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The development of a steady state and transient multigroup nodal diffusion
model for process simulation software Apros was continued and the models were
validated. The initial implementation of the model was performed in 2009 and
it has not been under continuous development afterwards.

Some errors in the steady state model were corrected. The transient model was
found to be incorrect. The solution method of the transient model was derived,
and the program code not common with the steady state model was almost com-
pletely rewritten. The temporal solution method of the transient model is based
on implicit discretization of the flux time derivative. The spatial solution method
is similar to that of the steady state model with small modifications. Some fea-
tures such as a temporal flux extrapolation transient acceleration method were
implemented into the models.

After this work, the steady state model is correctly implemented based on com-
parisons against DIF3D. The multiplication factors calculated with the steady
state model and Serpent show relatively high differences, but the power dis-
tribution differences are on an acceptable level. The reactor total power time
behaviors without simulating thermal hydraulics were similar to those calcu-
lated with DYN3D. With a step withdrawal of control rods, the total power time
evolution was more different between the codes. However, the relative difference
was not higher than in the case of a slow insertion of control rods. The differ-
ences of relative axial powers were small between the codes. The differences can
be concluded to be caused by the differences between the solution methods of
the codes. Therefore, the transient model is also correctly implemented and it
produces results similar to DYN3D.

The basic features of a steady state and transient multigroup nodal diffusion
model have now been implemented in Apros and verified to work. Multiple
suggestions for continuing the development of the model are proposed.
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Prosessisimulointiohjelmisto Aprosin moniryhménodaalidiffuusiomallin tasapai-
no- ja transienttilaskennan kehittamista jatkettiin seka kyseiset mallit validoitiin.
Mallin alkuperiinen toteutus on vuodelta 2009, eika malli ole ollut jatkuvassa
kehityksessé toteutuksen jalkeen.

Tasapainomallista korjattiin joitain virheita. Transienttimalli havaittiin virheel-
liseksi. Transienttimallin ratkaisumenetelmé johdettiin tyon aikana, seka mallin
tasapainomallista erilliset osat ohjelmakoodista kirjoitettiin lahes kokonaan uu-
delleen. Transienttimallin aikaratkaisumenetelméa perustuu vuon aikaderivaatan
implisiittiseen diskretointiin. Noodien sisdinen paikkaratkaisumenetelmé on pie-
nilla muutoksilla yhtenevé tasapainomallin kanssa. Malleihin lisattiin joitain
ominaisuuksia, kuten transienttimallin voiden aikaekstrapolaatioon perustuva
kiihdytysmenetelma.

Perustuen vertailuihin DIF3D:n kanssa, tasapainomalli on taman tyon jalkeen
oikein toteutettu. Kasvukertoimien erot ovat suhteellisen suuria Serpentiin ver-
rattaessa. Tehojakaumien erot ovat hyvaksyttavalla tasolla. Reaktorien kokonais-
tehojen aikakehitykset simuloimatta termohydrauliikkaa olivat samankaltaisia
kuin DYN3D:1I4. Askelmaisen sddtosauvojen noston simuloinnissa kokonaiste-
hojen aikakehitysten erot olivat suurempia. Suhteelliset erot eivit kuitenkaan
olleet suurempia kuin hitaan sddtosauvojen laskun simuloinnissa. Suhteellisten
aksiaalitehojen erot olivat pienié koodien vélilld. Erojen voidaan todeta johtu-
van koodien ratkaisumenetelmien eroista. Taten transienttimalli on myos oikein
toteutettu ja se tuottaa DYN3D:n kanssa samankaltaisia tuloksia.

Aprosiin on nyt toteutettu tasapaino- ja transienttimoniryhménodaalidiffuusio-
mallit, ja ne on todettu toimiviksi. Malleille ehdotetaan useita jatkokehitysai-
heita.

Avainsanat: Apros, DIF3D, DYN3D, 4. sukupolven reaktorit, nopeat reak-
torit, moniryhma, nodaalidiffuusiomenetelma, Serpent, SFR
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) neutron flux
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Chapter 1

Introduction

Nuclear power can be used to produce electricity with low total lifecycle carbon
dioxide emissions [1]. In addition, nuclear power plants usually have high capacity
factors and they use only small amount of nuclear fuel compared with the fuel
usage of conventional combustion power plants. However, the nuclear power plants
of current generations have various issues requiring improvements in the long run.
These include the utilization of only a small portion of energy contained in nuclear
fuel, limited fuel resources usable with current technology and the production of
nuclear waste which stays highly radioactive for thousands of years.

In order to meet the future requirements of sustainable, economical, safe and
proliferation resistant nuclear energy production, the Generation IV International
Forum have chosen six different next generation reactor types for further research
and development. Three of them, namely gas-, lead- and sodium-cooled fast reactors,
utilize the fast neutron spectrum unlike the thermal neutron spectrum used by
conventional nuclear reactors nowadays. [2]

Fast reactors are of special interest for multiple reasons. Compared with con-
ventional thermal reactors, fast reactors produce more neutrons than are needed
to sustain a fission chain reaction. These additional neutrons can be used to trans-
form fertile fuel nuclei into fissile nuclei. If more fissile nuclei are produced than
are fissioned in the reactor, this process is called breeding. The excess fissile nuclei
can be used in the current generation nuclear power plants after the fuel has been
reprocessed. Therefore, fast reactors can generate more usable nuclear fuel than
they consume. Alternatively, the excess neutrons can be used to remove minor
actinides from spent nuclear fuel reducing the amount of long lived radioactive
nuclei in nuclear waste. This process can be used together with fuel reprocessing
to dramatically reduce the amount of nuclear waste and the time the waste stays
highly radioactive. Due to these alternatives the energy contained in the naturally
most abundant isotope of uranium, namely 23U, can be much more thoroughly
utilized in fast reactors than in thermal reactors. [3]



1. INTRODUCTION

The liquid metal coolants used in lead- and sodium-cooled fast reactors provide
many interesting features compared with the ordinary water usually utilized as
coolant in conventional thermal reactors. One is the operation of the reactors in
atmospheric pressures due to the high boiling temperatures of the liquid metal
coolants. This eliminates the need for high pressure systems in the reactor cores.
In addition, the high thermal conductivities and heat capacities of the coolants
allow high power densities in the cores and ensure heat removal from the cores in
accident situations. However, there are also drawbacks compared with water as
the coolant. For example, both lead and sodium are solids in room temperature.
Therefore, they have to be kept heated at all times to avoid equipment damage. In
addition, sodium reacts exothermically with air and water, causing it to explode
or burn when coming into contact with these substances. [3, 4]

Due to economic and safety reasons, computational analyses of nuclear power
plants must be performed instead of experimental studies to analyze their behavior
in the normal use and different accident situations. The modeling of neutron trans-
port, or neutronics, in fast reactors can usually not be performed with sufficient
accuracy by using computer codes designed for thermal reactors. This is mainly
due to the broad neutron energy interval where most of the different interactions
occur compared with the narrow thermal energy region which is of the most interest
in thermal reactors. In addition, many fast reactor designs have hexagonal fuel
assemblies instead of rectangular ones most commonly used in Western thermal
nuclear reactors. The geometry has to be taken into account in the derivation of
the neutronics solution methodology. Consequently, the analyses of fast reactor
cores require computer codes specifically designed for them. Fortunately, due to the
typically long neutron mean free paths in the fast reactor cores, a relatively simple
and fast neutron diffusion theory based methods, compared with more accurate
and computationally demanding transport theory based methods, can be applied
to fast reactor simulations with sufficient accuracy.

In addition to the neutronics, also the thermal hydraulics of a nuclear power
plant has to be simulated to provide an accurate description of reactor behavior
in different transient situations. This is due to the strong coupling between the
neutronics and thermal hydraulics. This raises the need for coupled neutronics and
thermal hydraulics codes. The differing thermal hydraulic properties of the liquid
metal coolants from those of the ordinary water have to be taken into account in
the coupled code. If a full scale nuclear power plant is desired to be simulated, all of
these neutronics and thermal hydraulics requirements can be fulfilled by utilizing
a suitable fast reactor core model in a multipurpose process simulation code.
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1.1 Objectives and scope

This thesis continues the development of a multigroup nodal diffusion model for
the process simulation software Apros [5-7]. There are two objectives for this
thesis. The first is to finalize the steady state and transient simulation capability
of the model. The second is to validate the implementation and to determine
the applicability and accuracy of both the steady state model and the neutron
kinetics part of the transient model for fast reactor simulations. The validation of
the coupled neutronics and thermal hydraulics, also known as reactor dynamics,
simulation capability of the model is excluded from the scope of this thesis. A
wider perspective for both of the objectives is to provide Apros with a fast reactor
simulation feature, thus making it possible to simulate liquid metal cooled fast
reactor cores with hexagonal fuel assemblies using Apros.

1.2 Structure of the thesis

In Chapter 2, a short introduction to nuclear reactor physics and computational
methods is given in addition to descriptions of different computer codes used in
this work. In Chapter 3, the temporal and spatial solution methods of the Apros
multigroup nodal diffusion model are derived. Moreover, the utilized computational
algorithm and methods are presented. In Chapter 4, the different sodium-cooled
fast reactor models and simulation cases used to validate the implementation
and accuracy the model are specified. In Chapter 5, the results of the validation
calculations are presented. Finally, in Chapter 6, the results of the validation
and proposed further development and research of the model are discussed, and a
summary of this work is presented.



Chapter 2

Physical and computational
background

A nuclear power plant consists of various systems, such as the reactor core, where
heat is produced and the thermal hydraulic system, which transfers the heat out of
the core. In order to design and safely operate these complex systems, sufficiently
accurate models of them have to be available. However, these models have to be
computationally solvable in a reasonable time, especially considering time-depen-
dent transient problems which are typically computationally much more demanding
than time-independent steady state problems.

In this chapter, first a short introduction to reactor physics is given. Second,
the most common models for describing the neutron distribution inside a nuclear
reactor core are presented. Third, the calculation path from theoretical nuclear
data to full core simulations is described. Finally, the computer codes used and
developed in this work are presented.

2.1 Overview of reactor physics

Neutrons interact with the medium they are moving in in various ways, such as
by absorbing into a nucleus in a capture reaction, causing a fission reaction in a
heavy nucleus or scattering from a nucleus. The probabilities for these interactions
to happen are characterized with microscopic cross sections, denoted with . The
microscopic cross sections are heavily dependent on the relative kinetic energy
between the incident neutron and the target nucleus and on the type of the nucleus.
The cross section dependence on the kinetic energy of the nuclei are typically taken
into account with the temperature of the medium. Two examples of the energy
dependence are shown in Fig. 2.1, showing the fission cross section of ?*U and
the radiative capture cross section of 28U, In a classical sense, the microscopic
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Figure 2.1: Fission cross section of 2*U and radiative capture cross section of 238U.
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cross section can be interpreted as the effective cross-sectional area of a nucleus.
A common unit of the microscopic cross sections is barn, which is equal to 1072* cm?.
Another common quantity is the macroscopic cross section 3 which is defined as the
cross section multiplied by the atomic density of the target nuclei. The macroscopic
cross section can be interpreted physically as the interaction probability per unit
path length of a neutron.

In a fission reaction, a heavy nuclide splits typically into two lighter daughter
nuclei releasing energy and a few neutrons. Subsequently, some of these neutrons
may cause new fission reactions, maintaining a fission chain reaction. One of the
main parameters characterizing the chain reaction is the multiplication factor k. It
is defined as the average number of neutrons born from a fission causing another
fissions. The nuclear reactor states k > 1, k = 1 and k < 1 are referred to as
supercriticality, criticality and subcriticality, respectively. If a reactor is supercritical,
the fission rate inside the reactor is growing and therefore the reactor power is
also increasing. If the reactor is critical, the fission rate and reactor power stay
constants. If the reactor is subcritical, the fission rate and therefore the reactor
power are decreasing.

However, not all the fission neutrons are born immediately during the fission
reaction. A fraction 3 of fission neutrons are produced in the neutron emissions
of the high-energetic S-decay products of the fission daughter nuclei. These neu-
trons are called delayed neutrons to differentiate them from the prompt neutrons
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born during the fission reaction. The neutron-emitting fission product nuclei are
called delayed neutron precursors. The precursors are typically divided into 6 or
8 precursor groups based on their $-decay half lives. Although 5 is very small as
its effective value is typically less than 1% in fast reactors [3], the effect of the
delayed neutrons on the time-dependent behavior of a nuclear reactor is significant.
Without them, even a slight increase in the multiplication factor would lead to an
unstable exponential growth of the neutron density and thus the reactor power, if
the various feedback mechanisms present in the nuclear reactor were not effective
enough.

2.2 Neutron distribution modeling

The neutrons interact with the materials inside a nuclear reactor in various ways
and the interaction probabilities are highly dependent on the neutron energies.
Therefore, the distribution of the neutrons inside space and energy, and in transient
problems also in time, inside a nuclear reactor is required to characterize the reactor.
As the determination of the neutron distribution is an important and demanding
task, various methods have been developed for it.

2.2.1 Neutron transport theory

Neutron transport theory is the most commonly applied model for defining the

neutron distribution. It describes the distribution of neutrons inside a phase space

defined by three-dimensional spacial coordinates 7, angle O and energy E at a

specific time ¢. This distribution is called the angular neutron density N, which can

be physically interpreted as N (7, Q, B, t)dVdeE being the number of neutrons

in a differential phase space element dVdQdAE about (7, E) at time t. [9)]
Defining the angular neutron flux ¢ with

(7 Q, B t) = v(B)N(7,Q, B, t), (2.1)

where v(F) is the neutron velocity, the neutron distribution can be described with
the time-dependent neutron transport equation

1 07, Q, Bt

+ Q- V(R Q, B t) + 3 (F, E))(F,Q, B, t) =

v(E) ot
/ dE [ A s (70 -0, B — EYoF O B )+
0 47
" E) oo ) ) (2.2)
XPZ"’) / dE' [ aQY (1 — B(7, B))wSe(F, BV (7, B )+
T 0 47
L S o V(IO 1) + = Qo .1
Ar = Xd,m r, m\T m\T, A ext\T, L, 1),
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which can be derived using physical conservation principles in a differential phase
space element. Here > and v are the macroscopic total and neutron production
cross sections, respectively, ¥ is the macroscopic double differential scattering cross
section, x, and x4 are the prompt and delayed fission yields, respectively, M is
the number of precursor groups, A\, and C,, are the precursor decay constant and
precursor density for the precursor group m and ()ey is the external neutron source.
In addition, the total delayed neutron fraction is defined as

B(r, E") = 2—21 B (7, E'). (2.3)

The precursor densities are governed by
aOm _"t > A — — — A
0Cn(T8) _ [T B [ aQ 8,7 Y7, BV Y B )
0 4T

ot e (2.4)
A (7)Crn (T 1),

which can also be derived as the decay and production balance of immobile delayed
neutron precursors in a differential phase space element. Neutron multiplication
reactions, such as (n,2n) reactions are not taken into account here. In addition,
the external source is assumed to be isotropic.

If a time-independent problem is studied, then the time derivative of the angular
flux and f,, and C,, are set to zero, and the fission source term is divided by the
effective multiplication factor keg to obtain a neutron balance. The result is the
steady state transport equation formulated as a k-eigenvalue problem.

Egs. (2.2) and (2.4) should be solved together with appropriate initial condi-
tions for the angular flux and precursor densities, and boundary condition for the
angular flux. The solution would be an almost exact representation of the neutron
distribution, as only small assumptions are made. These assumptions include treat-
ing neutrons as pointlike particles traveling straight paths between interactions,
without any neutron-neutron interactions. The cross sections are assumed to be
independent of the angular flux and constant in time. The scattering cross section
is assumed to depend only on the scattering angle and not on the original direction
of the neutron movement. Moreover, the fission neutrons are assumed to be emitted
isotropically and the fission yields are assumed to be independent of the energy of
the neutron causing the fission.

If a time-dependent problem is studied, the requirement of the time-indepen-
dence of the cross sections might seem to be problematic, as the cross sections
change for example due to changes of nuclear fuel temperatures. However, this
problem is usually circumvented by treating the cross sections as constants during
sufficiently small time steps.

Due to the complex nature of the transport equation, it is practically impossible
to be solved analytically in any real world geometries. Therefore, approximations

7
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and assumptions, especially for the angular variable, are needed to solve it. They
lead to different deterministic transport methods, such as to the spherical harmonics
method or the method of characteristics. In addition, all the possible neutron
energies are usually divided into discrete groups, where for example the cross
sections are treated as constants. [10]

2.2.2 Diffusion theory

The most common method used to solve the transport equation is to use the
diffusion theory. During the derivation of the theory, Eq. (2.2) is integrated over
the angular variable. This introduces new quantities, namely the scalar neutron
flux defined as

O, B.t) = | dQu(7.Q, B,1) (25)
4
and neutron current density defined as
J(FE.t)= [ dQQ(F Q, B, t) (2.6)
4

to the resulting equation. In addition, the neutron energy dependence is divided
into G energy groups by integrating the resulting equation over energy from F,_; to
E,. The group g = 1 is the group with the highest energy, whereas the group g = G
is the group with the lowest energy. The neutron current density is approximated
using the diffusion approximation, or Fick’s law, which states that neutron current
density is directly proportional to the gradient of the scalar neutron flux as

-

‘]g<7?v t) = _DQ(F)V¢9(F> t)a (2'7)

where D, is the diffusion coefficient, ¢, is the scalar neutron flux and g denotes
the energy group. A more thorough derivation of the diffusion theory can be found
for example in Ref. [11].

