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We theoretically study the magnetic polaron (MP) formation in a ferromagnetic graphene single-electron transistor 

(SET), which consists of a graphene quantum dot (QD) between two insulating layers, i.e., a ferromagnetic insulator 

EuO and a nonmagnetic substrate such as SiC. In the lateral direction the QD is electrically coupled to source, drain 

and gate electrodes, so that the number of electrons can be controlled by the gate voltage. Due to a proximity effect 

at the EuO/graphene interface, i.e., the exchange interaction between the charge carriers in graphene and the 

localized magnetic electrons in EuO, there is a magnetic coupling between the graphene QD and EuO. Using Green’s 

function technique an expression for the total free energy of the SET is derived, which then is minimized at the given 

temperature and gate voltage. This leads to the MP formation and a consequent local enhancement of the 

ferromagnetic properties of EuO at the EuO/graphene interface. The MP formation is enforced by the large Coulomb 

interaction between the carriers in graphene. The spin polarization at the graphene/EuO interface in the QD area can 

be controlled by the gate voltage of the SET. 

 

1 Introduction Graphene has attracted enormous interest because of its unusual physical 

properties and also because of its potential applications in carbon based electronics [1-5]. Due to 

small spin-orbit coupling and long spin lifetimes graphene also is a promising material for 

spintronic applications (see ref. [6] and refs therein). Several approaches to control the spin-

dependent phenomena in graphene nanostructures have been proposed. Graphene quantum dots 

(QDs) have been identified as an ideal host for spin qubits [7, 8]. Recently the first graphene QDs 

and single-electron transistors were fabricated with features as small as 10 nm [9-11]. Also spin 

polarized states induced by the edge defects in zigzag graphene nanoribbons have been studied 

[12-15]. Spin injection from ferromagnetic Co into graphene has been achieved [16], and recently 

highly efficient spin transport in epitaxial graphene on SiC has been reported showing spin 

transport efficiencies up to 75% and spin diffusion lengths exceeding 100 m [17]. Also it has been 

predicted theoretically that graphene nanomesh structure should show magnetic properties [18]. 

 

An alternative approach to graphene spintronics has been proposed by considering ferromagnetic 

insulator (FMI)-on-graphene structures [19, 20]. In these devices the spin manipulation is achieved 
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via the exchange interaction between the charge carriers in graphene and the localized magnetic 

electrons of the magnetic atoms in the FMI. Also the possibility to control the spin dependent 

electrical current using a ferromagnetic gate has been discussed in several works [21-25]. Due to 

the spin splitting of the electronic states a spin polarized current is generated, and it can be 

controlled by the gate voltage. A drawback in these structures is that due to the lack of the energy 

band gap, the spin polarization in a 2D monolayer graphene is limited  [21-23]. The situation is 

more favorable in bilayer graphene due to its specific electronic structure, as discussed by 

Semenov et al. [25] and Hung Nguyen et al. [26]. Strong resonant tunneling effects and large 

magnetoresistance behavior have been predicted [26, 27] in the case of the ferromagnetic 

insulator/bilayer graphene-structures. The value of the strength of the exchange interaction at the 

graphene/FMI interface is unknown so far, but in the case of the EuO/Al-system an experimental 

estimate Jexch=15 meV for the exchange coupling parameter has been reported [28]. This value 

would be large enough to cause, e.g., a significant spin splitting of the electronic states in 

graphene [23]. Recently even a much larger value for the exchange parameter in an 

EuO/graphene-system was estimated based on first-principle calculations [29]. 

 

In the present paper we theoretically study the properties of a ferromagnetic graphene SET, which 

consists of a FMI layer on top of a graphene QD connected to drain, source and gate electrodes, 

also made of graphene. Especially we study the magnetic polaron (MP) formation inside the QD in 

the case where the graphene/FMI structure is on a SiC substrate, which transforms the relativistic 

massless Dirac fermions in graphene into ordinary charge carriers having a mass. The 

EuO/graphene/SiC-structure was chosen as a model system, because EuO is an ideal isotropic 

ferromagnetic insulator, the magnetic properties of which are well known. Furthermore, the 

fabrication of ferromagnetic EuO thin films on graphene has been demonstrated recently [30, 31]. 

