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1. Introduction

Mechanical devices have long been used as sensors for measuring quan-

tities such as mass, force, displacement and speed. These devices were

used as early as the times of antiquity and they have been used to es-

tablish fundamental laws of physics. For example the Coulomb torsional

balance [1] was used to determine the distance dependence of the inter-

action between electrically charged particles and Cavendish’s experiment

[2] to measure the force of gravity between masses and to give a value for

the gravitational constant.

Today the most modern version of mechanical sensors are nanoelec-

tromechanical systems (NEMS). They consist of a suspended nano-beam

coupled to an electronic device which actuates (drives) and transduces

(detects) its motion. Such a system can be a charged beam close to a gate

(Fig. 1.1) in which case a time dependent electric force between the gate

and the beam makes the latter vibrate. NEMS are used similarly to the

mechanical systems mentioned above, that is to say as sensors such as

force, charge or mass detectors [3, 4, 5, 6], but their sensitivity has been

pushed so far that it is now possible to measure mass with a resolution

of 10−24 g which corresponds to the mass of one proton [6]. In addition

NEMS also offer the possibility to measure quantum phenomena such as

the Casimir force [7] which arises from the fluctuations of the electromag-

netic field between two metallic plates.

In addition, continual progress in making ever smaller resonators has

lead to the increase of the frequency ω at which their modes vibrate. The

frequency of the vibration is typically between a few Megahertz and one

Gigahertz. With these high frequencies it is possible to reach a tempera-

ture T where the thermal energy kbT becomes smaller than the quantum

energy �ω of the resonator. This makes it possible to cool the mode of

vibration to its ground state. Pioneering work in cooling the mechanical

9
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Figure 1.1. SEM (scanning electron microscope) picture of a nanoelectromechanical de-
vice. It consists of a niobium (Nb) beam (in blue) of length 7μm, width 480 nm

and thickness 100 nm. The gap between the gate (in red) and the beam is
26 nm.Courtesy of Matthias Brandt, Aalto University.

resonator to its ground state was achieved in 2010 by Andrew Cleland’s

group [8]. In their work the ground state was reached by using cryogenic

refrigeration to cool a high frequency ( 6 GHz ) piezoelectric mode to its

ground state.

A year later the ground state of a vibrational mode with frequency of

the order of a few Megahertz was reached by coupling it to a microwave

cavity [9]. This field is known as cavity optomechanics and has developed

rapidly in the past few years. Cavity optomechanics offers a framework

to study the interaction between an electromagnetic field and the vibra-

tions of a mechanical resonator. The interation between the cavity and

the resonator is mediated by the radiation-pressure force. It is this force

which has been used in [9] to alter the vibrations of the mechanical res-

onator and to transfer energy from the resonator to the cavity leading to

the cooling of the mechanical resonator.

The possibility to cool a mode of vibrations close to its ground state, has

offered the opportunity of observing quantum phenomena within the me-

chanical system itself. Many proposals of quantum behavior such as su-

perposition of states [10] or quantum squeezed states [11, 12, 13, 14] have

been suggested. However, to observe quantum phenomena in NEMS, it is

crucial to go beyond linear regime where it is not possible to distinguish

classical behavior from the quantum one. Indeed as the correspondence

10
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principle states, for a linear system the classical equation of motion is

the same as the quantum one. Therefore, in order to observe quantum

behavior nonlinearity is needed.

This thesis is an article dissertation in which I discuss various nonlinear

effects that occur in NEMS. The aim of this thesis is to give the reader the

basic tools and concepts used in the published articles as well as a brief

overview of their outcomes. This thesis is divided into three parts. In the

first chapter I introduce the basic theory for describing the deformation

of a resonator. In the second chapter I discuss the nonlinear effects aris-

ing in NEMS due to large deformations. Both Chapter 1 and 2 are the

basis of the articles in this dissertation, especially for Publication I and

Publication II. Finally I introduce some concepts of cavity optomechanics

which are useful for the understanding of Publication II, Publication III

and Publication IV.
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2. Elastic theory of a beam

In the 18th century Leonhard Euler and Jacques Bernoulli derived the

first theory for describing the deformation of a beam. It was only a cen-

tury later that their theory was used and validated with the construction

of the Eiffel tower. Since then this theory has been widely applied in

the construction of many structures such as bridges and buildings and it

is the same theory which describes the flexural vibrations of a nanores-

onator. The purpose of this chapter is to present the necessary tools to un-

derstand the dependence of the vibration’s eigenfrequency with the size of

the resonator and to find out how a beam is coupled to an external force. I

follow partially Refs. [15, 16, 17]. I start by deriving the potential energy

of a slightly bent beam. Starting from the energy, I derive the Euler-

Bernoulli equation whose solutions describe the flexural vibrations of the

beam and show that the eigenfrequencies of the beam are inversely pro-

portional to its size. Then I study a nonuniform resonator which consists

of a resonator which displays a discontinuity in its physical properties. I

demonstrate that at the point where the discontinuity occurs the slope,

the moment and the force between the two parts of the resonator have to

be equal. I then consider the case where one part of the beam is stiffer

than the other one and show that in this case the eigenmodes of the beam

are composed of the mode of a cantilever and a doubly clamped beam.

2.1 Bending energy

The bending energy is the energy stored in the beam when a torque (also

called bending moment in beam theory) is applied to its end or when a

load is applied perpendicularly to its axis. To derive its expression, let

us consider an uniform beam which is slightly bent in the X, Z plane.

The deformation of the beam from its unbent state is characterized by

13



Elastic theory of a beam

Figure 2.1. Schematic picture of the bent beam with �r(Z) being the radius vector and
u(Z) the deformation of the beam from its unbent state. Upon the deforma-
tion each neighboring segment of the beam with lenght dl is rotated by an
angle �Ω(Z).

the flexural deformation u(Z). We divide the beam into small segments of

length dl and attach to each of them a coordinate system X ′, Z ′. We choose

Z ′ such that it is aligned with the axis of each beam’s element. We define

�r(Z) to be radius vector giving the position of the points on the beam and

we define the unit tangent vector �t = �r′(Z)
|�r′(Z)| =

d�r
dZ

dZ
|d�r(Z)| =

d�r
dl . As a result of

the bending, each neighboring segment is rotated by an angle �Ω(Z) along

the Y axis (see Fig. 2.1). Therefore the deformation is characterized by

the variation of this angle �Θ between the two segments �Θ(Z) = d�Ω(Z)
dl .

Assuming that the relative rotation �Θ(Z) between neighbouring segment

is small, the bending energy per unit of length is

Ebending =
1

2
kΘ(Z)2, (2.1)

where k is the spring’s torsion coefficient and depends on the shape and

material the beam is made of. This spring constant can be rewritten as

k = EIy [17] where E is the Young modulus and represents the stiffness

of the material and Iy is its bending moment. The latter is a geometry

dependent coefficient and describes how the beam is deformed in the X

direction. The aim now is to find an expression for �Ω(Z) as a function of

the deformation u(Z). We proceed as follows. On one hand, when moving

from one segment of the beam to another, the variation of the tangent

vector is d�t
dl on the other hand the tangent vector is simply rotated by an

angle �Ω(Z), thus
d�t

dl
= �Θ(Z)× �t. (2.2)

14



Elastic theory of a beam

Taking the cross product of this equation with �t and using �a × �b × �c =

(�a · �c)�b− (�a ·�b)�c, we obtain

�Θ(Z) = �t× d�t

dl
. (2.3)

Since the beam is slightly bent, one can approximate dl ≈ dZ. In addition

for small bending, the tangent vector �t is almost parallel to the Z axis and

the difference in direction can be neglected. Therefore

|�Θ(Z)| = d2u(Z)

dZ2
. (2.4)

substituing this expression in Eq. (2.1) and defining z = Z/L and 〈v|w〉 =∫ 1
0 v(z, t)w(z, t)dz. The energy of a beam of length L can be expressed as

Ebending =
EIy
2L3

〈u′′|u′′〉, (2.5)

where the prime denotes the derivative with respect to z. In the next

section we investigate what happens when the bending becomes large and

estimate the stress energy.

2.2 The stress energy

As the deformation increases, the beam stretches. As long as the ampli-

tude of the deformation is smaller than the width of the beam this effect

can be neglected. However, nanomechanical resonators can be strongly

driven causing the amplitude of the vibrations to exceed the width of the

resonator. Therefore, in addition to the bending energy one has to add the

stress energy coming from the extension in the length ΔL of the beam

Estress =
1

2

ES

L
ΔL2, (2.6)

where S denotes the beam’s cross section. Upon the deformation u(Z, t)

(Fig. 2.2) the beam stretches to an amount given by

ΔL =

∫ L

0

√
1 +

(
du(Z, t)

dZ

)2
dZ − L � 1

2L
〈u′|u′〉, (2.7)

where we assumed
(
du(Z,t)

dZ

)2
� 1. Therefore the stress energy is

Estress =
ES

8L3
〈u′|u′〉2. (2.8)

In addition to the stress coming from the deformation of the beam, we can

also include an initial tension in the beam T0 coming from its fabrication

process. The corresponding energy is

Etension =
T0

2L
〈u′|u′〉. (2.9)

15



Elastic theory of a beam

Figure 2.2. Schematic picture of the stretched beam.