With this procedure, the time-dependent multigroup neutron diffusion equation
can be written as

1 0¢,(r,t . o S S
vy (1) %3(; ) =V - Dy(T)V (7, t) + X g(7) g (7, 1) =
G
Z 2579’—>9<F>¢g’ (7?7 t) + (1 - B(F»Xp,g(f’) Z sz,g’<F>¢g’ (7?7 t)"’ (2.8)
g'#g g'=1

M
Xdu‘} (F) Z )\m(F)Cm(F; t) + Qext(Fu t)?
m=1

where v, is the neutron velocity, X, ;, and Y ,_,, are the macroscopic group removal
and from group ¢’ to group g transfer cross sections, respectively, and x;, ; and xq,4

8
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are the prompt and delayed fission yields, respectively. The precursor densities are
governed by

0C, (T, t)
ot

The Egs. (2.8) and (2.9) should be solved together with appropriate initial
conditions for the scalar flux and precursor densities, and boundary condition for
the scalar flux. If a time-independent problem is studied, the time derivative of the
scalar flux and (3, and C,, are set to zero, and the fission source term is divided by
the effective multiplication factor k.g to obtain a neutron balance. The result is a
steady state multigroup diffusion equation formulated as a k-eigenvalue problem.

The validity of the diffusion theory requires a few assumptions. First, neutron
scattering has to be isotropic and the dominant interaction type over absorption.
Second the spatial neutron distribution has to vary only linearly. Third, all the
neutron sources have to be isotropic. Finally, the time derivative of the neutron
current density divided by the neutron velocity has to be small compared with the
flux gradient. These assumptions do not hold for example near highly absorbing ma-
terials, such as control rods, or near vacuum boundaries. Nevertheless, the diffusion
theory is widely used in reactor analysis due to its simplicity and computational
efficiency compared with the more complicated transport methods. [11, 12]

G
= Bn(T) Zl U3¢ g (T7) g (T, 1) — A (7)) Crn (7, ). (2.9)

2.2.3 Monte Carlo method

A completely different approach to describe the neutron distribution inside a nu-
clear reactor is to perform a Monte Carlo reactor physics simulation. Instead of
trying to solve the transport or diffusion equations, individual neutron histories
are simulated to calculate statistical estimates for different integral quantities, such
as the multiplication factor, neutron flux and reaction rates. A neutron history
consists of the interactions the neutron undergoes and the path the neutron travels
between the interactions. It begins from the emission of the neutron and ends to
the absorption of the neutron or when the neutron leaks permanently out of the
problem geometry. [13]

The power of the reactor physics Monte Carlo simulations lies in the fact that the
method itself does not require approximations in the neutron interaction physics
or the studied problem geometry. However, due to the statistical nature of the
method, the accuracy of the results is proportional to the number of neutron histo-
ries simulated. Therefore, compared with the deterministic methods, the method
is computationally extremely demanding. Obtaining completely accurate results
would require the simulation of infinitely many neutron histories.

Due to the computational inefficiency, coupled full core Monte Carlo neutronics
and thermal hydraulics simulations are still too demanding to be solved. However,
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time-independent full core simulations for example to be used as reference calcula-
tions for different deterministic methods are within the limitations of computational
resources nowadays. In addition, Monte Carlo simulations can be used to generate
homogenized group constants for deterministic full core simulation codes.

2.3 Calculation path for full core simulations

The path to calculate a deterministic full core simulation requires many steps, where
the best available knowledge of neutron interactions is transferred into a format
usable by the simulation code. This path from the nuclear data into deterministic
full core simulation is presented in Fig. 2.2.

The neutron interaction data obtained from experimental measurements and
theoretical nuclear models are collected into evaluated nuclear data file libraries.

Experimental measurements
and theoretical nuclear models

Nuclear model application

Evaluated nuclear
data files

|

Nuclear data processing

|

Microgroup or pointwise
cross section libraries

|

% Lattice calculation ‘

Homogenized group
constants

|

Full core steady state
or transient simulation

T

T

<saseemap ©YRD 9Y) JO [TBIOP JO [0AdT] ‘
<SSS”BSIC)HI 9ZIS TOPOIN ‘

T

Figure 2.2: Typical nuclear reactor analysis calculation steps for a deterministic
full core simulation.
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The libraries need to be processed into either discrete energy groupwise form to be
used in deterministic lattice calculation codes or continuous energy pointwise form
to be used in continuous-energy Monte Carlo lattice calculation codes. Whereas the
evaluated nuclear data file library format is designed to preserve the accuracy of the
original data, the microgroup condensation causes loss of accuracy and generality,
and even the continuous-energy pointwise library is generated with only a certain
accuracy.

During a lattice calculation, the accurate fuel assembly geometries are used
to produce homogenized group constants. The group constants are calculated so
that the reaction rates over the homogenized volume are preserved in the full
core simulations utilizing the generated group constants. The homogenization is
carried out for each fuel assembly or material type in different local operating
conditions, such as with different coolant and fuel temperatures and fuel burnups.
The homogenized group constants are generated for a small number of energy
groups. For thermal reactors, usually two energy groups are used, but for fast
reactors, more groups are required to model the reactors with sufficient accuracy.
For time-dependent simulations, in addition to the diffusion coefficients used in
diffusion calculation codes and the macroscopic cross sections used in transport
and diffusion calculation codes, the group constants include kinetics parameters
such as the effective fractions of delayed neutrons and the neutron velocities.

The last step in the path is to perform a full core steady state or transient
simulation to determine for example the power distribution inside a reactor. During
a full core simulation, the reactor geometry is treated as consisting of homogeneous
nodes, where the homogenized group constants produced by the lattice code are
utilized.

2.4 Computer codes

2.4.1 Apros

Apros is a process simulation software developed by VT'T Technical Research Centre
of Finland Ltd and Fortum Power Solutions [7]. The software can be used for full
scale modeling and dynamic simulations of different industrial processes, such as
paper mills and combustion and nuclear power plants. In addition to the thermal
hydraulics, the simulation capabilities of the software extend to complex systems
including process automation, electrical systems and nuclear reactor neutronics.
An Apros model is built by connecting suitable process components together
and configuring their parameters. The components include thermal hydraulic com-
ponents such as pipes, pumps and valves, ordinary nuclear reactor components
such as pressurizers and steam generators, and automation and electrical system
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2.4. COMPUTER CODES

components. The models can be built directly using a command window, or more
typically a graphical user interface. Grades is used as the graphical user interface
in Apros version 5 and a new, more flexible graphical user interface is used with
Apros version 6.

The thermal hydraulics of a nuclear power plant can be modeled with three
different models. The difference between the models is the treatment of the mass,
momentum and energy of the liquid and gas phases as a mixture or separately.
The most accurate method, namely the six-equation model, is computationally
the most demanding. The five- and three-equation models are less accurate and
computationally less demanding, in this order. Due to accuracy considerations, the
six-equation model is recommended to be used to simulate the thermal hydraulics
inside reactor cores of conventional thermal reactors. In the case of a single phase
flow, the three-equation homogeneous model can also be used. The sodium present
in sodium fast reactors is simulated with the three-equation model. [14, 15]

2.4.1.1 Current neutronics models

The current release version of Apros has four different neutronics models, namely
the point kinetics model, the one- and three-dimensional finite difference models
and the three-dimensional nodal model [14, 16-18]. The simulation accuracy of
the models increases together with the computational cost from the point kinetics
model to the nodal model. All the models are capable of performing steady state
and transient simulations.

The point kinetics model uses a single one-group flux value to simulate the
whole reactor. Therefore its applicability is very limited. The point kinetics model
has features common to the more accurate models, such as six delayed neutron
precursor groups and the simulation of reactor poisoning and decay heat.

The one-dimensional finite difference model simulates the reactor behavior only
in the axial direction. Therefore it is applicable to simulations where the reactor
behavior has only a small impact compared with other effects in the simulation, or
the reactor transients are symmetrical in the radial direction. In addition, the con-
densation of the usual group constants into radially homogenized group constants
to be used with the one-dimensional model requires an additional calculation step
to those described in Sec. 2.3.

The three-dimensional finite difference model can be used to model various
transients without limitations in their symmetries. However, the accuracy of this
one-point per node model is not high enough for some demanding simulation cases.
Therefore, a more accurate but still relatively fast three-dimensional nodal model
based on modal decomposition is included in Apros.

All of these models are developed to simulate conventional thermal reactors, as
for example they are based on one- or two-group approximations. Therefore, they
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are not suitable for simulating fast reactors accurately. To extend the simulation
capabilities to fast reactors, a three-dimensional multigroup nodal model has been
developed for Apros.

2.4.1.2 Status of the multigroup nodal diffusion model

A steady state multigroup nodal diffusion model has been implemented into Apros
in 2009 [5]. The solution method is based on the nodal diffusion option of the
DIF3D simulation package, described in Sec. 2.4.3. This method was chosen due
to the applicability of diffusion theory in fast reactor problems, its capability of
handling hexagonal geometries and its fast calculation speed suitable for transient
analyses. Compared to the thermal reactor neutronics models of Apros, some
features, such as the simulation of reactor poisoning and the iteration of equilibrium
boron concentration are not present in the multigroup model, as they are not
important in the case of fast reactors.

Since the implementation, the model has completely been rewritten using For-
tran 2003 programming language standard with object-oriented programming like
approach using derived data types introduced in Fortran 90 standard. In addi-
tion, the development of a transient version, based on the solution method of the
DIF3D-K simulation code, described in Sec. 2.4.3, has been started [6]. However,
no comprehensive validation results of the steady state model exist, the transient
model has not been compared with other simulation codes and the model has not
been included in the release version of Apros.

The steady state model has been tested by simulating the Large Core Code
Evaluation Working Group (LCCEWG) benchmark problem 1 [5, 19]. The results
were compared with the other benchmark participants and Serpent (see Sec. 2.4.2)
and found satisfactory. The model has also been tested with the OECD/NEA
Sodium-cooled fast reactor (SFR) Benchmark Task Force steady state benchmarks
[20] and one Phénix end-of-life test [6, 21]. However, no complete results of these
simulations exist, as only the obtained multiplication factors are known from the
SFR benchmark problems [22, 23]. The differences of the multiplication factors of
the four reactor cores, simulated with all control rods withdrawn from the cores,
were from —0.52 % to 0.20% compared with Serpent full core calculations. The
Apros model calculations were performed with 20 energy groups and the group
constants were obtained from the Serpent full core calculations. However, the
diffusion coefficients used in these calculations have probably been erroneous due
to the incorrect diffusion coefficient calculation method in Serpent at that time [24].
Therefore, these multiplication factors are not comparable to those calculated in
this work.

Ref. [6] also states that the differences of multiplication factors between DIF3D
and the steady state model, being around 1078, are negligible. This suggests that

13



2.4. COMPUTER CODES

the steady state model is correctly implemented. The transient model has not been
tested against DIF3D-K as the original code has not been available.

Finally, Ref. [6] states that the model is ready to be used to simulate time-
dependent problems. Furthermore, a flux normalization performed after each time
step should possibly be revised, and the implementation of the model could be
enhanced with for example enabling its parameters to be customized in Apros
and utilizing more parameters directly from Serpent group constant generation
calculations. However, during this work, several defects and errors, some of which
fatal, were found in the implementation of the model.

In the steady state model, there was for example an error in the handling of
the reactor boundaries which prevented simulation cases with specific geometries
and boundary conditions to converge, even though some such cases were claimed
to be simulated [6]. In addition, the flux was not properly normalized to the
user given power. In the transient model, there was an error in the subroutine
reading the group constant file which prevented all transient simulations with
group constant files produced with the supplied processing script. Some terms were
missing from the spatial solution equations and the computational algorithm was
erroneous, as it included many incorrect parts of the steady state algorithm and
many parts essential to the time-dependent solution were flawed. For example, the
multiplication factor was updated during transient simulations and the precursor
densities were not calculated properly. There were also smaller errors common to
both models, such as indexing errors in the connections between the neutronics
and thermal hydraulics. Finding the errors preventing the simulations altogether
and correcting the defects in the calculation algorithms formed a major part of
this work. The parts of the transient solution algorithm not shared with the steady
state algorithm were derived and almost completely rewritten during this work. In
addition, in this work a transient calculation acceleration method was implemented,
the usage of group constants produced by Serpent was improved and the modeling
of finite length control rods was added to the model.

2.4.2 Serpent and Serpent 2

Serpent is a three-dimensional continuous-energy Monte Carlo reactor physics
burnup calculation code developed at VI'T Technical Research Centre of Finland
Ltd [25]. In addition to the current release version of Serpent, a completely rewritten
Serpent 2 is in a beta-testing phase. The current development of the code is
focused on Serpent 2, which has significantly improved functionalities compared
with Serpent. Serpent 2 is used in this work, and is referred to as Serpent from
now on.

One of the main uses of Serpent is the group constant production for deter-
ministic reactor simulator codes. The group constants include infinite lattice and

14



2.4. COMPUTER CODES

By leakage corrected cross sections and diffusion coefficients, kinetics parameters
such as effective delayed neutron fractions and precursor decay constants, and as-
sembly discontinuity factors. An automated burnup sequence for creating group
constants for all operating conditions of a reactor, parametrized by different branch
and history variables, is being developed. [26, 27|

Serpent can also be used for steady state modeling of full reactor cores in three
dimensions without the approximations of the deterministic codes. However, due
to the high computational costs of Monte Carlo simulations, it is feasible to cover
only a small number of different reactor states with the simulations.

2.4.3 DIF3D and DIF3D-K

DIF3D is a code system for solving multigroup steady state neutron diffusion
and transport equations. It provides three flux solution methods, namely the finite
difference and nodal diffusion solvers and the variational nodal transport solver. The
solvers can be used in two- or three-dimensional Cartesian or hexagonal geometries.
The code system is primarily designed for fast reactor problems. The hexagonal
geometry nodal diffusion solver, used in this work, is described in detail in Ref. [28].

The steady state nodal diffusion solver has been extended to neutron kinet-
ics code DIF3D-K, solving the time-dependent diffusion equation [29]. The time
discretization is performed with either the theta method or one of the three space-
time factorization methods [30]. The code has also been coupled to SAS thermal
hydraulics code family [31, 32].

2.4.4 DYN3D

DYN3D is a three-dimensional reactor simulator code capable of performing steady
state and transient diffusion calculations in Cartesian or hexagonal geometry [33, 34].
The code has originally been developed for two-group thermal reactor simulations,
but a more recent multigroup version of DYN3D is used in this work.

The code uses transverse integration to solve the neutron diffusion equation
inside the nodes. The obtained equations are solved using flux expansions consisting
of quadratic polynomials and exponential functions. In the hexagonal plane, either
the side averaged fluxes (HEXNEM1 method) or the side averaged and corner
point fluxes (HEXNEM?2 method) can be used to couple adjacent nodes. The time
derivative of the time-dependent diffusion equation is discretized using an implicit
difference with an exponential transformation. The code has an internal thermal
hydraulics solver and it has also been coupled to thermal hydraulics system codes

ATHLET and RELAP5.
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Chapter 3

Computational model description

The previous chapter provided an introduction to reactor physics and different
neutron distribution modeling methods on a general level. In this chapter, the
derivation of the solution algorithm of the Apros multigroup nodal diffusion model
is presented with more detail. The temporal solution is based on the fully implicit
theta solution method of DIF3D-K [29], whereas the spatial solution method is the
same as of the hexagonal geometry nodal diffusion solver of DIF3D [28].

In this chapter, first the temporal solution method of the time-dependent multi-
group neutron diffusion equation is derived. Second, the spatial solution method
for the hexagonal geometry is derived. Third, the actual computational solution
procedure including the different acceleration methods used to speed up the conver-
gence of the solution is presented. In addition, the steady state solution procedure
is also briefly introduced. Finally, the implementation of the model into Apros is
described.

3.1 Starting point of the solution method

Beginning from Eq. (2.8), the time-dependent multigroup diffusion equation in a
homogeneous node k can be written as

1 0¢(7, 1)

v§ ot —V-DI;ng’;( )+Ek T Zzsg—m 7, t)
: G.)
+ (1= B5)XEy D v b (7 t) + X4, Z A Con (7 1),
g'=1 m=1

where 7 € V¥ where V¥ is the volume of the node. A few assumptions have been
made here. First, the node is assumed to be homogeneous and therefore all the
group constants are assumed to be constants inside the node. Second, only down-
scattering is considered. Finally, external sources are not considered here. With

16



3.2. TEMPORAL SOLUTION METHOD

similar assumptions, the time dependence of the precursor density for precursor
group m inside the node k is governed by

8Ck<” = gt Z nyy — ROk (7 4, (3.2)

obtained from Eq. (2.9).

