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Heat transport through a Josephson junction
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2Low Temperature Laboratory (OVLL), Aalto University School of Science, P.O. Box 13500, 00076 AALTO, Finland
(Received 17 December 2012; published 29 March 2013)

We discuss heat transport through a Josephson tunnel junction under various bias conditions. We first derive
the formula for the cooling power of the junction valid for arbitrary time dependence of the Josephson phase.
Combining it with the classical equation of motion for the phase, we find the time-averaged cooling power
as a function of bias current or bias voltage. We also find the noise of the heat current and, more generally,
the full counting statistics of the heat transport through the junction. We separately consider the metastable
superconducting branch of the current-voltage characteristics allowing quantum fluctuations of the phase in this
case. This regime is experimentally attractive since the junction has low power dissipation, low impedance, and

therefore may be used as a sensitive detector.

DOI: 10.1103/PhysRevB.87.094522

I. INTRODUCTION

Thermal effects in metallic nanostructures are a subject of
intense experimental and theoretical research.! In this paper we
consider a particular example of such a structure—a Josephson
junction between two superconductors. Although Josephson
junctions are very important building blocks of many low-
temperature devices, their heat transport properties are still not
fully understood and there exist only a few theoretical studies
of this issue in the literature. Guttman et al.’> have derived
the heat current through a Josephson junction with different
temperatures of the leads and biased below critical current
so that the Josephson phase was fixed. Subsequently, Zhao
et al.>* have corrected a sign error in their result and extended
it to the case of arbitrary transparency of the barrier between
the superconducting leads. Their theory has been confirmed in
a nice recent experiment by Giazotto and Martinez-Perez.

Frank and Krech® have considered a voltage biased
Josephson junction and demonstrated that the superconducting
lead with a smaller gap gets cooled in a certain range
of bias voltages. They have derived an expression for the
cooling power of the junction, which was a straightforward
generalization of the well-known result for the normal metal—
insulator—superconductor (NIS) tunnel junction.”®

In this paper we develop a general approach to this problem,
which covers the two regimes discussed above as limiting
cases. First, we allow the Josephson phase to depend on time
in an arbitrary way and derive the expression for the heat
current, or cooling power, under these conditions. Next, we
determine the actual time dependence of the phase by solving
the differential equation of motion, which describes phase
dynamics under given bias conditions and in the presence
of noise of the environment.”!° More specifically, we use
the model of resistively and capacitively shunted Josephson
junction (RCSJ model) with the shunt resistance much smaller
than both the resistance quantum and the resistance of the
junction itself (see Fig. 1). Afterwards, we find the cooling
power averaged over time and noise which can be measured
in an experiment.

At bias currents below the critical one we use a more
elaborate technique treating the Josephson phase as a quantum
operator. It is necessary to ensure the detailed balance between
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forward and backward rates of the quasiparticle tunneling. In
this limit we study the dependence of the cooling power on the
bias current and on the difference between the temperatures of
the environment and of the superconducting leads. We believe
that the low bias regime is experimentally most interesting
because the junction in this case has low noise, low impedance,
and low thermal conductance, which opens up an opportunity
of its application as a sensitive detector. Apart from that, we
study the noise of the heat current. It is also an important
characteristic of the junction in view of its potential detector
applications.

On the technical side, we perform the usual second-order
perturbation theory in tunnel Hamiltonian connecting the two
superconducting leads. In doing so we use the full counting
statistics (FCS) approach to the heat transport which has been
recently successfully applied to similar problems.'"'> The
method has an advantage of providing the information about
the cooling power of the junction, its noise and, eventually, all
cumulants of the heat current at one step.

The paper is organized as follows: in Sec. II we introduce
the model; in Sec. III we derive FCS of the junction; in Sec. IV
we derive the general expression for the cooling power; in
Sec. V we consider the heat current noise; in Sec. VI we study
average cooling power under various bias conditions; and,
finally, in Sec. VII we summarize our results. Some details of
the calculations are given in the Appendixes.

II. MODEL

We consider a Josephson tunnel junction with the normal-
state resistance R connecting two superconducting leads with
the energy gaps Aj,A; and the temperatures 77,7,. The
junction is shunted by a capacitor C and by a resistor Rg
kept at temperature 7*, as shown in Fig. 1. The ohmic
resistor provides the simplest model for the electromagnetic
environment of the junction. Our primary goal is to find the
heat current through the junction or, more precisely, the cooling
power of the superconductor 1 P(). The latter is defined as the
amount of energy extracted from superconductor 1 per unit
time. We will also be interested in the noise of the cooling
power.

©2013 American Physical Society
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FIG. 1. A Josephson junction between two superconductors with
the gaps A, A, and temperatures 7}, 7,. The junction is shunted by a
capacitor C, a resistor Rg, and the whole circuit is biased by a current
I,. The dynamics of this circuit is described by RCSJ model (7).

The junction is described by the Hamiltonian
H = H, + H, + Hr, )

where

Hy = Z |: Z elkcj;kcak + Ajcppey—k + Alc;kcik:|

ko Lo=t.l
(@)

is the Hamiltonian of superconductor 1,

H, = Z |: Z exay ok + Aaayeay i + Azai_kalk:|

k Lo=t.)
(3)

is that of superconductor 2, and

Hr =) Y [twe? al,con+ 1, iaon] 4
kn o=1,]

is the tunnel Hamiltonian. Note that by means of a suitable
gauge transformation we made the superconducting order
parameters in the leads, A, A, real. After this transformation
the Josephson phase ¢ is moved into the phase of the tunneling
amplitude. We will treat the phase ¢ as a quantum operator,
which is indicated by the hat. We further assume that the
quasiparticle distribution functions in the leads are Fermi
functions,

fHiE)=1/(0 + /0Ty j =12, S

Thus we ignore possible charge imbalance!? in the leads.