The stress energy, the bending energy and the tension energy together

form the mechanical potential energy of a beam whose deformation from

its unbent state is given by u(z, t).

2.3 Euler-Bernoulli equation.

We now describe the shape of the deformation u(z, t). We start our discus-

sion by considering a beam whose axis is along the z axis. It has a length

L, mass m and cross section S. Let V [u(z, t)] be the external potential of

a force f acting on the beam which creates a deformation u(z, t) from the

unbent state of the beam. Using Eqs. (2.5), (2.8) and (2.9) the Lagrangian

of the system is

L =
m

2
〈u̇|u̇〉 − EIy

2L3
〈u′′|u′′〉 − T0

2L
〈u′|u′〉 − ES

8L3
〈u′|u′〉2 − V [u(z, t)], (2.10)

with u̇ = du(z,t)
dt . Solving δS = δ

∫
dtL = 0, with S being the action and

δS being its functional derivative, the equation of motion for the flexural

vibration u(z, t) is

m
d2u(z, t)

dt2
+

EIy
L3

d4u(z, t)

dz4
−
[
T0

L
+

ES

2L3
〈u′|u′〉
]
d2u(z, t)

dz2
= f(z, t) (2.11)

This equation is the Euler-Bernoulli equation. It is a fourth-order nonlin-

ear differential equation and describes the deformation u(z, t) of a beam.

Solving this differential equation can be challenging due to the nonlin-

ear term coming from the stress energy. To simplify this task we expand

the deformation on the flexural eigenmodes of the beam. This method is

known as the Galerkin method [18]. To find those eigenmodes we con-

sider a beam without induced tension coming from the stress energy and

in absence of an external force. Assuming a harmonic time dependence

16



Elastic theory of a beam

u(z, t) = eiωtχ(z) the deformation satisfies the eigenvalue equation

EIy
L3

d4χ(z)

dz4
= mω2χ(z). (2.12)

This equation looks similar to the harmonic oscillator equation but the

significant difference is the presence of the fourth order derivative. It can

be solved with χ(z) = eKz leading to

K = ± 4
√
±κ (2.13)

κ =
mω2L3

EIy
. (2.14)

Therefore the general solutions of the Euler-Bernoulli equation are

χ(z) = Aeκz +Be−κz + Ceiκz +De−iκx, (2.15)

or in terms of trigonometric and hyperbolic functions

χ(z) = a cos(κz) + b sin(κz) + c cosh(κz) + d sinh(κz), (2.16)

where a, b, c, and d are given by the boundary conditions which are im-

posed by the system we study. The most common systems encountered

in nanomechanical systems are the doubly clamped beams and the can-

tilever, the latter consisting of a beam having one end clamped and the

other free. In the following we only consider the doubly clamped beam.

The treatment of the cantilever can be found in [17]. The doubly clamped

beam has the boundary conditions

χ(0) = χ(L) = 0 (2.17)

χ′(0) = χ′(L) = 0. (2.18)

These boundary conditions imply that a = −c and b = −d and κ has

discrete values κ1, κ2, ..κn which have to satisfy

cos(κn) cosh(κn)− 1 = 0. (2.19)

This equation can be solved numerically and leads to κ1 = 4.73, κ2 = 7.85,

κ3 = 10.99... The mode shapes χn(z) for the three lowest modes are plotted

in Fig. 2.3. The corresponding eigenfrequencies are given by

ωn =

√
EIy
ρS

κn
L2

, (2.20)

where ρ is the mass density of the beam. Therefore the eigenfrequencies

of the beam are inversely proportional to the size of the system.

17
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Figure 2.3. The three first mode shapes for a doubly clamped beam.

2.4 Nonuniform resonators

We now discuss how one can describe a nonuniform resonator which con-

sists of a beam having an abrupt change in its physical properties, such

as the mass density, the Young modulus etc. at some location. This kind

of a resonator can be encountered in NEMS since the contacts holding

the suspended resonator can be suspended themselves and thus be part

of the vibrating system. For such a system the Euler-Bernoulli equation

describing the flexural modes is

d2

dx2

[
α(x)

d2u

dx2

]
− γ(x)u = 0, (2.21)

with α(x) = E(x)I(x) and γ(x) = ρ(x)A(x)ω2. For simplicity we suppose

that there is only one discountinuity. In this case the resonator can be

seen as a "beam composed of two beams". If we take the discountinuity in

the physical properties to be at x = 0 we obtain

αl
d4ul
dx4

− γlul = 0 for x < 0, (2.22)

αr
d4ur
dx4

− γrur = 0 for x > 0, (2.23)

or in a more condensed way :

Θ(−x)

(
αl

d4ul
dx4

− γl
d2ul
dt2

)
+Θ(x)

(
αr

d4ur
dx4

− γr
d2ur
dt2

)
= 0, (2.24)

18



Elastic theory of a beam

with αl/r = (EI)l/r and γl/r = (ρA)l/r. The question we are asking now is

what are the boundary conditions at x = 0 such that taking

u(x) = Θ(−x)ul(x) + Θ(x)ur(x), (2.25)

α(x) = Θ(−x)αl +Θ(x)αr, (2.26)

γ(x) = Θ(−x)γl +Θ(x)γr, (2.27)

and substituting these expressions in Eq. (2.21) we recover Eq. (2.24).

Taking the first and second derivative of u we obtain

u′(x) = Θ(−x)u′l(x) + Θ(x)u′r(x) + (ur(x)− ul(x))δ(x), (2.28)

u′′(x) = Θ(−x)u′′l (x) + Θ(x)u′′r (x) + (u′r(x)− u′l(x))δ(x). (2.29)

Therefore using the distribution product rules

Θ(x)Θ(x) = Θ(x), (2.30)

Θ(x)Θ(−x) = 0, (2.31)

δ(x)Θ(±x) =
1

2
δ(x), (2.32)

we obtain for α(x)u′′(x)

α(x)u′′(x) = αlu
′′
l (x)Θ(−x) + αru

′′
r (x)Θ(x)

+
1

2
(αl + αr)(u

′
r(x)− u′l(x))δ(x). (2.33)

Taking the derivative of (2.33) we arrive at

(α(x)u′′(x))′ = αlu
′′′
l (x)Θ(−x) + αru

′′′
r (x)Θ(x)

+ (αru
′′
r (x)− αlu

′′
l (x))δ(x). (2.34)

Integrating Eq. (2.21) between ε and −ε and taking the limit ε → 0 we

obtain

lim
ε→0

∫ ε

−ε
γ(x)u(x)dx = lim

ε→0

∫ ε

−ε

d2

dx2
[
α(x)u′′(x)

]
dx,

= lim
ε→0

[
(α(x)u′′(x))′

]ε
−ε ,

0 = αru
′′′
r (0)− αlu

′′′
l (0).

Thus the first boundary condition is

αru
′′′
r (0) = αlu

′′′
l (0). (2.35)

In order to find the second boundary condition, we doubly integrate Eq. (2.21)

and obtain

lim
ε→0

∫ ε

−ε
(α(x)u′′(x))′ = lim

ε→0

∫ ε

−ε
γU, (2.36)
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Elastic theory of a beam

where U is the antiderivatives of u. Therefore using (2.34) one gets

αru
′′
r (0) = αlu

′′
l (0). (2.37)

In the same way defining U2 the second antiderivative of u we get

lim
ε→0

∫ ε

−ε
(α(x)u′′(x)) = lim

ε→0

∫ ε

−ε
γU2 = 0, (2.38)

and using (2.33) one obtains

u′r(0) = u′l(0). (2.39)

Imposing that u(x) is continuous at x = 0, the boundary conditions are⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ur(0) = ul(0)

u′r(0) = u′l(0)

αru
′′
r (0) = αlu

′′
l (0)

αlu
′′′
r (0) = αlu

′′′
l (0).