3.2 Temporal solution method

In the nodal diffusion solver of DIF3D-K, either the theta time-discretization
method or one of the three different space-time factorization methods can be used
as the temporal solution method. The space-time factorization methods assume
that the shape of the neutron flux changes much slower than the amplitude of the
flux, whereas the theta methods are based on the discretization of the flux time
derivative term. The most accurate of the space-time factorization methods, namely
the improved quasistatic method has been found to be computationally faster than
the fully implicit theta method with comparable accuracy [30]. However, in tran-
sients with significant change of the flux shape, the improved quasistatic method
might be computationally slower than the implicit theta method [31]. Nevertheless,
the fully implicit time differentiation has been chosen to be the temporal solution
method of the Apros model, as it is simple to implement, versatile in different
transient situations and inherently stable with different time step lengths.

In order to solve Eq. (3.1), the time domain is discretized into discrete times
{t,} and the time derivative of the neutron flux is approximated using backward
difference at time ¢, as

Ops(F )| Gh(Frtng) — OE(F, 1) (3.3)
ot B At, ’ '

tn+1

where At, = t,.1 — t, is the time step length. Consistently with the backward
difference, Eq. (3.2) can be solved assuming the fission source to vary linearly
during the time step as

VSt gy (7, tns1) — V¢ (7 1)

sz»ggblgc(f: t) = sz,g¢§ (Fv tn) + AL (t — tn> (34)
The resulting equation can be written as
Co(7 tasn) = O (7t )e b0
k,n < k k(= k,n G k k(= (35)
Fom > VE g0 (T tn) + Film > vEF 60 (7 g,
g'=1 g'=1
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where the coeflicients are defined as

k
kn 6m 1 -k Aty -2k A,
FO,m = E <)\I;5nAtn <1 — € ) — € > (363)
kO 1 N Aty
Fin = N (1 - VAL (1-e )) (3.6b)

As At,, approaches zero, both of these coefficients approach zero as 3% At,,. There-
fore, with short time steps they depend almost linearly on the time step length.

Substituting Eqgs. (3.3) and (3.5) into Eq. (3.1), the following equation for the
neutron flux at time ¢,,, in node k£ and energy group g is obtained

. 1 .
- V . D§V¢§(T,tn+1) + ( kAt +Zk >¢§(r7tn+1) =

Z Esg%g 7’ tn+1)+

G
((1 BN XK, Z A’:,LF{i;j;) > vSE ok (Fotu)+ (3.7)
m=1 g'=1
k
o At G (7 tn)+

M a
Xhg Do (ACE(F t)e Xt 1 X B S~ wSf 6k (7 1) ).
m=1 g'=1

The resulting equation can be identified to be the same form as a fixed source
problem equation. Part of the source term depends only on the fission source at
the end of the time step and part of it depends on the fission source and precursor
densities at the beginning of the time step. Therefore, the flux at time ¢, can be
solved using any solver capable of solving fixed source problems if the neutron flux
and precursor densities are known at the beginning of the time step.

3.3 Spatial solution method

The volume of a hexagonal prism node k with width A and height Az* can be
defined as

AzZF AR

k. - _- -
14 -(l’,y,Z),l‘G 2 7 9 ]’ (38)

b1 [—ys(z),ys(x)], 2z €

where

ys(x) = —=(h — |z]). (3.9)

Sl
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v s

Figure 3.1: Cartesian (z,y, z) and symmetric hex-plane (z, u, v) coordinate systems
in node k£ with width A and height Az*.

The node along with the Cartesian (z,y,2) and symmetric hex-plane (z,u,v)
coordinate systems used in the derivation is presented in Fig. 3.1. The total volume
of the node can be calculated by integrating over the node as

h
/ dz/2 dx/ h2A J (3.10)
% ys(x)

Denoting quantities defined at time ¢, with superscript n, Eq. (3.7) can be
written as

. v Dk‘ ¢kn+l( )+Ekn+l¢kn+l( ) an+1(,r7) (311)
where
kn+1 k
Skt — o, St (3.12)

is the modified group removal cross section and

M G
ngc,n+1(7;') — ((1 . ﬁk)Xf),g + de“’g Z A%F{i;ﬁ) Z Vzk ¢k n+1(F)+
m=1 g'=1

1

Z Sgg0y T (F) + " () + (3.13)
g n
J -k A k & k k
Kb 2 (8P 4 N, 3 vt ol ()
m= g/:
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is the source term of the time step n. From now on, the explicit time dependence
will be suppressed, as all quantities in Eq. (3.11) are determined at the same time.

The spatial solution method is derived in detail in Refs. [5, 28]. The differences
between the derivations here and in Refs. [5, 28] are the replacement of the group
removal cross section with the modified group removal cross section and the source
term, which now includes the contribution of delayed neutrons and the part of the
flux time derivative depending on the flux at the beginning of the time step. In
addition, the prompt fission source is not normalized by the multiplication factor,
as now a time dependent problem is studied.

3.3.1 Nodal balance equation

Integrating Eq. (3.11) over the node volume, the nodal balance equation

2 1 —k =k

Bh(L + Ly, + L, )+Akng+z’“ ¢, = Q, (3.14)
is obtained. Here the average flux is defined as

—k 1 2 ys(z) k

b, = vE /A i dz/hdx/_y . dy ¢, (2,9, 2) (3.15)
and the average source as

—k g ys () k

Q, = Vk‘/Az dz/hdx/y (x)dyQ T, Y, 2). (3.16)

The leakage term in the x-direction in the hex-plane is

—k - (h —k h

where the face-averaged surface-normal components of the net currents are defined

as
k
Tk h 1 5 1 ys () o
Jga:( 2) AzFk /—A2Z’“ 22?/5(%) @) Y < 99, (bg(x, v, z))

The integration of the first term in Eq. (3.11) over the node volume is transformed
into integration over the node boundaries using Gauss’ theorem. Similar definitions
for E];u and EI;U can be derived. [28]

Consistently with the hex-plane directions, the leakage term in the axial direc-

tion is defined as A Ak
z —k z
o (3] (22), "
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where the face-averaged surface-normal components of the net current are defined

as
Az 3 o,
J (i) = /—Z dx/yé(x) ( D, 95, % (x Y,z ))

The face-averaged surface-normal net currents can still be divided into outgoing
and incoming partial currents across the node boundaries. For z-direction the result

-k h —out,k h —in,k h

where the partial currents are defined as

(3.20)

k

_ 1 Az
2=+

AzF

—ou h 1 2 1 ys(z’)
Fouk( L0y o2 / d / d
g ( 2) Ak S22 oy @) Ly Y

1 L (3.22)
k k k
<4¢g(‘x7y72):‘:2D98x¢g<x7yaz>> .
w:i§
and
g h 1 e TRONE
Tl (5 ) = 5o [ d / d
gm( 2> Ak J=g= Z2ys(9ﬁ) )
: a (3.23)
=11
2

For the axial direction, the division is

-k Az —out,k Azk —in,k Az¥
B (=) () () e

where the partial currents are defined as

jout,k < AZ > _ / /ys(x) d
gz h
2 7ys x

- 5 (3.25)
(4¢g(x7y7 ):F D (97 (.T Y,z )) o
-
and
in.k AZ % yg(l'
/ ( ) /’5 /ys(fc
(3.26)
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3.3.2 Spatial boundary conditions

In addition to the initial conditions provided by neutron flux and precursor densities
at time t,,, the solution of Eq. (3.7) is subject to spatial boundary conditions defining
the couplings between adjacent nodes and the reactor boundaries.

Boundary conditions between adjacent nodes k and [ can be written in terms of
surface averaged incoming and outgoing partial currents by requiring them to be
continuous across the nodal interfaces [28]. This results in the hex-plane directions

in " "
—in,k —out,l
‘]gs <2> = ‘]gs <—2> (327&)

—in,l h —out,k h
Jgs <—2> - ‘]gs <2>, (327b)

where s € {z,u,v}, and in the axial direction in

—ingk [ A" —out [ AZF
ng <2> = ng <—2> (328&)

—in,l Azk —out,k Azk

where the coordinates are local node coordinates for each node k£ and [. The
Egs. (3.27) and (3.28) are equivalent in an integral sense to the physical requirement
of the continuity of the neutron flux and surface-normal net current across an
interface.

At the reactor outer boundary S, a general boundary condition

agBy () + 2bg7u - DgV (i) = 0, (3.29)

can be applied [28]. Here 77 € S, 71 is the unit vector pointing outwards from the
reactor boundary and a, and b, are coefficients specifying the boundary condition
type. For example, a zero flux boundary condition can be set with a, = 1 and
by, = 0. With the partial current notation, this boundary condition can be presented
as .

T () = 2T (7). (3.30)
where 7 € S and s € {x,u, v, z} depending on the direction of the boundary. The
coefficient
_ by —a,

by + ag ( )

Yg
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when b, # —a, specifies the boundary condition type. Some typical boundary
conditions are defined as

—1 zero flux boundary condition,

v¢ =4 0 zero incoming partial current boundary condition, (3.32)

1 zero net current or reflective boundary condition.

3.3.3 Transverse integration

The partial currents required to solve Eq. (3.14) can be solved using different
methods. The transverse integration method, as described in detail in Ref. [28], is
utilized in this work. In the method, the three-dimensional diffusion equation is re-
duced to three one-dimensional equations in the hex-plane and one one-dimensional
equation in the axial direction.

Using the partially integrated flux

) S o R
ol = [udz [ dydyia.2) (3.33)
current
azt e 0
Jk :/ ’ q / dy [ =D+ gt 3.34
gx<x> %zk z (@) Yy gax¢g<w7yaz) ( )
and source
\ A @
gx(x) = /ﬂ dz /_ys(m) dy Qg(aﬁ,y,z), (3.35)

and performing a neutron balance on a differential slice perpendicular to the z-
direction defined as

AZF AR
SVE (2,1, 2), x € [z, 2+ dal], y € [~ys(z), ys(2)], 2 € [—; 22] (3.36)
the balance equation
d ~
9 ys () (3.37)

= 5 Uy 31 0) = T =)~ [

dy L} (x,y)
—ys(a:)

in the z-direction is obtained. Here J¥, (x,2y,(x)) are z-integrated surface-normal

components of the net current across the u- and v-directed surfaces, defined as

Azk

2

, (3.38)

y==ys(z)
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where the unit normal vectors are defined as

h
(1 —§<x<0
ny = L (3.39a)
R O<zr< 5
h
Ny 3 <x <0
n_ = 3 (3.39b)
Ny, O<$<§,

each pointing outwards from the node surface.
The axial leakage term in Eq. (3.37) is defined as

Azk z=
) 5
L (z :/2d Dkik ’ — DL ke y, (3.40
ARy INCH Ot R
The average axial leakage is
& AZF 5 ys (@) &
Ik = Vk/h do /W) dy L¥, (x, ), (3.41)
consistently with Egs. (3.19) and (3.20).
Differentiating Eq. (3.33) as
d e d
o) = -Dh [ dy (o)
Ys (@) 8
— —Dk/ dy - k(@) (3.42)
dys( )
_D]; dx (¢§wy<$’ys(x))+¢§(x7_ys<x>>>’
where
Azl
2
b@y) = [ dz (e, 2) (3.43)
and da(2) |
Ys\
= 44
) (), (3.44)

which is obtained by differentiating Eq. (3.9), and substituting Eq. (3.34) into
Eq. (3.42), the relationship between ¢}, () and J}:, () is obtained as

7= -0 gt @)+ Ds T gk oy @) + 0 @), (345
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Similar relationship between the average values qgsm(x) and J ];r(x), defined as

k

—k 1 % 1 ys(x) 1 1

_ d / dy o (z,y,2) = —— k 3.46
30e0) = 5 [ 5y [ WO Y2) = R dl@) (3.46)

and
k
—k 1 ATZ 1 ys(z) 0
J = d / dy [ —DF—¢*(x, vy,
oo = Rk e B Lo y( Erd z)> (3.47
1 1 i
Ak 2y, (x) Tiz()
can be obtained as
Tk pd ok po 1 dy,(z) k
— _DF— A4
ng(l’) 9dx g:):(a:) + g2ys<x> dr g:):(x)7 (3 8)
where N

In a similar way, equations corresponding to Egs. (3.37), (3.45) and (3.48) in
the u- and v-directions can be derived.
As in the z-direction, using the hex-plane integrated flux

2 ys(x)
b= [ de [ dy bty 2), (3.50)
*% —ys(z)
current .
JE(2) = /5 dx/ysw) dy —Dkg M2, y,2) (3.51)
gz _% () gaz g\t o
and source

% ys ()
b(z) = /_@ dz /_y ( )dy@’;(x,y,z), (3.52)
2 s\T

and performing a neutron balance in a differential slice perpendicular to z-direction,
defined as

h
SVE:(z,y,2), x € 55 VE [—ys(x), ys(2)], 2 € [2,2+ dZ] (3.53)
the axial balance equation
d ~
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is obtained. Here the hex-plane leakage is defined as

IC 2o
Lk de/ < (a s+ 2>¢ (2,9, 2 )) (3.55)

and the corresponding sum of average leakages in the hex-plane as

Azk
rh =L

gry ?W —Azk gxy(z)7 (356)
2

which can be separated to average leakages in the three hex-plane directions as

+k +k +k =k
Ly,,=L,+L, +L,, (3.57)

The hex-plane averaged flux is defined as

—k AZF 5 ys(2) AzF
Gele) =T [Lde [ ooz = Trehz) (359)

and the hex-plane averaged current as
—k AZF % ys (@) L 0 AzF
Ty () = S [ , do [ L (—Dgaxqﬁg(x,y, 2)) =T, (359)

The relationship between JF.(z) and ¢}, (z) is given simply by Egs. (3.50) and
(3.51), as the integration limits of the latter equation do not depend on x. The
result is

Jh(z) = —D‘fdd F(2). (3.60)

Analogously, the relationship between the average values is given by Egs. (3.58)
and (3.59) as

—k e d

Te2) = —DiGy(2). (3.61)

The results of the transverse integration are the coupled differential equations
relating the partially integrated currents and fluxes. These one-dimensional fluxes
can then be approximated with suitable functions. Additional approximations are
required for the transverse integrated leakage terms.

3.3.4 Polynomial approximation in hex-plane

The one-dimensional fluxes are solved by applying polynomial approximations
to the partially integrated fluxes. In the hex-plane directions, the approximation
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is given by four basis functions specifying the spatial accuracy of the model, as
presented here for the z-direction as

4

ot —k
e (1) & D (@) = A 24,(0) (6 + X afynfu(@)), (3.62)

n=1
where the expansion coefficients are
% (h —k h

a];m = Qgs 2) — Gga <—2> (3.63a)

h

2

dky = Gy, (Z) + Gy (— ) — 26, (3.63b)

26 h —k -k — [h —k h —k
k
Agez = —@ﬁ(Lgu +Lg,) - 91 ( gz <2> + Pgo <_2> - 2%) (3.63¢)
g
h
2

— (—Z)) (3.63d)

fi(z) = % (3.64a)
36 (z\* 5
fo(z) = 13 (h) % (3.64Db)
10 (= 1|z 3
fa(@) = 13 <h> AR (3.64c¢)

- 2). (3.64d)

The derivation of the expansion coefficients and the motivations for the cho-
sen basis functions are described in detail in Ref. [28]. Briefly, the polynomial
approximation is constructed in a such way that that it preserves the node average

flux
—k

o [ dwdh o) =3 (3.65)

and the surface-averaged fluxes

(Alz’“ 23/51(:6) NI;”C('%))

—k h
=y, <j:2>. (3.66)
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In addition, the basis functions satisfy the constraints

h

_i dz2ys(x) fu(x) =0, n=1...4 (3.67)
and
I (iZ) —0, n=34 (3.68)

The first and second terms of the polynomial approximation are obtained by ap-
plying a quadratic polynomial approximation to the partially integrated flux. The
third basis function is added to provide a first derivative discontinuity at x = 0. Its
expansion coefficient is obtained by requiring the partially integrated net current
fo(x) to be continuous at z = 0. The fourth basis function provides quadratic
approximations for both half-intervals —% <r<Oand 0 <z < % of the node. Its
expansion coefficient is solved by applying the inner product

1 /%

(w(x), f(2)) = 77 |, drw(z)f(z) (3.69)

Iy

with a weight function w(x) to the one-dimensional neutron balance equation (3.37),
using the half-node weight function

w(x) = wi(x) = sgn(x). (3.70)

The chosen weight function preserves the neutron balance in both of the half-nodes
in the z-direction. Similarly, the spatial flux moment ¢,,1 present in Eq. (3.63d)
is defined as

g1 = (W1(2), . (2)). (3.71)

The solution of the flux moment is described in Sec. 3.3.6.