Next, we will assume that the shunt resistance is much
smaller than the resistance quantum Ry = h/e’> and the
resistance of the junction,

Rs < Ri,R. (6)

In this case, and at sufficiently high bias current and/or
temperature, one can treat the Josephson phase as a classical
variable. Its dynamics is then described by the RCSJ differen-
tial equation®'®

h 1 h¢

Cc— - 1 1 :Ix s 7
2€+R52€+ csing + &5 @)
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where &g is the noise of the resistor Rg. At high temperature it
is white Gaussian noise with the correlator

(Es(Es(t) =

2k T 8t —1'). 8)

S

The critical current of the junction, /¢, is determined by the
integral'*

Ay _
Io = L/ JE A Ao[1 =2 fi(E)] ©)
eR Ay

\/EZ - A%\/Ag —E?

Here we have chosen A; < A,, i.e., superconductor 1 is
supposed to be weaker than superconductor 2.

Equation (7) describes the motion of an effective particle
with the coordinate ¢ in the tilted Josephson potential

U(p) = —E cosp —hl.p/2e, (10)

where E; = ¢ /2eis the Josephson coupling energy. In order
to ensure classical behavior of the phase in the wide range of
parameters we also require

E; > Ec, (11

where Ec = ¢?/2C is the charging energy. In what follows
we will focus on the regime of weak noise and require the
condition

kpT* S E; (12)

to be satisfied. This regime is the most interesting for a simple
reason: if the environment temperature becomes comparable
to or exceeds the Josephson energy, the superconducting
branch of the current-voltage characteristics becomes strongly
smeared and the heat transport properties of the Josephson
junction become qualitatively similar to those of an NIS tunnel
junction, which is well investigated.

At low bias currents, I, < Ic, and at sufficiently low
temperatures the classical approach based on Eq. (7) is
insufficient and the quantum nature of the phase becomes
important. In this regime the phase is fluctuating around its
equilibrium value,

@o = arcsin(l,/I¢), (13)

and the charge and heat transport properties of the junction
may be expressed via the two quantum phase correlation
functions,?

P(E) = £ @O-?)2 / r_ e (€/90/24i90)/2y
27h ’ (14)
P(E) = / dt o E (gi9(0/2,=i9(0)/2)
2nch
These functions are expressed via the effective impedance of
the electromagnetic environment of the junction, which in our
model reads

. 1 2€IC
Zs(w)=|—iwC+ — +
Rs

—1
cos (p()) . (15)

—ihw

The functions (14) may be explicitly evaluated and have the
form'

dr .
P(E) = 0(Enas — |E) / L0 (i6)
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75(E) = 0(Emax — |E|)/ ;—IheiEt/h_J(l)’
a7

2T+
@? + R2C? (0 — 0?2’

J() = —

’

Ry /‘ dw o (coth 222 (cos wt — 1) — i sinwt)

Ry

where w; = /2elc/hC(1 — 13/1(2?)1/4 is the frequency of
small oscillations around the minimum of the Josephson
potential. Here we have also introduced an effective high-
energy cutoff,

Epu ~ 2E L Lz in (18)
R -2 - 2= —arcsin—= ) |,
me ! 2 Ic\2 Ic

which equals the height of the barrier in the tilted Josephson
potential (10). This cutoff comes from the fact that at higher
energies the Gaussian approximation used to derive the
correlation functions (16) and (17) is no longer valid. The
high-energy cutoff (18) is important only in the narrow range
of bias currents close to Ic.

III. STATISTICS OF THE HEAT TRANSPORT

In order to introduce the concept of the full counting
statistics of the heat current we first define the energy &
extracted from superconductor 1 during a time ¢. Since the
heat transport through the junction is a stochastic processes,
the energy &; is a random value described by a certain
probability distribution W(¢,€;). Our goal in this section is
to find the cumulant generating function corresponding to this
distribution,

F(t,x) =1In Udf; e/ W(t,f,’l)], (19)

where x is the counting field. The function (19) can be
expressed in the form

F(t, %)
[tr[eiHlX/he
=In

Provided the cumulant generating function is known, the
cooling power is given by its derivative,

(&)

pPL — = —jh—
at 91 dx |,

—iHt/h yiHix/h

H/k,,Teth/h]:|
(20)

trle=H/ksT]

2y

Similarly, zero-frequency spectral density of the heat current
noise is defined as follows:

20 8T

ot ax* 22)

el
s = ol - 7] = }

Both the cooling power and the noise fluctuate in time
following the fluctuations of the phase ¢. Hence, in order to
obtain experimentally relevant parameters one should further
average Eqs. (21) and (22) over these fluctuations.

