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Flows affected by system rotation are common phenomena in engineering appli-
cations as well as in nature. The coordinate transformation into a rotating frame
introduces two fictitious accelerations: the Coriolis acceleration and the centrifugal
acceleration, which need to be included in the simulation.

In this thesis, a spanwise rotating turbulent channel flow is studied through Large
Eddy Simulations (LES). LES is a numerical modeling approach which is based on
the decomposition of the turbulence spectrum into dynamically important large
scales and homogeneous small scales. In LES, the large scales are resolved directly,
while the effects of small-scales are modeled. In turbulent shear flows, the dynam-
ically important scales are highly proportional to the Reynolds number within
the inner boundary layer, which causes LES to be almost as expensive as Direct
Numerical Simulation. By modeling the inner layer approximately, it is possible
to bypass the very strict requirements of wall-resolved LES.

In this thesis, firstly, the DNS case by Kristoffersen & Anderson [1] is reproduced
to validate the implemented Coriolis source terms. After, a database for the wall-
model analysis is established by performing wall-resolved high Reynolds number
simulations with three different rotation rates. The wall-modeling approach by
Kawai & Larsson [2] is then tested through an a priori analysis in which a stand-
alone wall model is applied to wall-resolved results. Based on these results, a
rotation correction, which adapts to the stability effects resulting from the system
rotation, is proposed. Finally, this new rotation corrected wall-model is validated
by performing a Wall-Modeled Large Eddy Simulation (WMLES). The WMLES
results were found to be in good agreement with the wall-resolved data.

Keywords: CFD, LES, wall-modeling, turbulence, system rotation, Coriolis sta-
bility, channel flow
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Pyorivit virtaukset ovat tavallisia niin teknisissa kidytdnnon sovellutuksissa kuin
luonnossakin.  Koordinaatiston muunnos pyorivadn koordinaatistoon synnyt-
taa kaksi ndennaiskiihtyvyytté; Coriolis-kiithtyvyyden ja keskipakoiskiihtyvyyden,
jotka tulee otta huomioon pyorivien virtausten simuloinnissa.

Tassé diplomityossa tutkimme poikkisuuntaisesti pyorivaa turbulenttia kanavavir-
tausta suurten pyorteiden menetelmélld (LES). LES on numeerinen mallinnus-
menetelmé, joka perustuu turbulenssispektrin jakamiseen dynaamisesti téarkeisiin
suuriin skaaloihin ja homogeenisiin pieniin skaaloihin. LES menetelméssé suuret
skaalat ratkaistaan suoraan, kun taas pienet skaalat mallinnetaan. Seindmé&vir-
tauksien yhteydessd suuret skaalat ovat voimakkaasti verranollisia Reynoldsin
lukuun sisemmassa rajakerroksessa, mika tekee LES:in melkein yhté raskaaksi kuin
suoran simuloinnin (DNS). Mallintamalla tdmé& sisempi rajakerros approksimati-
ivisesti voimme vélttyéd seindmaratkaistun LES:in suurilta vaatimuksilta.

Tamé diplomity6 aloitetaan toistamalla Kristoffersen & Anderssonin [1] DNS
simulointi implementoidun Coriolis-lahdetermin validoimiseksi. Tamén jalkeen
suoritetaan suuren Reynoldsin luvun seindmaératkaistuja simulointeja kolmella eri
pyorimisnopeudella kerdtdksemme tietoa seindméamallianalyysia varten. Seindma-
mallianalyysissa Kawai & Larssonin [2]| ehdottamaa mallinnusmenetelmad tes-
tataan itsenaiselld seindméamalliohjelmalla, joka kayttad hyvéikseen edelld lasket-
tuja tuloksia. Analyysilla saatujen tulosten perusteella ehdotetaan pyorimiskor-
jaus, joka ottaa huomioon pyorimisesta aiheutuvat stabiliteettimuutokset. Lopuksi
tdmé pyorimiskorjattu seindméamalli validoidaan suorittamalla simulointi, jossa
seinaméamalli toimii osana ratkaisua. Seindmémallinnetun simuloinnin tulosten
huomattiin vastaavan hyvin seindmaéaratkaistuja tuloksia.