3.3.5 Polynomial approximation in axial direction

For the axial flux, the one-dimensional polynomial approximation is applied as

k Tk VF (o & k

) % ) = 3 (0 L () (3.7
where the coefficients are defined as

_ A k _ A k
a1 = G (;) — Gy (—2> (3.73)
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kA k[ AZF —k
. [ AZF _ AzF
a523 = _120¢Zz1 +10 <¢§z (;) - 425’;2 (-;)) (3.73¢)
and the basis functions as .
fale) = 1z (3.74a)
z 2 1
fa2(2) = 3<<Azk> - 4> (3.74b)
z z 1 z 1

faa(2) = N (Az’f - 2) (Az’“ + 2>. (3.74c¢)

The derivation of the expansion coefficients and the motivations for the chosen
basis functions are described in detail in Ref. [28]. Briefly, the axial flux approxi-
mation is constructed so that the node averaged flux

(N "

and the surface-averaged fluxes

k

AzZF
Vk gZ(Z)

=4, <i2> (3.76)

_ Az
z=£27

are preserved. In addition, the basis functions satisfy the constraints

AR

/; dz fon(2) =0, n=1...3 (3.77)

2

and

fz3 (i%]f) = 0. (3.78)

As in the hex-plane directions, the first and second terms of the polynomial
approximation are obtained by applying a quadratic polynomial approximation
to the partially integrated flux. The third order basis function provides a third
order term in the polynomial approximation. Its expansion coefficient is obtained
by applying the inner product

1 Ak

W), F()) = o [ox dzw(2)f(2) (3.79)
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with a weight function w(z) to the one-dimensional neutron balance equation (3.54),
using the moments weighting function

w(z) = w(2) = fa(z), (3.80)

defined in Eq. (3.74a). The spatial flux moment ¢}, (z) present in Eq. (3.73¢c) is
defined as

g1 = (w21 (2), 95.(2)). (3.81)

The solution of the flux moment is described in Sec. 3.3.6.

3.3.6 Flux moments calculation

The node average, or the zeroth moment flux is obtained simply from Eq. (3.14) or
applying unit weighting w(z) = wy(z) = 1 with the inner product of Eq. (3.69) on
Eq. (3.37) or unit weighting w(z) = wy(z) = 1 with the inner product of Eq. (3.79)
on Eq. (3.54). The result is

ko 1 & 2
97T & g <
Eﬁg 3h2f,g

1 _
& L

+k +k +k
(Lgx + Lgu + Lgv) - Azkik gz*
r.g

(3.82)

The first spatial flux moment in z-direction is obtained by applying the half-
node weighting function defined in Eq. (3.70) with the inner product of Eq. (3.69)
on Eq. (3.37). The result is

~ 32 D¥ 1 2 =k =k 40 D
k k k k k
(Er,g—i_hhg> grl — g:rl_ngzml_%(Tgw—i_Tgu_Tgv) %Tgagmlv (383)

where - “
JAVALN ys(@

and . .
—k —k <k
T - ng<2> + T8 (—2>. (3.85)

The two remaining hex-plane spatial flux moments are obtained similarly by
substituting
T = uuU— 0,0 — —T (3.86)

in Eq. (3.83) to obtain the u-direction equation and
T —=0,U— —T,0— —U (3.87)

to obtain the v-direction equation.
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Applying the moments weight function defined in Eq. (3.80) with the inner
product of Eq. (3.79) on Eq. (3.54), the equation for the first spatial flux moment
in the axial direction is obtained as

= 2 1 1 —% DF
E ok _ Ak k k
Zrother = Qo = gL ~ g3 T T (it O89)
where
3h 1 (% oz o,
Lk = 77/ dz 2Lk (2) (3.89)
gzyzl 2 VEk —A2zk Ak 9Ty
and A ok
—k —k z —k z
ng_ng< 5 >+ng<—2 ) (3.90)

Gathering Eq. (3.83) with its u- and v-direction counterparts together with
Eq. (3.88), the first moments equations can be presented as

I;ml 1 0 0 0 ’;ml - ﬁngml
Z'UJ h 0 1 0 0 ‘];ul - ﬁ‘[’lgﬂzul
= "k
’;vl g1 0 0 1 0 ]gcvl - Aik ngvl
k k k 2 Tk
gzl 0 0 0 Qg gzl ﬂLgmyzl
—k
1 1 -1 0\ [Ty
—k
s |11 10 N
— = (3.91)
Sagi | -1 1 Lo || T
0 0 0 a’;g T’;Z
1 0 0 0 a’;m
. 40 Dl; 0 1 0 0 a§u1
% h | 0o 0 1 0 ||ah, |
0 0 0 —04';4 algzl
where the coeflicients are defined as
~ Dk
kE _ ok g
g = h¥;, + 327 (3.92a)
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k

k Qg1
af, = 2 3.92b
g2 hzﬁg ( )
3 k
ofy = ——a (3.92¢)
4AZFYE
9ak h
P (3.92d)

g = .
g4 40 (Azk)Qzﬁg
The full derivation of the equation is presented in Ref. [28].

3.3.7 Approximation of leakage moments

Eq. (3.91) includes leakage moments, which need to be approximated. A detailed
discussion and the derivations of the leakage moment approximations are presented
in Ref. [28].

The axial leakage defined in Eq. (3.40) is approximated by its average value
over the z-directed surfaces, defined in Eq. (3.41), as

k _ +k
Consequently from Eq. (3.84),
L];zzl = Ll;zul = L];zvl =0. (394)

The hex-plane leakage defined in Eq. (3.55) is approximated within the node
with a quadratic polynomial

2 _
ngjwy(z) ~ pg:py<z) = Sihvk(LQIy + p];xyleI(Z) + pl_;xy2f22<z)> (395)
defined between the bottom
AzF _
o= —TZ — A (3.96)
and the top
A k
= TZ + AR (3.97)

of the neighboring nodes. Here k= and k™ denote the nodes below and above the
node k, respectively.

The expansion coefficients in Eq. (3.95) are defined in a such way that the
average hex-plane leakages in nodes £~ and k™ are preserved as

k
k- 3h 1 %
Ly, = ?W/z dz pgwy(z) (3.98a)
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— it 3h 1 2
Ligey = 9 Vkt /Aiz dz p];xy(’z)' (3.98b)
This results in

2 VEk - 7R Fk
pzxyl (Z) 3h d ((QAZ + AZk)(AZk + AZk)(Lgxy o ngcy) (3993)

(A + AR A 4 20T, — IE)

2 Vk - ht Tk
k _ k k k

/)gny(Z) = %FAZ ((Az" + Az )(Lg:ﬂy - Lg$y> (3.99b)

ik—
—(AZF +Azk*)(Lm L,.,)-

Substituting the approximation of Eq. (3.95) into Eq. (3.89) leads to

LE o = 3;?/21:6112;)’;@, (3.100)
which can be reformulated as
Ly = W (T = D) + 5 (L, — Ty, (3.101)
where
ph = ?22 (202 BT A AT+ AR (3.102a)
ph = ?;d (A" 4+ AZF) (A 4+ AZF) (3.102b)
and
d=(AZ" + AZF)VAZ" + AZF + A7) (A + A, (3.103)

For calculating the hex-plane leakage moment of Eq. (3.101) for a node adjacent
to the bottom or top boundary of the reactor, the average hex-plane leakage and the
height of the adjacent node lying outside the reactor boundary are set to zero. This
is consistent with an approximation that the hex-plane leakage is zero at the reactor-
sided boundary of the adjacent node lying outside the reactor. For a zero-incoming
partial current boundary condition, this is an additional approximation. [28§]

3.3.8 Response matrix equation

A major part of the solution method is the response matrix equation, which relates
the outgoing face-averaged partial currents of a node to the incoming face-averaged
partial currents and source and leakage moments. [28]

In order to solve the outgoing partial currents, all the surface-averaged fluxes and
net currents of the approximations described in Secs. 3.3.4 and 3.3.5 are eliminated
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in favor of the face-averaged partial currents. The face-averaged net currents are
defined in Egs. (3.18) and (3.20) for x- and axial directions, respectively, and can
be eliminated with Eqs. (3.21) and (3.24). The required partial currents are defined
in Egs. (3.22), (3.23), (3.25) and (3.26). The surface averaged fluxes, defined in
Egs. (3.46) and (3.58), can be written in terms of the partial currents as

o, (iZ) = 2<J°M<ig> + J’“(iZ)) (3.104)
B (i%) = 2<JOUtk<iA2Z> + T (i%)) (3.105)

for the x- and axial directions, respectively. The relationships are straightforwardly
obtained from the definitions of the face-averaged fluxes and partial currents.

Using the z-direction polynomial approximation of Eq. (3.62) in Eq. (3.48)
and the axial direction polynomial approximation of Eq. (3.72) in Eq. (3.61), the
equations

youtik (I Dk 36 ), 7oy 1 e [P —ink( h
Jg:r <2> - h (gw1+13 ga:2+26 gzs+2 gz E 2 +ng 5 (3.106)

and

and

—out,k Azk Dk 1 —in,k Azk

are obtained. Finally, by eliminating the expansion coefficients using Eqs. (3.63)
and (3.73), the term EZ, presented in Eq. (3.49), flux moments in favor of the
source and leakage moments using Eqgs. (3.82) and (3.91) and the net currents in
favor of the partial currents, the equation

~k

Qg

k (3.108)
gxrl .

+(C1 Co C3 C4 C3 C2 Cp C5)~];n’k

(Cll as a3z a4 a3z Qg as a5)Jgut’k:(b1 bz)

is obtained for the z-direction and the equation

=k
Q,
2 Lk (3109)
gzl 3h " gzyzl L
+(C6 C¢ Cg Cg Cg Cg Cy Cg)Jlgn’

(GG ag Qg Qg Qg G ar &8)ng’k:(b3 b4)
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for the axial direction. In the equations, the outgoing and incoming partial current
vectors are defined as

ng’k _ (jout,k (%) jouth (%) joutJf (g) jout,k (_%) jout,k (_@)

gz qu gu g qgu 2
jout,k _h jout,k Azk jout,k _Azk T
gu 2 gz 2 gz 2
(3.110)
Jout,k
gry
Jout,k
gz

Together with the u- and v-direction versions of Eq. (3.108) and Eq. (3.109),
the resulting matrix equation can be written in the following form

k qout,k __ k k k k gin,k
Ang —Bg(Qg —Lg)+Cng , (3.111)
where the source vector is defined as

k —k T
Q=(Q, Qb Qh Qh Q) . (3.112)

and the leakage vector as

T
Li=( o0 0 0 0 L) (3.113)

g gzyzl

where the leakage moment approximations presented in Sec. 3.3.7 are taken into
account. The coefficients a;, b; and ¢; present in Egs. (3.108) and (3.109) form the
matrices A, B and C, respectively. Finally, the outgoing partial currents can be

solved from the response matrix equation obtained from Eq. (3.111) by inverting
AF as
g

Jouk — PR(QF — Lj) + RyJF, (3.114)
where the coeflicient matrices are defined as
Pk
E_ (Ak\—1lpk _ gy
Pg = (Ag) Bg = pi (3.115)
gz
and . .
R R
B gzy gTyz
R} = (A})~'Cl = . e (3.116)
Rgzwy Rgz

The full derivation of the response matrix equation including the expressions for
the coefficients a;, b; and ¢; is presented in Ref. [28]. The coefficients of the matrices
P’; and R’; depend only on nodewise group constants and the width and the height
of the respective node. Therefore, they can be calculated at the beginning of each
time step without needing to be updated during the solution process of one time
step.
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3.4 Computational solution procedure

Until now, the discussion has been concentrating on the theoretical derivation of the
solution method of the time-dependent neutron flux inside a single homogeneous
node. However, as the actual objective is to solve the fluxes computationally inside
a full reactor core, the solution algorithm is discussed next. As it is desirable that
the solution is obtained in as short time as possible, different acceleration methods
used to speed up the convergence of the solution are also presented here.

3.4.1 Transient calculation solution algorithm

The transient solution algorithm of a single time step, based on a fission source
iteration process, is presented in Fig. 3.2. At the beginning of the time step, control
rod positions are updated, the nodewise group constants are calculated, and the
coefficients of the response matrix equation (3.114) matrices are calculated. In
addition, the part of the source term depending on the flux at the beginning of
the time step, called the fixed source, and the part of the delayed neutron source
depending on the information at the beginning of the time step, called the fixed part
of delayed neutron source, are calculated. Afterwards, the temporal extrapolation
acceleration method, described in Sec. 3.4.3, is applied for the fluxes and partial
currents.

During the outer iterations, the asymptotic source extrapolation acceleration
method, described in Sec. 3.4.4, is applied first. Then, during the inner or energy
group iterations, for all the energy groups and nodes starting from the group
with the highest energy the group source term moment vectors for iteration i are
calculated using

M
n i k,n n+1,(4
ngc, +1,(8) ((1 _ 5k)X§,g + X(Iig Zl )\ianLm),(pk +1,0)

1
v;fAtn

g—1

kn+1,(i n
SoxE L orm+ (3.117)
g'=1

M
k k 1k —XE At k n kn
Xd,g Z ()\mcm € + )\mFO,m’Qb )7

m=1

which is obtained from Eq. (3.13) by applying the different moments weightings to
it. Here, the fission source moment vector is defined as

Phr® = 3 sk gk (3.118)
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Time step calculation start
2
Update control rod positions, calculate

group constants and matrix coefficients
¥
Calculate fixed sources and fixed

parts of delayed neutron sources

2
Apply temporal extrapolation
2
[teration ¢ = 1
2

Apply asymptotic source extrapolation
to fission sources and partial currents
v
Group g =1
v
Calculate group source term due to in-scatter,

fission, fixed source and precursor decay
¥
Solve response matrix equation for partial

currents and calculate flux moments

i=i+1]|[g=g+1

¥

More groups?

Calculate new fission sources

¥

No

Fission sources converged?

l Yes

Calculate precursor densities
Calculate invetse periods for
temporal extrapolation
Calculate rt:actor power
Time step cz:lculation end

Figure 3.2: Solution algorithm of one time step during a transient calculation.
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the flux moment vector as

k() n,(i k,n,(i ko, (i ko, (i ko, (i)\ L
¢g © - (¢];7 -(8) ¢gw1() ¢gu1() ¢gv1() ¢gz1()) s (3119)

and the precursor density moment vector as

mxl mul m m

CS:Ln _ (Cﬁi’n Ck,n Ok,n Ok,;}l Ck,ZLl)T ) (3120)

Using the group source terms, the outgoing partial currents are solved from
the response matrix equation (3.114) with the procedure described in Sec. 3.4.2,
and the flux moments are calculated using Eqs. (3.82) and (3.91). After the energy
group loop, new fission sources are calculated and their convergence is checked for
the pointwise maximum relative change between successive iterations

wk,n—i—l,(i) _ wk,n—i—l,(i—l)

max ¢k,n+1,(i)

k

< ey (3.121)

and for the average fission source change inside the reactor

1 | K <¢k,n+1,(i) _ wk,n-l—l,(i—l))Q
— . < €3, (3.122)
K\l kz::l wk,n—i-l,(z)

where 1 refers to the node average, or zeroth moment fission source, 9 and e3
are convergence criteria parameters set by the user and K is the number of nodes
inside the reactor. The convergence criterion parameter €; of the multiplication
factor is only defined for the steady state problems, and is described in Sec. 3.4.5.

If the criteria of Eqgs. (3.121) and (3.122) were not met, the solution was not
converged, and a new outer iteration is performed. If the criteria were met, the
solution was converged. Then new precursor densities at the end of the time step
are calculated with

Ot = Chre i 4 B 4 Fiaphn (3.123)

which is obtained by applying the different moments weightings to Eq. (3.5). Finally,
the inverse periods for the temporal extrapolation at the beginning of the next
time step are calculated and the reactor power is updated using the new fission
sources.

As the transient solution method for one time step requires the neutron flux
and precursor densities at the beginning of the time step, an initial state is needed.
At the very beginning of a transient simulation, such a state can be produced by
calculating a steady state k-eigenvalue calculation, described in Sec. 3.4.5. As the
eigenvalue calculation can be performed in a truly non-steady state by scaling the
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fission source with the effective multiplication factor, a neutron balance might not
exist at the beginning of a transient calculation when using Eqgs. (3.117) and (3.118)
to calculate the group source terms. Therefore, when a steady state calculation is
used to initialize a transient calculation, during the transient calculation all the
neutron production cross sections in Eqgs. (3.117), (3.118) and (3.123) are divided
by the effective multiplication factor obtained from the steady state calculation. In
addition, the precursor density moments at the beginning of the transient calcu-
lation are initialized by setting the time derivative of Eq. (3.2) to zero, resulting
in

%w’“o (3.124)
Ak '
written in terms of the different spatial moments. This procedure ensures the
solution to be in a steady state at the beginning of a transient calculation.

kO _
C" =

3.4.2 Response matrix solution method

To solve the response matrix equation (3.114) inside a node, it is divided into
hex-plane and axial direction equations as

Jouk —ph QE+RE, I L RE K (3.1252)
out,k __ pk k k k in,k k in,k
Joo " =P(Q —Lg) + Re.J " + Ry, ooy, (3.125h)

The equations are solved by sweeping the nodes in the hex-plane and axial direc-
tions in the following way. First, the different axial planes are swept in odd-even
ordering. For each hex-plane, the hex-plane partial currents are solved in a four-
color checkerboard ordering, shown in Fig. 3.3. First the radial partial currents
are solved twice using Eq. (3.125a) successively for each color in the odd-even and
four-color ordering. After the radial partial currents are solved, the axial partial
currents are calculated once using Eq. (3.125b) in the odd-even ordering for each
plane. This partial current iteration is performed twice. 28]

The node colors are determined in a such way that two neighboring nodes will
never have the same color and a possible third-core symmetry of a problem is
preserved. The reason for the odd-even and four-color ordering is that the most
recent outgoing partial currents of the neighboring nodes are used as the incoming
partial currents of the current node. This Gauss-Seidel-like procedure is used to
improve the convergence of the solution.

