
are used. Adaptive timeouts are an extended version of heartbeats, in which
each process has a list of adaptive timeouts for their neighbours. If a process
A falsely suspects the process B of being faulty, but then receives a heart-
beat from B within timeout period, A increases the expected timeout for B.
Thus the protocol is able to adapt to different network properties between
different processes. [60]

Two gossiping heartbeat protocols, basic and hierarchical version, are
proposed in [62]. Both versions achieve fairly good completeness and accu-
racy. The hierarchical version is especially designed for large systems. It
contains two levels: groups, within which basic version protocol is used; and
cross-group level, for which a modified version of the protocol is used. During
every round, on average, one process of each group gossips with a process
belonging to another group. [62]

In the basic version, each process has one heartbeat counter which they
increase periodically. Also, they maintain a list containing an entry for all
known processes. An entry contains two heartbeat values: the newest re-
ceived heartbeat value of the other process and the heartbeat value of the
list maintainer, which tells when the newest heartbeat value was received.
After increasing their own counter, processes select randomly another pro-
cess to which they send their own heartbeat value and the full list of entries.
When receiving a heartbeat message, the list within the message is merged
with the receiver process’ own list. Occasionally, each process broadcasts
their list for being discovered. A timeout T}q; is set such that if a process
A notices that new heartbeat value for another process B has not been re-
ceived for Ty, then B is considered to be faulty. From that moment, if a
new heartbeat value is not received for B for further T eqnypy time, B is for-
gotten and its entry is removed. The basic version protocol is only capable
of noticing if a process becomes fully out-of-reach for all others, not if there
is a communication breach between any two processes. [62]

There are also alternatives to heartbeats. Other methods for failure de-
tection are shortly presented in [60]. Pinging is a method in which processes

CHAPTER 4. FAILURE DETECTION 33

ask their neighbours if they are alive. If a response is not received to the
pinging, the neighbour is suspected of being faulty. Leases is a mechanism
which is used especially when processes are sleeping most of the time. Pro-
cesses send messages to neighbours telling that it is alive, and then asks for
lease for some duration. After that, the process goes back to sleep. As long
as it sends a new message within the lease time, it is not suspected of being
faulty. [60]

Chapter 5

Theory behind implementation

Hardware restrictions in computers are nowadays not as strict as they were
a few decades ago. The increased capability allows that some design factors
are not as critical in design as they were previously. One such a factor is the
amount of networking connections one processor can make, which was part
of the reason for importance of network topology studies earlier.

The implementation for all protocols is done on top of a fully connected
network topology. One great advantage of it is that reconfiguration is not
needed in case of crashes. Also, routes around failed connection links can
be found if the network is not split. Call handlers are equal in a network:
there are not different roles. Additionally, they do not depend on each other:
an active call handler is fully able to continue working even if another call
handler crashes. Thus a need for a certain network topology is not created
by the system properties, either.

Middleware could provide solutions both for failure detection and for data
spreading. It could maintain a list of active call handlers either by noticing
when responses are not received from call handlers or by checking regularly
if there is an active connection to call handlers. As an external detector,
middleware is also independent of the actual processes, and thus failures in
call handler processes would not cause other unnoticed failures or incorrect
detections. In addition to taking care of failure detection, middleware can
also handle spreading messages to relevant call handlers. However, middle-
ware has its problems. The system should not have single points of failures,
and thus middleware should be redundant as well. Also, takeover processing
is difficult for middleware to take care of: how to tell a call handler that it
should start processing calls of another call handler? Current state of the
calls should be known by the new call handler. Thus all messages should
be sent to all call handlers, or another method for data sharing should be
found. However, it creates a possible problem of data integrity. If a message

34

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 35

from messaging interface is sent to more than one call handler, how to take
care that they calculate the same result? Another drawback of middleware
is that the amount of needed configuration would increase.

As a result, selection of network topology is slightly outdated way for im-
proving fault tolerance in the case of the example system because of available
computing resources. It does not provide solutions for the problems. Mid-
dleware, on the other hand, would bring additional unanswered problems
regarding the need for takeover and data integrity. That is why protocol
level solutions are used for the example system.

Failure detection and data dissemination differ in one major aspect. In a
failure detection protocol, all call handlers do not need to receive all heartbeat
messages as long as they receive any new message within a set time limit.
On the contrary, the selected data dissemination protocol should be able to
disseminate data fast and reliably to all call handlers: each call handler must
receive all messages. That is why two separate protocols are used for the
solutions.

On top of the two protocols, a takeover protocol is created for respond-
ing the question about what to do in the case of a failure. The takeover
protocol defines how call handlers select who should be taking over the calls
of a failed call handler, how takeover is done, and how other call handlers
should be informed about the takeover. The takeover protocol uses the fail-
ure detection protocol for detecting when takeovers should occur, and uses
the data dissemination protocol for spreading information about takeovers.

In the example system, calls are session-like data: it is very likely that
more than only one message per a call is received. That is why ongoing
calls must be kept in memory until they end. For evading possible problems
between call handlers and other components, it is desirable that each call is
handled always only by one call handler at a time. Different call handlers
can handle different calls at the same time. Thus a kind of semi-passive repli-
cation is needed. The solution should not be address-oblivious; identifying
call handlers should be possible. For this, an addressing system is needed.
Also, for making takeover protocol easier, as will be seen in the relevant
Section 5.3, the identification space should be cyclic.

The rest of this chapter presents all three protocols. Theory of the se-
lected failure detection protocol is explained in Section 5.1. Then data dis-
semination at theory level is presented in Section 5.2. Finally, in Section 5.3
takeover is presented.

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 36

Data name Type Description

Node ID Integer Unique ID of the node

Heartbeat Integer The most recent received heart-
beat count for the node

Last seen Integer The heartbeat count of the list

owner call handler telling the
point when the most recent heart-
beat count for the another call
handler was received

Suspected Boolean True, if the node is assumed by
the list owner node to be failed

Table 5.1: Data contained in an entry about a node.

5.1 Detecting failures

A heartbeat approach for the problem is selected over the other two methods
presented in Chapter 4 because of its properties. In pinging protocols, which
is push-pull type of protocol, two messages are sent for each live check and
thus pinging burdens network more than heartbeat, which is only push type
of protocol. Additionally, heartbeat protocol is selected over leasing for sim-
plicity reasons. Leasing would require additional protocols and safety checks
for taking care that failures are noticed fast enough and for overcoming the
problem of unsynchronized system in which clock times of servers cannot be
trusted to be the same.

The selected protocol is based on the basic heartbeat case of [62] with
message spreading happening as in the flat gossip presented in [31]. In the
protocol, the lack of global clock and time is solved by using a heartbeat
counter. The heartbeat counter is updated periodically and the new value
is reported. Spreading heartbeat values using a gossip protocol provides
probabilistic certainty that heartbeat values spread to all call handlers. Since
the connections between all call handlers are assumed to be equal in this
paper, there is not need to take adaptability into account. Also, call handlers
are equal, so hierarchical solutions are not needed.

The implemented protocol for call handlers contains the same information
than what is presented in [62]. In addition to maintaining the heartbeat
counter, each call handler maintains a table which contains an entry for all
other call handlers in the network. In this paper, the table is called status
table. All fields of an entry and a short description about them is presented
in Table 5.1.

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 37

In the example system, steps of failure detection protocol are executed
in local rounds. One round of a call handler is done every T, un.q Seconds.
The first step of a round is increasing the heartbeat counter by one. On the
next step, the call handler collects and checks all rumours it has received
since last round. A list is constructed containing call handler and heartbeat
counter pairs, one for each call handler, selecting the newest heartbeat value
for it. The next step is updating step. The list is iterated through, and if
newer heartbeat value, than currently known in the status table, is noticed,
the status table is updated accordingly for the relevant call handler.

After updating, a failure detection check is done. A call handler checks
if there are call handlers about which rumours containing a new heartbeat
count have not been received for at least t74; local rounds. If such call
handlers are found, they are marked as ”suspected” in the status table and
takeover protocol is performed. The takeover protocol is explained later in
Section 5.3.

The final step of a round is a forward step, which starts by creating a
new heartbeat rumour message. A call handler creates a message and adds
to it the newest known heartbeat counts of those call handlers about which
it heard any rumour during this round. Also the new heartbeat count of
the call handler itself is added to the rumour message. Always, the newest
known heartbeat value is added, even if the received rumours contained older
information than what was already known in the status table. The call
handler then selects maximum of by, other not suspected call handlers. The
newly created message is then sent to the by, selected call handlers.

There are some differences between the implemented failure detection
protocol and the basic protocol presented in [62]. A major difference is that
instead of forwarding and comparing full status tables, only the rumours
which were gathered during the step two of a round are forwarded in the
example system, however, always with the newest known heartbeat counts.
The decision brings minor savings in rumour message sizes, while the ac-
curacy seems to stay adequate, as the tests described in Section 7.1 show.
Another difference is that call handlers never broadcast their full list. In the
example system, the locations of call handlers are always known, so there
is not need for call handlers to advertise themselves with broadcasts. Also,
when spreading heartbeat rumours, by, call handlers are selected to which
the rumour message is sent, instead of selecting only one. This decision helps
new heartbeat counts to spread faster.

The main focus of the protocol is to detect if a call handler becomes un-
available by all call handlers. Thus the most important kind of failures to
detect are crash failures. Expected detection of omission failures depends
on the case. Because gossiping is able to route around connection breaks,

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 38

the failure detection protocol cannot detect communication breaches between
two call handlers. Only if a call handler becomes unavailable altogether, the
protocol should be able to notice the problem. Thus single omission failures
are not causing problems to the system, and neither are long lasting con-
secutive omission failures between any two call handlers, if there is at least
some route from all call handlers to others. However, if continuous, consecu-
tive omission failures are occurring for a call handler in all connections, the
result is that the call handler appears as crashed, and it should be detected.
Byzantine failures are out of the scope of this paper.

The simplified process flow of the heartbeat protocol is presented later in
Figure 6.2.

5.1.1 Maintaining message order

A typical problem in asynchronous systems is message ordering. When there
are several call handlers sending rumours independently of each other, how
to take care that receiving old information late does not affect the system
and break completeness and accuracy?

The problem of message orders is evaded with how the heartbeat counters
work. FEach call handler updates a heartbeat counter independently from
others, and when forwarding a value, it is never manipulated. Thus the
heartbeat values of a call handler are directly comparable.

Apart from byzantine failures, the only time when received heartbeat
values of a call handler are not directly comparable is when a call handler
has been restarted and it restarts counting from zero. This is a special case
which is more closely examined in Section 5.1.4.

5.1.2 When to stop

An important question in gossip protocols is when to stop forwarding a ru-
mour. Typical solutions include counters in messages or time calculations.
In the implemented failure detection protocol, such solutions are not needed.

During every local round, a call handler creates and sends a new rumour
which includes the call handler’s newest heartbeat value. This new value
invalidates the old value which is most likely still spreading in the system.
It was noted earlier that all call handlers do not need to get all heartbeat
rumours, as long as they receive at least any newer value within ¢,;. There-
fore it is justifiable for a call handler to discard any old information and only
forward the newest known heartbeat value, when receiving several different
heartbeat values for a same call handler within one round. Stopping rule for
the implemented failure detection can then be presented as: when receiving

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 39

a rumour containing a heartbeat value older than another heartbeat value
received during the same round or value already known in the status table,
the old rumour is not forwarded anymore.

5.1.3 Selecting timeout for detection

A significant part of the used failure detection protocol is failure detection
timeout, presented with t,;. If a call handler does not receive a new heart-
beat value about another call handler within ¢4,; rounds, the call handler
assumes that the other part is unavailable and flags it as suspected. The
base unit of ¢4, is one local round r, which again is presented in seconds.

Selecting a proper t 4 is a major problem in the failure detection proto-
col. The problem arises from two contradicting expectations: detecting failed
call handlers should happen as fast as possible, however, as little false detec-
tions as possible should occur. The smaller the timeout value is, the faster
failures are detected but the more false detections occur, and vise versa.

One approach for selecting a good failure detection timeout limit is exam-
ining probabilities of one call handler receiving any new heartbeat before the
detection timeout occurs. However, examining the exact probabilities is dif-
ficult, because the system is asynchronous. As such, it does not have a global
clock and nothing can be assumed about delays or temporary slowness of call
handlers. Therefore, for calculating approximate, directional values for ¢4,
probabilities in a similar, but semi-synchronous system are examined. In the
semi-synchronous system, local rounds of all call handlers are expected to
happen always at the same time, and thus the concept of a global round can
be used. It is also assumed that any message sent on a global round 7gpa
is always received by the rumour’s targeted receivers on the global round
T global + 1

By examining the worst case in the semi-synchronous system, a proba-
bility P; can be calculated. P; presents the probability of a call handler of
receiving any newer heartbeat value within ¢ global rounds if message omis-
stons and call handler failures do not occur. Approximate values for ¢, can
then be calculated from the equation by giving some expected value for P;.
Calculations for finding the probability, as well as some calculations for £ ¢,
are presented in Appendix A.

5.1.4 Call handler restart

In real-life systems, it might not be desirable that once crashed server never
restarts, or could not rejoin the system after restart. Some kind of restart

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 40

handling is needed. That is why some rules for detecting and accepting
restarted call handlers is needed.

When a call handler restarts, it sets its heartbeat counter to zero. If heart-
beat values are compared only by checking which value is bigger, restarted
call handlers would go unnoticed until they reach the heartbeat value of the
moment of the crash. That is why a special handling for restarts is needed,
and a new restart detection range from zero to t,csqr¢ is introduced as a
special range of heartbeat values which indicate about recent start of a call
handler.

When a call handler receives a heartbeat value within the range from zero
to tfqi1, the subject call handler of the rumour is flagged as restarted, and
restart detection actions are done. After that, until the first heartbeat value
larger than t,esq¢ is received for the first time, received heartbeat values
of the restarted call handler are handled normally except for one exception:
values less than ¢;4; are not considered as a sign of restart. When ¢,¢star+
is reached, the restart flag of the rumour target call handler is emptied and
fully normal handling of heartbeat values continues. Heartbeat values less
than ts,; are considered again as signs of restart. Restart detection range
works thus as a buffer which takes care that heartbeat values are correctly
handled even after a restart.

Selection of t,..sq must be done carefully for avoiding problems. If it is
too large, quick and consecutive restarts are likely to go unnoticed. If the
selected value is too small, some call handlers might fail to continue normal
heartbeat counting and thus will erroneously think that the restarted call
handler has crashed again. A good value for t,csqr i two times ¢4, when
trai 1s selected such that there is a huge probability that all call handlers
have received any new heartbeat until then. If so, there is a huge probability
that all call handlers have received at least t 4 after t,¢sq,+ rounds, and thus
problems should not occur.

5.2 Data dissemination

The purpose of the data dissemination protocol is to ensure that all call
handlers know all changes in call statuses. The ideal solution would thus be
one that forwards rumours fast and reliably to all members.

The implemented data dissemination protocol is loosely based on Epi-
demic Asynchronous Rumour Spreading, EARS, presented in [28]. The
amount of call handlers is small and call handlers are equal, thus there is
no need for hierarchical protocols. Also, when the network between call
handlers is assumed to be equal, adaptive timeouts are not needed. A ma-

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 41

jor advantage of EARS is its less general gossip kind of nature. Instead of
probabilistic certainty that all processes receive a rumour, the maintained
informed-list helps to keep track on which processes have not received the
message yet. Also, the receiver information is told to all processes when
including the information in a message.

However, there are some minor disadvantages in EARS for the example
system. First of all, the protocol is based on local steps, while the ideal case
for the time critical example system is to forward new information as soon as
required. Also, the original sender only sends rumours to one other process
each step. This slows down the dissemination, and creates a possible single
point of failure. That is why modifications to EARS are done.

