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Abstract 

Chemical industries utilize a variety of different types of online analyzers, for example, in areas like 
quality monitoring and process control applications. Large production plants typically use several 
analyzer devices from multiple manufacturers which are employed to measure different target 
quantities. As manufacturers have their own proprietary protocols for accessing analyzer 
information it is usually only the target property estimates that are transferred to the higher level 
automation systems. Other analyzer data, for example spectra, are generally not in a suitable 
format for further action on the higher level systems. 

This thesis outlines a solution to the analyzer data acquisition problem by utilizing OPC UA 
standard and OPC UA analyzer devices companion specification (ADI) to create a data acquisition 
system for analyzer information. The created system consists of an OPC UA server, which is used as 
a single access point for all analyzer related information. In addition, the analyzer data is collected 
and archived into a SQL database, which is accessible through the OPC UA server. The data 
acquisition system makes it convenient for the end users to access plant analyzer information using 
the standardized protocols. Furthermore, the OPC UA based data acquisition system can be used to 
integrate analyzer data with other types of process measurements. This thesis presents an example 
application where this type of data integration is utilized to increase the accuracy of the target 
quantity estimates of an analyzer. The same system also has a wide range of other potential 
applications, some of which are briefly examined in this work. 

The literature part of the thesis mainly focuses on different aspects of chemometrics; pre-
processing and multivariate modelling of the analyzer spectra. These techniques are used in the 
thesis' experimental part to process data obtained from Neste Oil Oy’s Porvoo refinery. The 
literature part also briefly examines different protocols used for the transfer of analyzer data 
through the automation networks. 

The experimental part the thesis consists of three main parts: The first part is a case study where 
the refinery measurement data and the analyzer spectra are utilized to demonstrate how product 
quality estimates accuracies can be improved through data integration. In the second part, the 
analyzer data acquisition system is developed, including the provision of a separate OPC UA ADI 
wrapper server for ABB online analyzers. This wrapper was created in order to obtain the data from 
the production unit analyzers used in the case study. In the final part, a chemometric calculation 
platform is designed in order to implement the data processing sequence used to process the 
refinery data. This platform also utilizes the newly created data acquisition system through the 
OPC UA protocol. 
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Tiivistelmä 

Kemianteollisuudessa käytetään monia erityyppisiä online analysaattoreita, joita hyödynnetään 
esimerkiksi laadunvalvonnassa sekä prosessien ohjauksessa. Eri laitevalmistajilta olevia 
analysaattorilaitteita voi olla suuri määrä käytössä isoissa tuotantolaitoksissa, mitaten eri 
kohdesuureita. Usealla laitevalmistajalla on usein omat suljetut protokollat, joilla analysaattori-
informaatiota luetaan sekä käsitellään. Tyypillisesti ainoastaan mitattu kohdesuure on helposti 
saatavilla tuotantolaitoksen ylemmistä informaatiojärjestelmistä. Muu analysaattori-informaatio, 
kuten mitatut spektrit ja diagnostiikkadata, eivät siten ole helposti saatavilla ylemmällä 
automaatiotasoilla. 

Tämä diplomityö esittää ratkaisun analysaattoritiedonkeruuongelmaan hyödyntämällä OPC UA 
standardia ja OPC UA analysaattorilaitespesifikaatiota (ADI), sekä luomalla näihin pohjautuvan 
analysaattoritiedonkeruujärjestelmän. Järjestelmä perustuu OPC UA palvelimeen, joka toimii 
yhteyspisteenä kaikelle laitoksella olevalle analysaattori-informaatiolle. Lisäksi järjestelmä tukee 
analysaattoridatan historiakeruuta SQL-tietokantaan, josta tietoa voidaan lukea OPC UA 
palvelimen kautta. Loppukäyttäjien näkökulmasta järjestelmä helpottaa analysaattori-
informaation hallintaa. Diplomityö esittää myös käyttöesimerkin, jossa analysaattori- sekä 
prosessidataa hyödynnetään rinnakkain parantamaan tiettyjen laadunvalvontasuureiden 
estimointitarkkuutta. Luotu tiedonkeruujärjestelmä mahdollistaa dataintegraation, jossa 
yhdistetään mittausdataa monista erityyppisistä lähteistä.  

Työn tutkimusosa käsittää lähinnä kemometriaan liittyviä datan käsittely- ja 
mallinnusmenetelmiä. Näitä tekniikoita hyödynnetään kokeellisessa osassa, jossa käsitellään 
Neste Oil Oy:n Porvoon jalostamolta saatua prosessi- sekä analysaattoridataa. Tutkimusosa 
sisältää myös kuvauksen yleisimmistä analysaattoridatan tiedonsiirtomenetelmistä. 

Työn kokeellinen osa sisältää kolme pääosaa. Ensimmäisessä osassa havainnollistetaan, kuinka 
tiettyjen laadunvalvontasuureiden estimointitarkkuutta voidaan parantaa, kun analysaattori-
informaatiota sekä prosessidataa hyödynnetään mallinnuksessa. Toisessa osassa esitellään 
analysaattoritiedonkeruujärjestelmä, joka esittää myös ADI sovittemen ABB online 
analysaattorille. Tämä OPC UA palvelimeen perustuva sovitin tarvittiin, sillä tutkittu 
jalostamoyksikkö käyttää ABB:n laitteita laadunvalvonnassa. Viimeisessä osiossa esitellään 
laskentapalvelu kemometrisiin laskentatarpeisiin. Tämä palvelu implementoi datakäsittelyketjun 
prosessi- sekä analysaattorimittauksille. Palvelu hyödyntää OPC UA protokollaa ja edellä luotua 
tiedonkeruujärjestelmää. 

Avainsanat  OPC UA, Analysaattorit, Kemometria, Dataintegraatio 
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𝐹 F-statistic for F-test 
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𝐾 Number of the principal components or latent variables in a multivariate model 

𝑘 Index of the principal component of the latent variable 

𝐿 Number of the distinct eigenvalues of a matrix 

𝑀 Number of the variables 

𝑚 Index of a variable 

𝑁 Number of the samples 

𝑛 Index of a sample 

𝑁𝑣 Number of the cross validation experiments 

𝑁𝑟𝑒𝑝 Number of the repetitions in the Monte-Carlo cross validation experiments 

𝑅2 Coefficient of determination 

𝑅𝑅 Ratio of sum of squares of the prediction error and residuals 

𝑆𝑃𝐸𝑥 Squared prediction error of explanatory variable 

𝑆𝑃𝐸𝑥,𝑙𝑖𝑚 Control limit for the squared prediction error of the explanatory variable 

𝑇2 Hotelling 𝑇2-statistic 

𝑇𝑙𝑖𝑚
2  Control limit of Hotelling 𝑇2-statistic 

𝑣 Energy state of the harmonic or anharmonic oscillator 

𝑥𝑛𝑚 n:th sample of the m:th explanatory variable 

𝑥̅𝑚 Mean of the m:th explanatory variable 

𝑥̂𝑛𝑚 n:th sample estimate of the m:th explanatory variable 

𝑦𝑛𝑚 n:th sample of the m:th response variable 

𝑦̂𝑛𝑚 n:th sample estimate of the m:th response variable 

𝑦̅𝑚 Mean of the m:th response variables 

𝑤𝑘𝑚 Weight of the k:th latent variable corresponding to the m:th variable 

‖∙‖ Euclidean norm operator 



  

 

 

Vectors and matrices 

𝒃 Vector of the regression coefficients 

𝒄𝑇2 Contribution of each explanatory variable to the 𝑇2-statistic 

𝒄𝑆𝑃𝐸  Contribution of each explanatory variable to the 𝑆𝑃𝐸-statistic 

𝒆 Residual vector 

𝒑𝑘 Explanatory variables loading vector for the k:th latent variable 

𝒒𝑘  Response variables loading vector for the k:th latent variable 

𝒕𝑘 Explanatory variables score vector for the k:th latent variable 

𝒖𝑘 Response variables score vector for the k:th latent variable 

𝒘𝑘 Weight vector for the k:th latent variable 

𝒙̅ Mean of each explanatory variable from sample population 

𝒙̂ Estimate of each explanatory variable 

𝒙𝑚 m:th explanatory variable vector 

𝒙𝑚,𝐶  Mean centered m:th explanatory variable 

𝒙𝑚,𝐴𝑆 Autoscaled m:th explanatory variable 

𝒙𝑚,𝑀𝑆𝐶  Multiplicative scatter corrected m:th explanatory variable 

𝒙𝑚,𝑆𝑁𝑉 Standard normal variate of the m:th explanatory variable 

𝒙𝑚
′  First backward finite difference vector of the m:th explanatory variable 

𝒙𝑚
′′  Second backward finite difference vector of the m:th explanatory variable 

𝒙𝑛 n:th sample vector of the explanatory variables 

𝒙𝑟𝑒𝑓 Reference sample for a multiplicative scatter correction 

𝒚̅ Mean of each response variable from sample population 

𝒚̂ Estimates of each response variable 

𝒚𝑚 m:th response variable vector 

𝒚𝑛 n:th sample vector of the response variables 

𝑩 Regression matrix 

𝑬 Residual matrix of the explanatory variables 

𝑭 Residual matrix of the response variables 

𝑮 Residual matrix from regression between 𝑻 and 𝑼 



  

 

 

𝑷 Loading matrix of explanatory variables 

𝑷𝑆 Super loading matrix 

𝑸 Loading matrix of the response variables 

𝑻 Score matrix of the explanatory variables 

𝑻𝑆 Super score matrix 

𝑼 Score matrix of the response variables 

𝑾 Weight matrix 

𝑾𝑆 Super weight matrix 

𝑺𝑿𝒀 Cross-covariance matrix of 𝑿 and 𝒀 matrices 

𝑿 Column matrix of the explanatory variables 

𝑿̂ Estimate of the explanatory variable matrix 

𝒀 Column matrix of the response variables 

𝒀̂ Column matrix of the response variables 

 

Greek letters 

𝛼 Confidence level 

Θ Sum of unexplained variance 

𝜆𝑘 k:th eigenvalue of a matrix 

𝜎𝒙 Standard deviation of a vector 𝒙  

Φ−1(𝛼) Value of the probit function with a confidence level 𝛼 

 



  

 

 

Abbreviations and abbreviated variable names 

APC Advanced process controller 

BVE Backwards variable elimination 

COM Component object model 

COVPROC Covariance procedure 

DCS Distributed control system 

DSPLS Direct scores PLS 

EMSC Extended multiplicative scatter correction 

FTIR Fourier transform infrared 

HDF Hydrofinishing reactor 

HMI Human machine interface 

I/O Input and output 

IDW Isomerization dewaxing reactor 

IKPLS Improved kernel PLS 

KV100 Kinematic viscosity at 100°C 

LIMS Laboratory information system 

LV Latent variable 

MB-PLS Multi-block PLS 

MB-PLS1 MB-PLS model with a single estimated response variable 

MCCV Monte-Carlo cross-validation 

MD5 Message-digest algorithm 

MES Manufacturing executing system 

MIR Mid-infrared 

MLR Multiple linear regression 

MSC Multiplicative scatter correction 

NIPALS Non-linear iterative projection to latent structures 

NIR Near-infrared 

NN Neural network 

NRMSEP Normalized root mean squared error of prediction 



  

 

 

N-PLS Nonlinear PLS 

OPC Open platform communications 

OPC UA ADI OPC UA for analyzer devices 

OPC UA DI OPC UA for devices 

OPC UA Open platform communications unified architecture 

PC Principal component 

PCA Principal component analysis 

PLS Projection to latent structures 

PLS1 PLS model with a single estimated response variable 

PLC Programmable logic controller 

P-PLS Priority PLS 

PRESS Prediction error sum of squares 

RMSECV Root mean squared error of cross-validation 

RMSEP Root mean squared error of prediction 

RSS Residual sum of squares 

SG Savitzky-Golay filter 

SGD Savitzky-Golay derivative filter 

SNV Standard normal variate 

SPC Statistical process control 

SPE Squared prediction error 

SQL Structured query language 

SSL Secure sockets layer 

SVD Singular value decomposition 

TCP/IP Transmission control protocol / internet protocol 

UVE Uninformative variable elimination 

VHVI Very high viscosity index 

VIP Variable importance in projection 

XCF Cross-correlation function 



 

1 
 

LITERATURE PART 

1. Introduction 

Analyzers are instruments that can conduct chemical analysis of individual samples or sample 

streams. Throughout the chemical industries these instruments are used for a wide range of different 

applications including product quality monitoring, process control and process optimization. A 

number of different analyzer devices have been developed based on different physical principles and 

include, for example, infrared spectrometers, mass spectrometers and Raman spectrometers. This 

thesis focuses on information systems and multivariate calibration related to the spectroscopic 

instruments producing measurements in forms of spectra. 

Measurement and status related information produced by the instruments are normally only 

available locally from the physical device. Measured spectrum is not usually directly useful in quality 

and process control applications. As a result the spectrum is typically processed locally on the 

analyzer device based on configuration and calibration of the device. The final measured quantity is 

then passed on from the instrument to the higher level automation systems e.g. the plant information 

system. Spectra and status related information are not readily accessible from the plant information 

systems; instead, the information is only contained in the devices in proprietary formats. However, 

some of the more advanced analyzer devices can make this information available through proprietary 

protocols which are remotely accessible through vendor specific information systems. [1] [2] 

Large industrial applications might use wide range of different types of analyzer devices from multiple 

manufacturers. This creates a situation where all the information produced by the different analyzers 

is spread out over the plant floor and is only accessible though proprietary protocols. Consequently 

only the most basic quantity estimates produced by the devices are readily available from the higher 

level information systems. It would be valuable for the end users to have a single access point that 

provides a united view on the plant analyzer information. Such a situation would allow more 

convenient access to the analyzer information when compared to being able to only obtain data 

locally from the device. This kind of data acquisition has a wide range of different application e.g. 

spectral measurements can be combined with other types of plant data to create added value to the 
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quality control, which is also used as a case study in this thesis. Analyzer data integration has also 

applications in status monitoring of the plant analyzer instruments, for example, this can be used for 

the early detection of analyzer calibration deterioration. In this type of application the plant engineer 

would get notification from the analyzer information system that recalibration or corrective actions 

are required to keep the specific analyzer instrument operational. 

This thesis examines one particular application where plant measurement and analyzer data are 

integrated behind a single access point. Multivariate methods are then used to create a mathematical 

model that combines these information sources to yield more accurate estimates of specific product 

properties. Multivariate methods are widely used in spectroscopic data analysis and these data-driven 

methods are commonly used in the field of chemometrics where chemically relevant information is 

extracted from datasets produced during chemical experiments. Chemometrics utilize multivariate-, 

classification-, pattern recognition- and clustering mathematical methods, which are used to 

determine the structure and underlying relationships within the chemical system. Properties and 

behavior of the chemical system can be predicted in chemometric applications by modelling of the 

system. Datasets used in these applications are often very large and involve hundreds to thousands of 

variables. Similarly spectroscopic instruments produce vast amounts of data in form of a spectrum 

with each frequency or wavelength in a spectrum representing one variable in the dataset, hence 

multivariate methods are valuable tools for the analysis of these types of large datasets. 

Recent standardized automation related information models and data transfer protocols allow access 

to the device information regardless of the manufacturer specific implementations. These 

specifications are utilized in this thesis to access the plant analyzer devices and other information 

sources. Firstly data acquisition software is created to allow access to the plant data from a single 

access point. Additionally an in-house chemometric calculation platform is developed to utilize 

information from the data acquisition system to refine the analyzer and plant information into more 

useful property estimates used for product quality control.  
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2. Basic principles of a vibrational spectroscopy 

Vibrational spectroscopic techniques are based on molecular vibrations caused by electromagnetic 

excitation of the analyte. These techniques are divided into three categories by frequency range and 

physical principle: NIR (near-infrared), MIR (mid-infrared) and Raman. NIR and MIR techniques rely on 

the absorption of electromagnetic radiation at different frequencies, whereas the Raman technique 

relies on the scattering of the electromagnetic radiation. Near-infrared light sources operate in the 

4000-12,500 cm-1 wavenumber range whilst both mid-infrared and Raman spectrometers operate in 

the 200-4000 cm-1. [3]  

The absorption of a photon causes a change in the vibrational state of a molecule. Vibration of 

diatomic molecules, for example, can be approximated to harmonic oscillators where the vibrating 

masses are connected by a spring. This leads to a parabolic energy potential of the oscillator where 

the system can only be in a discrete energy state. These states can be obtained after the system is 

treated as a quantum mechanical system and the Schrödinger equation is applied to the energy 

function. Energy states (v) and harmonic oscillator potential energy are displayed in Figure 1. Energy 

state transitions within a harmonic oscillator are only allowed when the state changes by one (Δv=±1) 

and these transitions are known as fundamental transitions.  

 

Figure 1. Potential energy of a harmonic oscillator (green) and Morse potential (blue) with energy 

states (v) displayed [4] 
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Harmonic approximation does not hold for larger vibrational amplitudes. This is due to repulsive 

forces between the vibrating atoms and the possibility of dissociation when the bond is excessively 

extended. Therefore the energy function of an anharmonic oscillator is not parabolic, and can be 

approximated using a Morse potential as shown in Figure 1. When a molecule dictated by the Morse 

potential energy function is treated with the Schrödinger equation, one obtains vibration state 

transitions that are much more versatile than those of the harmonic oscillator. Energy states 

modelled by the Morse potential have a higher number of possible discrete integer transitions 

(Δv=±1,±2,±3, etc.) with transitions greater than one called overtone transitions. These transitions 

cause overtone vibrations and they are observed as overtone bands on the absorbance spectrum. 

Bands caused by overtones are much weaker and broader than fundamental bands and overtone 

bands get weaker and weaker as a transition distance between energy states increases. This is due to 

the fact that overtone excitations are statistically less likely to happen than fundamental excitations. 

Bands caused by overtone excitations also move to higher frequencies as the distance of the 

transition increases.  

Overtone and fundamental bands are both caused by changes in vibration energy states. In addition 

there is a third class of vibrational bands, knows as combination bands which are caused by 

simultaneous excitation of more than one vibrational mode. [5] 

The MIR frequency area is dominated by fundamental bands whereas at NIR frequencies the overtone 

and combination bands predominate. Structural selectivity of spectral bands inside the NIR region is 

much lower than those inside the MIR frequency region as the MIR region is dominated by 

fundamental bands that are more structurally selective. Additionally overtone and combination bands 

are generally highly overlapped within the NIR frequency range, therefore interpretation of the NIR 

spectra is much more difficult when compared to the MIR spectra. NIR applications only became 

viable after development of chemometric methods in the 70s which led to the breakthrough of NIR 

applications in different industries. [5] Applications of NIR analyzers include: chemical industries 

where product quality or emissions are monitored online [6]; medical applications to monitor, for 

example, blood oxygen or hemoglobin of a patient [7] and agricultural for non-destructive testing of 

crop quality. [8] Applications exist even in astronomy where NIR analyzers are used to measure 

composition of molecular clouds in distant star systems. [9] 
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The main advantages of NIR techniques over MIR techniques include ease of sample handling, 

possibility of using large samples and possibility to use fiber optics with the NIR equipment. Fiber 

optics are used with NIR analyzers in the chemical industries to remotely monitor the sampling points 

which can be for example product streams [5]. These advantages are the main reasons why NIR 

analyzers are in such a dominant position in different industries when compared to other 

spectroscopic instruments. [3] 

IR analyzers are mostly Fourier transform infrared based instruments (FTIR). This method is based on 

an interference pattern in a time domain that is Fourier transformed into the final spectrum in a 

frequency domain. An interference pattern is formed by the Michaelson interferometer, which 

(shown in Figure 2) is based on a stationary and a moving mirror with a beam splitter. A recombined 

interfered IR beam is shone through the analyte and a pattern is recorded by a detector. The 

advantages of FTIR are high wavenumber stability and resolution compared to other interferometer 

based analyzers. NIR analyzers are also commonly based on FTIR, although recently more 

sophisticated devices have also been developed and include micro-electro-mechanical-systems and 

acousto-optic-tunable-filters. This has led to the miniaturization of NIR analyzers since these devices 

require no moving parts. [3] [5] 

 

Figure 2. Schematics of Fourier transformed infrared spectroscopy based on the Michelson 

interferometer [10] 
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3. Data processing in spectroscopic applications 

All spectroscopic instruments produce data samples in the form of spectra. Vibrational spectroscopy 

spectra represent absorbance of electromagnetic radiation at different frequencies and this thesis 

focuses on the processing of spectra produced by instruments relying on infrared radiation. All the 

methods outlined in this work can also be applied to spectra produced by other types of instruments. 