One can derive an explicit expression for the cumulant
generating function (20) by means of the second-order per-
turbation theory in the tunnel Hamiltonian Hy. The details
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of this derivation are summarized in Appendix A. Here we
directly cite the result. The function F(¢, x) is the sum of two
contributions:

Ft.x) = Fapt, x) + Fut, %), (23)

where F,,(¢t,x) and F,(t,x) originate from, respectively,
quasiparticle and Cooper pair tunneling through the junction.
Defining the two functions characterizing the superconducting
leads (j = 1,2),

Wi () = /de,- B fi(E) + e;Eﬂm[l = FIEDY

(24)

where E; =/ ejz. + A?, and, assuming that the Josephson
phase is classical, we obtain the quasiparticle contribution in
the form

[ () — 9"
Fopp=——— | dr' [ dt"cos ——"——=
" nhe?R ,/0 /;oo €08 2

x AW — 1" + )W (' —1")
+ W@ =t + W " — ). (25)

The Cooper pair, or Josephson contribution, has a similar
structure,

1 t 4 ¢ "
fj — / dt/ f dt// cos ¢( ) + q)( )
nhe’R J, oo 2

< AW @ ="+ 0w @ —1")
+ W@ =t + W " =)}, (26)
but it depends on the sum of the two phases, ¢(t') + ¢(t”),

instead of their difference. Besides that, it contains another
pair of the functions,

A
W.’(t)Z/de-—’
/ '2E;

% [{elEjl‘/hfj(Ej) _ e—iEjl‘/T’L[l _

FEPH. (@27

Expressions (25) and (26) are valid for arbitrary time depen-
dence of the Josephson phase (7).

If the phase is quantum, the cumulant generating functions
have to be modified and take the form

1 t t
Fop = ———— [ dt’ dt”
P 2whe?R /0 /0

X {((e7IW2I00/2) 4 (101201012

X Wl‘IP(t/ _ t// + X)qup(t/ _ t//)

+ (e~ 1PUN/2g10UN/2) 4 (pi01")2,=i0(1)/2y)

x WP — 1" + )WiP " — "}, (28)

dt’ dt”
Fi= 2nhe2Rf /

{(( ip@t"/2 IW(T”)/Z )+ (e i¢(t’)/2€fi¢)(z”)/2))
x W/t —t" + )W —1"
T (P02 92y 4 (mi0E/2=i00)/2yy
x W/ (" =t + Wi " — 1)} (29)
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The angular brackets here stand for both quantum-mechanical
and statistical averaging. At bias currents below I the
fluctuations of the phase become Gaussian, and the average
phase correlators, appearing in Eqgs. (28) and (29), may be
expressed via the functions (16) and (17). At I, > I¢ the
classical dynamics of the phase sets in, and under conditions
(6), (11), and (12) one can replace the cumulant generating
functions (28) and (29) by the classical ones, (25) and (26).

IV. COOLING POWER

We are now in position to evaluate the cooling power of
superconductor 1. In the regime of classical phase fluctuations
Egs. (21), (25), and (26) lead to the following result:

PO = PO + PSV(1), (30)

where the quasiparticle cooling power has the form

My —
Py (1) = —

t
f di'[WiP (@ — YWt — 1)

me’R J_o

F WG — WP — 1)] cos M, G1)

and the Josephson contribution reads

i ! ARY / /
P’(l)(t):_neZR/ dr'[Wj @ — Wit — 1)
—00

+ W/ @ — W5 (' — 1)] cos M. (32)

It is interesting to compare the results (30)—(32) with the

well-known expressions for the charge current,'®!’
1(t) = Igp(0) + 1,(0), (33)
: 2
i
I,(t) = —— ar'{wi @ — Wi’ @ — v
ap(?) <heR ). {1( YW ( )
1) — ('
— WPt — W (' — 1)) sin w, (34)

l' t
I — / Jop _ 4 Jop _ 4
() — /_oo di'{wi @ -t YWj @ —1)

— W — W] (' = 1)} sin M. (35)

One observes two main differences between the cooling power
and the charge current: (i) the charge current contains sines
of the combinations ¢(r) & ¢(¢') while the cooling power
contains their cosines, and (ii) the charge current contains
the functions W}”, W, while the cooling power contains their
time derivatives W{”, W/ .

Combining Eqgs. (31) and (32) with (34) and (35) one can
easily derive the identity reflecting the energy conservation in
the junction,

h¢

dA
PO+ P2 =200, — 1)+ S (36)

dt’

where P is the cooling power of superconductor 2, which
differs from P1 (30)—(32) by interchanging the indexes
1 and 2, and A is a certain combination of the integrals,
which vanishes if the phase varies in time slowly. The last
term on the right-hand side of Eq. (36) drops out after the
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averaging because it is a full time derivative. Obviously, the
product hgl,,/2e is the work done by the external current
source. The term 7i¢1; /2e in the adiabatic limit reduces to the
time derivative of the Josephson energy —d(E; cos ¢)/dt and
vanishes upon the averaging. Hence the identity (36) shows
that the work of the current source is, on average, split between
the two superconducting leads. Moreover, if lead 1 is cooled
and P > 0, then according to Eq. (36) lead 2 is inevitably
strongly heated because it has to absorb both the power P
and the work of the current source. This effect is well known
for NIS tunnel junctions.'