Avainsanat: CFD, LES, seindmémallinnus, turbulenssi, pyorivd systeemi,
Coriolis-stabiliteetti, kanavavirtaus
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van Driest damping constant

log-law constant term

specific heat in constant volume

specific heat in constant pressure

Detached Eddy Simulation constant
Coriolis Reynolds Stress

DES Spalart-Almaras turbulence model trigger
total Energy, turbulence kinetic energy
volume Flux

flux density

LES filter kernel

van Driest damping function

half-channel height

wavenumber

characteristic length, domain dimension
mixing length

cell index

normal vector

Reynolds stress shear production

pressure
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SGS temperature flux (C,Q; SGS heat flux)
heat flux

specific gas constant, Correlation Coefficient
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rotation number (inverse Rossby number)
gradient Richardson number

arbitrary position vector in inertial coordinates
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cell face area, Bradshaw’s parameter

strain rate tensor

temperature

time
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cell volume

velocity vector component in z-direction
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rotation correction coefficient exponent
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1 Introduction

Rotating flows are common phenomena in engineering applications as well as in
nature. Turbomachinery, ocean currents, hurricanes and even spiral galaxies are
few examples of the vast variety of applications that are affected by system rotation.
Rotating flows are commonly investigated in a rotating reference frame, in which the
observer rotates with the system. In fact, the surface of the earth itself is a rotating
reference frame, and the Large Eddy Simulation method was originally developed
in order to study atmospheric flows [3].

Transforming the equations of motion from an inertial frame into a rotating
frame introduces two additional fictitious accelerations: the Coriolis acceleration
and the centrifugal acceleration. These fictitious forces have major effects in general
flow behavior and turbulence. They are the reason why storms start to swirl and
form hurricanes on the Earth’s surface, and why the turbulent activity between two
blades of a radial pump is increased on one blade and decreased on the other. [4]

Due to general development in computational resources, Computational Fluid
Dynamics (CFD) has become an important toolkit for engineers and researchers
working on fluid mechanics. Its beauty lies in its almost endless possibilities varying
from fundamental turbulence research to preliminary design optimization in engi-
neering applications. The numerical models, which in reality are only zeros and
ones in a computer’s memory, provide a possibility to design and optimize products
as well as to study natural phenomena without the major expenses of experimental
testing.

1.1 Simulating Turbulent Flows: Level of Approximation

Turbulence is a very common phenomenon that is encountered in almost every
moving fluid and rotating flows are no exception. Sir Osbourne Reynolds (1883)
introduced a dimensionless quantity from which we can deduce whether a flow is
turbulent or not. This dimensionless Reynolds number describes the ratio of inertial
and viscous forces, and mathematically it can be expressed as

L
Re = pU;” : (1)

where p is the fluid density, U, is the relative mean velocity of the fluid, L is a
characteristic dimension, and p is the dynamic viscosity of the fluid. Several exper-
iments over the years have showed that flows undergo a transition from laminar to
turbulent when inertial forces become dominant over viscous forces, and a case spe-
cific critical Reynolds number is used to describe this transition point. The critical
Reynolds number varies between different simulation setups, since the characteristic
length needs to be chosen adequately.

The significance of rotation effects are typically expressed with a similar dimen-
sionless parameter called the Rossby number. In this thesis, we adapt to the general
notation found in the context of rotating shear flows and define the rotation with



the inverse Rossby number, which is referred to as the rotation number. It is defined
as the ratio of the velocity associated with rotation and the mean fluid velocity

2|Q|L
2
Um Y ( )

where \Q\ is the magnitude of the angular velocity vector. Using these two dimen-
sionless quantities, a rotating flow setup can be explicitly defined and they will be
referred to throughout the thesis.

Although the presence of turbulence can be easily observed and even calculated
through Reynolds number, giving an absolute definition for it is a difficult task.
Hinze (1959) [5] defined turbulence as an irregular condition of a flow where quanti-
ties vary randomly in time and space coordinates. He also noted that it is possible
to distinguish average values in varying quantities, which can be analyzed since they
are not sensitive to initial conditions. The structure of turbulence consists of a range
of eddies or whirls with different length scales. These eddies contain energy, which
is transferred in a process referred to as the energy cascade. In this process, large
eddies absorb kinetic energy from the mean flow and pass it to smaller scales through
various interactions. Finally, the turbulent kinetic energy is dissipated through the
smallest scales, the Kolmogorov scales, by viscous effects.

The basis for all fluid dynamics modeling is the numerical solution of the Navier-
Stokes equations. In the simulation process, the investigated flow domain is divided
into cells or elements that are used to calculate a discrete solution. Different ap-
proaches to calculate the flow field have been proposed, the most common being the
Finite Volume Method (FVM), which relies on the expression of fluxes to calculate
the partial derivatives in discrete volumes (cells). Another approach is the Finite
Difference Method (FDM) which calculates the partial derivatives directly through
difference schemes that can be derived from the Taylor series. The third main ap-
proach is the Finite Element Method (FEM) and its variants which have become
increasingly popular in the academia. Their principle is to express the solution with
piecewise polynomials to calculate the solution with higher precision than linear
expressions resulting from FVM and FDM.