3.1 Spectrum preprocessing 

Preprocessing of the raw NIR spectrum is an essential step in chemometric modelling. Raw spectra 

might be affected by solid particles, water or bubbles that can cause scattering of the NIR beam and 

result in the drift of the spectrum baseline that lowers the performance of the model. Spectra can 

also be affected by a constant, first- or higher-order additive error in the baseline, by measurement 

noise, varying sample cell temperature and varying analyzer light source intensity. Preprocessing 

methods try to compensate for the baseline and the noise related problems, however, variation in the 

sample temperature and problems with the analyzer lamp are more difficult to take into account 

using preprocessing. Signal noise is reduced using signal smoothing techniques, but these methods 

have the inherent problem of information loss. Multivariate models generated by preprocessed data 

are also usually less complex models than those generated by noisy data. Baseline problems can be 

compensated by de-trending or by taking the first- or higher-order derivatives of the spectrum. In 

addition, other techniques including Multiplicative Scatter Correction (MSC) and Standard Normal 

Variate (SNV) have been developed for baseline correction. Normalization of the data is also 

important prior to applying multivariate methods and numerous preprocessing methods have been 

proposed for spectral data. This poses significant challenges for determining the right methods and no 

general rules are available. As a result the choice of suitable preprocessing methods is highly 

application specific. [11] [12] 

3.1.1 Data normalization 

Data centering is the most common preprocessing procedure for the spectral data and can be a 

sufficient preprocessing step in a case where there are no problems related to the baseline or 

measurement noise. Data centering is performed by subtracting sample average from each variable as 

shown in Equation (1). [11] 
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𝒙𝑚,𝐶 = 𝒙𝑚 − 𝑥̅𝑚 = 𝒙𝑚 −

1

𝑁
∑𝑥𝑛𝑚

𝑁

𝑛=1

 (1) 

where  n is index of the sample 

 m is index of the wavenumber 

 N is number of samples 

Scaling of the data is essential when variables have highly different magnitudes as multivariate 

methods give equal emphasis for each variable only if they have been properly scaled. As a 

consequence, autoscaling is usually performed prior to the application of multivariate methods. This 

standardization is applied by dividing a centered variable by their standard deviation. [11] In this 

thesis unbiased estimates of the standard deviations are used as shown in the next equation: 

 
𝒙𝑚,𝐴𝑆 =

𝒙̅𝑚
𝜎𝒙𝑚

=
𝒙̅𝑚

√ 1
𝑁 − 1

∑ (𝑥𝑛𝑚 − 𝑥̅𝑚)2
𝑁
𝑛=1

 
(2) 

where 𝜎𝒙𝑚 is an unbiased standard deviation estimate of the m:th wavenumber variable 

3.1.2 Scatter correction methods for the spectral data 

Most of the preprocessing techniques developed for spectroscopic methods try to compensate for 

the undesired effect of light scattering as it causes a baseline drift on the measured spectrum. [5] This 

systematic variation is undesired since it affects performance of multivariate methods so MSC and 

SNV are the most commonly applied preprocessing approaches used for scatter correction. Data 

normalization, as presented above, can be also used for correcting an additive baseline drift, as can 

detrending for correcting linear or higher-order multiplicative baseline shifts.  

The SNV method is closely related to the autoscaling of the data and the following equation is used to 

determine the SNV corrected data. [12]  

 
𝒙𝑚,𝑆𝑁𝑉 =

𝒙𝑚 − 𝑥̅𝑛
𝜎𝒙𝑛

 (3) 
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Equation (3) shows how SNV uses an average of a sample spectrum 𝑥̅𝑛 instead of the wavenumber 

variable 𝑥̅𝑗 average. Similarly, the standard deviation of the sample spectrum 𝜎𝒙𝑛  is used instead of 

variables standard deviation. 

MSC is another commonly used scatter correction method and it has the same form as autoscaling 

and SNV. MSC uses correction coefficients for correcting additive and multiplicative contributions as 

detailed in Equation (4): 

 𝒙𝑛,𝑀𝑆𝐶 =
𝒙𝑛 − 𝑎𝑛
𝑏𝑛

 (4) 

where an is coefficient for correcting additive contribution for a sample n 

 bn is coefficient for correcting multiplicative contribution for a sample n 

The above coefficients are determined for each measured spectrum sample separately and are 

obtained by the first-order least squares fitting of the measured spectra and a reference spectrum as 

shown in Equation (5). 

 𝒙𝑛 = 𝑎𝑛 + 𝑏𝑛𝒙𝑟𝑒𝑓 + 𝒆𝑛 (5) 

A reference spectrum 𝒙𝑟𝑒𝑓 is usually an average of each wavenumber used in the calibration dataset. 

Both MSC and SNV have their advantages and disadvantages with the most suitable method 

depending on the application. SNV is sensitive to signal noise and outliers whereas the MSC method is 

sensitive to the reference spectrum. [12] 

A more advanced methods have also been proposed and include more robust versions of MSC and 

SNV. The robust version of SNV uses median values of the spectrum instead of mean values and the 

variability of the data is estimated using the median absolute deviation (mad) instead of the standard 

deviation. Formulation of the robust SNV is shown in the following Equation (6).  [13] 

 
𝒙𝑚,𝑆𝑁𝑉 =

𝒙𝑚 −𝑚𝑒𝑑𝑖𝑎𝑛(𝒙𝑛)

𝑚𝑎𝑑(𝒙𝑛)
=

𝒙𝑚 −𝑚𝑒𝑑𝑖𝑎𝑛(𝒙𝑛)

1.4826 𝑚𝑒𝑑𝑖𝑎𝑛(|𝒙𝑚 −𝑚𝑒𝑑𝑖𝑎𝑛(𝒙𝑛)|)
 (6) 

Similarly the robust autoscaling can be performed using the median and median absolute deviation. 

Verboven et al. have also proposed a robust version of MSC where the median reference spectrum is 
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used instead of the average reference spectrum. They also proposed using the robust least trimmed 

squared regression (LTS) instead of the normal least squares regression and such robust versions of 

the baseline correction are suitable for cases when a spectrum contains outliers. [13] In addition the 

Extended MSC (EMSC) methods have been proposed. These are augmented versions of MSC where 

the second-order polynomials are used instead of the first-order polynomials. Expansions also contain 

weights for wavenumber-axis dependencies and inclusion of a priori information about spectral 

interferents. For example, the least amount of weight can be given to certain, unwanted, wavelength 

regions in the spectrum, however in real applications the choice of these parameters might be a 

tedious task. [12]  

MSC and SNV both try to compensate for the influence of light scattering inside a specific sample cell. 

Therefore these methods do not necessarily handle correctly baseline differences between 

instruments. Therefore the transfer of a multivariate model and preprocessing parameters to a 

different instrument might result in the deterioration of the estimation performance. Therefore 

several instrument standardization techniques have been proposed to overcome the model transfer 

related problems. [5] 

3.1.3 Spectral derivatives 

Derivatives are used both to bring out overlapping bands in the spectrum and to compensate for a 

baseline drift. The first derivative removes any additive baseline shift whilst the second derivative also 

eliminates the effect of a multiplicative baseline drift. Basic implementation of the first and second 

order derivatives can be performed by the finite backward differences: 

 𝒙𝑚
′ = 𝒙𝑚 − 𝒙𝑚−1 (7) 

 𝒙𝑚
′′ = 𝒙𝑚 − 2𝒙𝑚−1 + 𝒙𝑚−2 (8) 

Taking finite differences has a fundamental problem with noisy signals since it greatly amplifies noise 

in the final signal. However, a noisy signal can be smoothed before taking the finite difference by 

using one of the many smoothing techniques available like, for example, a simple moving window 

average filter. [11] [12] Another common method used for spectral data is the Savitzky-Golay (SG) 

filter, which is based on the least squares fitting of polynomials over a specific window. Smoothness 

of the final signal can be adjusted by changing the window size and the degree of the polynomial. The 
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derivative can be also calculated directly from the fitted polynomial and is known as the Savitzky-

Golay derivation method (SGD). Overall the order of the SG-filter polynomial dictates the maximum 

order of the derivative and the smoothness of the filtered signal. [12]  

Research by M. Faber, however, demonstrated that taking derivatives could have a very negative 

impact on the predictive performance of multivariate methods. The author used finite differences for 

calculating derivatives and evaluated the estimation performance based on multivariate sensitivity. 

He also stated that signal smoothing would not influence the situation since multivariate methods 

have an inherit ability to filter out the impact of the noise. It was also shown that viability of spectral 

derivatives is application specific and different results have been reported in literature. [14] 

3.2 Multivariate modelling of the spectral data 

Spectrometric multivariate data analysis falls into two categories: multivariate calibration and 

multivariate diagnostic. Calibration models are created in order to estimate the values of some 

specific property of an analyte using the measured spectrum. These models can also be utilized in 

detecting problems with the spectrometric instrument or in the measured system. Research of 

multivariate models for extracting chemically relevant information from measurement data falls into 

the discipline of chemometrics and the most prominent methods used include principal component 

analysis (PCA) and projection to latent structures (PLS). [5] Numerous extensions of these and more 

advanced methods have also been proposed and comprise of various PLS extensions, for example 

Multi-block PLS (MBPLS), Priority PLS (PPLS) and nonlinear PLS (NPLS). [11] Other, more advanced, 

methods include utilization of neural networks (NN), whilst combinational methods for example, 

when PLS scores are used as NN inputs, also exist. [15], [16] 

Many PLS variants have been developed in which the explanatory and response variables are broken 

into separate meaningful blocks. A dataset can be divided into blocks based on instrument types or by 

physical locations of the measurements. Process measurement variables might be valuable additions 

to the input variable set when creating chemometric models. The effect of these few additional 

variables would be insignificant compared to thousands of wavelength variables, if they are directly 

added to the explanatory variable matrix. Therefore, models that give equal importance to the 

variable sets are needed when data comes from different types of sources. This thesis outlines a 
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priority PLS (P-PLS) model where the data blocks are treated one at a time and multi-block PLS (MB-

PLS) where the data blocks are handled simultaneously. In addition, some adaptive schemes for 

chemometric models are outlined which can take changes in the operational conditions into account. 

3.2.1 Multiple linear regression 

Multiple linear regression (MLR) is the most traditional method for building a relationship between 

explanatory variables and a response variable. MLR produces a calibration model using the classical 

least-squares method. Spectroscopic measurements produce data in the form of an absorbance or 

transmittance where a single wavenumber of the measurement represents one variable. This dataset 

is organized into a matrix and is denoted as X, whilst the response variable y, might be for example, a 

vector of measured concentrations. MLR then finds the best possible fit of a vector b that relates 

these two properties together: 

 𝒚̂ = 𝑿𝒃 (9) 

The objective is to find a regression vector b that minimizes a sum of the squared errors between the 

measured and estimated response variables: 

 𝐽 = (𝒚 − 𝑿𝒃)𝑇(𝒚 − 𝑿𝒃) (10) 

The solution to the least squares problem is obtained by the following equation: 

 𝒃 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚 (11) 

A response variable y can be then estimated from a new measurement by using Equation (9). 

The inversion of XTX makes solving of this equation difficult as the matrix is not invertible if X has 

more columns than rows. Moreover, collinearity of the matrix X makes the inversion problem ill-

conditioned and the spectrum sample matrix X is usually highly collinear due to the interaction 

between the adjacent wavenumbers. [5] This collinearity can be handled by dimensionality reduction 

techniques that create orthogonal projections of the data matrices. Some of these methods are 

presented in the following paragraphs.  

3.2.2 Principal component analysis and -regression 

Principal component analysis (PCA) is a dimensionality reduction technique for multidimensional data. 

The objective of PCA is to find linearly uncorrelated principal components (PC) that best describe the 
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underlying structure of the data and these components are selected so that the loss of information is 

minimized. The first principal component accounts for maximum amount of variability in the data, 

whilst subsequent components increase the descriptiveness of the variation within the data. The 

number of the used principal components in a multivariate model is evaluated so that the underlying 

structure of the data is captured and noise is filtered out. Principal components can be obtained by 

singular value decomposition (SVD) of a data matrix: 

 
𝒁 =

1

√𝑁 − 1
𝑿 (12) 

 𝒁 = 𝑼𝑺𝑽𝑇 (13) 

where U is a matrix with columns contain eigenvectors of ZZT 

 S is a matrix with diagonal elements containing singular values of X which are square roots of 

 the eigenvalues of ZTZ 

 V is a matrix with columns contain eigenvectors of ZTZ 

Each variable in the data matrix X must be autoscaled prior to the application of Equations (12) and 

(13). 

It can be seen that the matrix ZTZ is an estimate of the covariance matrix of X since: 

 
𝒁𝑇𝒁 = (

1

√𝑁 − 1
𝑿)

𝑇

(
1

√𝑁 − 1
𝑿) =

1

𝑁 − 1
𝑿𝑇𝑿 (14) 

Therefore the columns of V contain the eigenvectors of the X's covariance matrix and are known as 

the principal components of X. In contrast the diagonal matrix S holds singular values (also known as 

principal values) in a decreasing order. Squares of these correspond to the eigenvalues of the 

covariance matrix. The corresponding eigenvectors in U and V are in decreasing order of variance 

explained in X. Some of these principal components describe the relevant information related to the 

estimated quantity, whilst other components only describe random measurement noise or irrelevant 

structures within the data. Only those principal components describing the structure of the data 

should be chosen for the final model and the others discarded. The chosen components should 

describe most of the relevant variance in the data and these are the first eigenvectors in the matrix V 



 

13 
 

corresponding to the largest eigenvalues. [5] Various methods have been proposed on how to choose 

the correct number of the principal components included in the model. [17] [18]  It is highly important 

that an optimal model order is selected, as a too high model order causes model overfitting, which 

means that the model takes irrelevant information into account thus decreasing the estimation 

performance of the model. Methods used for determining the correct model order are outlined in 

more detail in Chapter 3.3 Assessment of the model complexity.  

PCA is a dimensionality reduction technique that reduces the dimensionality of the data matrix. A 

compressed representation of the data matrix is obtained by multiplying it with a loading matrix P. 

This compressed data matrix is called a score matrix T: 

 𝑻 = 𝑿𝑷 (15) 

where X is the data matrix 

P is a loading-matrix containing the selected principal components as columns in a decreasing 

order of the variance (as explained above) 

This compressed representation of X can be then decompressed into an estimate of X: 

 𝑿̂ = 𝑻𝑷𝑇 (16) 

This can be used to test how well the model fits the new measurement dataset. This is useful for 

model validation and process monitoring purposes.  

Principal components can also be used to regress a response variable on the explanatory variables - a 

method known as principal component regression (PCR). A regression coefficient vector b is obtained 

in a similar manner to Equation (11) with the ordinary MLR method. Calculation of the regression 

coefficients in PCR uses the score-matrix T instead of using the data matrix X: 

 𝒃 = (𝑻𝑇𝑻)−1𝑻𝑇𝒚 (17) 

This regresses the response variable on the PCA score-matrix T. An estimate for the response variable 

can be obtained for a new measurement by using Equation (9) with the score-matrix T in the place of 

the data matrix X. Regression of the response variables can be used to estimate the desired 

properties and in addition, the estimate can be used to evaluate the optimal number of the principal 
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components. PCR addresses problems related to data collinearity. This problem caused Equation (11) 

to be unsolvable with the MLR method when data was collinear. PCR solves this problem by 

projecting the dataset on space spanned by the orthogonal principal components. Orthogonality of 

the matrix T ensures that Equation (17) is solvable. [17] 

3.2.3 Projection to latent structures 

Projection to latent structures (PLS) is closely related to PCA and MLR. PCA captures the maximal 

variance in explanatory variables whereas MLR finds the maximum correlation between the response 

and the explanatory variables. PLS is a method that finds a balance between these two as it attempts 

to simultaneously optimize the explained variance and the covariance between the explanatory and 

the response variables. PLS uses latent variables (LV) instead of principal components of PCA and 

these can be interpreted as transformed versions of the principal components having the optimal 

capabilities to estimate values of the response variables. PCR and MLR methods regress only a single 

response variable on the explanatory variables whereas PLS can regress multiple response variables 

on the explanatory variables. The underlying model of PLS is described in Equations (18)-(20): [11] 

 𝑿 = 𝑻𝑷𝑇 + 𝑬 (18) 

 𝒀 = 𝑼𝑸𝑇 + 𝑭 (19) 

where T and P are the score- and loading-matrices of the explanatory variables X respectively 

 U and Q are the score- and loading-matrices of the response variables Y respectively 

 E and F are error terms 

Equations (18) and (19) describe the inner relationship of the data. The outer relationship is formed 

by regressing the Y score matrix on the X score matrix: 

 𝑼 = 𝑻𝑪 + 𝑮 (20) 

where C is a diagonal matrix containing regression coefficients for regressing U on T 

 G is residual from regression between T and U 

The error term matrices E, F and G should only represent noise or irrelevant information for 

estimating the desired property when the model order is chosen correctly. Non-linear iterative 
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projection to latent structures (NIPALS) is a classical algorithm for PLS decomposition and this 

algorithm is outlined next. 

A. Preprocess X and Y. Set X1 = X, Y1 = Y and k = 1  

B. Choose an initial score vector u from one of the Y columns 

C. Calculate the X weight vector w for the latent variable k: 

 
𝒘𝑘 =

𝑿𝑘
𝑇𝒖𝑘

‖𝑿𝑘
𝑇𝒖𝑘‖

 (21) 

D. Calculate the X score vector t for the latent variable k: 

 𝒕𝑘 = 𝑿𝑘𝒘𝑘 (22) 

E. Calculate the Y loading vector q for the latent variable k: 

 
𝒒𝑘 =

𝒀𝑘
𝑇𝒕𝑘

𝒕𝑘
𝑇𝒕𝑘

 (23) 

F. Calculate the Y score vector the u for latent variable k: 

 
𝒖𝑘 =

𝒀𝑘
𝑇𝒒𝑘

𝒒𝑘
𝑇𝒒𝑘

 (24) 

G. Test the u score vector for convergence using Equation (25). Go to H if u has converged, otherwise 

return to the step C. 

 ‖𝒖𝑘−1 − 𝒖𝑘‖

‖𝒖𝑘‖
< 𝜀 (25) 

where 𝜀 is a small convergence tolerance 

H. Calculate the X loading vector p for the latent variable k: 

 
𝒑𝑘 =

𝑿𝑘
𝑇𝒕𝑘

𝒕𝑘
𝑇𝒕𝑘

 (26) 

I. Deflate data matrices by removing calculated latent variables contribution from the X and Y 

matrices using the Equations (27) and (28). 
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 𝑿𝑘+1 = 𝑿𝑘 − 𝒕𝑘𝒑𝑘
𝑇 (27) 

 𝒀𝑘+1 = 𝒀𝑘 − 𝒕𝑘𝒒𝑘
𝑇 (28) 

J. Stop if all latent variables have been calculated. Otherwise let 𝑘 = 𝑘 + 1 and return to the step B 

The decomposition matrices T, P, U, Q and the weight matrix W are formed by appending the 

corresponding computed vectors to these matrices. A single iteration step of the NIPALS algorithm is 

illustrated in the following arrow scheme diagram: 

 

Figure 3. Iteration steps of the NIPALS algorithm. [11] 

The response variable is estimated from a new measurement as follows: 

 𝒚̂ = 𝒚̅ + (𝒙 − 𝒙̅)𝑩 (29) 

where 𝒚̅ is a column vector of the response variables averages used for mean centering in calibration 

 𝒙̅ is a column vector of explanatory variables averages used for mean centering in calibration 

 𝑩 is a PLS regression matrix 

 𝒙 is a column vector of the new measurements autoscaled in the same way as calibration data 

The PLS regression matrix is obtained using the following formula: [11] 

 𝑩 = 𝑾(𝑷𝑇𝑾)−1𝑸𝑇 (30) 

X Y 
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NIPALS is the classical algorithm used for obtaining PLS decomposition matrices and numerous other 

methods have been developed for calculating these matrices which Andersson surveyed in his study. 