The advantage of the SiC substrate is that an existence of a band gap has been reported in the 

graphene/SiC system [32]. Later the results of Zsou et al. [32] have been questioned by other 

groups [33-35]. However, there are alternative proposals for insulating substrates or 

nanostructures, which also should induce a band gap in graphene, such as hexagonal boron nitride 

(h-BN) [36], graphene nanomesh [37], hydrogenated h-BN [38], and nanoperforated graphene 

[39]. Therefore, our assumption of a band gap in graphene is reasonable. The magnetic polaron 

means a coupled system consisting of a charge carrier together with the enhanced spin 

polarization of the magnetic lattice around the carrier. The MP formation has been studied 

intensively, both theoretically [40-47] and experimentally [48-53] in the case of anti- or 

paramagnetic II-VI compound semiconductors. Recently we have extended the theoretical 

treatment to ferromagnetic III-V compound semiconductor QDs and SETs [54, 55]. In the present 

paper we properly modify our previous model and apply it to graphene/FMI QDs and SETs. An 

important difference between the QDs made of ordinary magnetic semiconductors and those 

made of graphene is the smaller permittivity in graphene. This results in, e.g., a much larger 

Coulombic interaction between the confined charge carriers inside the graphene QD. 
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2 Model We study the ferromagnetic graphene SET structure shown in Fig.1. The epitaxial single 

layer graphene is sandwiched between an insulating substrate and a ferromagnetic insulator 

(FMI). The graphene QD is separated from the source (S) and the drain (D) electrodes by thin 

potential barriers. The electrical coupling between the electrodes and the QD is due to the 

tunneling of the carriers through the thin barriers. A simplified energy diagram vs. position is 

shown in Fig.1 (c). The value of the Fermi energy EF can be controlled by the gate voltage Vg. We 

assume that EF is a linear function of Vg, and that at zero bias the bottom of the dot potential is 

equal to EF, as shown in Fig.1 (c). In the treatment of the MP formation we only consider the 

electrons that take part in electrical conduction in the Coulomb blockade (CB) regime. Then we 

only take into account the two uppermost singly occupied energy levels with energies 0
d  and 

0
d U  , as shown in Fig.1 (c). Here U is the Coulomb repulsion parameter between two electrons 

inside the graphene QD. The lower energy levels below 0
d  are assumed to be irrelevant for the 

charge transport and the MP formation. The number of electrons in the graphene QD can be 

controlled by the gate voltage. In the case of the simple model system shown in Fig.1 the QD 

occupancy can be 0, 1, or 2, depending on the occupancy of the levels 0
d  and 0

d U  . 

In our model system a SiC substrate was chosen, because it generates a band gap in the electronic 

structure of graphene, which changes the massless Dirac fermions into ordinary charge carriers 

with a finite mass. Zhou et al. [32] have shown that in an epitaxial graphene on the SiC substrate 

the band gap Eg = 0.26 eV is induced, when the graphene-sublattice interaction breaks the 

sublattice symmetry. Independent of the origin of the band gap the energy bands in the 

graphene/SiC system near the band edge are given by 
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Fig.1. (a) Top view of the graphene SET including the graphene quantum dot (QD) and source (S), drain (D) and gate 

(G) electrodes. (b) Cross section of the graphene SET including the ferromagnetic insulator layer (FMI) on top of the 

graphene quantum dot (C-QD) and the graphene electrodes (C), all on a SiC substrate. (c) Energy diagram vs. position 

for a ferromagnetic SET showing the potential barriers that separate the QD from the source and drain electrodes. 0
d  

and 0
d U   are the two spin degenerate dot energy levels that participate the charge transport through the SET. The 

Zeeman splitting of these energy levels is not shown. U is the Coulomb repulsion energy between two electrons in the 

QD. The bottom of the dot potential is assumed to be equal to the Fermi energy EF, when the gate voltage of the SET is 

zero. 
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Now we can treat the electrons inside the disc-like graphene QD with a radius R0 as ordinary 

charge carriers, as we did in our previous paper in the case of magnetic semiconductor QDs [54, 

55]. 