Finding an efficient way to include the effects of turbulence into the solution has
been found to be the most problematic aspect of CFD, and various approaches have
been proposed. The approach that resolves the entire turbulence energy spectrum is
resolved without any averaging is called Direct Numerical Simulation (DNS). How-
ever, according to the Kolmogorov’s theory, the requirement for the number of grid
points to resolve all scales of turbulence in a cubic volume is proportional to Re/4,
making DNS at high Reynolds numbers impossible even for current supercomputers
[6]. Since resolving all turbulence scales is rarely feasible, compromises have to made
by introducing averaging to the governing equations.

In the classical RANS method, a time averaged solution is calculated by solving
Reynolds Averaged Navier-Stokes equations. In this method, none of the turbulence
scales are resolved and the effects of turbulence are taken into account entirely by
turbulence modeling. The principle task of turbulence models is to transport the
information of turbulence quantities, such as turbulent kinetic energy and dissipa-
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tion. Based on the local values of these parameters, the steady flow field is then
modified by adding artificial eddy viscosity to reflect the increase in diffusion due
to turbulence. RANS method is widely used, and several different turbulence mod-
els have been proposed. It is primarily applicable for steady-state flows where the
unsteady flow structures have a minor role in the analysis.

The Large Eddy Simulation (LES) can be considered to be in between the two
extremities, DNS and RANS. In LES, large turbulence scales are resolved and small
scales are modeled. Ideally, LES can be considerably more inexpensive in terms
of computational requirements than DNS, since only the dynamically important
motions resulting from the flow configuration need to be resolved. However, applying
LES to turbulent boundary layers changes LES to be significantly more demanding,
since the dynamically important scales of the inner boundary layer (10-20% of the
boundary layer) tend to decrease as a function of Reynolds number. According to
Chapman’s landmark paper [6] published in 1979, the required number of grid points
is proportional to Re®/® if the inner layer is resolved which causes LES to be almost
as expensive as DNS in terms of computational requirements. However, this very
strict inner-layer requirement can be bypassed by using approximative near-wall
treatments, and Chapman gave an estimate that the grid point requirement reduces
to be proportional to Re?® when the inner layer is modeled.

The fundamental idea for wall-modeling in LES is to evaluate the wall shear
stress in a simplified process and use it as a boundary condition. Several near-
wall treatments can be found in the literature and they can be divided into two
main groups: Wall-stress models and RANS/LES hybrids. The wall-stress models
are weakly coupled to the LES calculation and model the wall shear stress directly
from the LES quantities. In this thesis, we further divide them into two sub-classes
which are the approximative boundary conditions and the auxiliary grid models.
The approximative boundary conditions modify the boundary conditions to fulfill a
generalized law at the first off-wall cells, while the auxiliary grid models calculate
the inner boundary layer with a simplified set of equations in an embedded auxiliary
grid. The RANS/LES hybrids are strongly coupled wall treatments which do not
directly model the wall shear stress. They utilize a single grid and switch to RANS
simulation near the wall, from which the wall shear stress can be calculated. [7]

Several levels of approximations can be made in order to reduce the compu-
tational requirements. On the other hand, these approximations naturally distort
the real physics and therefore affect the accuracy of the results. In addition, flow
characteristics also limit the approximations, as the steady-state RANS is unable to
capture highly unsteady flow phenomena. Thus, the suitable level of approximation
needs to be set accordingly to satisfy the complexity of the flow and as a compromise
between the desired accuracy and computational requirements.

1.2 Previous Research

A spanwise rotating turbulent channel flow is a convenient test case in order to
study the effects of system rotation. The first experimental studies to investigate
these effects were performed by Hill & Moon(1962) [8], Moon (1964) [9] and Moore



(1967) [10]. In 1969, Bradshaw extensively studied the stability effects of wall cur-
vature and system rotation. In his landmark paper [11], he introduced a stability
parameter called the gradient Richardson number, which locally describes whether
the turbulent activity is enhanced or diminished. Conceivably, the most conductive
experiments on the rotating turbulent channel were performed by Johnston, Alleen
and Lezius in 1973 [12]. They demonstrated the role of Bradshaw’s stability param-
eters and gave detailed descriptions of the physical flow phenomena behind these
stability effects, which will be discussed in Chapter 4.