Let us now consider a voltage biased Josephson junction
and put ¢(¢) = 2eV't/h. The cooling power takes the form

Cos

+ PD(V)sin[2e V1 /h]. (37)

sin

POy = POW) + PR(V) cos[2eVi1/m]

The quasiparticle contribution to it, Pq(ll))(V), becomes time
independent in this case and is given by the integral®

1
PRV = o [ 4B NGE = evina(E)
X (E = eV)LA(E —eV) = (E). (38)

Here we defined the quasiparticle densities of states in the
leads

Nj(E) = |EI0(IE| — Aj)/\E2 — A2, j=12. (39)

The amplitude of the “anomalous” oscillating term reads

cos

1
POV = T dE N\(E — eV)N(E)
e

A1 A,
E

X

LfI(E —eV)— fo(E)],  (40)

and the Josephson amplitude has the form

1% AA
Ps(iL)(V) = m/déldﬁ 122

[1 — fi(E1) — fo(E2)
X
(El + E2)2 — €2V2

H(ED) — fo(Er)

(E1 — E2)2 — €2V2 '
(41)

The amplitudes Pq(ll))(V) and P{})(V) are exponentially sup-

pressed in the limit of low bias voltage and low temperatures
eV, T, T, <« Ay — Aq. In this case we find

V2 AY? \%
Pq(;)(v) = A [me_A”kBTl cosh ¢
R A2 _ A2 ks Ty
2 1
—VkT eAz/kBTziI’
POV) = =(A1/Ay) Py (V). 42)

In contrast to that, the Josephson amplitude P{V(V) is not

s
exponentially suppressed. However, it is a linear function

of V,

PD(V) =a(A2/A) IV, 43)

sin
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and tends to zero at V = 0 for any values of the temperatures
T,T,. Here we have defined a numerical prefactor

k2 K'W1—-«?
VI=2 KW1T=k2)’

where K (x) is the complete elliptic integral of the first kind.
In the limit of zero bias, V — 0, the cooling power (37)
reduces to the form>™

alk)=1-—

(44)

2 [ E(E?>— A1A;cos @)

n__ =
PV = e2R/ dE - ;
SN NS

X LAI(E) = f2(E)], (45)

and only the contributions P} and P} survive.

If the voltage drop across the junction is not fixed, but
the phase changes adiabatically, ¢ <« min{A,A,,T},T,}, one
can approximate the cooling power by replacing V by ii¢/2e
and 2eVt/h by ¢ in Eq. (37). After that one arrives at the

approximate expression

h¢ he

My = pd 1)

PU() =Py, <2_e) + Py <§) cos ¢
Ay

+ hlc (46)
—_— _— Sin @.
* A] 2e ¢ 4

The last Josephson term of this formula is the full time deriva-
tive and it averages out to zero for any realization of the phase
fluctuations. Due to the same reason the Josephson component
results in the contribution ocw? to heat current noise, which
vanishes in zero-frequency limit. In order to detect it one has
to perform high-frequency noise measurements.

The components P} and P{) of the cooling power are

plotted in Fig. 2 and the Josephson component P{}) is shown

in Fig. 3. We observe that P)) and P} are even functions of

the bias voltage, while the component P! is an odd function
of it.

200

150

g 100
o

50 %

T T T T T T T
0 100 200 300

V @)

FIG. 2. The quasiparticle cooling power P,,(V) (solid line) and
the absolute value of the amplitude |P.s(V)| (dotted line). The
parameters are chosen as follows: A; = 100 peV, A, =200 eV,
R=1kQ, T\ =T, =230 mK.
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FIG. 3. The Josephson component of the cooling power Py;,(V)
for the same parameters as in Fig. 2.

V. HEAT CURRENT NOISE

Low-frequency heat current noise, or the noise of the
cooling power, Sp = [ dt'(§PV(1)8 P(V(1')), can be derived
from Eqs. (22), (25), (26) and has the form

Sp =S + 57. 47)
Here
s¢ =5z | LA\ — WG 1)
P 2m2R ), 1 2
.. 1) — ot
F W — WP — 1)} cos w (48)

is the noise associated with quasiparticle tunneling and
sh= - [ arpia - owla -
P — 27T2R = 1 2

. o)+ o)

+ W/ @ =Wy (' — 1)} co 3

(49)

is the Josephson contribution to the noise.
Considering again a voltage biased junction with ¢(¢) =
2¢V't/h, we find'®

1
ST = TR/dENl(E — eV)N2(E)E — eV)?
e

X {fi(E —eV)[1 — f2(E)]
+[1 = fi(E —eV)]f2(E)} (50)

The Josephson noise in this case takes the form
87 = Secos(V) cos[2eVt/h] + Sgn(V) sin[2eVt/R], (51)

where

1
Seos(V) = _eZ_R/dE Ni(E — eV)Ny(E)

A]Az(E - eV)
X AE—eVIl = fo(E)]
+[1 = fi(E = eV)]fa(E)}, (52)
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and

% A ASE
Sin(V) = ———— | deyde, 212251
V) ZneR/ ade—p

o S1(ED) f2(E2) +[1 = fi(EDIL — fa(Er)]
(Ey + Ep)? — e2V?

_ NEDI = fr(E)] 4 [1 = Ai(ED]A(E)
(El — E2)2 — €2V2 ’

(53)

Seos(V) and S, (V) are the amplitudes of oscillating compo-
nents of the noise and unlike S,,(V), which is always positive,
may change their sign at certain values of the bias voltage. For
example, the amplitude Sq,s(V) is negative ate|V| < A + A,
and positive otherwise.

In a typical experimental setup the time-averaged value of
the noise is measured. In this case the oscillating components
vanish and the noise spectral density is given by the quasipar-
ticle noise S% (50).

At zero-bias voltage, V = 0, the phase takes its equilibrium
value ¢, (13) and we get

1
Sp= o f dEN{(E)NAE)(E? — A, A cos ¢o)
CUAENL = HEN+11 = AEIAEY.  (54)

One can verify that in equilibrium, i.e., at 7} = T, = T, zero-
bias noise satisfies the fluctuation dissipation theorem in the
form

. ,0PD
Sp = 2kpT . (55)

T, T\=T,=T

where P( is given by Eq. (45).