Each of these conditions correspond to a physical quantity which has to be

conserved at the discontinuity. The first condition is simply a continuity

condition. The second assures that the slope of the beam on the left and

right part of the discontinuity is the same. The third boundary condition

makes sure that the torque between the left and the right part of the beam

is the same and finally the last condition ensures that the force exerted at

the discontinuity is equal on both sides. One interesting limit to consider

is the case where one of the beams is stiffer than the other part. For

αl 	 αr which corresponds to the case where the left part of the resonator

is stiffer than the right part, the flexural modes must satisfy

[1 + cos(klLl) cosh(klLl)] [1− cos(εkrLr) cosh(krLr)] = 0, (2.40)

with kl,r =
√

γl/r/αl/r and ε = kl/kr and Ll/r is the length of the left and

right part or the beam. This equation is satisfied when kr fulfills the

doubly clamped beam eigenmode equation (Eq. 2.19) or when kl satisfies

the eigenmode equation of a cantilever [17]. In Fig. 2.4 the four first modes

of a nonuniform beam with αr
αl

= 10−3, Ll = Lr = L and kl/kr = 1 are

presented. We remark that the second, third and fourth mode are in fact

composed of a mode of a cantilever (on the left side) and a mode of a doubly

clamped beam (on the right side).
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Figure 2.4. Plot of the first four modes χ(z) of a nonuniform beam with αr
αl

= 10−3, Ll =

Lr = L and kl/kr = 1. For the first mode Lkl = 1.88, for the second mode
Lkl = 4.65, for the third mode Lkl = 4.78 and for the fourth mode Lkl = 7.79.
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3. Nonlinear dynamics

In the previous chapter we solve the Euler-Bernoulli equation but neglect

the nonlinear term coming from the large deformation: the induced ten-

sion. In many experiments the effect of this nonlinear term can be ob-

served [19, 20, 21]. The nonlinear effects of the induced tension manifest

themselves for example in the frequency at which the resonator vibrates

and by exhibiting nonlinear dynamics (see Fig. 3.1). Consequently it is im-

portant to understand the nonlinearities either to avoid them [22] or on

the contrary to exploit them [23, 24]. In this chapter we derive the nonlin-

earities which arise from the induced tension. We then discuss what their

effects on the frequency are and the equation of motion of the flexural

mode. Especially we demonstrate that in the presence of induced tension

the frequency increases in systems which allow large deformation before

decreasing because of the nonlinearity coming from an external poten-

tial. In addition we show how the induced tension makes the frequency

response function dependent on the amplitude of the vibrations. Finally

we discuss how the nonlinearity can be used for observing macroscopic

quantum tunneling.

Figure 3.1. a) Mechanical resonance frequency as a function of a DC gate voltage of a
graphene based resonator with length L = 1μm and width W = 1μm. b)
Response function of a graphene based resonator with length L = 1.5μm and
width W = 2μm with a drive power stepped from −50 dBm to −30 dBm. The
color scale gives the amplitude of the signal in Volt. Courtesy of Xuefeng
Song, Aalto University.
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Nonlinear dynamics

Figure 3.2. Schematic picture of the system which consist of doubly clamped beam with
length L, width w and thickness h whose deformation is controlled by a gate
voltage Vg.

3.1 Tension induced nonlinearities

As discussed in the previous section, for large deformations, an additional

term appears in the Euler-Bernoulli equation to take into account the ten-

sion which builds up in the beam. Let us consider a rectangular resonator

of length L, width w, thickness h and cross section S = wh. The resonator

has a bending moment Iy and is made of a material whose Young modulus

is E. We study a typical case where an electrostatic force created by a gate

voltage Vg situated at a distance d from the beam induces a deformation

u(z, t) as depicted in Fig. 3.2. Therefore the potential energy of the force

acting on the beam is

V [u(z, t)] = −Vg

2

2 ∫ 1

0
C[1− u(z, t)

d
]dz, (3.1)

where C is the function describing the capacitance between the gate and

the beam. Scaling the deformation with the distance between gate and

beam d, u(z, t) = d u(z, t) the potential energy of the system is

Epotential =

1

2
mω2

0d
2〈u′′|u′′〉+ 1

2
mω2

sd
2
[
τ0 + 〈u′|u′〉

]
〈u′|u′〉 − Vg

2

2 ∫ 1

0
C[1− u(z, t)]dz,

(3.2)

with mω2
0 =

EIy
L3 , mω2

s = ESd2

4L3 and mω2
sτ = T0

L . Let us assume that u(z, t)

is the sum of a static deformation u0(z) given by solving dEpotential

du = 0 and

a small time varying deformation u1(z, t) � u0(z) which oscillates around

the equilibrium solution u0(z). In order to simplify the analysis, we ex-
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pand the deformation as u1 =
∑

n xn(t)χn(z) with χn(z) as the mode shape

of the deformation given by the eigenmode of a doubly clamped beam and

xn as the amplitude of the deformation in the eigenmode n. Substituting

u1 =
∑

n xn(t)χn(z) in Eq. (3.3), the potential energy becomes
Epotential

mω2
sd

2
=

1

2
[Ω2]nmxmxn + T n

moxnx
mxo + Fno

mpxnxox
mxp +O(x5). (3.3)

with

[Ω2]nm =
ω2
0

ω2
s

〈χ′′n|χ′′m〉+ [(τ0 + 2〈u′0|u′0〉)〈χ′n|χ′m〉+ 4〈χ′n|u′0〉〈u′0|χ′m〉]

−
V 2
g

2mω2
sd

2

∫ 1

0

d2C[1− u0]

du21
χn(z)χm(z)dz. (3.4)

T n
mo = 2〈u′0|χ′o〉〈χ′n|χ′m〉

−
V 2
g

12mω2
sd

2

∫ 1

0

d3C[1− u0]

du31
χn(z)χm(z)χo(z)dz. (3.5)

Fno
mp =

1

2
〈χ′n|χ′m〉〈χ′o|χ′p〉

−
V 2
g

48mω2
sd

2

∫ 1

0

d3C[1− u0]

du31
χn(z)χm(z)χo(z)χp(z)4dz. (3.6)

These coefficients describe how each mode is coupled to each other. Ω2

determines the eigenfrequecies at which the beam vibrates. The second

term of Eq. (3.4) contains contributions coming from the initial and in-

duced tension and the last term shows the effect of the electrostatic force.

T is a nonlinear coefficient which originates from the asymmetry of the

system, the first term describes the effect of the static deformation and the

second term is the effect coming from the electrostatic force. F is known

as the Duffing nonlinear coefficient [25, 26]. The first term is purely a

geometric constant which depends on the mode we are considering and

the second term is the contribution from the electrostatic force. These

nonlinearities can be used to detect the motion of one mode by measur-

ing another mode as in [27, 28]. In the following sections we focus on the

self-nonlinearity by setting n = m = o = p.

3.2 Effect of tension on the eigenfrequency

The eigenfrequency of the flexural mode are given by (3.4). The third and

fourth terms of this equation originate from the induced tension. In order

to understand how they alter the frequency it is necessary to find the

equilibrium solution u0(z). For simplicity we assume a low gate voltage

such that u0 � 1. The equilibrium position is given by

ω2
0

ω2
s

u′′′′0 (z)− τu′′0(z) = V 2, (3.7)
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where V 2 =
V 2
g

2mω2
sd

2
dC[1]
du and where we defined the dimensionless total

tension

τ = τ0 + 2〈u′0|u′0〉. (3.8)

For a doubly clamped beam, the solution of (3.7) is [29]

u0 =
V 2

2τξ

[
ξ(1− x)x+ coth

(
ξ

2

)
(cosh(ξx)− 1)− sinh(ξx)

]
(3.9)

with ξ =
√

τω2
s/ω

2
0. Substituting Eq. (3.9) into Eq. (3.8) we obtain the

self-consistency equation for the tension

τ = τ0 +
V 4

6τ2ξ2

(
ξ2 + 24−

3
(
ξ2 + 3ξ sinh (ξ)

)
cosh (ξ)− 1

)
. (3.10)

A characteristic voltage can be found from Eq. (3.10). Substituting τ ≡ τ0

and comparing τ0 to the second term on the right hand side of the equation

gives the threshold voltage Ṽ under which the initial tension τ0 is large

compared to the tension built via the deformation. This voltage is

Ṽ 4 =
6τ40

24
τ0

ω2
0

ω2
s
−

3+ 9√
τ0

√
ω2
0

ω2
s
sinh

(√
τ0

ω2
s

ω2
0

)

cosh

(√
τ0

ω2
s

ω2
0

)
−1

(3.11)

Above this voltage the tension mainly comes the deformation of the beam.

There are two particular regimes to study. The first regime corresponds

to the situation where the beam is sligthly bent and ω2
0/ω

2
s 	 τ . Conse-

quently the bending energy is small compared to the stress energy and

the induced tension becomes [29]

τ =
V 4

15120

ω2
s

ω2
0

. (3.12)

The second regime is the opposite limit when the beam undergoes a large

deformation ω2
0

ω2
s
� τ . In this case [29]

τ =
V 4/3

61/3
. (3.13)

We can now sketch the behavior of the eigenfrequencies of the flexu-

ral modes, as a function of the voltage, by substituting Eq. (3.12) and

Eq. (3.13) in Eq. (3.4). For ω2
0/ω

2
s 	 τ , i.e., in the regime where the bend-

ing energy is larger than the induced tension energy the change in the

frequency is essentially coming from the electrostatic energy, thus the be-

havior of the frequency is ∝ −V 2
g , decreasing as the voltage increases.