[19] The standard NIPALS method produced very accurate estimates, but it was also most 

computationally intensive, whilst some of the newer algorithms have better computational 

performance characteristics, but some of them are also less accurate. The author determined that the 

so called improved kernel PLS (IKPLS) and direct scores PLS (DSPLS) algorithms were as accurate as the 

NIPALS algorithm. In addition these newer methods were 2-4 times faster than the standard NIPALS 

algorithm. The DSPLS algorithm was only suited for a single response variable, but the IKPLS method 

was developed for handling multiple response variables simultaneously as in the NIPALS method. [19] 

The NIPALS algorithm is computationally expensive because of the explanatory and response 

variables deflation step in Equations (27) and (28). The IKPLS algorithm overcomes this problem by 

only deflating the cross-covariance matrix of X and Y. The IKPLS algorithm is outlined below: 

A. Preprocess X and Y, set k = 1. Compute the cross-covariance matrix: XTY 

 𝑺𝑋𝑌,𝑘 = 𝑿
𝑇𝒀 (31) 

B. Calculate the largest eigenvector vk of 𝑺𝑋𝑌,𝑘
𝑇 𝑺𝑋𝑌,𝑘 

C. Determine the X weight vector w for the latent variable k: 

 
𝒘𝑘 =

𝑺𝑋𝑌,𝑘𝒗𝑘

‖𝑺𝑋𝑌,𝑘𝒗𝑘‖
 (32) 

D. Calculate the vector rk for the latent variable k: 

 𝒓1 = 𝒘1 

𝒓𝑘 = 𝒘𝑘 − 𝒑1
𝑇𝒘𝑘𝒓1 − 𝒑2

𝑇𝒘𝑘𝒓2 −⋯− 𝒑𝑘−1
𝑇 𝒘𝑘𝒓𝑘−1,   𝑘 > 1 

(33) 

E. Calculate the X score vector tk for the latent variable k: 

 𝒕𝑘 = 𝑿𝒓𝑘 (34) 

F. Determine X and Y loading vectors pk and qk for the latent variable k by using Equations (35) and 

(36). 
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𝒑𝑘 =

𝑿𝑇𝒕𝑘

𝒕𝑘
𝑇𝒕𝑘

 (35) 

 
𝒒𝑘
𝑇 =

𝒓𝑘
𝑇𝑺𝑋𝑌,𝑘

𝒕𝑘
𝑇𝒕𝑘

 (36) 

G. Deflate the cross-covariance matrix XTY by removing the calculated latent variables contribution 

from it: 

 𝑺𝑋𝑌,𝑘+1 = 𝑺𝑋𝑌,𝑘 − 𝒑𝑘𝒒𝑘
𝑇(𝒕𝑘

𝑇𝒕𝑘) (37) 

H. Stop if all latent variables have been calculated. Otherwise let 𝑘 = 𝑘 + 1 and return to the step B 

Store the obtained vectors w, r, t, p and q at each iteration to matrices W, R, T, P and Q as columns. 

Finally the PLS regression matrix B can be calculated: 

 𝑩 = 𝑹𝑸𝑇 (38) 

The IKPLS regression is performed in a similar way as in NIPALS by using Equation (29). [20] 

The NIPALS and IKPLS algorithms can be simplified if there is only one response variable. In NIPALS, 

the steps C-G converge in a single iteration, whilst for the IKPLS algorithm, the step B is skipped and 

Equation (32) is calculated without the eigenvector. Moreover, it is beneficial to use a faster PLS 

algorithm than the classical NIPALS when dealing with large datasets. The model validation by cross-

validation techniques become especially computationally expensive with large datasets since many 

PLS models must be tested against different validation datasets. 

Accuracy of the estimate produced by the PLS model is highly dependent on the selected number of 

the latent variables as, for example, a too high number of the latent variables causes model 

overfitting. This particular problem is avoided by model cross-validation, which is used to evaluate the 

correct model order. These methods are presented in more detail in Chapter 3.3 Assessment of the 

model complexity. 

3.2.4 Non-linear PLS regression 

Modelling of a system usually starts with the assumption that the system is linear. This initial 

assumption can be justified in spectroscopic multivariable modelling since the underlying phenomena 

are based on the absorbance of electromagnetic radiation. According to the Beer-Lambert Law the 
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absorbance is linearly dependent on the concentration and molar absorptivity of the sample. In 

addition the path length of the sample cell also affects absorbance linearly. Nevertheless some 

nonlinearity is often detected in spectral data because the response variables may be nonlinearly 

dependent on the explanatory variables and nonlinearities can also be observed in spectral data 

between the adjacent wavelengths. Many factors can contribute to the nonlinear behavior of the 

spectroscopic data such as instrumental sources, response dynamics, molecular interactions, 

concentration and temperature variations and optical scattering. 

Data nonlinearities can be detected by evaluating how the estimated and observed dependent 

variable measurements relate to each other. A figure, where estimated measurements are plotted as 

a function of the observed measurements, reveals possible nonlinear behavior of the dependent 

variable. The score vectors t and u may also be plotted against each other for inspection of possible 

nonlinear behavior. [11] 

Numerous different approaches have been published in the literature for handling the nonlinearities 

[11] [16]. One method that can be used is to add additional nonlinear variables to the explanatory 

variable matrix to produce that is known as an implicit non-linear latent variable regression (INLR): 

 𝒁 = [𝒙1, 𝒙2, … , 𝒙𝑀, 𝒙1
2, 𝒙2

2, … , 𝒙𝑀
2 , 𝒙1𝒙2, 𝒙2𝒙3, … , 𝒙𝑀−1𝒙𝑀] (39) 

Higher order terms can also be included to the augmented matrix. This method has the ability to 

handle nonlinearities easily and effectively, but it also has disadvantages. The size of the explanatory 

variable matrix multiplies because higher order terms are included to the matrix. This increases not 

only the computational burden but the higher order terms are also very sensitive to outliers and 

noise. [11] 

Another approach is to use nonlinear mapping in the inner relation between the score matrices T and 

U of the PLS instead of the linear one, for example, a neural network or a polynomial fitting can be 

utilized to create the nonlinear mapping. [21] Nonlinear polynomial PLS uses quadratic or higher 

order polynomial for modelling of the inner relation between X and Y: 

 𝒖𝑘 = 𝑓𝑘(𝒕𝑘) + 𝒆𝑘 = 𝑐0,𝑘 + 𝑐1,𝑘𝒕𝑘 + 𝑐2,𝑘𝒕𝑘
2 + 𝒆𝑘 (40) 
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These kinds of nonlinear modifications to PLS require changes to the NIPALS algorithm in Equations 

(21)-(28). The latent variable weights w are calculated differently in the modified NIPALS algorithm as 

described in [21] and these types of nonlinear mappings for the PLS inner relation have been shown 

to be very effective at modelling nonlinear response variables. [16]  

Hammerstein-Wiener models are another commonly used approach to handle nonlinearities in a 

measured system. The Hammerstein part of the model applies nonlinear preprocessing to the data 

before it is regressed by the PLS model. Finally the Wiener part post processes the linear model 

produced estimates. For example, a second degree polynomial can be used as the Wiener model's 

nonlinear part if the response variable is observed to have a second degree nonlinearity. Figure 4 

shows the block diagram of the Hammerstein-Wiener model. [22] 

 

Figure 4. Hammerstein-Wiener model [22] 

3.2.5 Priority PLS 

Before using the priority PLS method, data is divided into blocks and they are arranged into a certain 

order. The order of the blocks dictates their importance to the modelling. The NIPALS algorithm, 

described in Equations (21)-(28), is used with the only difference on how the PLS weight vector is 

determined for each block. The algorithm is applied to each block sequentially and the weight vector 

values that do not belong to the current block are replaced by zeroes after Equation (21). This way the 

obtained score vectors refer only to the current block. The blocks are taken as parts of the model until 

the additional blocks do not improve performance of the model. The process data blocks can be 

divided according to process areas so that the further the block is from the measurement point, the 

lower the priority is, however, it is not always clear how the blocks should be divided and prioritized. 

For example, data might be divided according to spectral instruments, though in the case of multi-

instrument systems it is not clear which spectral instrument should have the highest importance. 

Testing the model performance with different block orders is usually beneficial for finding the correct 

order of the blocks although with a high number of blocks this becomes a tedious task. [11] 
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It is highly important to estimate and correct the possible time delays when using process data for 

estimating properties of the final target quantity as the response between changes in the upstream 

and the estimated property might have a significant delay. Performance of the final multivariate 

model will be poor if these time delays are not taken into account. Process variable time delays can 

be estimated by inspecting the cross correlation functions (XCF) constructed between each of the 

process variables and the estimated property pairs. A sample based cross correlation at lag t for two 

data vectors is obtained from Equation (41). [23] 

 

(𝒙 ⋆ 𝒚)[𝑡] =

{
 
 

 
  
1

𝑁
∑

(𝑥𝑛 − 𝑥̅)(𝑦𝑛+𝑡 − 𝑦̅)

𝜎𝒙𝜎𝒚

𝑁−𝑡

𝑛=1

, 𝑡 ≥ 0  

1

𝑁
∑

(𝑥𝑛−𝑡 − 𝑥̅)(𝑦𝑛 − 𝑦̅)

𝜎𝒙𝜎𝒚

𝑁+𝑡

𝑛=1

, 𝑡 < 0

 (41) 

where t is an integer sample lag 

3.2.6 Multi-block PLS 

Multi-block PLS handles each data block simultaneously, which is in contrast to priority PLS where the 

blocks are treated one at the time. The MB-PLS method gives an equal importance to each of the 

variable blocks and is typically used in cases where the data is generated from different types of 

instruments. For example, spectroscopic measurement data might be assigned to one block and other 

relevant process measurements to another block. [11] The blocks should be chosen so that they are 

not strongly related to each other as the estimation performance of a model may be poor, if the 

variables of different blocks are highly related. Correlation within the blocks does not affect the 

estimation power of the model. The following illustrates a modified NIPALS algorithm for MB-PLS: [24] 

A. Preprocess each X-block and Y. Set X1 = X, Y1 = Y and k = 1. Divide the data matrix into blocks Xb,k: 

 𝑿𝑘 = [𝑿1,𝑘, … , 𝑿𝐵,𝑘] (42) 

where B is the number of blocks 

B. Choose an initial score vector uk from one of the Y columns 

C. Calculate the latent variable k weights for each block Xb,k using Equation (43). 
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𝒘𝑏,𝑘 =

𝑿𝑏,𝑘
𝑇 𝒖𝑘

‖𝑿𝑏,𝑘
𝑇 𝒖𝑘‖

 (43) 

D. Calculate the latent variable k score vectors for each block Xb,k: 

 𝒕𝑏,𝑘 = 𝑿𝑏,𝑘𝒘𝑏,𝑘 (44) 

E. Combine the block score vectors 𝒕𝑏,𝑘 into a matrix Tk: 

 𝑻𝑘 = [𝒕1,𝑘, … , 𝒕𝐵,𝑘] (45) 

 

F. Calculate a super weight for the latent variable k: 

 
𝒘𝑆,𝑘 =

𝑻𝑘𝒖𝑘
‖𝑻𝑘𝒖𝑘‖

 (46) 

G. Calculate a super score for the latent variable k: 

 𝒕𝑆,𝑘 = 𝑻𝑘𝒘𝑆,𝑘 (47) 

H. Calculate the latent variable k loading vector: 

 
𝒒𝑘 =

𝒀𝑘
𝑇𝒕𝑆,𝑘

𝒕𝑆,𝑘
𝑇 𝒕𝑆,𝑘

 (48) 

I. Update the response variables score vector for the latent variable k: 

 
𝒖𝑘 =

𝒀𝑘𝒒𝑘

𝒒𝑘
𝑇𝒒𝑘

 (49) 

J. Test the u score vector for convergence using Equation (50). Go to the step J if u has converged, 

otherwise return to the step C. 

 ‖𝒖𝑘−1 − 𝒖𝑘‖

‖𝒖𝑘‖
< 𝜀 (50) 

where 𝜀 is a small convergence tolerance 

K. Calculate the block loadings for the latent variable k: 

 
𝒑𝑏,𝑘 =

𝑿𝑏,𝑘
𝑇 𝒕𝑏,𝑘

𝒕𝑏,𝑘
𝑇 𝒕𝑏,𝑘

 (51) 
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L. Calculate the super loadings for the latent variable k: 

 
𝒑𝑆,𝑘 =

𝑿𝑘
𝑇𝒕𝑆,𝑘

𝒕𝑆,𝑘
𝑇 𝒕𝑆,𝑘

 (52) 

M. Deflate the explanatory variable matrix X and the response variable matrix Y using Equations (53) 

and (54). 

 𝑿𝑏,𝑘+1 = 𝑿𝑏,𝑘 − 𝒕𝑏,𝑘𝒑𝑏,𝑘
𝑇  (53) 

 𝒀𝑘+1 = 𝒀𝑘 − 𝒕𝑆,𝑘𝒒𝑘
𝑇 (54) 

N. Stop if all latent variables have been calculated. Otherwise let 𝑘 = 𝑘 + 1 and return to the step B 

At each step the block weights wb,k, block scores tb,k, block loading pb,k, super weights wS,k, super 

scores tS,k, response loadings qk, response scores uk and super loadings pS,k are collected into the 

weight, score and loading matrices Wb, Tb, Pb, WS, TS, Q, U, PS accordingly.  

The MB-PLS NIPALS explanatory matrix can be deflated using two different methods. The first one is 

called the block score update method and it is shown in Equation (53). This method creates 

orthogonal block scores, but the super scores are correlated. The second deflation method is called 

the super score update method. This uses the super score vectors for X deflation and the following 

equation outlines the super score update equation: 

 𝑿𝑘+1 = 𝑿𝑘 − 𝒕𝑆,𝑘𝒑𝑆,𝑘
𝑇  (55) 

The super score deflation method creates orthogonal super scores, but block scores are correlated. 

Estimation performance of the model is worse with the block score update method, if the blocks are 

correlated when compared to the super score update. On the other hand, explained variance within 

the blocks becomes higher when using the block score update method. [25] 
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Figure 5. Iteration steps of the MB-PLS NIPALS algorithm. [24] 

Figure 5. Arrow scheme diagram illustrates a single iteration step of the MB-PLS NIPALS algorithm for 

two data blocks. The steps C-I are repeated until the convergence of u. After u has converged a super 

loading vector pT is obtained in the step L and the X and Y matrices are deflated. This is repeated until 

all latent variables are found. 

The MB-PLS regression differs from the ordinary PLS regression. The MB-PLS regression is an iterative 

algorithm where the data sample is first compressed into a super score vector and then into a final 

estimation by applying the super score to the response loading vector. The regression algorithm is 

outlined below: [26] 

A. Preprocess a new sample 𝒙𝑛𝑒𝑤 similarly as the model training data. Set 𝒙1
𝑛𝑒𝑤 = 𝒙𝑛𝑒𝑤 and k = 1. 

Divide the sample vector into blocks: 

 𝒙𝑘
𝑛𝑒𝑤 = [𝒙1,𝑘

𝑛𝑒𝑤 𝒙2,𝑘
𝑛𝑒𝑤 … 𝒙𝐵,𝑘

𝑛𝑒𝑤] (56) 

B. Calculate a block score value for each block for the latent variable k: 

 𝑡𝑏,𝑘
𝑛𝑒𝑤 = 𝒘𝑏,𝑘

𝑇 𝒙𝑏,𝑘
𝑛𝑒𝑤 (57) 

C. Calculate a super score value for the latent variable k using Equation (58). 
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 𝑡𝑆,𝑘
𝑛𝑒𝑤 = [𝑡1,𝑘

𝑛𝑒𝑤 𝑡2,𝑘
𝑛𝑒𝑤 … 𝑡𝐵,𝑘

𝑛𝑒𝑤]𝒘𝑆,𝑘 (58) 

D. Deflate the sample vector by removing the variance associated with the latent variable k. Equation 

(59) is used if the MB-PLS model was created using the block score update method. Otherwise 

Equation (60) is used. 

 𝒙𝑏,𝑘+1
𝑛𝑒𝑤 = 𝒙𝑏,𝑘

𝑛𝑒𝑤 − 𝑡𝑏,𝑘
𝑛𝑒𝑤𝒑𝑏,𝑘 (59) 

 𝒙𝑘+1
𝑛𝑒𝑤 = 𝒙𝑘

𝑛𝑒𝑤 − 𝑡𝑆,𝑘
𝑛𝑒𝑤𝒑𝑆,𝑘 (60) 

E. Stop if all latent variables have been used. Otherwise let 𝑘 = 𝑘 + 1 and return to the step B 

F. Calculate an estimate for the response variable and the block residuals. The residual Equation (62)  

is used if the MB-PLS model was created using the block score update method, otherwise Equation 

(63) is used. 

 
𝒚̂𝑛𝑒𝑤 =∑𝑡𝑆,𝑘

𝑛𝑒𝑤𝒒𝑘

𝐾

𝑘=1

 (61) 

 
𝒆𝑏
𝑛𝑒𝑤 = 𝒙𝑏 −∑𝑡𝑏,𝑘

𝑛𝑒𝑤𝒑𝑏,𝑘

𝐾

𝑘=1

 (62) 

 
𝒆𝑏
𝑛𝑒𝑤 = 𝒙𝑏 −∑𝑡𝑆,𝑘

𝑛𝑒𝑤𝒑𝑆,𝑘

𝐾

𝑘=1

 (63) 

 
𝒆𝑛𝑒𝑤 =∑𝒆𝑏

𝑛𝑒𝑤

𝐵

𝑏=1

 (64) 

It has been shown that dividing data into meaningful data blocks is beneficial for performance of the 

model. [11] The Multiblock PLS has the ability to increase estimation performance of a model 

compared to the ordinary PLS. One study combined NIR analyzer and process data to improve the 

estimation performance of a model [27]. Another study showed that MB-PLS applied to NIR and MIR 

data blocks had better performance characteristics with a lower number of latent variables when 

compared to the ordinary PLS [28]. 

T2 and SPE statistics can be calculated separately for each of the MB-PLS blocks using the latent 

variables obtained for each block. [29] Statistics for the super score matrix can also be obtained. 

Contributions of each individual variable and block can be obtained separately. [26] Block division 

improves interpretation of the statistics since different data sources can be monitored separately, 
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such that instrumental problems with a spectroscopic device can be detected separately from other 

measurements. 

Kohonen et al. compared ordinary PLS, priority PLS and multiblock PLS for monitoring the fertilizer 

flowability and they demonstrated that a P-PLS model gave the most accurate estimates [30]. In their 

study the MB-PLS model required a lower number of latent variables than P-PLS while still providing a 

better performance than the ordinary PLS model. They also argued that MB-PLS was superior for 

quality monitoring of the fertilizer product since this type of model produces more information when 

compared to the ordinary and priority PLS models. Moreover control limits and statistics can be 

calculated for each of the data blocks separately in the MB-PLS model. In addition, Laxalde et al. have 

shown the successful application of the MB-PLS model for estimation of resin content in heavy oils by 

combining absorbance data from the NIR and MIR instruments [31]. The estimation performance of 

the model was shown to be improved when data was combined from multiple sources. Jing et al. 

used MB-PLS in a blockwise data analysis in order to determine the significant contributors to the 

quality of a pharmaceutical product produced by a multistep batch process [32]. They utilized the MB-

PLS analysis results to reduce variability of the final product. 

3.2.7 Adaptive chemometric models 

It has been suggested by Angelov et al. [33] that variability in the operational regions of processes 

make utilization of the process measurements difficult for chemometric analysis. Generally it is not 

feasible to cover all the possible operational regions of the process during the training of the model 

and process dynamics also tend to change over longer periods of operation, which can cause the 

model to become unusable over time and require expensive remodeling of the system. Therefore 

adaptive chemometric models should be used in order to adapt to changes in the process. Figure 6 

illustrates the general adaptive scheme used for chemometric models and also how some of the 

adaptive methods may directly utilize historical input data when the model is updated. 
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Figure 6. An adaptive chemometric model [34] [35] 

A variety of different types of recursive PLS methods are detailed within the literature. Qin presented 

a recursive PLS method where a model is updated when a new sample becomes available or after a 

certain number of samples have arrived [34]. The proposed model used a forgetting factor that gives 

less weight to older samples and the method was applied to a dataset from a catalytic reformer to 

estimate the product octane number. The results from this investigation showed that the recursive 

model successfully adapt to the changes in the process. 

Updating a PCA or PLS model using a recursive method is very expensive computationally when a full 

data matrix is used for generating the model [36]. Therefore it has been suggested that the IKPLS 

algorithm, shown in Equations (31)-(38), should be used in a recursive manner instead. The method 

relies on a PLS model that is derived from a covariance matrix instead of full data matrices. [35]  

The recursive methods with a constant forgetting factor tend to have problems with systems that are 

not activated sufficiently as this causes the recursive method to adapt to measurement noise, leading 

to a decrease in model performance. For example a covariance matrix might become ill-conditioned if 

used in methods that rely on recursive matrix updates. Dayal et al. proposed a method where the 

forgetting factor is also adaptive. Here the forgetting factor was updated based on the measures of 

information in the new and old data points with the proposed method yielding an improved 

estimation performance in a mining process. [37] 

The previously proposed recursive PLS methods are based on adaption by prioritization of the most 

recent samples and such a type of adaptive scheme is also termed time relevance adaptation. Chen et 
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al. proposed a method where not only time relevance is taken into account, but also space relevance. 