The noise for typical values of the junction parameters is
plotted in Fig. 4. It exhibits characteristic peaks at bias voltages
eV = +(A, — Ay) and jumps at eV = (A, + Ay), which
are also seen in the cooling power and the current.

2.0x10™".

ap
— Y

"""""" Scos|

1.5x10™"8]

1.0x10™"]

SLE(W/HZ"™)

5.0x10"%}

00 T T T T T 1
-300 -200 -100 0 100 200 300
V (uv)

FIG. 4. The components of the heat current noise S% (V) (solid
line) and the |S5*(V)| (dotted line). The parameters of the junction
are the same as in Fig. 2.
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VI. EFFECT OF PHASE DYNAMICS

So far we have discussed a voltage biased Josephson
junction and a junction in superconducting state with a fixed
phase. In practice these regimes are not easy to achieve and, in
general, one has to consider a junction in combination with its
electromagnetic environment as depicted in Fig. 1. The effect
of the environment, and of the phase dynamics associated with
it, on the cooling power of the junction will be the subject of
this section.

We begin with the regime of high bias current and assume
that conditions (6), (11), and (12) are satisfied. The phase
in this case may be treated classically and obeys Eq. (7).
In order to simplify our analysis further, we will consider
an overdamped Josepshon junction assuming that 1/RsC >
/2elc/RC. This condition allows one to put C = 0 in the
equation of motion (7), which reduces it to the exactly
solvable' resistively shunted Josephson-junction model (RSJ
model). Some details on the RSJ model needed for our analysis
are briefly summarized in Appendix B. Formally, in order to
evaluate the average value of the cooling power one needs to
resolve Eq. (7) for ¢(#), substitute the result in Egs. (31) and
(32), and evaluate the path integral over the noise of the shunt
resistor £s(¢). However, at high values of bias current one
can avoid doing that and instead use a simple approximate
approach. In order to justify it, we note that the integrals
in Egs. (31) and (32) converge if t —t’ = 1/2eV (t), where
V(t) = h¢(t)/2e is the instantaneous value of the voltage. If
the condition

1 2 . eRskpT™

7 (8oLt +1/2eV(D)] — Sp(D)]7)e ~ IV <1 (56)
is satisfied, one can ignore the noise in Eq. (7) while solving
it on the short-time intervals of the duration ~#/2eV (¢). Then
from Eq. (7) one finds

V(t) = Rl — Ic sinp(1)], (57)
and the voltage is restricted to the interval
Rs(Ix — Ic) < V(1) < Rs(L + Ic). (58)

Condition (56) then translates into a simpler one,
e
I —Ic > ﬁkBT*. (59)

Thus, provided this condition is satisfied, one can make the
replacement (57) and perform the noise averaging in Egs. (30)—
(35) with the aid of the following approximate formula:

(ei[go(t)fw(t )]/2>§s ~ / dy eleRs(Li—Icsing)i—t )/ho,((p). (60)

Here o (¢) (Ref. 19) is the distribution function of phase (B1).
As a result, the average current (33)—(35) and the cooling
power (30)—(32) acquire the form

(I =/ doo ()11, Rs — IcRg sing) + Ic sing], (61)

-7

(PM) :/ deo (@)[Pyp(IcRs — Ic R sin )

-7

+ Pcos(IxRS - ICRS sin <P) COos 90], (62)
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FIG. 5. Time-averaged current (/) (61) (top panel) and cooling
power (P) (62) (lower panel) at different temperatures. The param-
eters are the same as in Fig. 2, i.e., A;(0) = 100 ueV, A,(0) =
200 peV, R =1 kQ. The temperature dependence of the energy
gaps A(T),A,(T) is modeled by Bardeen-Cooper-Schrieffer theory.
Besides that we have put 7; = T, = T and chosen Ry = 100 2. The
horizontal axis in both plots shows the average voltage drop across
the junction (V') given by Eq. (B2).

where
Ni(E
qu(V):/dE i

is the usual quasiparticle current.

The current (61) and the cooling power (62) are plotted in
Fig. 5 versus the average voltage drop across the junction
(V) (B2). As expected, strong noise of the shunt resistor
suppresses the superconducting branch of the /-V curve at
high temperatures. At the same time, it does not drastically
change the cooling power as compared to the voltage biased
case shown in Fig. 2. The only effect of the noise at high
bias (59) is the smearing of the peaks located at eV =
A, — Aj. This smearing is caused by the fluctuations of the
voltage in the interval (58).

Next, we consider a simple example of an overdamped
junction shunted by a noiseless resistor and put & = 0 and

— eV)Ny(E)
eR

[fI(E —eV) — f2(E)]
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C = 0 in the dynamical equation (7). This regime is formally
achieved in the limit 1/RsC > /2elc/hC, kgT*/E; — O,
and e’ Rg/h — 0. The model becomes exactly solvable in this
case because the condition (59) is always satisfied at I, > I,
and at I, < I¢ the phase is just pinned to the equilibrium
value ¢g (13). Hence at I, < I¢ the cooling power is given
by Eq. (45). At I, > I¢ Eq. (7) can be solved exactly and one
finds?®

hp() (17— I2)Rs
2e I, — I sinwpt

V() = (63)
Here wp = 2eRgv I2 — 12 &/ is the Josephson frequency

proportional to the average voltage (V) = Rgv/I? — IZ. 2. The
average cooling power is found by the time averaging of
Eq. (46) and reads

wo +1 /woy
(PMy = f dt{P{)(V) +cospPLUV)}.  (64)

27T 7 J
One can verify that in the limit kg7*/E; — 0 Eq. (64)
matches Eq. (62) because in this limit the phase distribution
function (B1) reduces to the form o' (¢) = v I? — 12 /27 (I, —
Icsing) for I, > I and o(¢) = 8[¢ — arcsin(l,/I¢)] for
Ix < Ic.
The time dependence of the cos ¢ at I, > I¢ reads

cosg = /12 — 1% cos wot/(lx — I sinwopt). (65)

With the aid of this result one can show that the term o< Peyg
in Eq. (64) identically vanishes.