In the opposite regime, ω2
0/ω

2
s 	 τ , at first the eigenfrequency decreases

until V = Ṽ above which it behaves ∝ V 4/3 and increases. In Fig. 3.3,

the eigenfrequency of the first flexural mode is plotted as a function of

the voltage by numerically solving the Euler-Bernoulli equation with a

parallel-plate model capacitor C[1− u0] =
εwL

d(1−u(x,t)) .
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Figure 3.3. Behavior of the frequency of the first mode as a function of V =√
V 2
g

2mω2
sd

2
dC[1]
du

. a) Frequency of the first mode in the weak bending regime

ω2
0 � ω2

s . b) Frequency of the first mode in the strong bending regime
ω2
s � ω2

0 with and without initial tension τ0.

3.3 Pull-in Effect and Macroscopic Quantum Tunneling.

In the previous section we limit the study for low gate voltage such that

u(x, t) � 1. However, as the gate voltage V increases, the deformation

becomes larger until the resonator is pulled into contact with the gate at

V = Vc. This effect manifests itself by the frequency quickly tending to

zero when the critical voltage is reached as shown in Fig. 3.3. From an

energy point of view what happens is that when increasing the voltage

the minimum of the potential energy becomes metastable and disappears

at V = Vc as depicted in Fig. 3.4 . An estimation of this critical voltage can

be found using Eq. (3.3). To obtain a simple analytical value, we assume

that u(z, t) = xχ(z) and choose, as a model for the capacitance: a parallel

plate model which simply depends on the amplitude x of the deformation

instead of the full shape of the defomation u(x). In order to find the critical

voltage one needs to solve the system

dEpotential

dx
= 0, (3.14)

d2Epotential

dx2
= 0. (3.15)

The first equation gives the equilibrium amplitude x0 at which the res-

onator vibrates and the second equation is the frequency of the vibrations

which is 0 when the resonator pulls into contact with the gate. Expanding

up to the third order for a small variation around the equilibrium ampli-

tude x0 we obtain

Epotential

mω2
sd

2
=

1

2
Ω2x2 + αx3 (3.16)
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Figure 3.4. Schematic picture of the potential energy of the mechanical resonator. As
the gate voltage increases the minimum of the potential energy becomes
metastable until it disappears for V = Vc.

with

Ω2 =
ω2
0

ω2
s

〈χ′′|χ′′〉+ τ0〈χ′|χ′〉+ 3〈χ′|χ′〉2x20 −
V 2

(1− x0)3
(3.17)

α = 2x0〈χ′|χ′〉2 −
V 2

(1− x0)4
. (3.18)

Hence for ω2
0/ω

2
s 	 τ the critical voltage is Vc =

2
3

√
〈χ′′|χ′′〉

3
ω0
ωs

[30] while for

ω2
0/ω

2
s � τ the critical voltage is Vc =

6
25

√
6
5〈χ′|χ′〉. Comparing these esti-

mations with the numerical values found in Fig. 3.3 we find that for the

first mode 〈χ′′|χ′′〉 = 500.8 and consequently we find that Vc = 8.6ω0
ωs

which

is in agreement with the numerical result while for the ω2
0/ω

2
s � τ we

obtain for the first mode 〈χ′|χ′〉 = 12.3 and Vc = 3.2 which over estimates

the actual pull-in voltage. This error originates from the approximation

we made of the capacitance.

In Publication I, we showed that the beam can be pulled into contact

with the gate before the voltage reaches Vc by leaving the metastable min-

imum via quantum tunneling, the tunneling rate being given by [31] ΓQ =

ωQexp[−18/5N
π ], where N = ΔV

�ωsΩ
is the number of states in a potential of

height ΔV , ωQ = 6ωsΩ
√
6N/π and Ω = Ωn

n. However at a temperature T

the beam can also escape the metastable minimum via thermal activation,

the rate being given by the Arrhenius law ΓT = ωsΩ/(2π)exp[−ΔV/(kbT )].

These two mechanisms are competing as depicted in Fig. 3.5. The tem-

perature from which the quantum tunneling dominates over the thermal
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Q

T

Figure 3.5. Schematic picture of the two physical processes involved in the escape from
the metastable minimun.

escape is given by

TQ =
5

36

�ωs

kb
Ω

1

1− 5
36 ln
(
12
√

6
πN
) . (3.19)

In addition, to maximize the quantum tunneling rate, the number of

states N in the metastable minimum need to be small. The latter is given

by

N =
ΔV

�ωsΩ

=
mωsd

2

�

Ω5

54α2
. (3.20)

Therefore one needs to be close to the pull-in point since ΔV and conse-

quently N is small. Having a high crossover temperature and having a

small number of states is difficult to satisfy simultaneously since a high

frequency is demanded to maximize the crossover temperature TQ and at

the same time, to obtain a sufficient quantum tunneling rate, one needs

to be close to the pull-in point where the frequency is low. In Publication

I we demonstrated that good candidates for observing macroscopic quan-

tum phenomena are systems with low mass, high Young modulus and

large ratio ωs/ω0. Materials such as carbon nanotubes or graphene fulfill

these attributes.

3.4 Duffing nonlinearity.

In addition to altering the eigenfrequencies of the flexural mode, the in-

duced tension is also adding two nonlinear terms, known as Duffing non-

linearities, making the potential energy quartic in the amplitude x (Eq. (3.2))

29



Nonlinear dynamics

0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n
2

d
D = -3

n
2

d
D = 

n
2

d
D = 3

n
2

d
D = 

D = 0

-n d

x 0x

Figure 3.6. Behavior of the frequency response with |f |2 = 8γ3

6
√
3ωn

d2 and |x0|2 =

4 |f2|
γ2|dωn|2 .

.

. When driving the system with a sinusoidal force with frequency ωd and

amplitude f0 and including dissipation the equation of motion for the am-

plitude x is

ẍ+ γẋ+ ω2
sΩ

2x+ 3
ω2
s

d
T x2 + 4

ω2
s

d2
Fx3 =

f0
d
cos(ωdt), (3.21)

where γ is the damping rate. The response function of Eq. (3.21) is

|x|2 = |f0/(dωn)|2

(ωn − ωd − 3
8

D
ωn

|x|2)2 +
(γ
2

)2 (3.22)

with ωn = ωsΩ, D = ω2
s

d2

(
4F − 10

[
T
ωn

]2)
. The presence of the cubic non-

linearity T adds to the regular Duffing nonlinearity. Because T depends

on the static deformation, it allows to tune the total nonlinear coefficient

as discussed in Publication II. The response function (3.22) is plotted

in Fig. 3.6. It depends on the amplitude of the deformation. When the

deformation increases the resonance peak starts to lean toward higher

frequencies when D > 0 and to lower frequencies when D < 0. Above

a critical drive |fc|2
|dωn|2 = 8γ3

9
√
3D/ωn

, three different solutions appear for the

amplitude among which two are stable and are situated at the lower and

upper branches while the solution on the middle branch is unstable. In

this region the value of the amplitude x depends on the history of the sys-

tem. For example when sweeping the frequency upward the amplitude

increases until it reaches the end of the upper branch at which point the

amplitude jumps to the lower branch, and vice versa.

To summarize, we have derived the potential energy of a nanomechani-

cal resonator driven by a nearby gate voltage. Taking into account the in-
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duced tension we showed how the latter alters the eigenfrequency of the

flexural mode. In addition we derived the Duffing nonlinearity and we

find that a third-order nonlinearity related the a static deformation of the

beam allow to tune the Duffing constant. In addition to the induced ten-

sion we also dicussed about nonlinearity coming from the external drive,

namely the pull-in effect and how this nonlinear behaviour can be use for

observing Macroscopic Quantum Tunneling.
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4. Circuit optomechanics

Cavity optomechanics offers the opportunity to study the interaction be-

tween photons and a mechanical system. This field has gotten a great

peak of interest with the demonstration of laser cooling of mechanical

motion and sensitive displacement detection [9, 32, 33]. A typical sys-

tem consists of a driven optical cavity whose one end is made of a vibrat-

ing mirror [34, 35] or can be a microwave cavity coupled to a mechanical

resonator (see Fig 4.1). In both cases the eigenfrequency of the cavity

depends on the vibration of the mechanical part, the vibration being cre-

ated by a light-induced force: the radiation pressure force [36]. In this

section I follow partially [37]. First we show how the radiation pressure

coupling g arises in a system composed of a microwave cavity coupled to a

mechanical resonator. We derive the Hamiltonian and show how the me-

chanical vibrations alter the frequency of the microwave cavity. Then we

demonstrate how the radiation pressure can be used for cooling/heating

the resonator to the ground state and show that the cooling/ heating is

proportional g2. We then discuss how one can improve the coupling g by

coupling the cavity and the mechanical resonator to a single-Cooper pair

transistor. Finally I discuss about a cross-Kerr nonlinearity which cou-

ples the number of phonons in the resonator to the number of photons in

the cavity presented in Publication IV.