Large Eddy Simulations of a spanwise rotating channel were carried out by
Kim(1983) [13] and Miyake & Kajishima(1986) [14]. They observed similar flow
structures as Johnston et al. had previously presented. Further numerical studies
were done by Kristoffersen & Andersson (1993)[1], Lamballais et al. (1996)[15] and
Alvelius (1999) [16] as they performed DNS with relatively low Reynolds numbers,
but with a wide range of rotation rates. More recently, Wallin et al.(2013) [17]
investigated the laminarization mechanisms at very high Rotation numbers. They
observed that Tollmien-Schlichting type of plane waves are unaffected by the sys-
tem rotation, and they can cause periodic bursting events when the flow is about to
laminarize.

Near-wall treatments for the Large Eddy Simulation have been studied since
1970s. The first wall modeling approach was proposed by Deardorff (1970) [18] in
which he assumed isotropic turbulence near the wall and enforced the velocities to
satisfy the logarithmic law by defining the second derivatives at the first off-wall
gridpoint. The wall-model by Schumann (1975) [19] was the first true wall-stress
model based on the assumption of the wall shear stress being proportional to the
near-wall velocity. Grétzbach (1987) [20] later improved this model by removing the
requirement of a priori known wall shear stress to make it feasible as a predictive
method. In 1996, Balaras et al. [21] published the first auxiliary grid model that
utilizes the thin boundary layer equations (TBLE) and they also applied it to a
rotating channel. The authors found the results to be in relatively good agreement
with the DNS data in cases of low rotation rates, but due to the logarithmic velocity
profile assumption, the results became worse when the rotation was increased.

More recently, several variations of existing wall-models have been developed and
proposed. For example, Wang and Moin (2002) [22] proposed a dynamic coefficient
for the mixing length model used in the TBLE model. The more recent approaches
also include different variations of RANS/LES hybrids, the first proposal being the
Detached Eddy Simulation (DES) with an adaptive SGS-Spalart-Allmaras turbu-
lence model by Spalart et al. (1997) [23]. Another renowned DES approach based
on extended SST k-w turbulence model was published by Strelets [24] in 2001,
which targets massively separated flows. Lately, especially the near-wall treatment
capabilities of DES have been improved, resulting in approaches, such as Delayed
Detached Eddy Simulation (DDES) and Improved Delayed Detached Eddy simu-
lation (IDDES). Although the near-wall treatment is very highly researched topic,
wall-modeling for Large Eddy Simulations of rotating flows specifically is still a rel-
atively unexplored field due to the complex stability phenomena resulting from the
Coriolis effect.



1.3 Present Research Objectives

The first primary objective in this thesis is to study near-wall treatment approaches
for LES in general. After the short literature review, we will focus on the Charles™
DNS/LES solver available at the department and implement the additional source
terms resulting from the rotating frame transformation. In addition, a test case will
be performed to validate the solver and the additional source terms. The third pri-
mary objective is to perform high Reynolds number simulations to obtain reference
data for a priori wall-model testing. The current wall-model found in Charles¥ is
then implemented into a stand-alone python program and its behavior is analyzed
by applying it to the wall-resolved results. In addition, the feasibility of the a prior:
testing will be investigated by studying the instantaneous statistics. Based on these
a priort results, a wall-model correction will be proposed, and the improvements
are implemented into the solver as well as tested by performing Wall-Modeled Large
Eddy Simulations (WMLES).



2 Large Eddy Simulation Principles

The principles of the Large Eddy Simulation were published in 1963 by Smagorinsky
[3]. The main objective in the development of these equations was the excessive
requirements of resolving all scales, which Kolmogorov had previously discussed.
Kolmogorov had also identified that the smallest turbulence motions are mainly
isotropic and could be considered as homogeneous. This information combined with
the general principle of the energy cascade, which states that the smallest scales are
not as dependent on the boundary conditions as they mainly act as an energy sink,
lead to the idea of approximately modeling these small homogeneous scales. On the
contrary, the more energetic large scales, which do most of the energy transportation
from the core flow, and thus are greatly affected by boundary conditions, should
be directly resolved. This decomposition of the turbulence energy spectrum into
resolved large scales and modeled small scales is the main principle of Large Eddy
Simulation and it is illustrated in Figure 1. [25]
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Figure 1: The energy spectrum decomposition and corresponding energy cascade
principle.