This method uses the locally weighted PLS method where time relevance weighting is applied to the 

most recent samples and space relevance weighting to the old samples with the space relevance 

determined from the Euclidean distance between a new sample and the historical samples. This 

method has been successfully used with NIR spectrum data and it yielded improved performance 

when compared to the other weighting adaptive schemes. [35]  

A novel method was presented by Angelov et al. that used the Evolving Takagi-Suveno Fuzzy Model 

for adaptive modelling of a distillation column dataset [33]. This type of a model is based on fuzzy 

logic where rules as well as parameters of the model evolve [38]. Use of this model yielded improved 

performance over other adaptive chemometric schemes in a variety of test cases [38] [39]. 

However, all adaptive models have the inherit problem that they may adapt to unwanted operational 

process states like process disturbances and shutdowns. For example a model might become 

unusable after it has adapted to a dataset from a process that has been shutdown. Therefore it might 

be necessary to create certain conditions for model updating such as to make adaptive models 

feasible for the real process applications. These conditions could be based on prior knowledge of the 

system. [40] 

3.3 Assessment of the model complexity 

The selection of the PCA principal components can be based on the variation explained by PCs in the 

data. The optimal number of principal components (K) can be estimated by the following criteria: 

 
𝐾̂ = arg  min

𝐾
{𝐾:∑𝜆𝑘 ≥ (1 − 𝜀)∑𝜆𝑘

𝐿

𝑘=1

𝐾

𝑘=1

} (65) 

where λk is the k:th eigenvalue of the X covariance matrix which is square of a singular value in a 

column of S 

 K is a number of the selected principal components 

 L is a total number of the principal components 

 ε is a fraction of the unexplained variance 
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Selection of the parameter ε value greatly depends on the amount of noise in the data. If the level of 

the noise is not known in advance the selection of this parameter can be uncertain, however in such 

cases the fraction of unexplained variance is selected to be close to 10%. [18] 

A number of studies have shown that the statistical F-test can be employed with noisy data to 

evaluate the number of principal components [18] [41]. An F-test starts from the smallest eigenvalue 

and approaches the largest one until it finds a significant eigenvalue and once this has been 

determined all larger eigenvalues are also considered to be significant. The F-statistic is calculated for 

each eigenvalue (k) using the following formula: 

 

𝐹𝑘 =

𝜆𝑘
(𝑀 − 𝑘 + 1)(𝐿 − 𝑘 + 1)

∑
𝜆𝑖

(𝑀 − 𝑖 + 1)(𝐿 − 𝑖 + 1)
𝐿
𝑖=𝑘+1

 (66) 

where M is the number of variables 

Significance of a principal component is tested by comparing the above test statistic against a one-

tailed critical value of F-distribution at a desired level of confidence. The estimated number of 

principal components can be determined using the following relation: 

 𝐾̂ = arg  min
𝐾
{𝐾: 𝐹𝐾 > 𝑓1,𝐿−𝐾(𝛼)} (67) 

where 𝑓1,𝐿−𝐾(𝛼) is F-distribution's critical value at α with 1 and L-K degrees of freedom 

The choice of a significance level α is again under users' discretion, as was the case with the 

parameter ε in Equation (65), as a consequence the level of significance is usually set between 90% 

and 95%. [17] 

Another common approach to estimate the correct order of a PCA model is to use cross-validation 

techniques that divide a dataset into training and validation datasets. A model is built using the 

training dataset and validated using the validation set. Validation is performed by comparing the 

estimated values obtained from the model to the ones in the validation dataset. 

The prediction error sum of squares (PRESS) is commonly used to interpret the performance of the 

model as shown in Equation (68). 
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𝑃𝑅𝐸𝑆𝑆 = ∑ ∑(𝑥̂𝑛𝑚 − 𝑥𝑛𝑚)

2

𝑀

𝑚=1

𝑁

𝑛=1

 (68) 

This performance indicator is usually normalized, and the resulting root mean squared error of cross-

validation (RMSECV) is given by: [11] 

 

𝑅𝑀𝑆𝐸𝐶𝑉 = √
𝑃𝑅𝐸𝑆𝑆

𝑁
 (69) 

Performance of the model fitting can also be measured using the coefficient of determination (R2) 

which indicates how well the estimated values fit to the observed data set. Usefulness of the R2-

metric is limited when data contains outliers or non-linear behavior though this can be evaluated by 

visual inspection of the estimated values plotted against the observed ones. Such an evaluation allows 

for the detection of possible outliers in the dataset and non-linear behavior of the system. The 

following equation shows the formulation for the coefficient of determination: 

 
𝑅𝑚
2 = 1 −

∑ (𝑥̂𝑛𝑚 − 𝑥𝑛𝑚)
2𝑁

𝑛=1

∑ (𝑥𝑛𝑚 − 𝑥̅𝑚)2
𝑁
𝑛=1

 (70) 

The impact of successive latent variables can be assessed using the RR criterion. The RR metric 

measures how influential an added latent variable is to the performance of the model. Usually a value 

of 0.90-0.95 is used as a cut-off limit for the criterion and latent variables exceeding this limit are 

regarded as redundant. The RR metric is calculated using Equation (71). [11] 

 
𝑅𝑅 =

𝑃𝑅𝐸𝑆𝑆𝑘+1
𝑅𝑆𝑆𝑘

 (71) 

where k is an index of the latent variable 

 RSS is a residual sum of squares 𝑅𝑆𝑆 = (𝒙𝑇𝒙) − (𝒙̂𝑇𝒙̂) 

Many cross-validation technique variants have been introduced throughout the literature and this 

thesis outlines the following: Venetian Blind, Contiguous Block, Monte-Carlo and Leave-one-out cross 

validation techniques. All these methods divide a dataset into two groups with the first group used to 

train the model and the second one is used for the model validation. The Venetian Blind, Contiguous 

Block and Monte-Carlo cross-validation methods divide the dataset into Nv parts. The Venetian Blind 
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method divides the dataset by taking every Nv:th datum from the dataset, the Contiguous Block 

method divides the dataset into contiguous parts and the Monte-Carlo cross-validation divides the 

dataset into Nv parts by randomly choosing the samples from the dataset. The Monte-Carlo method is 

repeated Nrep times by taking different randomly chosen data subsets, whilst the Leave-one-out 

method excludes a single sample from the dataset and the rest are used for model training. The 

model is then used to estimate the left-out sample. A table below illustrates these four commonly 

used cross-validation methods. [42] 

Table 1. Cross-validation schemes 

 Venetian Blinds Contiguous Blocks Monte-Carlo Leave-one-out 

Sample selection 

scheme 

    

Number of validation 

experiments 

𝑁𝑣 𝑁𝑣 𝑁𝑣 ∗ 𝑁𝑟𝑒𝑝 𝑁 

Number of validation 

samples per 

experiment 

𝑁/𝑁𝑣  𝑁/𝑁𝑣  𝑁/𝑁𝑣  1 

RMSECV values are calculated for each of the validation experiments and these values are then 

summed together to obtain the total RMSECV value. This procedure is repeated for different model 

orders, then the total RMSECV values are compared and the correct model order selected at the point 

where model performance is not improved by successive latent variables. It has been suggested that 

the optimal number of principal components determined by the Monte-Carlo method is based on 

lowest value of the total sum of the MCCV metric rather than RMSECV. [11]  

 
𝑀𝐶𝐶𝑉 =

1

𝑁𝑟𝑒𝑝𝑁𝑣
∑ ∑(𝑥̂𝑛𝑚 − 𝑥𝑛𝑚)

2

𝑀

𝑚=1

𝑁

𝑛=1

 (72) 

where Nrep is a number of MCCV repetitions and Nv is a number of validation samples 
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The appropriate cross-validation technique should be selected based on structure of the dataset, for 

example, the Venetian Blind method is good for randomly ordered datasets that do not contain 

replicates. On the other hand the Contiguous Block method is useful for evaluating model stability for 

datasets containing batch data whilst the Monte-Carlo cross-validation is used when the structure of 

the dataset is not known or when the dataset contains a low number of samples. Monte-Carlo is also 

a very versatile method because it can be applied to many different types of datasets, however, it is 

computationally very intensive due to the large number of repetitions required. In contrast, the 

Leave-one-out method is usually only used for very small datasets. 

Information about response variables can also be used to determine the correct model order for PCR 

and PLS models. Explanatory and response datasets are both divided into training and validation 

datasets with the model validated against the validation set of the response variables. The Root mean 

squared error of the prediction (RMSEP) performance metric is calculated for different model orders 

for the validation data. The RMSEP is calculated using Equation (69) where the response variable is 

used instead of explanatory variable sample as in the RMSECV. Response variables are similarly used 

in the Monte Carlo cross-validation Equation (72). The model producing the optimal RMSEP or MCCV 

performance is determined to have the correct number of principal components or latent variables. 

[11] 

It has been suggested that the optimal selection of the latent variables in MB-PLS is based on the 

inequality shown is Equation (73).  

 
(𝒕𝑏,𝑘
𝑇 𝒖𝑘)

2
>
1 + √2𝚽−1(𝛼)

𝑁
(𝒕𝑏,𝑘
𝑇 𝒕𝑏,𝑘)(𝒖𝑘

𝑇𝒖𝑘) (73) 

where 𝚽−1(𝛼) is a value of a probit function with a specific probability 𝛼. The probit function is an 

 inverse of the normal distributions cumulative distribution. 

The significance of a latent variable is tested using this inequality and a significance level of 𝛼 = 0.95 

is usually used for determining significant scores. The testing of latent variables is stopped after no 

significant latent variable is found for any of the blocks. Blocks may have a different number of latent 

variables since insignificant latent variables are discarded from the MB-PLS model and an unequal 

number of latent variables between the blocks help to avoid overfitting within a block. The relation 



 

33 
 

outlined in Equation (73) can also be utilized for ordinary PLS model order selection. [11] The MB-PLS 

weight, score and loading vectors must be re-evaluated using the MB-PLS NIPALS algorithm when any 

of the blocks have an unequal number of latent variables after the model order selection. Insignificant 

latent variables are then excluded in the MB-PLS NIPALS Equations (43)-(47). 

3.4 Selection of the significant regressors 

Data produced by spectrometric instruments contain usually hundreds to thousands of variables; 

therefore it is important to select only the relevant ones for modelling. Removing irrelevant variables 

is advantageous since the performance of the model is then only affected by the presence of relevant 

variables and computational performance can also increase due to the lower number of variables. PLS 

regression can be utilized for determining influential explanatory variables. One commonly used 

method is Variable Importance in Projection (VIP) method that calculates a value signifying the 

importance of the variable. For example, a variable whose VIP value is close or above one is 

considered a significant variable and it has been suggested that the significance threshold is between 

0.83 and 1.21. The VIP value can be calculated for each variable (m) using the following equation: [43] 

 

𝑉𝐼𝑃𝑚 = √𝑀∑[(𝒒𝑘
𝑇𝒒𝑘𝒕𝑘

𝑇𝒕𝑘) (
𝑤𝑘𝑚
‖𝒘𝑘‖

)
2

]

𝐾

𝑘=1

∑(𝒒𝑘
𝑇𝒒𝑘𝒕𝑘

𝑇𝒕𝑘)

𝐾

𝑘=1

⁄  (74) 

where wkm is a weight corresponding to the latent variable k for the variable m 

The VIP significance is calculated using variance and sum of squares explained by the PLS component. 

Variance explained is calculated in the term (𝑤𝑘𝑚 ‖𝒘𝑘‖⁄ )2, whilst the term (𝒒𝑘
𝑇𝒒𝑘𝒕𝑘

𝑇𝒕𝑘) represents 

the sum of squares explained by the latent variable. Thus the VIP value therefore represents each 

variable's relative importance on the model. 

Another commonly used method for assessing variable importance is one that uses regression 

coefficients in a regression matrix B. For example, variables whose regression coefficient is below a 

certain limit are regarded as irrelevant and removed. The Uninformative Variable Elimination (UVE) 

algorithm derives a variable importance metric from regression coefficients. The algorithm appends 

noise variables to the data matrix and forms a variable exclusion limit from these appended variables 

and is outlined next. [44] 
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A. Set 𝑃𝑅𝐸𝑆𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅
0 = ∞ and 𝑖 = 1 

B. Append the explanatory matrix X with M random variables drawn from a uniform distribution 

C. Determine the mean values and variances of each regression coefficient from the different PLS 

models derived by the Monte-Carlo cross-validations. Also calculate the average 𝑃𝑅𝐸𝑆𝑆̅̅ ̅̅ ̅̅ ̅̅
𝑖̅ of the PRESS 

values for the Monte-Carlo derived models. 

D. Stop if the average of the PRESS values starts to increase, otherwise go to the step E: 

 𝑃𝑅𝐸𝑆𝑆̅̅ ̅̅ ̅̅ ̅̅
𝑖̅ > 𝑃𝑅𝐸𝑆𝑆̅̅ ̅̅ ̅̅ ̅̅

𝑖̅−1 (75) 

E. Calculate an importance metric for each variable by using means and variances of the regression 

coefficients: 

 
𝑐𝑚 =

𝑏̅𝑚

𝜎𝒃𝑚
2  (76) 

where 𝑏̅𝑚 is the mean value of the variable m regression coefficients 

 𝜎𝒃𝑚
2  is the variance of the variable m regression coefficients 

F. Calculate a variable exclusion limit by finding the maximum value of the importance metrics cm 

belonging to the random variables appended in the step A. 

G. Remove the variables whose importance cm is below the exclusion limit. Stop if no variables are 

removed otherwise return to the step B. 

The VIP value obtained in Equation (74) can be used to select the relevant variables. It can be also 

used in an iterative variable elimination method called the Backward Variable Elimination (BVE) which 

is outlined below: [45] 

A. Calculate the mean values of the PRESS and the variable VIPs for the different PLS models obtained 

by the Monte-Carlo cross-validations. 

B. Eliminate the variable corresponding to the smallest VIP value 
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C. Go to the step D if the number of variables is the same as the number of the latent variables after 

elimination, otherwise return to the step A. 

D. Select excluded variables based on the smallest PRESS value obtained in the elimination iterations 

It is worth noting that the BVE algorithm can also be based on another importance metric e.g. 

regression coefficients can be used in place of the VIP values. This UVE algorithm is well suited for 

datasets containing a large number of variables like spectroscopic measurements as each iteration 

step of the UVE algorithm removes multiple, uninformative variables. In contrast, the BVE algorithm is 

computationally very expensive for datasets containing a large number of variables since it removes 

only one variable per iteration step. [45] 

Both of these elimination algorithms work backwards by removing variables step by step. Covariance 

procedure (COVPROC) is a forward variable selection method where variables are included to the 

model step by step based on the latent variable weight wkm. Thus a variable whose weight is the 

highest is included to the model and variables are included into the model until a model fitting 

criteria, for example, the RMSEP value no longer improves. [27] [43] Mehmood et. al. have reviewed 

numerous other elimination methods for the PLS method [43] and their findings detail how some of 

them rely on the stochastic method such as genetic algorithms whilst other rely on a more complex 

iterative schemes. 

3.5 Multivariate statistical process control 

Statistical process control (SPC) methods are used to monitor the status of a process with faults in the 

process and quality of the measurements which are the usual targets of the monitoring. The 

Hotelling's T2 and squared prediction error (SPE) statistics are the most widely used multivariate 

model performance indicators. These statistics are usually used to monitor the performance of the 

PCA or PLS models as well as the operational performance of the process. The T2-statistic measures 

the samples' unexplained variation inside the model and it is usually used to indicate whether a model 

fit is good. The SPE-statistic monitors the model residuals and is used to measure unexplained 

variation outside the model in order to indicate any possible unexplained events in the process. The 

SPE and T2-statistics can be thus used to indicate process faults and the presence of unusual 

operational regions within the process. [46] 
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The T2 and SPE statistics can be applied to PCA and PLS models. Statistics can be calculated in a similar 

fashion for both types of models since their underlying mathematical framework is closely related. 

The T2 statistic of a measurement n from a sample can be calculated using the following equation: 

[11] 

 
𝑇𝑛
2 =∑

𝑡𝑛𝑘
2

𝑠𝒕𝑘
2

𝐾

𝑘=1

 (77) 

where K is the number of the latent variables used for the model 

tnk is the n:th row and the k:th column of the PCA or PLS score matrix T obtained from a new 

sample 

 𝑠𝒕𝑘 is the estimated variance of the modelling phase score vector tk 

The estimated variances are obtained from the covariance matrix diagonal elements of the score 

matrix T at the modeling phase. A score matrix covariance matrix is calculated using the following 

equation: 

 
𝑺𝑻𝑻 =

1

𝑁 − 1
𝑻𝑇𝑻 (78) 

where T is the score matrix of the PCA or PLS model 

 N is the number of samples used for modeling 

An upper control limit of the T2 statistic can be calculated from the following equation: [11] 

 
𝑇𝑙𝑖𝑚
2 =

𝐾(𝑁 − 1)

𝑁 − 𝐾
𝑓𝐾,𝑁−𝐾(𝛼) (79) 

where N is the number of samples 

 𝑓𝐾,𝑁−𝐾(𝛼) is a critical value of the F-distribution at 𝛼 with K and N-K degrees of freedom 

The choice of the significance level α is under user’s discretion and a usual value for this parameter is 

between 95% and 99.9%.  

The SPE statistic is calculated for a measurement n in the sample using Equation (80). [11] 
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 𝑆𝑃𝐸𝑛 = 𝒆𝑛
𝑇𝒆𝑛 (80) 

where 𝑒𝑛 is the n:th row of the residual matrix, which is calculated using Equation (81). 

 𝑬𝑛𝑒𝑤 = 𝑿𝑛𝑒𝑤 − 𝑻𝑛𝑒𝑤𝑷
𝑇 (81) 

The upper control limit for the SPE statistic is calculated using the following equation for a PCA model 

[47]: 

 

𝑆𝑃𝐸𝑙𝑖𝑚 = Θ1 (1 +
𝚽−1(𝛼)ℎ0√2Θ2

Θ1
+
ℎ0Θ2(ℎ0 − 1)

Θ1
2 )

1
ℎ0

 (82) 

where Θ𝑎 is the sum of unexplained variance associated with unused principal components 

𝚽−1(𝛼) is a value of the probit function with a confidence level 𝛼. The probit function is 

inverse of the normal distributions cumulative distribution. 

 ℎ0 is calculated using the equation ℎ0 = 1 − (2Θ1Θ3) (3Θ2
2⁄ ) 

The above Θ𝒂 values are calculated from variances associated with unused principal components: 

 
Θ𝑎 = ∑ 𝑠𝒕𝑘

2𝑎

𝑀

𝑘=𝐾+1

 (83) 

Equation (83) requires calculation of all the latent variables related to the data and this task may be 

computationally very expensive for data sets with a large number of variables. Such an undertaking is 

especially problematic with chemometric data. Additionally the SPE limit obtained in Equation (82) is 

inconveniently tight for monitoring explanatory variable residuals in PLS applications (as reported by 

Yin et. al. in [48]) and this is a result of the balance between inner and outer modelling fitting in PLS. 

Instead, it has been suggested that the SPE control limit should be derived from the χ2-distribution: 

[48] 

 𝑆𝑃𝐸𝑙𝑖𝑚 = 𝑔𝜒ℎ
2(𝛼) (84) 

where g is a coefficient of the limit 

 𝜒ℎ
2(𝛼) is a critical value of the χ2-distribution at α with h degrees of  freedom 

Parameters g and h are calculated by using Equations in (85). 
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𝑔 =

𝜎𝑺𝑷𝑬
2

2𝑆𝑃𝐸̅̅ ̅̅ ̅̅
,    ℎ =

2𝑆𝑃𝐸̅̅ ̅̅ ̅̅ 2

𝜎𝑺𝑷𝑬
2  (85) 

where 𝜎𝑺𝑷𝑬
2  is the variance of the SPE values obtained in Equation (80) 

 𝑆𝑃𝐸̅̅ ̅̅ ̅̅  is the mean of the SPE values obtained in Equation (80) 

Parameters 𝑠𝒕𝑘 in Equation (77), 𝑇𝑙𝑖𝑚
2  and 𝑆𝑃𝐸𝑙𝑖𝑚 are obtained during the modelling phase. 