3.4.3 Temporal extrapolation

The flux at the end of the previous time step can be used as a starting guess
for the fission source iteration of the current time step. However, in many cases
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Figure 3.3: Four color checkerboard ordering of a hexagonal lattice.

this starting guess can be improved by assuming an exponential time behavior,
extrapolated from the previous two time steps, for the flux during the current time
step.

At the end of a time step n — 1, the instantaneous inverse flux periods are
calculated for each node and energy group as

1 ¢k,n
kn __
Wt = AL ln<¢§7gn_1>. (3.126)

At the beginning of the current time step n, after the calculation of the fixed part
of the fission and precursor source moments, the temporal extrapolation is applied
for each node, energy group and flux moment as

(l)]‘;,n-’-l,(o) — ¢l;vn exp(w§7nAtn) (3 127)

to obtain a first guess for the flux resulting from the fission source iteration of
the current time step. The extrapolation is also applied to the outgoing partial
currents of the node in a similar way. Ref. [29] mentions a similar methodology
to be used in DIF3D-K, and for example an equivalent method in the case of a
discrete ordinates transport code is more thoroughly described in Ref. [35].

3.4.4 Asymptotic extrapolation

The outer iterations are accelerated with an asymptotic source extrapolation
method [28]. It is based on the assumption that the fission source solution 9@ of
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iteration 7 converges to the exact solution 1(>) with an asymptotic behavior as
™) =4 L Ro'. (3.128)

Here the global solution vector 1) contains all the node average fission sources of the
problem, R is an unknown vector, and ¢ is the dominance ratio. The dominance
ratio of iteration ¢ can be estimated as

50) |l — ]|
|[(=1) — 4p (=[]’

where || - ||2 denotes the Ly vector norm. If an asymptotic behavior is observed, an
improved estimate for the fission source moment vector of each node is given by

(3.129)

and for the outgoing partial currents of each node by
Jgut,k,(i) _ Jgut,k,(i) + w(i)(Jgut,k,(i) . Jgut,k,(i))7 (3131)

where =
- _ 0"
w =L (3.132)

The asymptotic source extrapolation is only applied if an asymptotic behavior
is observed. The observation is determined by the satisfaction of the following
criterion

min(e®, D) < 0.1, (3.133)

w w

where , ‘
(Z) w(l) — w(lil)
g, = A
w(l)

w

(3.134)

In addition, at least five outer iterations have to be performed between two succes-
sive asymptotic source extrapolations.

3.4.5 Steady state calculation solution algorithm

The steady state k-eigenvalue problem solution algorithm, based on a fission source
iteration process, is presented in Fig. 3.4. The solution algorithm is based on the
work done in Refs. [5, 6] with some clarifications and corrections. It is similar to the
transient calculation algorithm presented in Fig. 3.2, but there are of course several
fundamental differences between the algorithms. In the steady state algorithm, the
problem is forced into a steady state by scaling the fission sources, and the group
source terms include only the prompt fission source and in-scattering. Therefore,
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Figure 3.4: Solution algorithm of a steady state calculation.
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all the time derivatives are set to zero along with 3,, and C,, in all the equations,
and the prompt fission source is divided by the effective multiplication factor kg,
which needs to be solved together with the fluxes. The temporal extrapolation
method is not used. Instead, the steady state method utilizes a coarse mesh rebal-
ancing acceleration method. Together with the coarse mesh equations, the effective
multiplication factor k.g is solved using Wielandt method.

An additional convergence criterion to those defined in Egs. (3.121) and (3.122)
is used for the eigenvalue, defined as

6§ — K V) < e, (3.135)

where €7 is a user given convergence criterion parameter. In addition, at the end of
a steady state calculation, the neutron flux is normalized to a user given power level
of the reactor. The steady state solution and coarse mesh rebalancing methods are
described in detail in Refs. [5, 28].

3.5 Model implementation into Apros

The Apros multigroup nodal diffusion model is mostly written in Fortran 2003
using an object-oriented programming like approach with derived types separating
the model to reactor, assembly and node objects. Some state and configuration
variables are stored in the Apros real time database to allow for example the saving
of the simulation state and the continuation of the simulation later. Consequently,
as Apros is mainly programmed in FORTRAN 77, an explicit interface between the
model and rest of Apros is needed. In addition to the interface, some parts of the
multigroup model program code related to geometry definitions and connections
between the neutronics and thermal hydraulics are also written in FORTRAN 77.
These parts are partly based on the program code of the other three-dimensional
neutronics models of Apros.

3.5.1 Code structure

As usual with Apros components, the model program code is divided into initializa-
tion, known as preparation in Apros, and simulation phases. A model preparation
subroutine is called during the preparation of the Apros model, if a multigroup
model neutronics component is present in the Apros database. During the model
preparation, the reactor geometry and connections between the neutronics and
thermal hydraulics solutions are created, and the model is initialized. In the ini-
tialization, for example the group constants are read from a separate file, all the
required memory allocations are performed and the variables present in the Apros
database are linked to the model.
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During the simulation phase of Apros, the thermal hydraulic solution of a
time step is calculated before calling the neutronics simulation subroutine. If a
multigroup model neutronics component is present in the Apros database, a model
simulation subroutine is called. In this simulation phase of the model, the thermal
hydraulic state of the reactor, including the coolant and fuel temperatures of the
nodes, is first updated to be used in the neutronics solution. Then a time step
is simulated either using the transient or the steady state algorithm presented in
Figs. 3.2 and 3.4, respectively, depending on the user input. After the model is
simulated for a time step, the nodewise powers of the reactor are updated to the
thermal hydraulics solver.

In addition to the division of the code to preparation and simulation phases,
the simulation part of the model program code is divided hierarchically into For-
tran modules. The reactor module handles the simulation algorithm, the assembly
module is mostly present to obtain a clear structure for the program code and most
of the actual calculations are performed in the node module. The code also has
other modules, such as the material module, which handles the interpolation of
group constants between different burnups and the burnup module, which handles
the storage of group constants.

3.5.2 Reactor model creation

The creation of the multigroup reactor model in Apros consists of adding suitable
modules to Apros database and defining appropriate parameters for them to obtain
the desired problem description. Usually, the thermal hydraulics solution is added
first and simulated until the solution is converged to an equilibrium state. In the
equilibrium, for example the temperatures of thermal hydraulic nodes are constants.
Afterwards, the neutronics solution is added.

The thermal hydraulics solution is created by adding REACTOR__CHANNEL
modules for each fuel and control assembly to simulate their flow channels. The
REACTOR__CHANNEL should then be connected to other suitable thermal hydraulics
modules to obtain proper boundary conditions or to simulate a larger part of a
nuclear power plant.

The fuel and control assemblies are created by adding NUCLEAR__ELEMENT__
3DM and NUCLEAR__ CONTROL__ ELEMENTM modules, respectively. The names of
the corresponding REACTOR__CHANNEL modules are given to the assembly mod-
ules to connect the thermal hydraulics and neutronics solutions. The heights of
the neutronics nodes are obtained from the thermal hydraulic node heights of a
REACTOR__CHANNEL module. The main parameters of the assembly modules are
the materials and burnups of the neutronics nodes and the location of the assembly
in the reactor coordinates. The difference between the fuel and control assembly
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modules is that the control assembly contains a movable absorber part, defined
with one material and burnup.

The actual neutronics solution capability is created by adding a NUCLEAR__ RE-
ACTOR__3M module, in which most of the calculation parameters are defined. The
group constants for the different materials are defined in a separate file. Currently
the boundary conditions for the reactor can be set by specifying the boundary con-
dition coefficient defined in Eq. (3.31) separately for the axial and radial directions.
Same coefficients are used for each energy group.

3.5.3 Group constant and control assembly descriptions

The group constants used in the calculations are read from a group constant file
where they are stored materialwise. A processing script can be used to produce
group constant files from Serpent group constant calculation outputs. The current
group constant model of the model is parametrized using independent quadratic
fits for changes caused by coolant and fuel temperatures around their reference
values. The fit can be written for a group constant > as

Y= Zref + Cl,cool(Tre(f)l - Tcool) + CZ,cool(Tre(f)l - 7—10001)2

CO CO

ref ref 2 (3136)
+ Cl,fuel(Tfuel - Tfuel) + C2 fuel (Tfuel - ﬂuel) )

where ¢; and ¢, are the linear and quadratic fit coefficients, respectively. In addition
to the temperature fits, the group constants can be defined at multiple burnup
values for each material. Linear interpolation is used between the burnup values
and the group constants are treated as constants without extrapolation outside
the minimum and maximum burnup values.

The following group constants are used for each energy group g =1...G:

Absorption cross section ¥, ,
Diffusion coefficient D,

Energy release cross section x4
Fission yield x4,

Neutron production cross section v,
Neutron velocity vy,

the following for each energy group ¢’ =1...Gandg=1...G:
e Scattering cross section X y_4
and the following for each precursor group m =1... M:

e Effective delayed neutron fraction (3,
e Precursor decay constant \,,.
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A single effective fission yield is currently used instead of the separate prompt and
delayed neutron fission yields. The group removal cross section is calculated with

G
Srg = Tagt+ 3. Segog (3.137)

g'=g+1

The scattering cross section entry contains all the G? combinations of groups ¢’
and g. The absorption and scattering cross sections can be replaced with the
reduced absorption and scattering production cross sections to take into account
the neutron multiplication reactions, such as (n,2n) reactions [26]. The energy
release cross section gives the power density inside a node when multiplied by
the average neutron flux inside the node. Depending on the user input, the power
can include only the fission power or the sum of the fission power and the power
produced in capture reactions taken into account by multiplying the fission power
with a correction factor. The unit of the energy release cross section is J/cm. All
length and time units of the group constants are in cm and s, respectively.

The control assembly absorbers parts, referred to as control rods from now on,
are modeled as cluster control rods consisting of a single material. If a control rod
is fully inside a node, the node material is replaced by the control rod material. If
the control rod is only partially inside a node, the group constants of the node are
volume weighted as

Y= (1— f)EmecR 4 feeR (3.138)

where f is the fraction of the node containing the control rod, and noCR and CR
refer to the material of the control assembly node and the material of the control
rod, respectively. If the control assembly node or control rod contain material with
nonzero fission production cross section, the fission yields, effective delayed neutron
fractions and precursor decay constants are weighted with the volume weighted
fission production cross sections of the control assembly node and control rod
materials.
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Chapter 4

Model validation cases

In order to validate the implementation and accuracy of a simulation computer
code, the simulation results of the code have to be compared either with measured
values of real world benchmark cases or with simulation results of other computer
codes. The latter needs to be especially considered if suitable real world benchmarks
are not, available.

In this chapter, first the reactor core models used in the validation of the
Apros multigroup nodal diffusion model are presented. Second, the group constant
generation process for the different nodal diffusion codes used in the validation is
described. Finally, the different steady state and transient simulation cases used
in the validation are presented.

4.1 Reactor core models

The reactor core models used for the Apros steady state model validation were
chosen from the OECD/NEA Sodium-cooled fast reactor (SFR) Benchmark Task
Force benchmark definitions [20]. The benchmark is one step of a stepwise analysis
of feedback and transient behavior of the generation IV sodium-cooled fast reactors.
The chosen core models are the large size oxide fuel core, referred to as large oxide
core from now on, and the medium size metallic fuel core, referred to as medium
metallic core from now on.

By varying different parameters between the simulations, different sources of
errors and differences can be found, especially if the parameters are varied indepen-
dently. Therefore, the two different sized cores can be used to study the accuracy
of the model with different sized cores, and the different outer boundary geometries
of the two cores can be used in the validation of the model implementation. The
cores are also simulated with varying control rod positions to determine their effect
on the simulation accuracy.
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4.1. REACTOR CORE MODELS

Figure 4.1: Radial layout of the large oxide sodium fast reactor core. Blue and
green represent the inner and outer core zone fuel assemblies, respectively, orange
and purple represent the primary and secondary control assemblies, respectively,
and red represents the radial reflector and the middle assembly.

The benchmark specifications include accurate descriptions of the core geome-
tries and nuclide compositions of the different materials for steady state neutronics
studies. For example, the outer core zone fuel has a higher plutonium content than
the inner core zone fuel in both cores. No thermal hydraulic data is included, and
all the temperatures of the nuclear fuel, and coolant and structure materials are
assumed to be constants, corresponding to full power values. The specifications
of transient analysis, being one step of the benchmark, were not yet available.
As no other liquid metal cooled fast reactor transient benchmark specifications
were available, the same core models are also used in the Apros transient model
validation.

The radial layout of the large oxide core is presented in Fig. 4.1. It consists of
453 fuel, 330 radial reflector, 33 control and 1 middle assemblies. The inner and
outer core zones consist of 225 and 228 fuel assemblies, respectively. The control
assemblies are divided into two independent groups. The primary control system
consists of 6 and 18 control assemblies in the inner core zone and at the interface
between the inner and outer core zones, repectively. The secondary control system
consists of 9 control assemblies in the inner core zone. The core has a 120° periodic
symmetry.
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Figure 4.2: Radial layout of the medium metallic fuel sodium fast reactor core.
Blue and green represent the inner and outer core zone fuel assemblies, respec-
tively, orange and purple represent the primary and secondary control assemblies,
respectively, red represents the radial reflector, and brown represents the radial
shield.

The radial layout of the medium metallic core is presented in Fig. 4.2. It consists
of 180 fuel, 114 radial reflector, 66 radial shield and 19 control assemblies. The
inner and outer core zones consist of 78 and 102 fuel assemblies, respectively. The
control assemblies are divided into two independent groups. The primary control
system consists of 3 and 12 control assemblies in the inner and outer core zones,
respectively, and the secondary control system consists of 4 control assemblies in
the inner core zone. The core has a 120° periodic symmetry.

The fuel assemblies of the large oxide core consist from bottom to top of the
lower gas plenum, lower axial reflector, active core consisting of five different axial
fuel regions, upper gas plenum and upper axial reflector. The control rod materials
of the primary and secondary control assemblies consist of natural and °B-enriched
B4C, respectively. The fuel assemblies of the medium metallic core consist from
bottom to top of the lower structure, lower reflector, active core consisting of five
different axial fuel regions, replace sodium, gas plenum and upper structure. The
control rod materials of the primary and secondary control assemblies consist of
10B-enriched B,4C. In both cores, the parts of the control assemblies without control
rods are filled with sodium.
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Table 4.1: Nominal operating conditions of the large oxide and medium metallic
sodium fast reactor cores. [20]

Property Large oxide Medium metallic
Reactor power (MW) 3600.0 1000.0
Average control rod, coolant 470.0 432.5
and structure temperature (°C)

Average fuel temperature (°C) 1227.0 534.0

Table 4.2: Nominal operating dimensions of the large oxide and medium metallic
sodium fast reactor core assemblies. [20]

Property Large oxide (cm) Medium metallic (cm)
Length 311.1624 480.2000
Active core length 100.5660 85.8200
Control rod length 100.5660 86.7500
Pitch 21.2205 16.2471
Outer duct flat-to-flat distance 20.7468 15.8123

The nominal operating conditions of the cores are presented in Tab. 4.1 and
the main nominal operating dimensions of their assemblies in Tab. 4.2. According
to the benchmark specifications, both cores are modeled using vacuum boundary
conditions.

For the nodal diffusion calculations, the different axial regions of the assemblies
are divided into nodes as follows. In the case of the large oxide core, the lower gas
plenum, lower axial reflector, each different axial fuel region, upper gas plenum and
upper axial reflector are divided into 4, 2, 2, 2 and 4 axial nodes. In the case of the
medium metallic core, the lower structure, lower reflector, each different axial fuel
region, replace sodium, gas plenum and upper structure are divided into 2, 6, 2, 2,
4 and 6 axial nodes. The nodes inside each axial region are of equal height with
each other.

4.2 Group constants

The group constants utilized in the different nodal diffusion codes are generated
with Serpent 2 using JEFF-3.1.1 evaluated data library [8]. The basis of the used
energy group structure is the ECCO-33 energy group structure designed for fast
reactor calculations. However, as the statistical uncertainties of the lowest energy
groups tend to be high, the energy groups 25-33 are merged into group 24. The
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Table 4.3: Applied 24-group structure obtained from the ECCO-33 group structure
by merging the lowest energy groups into one group. The last energy without a
group number is the lower energy limit of group 24.