The first modification is that instead of only one other process ¢, a ru-
mour is sent to by, other call handlers. From this part, the protocol leans
slightly towards the spamming variation of EARS: SEARS [28]. Instead of
recording to which processes a rumour has been sent, it is now recorded that
which processes have confirmed that they have received the rumour. When
forwarding a message, a call handler adds its own ID to a recewed array and
adds the IDs of selected addressee call handlers to a sent array. The sent
array tells to which call handlers the message has been sent but which have
not confirmed the message as received, yet. The received array tells which
call handlers have also confirmed the message as received. These arrays are
then included in the rumour message.

A unique message identification number (message ID) is given for each
data message when one is created for the first time. The same message ID is
preserved in all created copies when forwarding the message. Additionally,
each call handler separately maintains a table similar to informed-list of
EARS in [28]. The table is called received table in this paper. It contains
pairs of a message identification number and a list of call handler IDs. When
receiving a message, a call handler adds the content of the message’s received
array to the received table.

The data message protocol is always initiated by a call handler only when
there is a need to disseminate any data. A call handler creates a data message
containing some data, adds itself to the received array and creates a unique
ID for the message. Then it selects by, other call handlers from the currently
not suspected call handlers at random. IDs of the by, selected call handlers
are now added to the sent array of the message. Then the rumour is sent to
the selected call handlers.

When receiving a data message, a call handler updates its received table
with the information contained in the message’s received array. If an entry for
the message ID does not exist yet, the call handler knows it has not received
the message yet, and so it also processes the message before creating an entry.

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 42

Now the call handler selects the next maximum of by, call handlers with
the following algorithm:

At first, maximum of by, targets are randomly selected from the call
handlers which do not appear in the received array of the message, nor in
the received table for the message ID, nor in the sent array of the message.
If the total amount of selected targets after the first step is less than bguq,
additional targets are randomly selected from the sent array of the message
until either by, targets is achieved, or until there are not any not selected
call handlers in the sent array anymore. Thus the total amount of targets
might be less than bg.,. The IDs of the selected call handlers are added
to the sent array of the message. Also, the ID of the call handler and the
content of the received table for the message are added to the received array
in the message. The message is then forwarded to the selected targets.

The received table is used for reducing total message amounts. It is likely
that most call handlers receive the same data message more than once when
baata > 1. When a call handler sends a data message to bgq, others, none of
the bgutq call handlers is sure if other by, — 1 targets actually received the
message or not. Without received table, the received array in the copies of
the original message would be growing only by one ID per forwarding. The
received table brings additional information about receiver confirmations for
messages. When several copies of a message are received by a call handler, it
is able to combine information from received arrays of several messages, and
eventually it might be able to notice that all call handlers have confirmed
having received a message, even if the received array of a single copy does
not include all possible call handlers yet.

Notable savings in total message amounts are achieved with the received
table, as can be seen in test results presented in Section 7.2. A drawback of
the table is that it requires additional memory. However, the content of the
table is not large when call handler amount is not huge, so the additional
memory requirement is tolerable.

A sent array is added to a message for faster spreading to all call handlers.
Sent array keeps track on which call handlers have had the possibility to
receive a message. It leads call handlers to forward a message primarily to
those which did not even have the possibility yet. Downside of a sent array
is that the size of a rumour message grows, but the growth is tolerable when
the amount of call handlers is not huge. Slight differences in the speed of
spreading are achieved with sent arrays, as can be seen in the test results in
Section 7.2.

A special characteristic of the implemented data dissemination protocol
is that the algorithm for selecting next targets is not fully random. Instead,
information about those which have already received the message and which

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 43

might have received the message is used in the selection. It is both an ad-
vantage and a disadvantage. The semi-random selection algorithm provides
certainty in dissemination, which normally lacks in gossip protocols: with
the received array and received table it is taken care of that all call handlers
will receive the message, at least as long as problems do not occur. A dis-
advantage is that never sending the message to a confirmed receiver reduces
the amount of alternative paths that can be taken for delivering a message.
For example, let us examine a case in which a call handler A is only able
to communicate with a call handler B. If B initiates data dissemination by
sending a message to bgqi, Other call handlers, of which none is A, then A
will never receive the message, because the message will never spread back
to B. It is a major drawback, but the probability for this case to occur is
tiny enough when the communication happens in a fully connected network.
It is a case, however, of which it is good to be aware.

Another minor disadvantage is somewhat spamming nature of the proto-
col. Some of the call handlers which receive a message quite late will receive
multiple copies of the same message. Thus they get burdened more than
those which received the message earlier. However, the use of the received
table somewhat reduces the effects of this disadvantage by lowering the total
amount of messages significantly.

5.2.1 When to stop

Again, a question about when to stop forwarding a message is relevant. Call
handlers are always added to a received array by themselves, never by another
call handler. That is why it can be trusted that the confirmed receivers in the
received array are correct, when message content changing byzantine failures
do not occur. Thus also the information in received tables of call handlers
can be trusted.

Now it can be defined that a message is forwarded only if there is at least
one active call handler which does not occur either on the received array or on
the received table for the message. That way a call handler may decide to not
to forward a message anymore even if the received array of the message does
not contain some of active call handlers, as long as all active call handlers
are either in a received array or in the received table.

5.2.2 Ordering of data messages

In data messages, the order of messages regarding a same event has a great
importance when processing them. Messages about different calls may be
handled at any order.

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 44

In general, there are two different approaches to the message order prob-
lem. The first approach is to take care that messages are always delivered in
a correct order. However, avoiding the incorrect message orders completely
would require a strongly synchronized system, but that is not possible for
the example system. The another possibility is to have a way to detect and
handle cases in which messages have arrived in a wrong order.

A solution for checking the right message order is to use time stamps in
messages. While it can be assumed that clocks of all call handlers are about
the same, it cannot be relied much enough for reliable message ordering.
Thus clock independent solutions are needed.

Some solutions for the message ordering problem would be acknowledging
and voting. In acknowledgment, all members, call handlers in this case, have
to accept the message before the changes caused by a message actually take
place [26]. In voting algorithms, the receivers vote if a message was received
on time, and the change only takes place if majority of receivers voted for it
[27]. A detriment in both of the solutions is that delays between receiving
the first message from messaging interface and finally producing a response
back to it grow, if all call handlers would need to react. Thus neither of the
solutions is suitable for the example system.

The implemented solution is based on counter values transferred within
each message. The counter values must be selected such that the values in
messages regarding same events must be comparable with each other. There
are two data messages in which orders matter: call state change messages and
takeover messages, which both are further presented in Section 6.3. Takeover
messages contain both the heartbeat of a yielder and the heartbeat of an
overtaker. Depending on the case, either one is used for comparison.

A problem with call state messages is that the owner call handler of a call
might change if takeovers occur. Because heartbeat values of different call
handlers are not comparable, the heartbeat counter of the owner call handler
cannot be used. That is why a session counter for calls is introduced. When
a call begins, the session counter is set to one. When a state change for
the call occurs, the session counter is increased by one. Call state changes
are updated only by the current call owner, that is why session counter can
be trusted to be reliable enough. Now it is easy to determine, if a message
is new or not: if a session counter in the message is bigger than the known
session counter of the call, the message is new and the state of the call should
be updated. Otherwise the message is ignored.

Ordering general message forward request, which are presented later in
Section 6.3, is the most difficult case of all data messages. They can originally
be sent by different call handlers, and they can be sent at the same time.
One way for decreasing the amount of wrong orders is to send the message

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 45

always to the owner of the call for which the message it is meant, in addition
to sending it to bgue — 1 others as well. However, the problem is still not
eliminated. A reliable way for ordering them has not been found and is left
for further studies.

5.3 Takeover protocol

The first problem of takeover protocol is to determine the rule along which
the actual overtaker of calls of a crashed call handler is selected. Concepts
of monitor and monitored are taken into use for the solution. Monitor is the
call handler which will take over the calls of the monitored call handler if the
monitored crashes. For example, if B is the monitor of A, then A is the mon-
itored of B. Monitoring relationships are always maintained between active
call handlers, which means that if crashes occur, monitoring relationships
must be updated. As a result, when there are at least two active call han-
dlers, each call handler has exactly one monitor and at least one monitored,
of which only one can be active. If all call handlers in the system are active,
each call handler has only one monitored, but if crashes have occurred, some
call handlers might have more than one monitored.

Monitoring relations are decided using unique identification numbers (ID)
of call handlers. Earlier the IDs space was defined to be circular, which is
utilized in the selection. It is defined that the next value in the circle is the
monitor, and the previous value is the monitored of any call handler.

When a crash of a monitored is noticed, a takeover occurs, during which
the monitor takes over the calls of its monitored. Monitor becomes thus an
overtaker and the monitored becomes a yielder.

The change in monitoring relationships caused by takeover last until the
crashed call handler restarts. That is why call handlers maintain a table
called as takeover table which contains the information about the takeovers
it has heard about. The data contained in an takeover table entry is presented
in Table 5.2.

Takeover protocol is initiated by a call handler B when it detects that it
has not heard any new information about its monitored A for t,; rounds.
B first finds which is the new monitored after the crash, and notes how
many crashed call handlers there are between the new monitored and the
call handler B itself. All the crashed call handlers in between are then taken
over by B and are now considered as inactive monitored call handlers of B. B
takes the ownership of known active calls of all the monitored call handlers,
and starts responding to the messages regarding these calls. Then B creates
a takeover message, which contains IDs of all the call handlers which are

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 46

Data name Type Description

Renouncer Integer Unique ID of the renouncer call
handler

Renouncer Integer The most recent received heart-

heartbeat value beat value

Overtaker Integer Unique ID of the overtaker call
handler

Overtaker heart- | Integer The overtaker’s heartbeat value

beat value at which it took over the calls

Restarted Boolean True, if the renouncer node has
been restarted after this entry
was created.

Table 5.2: Entry in the takeover table.

now monitored by B. This message is forwarded to other active call handlers
using the data dissemination protocol presented in Section 5.2.

When receiving a takeover message, a call handler first has to find out
which call handler will most likely be the actual overtaker. This check is
needed for avoiding problems caused by receiving messages in a wrong order
because of asynchrony of the system. The receiver call handler checks its
takeover table for an entry telling if there are takeovers for the original sender
of the takeover message. If such an entry exists, the heartbeat values in the
message and in the table entry are compared. If an entry does not exist
or the heartbeat counter in the entry is older than the heartbeat counter of
the message, the original sender of the message is considered as the actual
overtaker. Otherwise, the overtaker found in the table entry is considered as
the actual overtaker.

Additionally, it is checked if there are entries in which the yielder of the
message works as the takeover: has the now crashed call handler previously
taken over other call handlers. If such entries are found, the overtaker in the
entries is updated to be the actual overtaker of the new crash case. Also, if
the overtaker is updated, also the heartbeat counter in the entry is updated
to the heartbeat count of the actual overtaker.

When processing a received takeover message, a call handler never checks
if yielders have been marked as suspected in its own status table. Neither it
never sets suspected flags as a result of takeover messages. Obeying takeover
messages even if it is contradicting the call handler’s own knowledge is a
crucial property for avoiding conflicts with the failure detection protocol. It
also helps preserving consensus between call handlers about the knowledge

CHAPTER 5. THEORY BEHIND IMPLEMENTATION 47

on call owners. When a takeover message is received, the actual takeover has
already happened: the original sender of the message already considers the
calls as its own. If takeover messages were ignored by some call handlers due
to conflicting information about call handler statuses, different views on call
owners would occur, which would complicate the proper takeover of calls.

The submissive nature of handling received takeover messages is especially
important in the cases of false failure detections. At any point, any call
handler might falsely detect that its monitored has crashed. In that case, for
a short period of time, there are two call handlers handling the same calls.
In the case of false detection, it is probable that the monitored receives the
takeover message, too, at some point. When receiving a takeover message
telling that it itself is a yielder, the falsely detected call handler knows to
stop handling its calls which had started before the time of the takeover. It
then lets the overtaker continue handling them, even if there had not been
any need for the takeover.

Chapter 6

Implementation

The implementation of the protocols is made as an inner module of a call
handler. The module is called a rumour module.

The circular identification number (ID) space of call handlers is defined
to be presented as integers. In the integer identification number space, the
next ID is the next bigger integer, and the previous ID is the previous smaller
integer. The next value from max integer is min integer, and the previous
value from min integer is max integer.

The design of a rumour module and the most relevant inner components
are presented in Figure 6.1. Red components are related to the data dis-
semination protocol, call handling and takeover. Components in green are
related to failure detection. The components in yellow are general compo-
nents needed by all protocols.

6.1 Components of the rumour module

ModuleMain component takes care of starting and controlled stopping of
the rumour module. At the start, it creates other components and starts
them as soon as everything has been properly created. At the time of a
controlled stop, it tells other components to releases resources and to stop
communication.

Server and MessageParser work closely together. Server listens a spec-
ified port for User Datagram Protocol (UDP) messages. When receiving a
message, it just passes the read bytes to a queue in MessageParser. This
way the server is ready for listening for more messages as fast as possible.
MessageParser waits until read bytes are available in a queue. It examines
the read bytes to see which message the bytes are presenting, and then con-
verts the bytes to the object presentation of a message. Now it forwards

48

CHAPTER 6. IMPLEMENTATION 49

Y
——> Creates
------------ »| TargetSelector R
------- » Has areference | P H
CallStorage s » RumourSender [€-------- :
X :
A4 A 4
RumourHandler HeartbeatHandler ---» StatusStorage
A A A A A
Y
. temen MessageParser
ActiveTakeovers >

A

Server

ModuleMain

Figure 6.1: Rough inner design of a rumour module. Failure detection han-
dling related inner components are presented in green, while data dissemina-
tion and takeover related are red. Components used by both protocols are
presented in yellow.

the message to the relevant component: heartbeat messages are added to a
queue in HeartbeatHandler, and any other message is added to a queue in
RumourHandler.

TargetSelector is a component relevant for both failure detection and data
dissemination. It selects addressed receivers for messages. The addressees
for data messages are selected using the selection rules of data dissemination
as described in Section 5.2, and the addressees for heartbeat messages are
selected along the rules presented in Section 5.1.

For heartbeat messages, by, addressees are simply selected from among
all active call handlers fetched from the StatusStorage. In the case of a data
message, the selection process is longer. TargetSelector first checks the re-

CHAPTER 6. IMPLEMENTATION 20

! Receive message l
2

Wait until bytes in
queue

Wait for a new UDP
message

¥

Add read bytes to

> Parse message

‘/—|>(Bytes queue <

bytes queue
Heartbeat Add hearbeat to
queue heartbeat queue
Y
o Take and remove all
Wait for

trail milliseconds > messages Add rumour to
rom heartbeat queue rumour queue

A ¢

Increase own
counter Rumour queue f-------mnunu-- g
Y

Take the first data
message

Find pairs of newest
heartbeat per call

handler ID
Forward all received
heartbeats with Send the message to
newest available info Update node the selected Process the data essage
i i addressees received
information from the message before?

received heartbeats,
update priority queue

Check head of the
priority queue for next

A

timeouts

A

Update sent array of
the message with
new addressees, add
own ID to received

|

Add the message to
received messages
table

Find first
candidates: all active
call handlers not
present in the sent
array, in the received

array or in the
received table for the
message

array 1

Remove head of
riority queue for next
timeouts

Process take-over
protocol

Select from sent
array until
b addressees in total
has been selected,
or no unselected
members in sent
array

y
Select min(b, length
of first candidates)
addressees from
first candidates

Figure 6.2: Inner function of a rumour module. Dashed arrows present how
a message is transferred between components. Failure detection processing is
presented in green, data dissemination handling in red, Server functionality
in blue and MessageParser funtionality in yellow.

ceived array of the data message and the received table of RumourHandler
for finding the call handlers which have not confirmed having received the
message yet, at least as far as the call handler knows. The status of each po-
tential addressee is then checked, and the call handlers flagged as suspected,
are discarded. The remaining call handlers are divided into two categories:

CHAPTER 6. IMPLEMENTATION o1

potential addressees which show up in the sent array, and primary candi-
dates which are not in the sent array and have not confirmed the message as
received. At first, by, addressee call handlers are selected from the latter
category. If the category contained less than by, members, the remaining
addressees are selected from the sent array of the message. After the selection
is done, a message and the selected addressees are sent to RumourSender.
RumourSender translates the message to transferable bytes and sends them
to the targeted receivers using User Datagram Protocol (UDP).