2.1 Scale Decomposition

The scale decomposition is done by introducing spatial averaging to the Navier-
Stokes equations, which is typically referred to as filtering. The decomposition into
the resolved and modeled quantities can be expressed as

Qb(f’ t) = ¢(f7 t) + (bl(fa t) ) (3>

where the overbar denotes the resolved large scales and the prime modeled small
scales. Algebraically, the filter operation can be written as a convolution of the filter
kernel and the filtered quantity

3z, 1) = /D G — E)o(E t)dE (4)

where £ is the integration dummy variable and D is the flow domain. Sagaut [26]
specifies three criteria that a filter operator should fulfill: Firstly, the filter operation



should conserve constants,
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a

DG@— )dE =1 . (5)

Secondly, the filtered quantities should conserve linearity,

S+ =0+17. (6)
Thirdly, the commutation with differentiation should be exact,
W 05
% = & , = l’,t . (7)

However, the direct commutation of quantities does not hold

oY # PP (8)

This leads to a commutation error, which in fact is the subgrid-scale term to be
modeled

oY =g+ 7 =Y+ (¢¢ — oY), (9)
where 7 denotes the commutation error. In addition, the commutation error is
typically further decomposed by combining the terms describing similar scale inter-
actions. By substituting ¢ = ¢ + ¢’ and ¢ = ¢ + ¢/ into the expression of 7 in
Equation (9), the decomposed form of the commutation error becomes

T=(0+¢) W+ ) — ¢ = (¢ — ¢) + (o0 +0¢') + (@) . (10)

The first bracketed term on the right-hand side in Equation (10) is the Leonard
term, which represents the production of subgrid turbulence by the large resolved
eddies. The second term is the cross-stress term, which represents the interactions
between the large resolved scales and the small modeled scales. The final term is
the Reynolds term and it describes only the interactions within the small modeled
turbulence scales, and therefore it is occasionally called the sub-grid scale Reynolds
stress.

Since the solver utilized in this project is implemented with the FVM, the filter
kernel is not explicitly defined. However, the filter kernel can be considered as a
physical space box filter in which the grid works as the filter. The box filter can be
expressed as

G(x — 11
(=9 0 otherwise (11)

ﬁ:{m&ﬂw—agg
where A is the cut-off length. Simply put, in the Finite Volume Method, the filter is
the grid itself and the cell values represent the spatial average inside the cells. Thus,
in the Finite Volume Method, it is impossible to resolve turbulent scales which are

shorter than the distance between the centers of two adjacent cells.



Since Charles® is a compressible solver, Favre filtering is also introduced to the
flow quantities. The Favre filtering is a name for a change of variables, where the
solution variables are weighted by density, and it is defined as

po = po . (12)
The Favre filtering is done in order to avoid extra subgrid-scale that result from the
decomposition of terms such as, pu; to pu,. [27]

2.2 Navier-Stokes Equations

The Navier-Stokes equations are presented in the Eulerian conservation form, mean-
ing that the change in flow quantities are examined in a differential stationary frame
rather than following individual fluid particles. The first Navier-Stokes equation is
the continuity equation that defines the conservation of mass in this frame. The
second equation is the momentum equation, which practically is the Newton’s sec-
ond law ' = ma for a continuum. The left-hand side in this equation represents
the accelerations, while the terms on the ride-hand side are the surface forces of
the control volume. The final equation is the energy equation, defining the conser-
vation of energy. Several formulation for the energy equation can be found in the
literature, and in this thesis the formulation for the total energy is used as it is also
implemented in the utilized solver. The full group of Navier-Stokes equations for a
compressible fluid is given by

dp  Opu;
Opu;  Opuu; Op 0oy
S Al 14
ot al’j 8% + 8:cj’ ( )
ApE)  OpE +plu;  O(ujoi;)  Og;
8t + 8mj - a{L‘j 8$j ’ (15)

where ¢t denotes time, F is the total energy per mass unit and p is the pressure.
The tensor notations x; and u; represent the cartesian spatial coordinate vector and
the velocity vector respectively. The sub-indices ¢ and j vary from 1 to 3, denoting
the three components of the velocity vector u, v, w and the coordinate vector x,y, 2.
The term o;; is the total stress tensor that comprises of a total of nine components

and it is defined as N
oij = 2p(T) Sy — gﬂ(T)fSijSkk , (16)

where ¢ is the Kronecker delta, which is valued 0 if ¢ # j and 1 if ¢ = j. The strain

rate tensor S;; is given by
1 (0u; Ou;
Sii== J S 17
g 2(axi+axj) (17)




In the energy equation, the total energy per mass unit E for a perfect gas is defined
as

1
CP
= — 19
’7 C,U Y ( )

where C), and C, are the specific heat capacities at constant pressure and constant
volume. The density and the pressure are coupled to the temperature 7" by the

equation of state
p=pRT , (20)
in which
R=C,-C,. (21)