4.1 Radiation pressure

We consider a setup where the mechanical resonator is coupled to a mi-

crowave cavity driven by an external drive. The simplest model for this

system is an LC resonator with inductance L and capacitance C0+Cm(x),

whose eigenfrequency is modulated by the amplitude of vibration x of the

resonator. In addition the cavity is coupled capacitively through Cc to
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Figure 4.1. Microwave cavity (in green) coupled to two silicon nitride mechanical res-
onators (in red). Courtesy of Matthias Brandt, Aalto University.

Figure 4.2. Equivalent circuit model of the microwave cavity. A LC resonator with in-
ductance L and capacitance C0 + Cm(x). The mechanical resonator is taken
into account via the capacitance Cm(x) that depends on the amplitude x of
vibrations.

driving a voltage Vg(t) = V cos(ωdt). The phase across the LC resonator is

φ. The equivalent circuit model is sketched in Fig. 4.2. The Lagrangian of

the electric circuit is

Lc =
1

2
(C0 + Cm(x))φ̇2 +

1

2
(φ̇− V (t))2Cc −

φ2

2L
. (4.1)

From the Lagrangian we obtain for the conjugate charge

q =
∂L
∂φ̇

= (C0 + Cm(x) + Cc)φ̇− CcV. (4.2)

Therefore the Hamiltonian of the total system consisting of the microwave

cavity and the mechanical resonator is

H =
p2

2m
+

mω2
m

2
x2 +

q2

2[Cc + C(x)]
+

φ2

2L
− q

CcV (t)

Cc + C(x)
, (4.3)

with m being the mass of the mechanical resonator and ωm being the

frequency of the mode at which the resonator vibrates and C(x) = Cm(x)+
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C0. The last term of Eq. (4.3) is the energy of the driving force. The

quantum description is found with the usual canonical transformations

φ =

√√√√�

2

√
L

[Cc + C(x)]
(a† + a), (4.4)

q = i

√
�

2

√
[Ct + C(x)]

L
(a† − a), (4.5)

x =

√
�

2mωm
(b† + b), (4.6)

p = i

√
�mωm

2
(b† − b). (4.7)

Therefore for x � d, with d being the distance between the gate and

the resonator, and taking only into account the lowest order term in the

force, i.e., neglecting the effect of the vibrations on the force (last term of

Eq. (4.3)), the Hamiltonian of the system including the mechanical res-

onator is

�ωca
†a+ �ωmb†b− �ga†a(b† + b)− i�f cos(ωdt)(a

† − a). (4.8)

Here the cavity frequency ωc = 1√
L(Cc+C(0))

, the amplitude of the drive

fp =
√

ωc
�

Cc√
Cc+C(0)

V and g = ωc
2[Cc+C(0)]

√
�

2mωm

∂C
∂x is the radiation pres-

sure coupling. The latter is a nonlinear coupling between the number of

photons in the cavity and the amplitude of vibrations x of the mechani-

cal resonator. However this coupling is usually small, for example in [38]

g = 40Hz while ωc/(2π) = 7GHz. Consequently the effect of the radiation

pressure should not be observable. To bypass the weakness of the radia-

tion pressure coupling a strong drive is applied to the cavity which shifts

the number of photons in the cavity to a mean cavity photon number |α|2.
As a result one can obtain a larger effective coupling G = g|α|2 at the

cost of losing the nonlinear property of the interaction. Indeed using the

input-output formalism [39] and assuming that ωd = ωc +Δ we obtain for

the equation of motion

ȧ = −i[−Δ+ g(b† + b)]a− κ

2
a− fp

2
, (4.9)

ḃ = −iωmb+ iga†a− γ

2
+
√
γbin, (4.10)

where κ is the linewidth of the cavity and γ is the linewidth of the me-

chanical resonator. Here we have written the cavity operator a in a frame

rotating with frequency ωd and neglected the counter rotating term. We

define bin to be a small noise term acting on the mechanical resonator, κ
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to be the damping rate of the cavity and γ the damping rate of the me-

chanical resonator. As mentioned above the effect of the drive is to induce

a finite average number of photons in the cavity. Therefore we split the

cavity and the mechanical operator into a sum of a coherent part originat-

ing from the coherent drive and a fluctuation part coming from the noise

term, i.e., a ≡ α+δa and b ≡ β+δb. With this approximation the solutions

for the coherent parts are

α =
−f/2

κ
2 − i[−Δ− g(β∗ + β)]

(4.11)

β =
ig2|α|2
γ
2 + iωm

. (4.12)

The equations of motion for the fluctuations in the Fourier space are

[
κ

2
− i(ω +Δ)]δa = iG(δb† + δb) (4.13)

[
γ

2
− i(ω − ωm)]δb = iG(δa† + δa) +

√
γbin. (4.14)

Here δa(ω) =
∫∞
−∞ δa(t)eiωt is the Fourier transform of δa and a similar

definition is used for δb. We also define the effective radiation pressure

coupling G = g|α| which is proportional to the number of photons pumped

into the cavity. Although we lose the nonlinear character of the radiation

pressure coupling, the linearized equation describes interesting phenom-

ena such as ground state cooling and heating which are discussed in the

next section.

4.2 Cooling and heating.

When driving the cavity with a frequency ωd, as a consequence of the radi-

ation pressure coupling, the vibrations of the resonator produce sideband

peaks at ωd±ωm. The photons in these sidebands originate from inelastic

(Raman) scattering and give the possibility to exchange energy between

the resonator and the cavity when the drive is optimally detuned with

Δ ≈ ±ωm. For Δ = ωm the photons are preferably down-converted to ωc

and therefore the scattering process is accompanied with the excitation

(heating) of the mechanical resonator, the system is in the blue sideband

regime. For Δ = −ωm the photons are preferably up converted to ωc thus

the scattering process is accompanied with de-excitation (cooling) of the

resonator, the system is in the red sideband regime. These processes are

depicted in Fig. 4.3. In order to see the effect of the mechanical vibrations

let us assume that the term bin corresponds to a thermal drive which sat-

isfies 〈bin〉 = 0 and 〈b†in(t′)bin(t)〉 = nthδ(t′ − t), where nth is the number of
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Figure 4.3. Schematic picture of the cooling and heating processes. a) Heating process:
the energy is transfered from the cavity to the mechanical resonator. b) Cool-
ing process: the energy is transfered from the mechanical resonator to the
cavity.

phonons in the thermal bath damping the mechanical resonator. Solving

for δa†, we find the response function F for the thermal input δb†in and

obtain

F = G
√
γ

[ γ
2
−i(ω+ωm)]/(Δ−ω−iκ

2
)[

(γ2 − iω)2 + ω2
m + 4G2Δωm

Δ2−(ω+iκ
2
)2

] . (4.15)

This frequency response function describes a Lorentzian whose resonance

peak is around an effective frequency ωm + ωshift with

ωshift = −
G2(Δ2 − ω2

m + κ2

4 )

ωm

[
1

κ2

4 + (ωm +Δ)2
− 1

κ2

4 + (ωm −Δ)2

]
, (4.16)

and whose linewidth is γeff = γ + Γopt with

Γopt = G2κ

[
1

κ2

4 + (ωm +Δ)2
− 1

κ2

4 + (ωm −Δ)2

]
. (4.17)

For simplicity we assume below that we are in the fully sideband resolved

limit ωm 	 κ. In addition |Δ| = |ωm| in which case Eqs. (4.16) and (4.17)

are reduced to [37, 40]

ωshift = ∓G2

ωm
(4.18)

Γopt = ±4G

κ
(4.19)

where the upper sign corresponds to the red sideband ( Δ = −ωm ) and the

lower sign corresponds to the blue sideband (Δ = ωm). In the case of the

red detuning, Δ = −ωm the effective damping increases which permits to
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cool the mechanical mode to its ground state [9, 41, 42]. In the case of

the blue detuning we have the opposite effect and the effective damping

decreases. The decreasing damping leads to heating of the mechanical

resonator and, when the effective damping is zero, to a parametric insta-

bility [43] and can used for signal amplification [38].

4.3 Strong coupling regime

When one starts to increase the number of photons in the cavity it leads

to an enhancement of the effective radiation pressure coupling G = gα. At

first this is just improving the cooling , since Γopt ∝ G, until the coupling

is strong enough so that the mechanical and cavity modes δb and δa hy-

bridize. The simplest way to understand this phenomenon is to consider

Eqs. (4.13) and (4.14) and consider the case Δ = −ωm and to perform a

rotating wave approximation. Thus the equations of motion for the mean

values of the cavity and mechanical operators are

〈δȧ〉 =
[
iωm − κ

2

]
〈δa〉+ iG〈δb〉 (4.20)

〈δ̇b〉 =
[
−iωm − γm

2

]
〈δb〉+ iG(〈δa〉. (4.21)

Assuming that κ 	 γm, the eigenvalues of this differential equation are

ω± = ωm − i
κ

4
±
√
G2 −
(κ
4

)4
. (4.22)

Therefore for G > κ
4 we get two resonant frequencies which are separated

by the amount of 2G. This regime is known as the strong coupling regime

and has been reached in [44, 45].