The main component in failure detection handling is HeartbeatHandler.
It takes care of performing the steps of a round every T,,,.q seconds, as
presented in Section 5.1. HeartbeatHandler is the only only component which
updates StatusStorage, even if other components have access to it as well.
StatusStorage is the component in which known status of each call handler
is saved, and which thus allows access to the status table.

RumourHandler handles all messages which are spread using the data
dissemination protocol. Unlike HeartbeatHandler which works periodically,
RumourHandler works only when a need arises. It sleeps until receiving a
message to its queue from MessageParser, after which it processes the re-
ceived message. RumourHandler creates and maintains two storages: Clall-
Storage and ActiveTakeovers. CallStorage contains the minimum amount of
required information about all ongoing calls. ActiveTakeovers contains the
active takeovers table as presented in Section 5.3. In addition to the storages,
RumourHandler maintains the received table needed in the data dissemina-
tion protocol. Another table handled by RumourHandler is an unanswered
messages table which contains forwarded messages from outside of call han-
dlers. The importance of the table is explained in Section 6.5.1.

The functionality of the module is presented in Figure 6.2. The function-
ality of RumourHandler and other data dissemination components is coloured
in red. The functionality of HeartbeatHandler is coloured in green. Blue
boxes present the functionality of Server, and the work flow of MessageParser
is in yellow.

6.2 Implementation of failure detection

The presentation of heartbeat count is done with 32-bit integers. Integers
provide large enough heartbeat range, having 232 unique value. If, for exam-
ple, T,.ouna is one second, integers provide values for heartbeats for over 136
years. Tr.unq should not be too small, because it creates a lot of additional
overhead to the network if heartbeat messages are sent too often. On the
other hand, having too large T,,unq slows down failure detection. That is

CHAPTER 6. IMPLEMENTATION 52

why a good value for T},,,q for the example system is one second.

After the start, a round is run every T,,..q second by HeartbeatHandler.
A round is started by fetching all heartbeat messages from the queue and by
emptying the queue immediately afterwards. The messages have been added
to the queue by MessageParser. The heartbeat messages are iterated through
and compared with each other. During the iteration, HeartbeatHandler up-
dates a list of newest heartbeats. The list contains the heartbeats which are
the newest received counts for each call handler. As a result, a list of call
handler and heartbeat pairs are formed, one entry for each call handler about
which rumours were received. The heartbeats in the list are compared to the
current heartbeats in the status table, and the status table is updated when
new heartbeat counts are noticed.

The check for detecting possibly crashed call handlers is implemented
using a priority queue. In the queue, call handler IDs are ordered by how
many local rounds there have been since receiving a new heartbeat count last
time. When iterating through the list of received rumours, also the priority
queue is updated when a newer heartbeat than in the status table is noticed.
Updating the priority queue is done by removing an entry of the call handler
in question and re-adding it to the tail. Remove operation executes in linear
time and adding is done in O(log(n)) time [48]. As a results, the head of the
priority queue contains call handlers with the longest time since their new
heartbeats were received last time.

When the step of finding possibly crashed call handlers comes, the Heart-
beatHandler checks the head of the queue. If the most recent heartbeat count
of the head has been received more than t,; rounds ago, the call handler at
the head of the queue is considered as crashed. If the newly found crashed
call handler was monitored, takeover is executed. The head is removed from
the priority queue. Then new head of the queue is checked, and handled re-
spectively. The same procedure is repeated until the new head of the queue
should not be suspected. When such a head is faced, or the queue becomes
empty if all other call handlers have crashed, HeartbeatHandler continues to
the next step: creating a new heartbeat message. The implementation of
the priority queue provides constant time for checking the head of the queue,
and O(log(n)) time for removing the head of the queue [48].

Now HeartbeatHandler creates a new heartbeat message adding its own
heartbeat counter to it. Also newest known heartbeat values for all call
handler about which rumours were noticed during this round are added to
the message. HeartbeatHandler requests TargetSelector to select by, targets
for which the heartbeat message should be sent. RumourSender is then called
for sending the message to the selected targets.

CHAPTER 6. IMPLEMENTATION 23

6.3 Data messages and data dissemination

There are several different kind of messages which are all processed by Ru-
mourHandler. They can be received through two different paths: from other
call handlers through Server, or as internal messages from other modules of
a call handler. The actual processing of a message depends on the type of
the message. In total, there are four different kind of messages:

e State change messages
Received from other call handlers through Server or internally from
other modules. Presented in Section 6.3.1.

e Takeover message
Received from other call handlers. Presented in Section 6.3.2.

e General message forward requests
Received internally from other modules if the general message is com-
ing from the messaging interface, or from other call handlers through
Server. Presented in Section 6.3.3.

e Update calls notification
Received from other call handlers. Presented in Section 6.3.4.

Further explanations about messages and about how RumourHandler
handles them are presented in subsections. The bit-wise presentations of
messages are presented in Appendix B.

6.3.1 State change message

The most common messages are state change messages which tell that a
change in the state of a call has happened and which contain the new state
presentation of the call. They are received either from the other modules
inside the same call handler, if the call in question is currently owned by the
call handler, or from other call handlers through Server, if the call is owned
by another call handler. No matter which case it is, the message is processed
in the same way.

State change messages for a call can only be created by the current owner
call handler of the call. This is a major safety rule which is needed for message
ordering and for avoiding conflicting messages related to a call being sent by
different call handlers.

There are three types for a state change message: begin, state change
and release. Begin indicates that the call has recently been restarted. When

CHAPTER 6. IMPLEMENTATION o4

receiving a begin, RumourHandler checks if a call with the given call identi-
fication number is known yet. If not, it adds the call to CallStorage. State
change type indicates that the call has previously been started, but its state
has changes somehow. When receiving a state change message of type state
change, RumourHandler finds the call with the given call ID and checks if
the received message contains new information about the call. If the message
presented a new change in state, the state of the call in memory is updated.
Otherwise the message is ignored. Determining if a state change message con-
tains new information is explained in 5.2.2. Release type is used for telling
that a call has ended and should be removed from memory. Also, the ID of
the call is added to a constant size round buffer named released calls array.
The purpose of the release calls buffer is explained in Subsection 6.5.2.

No matter what type the state change message is or if it was received
from other call handlers or modules, the next step for RumourHandler is to
forward it using the data dissemination protocol presented in Chapter 5.2.
RumourHandler adds itself to the received array of the message, asks Tar-
getSelector to select the addressees, and then lets RumourSender to send the
message to the selected call handlers.

Change state messages always contain the full presentation of a call state.
While it makes messages larger than if they contained only new changes, it
helps taking care of that call handlers are unanimous about call states. If
the messages contained only changes and each call handler had to compute
the new state by themselves, problems could occur if receiving messages in
a wrong order. Computing the changes in wrong order could lead to wrong
results. Alternatively, a rule should be found out on how to handle the cases
in which it is noticed that some messages are missing in between. Both of
the problems are solved by sending the full state presentation. For example,
if a call handler gets a call state change message with session counter larger
than the next from the previously known counter, it is known that some
state change is missing from the between. However, the update of the call
in memory can be done, because of getting the full state in the message.
If receiving the missing call state message later, the message can just be
ignored, as well as if receiving a message with smaller session counter than
the most recently known.

6.3.2 Takeover message

Takeover messages can only be received from other call handlers. Their
purpose is to inform other call handlers that the sender of the message has
taken over calls of another call handler, and is now the owner of the calls.
When receiving a takeover message, a RumourHandler first checks if the

CHAPTER 6. IMPLEMENTATION 95

information is new. Determining if the information is new, is a problem
caused by message orders, and it is explained in Section 5.2.2. If the message
contains new takeover information, the takeover is handled as described in
Section 5.3. In either case, the message is then forwarded using the data
dissemination protocol.

6.3.3 General message forward request

General message forward requests are special kind of wrapper messages. Gen-
eral messages are originally received from the black box through the messag-
ing interface. Each call is only owned by one call handler at a time, and thus
each general message has an intended target call handler. However, if the
message is sent by the messaging interface to a call handler to which it does
not belong, the call handler forwards the message to others. Thus general
messages can either be received from other call handlers, or from other mod-
ules inside the same call handler. A general message forward request is a
data message which contains one general message from outside the network
of call handlers.

When receiving a general message from the messaging interface for a
call of another call handler, the other modules of the receiver call handler
forward the message to the rumour module. RumourHandler then tries to
find a call from CallStorage matching the information of the message. If a
call is found, the ID of the call is set to the general message forward request
for helping other call handlers to identify the call for which the message is
meant for. Then the ID of the call handler is added to the received array,
and the message is forwarded using the data dissemination protocol.

When receiving a general message forward request from another call han-
dler, RumourHandler first tries to find the call for which the message is
meant. If the call is found, and the call is owned by the call handler itself,
RumourHandler forwards internally the general message inside the general
message forward request to other modules which are responsible of handling
such messages. In that case, the general message forward request is not for-
warded to other call handlers anymore. However, if a call is not found or it
is owned by another call handler, the general message forward request is for-
warded using data dissemination protocol. The inner message is also saved
in memory, purpose of which is explained later in Section 6.5.1.

6.3.4 Update calls notification

When a call handler restarts, it has lost all data of the ongoing calls. For
fixing the situation, update calls notifications are used. When a call handler

CHAPTER 6. IMPLEMENTATION 26

notices that any other call handler has restarted, it creates update call no-
tifications from all ongoing calls it knows and sends the message directly to
the recently restarted call handler.

When receiving an update calls notification, RumourHandler updates its
call storage with the calls from the messages. If the call storage already
contained some of the received calls, the call information with newest call
session counter is selected as the current state of the call. The update calls
notification is never forwarded after that.

6.4 Takeover

When HeartbeatHandler notices that any new heartbeat count about the
monitored has not been received for at least ¢4, rounds, the takeover proto-
col is started. The status of the monitored is flagged as suspected, and the
information about monitored crash is forwarded to RumourHandler. Ru-
mourHandler finds the new monitored, and takes over calls of all call han-
dlers between the new monitored and itself. An internal message is created
containing data of all calls that were taken over at this step. The message is
then sent internally to other modules, which are take care of call processing.
Entries of all the takeovers are created or updated in the takeover table.

Then a takeover message is created and the IDs of all call handlers which
were taken over by the call handler as a result of the monitored crash are
added to the message. The takeover message is then forwarded using the
data dissemination protocol.

6.5 Special cases

There are some cases which require special handling. They are mostly caused
by asynchronicity of the system, or preparing for real-world situations. Some
of the cases are presented in this section.

6.5.1 Crash before responding to the messaging inter-
face

Some of the messages received from the messaging interface require a re-
sponse. The responding call handler is most often the one which handles the
call about which the message is. A response is sent before a state change
message is created and disseminated. If crash of a call handler happens at the
moment when a response is expected, but the call handler did not have time

CHAPTER 6. IMPLEMENTATION o7

to send it, the overtaker of the call should send the response instead. For
that reason, a table named unanswered messages is maintained. When for-
warding a general message forward request, the general message is also saved
in the unanswered messages table, along with the current session counter of
the call to which the message is related.

When detecting a crash, the monitor of the newly crashed call handler
performs the takeover protocol. After starting handling the calls, the unan-
swered messages table is checked for all calls that are taken over. If the most
recent session counter of a call is newer than the session counter of the unan-
swered messages table for the call, all the messages have been responded, and
the overtaker does not need to process the messages in the table. However,
if the session counter of a call is equal to or less than the session counter in
the unanswered messages table, additional processing is needed. The over-
taker then processes the unanswered messages in the same way than when
receiving a general messages for own calls. As a result, responses are sent.

6.5.2 Receiving messages after release

A special case of a wrong message orders is when state change messages are
received after a release message. As a result of a release message, a call and
all related information is removed from memory. Consequently, if receiving
a state change message for a call after the call has already been released, it
appears for a call handler as if there is a new call for which begin message was
not received. That is why additional information about already processed
and ended calls is needed.

A simple solution is used. A circular buffer of fixed-size s called released
calls array is used for saving s most recent call IDs of released calls. When
receiving a state change message for an unknown call, the released calls array
is checked. If the call ID of the state change message is found in the buffer,
the state change message is about an already released call and the message
can be ignored. If the call ID is not found in the buffer, the state change
message is probably about a new call. This solution radically decreases the
amount of re-adding already released calls, but it does not fully eliminate
the cases.

6.5.3 Controlled stopping of a call handler

In real-life systems, it is good to be prepared for maintenance work which
might require manual restart. While the failure detection protocol could be
let to take care of manual restarts, too, a better solution would be to provide

CHAPTER 6. IMPLEMENTATION o8

a way for controlled shutdown. In the case of call handlers, the controlled
shutdown would allow faster takeover of active calls.

For this purpose a unloading notification message is sent by a call handler
when a controlled shutdown is requested for it. The message is only a simple
notification message, which will be sent once to other call handlers and which
will not be forwarded anymore by the receivers. When receiving an unloading
notification message for the monitored call handler, the message is handled
by RumourHandler in the similar way to the normal monitored crash, and
thus the control of calls is moved faster to the monitor call handler.

Chapter 7

Protocol testing

Tests are run separately both for the whole functionality of the system and
for data dissemination and failure detection protocols of the system. This
chapter presents the test cases for two of the protocols: failure detection and
data dissemination.

7.1 Testing failure detection

Tests of the solution for the failure detection problem cover heartbeat sending
and failure detection algorithms.

7.1.1 Test setup

Having a test system with an access to PSTN would be both expensive and
irresponsible, because of possible risk of congesting the network. That is
why a closed environment with virtual machines for call handlers is used in
testing. Due to lack of PSTN connection, only SIP user agents are used
for calls. Also, it is not possible to deploy call handlers geographically dis-
persed. Consequently, the tests do not examine how the solution works for
geographically distributed system.

Servers and virtual machines and their purpose in the test setup is pre-
sented in Figure 7.1. A rack server with limited resources is working as a
virtualization platform which hosts virtual machines used for call handlers.
It has CentOS 6.6 as its operating system, and it has four 2400 MHz central
processing units (CPU) and 4 GB of memory available. It runs OpenN-
ode Linux 6.6, with which ten identical virtual servers have been created.
Each virtual server has been installed with CentOS 6.5, they have 300 MB
of memory reserved, and they share the host server’s CPUs. Virtual servers

29

CHAPTER 7. PROTOCOL TESTING 60

Wirtual server 1 Virtual server @
- Handles call [- Handles call <
handlers 1, 11, 21, ... handlers 6, 16, 26, ...
Wirtual server 2 Virtual server 7
- Handles call o - Handles call -
handlers 2,12, 22, . handlers 7, 17, 27, ..
Wirtual server 3 Virtual server 8
- Handles call [- Handles call %
handlers 3,13, 23, .. handlers 8, 18, 28, .. T R
* - Simulates VolP phones
Virtual server 4 Virtual server 9 bz el e
- Handles call [- Handles call <
handlers 4, 14, 24, .. handlers 9, 19, 29, ..
Wirtual server & Wirtual server 10
- Handles call [- Handles call %
handlers 5, 15, 25, ... handlers 10, 20, ...
Wirtualization plaffarm
- Handles virtual servers which contain call handlers

Figure 7.1: Servers of the test setup.

use 64-bit OpenJDK 1.8.0 for running call handlers. Depending on the total
call handler amount in a test case, each virtual server provides resources for
one or more call handlers. Servers are behind the same network router, thus
communication between call handlers and test runner happens only within
the network.