In the most interesting low bias and low-temperature
regime, eV < kpTi,T» < Ay,A;, we can approximate the
quasiparticle cooling power by a simple formula which follows
from Eq. (42),

\/_n

A5/2

,/A A3
L eV —Do/kpT>
X|:1+§< >i|—\/kBT2€ } (66)

kpT

P(V) ~

{ /kB T, e_AZ/kBT]

Afterwards, the time integral in Eq. (64) is easily evaluated,
and at I, > I¢ one arrives at the result

(P =8P((V))
m APIVEpT e /Ml — [kgTy e /kaT2)

e2R

A3 =AY
(67)

Here the contribution

5/2 e~ /KTy IéR§+ (V)2

SP(V)) = \/>
(kT))?2,/ A2 — A2 R

arises from voltage oscillations (63).

It is clear from Eq. (68) that at low voltage, (V) < IcRs
the cooling power grows linearly with the voltage, § P o< [(V)].
This unusual behavior may be understood if one recalls that

(68)
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phase slips are responsible for the transport in this regime.
Indeed, at (V) < I¢ R the time dependence of the voltage (63)
reduces to a series of well separated pulses corresponding to
a sequence of phase slips. Hence one can express the average
cooling power as a product of the phase slip rate, which is
robustly related to the average voltage as I'\,, = e|(V)|/hm
by Josephson relation, and the energy carried away from
superconductor 1 by a single phase slip E,;,

SP((V)) = EpTps. (69)
Comparing Egs. (68) and (69) we find
rr/u)o
E) = / POV (@)ldt (70)
—1 /o
732 nAY e teskaT (JIZRS (V)2 an
V2w fa3-ay ok
32 R A5/2 —Ay/kgT, nll
v S ) € | x|' (72)

V2 R guyn a2 a2 e

The energy E ,; becomes voltage independent for (V) < Ic Ry
because the phase slips become well separated. Hence Eq. (69)
always leads to the linear dependence of the cooling power on
voltage in this limit. This conclusion holds for more general
models of Josephson dynamics. For example, weak noise,
kpT* < Ey, or finite junction capacitance do not change it.
The dependence of the cooling power of a noiseless Josephson
junction on the bias current /, and average voltage (V) is
shown in Fig. 6.

In the remaining part of this section we will generalize
the model introduced above and include the weak noise with
kpT* < E, into the analysis. Two types of phase trajectories
may be distinguished in this case: phase slips and Gaussian
fluctuations around a minimum of the Josephson potential
U(gp) (10). Accordingly, the cooling power may be expressed
as a sum of two terms

(PY) = Ppy + Py, (73)
where P, is the contribution of the phase slips and Py, is the
contribution of the Gaussian fluctuations.

Let us first consider the phase slip contribution. As we have
discussed above, it is given by the product

el(V)|

P, = 5
p h P

(74)

In the presence of noise the average voltage is given by Eq. (B2)
while the phase slip energy at |I.| > I¢ is still defined by
Egs. (71) or (72). At|1,| < I¢ every phase slip is accompanied
by a voltage pulse of the form

Rs(1e - I?)

Ic cosh (2eRg /1% — 12 1/R) — I,

which may be derived for Eq. (7) with C =0 and
&s = 0. The corresponding phase slip trajectory, ¢,s(t) =

V() = (75)
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FIG. 6. The average cooling power (P") (45) and (64) of a
resistively shunted Josephson junction at low bias and in the absence
of the noise. Top panel: (P} as a function of the bias current at
T\=T,, T\ > T, and T; < T5. Lower panel: (P") as a function
of the time-averaged voltage (V) = Rg\/I? — IZ; for comparison we
have also shown the quasiparticle cooling power P, (42) of a voltage
biased Josephson junction. The parameters are chosen as follows:
A =100 peV, A, =200 peV, R = 1kQ, Ry = 0.1 k2. For these
parameters we find /- = 212 nA and Ic Ry = 21.2 uV.

fol dt'2eV,(t')/h, connects the maximum, —m — ¢, and the
minimum, ¢y, of the Josephson potential. The phase slip
cooling energy then takes the form

Ep = / dt P [Vp(0)]
—00

T hRgA)? e to/ksTi

2 RkpT)32,/ A2 — A2
VIE=17 2 Ie+1
x (X 2 rctan ct , (76)
e e IC_Ix

which exactly matches the expression (72) at I, = I¢.