4.4 Phonon cavity

We have seen how a microwave cavity can be used to manipulate the mo-

tion of a mechanical resonator. In Publication II we showed that a sec-

ond oscillation mode of the same mechanical resonator can be used as

a phonon cavity which operates similarly to the photon cavity and thus

makes it possible to observe similar phenomena such as cooling via the

phonon cavity [46]. In Section 3.1 we derive the nonlinear coupling be-

tween different modes of the mechanical resonator. As a reminder those

coefficients are
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[Ω2]nm =
ω2
0

ω2
s

〈χ′′n|χ′′m〉+ [(τ0 + 2〈u′0|u′0〉)〈χ′n|χ′m〉+ 4〈χ′n|u′0〉〈u′0〉|χ′m〉]

−
V 2
g

2mω2
sd

2

∫ 1

0

d2C[1− u0]

du21
χn(z)χm(z)dz. (4.23)

T n
mo = 2〈u′0|χ′o〉〈χ′n|χ′m〉

−
V 2
g

12mω2
sd

2

∫ 1

0

d3C[1− u0]

du31
χn(z)χm(z)χo(z)dz. (4.24)

Fno
mp =

1

2
〈χ′n|χ′m〉〈χ′o|χ′p〉

−
V 2
g

48mω2
sd

2

∫ 1

0

d3C[1− hu0]

du31
χn(z)χm(z)χo(z)χp(z)dz. (4.25)

Therefore, scaling the amplitude of deformation dxn with the zero point

motion xzpn =
√

�

2mωm
and writing the Hamiltonian in a basis which diag-

onalizes [Ω2]nm we obtain

H =
∑
n

ωna
†
nan +
∑
nmo

TmnoXnXmXo +
∑
nmo

FmnopXnXmXoXp (4.26)

with Xn = a†n + an, ωn = ωs[Ωd]
n
n, Tnmo = mωs

d xzpn xzpmxzpo (Td)nmo and Fnmop =
mω2

s
d2

xzpn xzpmxzpo xzpp (Fd)
no
mp. Here the subscript d denotes that the tensors

have been written in the basis which diagonalizes [Ω2]. Let us now con-

centrate on the nonlinear coupling between two different modes. As a

consequence of the static deformation u0 we obtain a coupling of the form

T
nmmxnx

2
m which within the rotating frame approximation reduces to

Tnmmxna
†
mam and corresponds to the radiation pressure coupling. There-

fore it is possible to cool and heat the mechanical mode n using the me-

chanical mode m as a phonon cavity, analogously to the cooling/heating of

a mechanical mode using a photon cavity. The difference with the phonon

cavity resides in the presence of other nonlinear coefficients. To figure out

their impact one can write the equation of motion of mode n and m using

the input-output formalism [39]. Applying a coherent drive fp to mode m

oscillating at frequency ωp = ωm + Δ and a thermal drive ainn to mode n,

the equations of motion are

ȧn = −i

[
ωn + 4FnX

3
n + 3TnX

2
n + 4Fnnmm

(
a†na+

1

2

)
Xn

+2Tnmm

(
a†mam +

1

2

)]
− γn

2
an +

√
γna

in
n (4.27)

ȧm = −i

[
−Δ+ 12Fmam(a†mam)

+2(TnmmXn + FnnmmX2
n)αm

]
− γn

2
am + fp. (4.28)

Here we have written the equation of motion in a frame rotating with

frequency ωp and neglected fast oscillating terms. The nonlinear coeffi-
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cients Tnmo and Fnmop are the sum of all the permutations of the indices

n, m, o, p of Tnmo and Fnmop, Tn = Tnnn. Similarly to Section 4.2, splitting

the operators as the sum of a coherent α and thermal fluctuation parts δa,

a = α+δa and solving δan for the thermal drive ainn we obtain a Lorentzian

function which, in the fully sideband resolved limit ωn 	 γm, is peaked at

ωn + ωshift with
ωshift

4|αm|2 = ±1

2
T 2
nmm + Fnnmm − 6Tn

Tnmm

ωn
, (4.29)

its linewidth is γn + Γopt with
Γopt

4|αm|2 = ±Tnmm

γm
, (4.30)

where the upper sign refers to the red sideband (Δ = −ωn) and the lower

sign to the blue sideband (Δ = ωn). In Eq. (4.29) the two first terms are the

corrections from the radiation pressure coupling, the second term (Fnnmm)

being a higher order correction and corresponding to a cross-Kerr coupling

[47]. The difference from the usual optomechanical system shows up in

the last term which is proportional to the self-nonlinearity Tn.

4.5 Enhancing the coupling

In Sec. 4.3, we discuss how by pumping more photons into the cavity one

can reach the strong coupling regime. However, the physics there is still

described by two linearly coupled harmonic oscillators. To be able to study

the single-photon effect and to observe the optical frequency shift pro-

duced by the zero-point motion of the mechanical resonator, one needs

to obtain a large coupling g. In Publication III we studied the effect of

the nonlinearities coming from Josephson junctions when the latter are

coupled to a cavity and a mechanical resonator. We showed that the radi-

ation pressure coupling g can be enhanced by a large factor. To see how

one can improve the coupling via the Josephson junctions let us consider

a microwave cavity coupled to a single Cooper pair transistor. The latter

consists of two Josephson junctions with small capacitances C1 and C2

and a gate capacitance Cm(x) which depends on the amplitude x of the

vibration of the mechanical resonator (see Fig. 4.4). The Lagrangian of

the circuit is

Lc =
1

2
C0φ̇

2 +
C1

2

(
φ̇I −

φ̇

2

)2
+

C2

2

(
φ̇I +

φ̇

2

)2
+

1

2
Cm(x)(Vg − φ̇I)

2

− φ2

2L
+ Ej1 cos

(
φI

φ0
− 1

2

φ

φ0

)
+ Ej2 cos

(
φI

φ0
+

1

2

φ

φ0

)
, (4.31)
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Figure 4.4. Optomechanical system studied here. The crossed boxes are the Josephson
junctions and the mechanical resonator is taken into account via the capaci-
tance Cm(x).

where the two last terms are coming from the Josephson junctions and Ej1

and Ej2 are the Josephson energies associated to each Josephson junction

and φ0 =
�

2e . From this Lagrangian the conjugate charges are

2en =
∂Lc

∂φ̇

=

(
2C0 +

C1 + C2

2

)
φ̇

2
+ (C2 − C1)

φ̇I

2
(4.32)

2enI =
∂Lc

∂φ̇I

= (Cm(x) + C1 + C2)
φ̇I

2
+ (C2 − C1)

φ̇

2
(4.33)

−Cm(x)Vg.

Thus the Hamiltonian of the circuit is

Hc = 4EC0n
2+4Ec

[
nI +

Cm(x)Vg

2e

]2
+4Ecmn

[
nI +

Cm(x)Vg

2e

]
−
Cm(x)V 2

g

2

+
φ2

2L
− Ej1 cos

(
φI

φ0
− 1

2

φ

φ0

)
− Ej2 cos

(
φI

φ0
+

1

2

φ

φ0

)
(4.34)

with

EC0 =
2(C1 + C2 + Cm(x))e2

4C1C2 + 4C0[C1 + C2 + Cm(x)] + Cm(x)[C1 + C2])
(4.35)

EC =
[2C0 +

C1+C2
2 ]e2

4C1C2 + 4C0[C1 + C2 + Cm(x)] + Cm(x)[C1 + C2])
(4.36)

ECm =
2(C1 − C2)e

2

4C1C2 + 4C0[C1 + C2 + Cm(x)] + Cm(x)[C1 + C2])
(4.37)

In the limit Ec 	 Ej1, Ej2 a fair approximation for the single Cooper pair

transistor is obtain by projecting the Hamiltonian to the two charge states

closest to Cm(0)Vg. Making the substitution [48],
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cos(φI) →
1

2
σx, (4.38)

sin(φI) →
1

2
σy, (4.39)[

nI +
Cm(x)Vg

2e

]2
→ 1

2

(
1 +

Cm(x)Vg

e

)
σz. (4.40)

To simplify our analysis we consider the case of symmetric junctions with

C1 = C2 and Ej1 = Ej2 = Ej , thus the Hamiltonian for the circuit reduces

to

Hc = 4EC0n
2 +

φ2

2L
+ 2Ec

[
1 +

Cm(x)Vg

e

]
σz − Ej cos

[
φ

2

]
σx. (4.41)

Therefore in the limit where C0 	 Cm, C1, C2and expanding the cos term

around φ = 0, including the mechanical resonator the total Hamiltonian

is

H = �ωca
†a+ �ωmb†b+ 2Ec

[
1 +

Cm(x)Vg

e

]
σz − Ej(1 +

φ2

8
)σx. (4.42)