Test runner is a virtual server with CentOS 6.5 as its operating system,
500 MB of memory and access to one 2500 MHz central processing units
(CPU) of its host server. It takes care of running the components of ”black
box” as presented in Chapter 2. Test runner also commands SIP client
handler, test robot and test scripts. The SIP client handler is a C-based
program which takes care of registering VolP numbers and handling SIP
signaling for the clients. The test robot is a Ruby-based program taking
care of which call cases should be done, when and how many. It commands
SIP client handler to start, answer or release a call. The last level of the

CHAPTER 7. PROTOCOL TESTING 61

test runner consists of Bash scripts. These scripts change automatically test
parameters for test cases, configure call handlers, define how long tests should
be running, and starts the test calls by calling the test robot. After each test
case, the scripts gather logs from all test environment components. The
scripts also take care of restarting call handlers and other test components
at the beginning of each test case for avoiding test cases potentially affecting
each other. Test cases are run sequentially, never parallel.

The base unit of test cases is one round. One round is a time during which
in total 10 concurrent calls are made, and the total time of a round is about
one minute. For the first 10 seconds, one call is started every second, ten calls
in total. Then the calls are answered every 2nd second, and then hanged up
every 2nd second. Thus the time of an answered call is 30 seconds. The time
of one test case is set to be about two hours. When the base unit of tests is
a round which lasts for one minute and during which 10 calls are made, the
expected total amount of calls for each test case is 2x60 minutes*10 % =
1200 calls. However, calls are only done in the whole system test cases
presented in Chapter 8.

Failures are simulated by killing immediately a call handler that is due
to face a failure. Killing the process is done by sending a "SIGKILL” signal
to the call handler process using a Linux command "kill”. The result of the
signal is that a process ends immediately without terminating correctly.

A huge amount of log data containing every action of test components is
created during test cases. In the larger amounts of call handlers, one test case
could create log data up to 5 GB. That is why also several parser programs
have been written for parsing the relevant information from the logs.

7.1.2 Test parameters

Test parameters are needed for examining dependence of test results on dif-
ferent properties of a system. FEach test case consists of different set of
parameters. For the example system, the most relevant test parameters are:

e (Call handler related parameters

— Call handler amount, n
— Data dissemination connections, bgutq

— HB connections, by,

Heartbeat failure detection limit, ¢4
Base unit is one local round 7},,q4, Which is presented in seconds

e Testing system related parameters

CHAPTER 7. PROTOCOL TESTING 62

— Failure probability, f
Means the probability of UTf, thus base unit is one per second,
Smaller f means larger probability, and vice versa.

— Restart probability, f
Means the probability of UTf, thus base unit is one per second, %
Smaller f means larger probability, and vice versa.

w |

Call handler related parameters are some of the most important configu-
rations of the example system: how many call handlers there are in total, to
how many call handlers heartbeat and data messages are sent, and what is
the timeout for failure detection. Testing system related parameters, again,
provide simplified information about the real world system: how probable
it is that one call handler crashes independently of others, and with which
probability it is automatically restarted after a crash. For getting more
meaningful results in test, failure probability is exaggerated.

The amount of call handlers, n, can be presented with a positive integer
and values of data and heartbeat connection with an integer between [1, n-1].
The value of failure detection timeout, ¢4, can be presented with a positive
integer, which tells the amount of local rounds. Time of one local round,
Ty ound, in all test cases is 1 second, thus the base unit of ., in practice, is
one second.

Positive integer can be used for f for both failure and restart probability.
The value means that every second each call handler has a 1/f probability
of crashing or restarting, if it had previously been crashed.

As a result of the large amount of possible values for each parameter,
there are numerous different combinations of test cases, and they would take
huge amount of time to run. Furthermore, running tests for all possible
values for failure and restart probabilities would not bring much additional
information; there is not much difference if each call handler has a ﬁ or ﬁ
probability to crash every second. That is why a good set of test parameters
are selected beforehand.

From the nature of data dissemination algorithm it can be noted that
data connections amount should be small; otherwise message amount grows
largely. That is why the value is set to 2: data messages are always forwarded
to only two other call handlers.

Estimates about ideal values for heartbeat connection amount and failure
detection timeout can be calculated for each call handler amount. For that,
the calculations presented in Appendix A are used. Worth noting is that
the calculations are done for a semi-synchronized system in which all local
rounds happen at the same time. That is why the real ideal values likely are
something else than the values used in tests.

CHAPTER 7. PROTOCOL TESTING 63

It was noticed in initial tests that larger probabilities for a failure are
more likely to cause problems. The effect of restart probability to reliability,
however, appeared to be indirect: the faster a call handler is restarted after
a crash, the faster it could crash again. That is why restart value is set to
an arbitrary constant smallish value 300.

With these decisions, the amount of configurable parameters can be re-
duced to only two: the amount of call handlers and the failure probability.
Other parameters are constant (data connection amount and restart proba-
bility) or are dependent on the call handler amount (detection timeout and
heartbeat connection amount).

One important testing system related parameter is left out: probability
that a single message gets lost in network. Because of lack of it, tests cover
only crash failures, but do not cover omission failures. Testing omission
failures would have required even more complex testing system and more
time. Thus it is assumed in the tests that almost all of the messages are
correctly delivered.

7.1.3 Running tests

Run time for test cases for failure detection is about 2.5 hours. A constant,
smallish value for failure probability is selected, because it should only affect
on the amount of expected crashes and restarts, not to the actual detection
processing. That is why the failure probability is set to 300, which means
that each second each call handler has a 1/300 probability to crash.

Initial tests showed that the virtualization environment cannot handle
correctly large amounts of call handlers. That is why tested call handler
amounts are all values between [3,10] and all even values between [12,20].

Testing environment and call handlers separately log every action they
take during test cases. Time stamps of the logs are used for ordering the
events for creating a full timeline of crashes, restarts and detections. The
virtual servers of call handlers and the test runner are not perfectly synchro-
nized, but their clocks are very close to the same time: there is less than one
second difference, maximum, between any two servers. Because the smallest
significant time unit in logs is second, time stamps in logs can be viewed as
reliable enough for testing purposes. Missing detections and faulty detections
can then be found from the timeline.

In some cases, missing detections are left out of the final results. These
are borderline cases, in which it is not sure if not detecting an event should
be viewed as violation of completeness or as normal behaviour. A missing
detection is not considered as a failure of call handler B to detect the crash
of a call handler A if:

CHAPTER 7. PROTOCOL TESTING 64

e B does not notice the crash of A when A is restarted less than ¢4
time after the crash.
If a call handler A is crashed for less than the detection limit time, it is
expected that other call handlers do not have enough time for noticing
the crash; it is normal behaviour. However, if call handlers fail to notice
the restart of A, it is considered as a failure. Call handlers should always
notice restart of the heartbeat counter of another call handler even if
they did not know that the call handler had been inactive.

e B does not notice the crash of A and B crashes within detection limit
time from the crash time of A.
In this case B does not have enough time to detect the crash of A.

e B does not notice that A has been offline, if B is restarted and within
less than detection limit time also A restarts.
When B restarts, it assumes that all known call handlers are active.
If A is restarted before B reaches heartbeat counter value of detection
limit time, B could not have known that A was not available.

7.1.4 Criteria

Main properties of failure detectors are completeness and accuracy [10]. Com-
pleteness, in this case, means that not only each crashed call handler, but
also restarted call handler, is eventually detected. Likewise, accuracy for the
example system means that no faulty start detection nor faulty crash detec-
tion occurs. Thus examining the results from the point of completeness and
accuracy brings valuable information about how well the algorithm works.

Another expected property of failure detection in the example system is
that detections occur fast enough: ”eventually” of completeness should be
short time. Thus the third criterion is the time that it takes before a call
handler detects a crash or restart.

Differences in importance of the three criteria for the example system ex-
ist. Completeness together with time should be as good as possible, because
otherwise takeover of calls might not occur, and data will be lost. Faulty
detections, on the contrary, most probably would not cause data losses, be-
cause of call handlers staying active and because of how takeover protocol
works. Faulty detections also have been taken into account already in imple-
mentation.

CHAPTER 7. PROTOCOL TESTING 65

7.1.5 Test results

Detection times and amounts of undetected events are counted from the
timeline, and the exact counts and average times are presented in Table 7.1.
Average detection times are used because more interesting than to examine
how fast a single call handler detects a crash or restart, is to examine how
fast in general call handlers are able to notice events. Detections are always
independent actions, which do not depend on detections of other call han-
dlers. The values in the table are shown per call handler amount and the
detection timeout is included for a reminder.

The values presented for stop detection times are average stop detection
times (" Avg stop detection time” in the table) and stop detection time after
restart of the detector (”Avg stop (restart)” in the table). Stop detection
time after detector restarts tells that how fast after its restart a call handler
detects another call handler, which was not active at the time of restart. Stop
detection times do not include the detection times after restart. These two
values are not directly comparable between different call handler amounts
because the ideal stop detection time depends on the timeout value, and
the timeout is different for different call handler amounts. That is why two
additional values, which are dependent on the detection timeout, are used.
StopDT/t presents the average stop detection time compared to the detection
timeout value. Respectively, StopRDT/t presents the average stop detection
time after the detector has been restarted recently compared to the detection
timeout value. The need for separately tracking detection time after restart
is because the test environment writes down the time stamp when it called
start for a call handler process, but it takes some seconds before the process
actually is up and running. The time that it takes before a call handler is
fully functional since restart is included in StopRDT/t times.

Restart detection times are presented by awverage start detection times
(" Avg start detection time” in the table). Unlike in ideal stop detections,
ideal start detection time does not depend on detection timeout limit, because
restart should be detected as soon as a restarted call handler sends out the
very first heartbeat value. That is why the ideal value would be 1 and
the values can be directly compared between different call handler amounts.
However, the values presented in the table also include restart time of a call
handler, which usually varies from 5 to 10 seconds.

StopDT/t, StopRDT/t and average start detection time are the most
relevant values for examining detection times because of the values being
comparable. Figure 7.2 shows the change of the values depending on the
call handler amount. Even if steady change is not directly visible from the
values, a slowly growing trend seems to exists in all three values. It would

CHAPTER 7. PROTOCOL TESTING 66

Call 3 4 5 6 7 8 9
handlers
Timeout 5 12 8 11 15 18 12

Avg start | 6.48 6.77 6.95 6.54 9.93 7.64 6.79
detection
time

Avg stop 6.19 13.24 9.39 12.30 16.79 19.41 13.30
detection
time

Avg stop | 9.90 17.33] 14.02 | 16.78 | 20.94 | 24.48 | 19.86
(restart)

StopDT/t | 0.95 1.96 1.35 1.88 1.69 2.54 1.96

StopRDT/t| 1.60 1.31 1.49 1.36 1.25 1.26 1.49

Detections | 89 201 336 465 694 927 1310
Undetected| 0 0 0 0 3 2 0
Faulty 0 0 1 0 0 0 0
Detection

Call 10 12 14 16 18 20

handlers

Timeout 14 11 14 16 13 11

Avg start | 7.49 6.98 8.20 8.17 7.81 7.76
detection
time

Avg stop 15.37 12.59 15.48 17.65 14.49 12.50
detection
time

Avg stop | 2226 | 19.09 |24.18 |24.97 |21.94 | 1981
(restart)

StopDT/t | 2.05 1.80 1.89 2.16 1.86 1.61

StopRDT/t| 1.45 1.52 1.56 1.42 1.51 1.59

Detections | 1683 2187 3075 4369 4836 6511

Undetected| 0 0 11 5) 1 0
Faulty 0 3 2 7 1 3
Detection

Table 7.1: Average detection times for start detections, stop detections, and
stop detection when the detector has recently restarted.

CHAPTER 7. PROTOCOL TESTING 67

7 r"‘"\ \./ ~
8 6
8
g 5 4 =—=S5trtDT
:g 2] == StopDT/ t
= StopRDT/ t
3 -
2 A - S
A J}-.{ - —— — S——

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Call handler amount {N)

Figure 7.2: Values of start detection times (StrtDT), and stop detection time
and stop detection time after recent restart related to timeout (StopDT/t and
StopRDT/t). Time is presented in seconds.

seem that the more call handlers there are, the later events are detected on
average.

Reasons behind detection getting slower when call handler amount goes
up lies in the heartbeat algorithm. At each point of time, there are most prob-
ably several different heartbeat values for a call handler circulating between
call handlers. As a result, some of the call handlers receive some information
later than others, as long as the amount of heartbeat connections is less than
the total amount of active call handler minus one by, < Ngetive — 1. The more
call handlers there are, and the smaller by, is compared to the call handler
amount, the more time spreading the newest information most likely takes.
Growth of stop detection after restart time is gentler than that of stop and
start detection times. The reason for it is that B does not have information
about the stopped call handler A at the timer of its restart. When the first
heartbeat value about A is received, it will restart counting for the detection
timeout. If only short time has passed since the stop of A, there might be
different heartbeat values for A still circulating between call handlers, and B
might receive an old value, which slows the detections when new information

CHAPTER 7. PROTOCOL TESTING 68

is later received by B. However, if long time has passed since the crash of A,
all active call handlers most likely already have up-to-date heartbeat value of
A. In that case, when B restarts, it receives the correct crash time of A right
away, and thus it can detect the crash as soon as it reaches own heartbeat
count t .+ (heartbeat count when it first time received information about
A).
With 7 and 10+ call handlers average detection times are affected by a
bug in the restart detection implementation. Most notable result of the bug
is seen in the call handler amount 7, in which start detection time suddenly
makes a spike up. With only 7 call handlers, the total amount of start
detections is low for the test cases, and thus four large times (179 s) caused
by the bug raise the average largely. When counting the average without the
four values the result is 6.79 s. In other test cases, the bug causes from 0.03
s (in stopDT/t for 18 N) to 1.96 s (in stopRDT/t for 14 N), however most
often less than 1 s, higher values. In stop values the larger average is not as
clearly visible, because of comparing it to the timeout, but in start values
results from the bug cause additional variance.

The bug is caused as follows. Call handlers have to be able to notice
restarts even if they did not notice any crash. It is a needed functionality for
the real life system: manual system restarts must be handled correctly, and
it is a safety feature for faulty crash detections. For detecting these restart
cases, restart limit range [0, t,estartiimit) Was introduced in Section 5.1.4. When
a call handler B first time receives a heartbeat value within restart range from
call handler A, B assumes that A has been restarted. If A, however, crashes
again in t..qsn when te.qsn >= 0, terash <= trestartiimit, Problems might occur,
because of incorrectly not setting suspected flag again. When A restarts
again, B will not notice the new restart because it had not marked A as
suspected, and it will also start updating heartbeat value only when the
received new value is larger than t..qsn. If teqsn Was larger than detection
time limit, A will not be accepted as a working call handler before another
recently restarted call handler happens to send a heartbeat message to A.
The bug was fixed only after tests were done.

"Detections” row in Table 7.1 shows the total amount of correct detections
done by all call handlers. The value is calculated by adding together the
amounts of start detections, stop detections and stop detections after restart.
Row "undetected” shows the amount of cases in which a call handler did not
log about noticing restart or stop of another call handler. For example, there
are 20 active call handlers and A stops. Now it would be expected that 19
detections about the case are done. If only 17 call handlers noticed the stop,
the amount of undetected is increased by 2. Row "faulty detections” in the
table shows the total amount of faulty stop, stop detection after detector

CHAPTER 7. PROTOCOL TESTING 69

restart and start detections. A typical case is that a faulty crash detection
is done. As a result, when the detector most likely receives a new heartbeat
value soon, it will also detect restart. These cases are only counted once for
faulty detections, because restart detection is a wanted property in this case.
Uncertain cases, in which test log parser could not reliably classify are added
to faulty detections, too.

From the point of completeness, the implementation is not perfect, but
it is working well enough. Even if undetected amounts vary a lot between
different test cases, some sort of growing trend can be seen. It means that
when the amount of call handlers grows, so grows the amount of unnoticed
crashes and restarts.