The individual contributions of each variable to the statistical metrics can be calculated for both T2 

and SPE statistics. Variables with high contribution values have more influence on the observed 

behavior, for example, the source of a detected fault can be diagnosed by observing which variables 

contribute to the statistical metrics. T2 contributions for each variable can be calculated by using the 

following equation: [11] 

 𝒄𝑇2,𝑛 = 𝒕𝑛√(𝑺𝑻𝑻𝑰)−1𝑷
𝑇 (86) 

where I is an identity matrix 

 tn is a score vector of the n:th measurement in a new sample 

SPE statistic contribution is simply the n:th measurement residual vector: [11] 

 𝒄𝑆𝑃𝐸,𝑛 = 𝒆𝑛 (87) 

PCA related SPC equations can be directly applied to the PLS method and the recent research papers 

by Yin et. al. and Zhou et. al. have also suggested modifications to the calculation of the PLS statistical 

values [48] [49]. The modifications are needed because the PLS method may generate large variation 

in explanatory variable residuals since the objective of the method is to not only minimize this 

variation, but also to maximize the covariance between the response variables. The papers by Yin et. 

al. and Zhou et. al. suggest that the PLS method should involve decomposition of data matrices into 

subspaces. These resulting subspaces are related to the prediction of response variables, inner 

relations and non-predictive parts and thus can be monitored separately. 
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4. Communication standards for the analyzer instruments 

This thesis introduces a data acquisition system for spectroscopic instruments in combination with 

other process data sources. This chapter outlines a number of the widely used communication 

protocols in industrial automation particularly in analyzer applications with particular emphasis is 

given to the OPC UA communication protocol as the specification includes an open standard for 

spectroscopic instrument data acquisition.  

Measurements and other data produced by spectral instruments must be transferred from the 

instruments to locations where the data is utilized. The analyzer results, produced in the form of 

spectra and response variable estimates, are used for various tasks including process control, quality 

control and process monitoring. Also, these results are usually saved to a database where they are 

available for further analysis. Milliampere Modbus, TCP/IP Modbus, Profibus and OPC (Open Platform 

Communications) are widely used protocols for transferring data from spectroscopic instruments, 

however, all analyzer manufacturers have their own software solutions to access data within devices. 

What data is available for external use and how it is available is highly dependent on the type of the 

device and manufacturer. The analyzer devices companion specification (ADI) for the OPC UA is the 

first standard that is intended to create a unified view on the information produced by analyzers. This 

thesis focuses on data transfer solutions for on-line process spectroscopic instruments. Emphasis is 

focused on the OPC UA (a successor to OPC) standardized by IEC (International Electrotechnical 

Commissions) under standard the number IEC 62541 [50]. 

4.1 OPC (Open Platform Communications) 

OPC is a standardized communication model for industrial automation applications. Products 

compatible with the OPC specification can be used with other OPC compliant products and therefore 

the end users can flexibly choose between devices and manufacturers. In addition software and 

hardware development also becomes easier for manufacturers since no additional software solutions 

are required for communication between various devices. The OPC communication is based on the 

Distributed Component Model (DCOM) which is a proprietary technology developed by Microsoft 

where software components are distributed across computer networks. Figure 7 shows how client 
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applications connect to OPC servers. OPC compliant devices operate as OPC servers and OPC clients 

can then connect and retrieve data from these servers. [51] 

 

Figure 7. Communication between OPC compliant devices [51] 

The OPC information model is based on groups of items. An OPC group is a logical group of items that 

are related to each other. An OPC item can e.g. represent a value of a measurement. Clients can 

request information about OPC groups and items under a specific group from the server.  

 

Figure 8. A hierarchy of the OPC groups and items located on an OPC server [51] 

The OPC specification is divided into 11 specification documents each describing certain aspects of 

the standard. These include real time and historical data access specifications. The Data access 
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specification defines how real time data is presented and accessed on a server. Alarms and events 

also have their own specifications. The software implementation of OPC is based on the Component 

Object Model (COM) developed by Microsoft and therefore OPC is not an inherently cross platform 

technology as each OPC object is represented by a COM object exposing specific interfaces for 

interacting with the component. [51] 

The original OPC has no standardized information models for analyzer devices. Instead each 

instrument vendor has their own proprietary solutions for instrument information models. Next 

chapters present an OPC UA communication protocol that is the successor of the OPC. OPC UA 

includes a companion specification related to analyzer information models. This makes it possible to 

easily connect to instruments provided by different vendors. 

4.2 OPC UA 

OPC UA (Open Platform Communications Unified Architecture) is the successor of OPC and differs 

significantly from the original OPC as OPC UA does not rely solely on Microsoft technologies. Instead 

OPC UA is based on the cross-platform service-oriented architecture relying on TCP/IP 

communications. In particular the specification for OPC UA was created with scalability and security in 

mind as it supports SSL encryption for secure communication. [52] 

4.2.1 OPC UA information models and services 

The information model of OPC UA is based on full mesh node network, where the nodes are basic 

components of the OPC UA information model and as such can have references to other nodes thus 

creating relationships between them. The nodes can be thought as objects in object oriented 

programming as they can have child nodes representing the object properties. Furthermore, 

references allow the creation of full mesh networks of nodes and they can also be used to organize 

and create inheritance models of objects. In addition, nodes include their own metadata e.g. variable 

value and read access of the value. [52] This combination of nodes and references between nodes can 

be used to create any data model necessary. 

The address space of the OPC UA server provides different types of services for obtaining information 

about nodes residing inside the server address space. The OPC UA specification defines browse and 

query services for obtaining information about the structure of a node network. The server may also 
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contain restricted subsets of the full address space called views. The address space views are used to 

organize large address spaces into smaller logical parts. Figure 9 illustrates the OPC UA address space. 

 

Figure 9. A mesh network of nodes inside the OPC UA server address space [51] 

OPC UA nodes can be used to create information models familiar from object oriented programming. 

The specification defines three different kinds of nodes used for creating object instances: object, 

variable and method nodes. The specification also defines the node types used for information 

modelling, namely object type, variable type, data type and reference type nodes. These node types 

are referred to as node classes (NodeClass). 

The OPC UA server provides different services based on class of the node, for example, object nodes 

provide services for listening to object events like alarm events. Variable nodes provide the read and 

write services for accessing data values as well as the services for listening to data change events. 

Method nodes provide services for calling methods with or without arguments and also the ability to 

deliver possible return values. Figure 10 shows a possible structure of an OPC UA object node with 

variable and method nodes. This figure also shows services provided by different instance nodes. [51] 
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Figure 10. An individual object node inside OPC UA server address space [51] 

OPC UA information models and address spaces are modelled using OPC UA notation, which consists 

of symbols and arrows used for denoting the nodes and references respectively. This notation is 

subsequently widely used throughout this thesis for information modelling. Figure 11 shows the 

instance node symbols on the left and the type node symbols on the right. Type nodes are used for 

creating type definitions that their instances refer to and this type definition hierarchy describes how 

an initiated type is represented inside an address space. Again, this paradigm is familiar from object 

oriented programming where classes define a collection of properties and methods for the objects.  

A name inside a node symbol represents the BrowseName of the node i.e. it reflects the node's name 

when address space of the server is browsed. Each of the different node symbols represents an OPC 

UA NodeClass and the names of the specific NodeClasses are shown inside the symbols in Figure 11. 
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Object
 

ObjectType

 

Variable
 

VariableType

 

Method
 

DataType

 

View
 

ReferenceType

 

Figure 11. Node symbols in OPC UA notation [51] 

The OPC UA standard defines a set of reference types - either symmetric or asymmetric - as shown in 

Figure 12. In addition, custom reference types can also be defined and all references are described in 

an address space by reference type nodes. Hierarchical references are used for creating non-circular 

references between nodes inside an address space. Overall, each reference type is represented by its 

name over the arrow symbol. A HasEventSource reference is used for describing a source of a possible 

object event. In contrast, a HasComponent reference can be used to describe a relation between an 

object and its components, for example method or variable nodes. A HasProperty reference is used to 

describe property of an object and nodes referenced by a HasProperty reference are regarded as 

variable nodes that do not have any child nodes. A HasTypeDefinition describes what object or 

variable type a node implements. In addition, a HasSubtype reference is used to describe an 

inheritance relation between object and variable types. 
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Symmetric reference 

ReferenceType
 

HasComponent 

 

Asymmetric reference 

ReferenceType
 

HasProperty 

 

Hierarchical reference 

ReferenceType
 

HasTypeDefinition 

 

HasEventSource 

 

HasSubtype 

 

Figure 12. Reference arrow symbols in OPC UA notation [51] 

HasSubtype and HasTypeDefinition relationships between nodes can also be represented inside node 

symbols. In addition, it is also possible to specify a DataType inside a variable node symbol. This 

notation is used to simplify OPC UA notation diagrams as outlined in Figure 13: 

ObjectType:
Object

 

VariableType:
Variable

 

SuperType:
ObjectType

 

Variable
(DataType: VariableDataType)

 

 SuperType:
VariableType

 

Figure 13. A notation for representing HasSubtype, HasTypeDefinition and DataType relationships 

inside node symbols [51] 

DataType definitions are only defined for Variable NodeClasses and as such, describe what type of 

data is present inside a variable node. These data types include most of the familiar primitive types 

from common programming languages such as strings, integers and floating point types of different 

precisions. OPC UA also supports custom complex DataTypes, which are defined by subtyping the 
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DataType node. Encoding and decoding procedures for these are defined within the OPC UA server 

and this allows the connecting client to correctly interpret custom DataTypes. [51] 

4.2.2 OPC UA ADI 

The OPC UA companion specification for analyzer devices (OPC ADI) defines the information models 

associated with analytical devices. The model described is intended to unify the view of analytical 

devices irrespective of the underlying protocols. Analyzers can be divided into various groups such as 

light spectrometers, particle size monitoring systems, mass spectrometers, chromatograms and 

nuclear magnetic resonance spectrometers (though these groups can be further extended where 

necessary). The ADI information model can be applied to all of these analyzer groups and the 

specification is such that it can also support more specialized analyzers which are built by combining 

multiple analyzers into one package. 

This thesis focuses on data acquisition from spectrometric instruments with the acquired information 

later used to implement a data acquisition system for analyzer devices. The configuration and 

maintenance specific parts in the ADI specification are disregarded. 

The description of analyzers is divided into five components and these components are: 

AnalyserDeviceType, AnalyserChannelType, StreamType, AccessoryType and AccessorySlotType. 

Additional components can be defined depending on the needs of individual device manufacturers. 

Figure 14 presents a conceptual topology of the analyzer components in ADI information model. [53] 

Overall, StreamType and its subtypes are the most important types of the ADI specification for the 

analyzer data acquisition and it is these types that are used later in the experimental part of the thesis 

for collecting spectral data from the analyzer devices. 
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Figure 14. Analyzer components in the ADI information model [53] 

The AnalyserDeviceType represents the instrument as a whole. A device may have multiple 

AnalyserChannelType and AccessorySlotType instances. Channels can also have their own 

AccessorySlotType instances. A process is sampled through a sampling system. This is modelled with 

the StreamType. Channels have one or more StreamType instances associated with them. StreamType 

instances may also be associated to channels through accessories. Multiple AnalyserChannelType 

instances can be active at the same time meaning that the channels are used to acquire data. Only 

one StreamType instance per channel can be active at a time.  

4.3 Fieldbus communication standards 

Fieldbus standards are widely used for transferring information inside a hierarchical automation 

network. This network goes all the way through from a field device to a computer screen of the 
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operator.  Fieldbus networks are usually used at the lower levels of the automation hierarchy to 

transfer information from a programmable logic controller (PLC) to field devices. Automation industry 

has a variety of competing fieldbus standards including Foundation Fieldbus, Profibus and ModBus. 

Analyzer devices usually support some of these fieldbus standards to transfer information from the 

instrument to where information is used. Although the communication protocols are standardized the 

underlying information models of analyzers are not. As a consequence, each instrument vendor has 

their own proprietary solutions on how the information is presented and in general, vendors provide 

their own software for connecting to the analyzer and to obtain information about the 

measurements. The OPC UA ADI standard is the first time when a united view of the analyzer 

information model has been created and this standard makes it possible to both connect to and read 

information from instruments without proprietary software. 

4.4 Implementation of the standards on analyzer networks 

Analyzer outputs i.e. the sample property estimates are usually transferred from the instrument to a 

plant distributed control system (DCS) via Ethernet or milliampere cabling. Many different types of 

analyzer networks might exist in parallel especially in large industrial applications. For example some 

of the older instruments might use Modbus milliampere messages, while other devices use OPC 

through Ethernet cabling [54] [55]. Figure 15 depicts an example analyzer network in this type of 

configuration: 
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Vendor specific 
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Figure 15. An analyzer network composed of different automation network types connected to a DCS 
network 



 

49 
 

The previous figure shows an example network where analyzer instruments transfer sample property 

estimates to the DCS server and plant information server where they then become available to the 

higher level systems. Vendor specific software might provide additional information about the 

instruments that rely on the proprietary information models developed by the manufacturer. Some 

devices may also provide additional information locally on the device that is not readily available on 

the plant network as these kinds of devices only provide the most basic type of information, namely 

the analyte properties to the higher level systems.  

Analyzer devices are highly sophisticated process instruments that produce large amounts of 

measurement and status related data with analyte property estimates typically being the most basic 

type of information provided by the instruments. Additionally, instruments can provide vast amounts 

of diagnostic related information, for example, device status or performance indicators for the 

chemometric models. Therefore it would be beneficial to have a single unified view on the 

information provided by analyzers and also to have a standardized protocol to access this 

information. OPC UA and ADI specifications can be used to solve this information access problem 

related to analyzer devices. ADI exposes the information provided by analyzers as a unified view and 

OPC UA provides a standardized protocol to access this information. [51] [53] Figure 16 shows an 

example analyzer network based on OPC UA: 
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Figure 16. An analyzer network based on OPC UA providing a unified view on the analyzer information 
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The figure shows how all information is transferred using a single communication protocol. For higher 

level systems the analyzer information is provided through the OPC UA information models, whereas 

previously analyzer information was only available through vendor specific software or was located 

locally on the device. The new OPC UA implementation makes it possible for compliant applications to 

easily access this information and further refine it. Figure 16 shows how analyte property estimates 

from device chemometric models are visible to the plant information servers from ADI devices 

through the OPC UA protocol whilst in Figure 15 implementation was based on proprietary protocols. 

ADI devices not only make available the analyte properties but also other device related information 

and spectrum measurements accessible from the network. Figure 16 also shows an example 

application where a separate chemometric calculation platform is used to estimate the analyte 

properties from instrument spectra. This kind of implementation can take advantage of using multiple 

different types of data sources simultaneously and it has been previously shown that this kind of data 

integration can be beneficial for the chemometric models.  

Many applications exist for this kind of analyzer and plant data integration, for example property 

estimates produced by analyzer devices can be validated using other process measurements. Further 

on, data from laboratory information systems (LIMS) can also be used for further data analysis and 

this data can be used to validate the performance of the chemometric models or even to create 

adaptive models [34]. 
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EXPERIMENTAL PART 

5. Objectives of the experimental part 

The main focus of the experimental part is the development of a data acquisition system for on-line 

analyzers in a very high viscosity index unit (VHVI) in the Neste Oil's Porvoo refinery. Furthermore, 

chemometric models are implemented to utilize these data sources. Multivariate models are used to 

estimate the specific properties of a target stream and these models utilize absorbance values 

measured with a near-infrared spectrometer. Moreover some models also utilize process data in 

parallel with spectral data. Emphasis is given to the implementation of the data acquisition system 

and the multivariate models are used as a proof-of-concept on how the data can be further processed 

into final estimated properties. 

Ideally the data acquisition system should seamlessly connect to analyzers that rely on the OPC UA 

ADI specification and in addition, data acquisition from other types of data sources should also be 

possible. Furthermore the system is also developed in such a way that it allows the collection of 

historical data e.g. spectra into a database. The implemented data acquisition system fully relies on 

the OPC UA specification and uses the server-client model of the standard. Information models are 

created based on the OPC UA standard. The created analyzer specific information models are, in turn, 

based on the ADI companion specification.  

The data acquisition system is implemented on top of Neste Jacobs' NAPCON Informer product that 

works as an OPC UA server with the role of this server to operate only as storage for information. All 

calculations related to multivariate models are performed on a separate calculation service 

implemented with Microsoft .NET technologies. All implementations are developed with C#-language 

and Microsoft .NET framework except for the historical database using a PostgreSQL database. An ADI 

analyzer adapter server was also required since the ABB near-infrared spectrometers used in the 

study did not support the OPC UA ADI specification. 
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6. Case study: Multivariate modelling of a VHVI unit data 

6.1 Description of the process 

The very high viscosity index (VHVI) unit in the Neste Oil Porvoo refinery uses heavy bottom products 

from other production lines and further processes these into more valuable products like lubricants 

and fuel oil. The production line consists of an isomerization dewaxing reactor (IDW) which is used to 

isomerize normal paraffins into isoparaffins. After the isomerization, the feed goes into a 

hydrofinishing reactor (HDF) that saturates aromatic compounds and the hydrogen is separated and 

recycled from the reactor outflow. The product then goes through both an atmospheric and a vacuum 

distillation column in order to separate the different types of products from the reactor product 

stream. The details of the process are not studied within the scope of this thesis, hence a highly 

simplified overview of the VHVI process is given below: 
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Figure 17. The very high viscosity index (VHVI) unit 

An online analyzer is connected to the fuel oil, industrial lubricant and base lubricant product streams. 

An objective of the thesis is to create chemometric models that estimate specific properties of the 

product streams using the analyzer spectra and other measurements from the VHVI process. The 

created data acquisition system is then used to collect online data from the automation system and 

the analyzer network. Afterwards, this data is then further refined in a calculation platform. 
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6.2 Plant data acquisition and initial variable selection 

The fuel oil product stream was used for the multivariate model case study and process 

measurements were selected from VHVI reactors and distillation columns. These measurements were 

then used to evaluate whether process measurements increase the accuracy of a chemometric model 

when they are used in parallel with absorbance measurements. 

The process measurement data consisted of 10 minute averages that were collected over the 

timespan of one year between 22.7.2013 0:00 - 22.7.2014 15:10. The measurements were acquired 

from the refinery's information system, whilst the fuel oil analyzer spectra were gathered as separate 

measurement files from the plant. The fuel oil stream was selected since it contained the highest 

quality absorbance measurements over the selected time period. The process variables were selected 

by visually inspecting the piping and instrumentation diagrams of the VHVI process, whereas variables 

that appeared to have an influence on final product quality were selected based on process 

knowledge. Overall a total of 128 process measurements and calculated variables were selected and 

these are listed in Appendix 1. Descriptions of the selected VHVI process measurement. The appendix 

also gives detailed descriptions of the calculated variables which included finite differences, average 

values between variables and temperature rise between reactor beds. Calculated variables were used 

because the reactors contained a high number of temperature measurements from different points 

within the reactors. Therefore most of the calculated variables are related to the IDW and HDF 

reactor temperature measurements. 

Five VHVI fuel oil properties were estimated using the multivariate models and corresponding 

laboratory test results and on-line measurements were also collected for each of these variables. The 

following list shows the properties that were estimated: 

1. Pour point [°C] 

2. Flash point [°C] 

3. Cloud point [°C] 

4. Density [kg/m3] 

5. Kinematic viscosity at 100 °C (KV100) [mm2/s] 
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PLS1 models were created for each of the fuel oil product properties. Process measurements were 

collected from the plant information system and saved as Microsoft Excel files. Subsequently, these 

Excel and on-line analyzer files - containing the absorbance values - were read into Matlab and saved 

as Mat-files for easier processing. Measurement time intervals that were marked as invalid on the 

plant information system were removed from the files. Furthermore, the full sample was removed 

from the dataset if any of the sample variables were marked as an invalid.  This operation successfully 

removed outliers from the data which was confirmed by visual inspection of the process data. Matlab 

was then used to process the data and create the final multivariate models. The following figure 

shows an overview of the data processing methodology: 

 

Figure 18. An overview of the data processing 

6.3 Time delay estimation 

Response delays of the estimated quantities were assessed and compensated against the process 

variables. Delays were corrected by using the sample based lags. Cross correlation functions (XCF) 

shown in Equation (41) were formed for each of the process and response variable pairs. These 

functions were used to estimate the integer lags for each of the variable pairs and lags were 

approximated using online analyzer produced estimates of the response variables. Analyzer 

measurements were assigned to y vector and process variable to x vector in Equation (41) throughout 

the lag estimation procedure.  
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A total of 354 response and explanatory variable pair lags were estimated. Those that had a single 

distinct correlation peak with below 10 sample lag were programmatically compensated, whilst other 

lags were estimated by manual inspection of the cross correlation function. Variable pairs that did not 

have a distinct correlation peak near zero lag were left uncompensated. In addition, those pairs that 

had the correlation peak corresponding to over 3 hours of delay were not delay compensated, which 

resulted in a total of 286 uncompensated variable pairs overall. The following plot shows a histogram 

of the estimated lags obtained for each of the response and process variable pairs: 

 

Figure 19. Histogram of the estimated lags 

Figure 19 shows how some of the variables have over 20 sample lags corresponding to a time delay of 

over 3 hours. These are mostly related to dewaxing and hydrofinishing reactor variables which are 

located upstream of the VHVI unit. Variables with lower integer sample lags are related to vacuum 

distillation column measurements. It was noted that the responses of the estimated quantities are 

faster to changes in the vacuum distillation column conditions than to the conditions inside the 

reactors. 