Here ωc = 1√
LC0

is the frequency of the cavity, ωm the frequency of the

mechanical vibration where we defined

φ =

√
�

2C0ωc
(a† + a), (4.43)

n = i

√
C0�ωc

8e2
(a† − a). (4.44)

Assuming that the energy of the qubit is larger than the energy of the

mechanical resonator �ωm and the cavity �ωc we can diagonalize the qubit

part treating the oscillator coordinate as a scalar and therefore consider-

ing the case where the qubit is in its ground state the Hamiltonian is

H = �ωca
†a+ �ωmb†b− gm

Bz

|B|x− B2
x

8|B|

(
φ

φ0

)2
+ gm

BzB
2
x

8|B|3 x
(

φ

φ0

)2
. (4.45)

Here Bx = −Ej , Bz = 2Ec

(
1 +

VgCm(0)
e

)
and gm = 2ECC

′
m(0)Vgxzp. The

first two terms correspond to free oscillators. The third term is a qubit in-

duced drive of the mechanical resonator, the fourth term is a cavity Stark

shift and the final term corresponds to a radiation-pressure coupling be-

tween the cavity and the mechanical resonator. Because the radiation

pressure coupling is proportional to Cm(0)Vg, it is possible to amplify the

coupling with the gate voltage Vg. It offers the possibility of observing

higher order nonlinear effects especially the cross-Kerr effect which we

discuss in the next section.
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4.6 Cross-Kerr nonlinearity

We show in Sec. 4.5 that the radiation pressure coupling can be improved

leading to additional nonlinear interaction namely the cross-Kerr cou-

pling gck. This nonlinear effect couples the number of photons in the

cavity to the number of phonons in the mechanical resonator. This ef-

fect has also been observed in setups where the mechanical resonator was

placed in the middle of an optical cavity [49, 50]. There the relative value

of the cross-Kerr coupling gck with respect to the radiation pressure cou-

pling g is a function of the position of the resonator while in our setup it

on the value of the gate charge to the superconducting island. The effect

of this coupling and how the results deviate from the radiation pressure

coupling are investigated in Publication IV. In order to understand the

idea behind Publication IV let us make the same thought process which

has lead to the analysis made in Publication IV. The Hamiltonian of a

cavity with frequency ωc and a mechanical resonator with frequency ωm

couple to each other via the radiation pressure coupling g and the cross-

Kerr coupling gck can be written as

H = ωca
†a+ ωmb†b− ga†a(b† + b)− gcka

†ab†b, (4.46)

where a and b are the operators associated to the cavity and the mechan-

ical resonator respectively. Using the input-output formalism [39] the

equation of motions are

ȧ(t) = −i(−Δ)a+ ig a(b† + b) + igckab
†b− κ

2
a−

√
κain (4.47)

ḃ(t) = −iωmb+ ig a†a+ igck a
†a b− γ

2
b−√

γbin. (4.48)

and their complex conjugate. Here we have considered that the cavity

field is driven with a coherent field of strength fp oscillating at the fre-

quency ωp = ωc+Δ. In addition we have written the cavity operator a in a

frame rotating with frequency ωp and neglected the fast oscillating terms.

We define κ to be the damping rate of the cavity and γ the damping rate

of the mechanical mode. To solve the dynamic of the cavity and the res-

onator we make a perturbation expansion. We assume that the radiation-

pressure coupling g ∝ O(ε) and the cross-Kerr coupling gck ∝ O(ε2) with

ε � 1. Moreover, we assume that the solutions for the cavity and the res-

onator are the sum of the unperturbed harmonic oscillator and the sum of

the small perturbation coming from the g and gck,

a = a0 + εa1 + ε2a2, (4.49)

b = b0 + εb1 + ε2b2. (4.50)
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We also use the Fourier transform definition

a(ω) =

∫
e−iωta(t)dt, (4.51)

a†(ω) =

∫
e−iωta†(t)dt, (4.52)

b(ω) =

∫
e−iωtb(t)dt, (4.53)

b†(ω) =

∫
e−iωtb†(t)dt. (4.54)

This Fourier transformation implies that a†(ω) = [a(−ω)]† and the same

for b†(ω).

The O(ε0) corresponds to the case where the cavity and the resonator are

not coupled. The solutions are a driven harmonic oscillator with driving

ain for the cavity and bin for the resonator.

a0(ω) =

√
κ

κ
2 − i(ω +Δ)

ain0 (ω) ≡ χ−Δ(ω)a
in
0 (ω) (4.55)

a†0(ω) =

√
κ

κ
2 − i(ω −Δ)

ain†0 (ω) ≡ χΔ(ω)a
in†
0 (ω) (4.56)

b0(ω) =

√
γ

γ
2 − i(ω − ωm)

bin0 (ω) ≡ χωm(ω)b
in
0 (ω) (4.57)

b†0(ω) =

√
γ

γ
2 − i(ω + ωm)

bin†0 (ω) ≡ χ−ωm(ω)b
in†
0 (ω). (4.58)

Below, we assume that the cavity input field ain0 (ω) = fpδ(ω) and assume

that the mechanical resonator is driven by thermal noise which satisfies

〈bin〉 = 0 and 〈b†in(ω′)bin(ω)〉 = nthδ(ω + ω′) with nth being the number of

thermal phonons in the mechanical resonator.

With O(ε) we include the radiation pressure effect. The correction to the

cavity added by this coupling is

a1 = i
g√
κ
χ−Δ(ω)fpχ−Δ(0)[b

†
0(ω) + b0(ω)]

a†1 = i
g√
κ
χΔ(ω)f

∗
pχΔ(0)[b

†
0(ω) + b0(ω)]

As expected from Sec. 4.1, the correction to the cavity is proportional to

the thermal motion of the mechanical resonator. The power spectrum is

〈a†1(−ω)a1(ω)〉 = 〈a†1(−ω)a1(ω)〉red + 〈a†1(−ω)a1(ω)〉blue (4.59)

with

〈a†1(−ω)a1(ω)〉blue = g2|α|2|χ−Δ(ω)|2|χωm(ω)|2〈b
†
inbin〉,

〈a†1(−ω)a1(ω)〉red = g2|α|2|χ−Δ(ω)|2|χωm(−ω)|2〈binb†in〉.

and |α|2 =
|fp|2

κ2/4+Δ2 is the number of photons pumped into the cavity. The

correction from the radiation pressure gives an additional resonance peak
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at ω = ωm and ω = −ωm. These two resonances correspond to the blue

sideband and the red sideband respectively.

With O(ε2) we include the cross-Kerr effect. The correction induced by the

cross-Kerr coupling is 2Re(〈a†0(−ω)ack2 (ω)〉) with

ack2 (ω) = i
gck√
κ
fpχ−Δ(ω)χ−Δ(0)δ(ω)

∫
χ−ωm(ω − Ω)χωm(Ω)

dΩ

2π
,

= i
gck√
κ
fpχ−Δ(ω)χ−Δ(0)δ(ω)

γ

γ − iω
. (4.60)

We obtain

2Re(〈a†0(−ω)ack2 (ω)〉) = 2GckRe

(
iχ−Δ(0)

γ

γ − iω

)
〈a†0(−ω)a0(ω)〉, (4.61)

Therefore the cross-Kerr effect gives a correction to the main resonance

which is proportional to the number of thermal phonons nth in the res-

onator. With Eq. (4.61) the main resonance becomes

〈a†0(−ω)a0(ω)〉
[
1 + 2

gck√
κ
nthRe

(
iχ−Δ(0)

γ

γ − iω

)]
(4.62)

Equation (4.62) corresponds to the beginning of the Taylor expansion of

|fp|2κ
κ2/4 + Δ(Δ + 2gcknωn)

. (4.63)

Therefore, we have a frequency shift which is proportional to the number

of thermal phonons in the mechanical resonator.