Accuracy by the test results is not perfect, but adequate. In smaller
amounts of call handlers, which is up to 10 call handlers, faulty detections
practically did not occur during tests. The likelihood of faulty detections
occurring seemed to grow slightly with the amount of call handlers. However,
since uncertain cases were classified in faulty detections by the test log parser,
the actual amount might be less than in the results. The uncertain cases
contain cases in which at some points of time on a timeline there were so
many events in unconventional order that the test log parser was not certain
about which detection is for which event. In some cases, it might not have
been clear even if checking the cases manually. Thus they were counted as
faulty detections just in case. During all the test cases only two certain faulty
detections occurred: both happened for call handler amount of 20, and in
both of the cases restart detection was done only one second after the stop
detection.

7.2 'Testing data dissemination

The second major sub-problem of the example system is sharing information
between call handlers. For that purpose a data dissemination protocol is
used. The function of it is to take care of disseminating data messages so
that all call handlers will eventually receive the message with high enough
probability.

7.2.1 Test setup

Tests setup of data dissemination tests differs from other tests. Instead
of testing in a full system, only the data dissemination algorithm part is
extracted and run separately on much lighter setup. Instead several call
handlers on different servers, several threads are used, one thread pretending

CHAPTER 7. PROTOCOL TESTING 70

to be one call handler. This way testing of data dissemination can be done on
a single machine and failures of the testing environment itself are less likely
to occur.

Test machine is a desktop computer with 3.6 GB memory, 2 times 800
MHz processors and 64-bit Debian 7.8. Dissemination tests are written in
Java and run with Oracle’s Java version 1.8.0_25.

First all threads are started. Then one message is sent to one randomly
selected call handler thread, at which point the start time for tests is set.
When a call handler thread forwards the message, a counter is increased
by one. The counter also takes care of checking if all call handler threads
have already received the message, and at which point the last call handler
received it. The test for each test case is run 100 times, and average values
of the 100 runs are calculated.

Tests are run for four different versions of the algorithm for showing the
concrete importance of design decisions presented in Chapter 5.2: forwarding
within the message a sent array tracking call handlers to which the message
has been sent, and maintaining received table within all call handlers sepa-
rately. These two designs are called additions in these tests. Four different
versions of the algorithm are:

e Basic algorithm: not using either of the additions (”Neither” in figures)

e Using only sent array which tracks call handler to which the message
has been sent (”Sent array” in figures)

e Using only the received table ("Received table” in figures)

e Using both the sent array and the received table (”Received table and
sent array” in figures)

7.2.2 Criteria

Dissemination should happen fast enough, because a response to messages
is always expected to be received within a short, but undetermined, time.
That is why one main property for tests in the data dissemination algorithm
is time: how long it takes before all call handlers have received data at least
once.

Reliability for the algorithm is achieved in the algorithm by forwarding
the message until all call handlers have signed it as received. This creates
numerous copies of the message and causes that the same message is handled
several times by some call handlers. However, copies of a message create
additional overhead to network, which is something that should be avoided as

CHAPTER 7. PROTOCOL TESTING 71

much as possible. So, the total amount of sent message per one data message
should be as small as possible. Thus the second criterion for dissemination
algorithm is the amount of sent messages.

A major property of dissemination algorithm, completeness, meaning that
all call handlers should eventually get each message, is not specifically tested
in this section. Reason is that completeness is taken care by the algorithm
design as long as crashes and message omissions do not occur. Of course
in real world failures do occur, but in that case completeness of the data
dissemination algorithm is heavily affected by how fast and how well failure
detection algorithm works. Consequently, it would be difficult to test data
dissemination protocol reliability separately from other algorithms. Instead,
it is tested as a part of the whole system test presented in Chapter 8. Addi-
tionally, if some call handler should not receive a message, it is detected by
tests.

7.2.3 Test results

The effect of change in by, Was studied with tests for call handler amount
of 20 and data connection amounts from 1 to 19. The average amounts of
sent messages until stop, which is when none of the call handlers decides
to forward the message anymore, are shown in Figure 7.3. Starting already
from data connection amount of 2, a huge difference in message amounts is
present between using neither of the addition or only sent array, and using
either received table or both received table and sent array. That is why
closer look on same data for latter two cases is done in Figure 7.4. The effect
of a call handler amount in average sent message amounts was tested with
call handler amounts from 3 to 10 using constant data connection amount 2.
Results of the tests are plotted in Figure 7.5.

Increasing data connection amount is largely affecting the message amounts.
Remarkably rapid growth is present in the basic algorithm and in the algo-
rithm which uses only sent array. For example, when data connection amount
is 3, the amount of sent messages is about 250 000 sent messages for spread-
ing one message across a system, and when using data connection amount
4, the amount is already around 350 000 messages. These amounts would
be unbearable for a time critical real-life system. A similar growing effect
of data connection amount can also been seen in algorithms using either a
received table or both received table and sent array, but only in much smaller
scale. While the need to send on average about 650 message for spreading
one message across 20 call handler when by, is 3, is still a lot, it is, neverthe-
less, within bearable limits. The results show that raising data connection
amount will create a lot of overhead to a network, and that is why small

CHAPTER 7. PROTOCOL TESTING 72

values are recommended.

When keeping by constant, call handler amounts affect less on the sent
message amounts. Nevertheless, a growing difference between using received
table about how not using work it is present starting from call handler amount
4.

Reasons for the differences can be explained with how the algorithm
works. The additions provide additional information which is effectively
used for reducing message amounts. Received table alone is able to bring
message amounts down. Received table causes call handlers to remember
which call handlers have already earlier confirmed having received a mes-
sage, thus it allows combining receiver information from several messages.
Thus also information about confirmations spreads faster in a network.

Sent array alone does not provide additional information about which
call handlers have already received a message, thus it alone does not reduce
message amounts. But when combining it to received table, results are even
better than when only using received array. This is the case especially for
data connection amounts larger than 2. The reasons behind this effect are
in how sent array controls to which messages are sent next. A message is
primarily sent to those who are not present in the sent array of a message,
and it helps the messages spread to all call handlers faster, as will be pointed
out later. The later in the chain of receivers a call handler is when first
time receiving a message, the more likely it receives several copies of the
same message early on. These copies are likely to contain different confirmed
receivers, and thus the call handler is able to gather receiver information
from the messages and forward larger lists of confirmed receivers.

Running tests on one machine and within one process caused a problem
when testing for dissemination times: messages delivery times were negligi-
ble, while there is always some delay in the real system when transferring
a message between servers. That is why artificial delay was added. When
a call handler sent a message to another call handler, constant time of 100
milliseconds! was added to the delivery time in time tests.

Figure 7.6 presents tests results for average time in milliseconds before all
call handlers have received a message when the call handler amount is 20 and
baata 18 from 2 to 7. Differences between different versions of the algorithms
are not as drastic as in the case of total message amounts. The versions
using a sent array are performing slightly better, but the differences are not
large. More visible difference in times can be seen in Figure 7.8, in which call
handler amount varies from 3 to 10 and data connection amount is constant

!Time might have varied slightly depending of the CPU time allocation, however, the
variance is insignificant in this case.

CHAPTER 7. PROTOCOL TESTING 73

Average amount of messages sent in total for call
handler amount 20

1200000
1000000 ettt

2 /\/

£ o

g 600000 .

o '

o

5 rd

% 400000

= rd

200000

a
1 2 3 a4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data connection amount

—4— Neither ~ ——Received table Sentarray ===Received table and sent array

Figure 7.3: Total amount of messages sent from the first message until the
stop of message forwarding.

Another point of view for dissemination speed is the amount of sent mes-
sages at the first point of time when each call handler has received the mes-
sage at least once. Larger differences between different versions of the al-
gorithm can be found from this point of view as can be seen in Figure 7.7.
Additionally, Figure 7.9 shows the amount of sent messages at the point when
all call handlers have received the message once when call handler amount
varies from 3 to 10, and bgq, is constant 2.

The received table does not seem to have any effect on how fast messages
have been delivered to all call handlers at least once. On the other hand,
the sent array seems to speed up dissemination slightly. Reasons behind the
effect of a sent array is in that messages are always forwarded primarily to
call handlers which do not appear on received array or in sent array. Thus
call handlers will not send a message to the same targets than those which
were earlier in the chain of receivers. Hence a message spreads faster to all
call handlers.

CHAPTER 7. PROTOCOL TESTING 4

Average amount of messages sent in total for call
handler amount 20

7000

6000 /
4000 //
3000 /

1000

wu
Q
(=]
o

Messages sent in total

[
o
[
(=]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Data connection amount

—4#— Received table —l—Received table and sent array

Figure 7.4: Total amount of messages sent from the first message until the
stop of message forwarding in cases of using only received table or using both
received table and sent array.

CHAPTER 7. PROTOCOL TESTING 5

Average messages sent in total
for data connection amount 2

900

800

700 /

wu [=a}
o o
(=] o

Messages sent
w S
=] Q
=] (a=]

200

100

0 — Bi—
3 4 5 6 7 8 9 10
Call handler amount

== Neither ~ —=t—Received table ====Sentarray =—=—Receivedtable and sent array

Figure 7.5: Total amount of messages sent from the first message until the
stop of message forwarding. The data connection amount is constant and set
to 2 and call handler amount varies from 3 to 10.

CHAPTER 7. PROTOCOL TESTING 76

Average time taken before all have received for 20
call handlers

u
u
o

%]
Q
=]

B
v
o

=
Q
=]

Time, ms
w
[%))
o

w
Q
=]

B |
20 \
200
2 3 4 5 6 7
Data connection amount
—f—Plain Received table ~ =—===Sentarray = =—=—Received table and sent array

Figure 7.6: Total time in milliseconds from the first message until each call

handler has received the data message at least once when for N = 20, 2 <
b<T.

Average amount of messages sent before all have
received for 20 call handlers

Messages sent
M w
w Q
Q Q

2 3 4 5 6 7
Data connection amount

——Plain Received table ====Sentarray =—==Received table and sent array

Figure 7.7: Amount of sent messages from the first message until each call
handler has received the data message at least once when for N = 20, 2 <
b<T.

CHAPTER 7. PROTOCOL TESTING 7

Average time taken before all have received
for data connection amount 2
400

Time, ms
~
I
o

=7
=

100

3 4 5 6 7 8 9 10
Call handler amount

=4—Plain =—fi=Received table = =—Sentarray === Received table and sent array

Figure 7.8: Total time in milliseconds from the first message until each call
handler has received the data message at least once when b =2, 3 < N < 10.

Average amount of messages sent before all have received
for data connection amount 2

o~
el

IS
=3

W

q

Messages sent
o N
1S3 G

e
¢

\
\

Call handler amount

—4—Plain —@—Receivedtable —&—Sentarray = Received table and sent array

Figure 7.9: Amount of sent messages from the first message until each call
handler has received the data message at least once b =2, 3 < N < 10.

Chapter 8

Black-box testing

While tests about how different protocols work give directional results, an-
other important subject to test is how they work together. Also, takeover
protocol was not tested in the previous chapter, because it is difficult to
test separately from the other two protocols. That is why black-box test-
ing is done for getting information about how the whole system functions.
The point of these tests is to examine how good reliability can be achieved
with different test parameters when the expected reliability of one single call
handler is known.

8.1 Test setup

The test environment is the same as in the failure detection tests presented
in Section 7.1.1. The only major difference is that calls are made.

Because of the limited resources in the virtualization platform, the max-
imum call handler amount cannot be large. Initial tests showed that reliable
results could only be achieved up to 16 call handlers, after which memory
started to run out. In the initial tests, whole the virtualization platform
crashed because of running out of both memory and swap space already at
call handler amount 25. That is why the tested call handler amounts are
between [3, 20]. However, results are reliable only up to call handler amount
16, because after that, memory problems start to occur.

For the failure probability, some smallish values are selected. Otherwise
there are not enough crash cases and it cannot be seen how call handlers
behave in such cases.

There are two sets of test parameters. The first set is for examining the
reliability for as many call handlers as it is possible to test with the test
environment. That is why tested call handler amounts are all values between

78

CHAPTER 8. BLACK-BOX TESTING 79

[3, 10] and all even values between [12, 20]. Selected failure probabilities for
the first set are 450, 900, 1350, 1800 and 2250. They mean, respectively,
around 0.22 %, 0.11 %, 0.07 %, 0.06 % and 0.04 % probability of crashing
every second. While the probabilities are small, for a real world system
they would be bad. For example, with 0.22 % probability for a call handler
crashing every second, within 24 hours it would mean that the call handler
crashes at least once with 96 % probability.

The second set of test parameters is needed for better examining how
failure probability affects the reliability. That is why even larger failure
probabilities are used: 50, 100, 150, 300, 600 and 750. The tests are run
for call handler amounts from 3 to 10. Larger call handler amounts are not
tested with the larger probabilities because of the lack of time.

8.2 Criteria

For evaluating test results, criteria needs to be defined. The most important
factor is if calls are successful. However, since testing is done by automated
tests, it would be difficult to test if the calls are successful from the user’s
point of view. User experience in calls is difficult to test. For that reason,
more system based criteria is needed. One good way for checking success of
a single call is to examine the event data record (EDR) which is created from
each call. EDR shows whether a call was successful, if it was answered, and
how long the call was from the system’s point of view.

Calls in the test are simple calls: begin-answer-release. Thus exactly one
EDR should be created for each call, and success of a call can be seen from
EDRs. When the amount of calls is known, the amount of expected EDRs is
known as well. In addition to simple EDR amount, also the content of EDRs
is examined. In the example system, EDRs contain at least these: the ID of
the call handler which created the EDR, call ID, caller and receiver numbers,
start time, end time, duration and release cause. A lot other information is
saved in EDRs as well, but they are not relevant for evaluating the results of
this test. Now, if any state change of a call goes unnoticed by call handlers,
it can be seen in EDRs. Failure to handle the begin of a call would lead
to a missing EDR. Not handling answer of a call would create an EDR with
unexpected release cause and duration. Finally, in the case of an unprocessed
release, either an EDR would be missing or then duplicated EDRs occur,
depending on the case.

Test result EDRs are classified into correct, acceptable time, unacceptable
time, duplicate, faulty and missing EDRs. Correct and acceptable time EDRs
are wanted EDR types, called as accepted EDRs, while the others mean that

CHAPTER 8. BLACK-BOX TESTING 80

something has gone wrong in processing the corresponding call. The share of
correct and acceptable time EDRs of all EDRs defines how well call handlers
perform. In the ideal case, the amount of accepted EDRs is 100 % of all
EDRs, and there are no duplicates.

Summarizing the different cases of EDRs in these tests:

e Correct EDR All data fields are correct. Accepted EDR.

e Acceptable time EDR Duration is too long or too short, however,
within accepted variance. This is usually result of call handlers taking
over calls which have unanswered messages. Accepted EDR.

e Unacceptable time EDR Duration is too long or too short and out-
side accepted variance. This might be cause for example by a takeover
case in which a response is not sent fast enough.

e Duplicate EDR If more than one EDR for a call is created, each extra
EDR is counted as a duplicate. The term wunique duplicates presents
how many distinct calls there are for which duplicates occur.

e Faulty EDR Some data in the EDR is wrong, most usual being wrong
release cause. Does not include EDRs in which duration is too long or
too short.

e Missing EDR There should have been an EDR for a call, but it had
not been created by any call handler.

Additional information is received from heavy logging done by all com-
ponents of the test system. All logs proved to be useful especially when
examining reasons for failed cases.

8.3 Test results

Results are examined from two point of views: the effect of call handler
amount to reliability, and the effect of failure probability to reliability. Be-
cause the total amount of EDRs per a test case varies slightly, the values are
presented as percentages instead of absolute values in all graphs.

Figure 8.1 presents the percentage of accepted EDRs, i.e. EDRs which
are totally correct or which are otherwise correct but have a too long or
too short duration which, however, is within accepted limits. The results
are separated by different call handler amount and failure probability pairs.
Slight variance in percentages can be seen, but clear trend is not visible up to

CHAPTER 8. BLACK-BOX TESTING 81

Amount of accepted EDRs
per call handler amount and failure probability

101,00%

100,00%

99,00% -

98,00% -
97,00% - m4s50
W00

96,00% -~ m1350

1800
95,00% -~ e

02250

Percentage of accepted EDRs, %

94,00%

93,00%

92,00% - — — L — - — —
3 4 5 6 7 8 9 10 12 14 16 18 20

Call handler amount

Figure 8.1: Percentages of accepted EDRs sorted by call handler amount
between [3, 20] and failure probability.

call handler amount 16. On average, call handler amounts between 3 and 16
seem to work almost equally reliably. Deeper examination of test logs show
that the variance is mostly explained by bugs and unexpected problems with
the test environment.