Laboratory result lags were also estimated since the plant information system did not contain 

information about when the samples were taken. Laboratory result lag estimates were determined to 

be accurate enough since they had very distinct cross correlation peaks. The following page lists the 

laboratory results sample based lags. 
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1. Pour point: -84 

2. Flash point: -90 

3. Cloud point: -78 

4. Density: -74 

5. KV100: -69 

Laboratory result lags are negative since they are fed into the plant information system sometime 

after the sample is taken from the sampling point. It can be seen that the laboratory result sample 

based lags are surprisingly large since the samples are already 10 minute averages. This might be 

caused by invalid timestamps returned from the plant information system for lab measurements. 

These timings were deemed to be accurate enough for the data analysis carried out in this case study 

as true laboratory timestamps were not requested within the scope of this thesis.  

6.4 Variable elimination 

The importance of each process variable to the modeled property was evaluated after the sample lags 

were compensated. UVE and BVE algorithms were applied sequentially for the removal of the 

uninformative variables as described previously in Chapter 3.4 Selection of the significant regressors. 

These algorithms were repeated successively until no uninformative variables were found as shown in 

Figure 20 and this methodology was applied for each of the target properties by using PLS1 models. 

The proper number of PLS latent variables was evaluated prior to the application of these methods 

and the number of latent variables was selected using the RR-criterion with a 0.95 cut-off limit as 

described in Equation (71). The selected number of latent variables was based on the point where RR-

metric was above or very close to the cut-off limit. The Monte Carlo method with 3 splits and 10 

repeats was used for the cross validation at each of the variable elimination steps. The variable 

elimination methodology is shown in the following figure: 
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Figure 20. Variable elimination methodology 

The following table shows the number of eliminated variables and used latent variables for each of 

the target properties: 

Table 2. Number of remaining variables after the variable elimination 

 Pour point Flash point Cloud point Density KV100 

Number of LVs 6 6 5 6 4 

Number of variables 116 111 121 113 99 

It was noted that aggressiveness of the variable elimination is very sensitive to the number of latent 

variables used. A higher number of process variables were eliminated when the number of latent 

variables was lower than that obtained in the cross-validation. This is because a model with higher 

number of latent variables exploits some of the useful information hidden within noisy 

measurements. Most of the eliminated variables were related to the calculated reactor difference 

variables as these variables had a large quantity of measurement noise due to the calculation of the 

finite differences. 

Uninformative spectrum wavelengths were eliminated using the UVE algorithm with the PLS2 model. 

This type of model was used to evaluate importance of the wavelengths for estimating all of the 

product properties simultaneously. The number of latent variables was updated sequentially after 
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every round of UVE algorithm.  The RR-criterion with Monte-Carlo cross-validation was used to 

evaluate influential latent variables as previously and sequential updating of the model order was 

used because initially the criterion suggested seven latent variables. This was determined to be too 

high because it would result in a premature end of the elimination sequence and as a result the model 

order was updated after every elimination step. The number of latent variables was reduced to four 

during the elimination procedure, which successfully removed most of the variables belonging to the 

noisy and uninformative regions of the spectrum. In addition, some of the wavelength variables were 

removed manually prior to applying the elimination procedure which alleviated the computational 

burden. These manually removed variables were related to the wavelength regions containing high 

levels of measurement noise. Overall the number of the remaining variables was 697 from a total of 

4096 wavelength variables after the manual and algorithmic elimination procedure had been applied 

and Figure 21 illustrates the methodology used for the wavelength variable elimination.  

 

Figure 21. Wavelength variable elimination methodology 

Following plot shows the wavelengths remaining after the elimination. Remaining wavelengths are 

related to a fundamental band and two overtone bands of the spectrum. These are the most 

influential wavelength regions for estimation of the fuel oil properties. 
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Figure 22. Remaining wavelengths after the variable elimination 

Figure 22 shows the remaining wavelengths for an unprocessed spectrum. Only autoscaling was 

applied to the spectra before the PLS models were generated. Subsequent to this a Savitzky-Golay-

Derivative filter is applied to the spectra but only during the multivariate modelling phase. Variable 

elimination did not involve this filter because it would amplify the noise in the spectra meaning that 

the elimination procedure would be too sensitive to the noise related variables and the procedure 

would retain some of the uninformative variables. 

6.5 Multivariate modelling 

Data was preprocessed prior to obtaining the final multivariate models. Lag compensated process 

measurements were first synchronized with spectrum time stamps and after this procedure a total of 

303 spectra and process measurements remained for the modelling. Spectrum samples were Savitzky-

Golay-Derivate filtered using a polynomial, and a derivative order of one and a window length of five 

data points as previously described in chapter 3.1.3 Spectral derivatives. Parameter values for the 

filter were determined by evaluating different parameter combinations and observing the PLS1 model 

performance for the different estimated properties. Figure 23 shows the original and SGD filtered 

spectra. As can be seen the original spectra has a clear baseline shift that was corrected by the SGD 

filter and which, in turn, also improved the final performance of the PLS1 models. 
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Figure 23. Original spectra and the SGD filtered spectra 

Uninformative variables were removed from the full dataset after the preprocessing following the 

methodology outlined in chapter 6.4 Variable elimination. Autoscaling was also applied to the 

dataset. Finally the PLS1 models were generated using the preprocessed datasets containing only the 

significant variables and the NIPALS algorithm was used to obtain the PLS1 models for each of the 

estimated properties. 

The following table shows a comparison of spectrum, process measurement and unfolded PLS1 model 

performances. Unfolded matrices contained the absorbance and process variables in a single matrix. 

Normalized RMSEP (NRMSEP) and R2 metrics were used to measure goodness-of-fit. The table also 

shows the goodness-of-fit for the analyzer produced estimates in the last column i.e. values produced 

by the online analyzer PLS1 models. 
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Table 3. Goodness-of-fit indicators for the PLS1 models 

 Spectrum Process Spectrum + Process Online 

Pour point 

LVs 2 3 6 N/A 

NRMSEP 0.172 0.179 0.171 0.633 

R2 0.561 0.518 0.569 0.525 

Flash point 

LVs 5 6 5 N/A 

NRMSEP 0.163 0.158 0.155 0.835* 

R2 0.574 0.605 0.617 0.553* 

Cloud point 

LVs 6 3 5 N/A 

NRMSEP 0.0946 0.108 0.0899 0.212 

R2 0.883 0.843 0.894 0.869 

Density 

LVs 4 6 6 N/A 

NRMSEP 0.122 0.137 0.119 0.245 

R2 0.786 0.735 0.797 0.645 

KV100 

LVs 6 8 5 N/A 

NRMSEP 0.0953 0.107 0.0916 0.146 

R2 0.877 0.838 0.884 0.815 

*Flash point online analyzer estimates were inaccurate due to large constant offset 

Normalized RMSEP indicators were calculated from the ratio of RMSEP and range of the estimated 

property. NRMSEP and R2 values were obtained by randomly drawing independent testing datasets 

from the full dataset. This statistical jackknifing technique was used due to the low number of 

available samples and model performance was evaluated 1000 times using 30 independent testing 

samples. The rest of the samples were used to generate the model and the final performance 

indicators in the Table 3 were calculated by taking mean value of 1000 jackknifed indicators. Variation 

of the PLS1 NRMSEP and R2 metrics are displayed in Appendix 2. Box plots of the PLS1 model metrics 

and these box plots display the dispersion and skewness of the sampled metrics. A number of latent 

variables were determined by Monte Carlo cross validation and RMSEP curves with model order 

based on the minimum of RMSEP. 
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Some observations were made during the multivariate modeling. Firstly, Table 3 and PLS1 box plots in 

the appendix clearly show how the estimation performance is improved in all of the cases when the 

process data is used in parallel with the spectra. The box plots also show high statistical variation in 

pour and flash point R2-metrics where the variation probably due to nonlinearities related to these 

properties. It can be also seen that the flash point model performance is better solely with the 

process data than in the case where spectra is used. This degraded performance with the spectra 

probably results from the nonlinear relations between the absorbance and the flash point. 

Additionally these box plots show that the cloud point and KV100 models produce the most accurate 

property estimates and the performance metrics related to these models also have the lowest 

statistical variation. Overall, each one of the cases has relatively good estimation performance when 

the process data is solely used for estimating the target properties. This is surprising because 

response of the product properties usually exhibits some level of non-linearity when using process 

measurement data. 

All of the models benefitted from the process measurements, but the true significance of 

improvement is unclear due to the low number of spectral samples available. More spectral data from 

different operational regions of the process should be obtained in order to evaluate the true 

improvement in the estimation performance. 

MB-PLS1 models were used to estimate each of the target properties to evaluate whether block 

division of the data benefits the performance of the models. These models were created using a MB-

PLS NIPALS algorithm with the block score update method. Process variables were divided into 4 

blocks by process equipment type and the final fifth block consisted of the spectra.  The model order 

was determined similarly as previously in the PLS1 modeling case. Inequality presented in Equation 

(73) was used to test the significance of each latent variable in each of the blocks. Table 4 shows the 

order of the MB-PLS1 models. Goodness-of-fit metrics were evaluated by jackknifing technique as 

previously. Performance metric plots are presented in the Appendix 3. Box plots of the MB-PLS1 

model metrics. 
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Table 4. Comparison of latent variables in the PLS1 and MB-PLS1 models 

 Pour point Flash point Cloud point Density KV100 

PLS1 unfold LVs 6 5 5 6 5 

MB-PLS1 LVs 6 (HDF 5) 5 (HDF 4) 5 (HDF 3) 4 (HDF 3) 6 (HDF 2) 

Table shows that the hydrofinishing block had lower number of latent variables than rest of the blocks 

in all of the cases. Density model also had lower number of block latent variables than the PLS1 

model. Appendix 3 box plots show that the pour point estimation benefits from the block division of 

the data. Rest of the models do not exhibit improved estimation performance. Benefit from the block 

division is highly application dependent. Model performance may not benefit from the division in 

specific cases and therefore it is more useful in applications where it is necessary to monitor statistical 

metrics on each of the blocks separately.  
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7. Data processing and acquisition system 

Process measurement data and analyzer produced estimates are usually located on the plant DCS 

servers while analyzer measurement information e.g. spectra might only be available locally on the 

devices. Therefore it is necessary to create a data acquisition system that integrates these multiple 

different data source types behind a single access point, thus making it convenient to connect to 

these sources and further refine this multiplicity of data into more useful information. It was shown 

previously in the VHVI case study that process data can improve the accuracy of the analyzer 

estimates and also be used to verify operational condition of the analyzer. In addition such a data 

acquisition system can be used to connect laboratory information systems (LIMS) in order to bring 

further added value to the target estimates.  This thesis focuses on creating an acquisition system that 

can be connected to a plant information systems and OPC UA ADI devices. Data processing software is 

also created to utilize these data sources and use the previously created multivariate models to 

further refine the data into more useful information. 

7.1 Data acquisition system 

The data acquisition system is fully based on OPC UA communication protocol and Microsoft .NET 

technologies. Historical data was collected into a PostgreSQL database. A system for process and 

spectral data acquisition was created on top of the Neste Jacobs NAPCON Informer software, which 

acts as an OPC UA server and was also extended to handle connections to remote OPC UA servers. 

These remote servers can for example be plant DCS servers and analyzer devices. OPC UA was chosen 

as the core technology because it allows connecting to different types of devices from different 

manufacturers. Complex information models can also be created and used without difficult using this 

specification. These kinds of information models are required to describe how the different systems 

interact with each other. This is especially important for cases when the multivariate models are used 

to refine data from a number of different information sources. Furthermore, analyzer devices are 

typically highly sophisticated devices that also require complex information models. 

7.1.1 Integrating OPC UA server 

Neste Jacobs OPC UA server product was extended into an integrating OPC UA server thus making it 

possible to integrate multiple remote information sources behind a single access point. Integrating 
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OPC UA server allows connection to multiple remote OPC UA servers. This system allows further 

refinement of the data located in multiple different types of sources into more valuable information. 

A client-server model was utilized to create the integrating server and the following figure illustrates 

the basic working principle of the integrating server: 

OPC UA Server

Local address 
space

Remote address 
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Remote address 
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Remote address 
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DCS

Analyzer

Analyzer

Client
Client

Client

Client

 

Figure 24. Integrating OPC UA server 

Figure 24 uses blue to depict OPC UA servers and green to distinguish server address spaces, whilst 

red is used to highlight UA clients. This figure also illustrates how the DCS server and analyzer devices 

that act as an UA servers are mapped behind a single UA server se outside client software can then 

seamlessly obtain information from these data sources. It will be shown subsequently how this can be 

utilized to process and transfer information located within different systems. In addition Figure 24 

shows how the integrating UA server contains local address space and remote address spaces. Local 

address space is the normal address space within a UA server, whereas remote address spaces are 

used to redirect the address space service requests through a UA client into the remote server. 

Service responses from the remote server are then forwarded to the client originally making the 

request. An outside client does not need to care about what information is located on which systems 

as all information in the remote servers can be seamlessly accessed from the integrating server. To 

make these possible, certain mappings must be performed inside the integrating server in order to 

avoid possible conflict situations. Such conflicts might arise if the remote servers or the integrating 

server use the same namespace names between the different address spaces. Conflict situation is 

avoided by namespace mappings inside the integrating UA server i.e. remote namespaces are 

mapped by prepending address of the remote server to the namespace. This kind of namespace 

mapping is also performed in Unified Automation UaGateway that connects to remote UA servers 
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[56]. The UaGateway is a wrapper application that allows OPC UA clients to connect to legacy OPC 

servers. Additionally, this application can also be used as a proxy to other OPC UA servers. The 

difference between the UaGateway and the integrating server that was created is that the integrating 

server not only proxies the remote UA servers but also acts as a data repository and has its own local 

address spaces. An outline of the integrating servers' namespace mapping is illustrated below: 

Integrating OPC UA Server
opc.tcp://UAServer

DCS
opc.tcp://DCS_address1

Analyzer
opc.tcp://AI_address1

Analyzer
opc.tcp://AI_address2

Namespaces:
http://manufacturer1/DCS

Namespaces:
http://manufacturer2/AI

Namespaces:
http://manufacturer2/AI

Namespaces:
http://manufacturer3/UA

opc.tcp://DCS_address1|http://manufacturer1/DCS

opc.tcp://AI_address1|http://manufacturer2/AI

opc.tcp://AI_address2|http://manufacturer2/AI

 

Figure 25. Namespace mapping inside the integrating UA server 

The example configuration above shows how two analyzer devices from the same manufacturer 

contain the same namespace, a conflict that would cause integrating server to have no way to 

determine where NodeId based UA service requests should be redirected. This problem is avoided by 

proper namespace mapping inside the integrating server i.e. by performing namespace mapping 

when the integrating server creates the connection to the remote server. The mapped namespace is 

then added to the namespace list inside the integrating server. Namespace mappings are updated 

automatically if namespaces inside any of the remote servers change. The OPC UA specification states 

that namespaces should not be removed from the server namespaces during the lifetime of the 

server, therefore remote namespaces are not removed from the integrating server if connection is 

lost to the remote server. Service requests to the unreachable servers are handled and proper error 

codes are returned to the client making the request. Namespace mapping is also performed on read 

and write requests to the UA Variables that contain NodeId or ExpandedNodeId as their values. In 

addition Array and Complex type values are also checked for possible node ids. 
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It was also necessary to implement services for UA Reference creation between remote-local and 

remote-remote address spaces. These references are later used, for example, to specify multivariate 

model data inputs and outputs between the servers' address spaces. Reference creation or modify 

requests are not redirected to the remote servers because such references made over different 

systems would be invalid from the remote server point of view. References are instead created inside 

the local address space of the integrating server. 

The server also handles request redirect loops that can be caused by a circular configuration of 

integrating servers. For example a UA Query request would cause a redirect loop that would never 

finish in the circular configuration. Redirect loops are therefore handled inside the integrating server 

by adding a globally unique identifier (GUID) to a RequestHeader AuditEntryId [51] for each of the 

redirected requests. A list of these GUIDs is tracked inside the integrating server and the redirect loop 

is detected when an incoming service request has a GUID that is already in the list of the GUIDs. The 

redirect loop is then gracefully terminated by immediately returning an empty result or error code 

from the service. 

An abstract representation of the remote address space functionality is presented in Appendix 4. 

Representation of the remote address space services. The figure in the appendix also depicts the 

history functionality of the remote address spaces and this service is described in more detail within 

chapter 7.1.4 History database. The same figure also shows that remote read and write services have 

the simplest implementations as these services only require namespace mapping to the requests and 

results. Other services have a more complex implementation, for example, the browse service has to 

resolve possible locally defined UA references. These references can target the nodes inside the 

remote address space, or the local address space nodes from the remote ones. 

7.1.2 Data acquisition from analyzer devices 

The literature part of the thesis introduced the OPC UA ADI specification that is a standardized 

information model used for analyzer devices. This specification defines how the measurement and 

diagnostic related information is presented inside the analyzer devices. Moreover it also specifies how 

certain maintenance related procedures are invoked on the device. However, this thesis only focuses 
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on the data acquisition parts of the ADI specification for spectrometric analyzer devices and Figure 14 

outlines the relevant ADI specification terms used in this chapter. 

ADI object model is created by subtyping AnalyserDeviceType, AnalyserChannelType, StreamType, 

AccessorySlotType and AccessoryType type nodes. The AnalyserDeviceType is subtyped for each of the 

different analyzer types. ADI specification specifies AnalyserDeviceType subtypes for different 

instrument types. Instrument vendors can also extend these types to expose some custom 

parameters. Figure 26 shows subtypes of the AnalyserDeviceType as defined in ADI specification.  

OPC UA

OPC DI

OPC ADI

BaseObjectType

TopologyElementType
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AnalyserDeviceType
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ParticleSizeMonitorDeviceType

AcousticSpectrometerDeviceType
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ChromatographDeviceType

OtherAnalyserDeviceType

 

Figure 26. Subtypes and super types of the AnalyserDeviceType 
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Figure 27. OPC UA notation diagram for the TopologyElementType 

Figure 26 shows that the AnalyserDeviceType is a subtype of a DeviceType and a 

TopologyElementType. These two types are specified in an OPC UA companion specification for 

devices (OPC DI). The ADI AnalyserDeviceType and the DI DeviceType type definitions are specified so 

that they are as flexible as possible but they also give a concrete and unified view of the information 

contained inside the devices. The TopologyElementType is used to present device properties and 

methods in an organized structure and a definition of this type is presented in Figure 27. [57] 

Figure 27 shows ParameterIdentifiers, MethodIdentifiers and GroupIdentifiers which are the device 

specific properties, methods and functional groups. The ParameterSet and the MethodSet contain all 

the parameters and the methods belonging to the subtype of the TopologyElementType. In addition 

the FunctionalGroupTypes are used to further organize the device parameters and methods into 

logical groups. 

The DeviceType contains read-only parameters related to the device model and the manufacturer 

information including the software version and serial number of the device. Device documentation 

and the status of the device can also be presented under the DeviceType instances. The DI 

specification states that some of these parameters are mandatory and must be implemented by the 

device vendor, however, the vendor has the option not support these mandatory parameters by 

setting the variables to default values. Some of the device information is also considered as read-only, 
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for example, some of the hardware and software related parameters are read-only. These parameters 

can only change after a software or configuration update of the device. The DeviceType in DI 

specification is an abstract type and therefore no direct instances of the type can exist inside the 

server address space. In contrast, the ADI specification extends the definition of the DI DeviceType 

into a more concrete AnalyserDeviceType. 

The AnalyserDeviceType inherits the DeviceType parameters and extends it with analyzer specific 

information. Analyzer device information model is partly presented in Figure 28. StreamType 

instances under the AnalyserChannels are used to read the measurement related information from 

the analyzer device and as a result the StreamType is considered to be the most important type 

definition for this thesis. The AnalyserDeviceType also has parameters and methods that can be used 

for obtaining information about the status and configuration of the analyzer. Moreover analyzer 

channels can be also controlled through the methods provided by AnalyserDeviceType. Additional 

methods for the configuration and maintenance of the device also exist but are not presented within 

the scope of this thesis. 