Furthermore, the dynamic viscosity can be linked to the temperature via the power

law
(1) &

which is valid from 150 K to 500 K. The heat flux ¢; is defined as

oT
G = "h5—> (23)
J

in which & is the thermal conductivity that can be expressed as
k= pCy/Pr . (24)

In the expression of thermal conductivity, Pr is the Prandtl number. It represents
the ratio of the kinematic viscosity and the thermal diffusivity and is typically
assumed to be constant Pr = 0.72. [27]

2.3 Filtered Governing Equations

As a result from the previously introduced Favre filtering, applying the filter operator
to the continuity equation is straightforward and the filtered continuity equation is
simply expressed as

9p n 9(ps)

In the momentum equation, the filtered convective terms need to be decomposed as

~0. (25)

PU; = puitij + Tij (26)

which results in the following sub-grid scale stress tensor to be modeled

Ty = pudty — Uitly) - (27)
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Thus, the resulting filtered momentum equation can be written as

= — 28
3t afL’j al‘l 8xj 8xj ’ ( )
where the filtered total stress tensor is
- . =

3

The filtered strain-rate tensor can be simply written with the filtered velocities as

~ 1 (0u; Ou,
Sij == L+ ). 30
I Q(axj+axj> (30)
Applying the filter operator to the energy equation is more complex, and several

different variations and simplified forms can be found in the literature. In the total
energy formulation, the filtered total energy is defined as

~ D

where the Favre filtered term needs to be further decomposed as

_ = D L 7

E=—+ —puu; + — . 32
In the equation above, 7; represents the SGS kinetic energy. This expression to-
gether with the Favre filtered equation of state p = pRT gives the coupling between
filtered pressure, density and temperature. Introducing the filter operator to all

terms in the energy equation, the following form is obtained

0(pE) N (PE +p)i;  0(1y64) L 94
8t ZEj (9xj 8xj

o —— = L L B _
- %[(P%’E — pu; E) + (u;p — w;p) + (Goj; — Gizi;) — (@5 — G5)] , (33)
J

where the entire right-hand side ideally needs to be SGS modeled. The first two
terms on the right-hand side can be joined together by using the expression in
Equation (32), which gives

0(pE) N (PE +p)i;  0(1y64) . 94
at ZL’j 8xj 8xj

— o —GQ+ i+ D= (4, - @), (34)

where

C,Q; = Cpp(w;T — @;T) (35)
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is the SGS heat flux,

Jj = 5(@% — Pty — Ti) (36)
is the SGS turbulent diffusion,
D; =0;u; — 045U (37)

is the SGS viscous diffusion. The final term (g; — ;) is an additional SGS heat flux
term resulting from the non-linearity of the viscosity-temperature coupling. Several
studies, such as the one by Meng & Pletcher [28], have found the SGS heat flux
CpQ; to have the most impact on the results and the rest to be negligible. Same
approach is also adapted in the SGS model found in the Charles® solver. [27]

2.4 Subgrid-Scale Modeling

As mentioned earlier, subgrid-scale models are used in LES to model the effects of
smaller scales, which can not be resolved by the grid. The most widely used SGS
models are eddy viscosity models, which are based on the Boussinesq hypothesis.
The hypothesis states that the effects of homogeneous turbulence can be described
with an artificial eddy viscosity, reflecting the increase in dissipation due to turbu-
lence. The Boussinesq hypothesis is defined as

1 ~ 1. -
Tg- =Tij — ngkéij = —2usas (Sij - géijskk) . (38)

The first and still very popular SGS model, that is known for its robustness, is
the Smagorinsky model. It has been the basis for the more advanced models, which
can be considered as variants of it. The eddy viscosity in the Smagorinsky SGS
model is defined as

psas = p(CsA)?|S] (39)

1 - U
where A is the filter width, typically A = V.3,, |S| = 1/25;;5;;, and C; is an em-
pirical Smagorinsky constant Cy = 0.1 — 0.2. As seen from the equations above, the
Smagorinsky SGS approach is very straightforward and only requires the informa-

tion of the local cell size as well as the first velocity derivatives. [27]

2.4.1 Vreman Model

Simple eddy viscosity models, such as Smagorinsky model, do not function prop-
erly in transitional and laminar regions, since there is no feature to limit the eddy
viscosity within these areas. The Vreman SGS model [29] is a more advanced and
dynamic approach to provide this support. The feasibility in transitional regions
is a highly desirable feature especially for rotating flows, since the system rotation
greatly affects the local stability and can locally laminarize the flow [12].
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The Vreman model modifies the expression of the eddy viscosity to be

B
tsas = pCuyr R (40)

ij Qi

where the dynamic parameters are defined as

o1,
o 41
= G (41)
ﬁij = A?nOémiamj ) (42>
Bg = P11822 — Bia + Bi1Bss — Bis + Ba2Bs3 — Bas - (43)

The model constant C,, is defined as ¢ ~ 2.5C% . Although the Vreman model
contains several different dynamic parameters, they also depend only on the filter
width and the first velocity derivatives. Therefore, the implementation of the model
is not drastically more complex than the Smagorinsky model and it has been found
to be robust as well.