In the CB regime a SET can be described by the Anderson Hamiltonian [56, 57], which is given by 

        † 0 † †

, ,

. .A d
S D S D

H E c c d d Un n V c d h c     


 

 
 

 

      k k k k
k k

k                                         (3) 

 

Here †c k ( c k ) creates (destroys) a spin- charge carrier with momentum k  and energy  E k given by 

(1) in the source (S) or drain (D) regions. †d ( d ) creates (destroys) an electron with spin  at the non-

interacting energy level 0
d  in the QD region, and †n d d    with   or   is the occupation number 

operator. The last term in the Hamiltonian (3) is the hybridization of the dot region to the source and drain 

electrodes via tunneling, which gives rise to a lead coupling S D
      with 

  
2( )

( )
2S D

S D
V E E   


   kk

k . The Hamiltonian (3) gives an adequate description for the relevant 

electronic structure of the dot in a nonmagnetic SET. However, in the case of the ferromagnetic SET we 

must add to (3) the Heisenberg Hamiltonian Hm describing the ferromagnetic subsystem (FMI in Fig.1) and 

also the exchange interaction Hexch between the charge carrier spin in graphene and the localized magnetic 

moments of the magnetic atoms at the graphene/FMI interface. The former is given by 

           '
, '

( , ') z
m L BH I g B S    R RR

R R R

R R S S                                                                             (4) 

where ( , ')I R R  is the ferromagnetic coupling constant between the magnetic atoms, and 
RS  is the 

spin operator for the total spin of the magnetic atom at a lattice site R . The last term in (4) gives 

the ordinary Zeeman energy when an external magnetic field B  is in the z-direction. Using the 

Hamiltonian (4) the average spin polarization zS
R of the magnetic atoms can be calculated in the 

mean-field approximation. The exchange interaction Hexch is given by  

            
2exch exchH J    R

R

σ
r R S                                                                                               (5)              

 
where ( )exchJ r R  is the exchange interaction potential, which is assumed to be of the contact-

type,    exch exchJ J   r R r R , and exchJ  is the exchange interaction parameter (constant). The 

interaction (5) leads to the spin-polarized energy levels in the QD region due to the giant Zeeman 
effect : 
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Here /areaU NS  , Sarea is the area of the device, and the summation over R  goes through the 

magnetic atoms at the graphene/FMI interface, the number of which is N. In the variational 

calculation of the minimum in the total energy for the ferromagnetic QD we use as a two 

dimensional trial wave function the ground state wave function    2 2
0 exp / l     for a 

cylindrical QD [58]. Here ( , )x y   and l  is the decay parameter, which we shall use as a 

variational parameter when seeking the minimum of the total energy. Then the unperturbed dot 

energy 0

d  in (6) is given by 

          
2

0 2 2

2

1
*

22 *
d m l

m l
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                                                                                                       (8) 

where   is the confining parameter of the QD. 

The retarded Green’s function for the total Hamiltonian tot A m exchH H H H    can be calculated in 

the same way as in the case of nonmagnetic quantum dots [59, 60] using the equation-of-motion 
technique. The final result is given by 
 

        
   (1) (1)

1
( )

d d

n n
G E

E E E U E

 


   
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 

    
                                                                         (9) 

 
where   denotes the opposite spin to  . The average occupation numbers can be calculated 
using Green’s function (9) and the fluctuation-dissipation theory [60]: 
  

       Im /Fn d n G i                                                                                                     (10) 

 
Here  Fn   is the Fermi-Dirac distribution function. The equations (9) and (10) are interrelated, 

which means that they must be solved self-consistently. In the case of the magnetic SET the self-
energy      T exchE E E 

     in Green’s function (9) includes the tunnelling contribution 
T

  as 

well as a contribution 
exch

  from the exchange interaction (5).  

 
The total free energy of the QD can be divided into two parts as 

        tot c mF F F                                                                                                                              (11) 

where 
cF  is the contribution from the electronic subsystem, and it can be expressed as 

          2Im
2

c F

dE
F n E G E E

 
 
                                                                                              (12) 

The second term in (11) is the contribution from the magnetic subsystem. Following the previous 

treatments of the magnetic polarons in QDs [42, 43], we employ the local mean-field theory 

(LMFT) in the calculation of the magnetic properties of the ferromagnetic graphene QD. The 
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effective molecular field  effB R acting on the magnetic atoms and including the spins of the 

charge carriers can be derived by calculating the poles of the Green’s function 
',S S  

R R
 [61]:  

             
2

' 0
'

2 , ' / /
2

z exch
L B L Beff

J
B B I S g n n g  

 


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R

R R R R                                    (13) 

The first two terms in (13) describe the ordinary molecular field acting on the magnetic atoms in a 

ferromagnetic system, whereas the last term gives the molecular field due to the charge carrier 

spin polarization n n
 
 . This is the molecular field that causes the MP effect. 