Group  Upper energy Group  Upper energy

number limit (MeV) number limit (MeV)
1 1.96403 x 10! 14 2.47875 x 1072
2 1.00000 x 101 15 1.50344 x 1072
3 6.06531 16 9.11882 x 1073
4 3.67879 17 5.53084 x 1073
5 2.23130 18 3.35463 x 1073
6 1.35335 19 2.03468 x 1073
7 8.20850 x 107! 20 1.23410 x 1073
8 4.97871 x 107! 21 7.48518 x 10~
9 3.01974 x 107* 22 4.53999 x 10~*
10 1.83156 x 107! 23 3.04325 x 1074
11 1.11090 x 1071 24 1.48625 x 10~*
12 6.73795 x 1072 1.00001 x 10~

13 4.08677 x 1072

high uncertainties are due to the small probability of a fission neutron born at
a high energy to slow down to thermal energies inside a fast reactor. [36, 37]
The resulting energy group structure is presented in Tab. 4.3. In addition to the
few-group structure, Serpent uses a finer microgroup structure to calculate the
homogenized diffusion constants. In Ref. [38] it was shown that the accuracy of
a one-group diffusion coefficient is dependent on the number of microgroups used
during the calculations. Therefore, the ECCO-1968 group structure is used as the
microgroup structure during the group constant generation calculations.

The group constants for the multiplying fuel regions are generated in an infinite
two-dimensional lattice consisting of the single fuel assembly with periodic boundary
conditions. For non-multiplying regions, such as the gas plenums and control rods,
the group constants are generated in an infinite two-dimensional lattice consisting
of the non-multiplying region surrounded by six half-assemblies of the closest fuel
region and with periodic boundary conditions. The homogenization is performed
only over the corresponding non-multiplying region. The closest fuel region is
determined by the radial and axial location of the non-multiplying region inside
the core. As a control rod in the Apros model consists of only one material type,
the group constants of all control rods are generated by surrounding them with
only the axially middlemost fuel regions.
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L GaWae ¢

Figure 4.3: The two-dimensional geometry for the group constant generation of the
outermost fuel assemblies of the large oxide core taking into account the softening
of the neutron energy spectrum in the radial reflector. Brown represents the outer
core zone fuel assemblies for which the group constants are generated for, green
represents the other outer core zone fuel assemblies and red represents the radial
reflector. The heterogeneous fine structures of the assemblies are not shown here.

For the large oxide core, the effect of neutron energy spectrum softening in the
radial reflector is also taken into account using a two-dimensional radial reflector
model to generate the group constants for the fuel regions adjacent to the radial
reflector. This is performed using the geometry presented in Fig. 4.3, as described in
Ref. [39]. The homogenization is performed only over the outermost fuel assemblies.
Reflective boundary conditions are used on the top and bottom sides and vacuum
boundary conditions are used on the left and right sides of the geometry presented
in the figure.

4.3 Steady state model implementation

The implementation of the Apros steady state model is validated against the nodal
diffusion solver of DIF3D code, on which the Apros model is based. The simulated
cases are the large oxide and medium metallic cores with all control rods withdrawn
to the top of the active core, as defined in the benchmark specifications.

As the Apros model and DIF3D solver are based on the same solution method,
an extensive proof of the correctness of the implementation can be obtained by com-
paring the average fluxes of each energy group in all the nodes of the modeled cores
instead of comparing only the node- or assemblywise power distributions. Therefore,
the compared simulation results of the codes are the effective multiplication factors
and node- and groupwise average fluxes.

4.4 Steady state model accuracy

Serpent is a continuous-energy Monte Carlo code modeling the neutron interactions
without major approximations. It is also used to generate the group constants used
in the Apros simulations. Therefore, the results of Serpent full core calculations
can be treated as accurate reference solutions for the Apros model. The validation
of the Apros steady state model accuracy is performed by comparing the effective
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multiplication factors, assembly power distributions obtained by integrating the
nodewise powers axially and axial power distributions obtained by integrating the
nodewise powers radially. As the geometries used in Serpent do not consist of
homogeneous nodes in the way the Apros model geometries do, the equivalent node
powers are obtained by tallying the respective powers in the three-dimensional
geometry regions corresponding to the Apros model nodes.

For both the large oxide and medium metallic cores the comparisons are per-
formed with control rods fully withdrawn and fully inserted as specified in the
benchmark specifications. However, typical transient simulation cases begin at crit-
ical states. Therefore, an additional comparison is made with the large oxide core.
In this case, the lower ends of the control rods, referred to as control rod positions
from now on, are at the interface between the axial fuel levels bringing the core
closest to criticality with Apros. The control rods are not at the exact critical
position of either code due to additional error caused by the rod cusping effect!.
Additionally, the effect of asymmetrically positioned control rods are studied briefly
with the large oxide core by simulating cases where all but one control rod are fully
withdrawn and the one control rod is fully inserted, and vice versa.

Furthermore, the effect of the number of energy groups is shortly studied with
the large oxide core by combining adjacent energy groups of the 24-group structure
to define 12- and 6-group structures. The comparison is only approximate, as
the energy group division is not based on the importance of the different energy
intervals in sodium fast reactors. The motivation for studying the required number
of energy groups needed to obtain suitable simulation accuracy is the dependence
of the computational costs of the simulations on the number of used energy groups.

4.5 Transient model

The validation of the Apros transient model is performed against the DYN3D
reactor dynamics code using the HEXNEMI1 method which is to some extent
similar to the method used in the Apros model. A comparison against the DIF3D-K
kinetics code, on which the Apros model is based on, was not performed, as the code
was not available. The validation of the implementation and the similarity of the
simulation results is performed by comparing the total core power time evolution
and the power distributions at the beginning and end of the simulations. As the
thermal hydraulics is not simulated, the validation is purely a neutron kinetics
validation without any feedback effects present.

LControl rod cusping is the overestimation of the control rod worth caused by the volume
weighting instead of the correct flux weighting of the group constants inside a node with a partially
inserted control rod.
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Figure 4.4: Control rod positions defined from the bottom of the core during the
different transient simulation cases. The interface between the fifth and sixth axial
fuel levels of the active core is at the height of 170.3703 cm from the bottom of the
core.

Three transient comparisons are made with the large oxide core. Unlike the core
description presented in Sec. 4.1, the control rods are now modeled as half-infinite,
beginning from the bottom of the control rod and extending to the top of the
reactor core. The half-infinite rods are used instead of finite length rods due to the
control rod modeling limitations of DYN3D. Each case is initialized with a steady
state calculation where the control rods are at the interface between the fifth and
sixth axial fuel levels of the active core. Even though both codes use similar group
constant volume weighting for the nodes with partially inserted control rods, the
control rod initial positions were not the exact critical positions of either code.
This was chosen due to the fact that the critical positions would not be the same
for both codes, and additionally to minimize the possible differences at the initial
states caused by the different axial flux descriptions of the codes.

The first simulation case is a slow insertion of 0.1 mm/s of all control rods. The
second case is a fast insertion of 1mm/s of all control rods. The final case is a
very fast step 1 mm withdrawal of all control rods during 0.05s. The control rod
movements of all three cases are shown in Fig. 4.4. The end of time step control
rod positions are used during the simulations.
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Chapter 5

Results

In this chapter, the results of the validation calculations described in the previous
chapter are presented. First, the steady state simulation results of the Apros steady
state model and DIF3D are compared in order to determine whether the model
is correctly implemented. Second, the simulation results of the Apros steady state
model and Serpent are compared to define the accuracy of the model. Finally,
the transient simulation results between the Apros transient model and DYN3D
are compared to determine the correctness of the model implementation and the
similarity of the simulation results compared with DYN3D.

5.1 Steady state model implementation

The large oxide and medium metallic cores were simulated with Apros and DIF3D
with all control rods withdrawn from the cores. The group constants for both cores
were calculated with Serpent using 100 inactive and 1000 active cycles with 10°
neutrons per cycle. For the large oxide core, the group constants taking into account
the neutron energy spectrum softening in the radial reflector were used.

The group constant input of DIF3D is different from that of Apros, as for
example the average number of neutrons released per fission v, fission cross section
Yty and transport cross section X, 4 are used instead of the fission production
cross section v3 4 and diffusion coefficient D, used by Apros. Therefore, a special
version of the Apros steady state model with group constant definitions equivalent
to DIF3D was used to avoid differences caused by a different input accuracy of the
group constants. Very tight convergence criteria €; = 1072 for the multiplication
factor and g5 = 10710 for the pointwise fission source were used to determine the
true differences between the codes. The default convergence criterion 3 = 107° for
the average fission source was used.
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Table 5.1: Effective multiplication factors of the large oxide and medium metallic
cores calculated with Apros and DIF3D with all control rods withdrawn.

Core Apros DIF3D Difference (107® %)
Large oxide 1.0299370373  1.0299370412 —37.72
Medium metallic 1.0343758429 1.0343758431 —1.48

The resulting multiplication factors calculated with both codes are presented
in Tab. 5.1. Histograms of the relative differences of the node- and groupwise
average fluxes between the codes are shown in Figs. 5.1 and 5.2 for the large oxide
and medium metallic cores, respectively. As described in Sec. 4.1, the large oxide
and medium metallic core models consist of 17974 and 11370 nodes, respectively.
Therefore, as 24 energy groups are used, the total numbers of the compared fluxes
are 431376 and 272880. The average flux output of DIF3D uses only six significant
figures. Therefore, some very small errors are present in the differences.

In the case of the large oxide core, 99.04 % of the flux differences are within
0.00025 % between the codes and 99.99 % of the differences are within 0.00125 %
between the codes. All the fluxes with the absolute values of differences higher
than 0.005% are negative. The absolute values of the negative fluxes are small
or very small compared with the mean fluxes at their respective axial levels and
energy groups. The negative fluxes are usually present in groups with high energies
and never in nodes with nonzero fission sources. As the negative average fluxes
are present with both codes, they are not an implementation error in the Apros
model. Although the physical neutron flux can never be negative, non-negativity is
not computationally enforced as there is no particular reason for it. The negative
fluxes are probably caused by the nodal formulation of the diffusion theory, and
they do not cause any computational problems.

In the case of the medium metallic core, 99.21 % of the flux differences are
within 0.00025 % between the codes and 99.91 % are within 0.00125 % between the
codes. Almost all the fluxes with the absolute values of differences higher than
0.01 % are negative, and all the absolute values of the fluxes are small or very small
compared with the mean fluxes at their respective axial levels and energy groups.
All the fluxes with the absolute values of differences between 0.005 % and 0.01 %
are small compared with the mean flux at their respective axial level and energy
group. In addition, the respective mean flux is very small.

To conclude, the multiplication factor differences of both simulated cases are
extremely small between the codes. In addition, almost all the flux differences
are within 0.00125 % between the codes, and all the differences are within 0.07 %
between the codes. This can be considered an excellent agreement and for exam-
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Figure 5.1: The relative frequencies of the differences between Apros and DIF3D
average fluxes in each energy group and node of the large oxide core. The histogram
bin width is 0.0005 percentage points.
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Figure 5.2: The relative frequencies of the differences between Apros and DIF3D
average fluxes in each energy group and node of the medium metallic core. The
histogram bin width is 0.0005 percentage points.
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ple the differences in the program structures of the codes can be accounted for
the differences. Therefore, the steady state model of the Apros multigroup nodal
diffusion model has been implemented correctly and it is reasonable to proceed to
validating its accuracy.

5.2 Steady state model accuracy

The group constants for both the large oxide and medium metallic cores were gen-
erated with Serpent using 100 inactive and 1000 active cycles with 10° neutrons per
cycle. The Serpent full core calculations were mostly performed with 500 inactive
and 20000 active cycles with 10° neutrons per cycle. For the 120° periodic symmet-
ric cases of the large oxide core the number of inactive cycles was increased to 1000
in order to improve the periodic symmetries of the fission source distributions.

Before comparing the Apros and Serpent results, the Serpent radial power
distributions were averaged over the 120° periodic symmetry. This was done to
reduce the effect of the statistical variation of the fission source on the comparisons
between the codes. Although this procedure reduces the maximum differences
between the codes, it is justifiable, as the fission source distribution should be
symmetric in Serpent and the asymmetry is only caused by statistical variation.
The effect of the symmetrization is not huge, as the number of simulated neutron
histories is relatively high. Another way to reduce the asymmetry of the fission
source distribution would be to calculate multiple Serpent full core calculations and
average the distribution over the calculations. This method could also be utilized to
improve the fission source distributions of the asymmetric cases. However, with the
used neutron population sizes the full core calculations already took a considerable
amount of time and therefore this procedure was not performed.

All Apros calculations were performed with the default convergence criteria
g1 = 1077 and g9 = 3 = 107°. As the geometry in Serpent does not consist of
homogeneous nodes, the nodewise power distributions were obtained by tallying the
powers in three-dimensional geometry regions corresponding to the Apros nodes.

In this section, uncertainty refers to one standard deviation relative statistical
error of Serpent, min refers to the negative difference with the highest absolute
value, only assemblies with nonzero powers are included in the calculation of the
power difference means, and the means of the differences are calculated from the
absolute values of the differences.

5.2.1 Medium metallic core

The medium metallic core was simulated with all control rods withdrawn from the
core, denoted as case 1, and all control rods inserted in the core, denoted as case 2.
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5.2. STEADY STATE MODEL ACCURACY

Table 5.2: (a) Effective multiplication factors and (b) assembly and axial power
differences of the medium metallic core calculated with Apros and Serpent. All
control rods are either withdrawn from the core (case 1) or inserted in the core
(case 2).

(a)

Case Apros  Serpent Uncertainty (107* %) Difference (%)

1 1.03439  1.04520 5.2 —1.03
2 0.85670  0.88001 5.9 —2.65
(b)
Assembly power difference Axial power difference
Case Max (%) Min (%) Mean (%) Max (%) Min (%) Mean (%)
1 2.40 —2.10 1.60 0.53 —2.93 0.66
2 2.66 —2.99 1.53 0.68 —2.02 0.66

The resulting multiplication factors and assembly and axial power distribution
differences are shown in Tab. 5.2. The assembly power distributions calculated
with Serpent and their differences between Apros and Serpent are presented in
Figs. 5.3 and 5.4 for the cases 1 and 2, respectively. The axial power distributions
calculated with Apros and Serpent and their differences are presented in Fig. 5.5
for both cases.

Compared with the differences of the multiplication factors, the Serpent uncer-
tainties are insignificant. The multiplication factors are underestimated in both
cases and the differences are relatively high, especially in the case 2.

All the Serpent relative statistical errors of the node- and assemblywise powers
are smaller than 3.1 x 1072 % and 1.2 x 1072 %, respectively, in the case 1, and
smaller than 3.3 x 1072 % and 1.4 x 1072 %, respectively, in the case 2. Therefore,
they are insignificant compared with the differences between the codes.

In both cases, the assembly powers are overestimated in the inner core zone
and underestimated in the outer core zone. The highest assembly powers are un-
derestimated, as they are located in the outer core zone. The highest assembly
power differences are at the outermost fuel assemblies which have the lowest powers.
When comparing the assembly power distributions between the cases, the insertion
of the control rods somewhat increases the magnitude of the highest differences,
whereas the mean difference slightly decreases. In addition, in the case 1, the as-
sembly power differences are mostly dependent on the assembly distance from the
center of the core, whereas in the case 2 the insertion of the control rods clearly
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Figure 5.5: Axial powers of the medium metallic core calculated with Apros and
Serpent with all control rods (a) withdrawn from the core (case 1) and (b) inserted
in the core (case 2).
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distorts this pattern. In this case, the assembly powers in the assemblies next to
the control rods tend to be underestimated compared with the other assemblies.

In the case 1, the axial powers are slightly overestimated in the lower part and
underestimated in the upper part of the core. In the case 2, the axial powers are
underestimated at the bottom and top of the core and slightly overestimated in
the middle of the core. In both cases, the highest axial power is overestimated. The
underestimation of the axial power at the top of the core in the case 1 might be
caused by the presence of the control rods above the active core. In the case 2, the
axial power difference pattern is more symmetric, but the uppermost axial power
is underestimated more than the lowest. This might be caused by the control rod
cusping effect, as the control rods partially extend to the nodes above the active
core. This is due to the control rods being slightly longer than the active core. When
comparing the axial power distributions, the insertion of control rods decreases the
magnitude of the highest difference, whereas the mean difference stays the same.

The signs of the assembly power differences are related to the division of the
core into the inner and outer zones with different fuel compositions. In addition, the
control rods also alter the assembly power difference distribution locally. Therefore,
the differences could probably be decreased by utilizing the radial discontinuity
factors of the generalized equivalency theory [40]. The utilization of the discon-
tinuity factors allows the surface averaged fluxes to be discontinuous across the
nodal surface and can reduce the errors in assembly powers notably. In addition,
as especially in the case 1 the outermost assemblies have high power differences,
the differences might be decreased by generating the group constants for these
assemblies taking into account the neutron energy spectrum softening in the radial
reflector. However, this is studied only in the case of the large oxide core. The axial
power differences might also be reduced by utilizing axial discontinuity factors as
the core consists of axially nonuniform nodes [41]. However, this subject has not
been thoroughly studied.