DeviceType

OPC DI
BaseObjectType:

TopologyElementType

OPC ADI
AnalyserDeviceType

<ChannelIdentifier>

AnalyserChannelType StreamType

<StreamIdentifier>

AnalyserDeviceType 
Objects

AnalyserDeviceType 
Methods

 

Figure 28. Hierarchy of the AnalyserDeviceType, AnalyserChannelTypes and StreamTypes 
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Figure 28 shows that the AnalyserDeviceType may have multiple HasComponent references to 

AnalyserChannelType instances representing the instrument channels meaning that multiple analyzer 

channels can be active at once. The AnalyserChannelType contains all the necessary parameters for 

reading the active state of the channel and it also contains methods for changing the state of the 

channel, for example, to enable or disable the channel data acquisition. Furthermore, the 

AnalyserChannelType contains configuration specific parameters and maintenance specific methods 

like those in the AnalyserDeviceType. The AnalyserChannelType instances may have multiple child 

StreamType instances and certain parameters can indicate which of the child streams is currently 

active. The StreamType instances are used for analyzer data acquisition and each of the different 

analyzer types has different characteristics for the streams. As a result the StreamType in ADI 

specification is denoted as an abstract type and therefore the StreamType must be subtyped for each 

different device type. The ADI specification specifies some common analyzer stream types and Figure 

29 displays the subtypes of the StreamType as given in the ADI specification. 
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MassSpectrometerDeviceStreamType

ParticleSizeMonitorDeviceStreamType
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OtherAnalyserDeviceStreamType

 

Figure 29. Subtypes of the StreamType 

This thesis focuses only on spectrometric instruments. Therefore the SpectrometerDeviceStreamType 

is outlined in more detail which is the most relevant type from data acquisition point of view. 

Definition of the base SteamType from Figure 29 is given in the table below: 
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Table 5. Definition of the StreamType 

References NodeClass BrowseName TypeDefinition 

Inherits structure of TopologyElementType as defined in Figure 27 

HasComponent Object Configuration FunctionalGroupType 

HasComponent Object Status FunctionalGroupType 

HasComponent Object AcquisitionSettings FunctionalGroupType 

HasComponent Object AcquisitionStatus FunctionalGroupType 

HasComponent Object AcquisitionData FunctionalGroupType 

HasComponent Object ChemometricModelSettings FunctionalGroupType 

HasComponent Object Context FunctionalGroupType 

The StreamType is extended into a SpectrometerDeviceStreamType by extending the 

FunctionalGroupTypes under the StreamType. The following table shows the extended Configuration 

object denoted in Table 5 of the SpectrometerDeviceStreamType: 

Table 6. SpectrometerDeviceStreamType Configuration parameters 

References NodeClass BrowseName DataType TypeDefinition Mandatory 

Organizes Variable IsEnabled Boolean DataItemType Yes 

Organizes Variable IsForced Boolean DataItemType No 

Organizes Variable ActiveBackground Float YArrayItemType Yes 

Organizes Variable ActiveBackground1 Float YArrayItemType No 

IsEnabled Boolean variable indicates whether the stream can be used for the data acquisition, whilst 

the IsForced parameter indicates whether the current stream is the only stream that can be used for 

the data acquisition in the current channel. The ActiveBackground is the background spectrum used 

for spectrometric measurements and ActiveBackground1 parameter is used in spectrometers that 

require black and white backgrounds. In these devices the ActiveBackground is the white background 

and ActiveBackground1 is the black background. Some devices may also require more background 

spectra, these are denoted as a ActiveBackground<n> where n is a running number. The background 

spectra are always obtained during the calibration phase of the device. Data types of the spectra 

variables and parameters are a YArrayItemTypes which contain the measurement values and x-axis 

points. In addition the measurement unit and range are also indicated inside the data type. 
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Following table shows the extended parameters of the Status FunctionalGroupType which was 

denoted in Table 5. 

Table 7. SpectrometerDeviceStreamType Status parameters 

References NodeClass BrowseName DataType TypeDefinition Mandatory 

Organizes Variable DiagnosticStatus DeviceHealthEnumeration DataItemType Yes 

Organizes Variable LastSampleTime DateTime DataItemType Yes 

Organizes Variable LastCalibrationTime DateTime DataItemType No 

Organizes Variable LastValidationTime DateTime DataItemType No 

The Status object has two mandatory variables associated with it. The first one indicates the 

diagnostic status of the stream, whilst the second one indicates the time stamp of the latest sample. 

The calibration and validation times of the stream are optional parameters. 

The following table shows the extended parameters of the AcquisitionSettings FunctionalGroupType 

which was denoted in Table 5: 

Table 8. SpectrometerDeviceStreamType AcquisitionSettings parameters 

References NodeClass BrowseName DataType TypeDefinition Mandatory 

Organizes Variable TimeBetweenSamples Duration AnalogItemType No 

Organizes Variable SpectralRange Range DataItemType No 

Organizes Variable Resolution Enum/Float DataItemType No 

Organizes Variable RequestedNumberOfScans Int32 AnalogItemType No 

Organizes Variable Gain Enum/Float DataItemType No 

Organizes Variable TransmittanceCutoff Range DataItemType No 

Organizes Variable AbsorbanceCutoff Range DataItemType No 

All of the parameters under the AcquisitionSettings are optional. Therefore it is up to the vendor to 

decide whether to support the listed parameters. The TimeBetweenSamples indicates number of 

milliseconds between two consecutive starts of acquisition, whilst the SpectralRange defines the 

spectral range of the acquisition which also indicates the unit of the spectral measurement as an 

EngineeringUnits property. The RequestedNumberOfScans indicates the number of averaged scans 

used for the current spectral measurement. Gain, TransmittanceCutoff and AbsorbanceCutoff 
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parameters are the detector gain, transmittance and absorbance clipping limits for the current 

measurement respectively. 

Table 9 shows the extended parameters of the AcquisitionStatus FunctionalGroupType: 

Table 9. SpectrometerDeviceStreamType AcquisitionStatus parameters 

References NodeClass BrowseName DataType TypeDefinition Mandatory 

Organizes Variable IsActive Boolean DataItemType No 

Organizes Variable Progress Float DataItemType No 

Organizes Variable ExecutionCycle ExecutionCycleEnu

meration 

DataItemType No 

Organizes Variable ExecutionCycleSubcode UInteger MultiStateDiscreteType No 

Organizes Variable NumberOfScansDone Int32 AnalogItemType No 

IsActive parameter indicates whether acquisition is currently active in the stream, whilst the progress 

value indicates the progress of the acquisition as a percentage from the completion. ExecutionCycle 

and ExecutionCycleSubcode parameters are used to indicate the current state of the acquisition cycle, 

whilst the NumberOfScansDone indicates number of scans that are ready in the currently running 

acquisition. 

StreamTypes AcquisitionData contains the actual measurement data obtained from the spectrometric 

measurement. The definition for this type is shown in the table below: 

Table 10. SpectrometerDeviceStreamType AcquisitionData parameters 

References NodeClass BrowseName DataType TypeDefinition Mandatory 

Organizes Variable RawData Float YArrayItemType No 

Organizes Variable ScaledData Float YArrayItemType Yes 

Organizes Variable AcquisitionCounter Counter AnalogItemType Yes 

Organizes Variable AcquisitionResultStatus AcquisitionResultSt

atusEnumeration 

DataItemType Yes 

Organizes Variable Offset Duration AnalogItemType No 

Organizes Variable AcquisitionEndTime DateTime DataItemType Yes 

Organizes Variable TotalNumberOfScansDone Int32 AnalogItemType Yes 
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Organizes Variable BackgroundAcquisitionTime DateTime DataItemType Yes 

Organizes Variable PendingBackground Float YArrayItemType Yes 

Organizes Variable PendingBackground1 Float YArrayItemType No 

Organizes Variable <ProcessVariableIdentifier>  ProcessVariableTy

pe 

No 

RawData represents the raw measurement data obtained by the instrument which has arbitrary 

units, whilst ScaledData contains the actual absorbance or transmittance obtained during the 

acquisition phase. The AcquisitionCounter is an incremented value that increases after every sample 

and the AcquisitionResultStatus shows the status of the last measurement which is used to indicate 

whether the measurement was successful. The Offset parameter reveals the difference in 

milliseconds from start of the sample extraction to the start of the analysis, whereas 

AcquisitionEndTime represents end time of the acquisition. The TotalNumberOfScansDone indicates 

how many scans were performed for the current acquisition and BackgroundAcquisitionTime 

represents the time when the background spectrum used for this acquisition was acquired. The 

PendingBackground parameter represents the latest white background spectrum acquired by this 

stream although this is not necessarily used as a background spectrum. Instead, the ActiveBackground 

inside the Configuration FunctionalGroupType represents the background spectrum currently in use. 

In addition, the PendingBackground1 designation is used when an instrument requires white and 

black background spectra. Additional PendingBackground parameters are represented as the 

PendingBackground<n> variables. It must be also noted that all variables under the AcquisitionData 

are read-only parameters. The AcquisitionData FunctionalGroup may also contain references to the 

process variables that represent the estimated response variables whose type definitions are 

ProcessVariableTypes. This is used to provide a stable address space view to the response variable 

and it has a single HasDataSource reference to the estimated variable. Values for these process 

variables are updated after chemometric model is applied to the ScaledData. 

The StreamTypes ChemometricModelSettings parameter has HasComponent references to the 

chemometric models used for the stream. The model instances referenced by 

ChemometricModelSettings and are defined as ChemometricModelType. Overall these chemometric 

model types are optional. Table 11 shows the definition of the ChemometricModelType. 
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Table 12. Definition of the ChemometricModelType 

References NodeClass BrowseName DataType TypeDefinition Mandatory 

HasProperty Variable Name LocalizedText PropertyType Yes 

HasProperty Variable CreationDate DateTime PropertyType Yes 

HasProperty Variable ModelDescription LocalizedText PropertyType Yes 

HasInput Variable <UserDefinedInput>  BaseVariableType Yes 

HasOutput Variable <UserDefinedOutput>  BaseVariableType Yes 

The Name parameter indicates name of the chemometric model and this may represent, for example, 

the measured quantity with the model version number. The CreationDate parameter is the creation 

date of the model and the ModelDescription contains the description of the model. 

ChemometricModelType instances also contain references to the inputs and to the outputs of the 

model. The inputs are the explanatory variables used in the model which are denoted using HasInput 

references and these references may point, for example, to the ScaledData parameter of the analyzer 

stream. In contrast, the output references point to nodes which are the response variables of the 

chemometric model. Such HasInput and HasOutput reference types are subtypes of 

HasOrderedComponent reference type and this requires that the server be consistent on the order of 

the nodes returned when a source node is browsed. 

The ADI specification also states that the ChemometricModelType is a Variable NodeClass. Its 

DataType is ByteString and the value contains a binary blob representation of the chemometric 

model. Instances of the ChemometricModelType may not be created since the type is marked as an 

abstract and, as such, vendor has to subtype the ChemometricModelType. [53] 

7.1.3 Data acquisition from the VHVI ABB spectrometers 

An ABB on-line spectrometer was used to measure VHVI fuel oil product properties and an ADI 

wrapper server was created for the analyzer in order to enable data acquisition from the device since 

the instrument did not support OPC UA ADI specification. The analyzer produces binary measurement 

files to the hard disk of the analyzer computer and these files are organized into folders containing 

the measurements for each of the analyzer streams. The Analyzer binary files are converted into a 

readable text files using proprietary converter software before the wrapper server parses these text 
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files and presents the necessary information inside the server address space through the OPC UA 

information models. The wrapper server is configured using a XML-file that defines the stream 

measurement file folder and what information is presented inside the address space from the 

converted files. A file system monitor is used to detect when new files are written to the configured 

folders. These files are then automatically converted and presented to the server address space. The 

figure below illustrates the working principle of the ADI wrapper server: 

                                   ADI wrapper server

File system 
monitor

Parse 
converted file

Configuration file

ABB binary file 
converter

Update ADI 
address space

Address space

 

Figure 30. Working principle of the ADI wrapper server 

The converted files contain a limited amount of well-defined information that can be directly 

presented using the ADI information model. The following lists the information that is presented using 

the ADI SpectrometerDeviceStreamType information model: 

 Configuration - IsEnabled 

 AcquisitionData - ScaledData 

 AcquisitionData - AcquisitionResultStatus 

 Status - LastSampleTime 

 Status - DiagnosticStatus 

 AcquisitionSettings - Gain 

 AcquisitionSettings - Resolution 

 Context - UserId 
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Status related information is determined using the detector saturation and analog/digital-converter 

overflow information on the converted file. Non-ADI-applicable information is then presented using 

an ABBAdapterSpectrometerDeviceStreamType that extends the SpectrometerDeviceStreamType. The 

information model for this type is presented next. 
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Figure 31. ABB analyzer wrapper information model 

The ABBAdapterSpectrometerDeviceStreamType contains <AspSetIdentifier> objects and 

<AspVariableIdentifier> variables that are dynamically created to reflect measurement file contents 

and wrapper server configuration. These dynamically added nodes are needed since the information 

inside the ABB measurement files has no well-defined structure. A wrapper server configuration 

defines what information is dynamically read to the address space. This information is also ABB 

analyzer device configuration dependent and it contains, for example, preprocessing related data. 
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The wrapper server contains a specialized service for broadcasting spectrum measurement files from 

the hard disk of the analyzer. This service works by presenting the spectrum measurement 

information within the server address space on file-by-file basis and in this way any missing data can 

be streamed onto the history database through an integrating OPC UA server as is shown later on. 

Broadcasting is initiated by a client first requesting the timestamps of the spectrum measurements by 

calling the GetSpectrumTimestamps method. The returned timestamps are then compared against 

the history database contents any spectrum files whose timestamps are missing from the history 

database can then be streamed from the device into the database by calling StartSpectrumBroadcast. 

In addition a SpectrumBroadcastProgress variable is used to indicate the progress of the broadcast 

service. Furthermore, the wrapper server also extends the type definitions for chemometric models 

and response variables which are presented in the following figure. 
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Figure 32. Chemometric model and response variable type definitions for the ADI wrapper 
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Figure 32 also shows how data flow relations are modelled inside the wrapper server based on the 

ADI specification. HasOutput references are used to indicate the ABBAdapterChemometricModelType 

response variables. This chemometric model type contains dynamically created AspVariableIdentifiers 

and these nodes are dynamically generated as in an analyzer adapter stream type. A target of the 

HasOutput reference is the ABBAdapterResponseVariableType that also contains dynamically added 

AspVariableIdentifier components. A ScaledData component of the SpectrometerDeviceStreamType is 

used as input for the wrapper chemometric model and this relation is represented by a HasInput 

reference type. 

7.1.4 History database 

A history database is used to save archived measurements and other types of historical data. The 

NAPCON Informer product uses a PostgreSQL relational SQL database to collect the archived data. 

The existing database models were extended to accept analyzer specific data including the vector 

types for spectrum samples and complex OPC UA binary encoded data. History data collection from 

remote OPC UA servers was implemented on the integrating OPC UA server and the following figure 

gives a schematic overview of the history data collection functionality of the integrating server:  
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Analyzer

 

Figure 33. Integrating OPC UA server and the history database 

Figure 33 shows how individual value changes, depicted as dashed arrows, are registered to the SQL 

database through a Microsoft message queue (MSMQ). The history read services - depicted as solid 

arrows - are seamlessly available on the different address spaces and MSMQ is used for queuing SQL 

write instructions. Archiving of the remote data sources is implemented using OPC UA client 

MonitoredItems. Variable changes are detected within the remote address spaces and new values are 

written to the history database. It was necessary to implement this feature since OPC UA analyzer 
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devices do not usually support history services. As a result it was possible, for example, to archive 

absorbance vectors to the SQL database from the ADI information models. Additionally, remote 

address spaces also support direct relaying of history read requests to the remote servers, which can 

be used, for example to, read history data from LIMS systems in future applications. 

Database SQL models were also extended to support ADI specific data and the following figure shows 

an overview of the database models used for ADI related archiving. 

HistoryDefinitions HistoryTypes

HistoryValuesVectorDouble HistoryValuesEncoded

HistoryEncodableTypes

PK ID serial

NodeId character varying

TableName character varying

ValueType integer

ValueRank integer

PK ID serial

TypeName character varying

ID integer

Timestamp timestamp

Values double[]

Validity integer

ID integer

Timestamp timestamp

Bytes bytea

Validity integer

DataTypeID integer

PK ID serial

DataTypeNodeId character varying

 

Figure 34. An SQL model for the ADI specific parts of the history database 

HistoryDefinitions stores information about archived OPC UA nodes. NodeId table column contains 

the identifier and namespace of the OPC UA ExpandedNodeId as a string representation. The 

TableName column contains the name of table where archived values of the node are written and 

read. The ValueType and ValueRank contain information about the type contained inside the value 

table and the rank specifies the number of dimensions of the value as specified in the OPC UA 

standard.  

HistoryValuesVectorDouble and HistoryValuesEncoded tables are used for archiving the spectrum 

samples and ADI complex data respectively. THe HistoryValuesEncoded table contains OPC UA binary 

encoded data where encoding of the data is specified by DataTypeNodeId. This node id is a string 
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representation of the OPC UA ExpandedNodeId which is used to determine how binary data is 

decoded on the server.  

Spectra are represented as YArrayItem variable types in the ADI information models as shown in 

previous chapters. This type contains the absorbance measurements in a vector format and the value 

is archived inside the HistoryValuesVectorDouble table. A YArrayItem node type contains x-axis 

information as an OPC UA complex type which contains, for example, the wavelength points of the 

measurement. This complex type is archived inside the HistoryValuesEncoded table. 

7.2 Data processing system 

A chemometric data processing system was implemented as a separate calculation service. It is 

beneficial to keep the calculation services separate from the actual server that holds the process 

information as server software should not contain any heavy computations related to chemometric 

models and data preprocessing. As a result an OPC UA server works only as a data repository in the 

implemented system and the following figure illustrates some of the data flow interactions between 

the data acquisition system, calculation software and history database. 
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Figure 35. Data flow from the analyzer to the calculation software and finally to the history database 

Figure 35 illustrates how an analyzer spectrum measurement is relayed into the history database and 

to the calculation software through the servers' remote address space. In the illustrated case, the 

calculation software listens to the value notifications related to the analyzer spectrum measurement 

nodes it then automatically performs the defined processing sequences with the data and applies the 

multivariate models. Finally the calculated estimates of the response variables are then written to the 

OPC UA server. Figure 35 also depicts how the calculated values produced by calculation software can 
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be also archived. In this case the data processing related information models required by the 

calculation software are located on a local address space of the OPC UA server. These information 

models contain the configuration and chemometric model specific information. Data flow relations 

are also modelled using the OPC UA information models and it is highly beneficial to keep all the 

configuration related information in one place, on the OPC UA server. In this way the system is highly 

configurable due to the flexibility of the OPC UA information modelling and the calculations can also 

be configured remotely using any OPC UA compliant software. The following chapters describe the 

information models used by the calculation software. 

7.2.1 Data preprocessing information models 

All data preprocessing is performed by the calculation software except for time delay compensation, 

which is corrected on the server side since delay correction involves buffering of the measurement 

data. A preprocessing sequence is defined using the OPC UA information models that are utilized by 

the calculation application. The sequence is first read then applied to the data by calculation software 

and the following figure describes the preprocessing related information models.   
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Figure 36. Preprocessing information models used by the calculation software 



 

84 
 

Figure 36 shows the type definitions for a Savitzky-Golay filter (AnalystSGFilterType), an autoscaler 

(AnalystAutoscaleType) and a spectrum wavelength selector (AnalystYArrayItemSelectorType) which 

are sub types of an abstract preprocess method type (AnalystPreprocessType). In addition a 

preprocessing sequence and a time delay are defined inside an extended process variable type 

(AnalystProcessVariableType). This process variable type has a data source defined using 

HasDataSource reference as previously shown. The AnalystProcessVariableType supports multiple 

source variables whose values are aggregated into a vector value.  This vector aggregate is 

automatically processed by the calculation application and is used to update the 

AnalystProcessVariableType node's value. The formation of a vector aggregate is beneficial since it 

simplifies the creation of preprocessing definitions, for example, a single preprocessing sequence can 

be utilized for multiple different data variables. In contrast vector aggregation is not performed when 

only one data source is defined. The following figure illustrates how data preprocessing logic is 

implemented on the server and the calculation application. 
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Figure 37. Preprocessing logic used for the AnalystProcessVariableType 

Dashed lines illustrate how calculation software monitors the value changes of the server variables. 