The average spin polarization of the magnetic atoms is calculated in the large dot limit, i.e., 

assuming that the number of magnetic atoms in contact with the dot is so large that the magnetic 

properties of the dot/FMI interface are similar to those of the bulk ferromagnet. Then, using LMFT 

the average spin polarization is a continuous function of position, and it is given by 

          /z
L B BS effS SB g B k TR R                                                                                                    (14) 

where BS is the Brillouin function for a magnetic atom with the total spin quantum number S. The 

magnetic part of the free energy Fm can be calculated in the usual way [42, 43, 54, 55], and the MP 

binding energy is defined as the energy difference 

           z z

tot tot totR
F F S F S                                                                                                          (15) 

where  z

tot R
F S  is calculated in the case of the inhomogeneous position dependent spin 

polarization z

R
S  induced by the effective molecular field (13), whereas  z

totF S  is calculated in 

the case 0 0   in (13), i.e., by neglecting the effect of the charge carrier spins on the average spin 

polarization at the graphene/EuO interface. This allows us to calculate the total free energy as a 

function of the wave function decay parameter l , which is used as a variational parameter. The 

MP is considered stable, if 0totF  .   

 

3 Results and discussion We have calculated the local spin polarization at the graphene QD/FMI 

interface and the MP binding energy in the case where the FMI layer in the SET structure shown in 

Fig.1 is a ferromagnetic EuO thin film. We have chosen EuO as the FMI layer since it is an almost 

ideal ferromagnet, the magnetic properties of which can be described accurately using the 

Brillouin function (see Eq. (16)). Furthermore, EuO can be fabricated in a straightforward manner 

by oxidizing at low temperatures a metallic Eu thin evaporated on top of the single layer graphene. 

The radius of the two-dimensional disc-like graphene QD is R0=10 nm. The other parameters used 

in the calculation are the following: Curie temperature TC=70 K (EuO), lattice constant a0=5.14 

(EuO), Fermi velocity vF=106 m/s (graphene), band gap Eg=0.26 eV (graphene on SiC), and the spin 
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quantum number S=7/2 (Eu atoms). The charging energy 2
0 0/ 4 sU e r   , which in ordinary 

semiconductor QDs with features 20 nm and permittivity 10S  , is a few meVs, is much larger in 

graphene QDs due to the much smaller permittivity [40]. Since the exact value of U is unknown, 

we have performed the calculations using two different values, U=0.02 eV and U=0.1 eV. In the 

wide band width limit the total level broadening parameter  Im   is assumed to be constant 

with the value 4 meV. The numerical tests showed that the MP formation depends very weakly on 

the level broadening. The most important material parameter in the ferromagnetic graphene SET 

is the exchange interaction coupling Jexch . Unfortunately, so far no experimental data for this 

parameter are available in the case of the graphene/EuO interface. However, based on the 

experimental results obtained in a EuO/Al system, a value Jexch=15 meV has been estimated 

previously [18]. Recently even a much higher value for Jexch was estimated based on first principle 

calculations [29]. Also in the case of other FMIs higher values, such as Jexch=0.065 eV, have been 

suggested [16]. However, all the estimated values are still much smaller than the experimental 

value Jexch=0.17 eV for bulk EuO [41]. Due to the lack of experimental results for the exact strength 

of the exchange interaction in the graphene/EuO structure we have calculated the properties of 

the MP in the cases of weak (Jexch=0.02 eV) and intermediate (Jexch=0.05 eV) couplings. 

Fig.2 shows the average spin polarization at the graphene/EuO interface at the centre of the 

graphene QD (R=0) and the MP binding energy vs. temperature, when the gate voltage is 0.8 V. 