5.2.2 Large oxide core
5.2.2.1 Different group constant sets

The large oxide core was first simulated with all control rods withdrawn from the
core, denoted as cases 1 and 2, and all control rods inserted in the core, denoted as
cases 3 and 4. Cases 1 and 3 were simulated with Apros using the group constants
without taking into account the neutron energy spectrum softening in the radial
reflector, whereas cases 2 and 4 were simulated using the group constants where
the spectrum softening is taken into account. The resulting multiplication factors
and assembly and axial power distribution differences are shown in Tab. 5.3.
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Table 5.3: (a) Effective multiplication factors and (b) assembly and axial power
differences of the large oxide core calculated with Apros and Serpent. The control
rods are either withdrawn from the core (cases 1 and 2) or inserted in the core
(cases 3 and 4).

(a)

Case Apros  Serpent Uncertainty (107* %) Difference (%)

1 1.02977 1.03404 4.2 —0.41
2 1.02994 1.03404 4.2 —0.40
3 0.97509 0.98161 4.6 —0.66
4 0.97551 0.98161 4.6 —0.62

(b)

Assembly power difference Axial power difference
Case Max (%) Min (%) Mean (%) Max (%) Min (%) Mean (%)
1 1.58 —-3.21 1.09 0.71 —2.64 0.81
2 1.14 —1.79 0.63 0.70 —2.57 0.79
3 2.06 —2.77 0.98 1.04 —3.25 1.11
4 2.29 —3.88 1.31 1.01 —3.16 1.08

Compared with the differences of the multiplication factors, the Serpent uncer-
tainties are insignificant. All the multiplication factors are underestimated. The
differences are somewhat high although they are smaller than with the medium
metallic core. The differences are smaller in the cases 2 and 4 when compared with
the cases 1 and 3.

All the Serpent relative statistical errors of the node- and assemblywise powers
are smaller than 6.6 x 1072 % and 2.9 x 1072 %, respectively, in the cases 1 and 2,
and smaller than 6.2 x 1072 % and 2.9 x 1072 %, respectively, in the cases 3 and 4.
Therefore, they are insignificant compared with the differences between the codes.

When the control rods are withdrawn, the assembly power differences are smaller
in the case 2 than in the case 1. On the other hand, when the control rods are
inserted, the assembly power differences are higher in the case 4 than in the case 3.
However, the differences between the cases are smaller when the control rods are
inserted than when they are withdrawn. In addition, as the multiplication factor
and axial power differences are smaller when utilizing the group constants taking
into account the neutron spectrum softening in the radial reflector, this group
constant set is utilized for the rest of the calculations.
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The assembly power distributions calculated with Serpent and their differences
between Apros and Serpent are presented in Figs. 5.6 and 5.7 for the cases 2 and
4, respectively. The axial power distributions calculated with Apros and Serpent
and their differences are presented in Fig. 5.8 for both cases.

In the case 2, the assembly powers are overestimated in the inner core, and
mostly underestimated in the outer core. The highest differences are at the outer-
most fuel assemblies which have the lowest powers. The highest assembly powers
are slightly over- or underestimated. In the case 4, the assembly powers are un-
derestimated in the inner core and over- or underestimated in the outer core. The
highest differences are in the middle of the core in low power assemblies next to
control rods. The highest assembly powers are overestimated. When comparing
the cases, the insertion of the control rods increases the magnitude of the assembly
power differences.

In both cases, the axial powers are underestimated in the bottom and top of
the core and overestimated in the middle of the core. The insertion of the control
rods increases the magnitude of the differences. In both cases, the highest axial
powers are overestimated.

Especially the case 2 shows the same behavior of the signs of the assembly power
differences to be dependent on the division of the core to inner and outer zones as
was with the medium metallic core. In the case 4, the highest differences are again
in the assemblies next to the control rods. Therefore, the same observations about
the radial discontinuity factors hold here.

The axial power differences increased when the control rods were inserted,
even though the core became axially more symmetric. Therefore, the accuracy
might be improved by improving the axial control rod modeling with for example
specifying the control rod group constants axially. Additionally, the utilization of
axial discontinuity factors might improve the simulation accuracy.

5.2.2.2 Additional cases

The large oxide core was also simulated with all control rods at the interface of
axial levels which brings the reactor closest to criticality with Apros. This interface
was found to be between the fifth and sixth axial fuel levels of the active core. This
simulation case is denoted as case 5. In addition, the core was simulated with all
but one control rod withdrawn from the core and the one rod inserted in the core,
denoted as case 6, and with all but one control rod inserted in the core and the
one rod withdrawn from the core, denoted as case 7. The resulting multiplication
factors and assembly and axial power distribution differences are shown in Tab. 5.4.
The assembly power distributions calculated with Serpent and their differences
between Apros and Serpent are presented in Figs. 5.9, 5.10 and 5.11 for the cases
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Figure 5.8: Axial powers of the large oxide core calculated with Apros and Serpent
with all control rods (a) withdrawn from the core (case 2) and (b) inserted in the
core (case 4).
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Table 5.4: (a) Effective multiplication factors and (a) assembly and axial power
differences of the large oxide core calculated with Apros and Serpent. The control
rods are either at the interface of the fifth and sixth axial fuel levels of the active
core (case 5), all but one control rod withdrawn from the core and the one rod
inserted in the core (case 6) or all but one control rod inserted in the core and the
one rod withdrawn from the core (case 7).

(a)

Case Apros  Serpent Uncertainty (107 %) Difference (%)

5 0.99993 1.00508 4.4 —0.51

6 1.02865 1.03276 4.2 —0.40

7 0.97619 0.98229 4.6 —0.62

(b)

Assembly power difference Axial power difference
Case Max (%) Min (%) Mean (%) Max (%) Min (%) Mean (%)
5 1.08 —1.23 0.45 0.96 —4.34 1.11
6 1.30 —2.29 0.63 0.70 —2.59 0.80
7 2.60 —3.86 1.16 1.00 —3.13 1.07

5, 6 and 7, respectively. The axial power distributions calculated with Apros and
Serpent and their differences are presented in Fig. 5.12 for the case 5.

Compared with the differences of the multiplication factors, the Serpent uncer-
tainties are insignificant. All the multiplication factors are underestimated. The
difference of the case 5 is in the middle of the differences of the cases 2 and 4, and
the differences of the cases 6 and 7 are the same as those of the cases 2 and 4.

All the Serpent relative statistical errors of the node- and assemblywise pow-
ers are smaller than 6.2 x 1072% and 2.8 x 1072 %, respectively, in the case 5,
6.9 x 1072% and 3 x 1072 %, respectively, in the case 6, and 6.1 x 1072% and
3 x 1072 %, respectively, in the case 7. Therefore, they are insignificant compared
with the differences between the codes.

In the case 5, the highest assembly power differences are at the outermost fuel
assemblies which have the lowest powers. The assemblies with the highest powers
have also relatively high differences. The highest assembly powers are overestimated.
Compared with the cases 2 and 4, the assembly power differences are smaller.

In the case 6, the assembly power differences are otherwise similar to those of the
case 2, but the magnitude of the maximum differences are higher and the inserted
control rod makes the differences on its side of the inner core negative instead of
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trol rod withdrawn from the core and the one rod inserted in the core (case 6). The
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Figure 5.12: Axial powers of the large oxide core calculated with Apros and Serpent
with all control rods at the interface of the fifth and sixth axial fuel levels of the
active core (case b).

positive. The powers of the outermost fuel assemblies are also underestimated more
on the side of the core where the control rod is inserted. In addition, the assemblies
next to the inserted control rod have somewhat high differences. These assemblies
have relatively low powers.

In the case 7, the withdrawn control rod slightly decreases maximum and mean
assembly power differences when compared with the case 4. The assembly powers on
the side of the core with the withdrawn control rod are increased and the assembly
power differences next to the control rod are decreased. However, the differences
are increased at the outer boundary of its side of the core.

In the case 5, the axial powers are underestimated in the bottom and top of
the core and overestimated in the middle of the core. The highest axial power is
overestimated. The axial power differences are much higher in the top of the core
where the axial powers are the lowest than in the bottom of the core. Compared
with the cases 2 and 4, the maximum difference is higher. The mean difference is
almost equal to that of the case 4. The axial power distributions of the cases 6 and
7 are almost identical to those of the cases 2 and 4 and are therefore not presented
here.

In conclusion, the assembly power differences were smaller with the control
rods near critical positions than with the control rods fully withdrawn or inserted.
In contrast, the axial power differences were higher. The multiplication factor
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difference was between those of the cases 2 and 4. A single control rod in a different
position than the other control rods does not really alter the maximum and mean
assembly power differences, the axial power differences or the multiplication factor
differences. However, the assembly power difference distribution changes locally
near the control rod and is also altered on the full core level.

5.2.2.3 Different number of energy groups

Finally the cases 2, 4 and 5 were simulated with Apros also using 12 and 6 energy
groups. The resulting multiplication factors and assembly and axial power distri-
bution differences are shown in Tab. 5.5. The results of the previous simulations
using 24 energy groups are also included in the table for comparison.

Compared with the differences of the multiplication factors, the Serpent uncer-
tainties are insignificant. With 12 groups, the multiplication factors are slightly
better than with 24 groups in the cases 2 and 5 and slightly worse in the case 4.
With 6 groups, the multiplication factor differences are almost twice as high as
those of with 24 groups.

All the Serpent relative statistical errors of the node- and assemblywise powers,
presented earlier, are insignificant compared with the differences between the codes.
When comparing the assembly power differences with 12 groups with those of with
24 groups, the maximum difference is smaller and the mean difference is slightly
higher in the case 2. In the case 4 and 5, the maximum and mean differences are
smaller. When comparing the differences with 6 groups with those of with 24 and
12 groups, the maximum and mean differences are the highest in the cases 2 and
5, whereas the differences are the smallest in the case 4.

When comparing the axial power differences with 12 groups to those of with
24 groups, the maximum and mean differences are lower in all the cases. When
comparing the differences with 6 groups to those of with 24 and 12 groups, in
the cases 2 and 4 the maximum and mean differences are smaller than with 24
groups but higher than with 12 groups. In the case 5, the maximum and mean
differences are smaller than with 24 groups and the mean difference is smaller but
the maximum difference is higher than with 12 groups.

To conclude, the multiplication factors were enhanced or very slightly worsened
when the number of energy groups were decreased from 24 to 12, and they were
the worst with 6 energy groups. The power distribution differences were smaller
with 12 groups than with 24 groups in almost all the cases. With 6 groups, the
assembly power differences were the highest in two cases and smallest in one case,
and the axial power distributions were better than with 24 groups in all the cases
and almost always worse than with 12 groups.

A more expected result would have been the worsening of the results when the
number of energy groups is decreased. Therefore, these results might be caused
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Table 5.5: (a) Effective multiplication factors and (b) assembly and axial power
differences of the large oxide core calculated with Apros and Serpent. The Apros
simulations were performed using different numbers of energy groups. The control
rods are either withdrawn from the core (case 2), inserted in the core (case 4) or
at the interface of the fifth and sixth axial fuel levels of the active core (case 5).

(a)

Case G Apros  Serpent Uncertainty (107*%) Difference (%)

2 24 1.02994 1.03404 4.2 —0.40

2 12 1.03036 1.03404 4.2 0.36

2 6 1.02648 1.03404 4.2 ~0.73

4 24 097551 0.98161 1.6 —0.62

4 12 097547 0.98161 4.6 063

4 6 0.97046 0.98161 1.6 114

5 24 0.99993  1.00508 4.4 _0.51

5 12 1.00018 1.00508 4.4 —0.49

5 6 0.99567 1.00508 4.4 ~0.94

(b)

Assembly power difference Axial power difference
Case G Max (%) Min (%) Mean (%) Max (%) Min (%) Mean (%)
2 24 1.14 —1.79 0.63 0.70 —2.57 0.79
2 12 1.25 —1.28 0.68 0.38 —2.11 0.45
2 6 2.14 —1.51 0.87 0.40 —2.41 0.54
4 24 2.29 —3.88 1.31 1.01 —3.16 1.08
4 12 1.81 —3.27 1.10 0.63 —2.04 0.67
4 6 1.73 —2.69 1.00 0.61 —2.43 0.71
) 24 1.08 —1.23 0.45 0.96 —4.34 1.11
5} 12 1.07 —0.88 0.39 0.71 —3.92 0.96
5} 6 2.25 —1.32 0.58 0.70 —4.09 0.95
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by suitable error canceling, especially with 12 energy groups. In addition, the
group structures with less energy groups were formed by merging adjacent groups.
A better way to form the energy group division would be based on the importance
of the different energy intervals in the analysis of sodium fast reactors. All in all,
a more thorough study of the energy group structures would be needed to provide
recommendations for the number of energy groups to be used to achieve suitable
accuracy whereas also improving the simulation speed, even though the results of
the studied cases were the most accurate with 12 energy groups.

5.3 Transient model

The large oxide core was simulated with the three different control rod movement
patterns presented in Sec. 4.5 with both the Apros transient model and DYN3D.
The simulations were performed using a fixed time step length of 0.05s. The
group constants taking into account the neutron energy spectrum softening in the
radial reflector were used. Stricter convergence criteria for the multiplication factor
g1 = 1072 and pointwise fission source g5 = 107% and the default criterion for
the average fission source e3 = 107° were used. The first criterion was used to
initialize the transient calculation by a well-converged steady state calculation and
the second criterion was used to reduce the power fluctuations during the first time
steps of the transient simulations.

The effective multiplication factor of the initial state was 0.999919 with Apros
and 0.999149 with DYN3D, resulting in a difference of 0.08 %. The assembly powers
at the initial state calculated with Apros and their differences between Apros and
DYN3D are presented in Fig. 5.13. Compared with DYN3D, Apros underestimates
the assembly powers in the middle of the core and overestimates them at the outer
parts of the core.

The reactor total power during the slow insertion of all control rods is shown in
Fig. 5.14 and the relative axial powers at the beginning and end of the simulation
are shown in Fig. 5.15. The total power as a function of time is approximately the
same for both codes although the Apros power decreases slightly faster. However,
the growth rate of the difference decreases towards the end of the simulation. The
relative axial powers are very close to each other at the beginning and end of the
simulation. In addition, the differences are mainly very slightly smaller at the end
of the simulation. The differences of the actual absolute axial powers are however
larger, as the reactor total power is higher with DYN3D.

The reactor total power during the fast insertion of all control rods is shown in
Fig. 5.16 and the relative axial powers at the beginning and end of the simulation
are shown in Fig. 5.17. The total power as a function of time is approximately
the same for both codes. However, different from the case of the slow insertion
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Figure 5.15: Relative axial powers and the difference between the relative axial
powers at the beginning (B) and end (E) of the transient simulation in the case of
slow insertion of control rods.
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of all control rods, the total power difference increases and decreases periodically
with a cycle of about 100s. As the control rods move at the speed of 1 mm/s and
as the axial fuel levels of the active core are 10.0566 cm long, the cycle period is
caused by the control rod movement over one axial fuel level. Therefore, when
the control rods are first inserted into an axial fuel level, Apros overestimates the
rate on which the power decreases when compared with DYN3D, and after about
one third or half of the axial level the difference starts to decrease. In addition,
compared with the first case, the maximum relative difference is smaller and the
difference is relatively close to zero at the end of the simulation. Also in this case
the relative axial powers are very close to each other at the beginning and end of
the simulation, even though the axial power shape changes much more. In addition,
the differences are mainly smaller at the end of the simulation.

The reactor total power during the very fast step withdrawal of all control rods
is shown in Fig. 5.18 and the relative axial powers at the beginning and end of the
simulation are shown in Fig. 5.19. In this case, the total power difference has a
jump at the beginning of the simulation and increases during the whole simulation.
The absolute total power difference is also larger, as the reactor power is steadily
increasing instead of decreasing. However, the total power time behaviors are still
somewhat the same, and the relative difference is not higher than in the case of
slow insertion of all control rods. The axial power shapes do not practically change
during the simulation.

To summarize, with the two control rod insertion transient simulations, the
reactor total power behaves almost similarly with both codes. The increasing and
decreasing of the differences are related to the control rod positions in partially
rodded nodes. With the step control rod withdrawal simulation, the reactor total
power difference increases during the whole simulation almost linearly. However,
the relative difference is not higher than in the case of the slow insertion of control
rods. The relative axial powers are very close between the codes at the beginning
and end of the simulations, even though the relative axial power shape visibly
changes in the case of the fast insertion of control rods. Taking into account the
magnitude of the total power and axial power differences between the codes, the
Apros transient model can be concluded to be correctly implemented to solve
time-dependent problems.