Let us now derive the contribution of Gaussian fluctuations
Py,. Provided the subgap quasiparticle resistance of the junc-
tion exceeds the quantum resistance, Re®2/%sTh > R, which
is often the case in experiments with small area junctions, we
may evaluate P, applying the theory of dynamical Coulomb
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blockade.'> In this way we arrive at the result

1
Py = 2R dE1dEyN\(E1)N2(Er)Ey

x {fi(ED[ — f2(E)IP(E| — E»)
—[1 = filED]f2(E2)P(E> — EY)}

e_<5q02)/2 COS@O
_T/dEldEZNl(El)N2(E2)

X

A1A, ~
E {AED — f2(E)IP(E, — E2)

—[1 = AIED] f2(E))P(E2 — E)). (77

Here the we have introduced the average square of the phase
fluctuations

(5¢%)  e’Rs /°° y
0

 coth =12
w 2T 5 (78)
w? + RiC? (a)2 — ‘03)

2 wh

and the functions P(E), P(E) are defined in Egs. (16) and (17).
They obey the detailed balance principle

P(—E) = E/BT"P(E), P(—E) =M P(E),  (79)

which ensures that Pgg =0 at 7y =T, = T*, as required
by thermodynamics. We also note that in the limit Rg — 0
one finds P(E) = P(E) = 8(E), (§¢*) =0 and the expres-
sion (77) reduces to Eq. (45) as expected.

Inthe limit Rg < Ry one can expand the function P(E) (16)
in powers of J(¢), which leads to the approximate expression

ezR G(Emax - |E|)
PE) = nhS2 202 (B2 — 12022
E? + R3C? (E? —h’wj)
E (8¢%)
X m + (1 — S(E) (80)

The function P(E) in this limit differs from P(E) only by
the sign in front of the first term. Within this approximation
and for equal temperatures of the superconducting leads, 71 =
T, = T, the Gaussian contribution to the cooling power (77)
takes the form

2e%Rg [ Fme E )
P, = dE| Py, (=) —e ¥ cos
©= Tan /o [‘“’(e) &

1
<)
“C\e E2+R§C2(E2—h2w3)2

E E
XN\ GET 1 " BT —1 ) 81)

The average cooling power affected by the
noise (73), (74), (81) is plotted in Fig. 7. Comparing it
with the cooling power of the noiseless junction, Fig. 6, we
observe two major differences. The first one is an expected
smearing of the sharp features of the (P)(/,) dependence by
the noise. The second difference becomes visible at || < I¢
and T; = T, = T, where the cooling power vanishes in the
absence of the noise but remains finite if the noise is present.
The noise induced cooling power is positive if 7* > T and
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FIG. 7. Time-averaged cooling power (P) (73), (74), (81)at T} =
T, = 230 mK and at various values of the noise temperature 7*. Other
parameters are the same as in Fig. 6. Top panel: Cooling power as
a function of the bias current, inset: zero-bias cooling power versus
the environment temperature 7*. Bottom panel: Cooling power as a
function of the average voltage for three different values of 7*.

negative in the opposite case T* < T. Thus, even at zero-bias
current one can cool the superconductor 1 by heating the
shunt resistor and heat it by cooling the resistor down; see
the inset in the top panel of Fig. 7. This interesting effect has
been predicted for an NIS tunnel junction.?!

Finally we briefly note that although phase dynamics
significantly modifies the average cooling power at low bias, it
only weakly affects the heat current noise. Essentially, one can
always use Eqgs. (50) and (54) to make estimates of the noise.
The reasons for that are simple. First, the energy carried by
one quasiparticle and the rate of quasiparticle tunneling in most
cases exceed, respectively, the energy carried by one phase slip
and the rate of phase slip tunneling. Second, the noise remains
finite even at zero bias and at 7| = 7, = T*. Thus its averaging
over phase motion may only lead to a certain smearing of the
bias dependence of the noise without qualitatively changing it.

With the help of Secs. V and VI, we can predict the
characteristics of an electronic thermometer based on a
Josephson junction between two different superconductors.
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To make a simple estimate of the sensitivity and the noise
properties, let us consider here a small superconducting island
of volume V = 100 nm x 50 nm x 20 nm and with energy
gap A;. This island is connected to a superconducting lead
with gap A, by a tunnel junction with normal resistance R,,.
The temperature dependence of the zero-bias resistance can
be used as a thermometer,

(V) Rgp(T)
Ry(T) = (—) = (82)
NI} ) 1= 12(2ek( T))

Equation (82) is derived from (61) and (B2) assuming
R;, > R,.One canachieve a sensitivity of 2.3 k€2 /K using the
parameters given in Fig. 2. In order to evaluate the performance
of such a thermometer, two aspects might be considered. Both

are derived from the heat balance equation applied to the
island:

ar o
Cez =P (I) + Pefph(T)' (83)

We include here the electron-phonon heat transfer?? P,_ ph 1O
balance the heat P()(¢) generated by the junction. We can then
verify that the thermometer does not perturb the island temper-
ature even if the heat capacity % ~ 8.5exp"!1*Te/T) of the
superconductor vanishes exponentially at low temperatures,
according to the BCS theory. Because (P!} is also suppressed
exponentially in the small voltage limit, the average junction
heating is negligible. Nevertheless, using the noise properties
derived in Sec. V allows one to expect a noise temperature
spectrum given by (55) and the Fourier transform of (83) in
the limit of small fluctuations,

$7(@) 2kpT? 1 84)
r(w) = - - .
P AP, 2
ST T Tph I+ (/)
In the low-frequency limitw < o, = (BP 0 BP‘ ”h —==)/C,,one

can estimate the zero-frequency noise of the 1sland temperature
to be S)/*(0) = 4.0 x 107° K/+/Hz at 230 mK.