The original Curie temperature of EuO, TC=70 K, increases to 92 K in the case of the intermediate 

coupling (Jexch=0.05 eV). Also in the case of the weak coupling (Jexch=0.02 eV) the MP formation 

occurs (Fig.2 (b)), especially at temperatures close to TC, but now the increase in TC is only about 3 

K. The results show that there is a significant increase in the local spin polarization and the clear 

MP formation even in the case of the weak coupling. 
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Fig.2. (a) Average spin polarization of the magnetic Eu atoms at the graphene/EuO interface at the centre of the QD 

(R=0) as a function of temperature at the gate voltage 0.8 V and in the case U=0.1 eV. The solid curve shows the 

original spin polarization vs. temperature in EuO, when the MP formation is neglected. The dashed curve has been 

calculated in the case of a weak coupling, Jexch=0.02 eV, and the dash-dotted curve in the case of the intermediate 

coupling, Jexch=0.05 eV, the MP formation included in both cases. (b) MP binding energy vs. temperature in the cases 

Jexch=0.02 eV (the upper curve) and Jexch=0.05 eV (the lower curve), when the gate voltage is 0.8 V. 

 

Figs. 3 and 4 show the gate voltage dependence of the average spin polarization at the 

graphene/EuO interface at the centre of the QD (R=0). The results of Fig.3 have been calculated in 

the case of the intermediate coupling (Jexch=0.05 eV), and those in Fig.4 in the case of the weak 

coupling (Jexch=0.02 eV), both at T=TC=70 K. An interesting result is that a significant spin 

polarization can be switched on and off at the graphene/EuO interface by the gate voltage of the 

SET: the spin polarization increases from zero to 0.8-1.2, when the gate voltage changes from zero 

to 0.3 V. The gate voltage dependence of the spin polarization can be explained as follows: At low 

values of Vg the Fermi energy EF is below the energy levels (1)

d



 and (1)

d
U


  (see Eq.(6)), they both 

are unoccupied, 0n n
 
  , and consequently the last term in the effective magnetic field (15), 

which is responsible for the MP formation, vanishes and the MP formation is not possible. On the 
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other hand, when EF exceeds  (1)

d



 with increasing Vg , but remains smaller than (1)

d
U


 , then 

1n

  and 0n


 , and Beff in (15) increases and the MP formation starts. 

 

 

Fig.3. (a) Spin polarization at the graphene/EuO interface at the centre of the QD and (b) the MP binding energy vs. 

gate voltage at T=TC=70 K in the case of the intermediate coupling Jexch=0.05 eV. The solid (dashed) curves have been 

calculated in the case of the Coulomb repulsion parameter U=0.1 eV (0.02 eV). 

 

Figs. 3 and 4 indicate that a large Coulomb repulsion between the electrons inside the QD favors 

the MP formation, especially in the case of the weak coupling, Jexch=0.02 eV: Fig. 4 shows that the 

MP binding energy totF  becomes larger when U increases from 0.02 eV to 0.1 eV. This is due to 

the increase of the effective magnetic field (15) with increasing U, when the energy level 
(1)

d
U


 exceeds EF, and n


 decreases. This is an important advantage in the graphene-based SETs 

as compared to ordinary semiconductor SETs, since in graphene the permittivity is small [40] and 

consequently the Coulomb repulsion is large. 
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Fig.4. (a) Spin polarization at the graphene/EuO interface at the centre of the QD and (b) the MP binding energy vs. 

gate voltage at T=TC=70 K in the case of the weak coupling Jexch=0.02 eV. The solid (dashed) curves have been 

calculated in the case of the Coulomb repulsion parameter U=0.1 eV (0.02 eV). 

 

 

4 Conclusions We have presented a model for the magnetic polaron formation in ferromagnetic 

graphene SET. The model predicts that the MP formation enhances the ferromagnetic properties 

of the graphene/EuO interface in the area of the quantum dot of the SET even in the case of a 

weak exchange coupling between graphene and EuO. The large Coulomb repulsion between the 

electrons inside the QD further increases the MP binding energy. We have shown that the spin 

polarization and the MP binding energy can be controlled by the gate voltage. This could pave the 

way to novel miniaturized low power memory devices, where the information is stored in the net 

spin polarization of the QD, and the information content then is read via the current through the 

graphene SET. 
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