2.4.2 SGS Heat Flux

Regardless of the energy equation formulation, the SGS heat flux needs to be calcu-
lated. The majority of authors utilize the gradient hypothesis by Eidson [30], which
states that the energy transfer resulting from small scales is proportional to the
resolved temperature gradient. Furthermore, the Charles® solver applies the strong
Reynolds analogy by Morkovin (in Hadjadj et al. [31]) to calculate the SGS heat
flux. According to Morkovin hypothesis, the analogy between the momentum and
heat flux is independent on Mach number for non-supersonic flows, which essentially
leads to the expression 3
psas 0T
pP rsags al’j ’

Cp@j ==

(44)

where Prsgs is the sub-grid scale Prandtl number which relates the SGS eddy
viscosity to the SGS thermal diffusivity. Several experiments and numerical studies
have proved that using a constant value Prgggs = 0.9 is sufficient for non-supersonic
flows and this value is also used in this project [27].
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3 Near-Wall Treatment Approaches for LES

3.1 Motivation for Wall-Modeling

The turbulent boundary layer can be divided into two separate layers, the inner and
the outer layer. The layer separation is associated with different governing time and
length scales in the immediate vicinity of the wall and in the core flow. This behavior
causes LES to have different grid resolution requirements for both layers. The
requirement for the outer layer is based on providing a sufficient resolution to capture
the most meaningful turbulence dynamics resulting from the flow configuration,
which are typically few percentages of the largest length scale. On the contrary,
the resolution requirement for the inner layer results from capturing the notably
smaller turbulence scales, which are highly proportional to Reynolds number. Choi
& Moin [32] derived even slightly higher Reynolds number dependency for the grid
requirement than Chapman had previously introduced. According to them, the
Reynolds number dependencies for the outer and inner layer are respectively

Nyy. ~ Re?® (outer layer) | (45)

Nyy. ~ Rep® (inner layer) . (46)

Figure 2 shows the total grid point requirement for a turbulent boundary layer over
a flat plate with an aspect ration of 4, calculated with the methodology by Choi
& Moin. This graph encapsulates the necessity of wall-modeling at high Reynolds
numbers. For example, in a hypothetical case of simulating an entire aircraft with
Re = 108, the simulation would require placing 99% of all cells within the inner
boundary layer, although it covers only a small fraction of the entire computational
domain.

Experimental and numerical studies have showed that the turbulence behavior in
the outer layer is highly affected by the flow configuration i.e. boundary conditions,
while inner layer is constant in wall units [7]. This favorable behavior can be seen in
the illustrative visualization of the spectral densities of turbulent kinetic energy by
Jimenez [33] in Figure 3. The visualization shows that the most energetic turbulence
length scales Af are nearly constant up to y™ = 80 (inner layer) , after which they
start to grow linearly in a logarithmic scale. This ‘universal’ behavior in wall units
provides a baseline to bypass the strict inner layer requirements via wall-modeling,
while using the predicting capabilities of LES to simulate the outer layer. However,
wall-modeled simulations do not target producing cheaper low Reynolds number
simulations, since the outer layer requirement cannot be avoided. The main goal
for wall-modeling rather is to extend the range of feasible high Reynolds number
simulations.

Several different near-wall treatments have been proposed for LES over the past
40 years. Previous wall-model reviews have classified these models into different
groups based on their modeling approach. However, the division of the wall-models
varies between different studies and different terms are being used to describe the
approaches. In this short literature review, the approaches are divided into two
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separate classes: the wall-stress models and the RANS/LES hybrids. The wall-
stress models are further classified into two subclasses, which are the approximative
boundary conditions and the auxiliary grid models. In the following chapters, the
principles of each approach will be introduced and corresponding milestone wall-
models will be shortly discussed.
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Figure 2: Grid point requirement for a turbulent boundary layer over a flat plate.

108

10?
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Figure 3: Right curve: Highest 14 % of the spectral density of kF in wall-bounded
turbulence [33].