VII. SUMMARY

In summary, we have analyzed the heat transport through
a Josephson tunnel junction. We have developed the full
counting statistics approach to this problem and derived
general expressions for the cumulant generating function of
the heat extracted from one of the superconducting leads (23)—
(26), for the corresponding cooling power (30)—(32), and for
the heat current noise (47)—(49). These general expressions
are valid for an arbitrary time dependence of the Josephson
phase. In analogy with the charge current, the cooling power
is the sum of the quasiparticle and Josephson contributions.
The latter contribution oscillates in time and averages to zero
if the junction is biased above the critical current. We have also
generalized all these results to the regime where the quantum
nature of the Josephson phase becomes important. Combining
these findings with the conventional theory of the Josephson
phase dynamics, we have derived the average cooling power
of the junction, which can be measured in the experiment. We
find, in particular, that at low bias the average cooling power
is proportional to the voltage drop on the junction. Finally, we
have also shown that zero-bias cooling power of the junction
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may be tuned by the heating or cooling the resistor connected
in parallel to it.
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APPENDIX A: EXPLICIT EXPRESSION FOR
THE GENERATING FUNCTION

In this appendix we derive an explicit expression for the
cumulant generating function F(z,x) (20) by means of the
perturbation theory in tunnel Hamiltonian. The first step of
our derivation is to transform F(¢, x ) to the form

e iH1/hg=H/ksT yiH1/h]

tr[e—H/ksT]

tr[
f(t,x)=1n|: i| , (A1)

where we have introduced the transformed Hamiltonian

H. — ¢~ tHx/h g oithix/h

P (A2)

Since the Hamiltonians H; and H, commute with H;, only the
tunnel Hamiltonian changes under this transformation. Thus
we get

H, = Hi+ H, + Hr(x), (A3)

where

HT(X) — e*iH]X/hHTeiH]X/Fl

- ZZ[tk eup/Z J; Cak(X) +tkn zzp/2 ! (X)aan]

o kn

(A4)

The operators ¢y ( )(),cj7 «(x) in this expression are defined as
follows:

—iHyx/h iHix /h
9

cr(x) =e
Ci,k(X) =e

Cok €

—iH\x/h & iHx/h
C, .

4

Next we perform Bogoliubov transformation of the opera-
tors:

Crk = ULkVrk — Ulk)/f_k, Clk = UlkVTT_k + wiryyk, (AS)

T T
Ape = UogQpk — V2RO, Gk = U2kOy_y + Uk k.

Here y,y' are the quasiparticle annihilation and creation
operators in lead 1 and «,af are similar operators acting in
lead 2. Besides that we have introduced the coherence factors
(here Ej; = /e?k + A?)

L+ 6"" (A6)

Mjk—T
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The averaging of the products of the quasiparticle operators
results in the distribution functions in the leads,

S ver) = AEW. () 0en) = fo(Ex). (A7)

After the transformation (AS5) the Hamiltonian H; acquires the
diagonal form

H = Z(élk — Ey)+ Z Elk[V;kVTk + J/Eknkl
X k

(A8)

The next step is two switch to the Heisenberg representa-
tion. In order to do that we split the total Hamiltonian into two
parts: the exactly solvable part Hy = H; + H,, which includes
only the Hamiltonians of the leads, and the perturbation V, =
Hr7(x). Next we introduce the time-ordered exponent S, (¢),

e—iHXt/h — e_iHot/hSX(t),

T
T exp [—i / dt’VX(t’):I,
h Jo

where we defined the time-dependent tunnel Hamiltonian,

VX (t) — eiHUl‘/h HT(X)e—iHot/h
=D e ?Pal, (t)cor(t.x)

o kn
+ 15,6 7O (1 0 agn (0], (A9)

The time-dependent creation and annihilation operators in this
expression read

Sy (1)

ayn(t) = uze” Py — vyt e
an(t) = uppe ™ ey 4 v el
crrlt,x) = ugge Enx/he=iEui/hy,
— UlkefiElkx/heiElkt/hyfik’
ekt x) = uye Enx/hemikut/ny,
+ vlkefiElkx/heiElkt/h VTTfk- (A10)

After these transformations the cumulant generating func-
tion (A1) takes the form

Fla,x) = Infur [, (0ye™ "7 S50} fufe™ 4T,
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Performing a formal expansion of the operator S, () in this
expression up to the second order in V, we find

Fe /0 ar fo dt"[—(V, (W, (")) — Vot Valt)

+ Vo)V, (1) + (Vot )V, ()] (ALD)

It is now straightforward to evaluate this function. One should
use the definition of the interaction potential V,(f) (A9),
combine it with the explicit expressions for the electron
creation and annihilation operators (A10), and apply Wick’s
theorem together with Egs. (A7) to evaluate the average values
of the products of these operators. Omitting the terms which
do not depend on the counting field x, one arrives at the
results (23), (28), (29).

APPENDIX B: DYNAMICS OF JOSEPHSON PHASE

Here we briefly summarize well-known results'® on the
phase dynamics in a resistively shunted Josephson junction,
which is described by Eq. (7) with C = 0. The probability
distribution function of the phase, o (¢,¢), satisfies the Fokker-
Planck equation

do n 2¢Rg 0 4¢*RskgT* 9%0 B
at hodp n? g2
The stationary solution of this equation, which is periodic in

phase and to which any solution approaches in the long-time
limit, reads

[(Iy — Ic sing)o] —

W)
" 4mweRgkpT*

% e(cos @—cos¢)E; /kgT* )

oo
o(e) / d(p’ehl.x(‘ﬂ—(p’)/2ekBT*
¢

(BI)

This solution is normalized as follows: ffn dpo(p)=1.In
Eq. (B1) we have introduced the average voltage drop on the
junction (V'), which reads

* .
kg Th eRyg sinh whl,

<V> — 2ekpT* ]

i dy cosh (355 (P55

(B2)
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