The calculation software updates the final preprocessed value automatically on the 

AnalystProcessVariableType the instance after the defined preprocessing sequence is applied, thus a 

ProcessVariable value always stays in the preprocessed form. The calculation application also 

refreshes the preprocessing sequence automatically when the PreprocessSequenceHash changes. This 

hash value is an MD5 hash that is formed from the preprocessing sequence and its parameters on the 

server. A client application can then determine whether preprocessing sequence should be loaded 

from the server using this value. 
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7.2.2 Chemometric information models 

Chemometric information models used by the calculation application extend the abstract ADI 

chemometric model type. The ADI type is extended into AnalystChemometricModelType, which 

organizes the model parameters and methods under relevant nodes. The extended type contains a 

variable indicating the model validity and a parameter hash code. The model hash code and the 

model validity are formed automatically from model parameters and data I/O identifiers with the 

hash value used by the calculation application to the model changes. The calculation software detects 

valid models and downloads the relevant matrices used for regression and calculation of the 

statistical metrics. These matrices are reloaded whenever changes are detected in the valid model. 

Response variables and statistical metrics are automatically calculated and updated when inputs of 

the model change. 

Two chemometric model types were designed within the work contained it this thesis. These are the 

PLS and MB-PLS models that were also used in the data modelling part of the experimental part. An 

overview of the PLS and MB-PLS information models is given in the following figure and tables. 
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Figure 38. Chemometric information models 
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ModelParameterSet is used to organize all the matrices and other information related to the 

calculation of the model outputs. The model validity and hash code values are updated automatically 

from the ModelParameterSet properties and model I/O variables and these are determined by 

comparing matrix parameter dimensions and I/O variable counts. The hash code variable is calculated 

by first binary serializing the value and then forming the MD5 hash from the raw binary data. 

Furthermore, the ModelMethodSet organizes the methods provided by the models. The following 

tables show the information models for the concrete chemometric models: 

Table 13. AnalystPLSModelType parameters and methods 

References NodeClass BrowseName DataType ValueRank TypeDefinition 

ModelParameterSet 

HasProperty Variable RegressionMatrix Double 2 PropertyType 

HasProperty Variable XScoreMatrix Double 2 PropertyType 

HasProperty Variable XLoadingMatrix Double 2 PropertyType 

HasProperty Variable XWeightMatrix Double 2 PropertyType 

HasProperty Variable YScoreMatrix Double 2 PropertyType 

HasProperty Variable YLoadingMatrix Double 2 PropertyType 

HasProperty Variable XScoreVectorVariances Double 1 PropertyType 

HasProperty Variable SPExMean Double -1 PropertyType 

HasProperty Variable SPExVariance Double -1 PropertyType 

HasProperty Variable YMean Double 1 PropertyType 

HasProperty Variable YVariance Double 1 PropertyType 

ModelMethodSet 

HasComponent Method GetNumLVs - - - 

HasComponent Method GetNumSamples - - - 

HasComponent Method GetNumXvars - - - 

HasComponent Method GetNumYvars - - - 

HasComponent Method AddControlLimitRequest - - - 

HasComponent Method GetControlLimits - - - 

HasComponent Method UploadMatlabModel - - - 
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Calculated variables 

HasOutput Variable <ResponseVariables> Double -1 BaseVariableType 

HasComponent Variable YOutput Double 1 BaseDataVariableType 

HasComponent Variable XScore Double 1 BaseDataVariableType 

HasComponent Variable T2Statistic Double -1 BaseDataVariableType 

HasComponent Variable SPExStatistic Double -1 BaseDataVariableType 

HasComponent Variable ControlLimits Double 2 BaseDataVariableType 

 

Table 14. AnalystMBPLSModelType parameters and methods 

References NodeClass BrowseName DataType ValueRank TypeDefinition 

ModelParameterSet 

HasProperty Variable DeflateType Enum -1 PropertyType 

HasProperty Variable BlockNumVars Int32 1 PropertyType 

HasProperty Variable BlockUsedLVs Boolean 2 PropertyType 

HasProperty Variable XScoreMatrix Double 2 PropertyType 

HasProperty Variable XLoadingMatrix Double 2 PropertyType 

HasProperty Variable XWeightMatrix Double 2 PropertyType 

HasProperty Variable XSuperScoreMatrix Double 2 PropertyType 

HasProperty Variable XSuperLoadingMatrix Double 2 PropertyType 

HasProperty Variable XSuperWeightMatrix Double 2 PropertyType 

HasProperty Variable YScoreMatrix Double 2 PropertyType 

HasProperty Variable YLoadingMatrix Double 2 PropertyType 

HasProperty Variable XScoreVectorVariances Double 2 PropertyType 

HasProperty Variable SPExMean Double 1 PropertyType 

HasProperty Variable SPExVariance Double 1 PropertyType 

HasProperty Variable YMean Double 1 PropertyType 

HasProperty Variable YVariance Double 1 PropertyType 

ModelMethodSet 

HasComponent Method GetNumBlocks - - - 

HasComponent Method GetNumLVs - - - 
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HasComponent Method GetNumSamples - - - 

HasComponent Method GetNumXvars - - - 

HasComponent Method GetNumYvars - - - 

HasComponent Method AddControlLimitRequest - - - 

HasComponent Method GetControlLimits - - - 

HasComponent Method UploadMatlabModel - - - 

Calculated variables 

HasOutput Variable <ResponseVariables> Double -1 BaseVariableType 

HasComponent Variable YOutput Double 1 BaseDataVariableType 

HasComponent Variable XScore Double 1 BaseDataVariableType 

HasComponent Variable XSuperScore Double 1 BaseDataVariableType 

HasComponent Variable T2Statistic Double 1 BaseDataVariableType 

HasComponent Variable SPExStatistic Double 1 BaseDataVariableType 

HasComponent Variable ControlLimits Double 2 BaseDataVariableType 

The tables show that PLS and MB-PLS information models have some similarities, but are still 

fundamentally different in terms of how the regression works as well as in the amount of information 

produced. For example, an MB-PLS model produces statistical metrics and control limits for each of 

the blocks separately.  Both of the information models contain all the matrices obtained during the 

modelling phase and these matrices are listed in the PLS and MB-PLS chapters of the thesis.  

These information models also contain XScoreVectorVariances properties which are used for 

calculation of the T2-statistic as shown in Equation (77). Variances can be also calculated from the 

XScoreMatrix, however a separate vector containing the variances was needed since the size of an 

XScoreMatrix can be very large. This type of vector allows the calculation application to calculate the 

T2-statistic without the need to download a large score matrix. SPExMean and SPExVariance are used 

for calculating the control limits of the SPEx-statistic are shown in Equation (84). An MB-PLS model 

produces model statistics separately for each of the data blocks, therefore the number of array 

dimensions related to the statistical metrics needs to be increased by one when compared to the PLS 

model. 
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An MB-PLS information model also contains a variable (DeflateType) indicating the deflate method 

used for the model. These methods are the block score and the super score update methods as 

described previously in Equations (53) and (55). The information model also contains block division 

information (BlockNumVars) containing a number of variables in each of the blocks. The calculation 

software first unfolds the input variable data into a vector and then divides the data vector into blocks 

using the BlockNumVars information. BlockUsedLVs is a truth table containing information indicating 

which of the latent variables are used in the blocks. This allows some of the subsequent latent 

variables to be unused in some of the blocks, for example, an MB-PLS model with only a few process 

variables and thousands of absorbance variables might require the process variable block to have a 

lower number of latent variables when compared to the absorbance block.  

Both of the chemometric models contain a ControlLimits variable with a matrix value. This matrix 

always contains the confidence limit of the control limits in the first column whilst the rest of the 

columns contain the actual T2 and SPEx control limits. Calculation of control limits is a request type of 

operation where the calculation software computes the control limits and updates the matrix. 

Undefined placeholder values are used for the control limit values before the calculation application 

updates the matrix. 

7.2.3 Information flow modelling 

Data flow between the different systems and chemometric models is defined using the OPC UA 

references. This allows the creation of data flow definitions from the source systems to the final 

response variables in a standardized and structured way. The ADI specification defines HasInput, 

HasOutput and HasDataSource references which are utilized for modelling of the information flow. 

HasInput and HasOutput references are used to describe chemometric model I/Os, whereas the 

HasDataSource reference defines the data source for ProcessVariable types that are also utilized by 

the implemented data preprocessing system. This chapter illustrates how the data flow is modelled 

between the integrated server, DCS server and analyzer devices. 
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Figure 39. An example usage of the chemometric model, data preprocessing and remote data sources 

Figure 39 shows an example data flow model for the chemometric estimation of a specific property. 

The estimation utilizes process data in order to improve the performance of the chemometric model 

and the example shows how an integrating server is connected to the lower level ADI and DCS 

servers. These lower level systems contain the analyzer and process measurement data and are 

mapped on the remote address spaces of the integrating OPC UA server. The data flow models and 

processing definitions are created on the integrating server where the data source references point to 

the remote systems. Preprocessed variables (AnalystProcessVariableType) are defined to use these 

data sources for preprocessing. A chemometric model then utilizes the preprocessed data and the 

final estimate is written to the response variable. Figure 39 also shows how the estimated value can 

be written to a variable located on the remote DCS server. Services provided by the remote address 

spaces allow this type of bidirectional data flows between the systems.  

7.3 Implementation of the information system to the VHVI process 

A possible implementation of the created data processing and acquisition system to the VHVI process 

is presented in this chapter. Figure 40 shows a separate OPC UA network for analyzer devices. This 

network presents higher amounts of analyzer information to the top level systems when compared to 

the old milliampere measurement network. An OPC UA analyzer information server works as a single 
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access point for all analyzer information and this server archives specific analyzer data, as defined by 

the system configurator, to the SQL database. Access point can be utilized by the end users to acquire 

the plant analyzer data conveniently, through standardized protocols. This is also advantageous since 

it also allows data integration from other types of sources i.e. process measurements. An integrating 

OPC UA server was implemented to unite the process measurements and analyzer data sources. A 

chemometric calculation platform utilizes this data integration by using the analyzer and process 

measurements for the estimation and monitoring of the specific properties in the VHVI process. 

Additionally the integrating server contains the chemometric definitions used by the chemometric 

calculation platform and the results from the chemometric calculations are available on the 

integrating server. Results of these calculations can be also saved to the history database for further 

analysis. 

Integrating OPC 
UA server

OPC UA compliant 
software

Chemometric 
calculation platform

VHVI process measurements

VHVI fieldbus 
network

DCS
server

Analyzer fieldbus 
network

Analyzer network 
(OPC UA) 

OPC UA Analyzer 
information serverAnalyzer 

historian

Automation network

ADI 
Adapter

ADI 
Adapter

ADI 
Adapter
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1.

2.

3.

VHVI product stream analyzers

mA mA OPC UA

Cloud services

Historian

Figure 40. An example implementation of the data integration system to the VHVI process 
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This type of data integration has been shown to be beneficial throughout this thesis and the 

performance of the chemometric models was increased when multiple different types of data sources 

were utilized. Access to the analyzer information is also more convenient since all the information is 

readily available to the top level systems. In the old system only the most basic types of analyzer 

estimates were accessible from the top level systems. 

Figure 40 also outlines possible implementation of cloud services which can be used to outsource the 

chemometric calculations and other data analytics. Data would be transferred to the service provider 

through the internet using OPC UA protocol. This could be beneficial because the external entity could 

monitor the performance of the chemometric models and make early corrective actions if the 

modelling performance starts to degrade. Data confidentiality would require a high level of security 

measures when the plant data is transferred to the service provider over the internet. 

Integration of a laboratory information system (LIMS) to the system is also possible but is not 

implemented as it is not within the scope of the thesis. This could be beneficial in the future for 

performance monitoring of the online analyzers, for example, instrument faults and need the for 

analyzer recalibration can be detected earlier when LIMS data is combined to the data analysis.  

Data flow between the different systems is illustrated more clearly in the Figure 41. The dashed gray 

line in the figure also illustrates how the analyzer results could be transmitted to the DCS server 

through ADI adapters, superseding the legacy milliampere fieldbus analyzer network. The DCS server 

can also receive the data analysis results through the integrating OPC UA server. 
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ADI 
Adapter

ADI 
Adapter

OPC UA Analyzer 
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Analyzer 
historian

VHVI process measurements

Chemometric 
calculation platform

DCS
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Integrating 
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Figure 41. Data flow between the systems in the VHVI data integration 
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8. Conclusions and further study 

Automation systems are becoming more and more integrated through jointly agreed specifications. 

Interoperability of device communication protocols and information models allows authorized access 

to the information contained on the devices and the OPC UA standard is a prime example of this 

mindset where devices can seamlessly communicate with each other. This is beneficial not only for 

end-users, but also to device manufacturers: customers can choose more freely between different 

device manufacturers, whilst on the other hand manufacturers can also integrate their devices to 

existing applications more easily. 

Openness also creates new types of applications through the ease of data access and integration. This 

thesis clearly demonstrates one example of such data integration where all the analyzer information 

of a process unit becomes readily available to the users and top level automation systems. The 

created data integration system was fully based on the OPC UA communication protocol and was also 

utilized on a multivariate calculation platform which was configurable through OPC UA information 

models. This system refined a combination of plant and analyzer data into more valuable information 

and it was also shown how the performance of the chemometric product property models was 

improved with the data integration. The created calculation platform and data acquisition system can 

also be used in applications where the operational performance of the analyzers and process are 

monitored through the statistical metrics produced by the chemometric models.  

Further studies should examine the possibility of integrating plant laboratory information sources to 

the proposed system as this could be used to further refine the data and produce more valuable 

information to the users. For example, laboratory information can be included to the data analysis 

and used for continuous validation of the analyzer calibrations. The effect of the operational regions 

of the process should be also studied more carefully when process measurements are incorporated 

into chemometric analysis. In addition, adaptive chemometric models could be implemented and 

tested in cases where there is a wide degree of variation within the process. The proposed system 

makes the implementation of the adaptive models more convenient since the historical data of both 

the analyzers and process measurements are readily available to the higher level calculation 
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platforms. Moreover the use of the OPC UA allows secure transfer of the plant information through 

the internet which could be utilized to create cloud services for plant data analytics. 
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APPENDIX 

Appendix 1. Descriptions of the selected VHVI process measurements 

Table 15. Selected VHVI dewaxing reactor measurements 

Measurement description Unit Calculated 

Bed 1 inflow temperature average °C x 

Bed 1 inflow temperature difference °C x 

Bed 1 outflow temperature average °C x 

Bed 1 outflow temperature difference °C x 

Bed 1 temperature rise °C x 

Bed 2 inflow temperature average °C x 

Bed 2 inflow temperature difference °C x 

Bed 2 outflow temperature average °C x 

Bed 2 outflow temperature difference °C x 

Bed 2 temperature rise °C x 

Bed 3 inflow temperature average °C x 

Bed 3 inflow temperature difference °C x 

Bed 3 outflow temperature average °C x 

Bed 3 outflow temperature difference °C x 

Bed 3 temperature rise °C x 

Bed 4 inflow temperature average °C x 

Bed 4 inflow temperature difference °C x 

Bed 4 outflow temperature average °C x 

Bed 4 outflow temperature difference °C x 

Bed 4 temperature rise °C x 

Bed temperatures weighted averages °C x 

Bed 2 and bed 1 temperature difference °C x 

Bed 3 and bed 2 temperature difference °C x 

Bed 4 and bed 3 temperature difference °C x 

Reactor inflow temperature target °C x 

Bed 2 inflow temperature target °C x 

Bed 3 inflow temperature target °C x 

Bed 4 inflow temperature target °C x 

Average of inflow and bed inflows 

targets temps. 

°C x 

Hydrogen inflow to bed 2 kg/h  

Hydrogen inflow to bed 4 kg/h  

Reactor inflow temperature °C  



 

103 
 

Bed 2 inflow temperature °C  

Bed 3 inflow temperature °C  

Bed 4 inflow temperature °C  

Hydrogen inflow temp. to the  bed 2 °C  

Hydrogen inflow temp. to the bed 3 °C  

Hydrogen inflow temp. to the bed 4 °C  

Reactor inlet surface temperature °C  

Reactor outlet surface temperature °C  

Reactor inflow t/h  

Recycle hydrogen to the reactor inflow t/h  

Recycle hydrogen pressure MPa  

Reactor inflow pressure MPa  

Bed 1 pressure difference kPa  

Reactor pressure difference kPa  

Reactor temperature difference °C  

Reactor outflow pressure MPa  

Reactor outflow temperature °C  

Total recycle hydrogen flow t/h  

Recycle hydrogen temperature °C  

 

Table 16. Selected VHVI hydrofinishing reactor measurements 

Measurement description Unit Calculated 

Bed 1 inflow temperature average °C x 

Bed 1 inflow temperature difference  °C x 

Bed 1 outflow temperature average  °C x 

Bed 1 outflow temperature difference  °C x 

Bed 1 temperature rise  °C x 

Bed 2 inflow temperature average  °C x 

Bed 2 inflow temperature difference  °C x 

Bed 2 outflow temperature difference  °C x 

Reactor inflow temperature  °C  

Reactor outflow temperature  °C  

Bed 1 top temperature °C  

Bed 1 bottom temperature °C  

Bed 2 top temperature °C  

Bed 2 bottom temperature °C  
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Hydrogen inflow to reactor kg/h  

Reactor inflow pressure MPa  

Reactor outflow pressure MPa  

Reactor pressure difference kPa  

 

Table 17. Selected VHVI atmospheric distillation column measurements 

Measurement description Unit Calculated 

Column overhead outflow temperature °C  

Column reflux flow t/h  

Column middle distillate outflow temp. °C  

Column steam inflow t/h  

Column bottom outflow temperature °C  

Column inflow temperature °C  

Column tray 16 pressure kPa  

Distillation section pressure difference kPa  

Column top pressure kPa  

Column tray 10 temperature °C  

Column tray 16 temperature °C  

Column bottom liquid level %  

Column inflow t/h  

Flash drum liquid level %  

Reboiler outflow temperature °C  

Column reflux flow temperature °C  

Bottom stream filter pressure diff. kPa  

Overhead settling drum pressure kPa  

Atmospheric dist. filter return / feed 

ratio 

- x 

Atmospheric dist. steam / feed ratio - x 

 

Table 18. Selected VHVI vacuum distillation column measurements 

Measurement description Unit Calculated 

Column bottom reflux flow t/h  

Reboiler inflow temperature °C  

Column flash zone temperature °C  

Column top pressure Pa  

Column top reflux flow from scrubbing t/h  
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Column lower reflux flow from scrubbing t/h  

Ejector inflow pressure kPa  

Column fuel oil outflow temp. °C  

Column target reflux flow temp. to bed 1 °C x 

Column overhead flow temperature °C  

Column reflux flow temp. to bed 1 °C  

Ejector inflow temperature °C  

Column overhead settling drum temp. °C  

Column stripping gasses inflow temp. °C  

Column higher reflux flow t/h  

Column bed 1 and bottom pressure diff. kPa  

Column bed 4 and bottom pressure diff. kPa  

Column bed 5 and bottom pressure diff. kPa  

Column inflow temperature °C  

Column inflow t/h  

Column fuel oil tray level %  

Column process oil tray level %  

Column bottom level %  

Column bed 5 pressure kPa  

Column bed 4 temperature 1 °C  

Column bed 4 temperature 2 °C  

Column bed 2 temperature 1 °C  

Column bed 2 temperature 2 °C  

Process oil outflow temp. °C  

Process oil outflow t/h  

Process oil separator bottom level %  

Process oil separator reflux flow t/h  

Vacuum dist. reboiler hot oil flow t/h  

Vacuum dist. lower reflux flow temp. °C  

Process oil separator bottom temp. diff. - x 

Fuel oil temp after cooler °C  

Fuel oil flow to storage t/h  

Column mid distillate flow to scrubber t/h  

Process oil separator hot oil flow t/h  
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Appendix 2. Box plots of the PLS1 model metrics 

Figure 42. Box plot of the NRMSEP metrics for the PLS1 models where a redline is median, box edges 
represent the 25th and 75th percentiles and dashed whiskers extend to extreme values 
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Figure 43. Box plot of the R2 metrics for the PLS1 models where a redline is median, box edges 
represent the 25th and 75th percentiles and dashed whiskers extend to extreme values 
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Appendix 3. Box plots of the MB-PLS1 model metrics 

Figure 44. Box plot of the NRMSEP metrics for the PLS1 and MB-PLS1 models where a redline is 
median, box edges represent the 25th and 75th percentiles and dashed whiskers extend to extreme 
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Figure 45. Box plot of the R2 metrics for the PLS1 and MB-PLS1 models where a redline is median, box 
edges represent the 25th and 75th percentiles and dashed whiskers extend to extreme values 
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Appendix 4. Representation of the remote address space services 
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Figure 46. Abstract representation of the remote address space related services 

 