The next order of the perturbation giving corrections to the power spec-

trum is O(ε4). We only focus on terms which give correction to the side-

bands. Those terms are Re(〈a†1(−ω)ack3 (ω)〉) and Re(〈a†1(−ω)arp3 (ω)〉) with

ack3 (ω) = i
χ−Δ(ω)√

κ

(
gck

∫
b†0(ω − Ω− Ω′)b0(Ω

′)a1(Ω)dΩdΩ
′
)
,

arp3 (ω) = −i
g2√
κ
χ−Δ(ω)

[ ∫
arp2 (ω − Ω)(b†0(Ω) + b0(Ω))

dΩ

2π

+

∫
arp0 (ω − Ω)(brp

†
2 (Ω) + brp2 (Ω))

dΩ

2π

+

∫
a1(ω − Ω)(b†1(Ω) + b1(Ω))

dΩ

2π

]
,

arp2 (ω) = i
g√
κ
χ−Δ(ω)

∫
(b†0(ω − Ω) + b0(ω − Ω))a1(Ω)

dΩ

2π

brp2 (ω) = i
g
√
γ
χωm

[
χΔ(0)f

∗
pa1(ω) + χ−Δ(0)fpa

†
1(ω)
]

In the resolved sideband regime (κ � ωm) for Δ = −ωm and ω ∼ ωm the

expression for the red sideband becomes

〈a†1(−ω)a1(ω)〉red
[
1 + 2Re

(
iχ−Δ(ω)

{
i
g2|α|2
√
κγ

χ−ωm(ω)−
gckn

th

√
κ

})]
, (4.64)
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and for Δ = ωm and ω ∼ −ωm the expression for the blue sideband be-

comes

〈a†1(−ω)a1(ω)〉blue
[
1− 2Re

(
iχ−Δ(ω)

{
i
g2|α|2
√
κγ

χ−ωm(ω) +
gckn

th

√
κ

})]
, (4.65)

Equations (4.64) and (4.65) correspond to the beginning of the Taylor ex-

pansions for the red side of

G2γnωm

|χ−ωm |2[κ2/4 + (ω +Δ)(ω +Δ+ 2gcknth)] + 2G2κ
[
(ω +Δ)(ω + ωm)− γκ

4

]
(4.66)

and for the blue side

G2γ(nωm + 1)

|χωm |2[κ2/4 + (ω +Δ)(ω +Δ+ 2gcknth)] + 2G2
[
(ω +Δ)(ω − ωm)− γκ

4

] ,
(4.67)

with G = g|α|. Once again the effect of the cross-Kerr effect it to shift

the sideband peak to a quantity proportional to the thermal occupation of

the mechanical resonator. Moreover we recognize that the denominator

in Eq. (4.63) is the beginning of κ2/4+ (Δ+ gckn
th)2 and that in Eqs (4.66)

and (4.67), κ2/4 + (ω + Δ)(ω + Δ + 2gckn
th) is the beginning of κ2/4 +

(ω + Δ + gckn
th)2. Higher order corrections in the perturbation theory

should complete the squares. However it would require to go up to O(ε4)

to see this correction on the main resonance peak and to go up to O(ε6) to

see the correction on the sideband peak. Therefore in Publication IV we

choose to treat the problem using a mean field approach. Using a mean-

field approach to treat the radiation pressure coupling and the cross-Kerr

coupling, one obtains for the first one

ga†a(b† + b) = g

[
(〈a†〉a+ 〈a〉a† − 〈a†a〉)(b† + b)

+ (a†a− 〈a〉a† − 〈a†〉a)〈b† + b〉
]
. (4.68)

This decomposition allows us to find the usual results of the radiation

pressure coupling discussed in Sec. 4.1. The first line of Eq. (4.68) de-

scribes exchange processes between the cavity and the resonator and the

second is a frequency shift of the cavity. For the cross-Kerr coupling we

approximate

gcka
†ab†b = gck

[
〈a†a〉b†b+ 〈b†b〉a†a

+ 〈b†a〉ba† + 〈ba†〉b†a+ 〈ba〉b†a† + 〈b†a†〉ba
]
. (4.69)

The first line of Eq. (4.69) corresponds to a coupling between the num-

ber of photons in the cavity and a mean field created by the number of
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phonons in the resonator and vice versa. The other terms describe ex-

change processes between the resonator and the cavity. We can now pro-

ceed as in Sec. 4.2. Using the input output formalism and after splitting

the operators into a sum of a coherent and fluctuation part we obtain for

the fluctuations[κ
2
− i(ω + Δ̃)

]
δa = iGαδb† + iG∗αδb (4.70)[γ

2
− i(ω − ω̃m)

]
δb = iGα∗δa+ iGαδa† +√

γbin. (4.71)

These equations are similar to the onse derived in Sec. 4.2. The difference

resides in the fact that the radiation pressure coupling is modified by the

cross-Kerr coupling and one has G = g + gck〈b〉. Moreover, the detuning

and frequency are now Δ̃ = Δ + gck〈b†b〉 and ω̃m = ωm − gck〈a†a〉, where

〈a†a〉 = |α|2+〈δa†δa〉 ( 〈b†b〉 = |β|2+〈δb†δb〉) is the mean field of the number

of photons (phonons) in the cavity (mechanical resonator) and consists of

a sum of a coherent and fluctuation part. These mean fields need to be

solved self-consistently using

α =

√
κfp

κ
2 − i[Δ− gck〈b†b〉 − (G∗β +Gβ∗)]

, (4.72)

β =
i(2G− g)|α|2 − ig〈δa†δa〉
γ/2 + i(ωm − gck〈a†a〉)

. (4.73)

for the coherent part and for the fluctuation part we get [40]

〈δb†δb〉 =
γnth + Γoptnm0

γ + Γopt
, (4.74)

〈δa†δa〉 = G2|α|2〈δb†δb〉 (4.75)(
1

κ2

4 + (ω̃m + Δ̃)2
+

1
κ2

4 + (ω̃m − Δ̃)2

)
.

The validity of the mean field in Eqs. (4.68) and (4.69) is given by the

condition 〈δa†δa〉 � |α|2 which reduces to the following condition

〈δb†δb〉 � G−2
(

1
κ2

4 + (ω̃m + Δ̃)2
+

1
κ2

4 + (ω̃m − Δ̃)2

)−1
. (4.76)

The effects on the cooling and heating processes can be studied by substi-

tuting in (4.17) ωm with ω̃m, Δ with Δ̃ and G with Gα. We obtain

Γopt = G2|α|2κ
[

1
κ2

4 + (ω̃m + Δ̃)2
− 1

κ2

4 + (ω̃m −Δ)2

]
. (4.77)

The effect of the cross-Kerr coupling depends on the detuning. In the

case where Δ̃ = ∓ω̃m the result is identical to the one obtained usually in

optomechanics in absence of the cross-Kerr. Namely we obtain

Γopt = ±4G|α|2
κ

, (4.78)
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where the upper sign refers to the red sideband (Δ̃ = −ω̃m) and the lower

sign to the blue sideband (Δ̃ = −ω̃m) . To see the effects of the cross-Kerr

one has to set Δ = ∓ωm which translates to Δ̃ = ∓ωm+ gck〈b†b〉. This case

is more realistic since in the experiments the parameter one has access to

directly is the detuning Δ and not Δ̃ In this case we get

Γopt = ± G|α|2κ
g2ck(〈b†b〉 − 〈a†a〉)2 + κ2

4

(4.79)

The main effect of the cross-Kerr coupling is for the red sideband and

the blue sideband to change the behavior of the optical damping from a

linear to a nonmonotonous function of the number of photons pumped

into the cavity. As discussed in Publication IV, for the red sideband the

optical damping shows a maximum at |α|2 = κ/(2gck). As a consequence

one can cool the mechanical resonator to 〈δb†δb〉 = γnth/(γ + G/gck). This

estimate is valid for nth � κ/(2gck)[1+ g2/γgck]. For the blue sideband the

main effect of the cross-Kerr coupling is to limit the instability to a finite

number of photons 〈δb†δb〉 ≈
√
κ/γG|α|2/gck + |α|2. When gck 	 κ/(4nth)

the instability is completely prevented.
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5. Outlook

In the previous chapters we discuss the background of the publications

present in this dissertation on nanomechanical and optomechanical sys-

tems. We have shown how nonlinearities can be used to observe macro-

scopic quantum tunneling and how they can be used to cool a mode of a

resonator to its ground state. Although the field of nanoelectromechanical

systems (NEMS) is relatively new, applications are already conceivable.

Similar to their precursor, the microelectromechanical systems, NEMS

show promising possibility for atomic force microscope (AFM) [51, 52, 53].

The advances of mass sensing using NEMS have increased significantly

and it has been demonstrated that spatial distributions of mass within a

chemical subtance can be imaged in real time and at a molecular scale

[54]. Also for sensing applications, cavity optomechanics bring several in-

novations and possibilities such as magnetometry or accelerometry [55,

56]. Nanomechanical systems also offer a framework to study nonlinear

dynamics which might prove useful for future nanotechnological applica-

tions [57]. Among the reasons which have increased the importance of

cavity optomechanics, is the possibility to use the latter as a light/matter

interface and converting microwave to optical frequencies and vice versa.

For example in [58] the interaction between a microwave cavity, a qubit

and vibration mode of a resonator has been investigated. Another inter-

esting direction is the effort to make the bare radiation pressure coupling

of the order of the linewidth of the cavity. Within this regime, the ef-

fect of a single photon on the resonator is observable and one should be

able to observe a optical frequency shift produced by the zero point mo-

tion of the mechanical resonator. Last but not the least, NEMS also offer

the possibility to test the foundations of quantum mechanics [59]. Right

now there is no indication that quantum mechanics should break down

for macroscopic system (made of billions of atoms). However it seems that
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quantum phenomena do not occur at this large scale. There is some de-

coherence mechanisms which prevent macroscopic system to behave in a

quantum way. NEMS may offer a framework to investigate the border

between the classical world and the quantum world.
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