The reactor total power differences between the codes might be caused by the
different initial power distributions. They are in turn caused by the different solution
methods of the codes. For example, in the axial direction Apros uses a third degree
polynomial for the one-dimensional partially integrated flux, whereas DYN3D uses
a second degree polynomial and two exponential functions. When comparing the
results, the differences between Apros and DYN3D can not be interpreted as faults
in the simulation accuracy of Apros, as DYN3D is only another nodal diffusion code
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Figure 5.16: Total power of the large oxide core in the case of fast insertion of
control rods calculated with Apros and DYN3D, and the difference between the
codes.
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Figure 5.17: Relative axial powers and the difference between the relative axial
powers at the beginning (B) and end (E) of the transient simulation in the case of
fast insertion of control rods.
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Figure 5.18: Total power of the large oxide core in the case of very fast step
withdrawal of control rods calculated with Apros and DYN3D, and the difference
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Figure 5.19: Relative axial powers and the difference between the relative axial
powers at the beginning (B) and end (E) of the transient simulation in the case of
very fast step withdrawal of control rods.
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instead of a reference solution. To provide accurate estimations of Apros simulation
accuracy, simulations with thermal hydraulic feedbacks and comparisons against
measurements or other codes would be needed. For example in the case of the step
withdrawal of control rods, as the DYN3D total power rises faster than the Apros
power, the typically negative temperature feedback coefficients would slow down
the power increase, whereas the slower Apros power rise would not be slowed down
as much.
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Chapter 6

Discussion

In this chapter, first the main validation results of the Apros multigroup nodal
diffusion model are recapitulated. Second, possible research topics related to the
model and development suggestions to improve the model are presented. Finally,
the entire work is summarized.

6.1 Validation results

The validation of the Apros multigroup nodal diffusion model consisted of three
parts. First, the implementation of the steady state model was validated against
DIF3D on which the model is based. Second, the accuracy of the model was studied
against Serpent. Finally, the validation of the implementation and similarity of
the transient model results was performed against DYN3D. All the reactor models
used in the validation were obtained from the OECD/NEA Sodium-cooled fast
reactor (SFR) Benchmark Task Force benchmark definitions [20].

The validation of the implementation of the steady state model was performed
with two different sized reactor cores with all control rods withdrawn. The obtained
multiplication factor differences were extremely small between the codes, being un-
der 4 x 1077 % in both cases. The differences of node- and groupwise average fluxes
were also very small. Almost all the differences were within 0.00125 % between the
codes. The maximum differences were under 0.07 % in both cases. This can be con-
sidered an excellent agreement between the codes. Therefore, the implementation
of the Apros steady state model can be stated to be correct.

The validation of the accuracy of the steady state model was performed also with
the two different sized cores. The studied cases with the medium sized core were
with all control rods withdrawn and inserted. The resulting multiplication factor
differences were —1.03 % and —2.65 %, which can be considered relatively high. All
the assembly power differences were under 2.40 % and 2.99 % with mean differences
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of 1.60 % and 1.53 %. All the axial power differences were under 2.93 % and 2.02 %
with the mean differences of 0.66 % in both cases. The assembly and axial power
differences were on an acceptable level. The distributions of the assembly power
differences suggest that the accuracy of the powers could be enhanced by utilizing
radial discontinuity factors not yet implemented in the model. Additionally, the
accuracy of the powers of the outermost fuel assemblies might be enhanced by
taking into account the neutron energy spectrum softening in the radial reflector.

With the large sized core, multiple comparisons were performed. First, the
effect of the neutron energy spectrum softening in the radial reflector was studied
with all control rods withdrawn and inserted. With all control rods withdrawn,
the multiplication factor difference was decreased from —0.41 % to —0.40 % when
the spectrum softening was taken into account. With all control rods inserted,
the difference decreased from —0.66 % to —0.62 %. The maximum assembly power
differences were decreased from 3.21% to 1.79% and increased from 2.77% to
3.88%. The mean differences were decreased from 1.09 % to 0.63 % and increased
from 0.98 % to 1.31 %. The maximum axial power differences were decreased from
2.64 % to 2.57 % and from 3.25 % to 3.16 % and the mean differences were decreased
from 0.81 % to 0.79 % and from 1.11 % to 1.08 %.

Even though the assembly power differences increased when the control rods
were inserted, the group constants taking into account the spectrum softening were
utilized in the rest of the calculations as all the other studied results were improved.
The observations about the radial discontinuity factors in the case of the medium
sized core hold also in the case of the large sized core. In addition, the accuracy
of the axial powers might be enhanced by improving the modeling of the control
rods, such as by specifying different group constants for the control rods at different
axial levels of the core. The axial modeling accuracy of both cores might also be
improved by utilizing axial discontinuity factors. However, this subject has not
been thoroughly studied.

Second, an additional case involving control rods at positions bringing the reac-
tor nearest to criticality with Apros and two cases with asymmetrically positioned
control rods were studied. In these two cases, all but one control rod were withdrawn
and the one rod was inserted, and all but one control rod were inserted and the one
rod was withdrawn. The obtained multiplication factor differences were —0.51 %,
—0.40 % and —0.62 %, respectively. The obtained maximum assembly power differ-
ences were 1.23 %, 2.29 % and 3.86 % and the mean differences were 0.45 %, 0.63 %
and 1.16 %. The maximum axial power differences were 4.34 %, 2.59 % and 3.13 %
and the mean differences were 1.11 %, 0.80 % and 1.07 %. Therefore, the accuracy
of the assembly powers was the best of all the studied cases with the control rods
nearest to criticality. However, the maximum axial power difference was the highest
in this case. A control rod at a different position did not really alter the multipli-
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cation factor or the maximum and average power differences. Of course, the actual
assembly power distributions were altered more.

To conclude the comparisons between Apros and Serpent using 24 energy groups,
the following statements can be made. The multiplication factor differences are
relatively high between the codes, especially in the case of the medium sized core.
The differences are smaller with the large sized core. With both cores, the insertion
of the control rods increased the multiplication factor differences. Studied in the
case of the large oxide core, the generation of group constants for the assemblies
adjacent to the radial reflector taking into account the neutron energy spectrum
softening in the radial reflector improved the multiplication factors slightly and
improved the assembly powers when the control rods were withdrawn. However, the
powers were worsened when the control rods were inserted. All in all, the assembly
power differences with both cores were on an acceptable level.

Finally, the effect of the number of energy groups on the simulation results was
studied by merging adjacent energy groups to form 12- and 6-group structures. In
short, in almost all of the studied cases the multiplication differences were slightly
smaller with 12 groups than with 24 groups, and almost twice as high as with 6
groups compared with the results of with 24 groups. The maximum and mean
assembly and axial power differences were almost always smaller with 12 groups
than with 24 groups. With 6 groups, the maximum and mean assembly power
differences were the smallest in one studied case and the highest in two studied
cases. The maximum and mean axial power differences were between those of
with 24 and 12 groups in all cases, except for the mean difference in one case,
which was slightly the smallest. The improvement of the results when decreasing
the number of energy groups from 24 to 12 was an unexpected result, and might
be caused by suitable error canceling. Therefore, a more thorough study on the
suitable number of energy groups is needed. In addition, the smaller group structures
were not constructed based on the importance of the different energy intervals in
the simulations of sodium fast reactors. The importance should also be studied
to provide recommendations for the required number of energy groups for the
simulations.

The validation of the implementation of the Apros transient model and its
accuracy against another nodal diffusion code was performed with the large sized
core. As DYN3D is only another nodal diffusion code, its results can not be treated
as reference results. However, the results can be compared to study whether they
are alike. Three simulations with different control rod movement patterns were
performed. The simulations were performed without simulating the thermal hy-
draulics and with a fixed time step length. In the initial state, the multiplication
factor difference between the codes was —0.08 %, the maximum assembly power
difference was 0.65 % and the maximum axial power difference was 0.35 %.
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The first case was a slow insertion of all control rods. The reactor total power
time evolution was approximately the same for both codes. However, the power
decreased faster with Apros, resulting in a maximum difference of —3.13 % during
the simulation. The differences in the relative axial powers between the codes
mainly slightly decreased during the simulation.

The second case was a fast insertion of all control rods. The reactor total power
time evolution was somewhat closer between the codes than in the previous case.
Also in this case, the power decreased faster with Apros, resulting in a maximum
difference of —1.39 % during the simulation. In this case, the power difference did
not increase during the whole simulation. When the control rods began descending
into an axial level, the difference first increased. After about one third or one half
of an axial level, the difference began to decrease. This pattern was repeated in
all of the axial levels the control rods moved in during the simulation. At the end
of the simulation, the power difference was small. Even though the shape of the
axial power changed significantly during the simulation, the differences between
the relative axial powers were still very small between the codes at the end of the
simulation. The differences decreased in almost all of the axial levels.

The final case was a very fast step withdrawal of all control rods. In this case,
the reactor total power time evolution was more different between the codes, as now
the power was increasing instead of decreasing. However, the maximum relative
difference —3.06 % between the codes was in the same order as in the first case.
The relative axial powers did not visibly change during the simulation.

Taking into account the magnitude of the total power and axial power differences
between the codes, the Apros transient model can be concluded to be correctly
implemented to solve time-dependent problems. The differences might be caused
by the different solution methods of the codes, which result in different power
distributions. As the simulation results of DYN3D are not reference results, the
true accuracy of the Apros model should be validated against measurements or
against multiple codes including the simulation of thermal hydraulics. The thermal
hydraulics brings its own effect to the comparisons, especially due to different
feedback effects, but also additional uncertainty due to the different models utilized
in the codes.

6.2 Further research and model development

The basic functionality of the model has now been implemented and proven to
work. However, there are still multiple subjects on which the model could be studied
and improved. These subjects are divided here in four main topics. The first is the
inclusion of the model in the release version of Apros, the second is the improvement
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of the model usability, the third is the validation of the model and the final is the
modeling improvements of the model.

First, the model has not been a part of the development version of Apros, and
the development of the model had been halted for some time before this work.
Therefore, it is partly incompatible with the newest development version. In order
to enable the inclusion of the model in the release version of Apros when desired,
these incompatibilities should be resolved and the model should be included in the
development version of Apros to prevent the development of new incompatibilities.

Second, as the model has now only been in development use, it is not yet ready for
production use. In order to improve the usability of the model, several improvements
have to be made. First, error checking for user input has to be implemented. Where
possible, the model should be made error tolerant. At the least, the model should
inform the user about what has gone wrong. Second, the model should inform the
user about its state when needed. One such case could be a long lasting calculation
of a time step. Finally, as a full core model consists of hundreds of assemblies with
multiple axial levels with different materials and burnups, the actual Apros models
can not in reality be constructed manually. Therefore, some processing scripts to
automate the model construction are required. Such scripts exist for the group
constant generation and the Apros model creation. Their versatility, usability and
documentation should however be improved before taking them into production
use.

Third, all the performed validation of the model is described in this work. As
stated earlier, both the steady state and the transient model should be validated
together with thermal hydraulics to determine the true usability and accuracy of
the model for fast reactor simulations. These studies should also be conducted for
other types of liquid metal cooled reactors than sodium fast reactors, such as for
lead-cooled fast reactors. In addition, as the effect of reducing the number of energy
groups was unexpected, it should be further studied. Similar sensitivity studies
should be conducted for the axial node division and time step lengths. Also the
group constant generation methods should be further studied. These studies could
include the effect of B; leakage corrected group constants produced by Serpent
and the effect of generating the group constants with a three-dimensional single
assembly model, as has been done for example in Ref [39)].

Finally, the model has various existing features that could be improved and
new features could be implemented to increase the accuracy and versatility of the
model. The improvements include the following:

e The group constant model consists now only of two independent quadratic
polynomials for coolant and fuel temperatures. This model could be improved
by taking into account more feedback parameters, such as the coolant density,
and to be modified to cover a wider range of parameter variations. The model
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should also include cross terms instead of only having independent fits for
the parameters.

The control rods are now modeled as consisting of only one material with a
single set of group constants. This model could be improved by allowing the
control rods to have different group constants depending on the axial level.

The control rods should also be able to consist of two or more material types,
if they have for example tips consisting of different materials.

Another important improvement related to control rods is the reduction
of the control rod cusping effect by modeling the fluxes inside the rodded
and unrodded parts of a partially rodded node. Using the fluxes, the group
constants of the partially rodded node could be calculated with proper flux
weighting instead of the volume weighting.

The axial flux description of the model is now performed with a third-degree
polynomial. In Ref. [42], the degree of the polynomial was increased to four,
which improved the calculation results. The increase might be more important
with thermal reactors, but the effect should be studied. The additional degree
of the polynomial is derived for example in Ref. [43].

The new features include the following:

Based on the validation results of this work, the utilization of discontinuity
factors should be added to the model to reduce the model errors.

If a strict convergence criterion is used for the fission source, the simulation of a
time step might last long with the transient model. Therefore, an acceleration
method such as the coarse mesh rebalancing used in the steady state model
should be implemented into the transient model to speed up the convergence.
All of the power is now released in fission reactions and the decay heat is
therefore not taken into account. Simulation of the decay heat would be an
important addition to the model, if a transient ending to a shut down or low
power state of the reactor is desired to be simulated.

All of the power is now released directly in the fuel. As a part of the fission
power is released as 7y-radiation, a part of the power is in reality released
directly into the coolant, which should also be modeled.

The reactor boundaries are now described only with single boundary coeffi-
cients in the axial and radial directions. If modeling without explicit radial
and axial reflectors is desired, the user should be able to use material- and
groupwise albedos to describe the boundaries.

An important aspect related to the simulation speed is the time step length.
Apros has an automatic time step control for the thermal hydraulic system
and the other neutronics models. This should also be implemented into the
model. The time step should be decreased when the core neutronics state
undergoes too rapid changes to prevent errors resulting from too long time
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steps and increased when the core neutronics state is only slowly changing
to increase the simulation speed.

e Burnup calculation capability could be added to the model. This feature is
somewhat controversial, as transient calculations are the main applications of
Apros. It would however enable the user to begin the simulations in different
parts of the operation cycles, if the burnup distribution of the fuel is not
available from elsewhere.

e The model is now only capable of simulating hexagonal assemblies. The
addition of quadratic geometry would enable the simulation of more reactor
types. However, most of the fast reactor concepts use hexagonal geometry, and
therefore the quadratic geometry is not such an important feature. It is more
related to the possibility of simulating thermal reactors with the model using
more than the two energy groups used in the other Apros neutronics models.
This would also require the addition of the reactor poisoning simulation to
the model. It should to be noted that some assumptions while deriving the
solution methodology were based on the conditions present in fast reactors.
DIF3D-K has, however, been also used for coupled simulations of thermal
reactors [32, 44].

e The final proposed improvements of the model are related to its computa-
tional speed. The code should be profiled in order to find the parts where
optimizations would produce the greatest improvements. In addition, all pos-
sible locations for the parallelization of the model should be identified and
the effect of the parallelization be studied. Other parts of Apros, such as the
six-equation model, have already been parallelized.

6.3 Summary

This thesis continued the development of fast reactor simulation capability of the
process simulation software Apros. During this work, the existing multigroup nodal
diffusion model program code was reviewed. Some errors in the steady state model
and in the parts common to the steady state and transient models were corrected. In
addition, some features, such as better utilization of Serpent group constants were
added to the steady state model. Many parts of the transient model not common
with the steady state model were found to be flawed, and the transient algorithm
was derived and almost completely rewritten during this work. In addition, a flux
extrapolation transient acceleration method was implemented into the model.
The development of the steady state model is described in Ref. [5]. The temporal
solution method of the transient model is based on implicit discretization of the
time derivative of the neutron flux. This method is similar to the implicit theta
method of the neutron kinetics code DIF3D-K [29]. The discretization enables
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the problem to be described as a fixed source problem for each time step. The
spatial solution method is similar to that of the steady state model, but with
small modifications. The solution algorithm for one time step is based on a fission
source iteration process. In addition to the boundary conditions of the neutron
flux, average neutron fluxes and precursor concentrations at the beginning of a
time step are required to simulate a time step.

The validation of the steady state and transient models was performed in three
parts. First, the steady state model was compared against the hexagonal geometry
steady state diffusion equation solver of DIF3D, on which the steady state model
is based. The differences of multiplication factors were extremely small, and the
differences of the node- and groupwise average fluxes were found to be very small.
Therefore, the steady state model can be concluded to be correctly implemented.

Second, the steady state model was compared against the continuous-energy
Monte Carlo reactor physics code Serpent, which was also used to generate the
group constants utilized in Apros. The multiplication factor differences were found
to be relatively high, especially in the case of a medium sized core. The differences of
assembly powers were found to be on an acceptable level. When studying the effect
of the number of energy groups utilized in Apros, the results were unexpectedly
improved when the number of energy groups was decreased from 24 to 12. Therefore,
this effect requires a more thorough study.

Finally, the transient model was compared against the reactor dynamics code
DYN3D. DYN3D is only another nodal diffusion code, and not a reference solu-
tion. Three different transients with control rod movements were studied without
simulating the thermal hydraulics. The time evolutions of the reactor total powers
were approximately the same between the codes for the two control rod insertion
simulations. The total power time evolution of a very fast step withdrawal of all
control rods was more different between the codes. However, the relative differ-
ence was not higher than in the case of a slow insertion of all control rods. The
relative axial powers were very close between the codes both at the beginning and
end of all the simulations. The differences can be concluded to be caused by the
differences between the solution methods of the codes and by the differences in the
power distributions caused by them. Therefore, the transient model is also correctly
implemented and it produces results similar to DYN3D.

The basic features of a steady state and transient multigroup nodal diffusion
model have now been implemented in Apros and verified to work. There are many
subjects on which the model could be improved and studied. The most important
of them is the bringing of the model to the development version of Apros and
eventually to the release version. Other topics include performing diverse validation
of the model especially together with thermal hydraulics, improving the model
usability and improving the existing and adding new features to the model.
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