Another presentation for the first test set is in Figure 8.2. It shows
how the reliability changes depending on the call handler amounts. Results
of all failure probabilities are added together. The larger the call handler
amount is, the less fully correct EDRs there are, but the total reliability
in the amount of accepted EDRs stays mostly unchanges, again up to the
call handler amount of 16. The change of fully correct EDRs when the call
handler amount grows is explained by the results from failure detection test,
which will be further presented in Section 7.1. With larger call handler
amount, failure detection time seems to grow, so it also takes slightly more
time before takeover takes place. It causes slight changes in call durations in
EDRs.

The effect of failure probability to the results is detectable in Figure 8.3.
Because reliable results for call handler amounts larger than 16 could not be
achieved with the test environment, the effect of failure probability is only
examined by combining the results of call handler amounts from 3 to 16.
With smaller failure probabilities, more takeover cases occur and cases in
which call duration varies are more likely to occur. It can be seen in how the

CHAPTER 8. BLACK-BOX TESTING 82

Percentage of accepted EDRs
per call handler amount

100,00% - .; +J——l—+—l—++—l—{1
| 2] L

=N
95,00% -
90,00% - \ \

85,00% -

<"

=—4—Correct, %
80,00% -
== Accepted, %

Percentage of accepted EDRs, %

75,00% -~

70,00% -

65,00 %

3 4 5 6 7 8 9 10 12 14 16 17 18 20
Call handler amount

Figure 8.2: Effect of call handler amount to the percentage of correct and
accepted EDRs when used failure probabilities are [450, 900, 1350, 1800,
2250].

amount of fully correct EDRs changes. Again, the total amount of accepted
EDRs seems to stay the same.

Another interesting information in the test results is the amount of du-
plicates. Duplicates indicate about problems, because they mean that a call
is not correctly removed from memory by at least one call handler. The total
amounts of duplicates and the amount of unique duplicates per call handler
amounts is shown in Figure 8.4.

Duplicate EDRs are created at least in two cases: when release message of
a call did not spread across the system, or if for some reason release of a call is
never properly processed. Deeper examination of test logs was done for some
duplicate cases. Examining logs showed that some duplicates were results
from a bug in call handler source codes. If a timeout for a call occurs and
the owner call handler removes the call from memory, it does not erroneously

CHAPTER 8. BLACK-BOX TESTING 83

Amount of correct and accepted EDRs for call handler
amounts [3, 16]

0,
100,00 % = - - i — =
99,50 %

99,00 % -
98,50 % /
98,00 % /

97,50% f/

/ —4—Correct, %
97,00% / ——Accepted, %

96,50 % /
96,00 %
95,50 % 4

95,00%

Percentage of EDRs

450 S00 1350 1800 2250
Failure probability

Figure 8.3: Effect of a failure probability to the percentage of correct and
accepted EDRs when used call handler amounts are between [3, 16].

inform other call handlers about it. Also, in some cases, a malfunction of
the test environment caused duplicates. For unknown reasons, the SIP client
handler failed to release a call, which caused together with the timeout bug
that the call was never released by call handlers, and when ever takeovers
occurred, a duplicate was created after the call timeout.

However, some duplicates are created because of collaborative effect of
both a weakness in the data dissemination protocol and a weakness in the
failure detection algorithm after restart. The case can be best examined
through an example. In the test case with 16 call handlers and the failure
probability 450, at one point the call handler 13 crashes while it has ongoing
calls. It, however, restarts only after 7 seconds from the crash. Thus others
do not noticed it had crashed, and only send the update calls notification
after noticing the restart. Thus 13 is able to continue processing the calls
that it owned at the time of the crash. It receives release indicators for the
calls, and handles the releases correctly. However, having been up only for
less than ¢4 time, it does not know which other call handlers are active and
which not. So, when forwarding the information about release, it happens
to send the messages only to not active call handlers. Thus the information
about release never spread across the system, and duplicate EDRs of the call

CHAPTER 8. BLACK-BOX TESTING 84

Amount of duplicates per call handler amount

35 x
) \
25 /

. [\

/ \ == Duplicates
15 / \ /\ —m—Unique duplicates
10

Amount of duplicates

3 4 5 6 7 8 9 10 12 14 16
Call handler amount

Figure 8.4: The amount of duplicates in total in tests with failure prob-
abilities [450, 900, 1350, 1800, 2250] and call handler amount between [3,
16].

occur when later in the test 13 crashes again and other call handlers take
over its calls.

A clear change into worse can be seen both in the Figure 8.1 and in
the Figure 8.2 when moving from 16 call handlers to 17 or 18 call handlers.
Interesting in results of 17, 18 and 20 is especially that the results are back-
wards to expected. The best results are achieved with f = 450, and results
get worse when the failure probability diminishes. A very probable reason
for the change was found with the study of test logs: memory issues of the
virtualization environment.

The effect of memory running out can be seen starting from call handler
amount of 17. Figure 8.5 shows comparison of the usage of memory and
Linux swap of virtualization platform during one hour test with otherwise
same setup than in normal test cases for call handlers 16 and 18. A clear
difference in memory usage can be seen. While already in 16 call handlers
the memory usage is all the time close to full, it still is enough, and swap is
hardly needed at all. In the case of 18 call handlers, swap usage is constantly
growing, though slowly, and the total memory usage is much closer to the
full.

Also logs for call handlers endorse the probability of memory issues af-

CHAPTER 8. BLACK-BOX TESTING 85

16 call handlers

4500000

4000000 -
3500000 [
3000000 ———memFree
2500000 -\‘— swapFree
2000000 Used
1500000 wapUsed
1000000 \ ~==Memory total
500000 . ~—Swap total
0 ST ey)
LTS ETOUOLUO LD UHWNWOONNOOOOOOLOOLOOWLWOLOLOWONNSNINNNSNSNNSNSNSRSNSNTS
IMmeommAdinnmeadinmadinmadinmadmmeadinmAdnmadmmmanmmanmainmoainmonmdn
TN OO AN BKEO MW WHSAMW OIS dMNIOHS MO0 MW ORS MmO
SN0 O0O00OO dddddaNNNNNNMMMMMMS SIS WNWNNLNLN
S ST STSTET NN WNDNLNWNWNWNLWNLWYLWNLWNLWNLWNLNGLWNLWNLWNLWNYLWGLWNWNWNLWNWYWNWNWNLWN WY, W|;n;n
SN S S S S S S S S SR Adddad A adddaddddadaddadadaaadaaa
18 call handlers
4500000
4000000 -
3500000 I
3000000
= memFree
2500000 swapFree
2000000 * =——memUsed
1500000 == swapUsed
1000000 ‘ ~=Memory total
500000 . — ~=Swap total
0

Figure 8.5: Memory usage of the host server when running a test with 16
and 18 call handlers.

fecting the reliability. Log records about out of memory errors for several
call handlers could be found for test cases with 17 call handlers and failure
probabilities 1800 and 2250; for 18 call handlers with failure probability val-
ues 1350, 1800 and 2250; and for 20 call handlers with failure probabilities
900, 1350, 1800 and 2250. Larger failure probabilities causes that, in average,
there are less active call handlers every moment. Thus also the total memory
usage stays lower than with smaller probabilities.

Because of the memory problems, the only results for larger call handler
amounts which can be considered be at least somewhat reliable are the test
cases with larger failure probabilities: 450, 900 and 1350 for 17 call handlers,
450 and 900 for 18 call handlers and only 450 for 20 call handlers.

Additional variation to the results is also created by some issues with the
test environment. One such a case is that test environment assumes that a
restarted call handler is available right away when the start command has
been issued. For real, it takes some seconds before a restarted call handler
is really up and running. In a few cases, missing or duplicated EDRs were

CHAPTER 8. BLACK-BOX TESTING 86

caused by a situation in which the test environment sent a message to a
restarting call handler. The call handler had already loaded the networking
modules, but not yet the cluster module which takes care of heartbeat and
data message sending. If so happens, the call handler accepts the message
causing the test environment erroneously thinks that the message was han-
dled correctly. Call handler, however, cannot inform any other call handler
about the message or, in some cases, even handle the message correctly on
its own because of some of other important modules not having been loaded
yet.

Another problem in the test environment is that the log parser expects
all EDRs to present an answered call with the expected information. That is
why all EDRs which are somehow distinct from the expected normal case are
counted as failed calls. That is the case even if the EDR is actually correct,
because a call was unsuccessful due to a problem in test environment. For
example, if the SIP client handler never answers a call, an EDR telling that
the call was not answered is created. The EDR is then regarded as a failure
by the log parser, even if the EDR is correct for the call case.

Percentage of correct and accepted EDRs
for failure probabilities from 25 to 2250

100,00% 1 H—HM

98,00% -
96,00% |

94,00% -

—4—Correct, %
92,00% -

——Accepted, %

Percentage of EDRs, %

90,00%

88,00% -

86,00%
3 4 5 6 7 8 9 10
Call handler amount

Figure 8.6: Amount of correct and accepted EDRs related to the number of
call handlers

The second set of tests are for examining further if there is a trend for

CHAPTER 8. BLACK-BOX TESTING 87

Percentage of correct and accepted EDRs
for call handler amounts from 3 to 10

100,00 % r,.-—I—I—I—I = - L

95,00% -
S
o
o 0,
o 90,00% -
w
—
5}
o
& 0,
& == Correct, %
$ 8500% -
o == Accepted, %
Q
o
80,00% |

4
75,00%

N n wuwuwmwm W wnwnwnwn o’ [o ¥ BT o R T T I T T I Ta

[I o T A o A o TR ot A Y ot B o A O s B B s B Lo S I R B B B s B

— N M N W~ 0O = NMm wn w M~ 00 0 A

™ o~ o~ L T T I B I A I |

[Tal
~
<
—
, f

Failure probability

Figure 8.7: Amount of correct and accepted EDRs related to the failure
probability for call handler amounts [3, 10]

changes in results if larger failure probabilities are included. Results of the
second set tests are plotted in Figure 8.6 and in Figure 8.7. Including larger
failure probabilities provides additional information about the functionality
of the system. It can be seen clearly that both larger failure probability
(i.e. smaller failure probability value f) and increasing the amount of call
handlers decrease the amount of both correct and accepted EDRs related to
the total amount of EDRs. However, even with the failure probability value
50, which means 2 % probability to crash every second, as much as 98 % of
EDRs are still accepted.

Chapter 9

Conclusion

9.1 Conclusion

The starting point for this work was an existing telecommunication service
platform. At the very beginning of this paper, three questions were asked:

e How failures in members of a network can be noticed, and which com-
ponent should be responsible?

e Which structures and protocols provide the expected reliability for data
spreading?

e How a system should behave in the case of failures?

Possible solutions for them were searched, and as a result, three protocols
were applied to the example system. Separate protocols were needed because
of different requirements for failure detection and data dissemination by the
system. Takeover protocol was built on top of them both.

Failure detection and data dissemination protocols were tested separately.
Additionally, black-box testing was done for seeing how all three protocols
work together in a real-world-like environment. Unfortunately, because of
limited resources of the used testing environment, reliable tests for larger
call handler amounts could not be done.

A response to the first question is the implemented failure detection pro-
tocol. It is based on a basic gossip-style heartbeat protocol as presented in
[62], however, spreading a heartbeat message resembles more of basic flat
gossip presented in [31]. A difference to the original protocol is that heart-
beat messages are made slightly lighter by only forwarding part of the status
table instead of whole the table. Also, broadcasts do not occur, because each
call handler is always at a known location and their addresses do not change.

88

CHAPTER 9. CONCLUSION 89

Results of the failure detection tests show promising results for both accu-
racy and completeness. For smallest call handler amounts, no faulty detection
nor missed detections occur at all. However, the larger the amount of call
handlers grows, the larger the amounts of faulty detections and failures to
detect a crash or restart grow as well. Test results for the failure detection
protocol also suggest that detection time increases slowly as the amount of
call handler increases. Tests could be done only up to call handler amount
of 20, for which detection times are still adequate. The tests did not provide
information about up to which call handler amount the heartbeat protocol
has potential to be working well enough.

Worth noting is that two major test parameters, failure detection timeout
and heartbeat connection amount, were constant for each call handler amount
in the tests. They had been calculated from estimated probabilities of a
similar semi-synchronized system. Thus the failure detection timeout and
heartbeat connection amount might not have been ideal, and adjusting them
could possibly provide even better results.

The second question is solved with a data dissemination protocol. It is
initially based on a gossip protocol named Epidemic asynchronous rumour
spreading, EARS, presented in [28], which is designed for asynchronous sys-
tems. Because of the expectations of the example system, the protocol was
altered much. A major change is that rumours are sent to more than only
one member. Also, instead of noting to which processes a message is sent,
it is recorded that which processes have actually received it. Because of
sending a message to by, others, the amount of messages grows largely, and
the system becomes quite spamming. For lowering the amount of messages
and for speeding up the spread of a rumour, additional arrays and tables are
maintained both in a rumour but also in memory for providing more infor-
mation about receivers. The first array transferred in a rumour is received
array, which keeps track on which call handlers have received the message
already. The second is sent array, which keeps track on to which call handlers
the message has been sent, but which have not confirmed it yet. Received
table is maintained by each call handler in its memory. It contains a list of
confirmed receivers for each different data message.

Tests were done for examining the necessity of the sent array and the
received table. Since the received table is a base component of the protocol,
it was present in all test cases. Thus there were four test cases in total:
using only the received array, using both received and sent arrays, using
both received array and table, and using all arrays and the table.

Test results showed that received table has a great importance on total
message amounts. The saved information is useful because most of call han-
dlers will receive a same message more than once. When receiving a message

CHAPTER 9. CONCLUSION 90

again, the already known receiver information can be added to the message.
Drawback of received tables is that the table requires extra memory from
call handlers, and designing the table needs to be done carefully for avoiding
leaking memory. A rule has to be created for determining when messages
should be removed from the received table. However, memory requirement of
received table is not huge when call handler amount is small and the system
does not handle huge amounts of messages.

By the test results, the sent array seems to speed up dissemination of a
message slightly. It takes slightly less time and less messages in total before
all call handlers have received a rumour. Also, only together with the received
table, the sent array seems to lower also the total amount of sent messages.
This effect might be a result of how a sent array directs the message flow in
a system. Drawback of sent arrays is that it makes messages larger in size
which might causes more traffic to network.

One great weakness in the implemented data dissemination protocol ex-
ists. For keeping the total amount of messages as low as possible, only a
small value for data connection amount, bgu,, is recommended. Thus the
most dangerous part of the protocol is the step one, when the original mes-
sage creator sends a message to by, Other call handlers. It always takes
some time before failed call handlers are detected, and message omissions
might happen. Thus there only needs to be b4,:, message omissions or un-
expected crashes at the same time, and there is a probability that no other
call handler ever receive a message. Thus the solution can truly only be
called bgu, — 1 fault tolerant at any time, which is not a high achievement.
However, because of the probabilistic nature of gossip protocols, only single
data messages should get lost, maximum.

For the example system, the response to the third question is that other
call handlers should continue handling calls if one fails. This has been ac-
complished with a takeover protocol, which defines who takes over calls of a
crashed call handler. It utilizes both failure detection and data dissemination
protocol. That is also why there were not test specifically for the takeover
protocol: it could not have been easily separated from the two other proto-
cols. Thus takeover was tested as a part of black-box testing.

In black-box testing, a clear change in reliability was not present for call
handler amounts from 3 to 16: about 99.9 % reliability was achieved for
all test cases with failure probability of 1/450 and smaller. However, with
tests for larger probabilities, from 1/50 to 1/450, correlations between failure
probability and reliability, and between call handler amount and reliability
could be found. The results indicate that when the amount of call handlers
rises, the reliability decreases. Also, when increasing the failure probability,
the reliability decreases. However, the decrease was only clearly noticeable

CHAPTER 9. CONCLUSION 91

with fairly large crash probabilities.

After 16 call handlers a sharp drop in reliability can be seen in test re-
sults. One likely reason for the change is the test environment running out
of memory. Log entries were found for test cases with 17, 18 and 20 call
handlers telling about memory errors. Also tests for 25 call handlers were
tried, but they ended up with the virtualization environment running out of
both memory and swap space, which lead to a full crash of all call handlers
and the virtualization environment itself.

One big problems with the tests was that there were still some bugs in the
implementation and some problems with the test environment itself occurred.
A subject of further consideration is also the appliance of the test results in
the real-world. The test environment tried to take care that there was always
at least one active call handler, which is not the case in the real world. Also,
the failure probabilities were larger than what they should be for real. These
two together cause that it is expected that the reliability of, for example, 10
call handlers is not as good as that of 3 call handlers. For 3 call handlers,
the test environment takes care that at least 33.33 % of call handlers is up
and running. The same value for 10 call handlers is 10 %.

All things considered, it can be concluded that the solution works well
for a small amount of nodes, at least up to the call handler amount of 16. By
the results, there seems to be potential for the solution to work adequately
also with a slightly larger, undefined call handler amount. However, both the
data dissemination algorithm and the failure detection algorithm had slowly
growing trends for their properties, which leads to assume that they would
not be suitable for large node amounts.

9.2 Subjects for further studies

Detecting and tolerating many different kind of failures were left out of the
scope in this paper, even if they most probably happen at some point of
time. Especially problematic and worth research would be those arbitrary
failures which potentially could change contents in data messages. Additional
research would be needed for finding out how to protect the data messages
against arbitrary failures.

The test environment only allowed testing with a few call handlers. A
test environment with better resources would be needed for finding the upper
limit of call handlers until which the solution can be trusted to work well
enough.

Another possible subject of further studies is the importance of network.
It was assumed in this study that the connections between nodes are equiva-

CHAPTER 9. CONCLUSION 92

lent, and the delay caused by the network is always about the same between
any two call handlers. When considering the connections between nodes as
a graph, they would be presented as an unweighted graph. In the real world,
it is very likely that the connections between any two call handler are not
equivalent. Especially if nodes are located in different parts of world, it could
be reasonable to consider the physical distances and delays in networks. How
would weighted connections change protocols and gossip target selections?
Could, for example, adaptive timeout instead of constant t,; provide a so-
lution for it?

Bibliography

1]

[5]

[6]

3RD GENERATION PARTNERSHIP PrROJECT (3GPP). TS 23.228 IP
Multimedia Subsystem (IMS); Stage 2, June 2015. Version 13.3.0, Avail-
able http://www.3gpp.org/DynaReport/23228.htm.

AcGUILERA, M. K., CHEN, W., AND TOUEG, S. Heartbeat: A timeout-
free failure detector for quiescent reliable communication. Tech. rep.,

Ithaca, NY, USA, 1997.

ARORA, A., AND KULKARNI, S. Detectors and correctors: a theory of
fault-tolerance components. In Distributed Computing Systems, 1998.
Proceedings. 18th International Conference on (May 1998), pp. 436-443.

AvizieNis, A., LAPrIE, J.-C., RANDELL, B., AND LANDWEHR, C.
Basic concepts and taxonomy of dependable and secure computing. De-
pendable and Secure Computing, IEEE Transactions on 1, 1 (Jan 2004),
11-33.

Bazzi, R. A., AND NEIGER, G. Simplifying fault-tolerance: Providing
the abstraction of crash failures. J. ACM 48, 3 (May 2001), 499-554.

BETTNER, P., AND TERRANO, M. 1500 archers on a 28.8: Network

programming in age of empires and beyond. Presented at GDC2001 2
(2001), 30p.

BHUYAN, L., AND AGRAWAL, D. Generalized hypercube and hyperbus

structures for a computer network. Computers, IEEE Transactions on
C-33, 4 (April 1984), 323-333.

BirMAN, K., HAYDEN, M., OzkAsApP, O., X1A0, Z., Bubiu, M.,
AND MINSKY, Y. Bimodal multicast. Tech. rep., Ithaca, NY, USA,
1998.

93

http://www.3gpp.org/DynaReport/23228.htm

BIBLIOGRAPHY 94

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BurNs, M., GEORGE, A., AND WALLACE, B. Simulative performance
analysis of gossip failure detection for scalable distributed systems. Clus-
ter Computing 2, 3 (1999), 207-217.

CHANDRA, T. D., AND TOUEG, S. Unreliable failure detectors for
reliable distributed systems. J. ACM 43, 2 (Mar. 1996), 225-267.

CHEN, J., Kany, 1., AND WANG, G. Hypercube network fault toler-
ance: a probabilistic approach. In Parallel Processing, 2002. Proceed-
ings. International Conference on (2002), pp. 65-72.

CHONGNAN, W., ZoNGTAO, W., AND HONGWEI, X. Design of
message-oriented middleware with publish /subscribe model on teleme-
try and command computer. In Systems and Informatics (ICSAI), 2014
2nd International Conference on (Nov 2014), pp. 454-458.

CRISTIAN, F. Understanding fault-tolerant distributed systems. Com-
mun. ACM 34, 2 (Feb. 1991), 56-78.

D’ANGELO, G., FERRETTI, S., AND MARZOLLA, M. Adaptive event
dissemination for peer-to-peer multiplayer online games. In Proceedings
of the 4th International ICST Conference on Simulation Tools and Tech-
niques (ICST, Brussels, Belgium, Belgium, 2011), SIMUTools ’11, ICST
(Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), pp. 312-319.

DatTA, A., GIRDZIJAUSKAS, S., AND ABERER, K. On de bruijn
routing in distributed hash tables: there and back again. In Peer-to-
Peer Computing, 2004. Proceedings. Proceedings. Fourth International
Conference on (Aug 2004), pp. 159-166.

DE BRUIIN, N. G. A combinatorial problem. Koninklijke Nederlandse
Akademie v. Wetenschappen 49 (1946), 758-764.

DEFAGO, X., SCHIPER, A., AND SERGENT, N. Semi-passive replica-
tion. In Reliable Distributed Systems, 1998. Proceedings. Seventeenth
IEEE Symposium on (Oct 1998), pp. 43-50.

DEMERS, A., GREENE, D., HOUSER, C., IrISH, W., LARSON, J.,
SHENKER, S., STURGIS, H., SWINEHART, D., AND TERRY, D. Epi-
demic algorithms for replicated database maintenance. SIGOPS Oper.
Syst. Rev. 22, 1 (Jan. 1988), 8-32.

BIBLIOGRAPHY 95

[19]

[20]

[21]

22]

[24]

[25]

[26]

[27]

DOERR, B., AND Fouz, M. Asymptotically optimal randomized ru-
mor spreading. In Automata, Languages and Programming, L. Aceto,
M. Henzinger, and J. Sgall, Eds., vol. 6756 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011, pp. 502-513.

ELHADEF, M., AND BOUKERCHE, A. A gossip-style crash faults de-
tection protocol for wireless ad-hoc and mesh networks. In Perfor-

mance, Computing, and Communications Conference, 2007. IPCCC
2007. IEEE Internationa (April 2007), pp. 600-605.

ESFAHANIAN, A.-H., AND HAkIMI, S. Fault-tolerant routing in de-

bruijn comrnunication networks. Computers, IEEE Transactions on C-
34,9 (Sept 1985), 777-788.

FAYyyAz, M., VLADIMIROVA, T., AND CAUJOLLE, J.-M. Adaptive
middleware design for satellite fault-tolerant distributed computing. In
Adaptive Hardware and Systems (AHS), 2012 NASA/ESA Conference
on (June 2012), pp. 23-30.

FEDORUK, A., AND DETERS, R. Improving fault-tolerance by replicat-
ing agents. In Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems: Part 2 (New York, NY,
USA, 2002), AAMAS 02, ACM, pp. 737-744.

FERRETTI, S., AND D’ANGELO, G. Multiplayer online games over
scale-free networks: A viable solution? In Proceedings of the 3rd Inter-
national ICST Conference on Simulation Tools and Techniques (ICST,
Brussels, Belgium, Belgium, 2010), SIMUTools 10, ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engi-
neering), pp. 5:1-5:8.

FLorio, V. D., AND BrLonDIA, C. A survey of linguistic structures
for application-level fault tolerance. ACM Comput. Surv. 40, 2 (May
2008), 6:1-6:37.

GAUTHIERDICKEY, C., Lo, V., AND ZAPPALA, D. Using n-trees
for scalable event ordering in peer-to-peer games. In Proceedings of the
International Workshop on Network and Operating Systems Support for
Digital Audio and Video (New York, NY, USA, 2005), NOSSDAV ’05,
ACM, pp. 87-92.

GAUTHIERDICKEY, C., ZAPPALA, D., Lo, V., AND MARR, J. Low
latency and cheat-proof event ordering for peer-to-peer games. In Pro-
ceedings of the 14th International Workshop on Network and Operating

BIBLIOGRAPHY 96

28]

[29]

[33]

[35]

[36]

Systems Support for Digital Audio and Video (New York, NY, USA,
2004), NOSSDAV ’04, ACM, pp. 134-139.

GEORGIOU, C., GILBERT, S., GUERRAOUI, R., AND KOWALSKI,
D. R. Asynchronous gossip. J. ACM 60, 2 (May 2013), 11:1-11:42.

GUERRAOUI, R., AND SCHIPER, A. Fault-tolerance by replication in
distributed systems. In Reliable Software Technologies — Ada-Europe
’96, A. Strohmeier, Ed., vol. 1088 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1996, pp. 38-57.

GupTA, 1., KERMARREC, A.-M., AND GANESH, A. J. Efficient
epidemic-style protocols for reliable and scalable multicast. In Pro-
ceedings of the 21st IEEE Symposium on Reliable Distributed Systems
(Washington, DC, USA, 2002), SRDS 02, IEEE Computer Society,
pp- 180

GupTA, I., KERMARREC, A.-M., AND GANESH, A. J. Efficient and

adaptive epidemic-style protocols for reliable and scalable multicast.
IEEE Trans. Parallel Distrib. Syst. 17, 7 (July 2006), 593-605.

HOSSEINABADY, M., KAKOEE, M., MATHEW, J., AND PRADHAN, D.
Reliable network-on-chip based on generalized de bruijn graph. In High
Level Design Validation and Test Workshop, 2007. HLVDT 2007. IEEE
International (Nov 2007), pp. 3-10.

HoSSEINABADY, M., KAKOEE, M., MATHEW, J., AND PRADHAN, D.
Low latency and energy efficient scalable architecture for massive nocs
using generalized de bruijn graph. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on 19, 8 (Aug 2011), 1469-1480.

IMRAN, A., UL Gias, A., RAHMAN, R., SEAL, A., RAHMAN, T.,
ISHRAQUE, F., AND SAKIB, K. Cloud-niagara: A high availability and
low overhead fault tolerance middleware for the cloud. In Computer and
Information Technology (ICCIT), 2013 16th International Conference
on (March 2014), pp. 271-276.

INTERNATIONAL ELECTROTECHNICAL COMMISSION, IEC. Electrope-
dia, 2015. http://www.electropedia.org/. Accessed 03.03.2015.

INTERNATIONAL ELECTROTECHNICAL CoMMISSION, IEC. IEC, TC
56 standards, 2015. http://tc56.iec.ch/about/faq.htm. Accessed
03.03.2015.

http://www.electropedia.org/
http://tc56.iec.ch/about/faq.htm

BIBLIOGRAPHY 97

[37]

[38]

[40]

[41]

[42]

[46]

JAHANIAN, F., AND MOK, A. Safety analysis of timing properties in
real-time systems. Software Engineering, IEEE Transactions on SE-12,
9 (Sept 1986), 890-904.

JBoss A-MQ Docs TEAM. Red Hat JBoss A-MQ 6.1 Fault Tolerant
Messaging, 2014. https://access.redhat.com/documentation/en-US/
Red_Hat_JBoss_A-MQ/6.1/pdf/Fault_Tolerant_Messaging/Red_Hat_
JBoss_A-MQ-6.1-Fault_Tolerant_Messaging-en-US.pdf.

KARP, R., SCHINDELHAUER, C., SHENKER, S., AND VOCKING, B.
Randomized rumor spreading. In Proceedings of the 41st Annual Sym-
posium on Foundations of Computer Science (Washington, DC, USA,
2000), FOCS ’00, IEEE Computer Society, pp. 565—.

Ku, H.-K., AND HAYEs, J. P. Optimally edge fault-tolerant trees.
Networks 27, 3 (1996), 203-214.

LAPriIE, J.-C. Dependable computing and fault tolerance : Concepts
and terminology. In Fault-Tolerant Computing, 1995, Highlights from
Twenty-Five Years., Twenty-Fifth International Symposium on (Jun
1995), pp. 2.

LAVINIA, A., DOBRE, C., Popr, F., AND CRISTEA, V. A failure detec-
tion system for large scale distributed systems. In Complez, Intelligent
and Software Intensive Systems (CISIS), 2010 International Conference
on (Feb 2010), pp. 482-489.

LocuiNnov, D., Casas, J., AND WANG, X. Graph-theoretic analysis of
structured peer-to-peer systems: routing distances and fault resilience.
Networking, IEEE/ACM Transactions on 13, 5 (Oct 2005), 1107-1120.

MARIAN, T., BIRMAN, K., AND VAN RENESSE, R. A scalable services
architecture. In Reliable Distributed Systems, 2006. SRDS ’06. 25th
IEEE Symposium on (Oct 2006), pp. 289-300.

Navak, A., JoNE, W.-B., AND DaAs, S. Designing general-purpose
fault-tolerant distributed systems-a layered approach. In Parallel and
Distributed Systems, 1994. International Conference on (Dec 1994),
pp. 360-364.

NGUYEN, N. C., DiNH, T. V., AND ANH, T. D. Improving shortest

path routing in hyper-de bruijn networks. In Strategic Technology, 2007.
IFOST 2007. International Forum on (Oct 2007), pp. 288-292.

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.1/pdf/Fault_Tolerant_Messaging/Red_Hat_JBoss_A-MQ-6.1-Fault_Tolerant_Messaging-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.1/pdf/Fault_Tolerant_Messaging/Red_Hat_JBoss_A-MQ-6.1-Fault_Tolerant_Messaging-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.1/pdf/Fault_Tolerant_Messaging/Red_Hat_JBoss_A-MQ-6.1-Fault_Tolerant_Messaging-en-US.pdf

BIBLIOGRAPHY 98

[47] OBJECT MANAGEMENT GROUP, INC. Common Object Request Bro-
ker Architecture: Core Specification, December 2002. Version 3.0.2 -
Editorial update.

[48] ORACLE. JavaSE version 7 javadocs, 2015. http://docs.oracle.

com/javase/7/docs/api/java/util/PriorityQueue.html. Accessed
14.09.2015.

[49] PiETZUCH, P., AND BACON, J. Hermes: a distributed event-based
middleware architecture. In Distributed Computing Systems Workshops,
2002. Proceedings. 22nd International Conference on (2002), pp. 611
618.

[50] PRADHAN, D. Dynamically restructurable fault-tolerant processor net-
work architectures. Computers, IEEE Transactions on C-34, 5 (May
1985), 434-447.

[51] PRADHAN, D. Fault-tolerant multiprocessor link and bus network archi-
tectures. Computers, IEEE Transactions on C-34, 1 (Jan 1985), 33-45.

[52] RAGHAVENDRA, C., AVIVIZIENIS, A., AND ERCEGOVAC, M. Fault

tolerance in binary tree architectures. Computers, IEEE Transactions
on C-33, 6 (June 1984), 568-572.

[53] RANGANATHAN, S., GEORGE, A., TopD, R., AND CHIDESTER, M.
Gossip-style failure detection and distributed consensus for scalable het-
erogeneous clusters. Cluster Computing 4, 3 (2001), 197-209.

[54] RED HAT, INC. Apache ActiveM(Q, 2015. http://www.jboss.org/
products/amq/overview/. Accessed 03.03.2015.

[55] ROSENBERG, J., SCHULZRINNE, H., CAMARILLO, G., JOHNSTON,
A., PETERSON, J., SPARKS, R., HANDLEY, M., AND SCHOOLER, E.
Sip: Session initiation protocol, 2002.

[56] SEEGER, C., KEMME, B., KaBuUs, P., AND BUCHMANN, A. Area-
based gossip multicast. In Proceedings of the 7th ACM SIGCOMM
Workshop on Network and System Support for Games (New York, NY,
USA, 2008), NetGames '08, ACM, pp. 40-45.

[57] SENGUPTA, A., SEN, A., AND BANDYOPADHYAY, S. On an optimally
fault-tolerant multiprocessor network architecture. Computers, IEEE
Transactions on C-36, 5 (May 1987), 619-623.

http://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
http://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
http://www.jboss.org/products/amq/overview/
http://www.jboss.org/products/amq/overview/

BIBLIOGRAPHY 99

[58]

[64]

SENGUPTA, A., SEN, A., AND BANDYOPADHYAY, S. Fault-tolerant
distributed system design. Circuits and Systems, IEEE Transactions on

35, 2 (Feb 1988), 168-172.

SisTLA, K., GEORGE, A., TobpD, R., AND TILAK, R. Performance
analysis of flat and layered gossip services for failure detection and con-
sensus in scalable heterogeneous clusters. In Parallel and Distributed
Processing Symposium., Proceedings 15th International (April 2001),
pp- 802-809.

SRIDHAR, N. Decentralized local failure detection in dynamic dis-
tributed systems. In Reliable Distributed Systems, 2006. SRDS ’06.
25th IEEE Symposium on (Oct 2006), pp. 143-154.

THE APACHE SOFTWARE FOUNDATION. Apache ActiveMQ, 2015.
http://activemq.apache.org/. Accessed 03.03.2015.

VAN RENESSE, R., MINSKY, Y., AND HAYDEN, M. A gossip-style
failure detection service. In Middleware’98, N. Davies, S. Jochen, and
K. Raymond, Eds. Springer London, 1998, pp. 55-70.

WANG, J., CHEN, J.-W., DENG, Y., AND ZHENG, D. Research of the
middleware based fault tolerance for the complex distributed simulation

applications. In Computational Intelligence and Software Engineering,
2009. CiSE 2009. International Conference on (Dec 2009), pp. 1-4.

Wang, J., WEIL, Y., AND Jia, X. The design and implementation of
emp: A message-oriented middleware for mobile cloud computing. In
Global High Tech Congress on Electronics (GHTCE), 2013 IEEE (Nov
2013), pp. 78-81.

WANG, L., AND ZHOU, W. An architecture for building reliable dis-
tributed object-based systems. In Technology of Object-Oriented Lan-

guages, 1997. TOOLS 24. Proceedings (Sep 1997), pp. 260-265.

WICKRAMARACHCHI, C., PERERA, S., JAYASINGHE, S., AND WEER-
AWARANA, S. Andes: A highly scalable persistent messaging system.
In Web Services (ICWS), 2012 IEEE 19th International Conference on
(June 2012), pp. 504-511.

WuHiB, F., DAM, M., AND STADLER, R. A gossiping protocol for

detecting global threshold crossings. Network and Service Management,
IEEE Transactions on 7, 1 (March 2010), 42-57.

http://activemq.apache.org/

BIBLIOGRAPHY 100

[68] YEH, C. The robust middleware approach for transparent and sys-
tematic fault tolerance in parallel and distributed systems. In Parallel
Processing, 2003. Proceedings. 2003 International Conference on (Oct
2003), pp. 61-68.

[69] ZHAO, W., MELLIAR-SMITH, P., AND MOSER, L. Fault tolerance
middleware for cloud computing. In Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on (July 2010), pp. 67-74.

Appendix A

Probability of receiving a heart-
beat within r rounds

This probability calculation is used as a directions when estimating the re-
quired round time limits for crash detection. When the actual example
system is fully asynchronous and nothing can be assumed about the environ-
ment where it is running, calculating the actual probabilities is difficult. In
these calculations, the system is assumed to be synchronous in such a way
that each call handler executes the local round at the very same time. Thus
the time when local rounds are executed at the very same time can be called
global rounds. It is also assumed that every message sent on round r = 1
are received on round r = 7 4+ 1, no message losses or delays occur. There
are Nyyq call handlers in total in the system, and on every global round, the
rumour is sent to b fully randomly selected call handlers. The selection of
b addressees is done from 74rget = Mot — 1 call handlers, because a call
handler never sends a message to itself.

The point in interest is to calculate the worst case probability of call
handler n; to receive any new heartbeat value from n; within r global rounds.
If a call handler ny receives a heartbeat value on round r;, the heartbeat is
forwarded to b others on round r; + 1. If more than one heartbeat value is
received, only the newest of them is forwarded. n, always send the rumours
to b distinct call handlers.

The worst case on every round is when as few call handlers as possible
know any heartbeat value to forward. The worst case from the point of n; is
that there are as few call handlers as possible, which know any new heartbeat
value. This happens if there are b + 1 call handlers which are only sending
messages to each other, thus keeping the total amount of call handlers which
know any new value constant b+ 1.

On the first global round, there are not any call handlers which know a

101

APPENDIX A. PROBABILITY OF RECEIVING A HEARTBEAT WITHIN R ROUNDS102

new heartbeat. n; creates a heartbeat h; and forwards it to b distinct call
handlers. During the first round, the probability of n; receiving the heartbeat
value hy is

P(R1) = P(one selection) = P(OS)
_ W)
(ntalr)‘get)

At the beginning of round 2, there are b call handlers which know the
heartbeat count h;, and n; creates a new heartbeat rumour with the value
ho. Each of them forwards the heartbeat rumour known by them to b call
handlers. Thus the probability of n; to receive either the heartbeat value hq
or hy during the round 2 is:

P(R2) = 1 — P(R2°)
=1 (H P(0Si€))
—1- (15(056)’)“)
=1-((1-P(0S))")

As the worst case is examined, the start for the round 3 is the same as
was the state for the round 2. There are only b call handlers which now
know the heartbeat value hy, and additionally h; creates again a heartbeat
message with the value hz. Each call handler then sends their most recent
known value to b others. Thus the probability of n; to receive any heartbeat
value about n; during the round 3 is exactly the same as on the round 2. In
the worst case, the same probability applies also for any round r. Thus the
probability P(R) of n; receiving any new heartbeat value during one round
r for rounds r > 1 is the same as P(R2), P(R) = P(R2).

Now, the total worst case probability of n; to receive any new heartbeat
at least once within r rounds can be found.

Probability of receiving during the round 1:

P(ri) = P(OS)
Probability of receiving during the round 1 or round 2:
P(rs) =1 P(r5)
=1—-(P(OS)P(R))
=1-((1=P(09)(1 - P(R)))

Probability of receiving during the round 1, 2 or 3:

APPENDIX A. PROBABILITY OF RECEIVING A HEARTBEAT WITHIN R ROUNDS103

(
=1 — (P(OS°)P(R®)P(R®))
=1—((1=P(09))(1 — P(R))(1 — P(R)))
—1—((1— P(0S))(1 — P(R))?)

Probability of receiving during the round 1, 2, 3 ... 1:

P(r)y=1- P(r°
=1—(P(OS)P(R)!
=1- (1= P(0S))1 - P(R))

From the equation of P(r) some estimated values for ¢;,; can be calcu-
lated. At first, some expected probability for P(r) must be given. Then r
is solved for different values of b. In Figures A.1 and A.2 some estimated
reasonable values for ¢, for different call handler amounts and connection
amounts are calculated, when the expected P(r) is 0.9999999999999999. Ver-
tical axis shows values for ¢, while horizontal axis shows the used connec-
tion amount b, which is always b < npa;-

APPENDIX A. PROBABILITY OF RECEIVING A HEARTBEAT WITHIN R ROUNDS104

5 call handlers
70
3\
60 \1_.‘
‘\
50 Y
“.
kY
40 LS
‘\
30 ‘\‘ Tirme limit
\“
20 L -
-".__‘-
10 ——
0 T 1
1 2 3 a
10 call handlers
180
160 -
140
120 v
100 \
80 \ Time limit
60
40 ~
20 “-;;______
e —
[i] T T T T T T T 1
1 2 3 4 5 [7] 9
15 call handlers
300
250
1
1
200 A
1
1
150 LY
LY —Time limit
100 1
\
N
50 \\
B
I —— e —
0 T T T T T T I_!|
1

2 3 4 5 6 7 8B 9 10 11 12 13 14

Figure A.1: Estimations for good ¢, values for call handler amounts 5, 10
and 15.

APPENDIX A. PROBABILITY OF RECEIVING A HEARTBEAT WITHIN R ROUNDS105

20 call handlers
400
350
300 4
250 +—1
200 —14
L § Tirne limit
150 1
100 A
50 N
0 iﬁﬁ
12 3 45 6 7 8 9 10111213 14 15 16 17 18 19
30 call handlers
600
500 -4
1
1
400 —
1
| 1
300 {
1 —Time limit
200 L}
1
1
100 L
B
0 T T T T 1 1 T T T T T T T 1
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
50 call handlers
1000
900
800
700
500
500
Tirme limit
400
300
200
100 ‘____
ullr-l__llllllllllm_l_l_l_l-‘l

1357 91113151719212325272931333537394143454749

Figure A.2: Estimations for good 4 values for call handler amounts 20, 30
and 50.

Appendix B

Presentations of messages

For transfer purposes, the message presentations are translated into byte
presentations. This Appendix shortly describes byte presentations for the
three kind of messages which are used for connection between call handlers:
heartbeat messages, data messages and one-time messages.

A heartbeat message contain one or more heartbeat rumours, and they
are forwarded using the heartbeat protocol presented in Section 5.1. One
heartbeat rumour in a message consists of a pair of a call handler ID and
HB. Content of a heartbeat message is shown in Figure B.1.

1 2| 3| 4| 5 6| 7| 8
'h' Sender ID Call handler 1 ID
Call handler 1 HB

(For each HB rumour, contains
call handler ID and HB)

(variable length, multiple of 8 bytes)

Figure B.1: Bytes in a heartbeat message.

There are three kind of data messages: call state change messages, takeover
messages and general message forward requests, which are presented in Sec-
tion 6.3. Forwarding of these messages is done using the data dissemina-
tion algorithm presented in Section 5.2. There is some common information
needed by all these data messages: received array and sent array needed in
dissemination, but also unique message reference ID, related call ID (except
in takeover message) and call handler ID and HB of the original sender. All
the information common for all data messages is presented in a Data message
envelope, which wraps the actual message. The byte presentation of a data

106

APPENDIX B. PRESENTATIONS OF MESSAGES 107

message envelope is shown in Figure B.2.

1 2 3 4 5 6 7 8

'd' Reference ID

Sender 1D Sender HB
Amount of IDs in received array IDs of received call handlers

(variable length, multiple of 4 hytes)
Amount of IDs in sent array | IDs of sent call handlers

(variable length, multiple of 4 bytes)

Call ID
(variable length, multiple of 4 bytes)
The actual message

Figure B.2: Bytes in a data envelope message.

Takeover messages are slightly different from the other two data message
types, because it is call handler specific while the other two are call specific.
Thus it is the only message which does not need call ID information. How-
ever, the call ID header is still present in its envelopes. The message contains
required information for takeover handling: ID and HB of the overtaker call
handler, and ID and HB of the yielder call handler at the time of the detected
crash. Content of a takeover message is shown in Figure B.3.

1 2| 3| 4 5 6| 7| 8
' Renouncer call handler ID Overtaker ID
Renouncer hearbeat value Overtaker heartbeat value

Figure B.3: Bytes in a takeover message.

Both general forward message request and call state change message are
meant for updating call states. General messages, which is AGI, AMI or
command message, are presented as a serialized version of the object used in
the code, because there are many different kind of AGI, AMI and command
messages which contain different information. That is why the exact form of
general messages is not presented.

Call state change messages, then again, contain a new state for the given
call at the given point of a session. A state presentation contains the same
information than the state of a global call in memory. Content of a state

APPENDIX B. PRESENTATIONS OF MESSAGES 108

change message is shown in Figure B.4, and presentation of a call state which
is included in the call state change message is presented in Figure B.5.

1 2 3] 4| 5| 6| 7| 8
's' Change Call ID
Call session counter ‘

Call state (variable length)

Figure B.4: Bytes in a state change message.

1 2 3 4 5 6 7| 8
Type Status Call ID
Asterisk 1D
Start time in milliseconds Strlength |

A-number (variable length, String)
Strlength B-number (variable length, String)
Strlength A-channel (variable length, String)
Strlength B-channel (variable length, String)
Strlength Original called party (variable length, String)
Strlength Dialed numbers (variable length, String)
Array len Originate parties (Integer + String) (Variable length)
Array len Originate sent (Integer + String) (Variable length)

Figure B.5: Bytes in a state representation used in a state change message.

The third message type, notification messages, contains messages which
are only sent once from one call handler to another, and they are not for-
warded. The two types of notification messages are: unloading notification
message and update calls notification. Contents of both of the messages are
simple. An unloading notification only contains the ID of the call handler
which is being unloaded. An update calls notification contains a list of byte
presentations of calls, containing all the same information than what is con-
tained in a call in memory. A major part of a call presentation is the call
state presentation. Additionally, the currently known ID of the call handler
which currently owns the call, the session counter and the start heartbeat
count of the owner call handler at the time of either start or takeover of the
call.

	Cover page
	Contents
	1 Introduction
	1.1 Objectives
	1.2 Structure

	2 Current system and methodology
	2.1 Definitions
	2.1.1 Dependability and reliability
	2.1.2 Time criticality
	2.1.3 Correctness, failures and faults
	2.1.4 Fault tolerance
	2.1.5 Replication

	2.2 Introducing the case: a telecommunication service platform
	2.2.1 High level - Basic functionality
	2.2.2 Architecture of the example system
	2.2.3 Initial state of fault-tolerance in call handlers
	2.2.4 Signaling in calls between components

	2.3 Methodology
	2.3.1 Simple failure specification
	2.3.2 System requirements
	2.3.3 The goal

	3 Fault tolerant data spreading
	3.1 Studies about fault tolerance
	3.2 Middleware solutions
	3.3 Protocol level fault tolerance

	4 Failure detection
	5 Theory behind implementation
	5.1 Detecting failures
	5.1.1 Maintaining message order
	5.1.2 When to stop
	5.1.3 Selecting timeout for detection
	5.1.4 Call handler restart

	5.2 Data dissemination
	5.2.1 When to stop
	5.2.2 Ordering of data messages

	5.3 Takeover protocol

	6 Implementation
	6.1 Components of the rumour module
	6.2 Implementation of failure detection
	6.3 Data messages and data dissemination
	6.3.1 State change message
	6.3.2 Takeover message
	6.3.3 General message forward request
	6.3.4 Update calls notification

	6.4 Takeover
	6.5 Special cases
	6.5.1 Crash before responding to the messaging interface
	6.5.2 Receiving messages after release
	6.5.3 Controlled stopping of a call handler

	7 Protocol testing
	7.1 Testing failure detection
	7.1.1 Test setup
	7.1.2 Test parameters
	7.1.3 Running tests
	7.1.4 Criteria
	7.1.5 Test results

	7.2 Testing data dissemination
	7.2.1 Test setup
	7.2.2 Criteria
	7.2.3 Test results

	8 Black-box testing
	8.1 Test setup
	8.2 Criteria
	8.3 Test results

	9 Conclusion
	9.1 Conclusion
	9.2 Subjects for further studies

	A Probability of receiving a heartbeat within r rounds
	B Presentations of messages