3.2 Wall-Stress Models

The first wall-model proposals are all based on the equilibrium assumption that the
velocities at the first off-wall grid point at 30 < y* < 300 satisfy the logarithmic
velocity profile, also known as the law of the wall. These models link the velocity
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at the first off-wall grid point to the wall shear stress through a modified boundary
condition and can be considered to be similar as wall functions in RANS framework.
Moreover, the shear stress is assumed to be constant in the whole inner layer and
in the simplest approaches, direct viscous effects are even neglected. The standard
expression for the logarithmic velocity profile is

1
ut=—-Iny" + B, (47)
K

where « is the von Karmén constant which is typically x = 0.41 and B is a constant
B ~ 5.0 —5.5. The wall units are defined as y* = %= and u* = =, where the

reference friction velocity is u, = , /%w, and 7, is the wall shear stress.

3.2.1 Deardorff Model

The Deardorff model (1970) [18] is considered to be the first near-wall treatment
attempt for LES, although it does not directly model the wall shear stress. Deardorff
assumed the turbulence to be isotropic near the wall and enforced the velocities to
satisfy the logarithmic velocity profile by defining the second derivatives at the
first off-wall grid points. The boundary conditions in the Deardorff model can be
expressed as

0*u 1 9%

— 48
Oy? Ky2 + 022’ (48)

o =0, (49)

2, 2,
o _oo »
oy?  Ox?

where yq is the y coordinate at the first off-wall grid point, and z is the spanwise

direction. In the Deardorff model, wall shear stresses are defined entirely by the

subgrid-scale model. This model is very limited since it does not take molecular
viscosity into account and ,therefore, is true only in the limit of infinitely high

Reynolds numbers.

3.2.2 Schumann and Grotzbach Models

The wall-model by Schumann (1975) [19] can be considered as the first true wall-
stress model since it directly relates the wall shear stress to the velocity at the first
off-wall grid point. The boundary conditions used by Schumann can be expressed
as

)>ﬂ<$,y0,2) ) (51)

Uy =0 (52)
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Ty (T, 2) = VSGSM , (53)
Yo

where angle brackets denote averaging over a plane parallel to the wall. One major
disadvantage in this model is that the mean wall shear (7,,) must be known a priori,
which reduces the value of the model as a predictive method. The mean near wall
velocity (u(z,yo, z)) is calculated from the logarithmic law, and the mean wall shear
stress can be assigned to be equal to the driving pressure gradient in channel flows.
Essentially, the Schumann model only scales the mean wall shear stress with the
ratio of the local velocity and the mean velocity to obtain the local wall shear stress
in the z-direction. This kind of velocity scaling is common to all approximative
boundary condition approaches. The spanwise wall shear stress in the Schumann
model is calculated by assuming the SGS viscosity to be constant within the first
LES cell [25].

Later, Grotzbach [20] modified the Schumann model to remove the requirement
of the a priori known mean wall shear stress. In the Grétzbach model, the mean
near wall velocity is calculated by averaging the simulated velocity with respect to
time and a homogeneous direction. This formulation enables the mean wall shear
stress to be directly calculated from the log-law

u+:@:11ny++B, (54)
Ur K

and the expression of the friction velocity

U, = ? ) (55)

3.2.3 Shifted and Ejection Models

Piomelli et al. [34] proposed further modifications to the Schumann’s model in 1989
based on the experimental results of Rajagopalan and Antonia [35]. According to
their results, the correlation between the wall shear stress and the velocity improves,
if a streamwise displacement A is introduced between the linked velocity node and
the wall shear stress. The motivation behind this displacement is the inclined nature
of the elongated turbulent structures in the boundary layer, and therefore the input
velocity for the wall-model should be taken slightly downstream. The boundary
conditions of the shifted model can be expressed as

(Tw)

Tagaw = 7= (T + Ay, Y0, 2) 56
" e, ) O 0

Uy, =0, (57)
Tryw = Lw(m + Asa Yo, Z) . (58)

(a(z, 0, 2))
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The optimal displacement value has been found from the DNS and experimental
data, and it is approximately

_ JYcot8, if 30 <y <50 (59)
T Yeot13, if 50<yr

This particular model has been found to correlate with the experimental and DNS
results better than the standard non-shifted Grotzbach model for plane channel
flows.

Another wall-model proposed by Piomelli et al. [34] is the so-called ejection
model, which takes into account sweep and ejection phenomena in the boundary
layer. The sweep and ejection are rapid motions towards and away from the wall,
and they have a considerable effect on the wall shear stress. The ejection decreases
the wall shear stress, while sweep increases it. The ejection model is given by
boundary conditions

Teyw = <Tw> - Cu‘r@(x + Asa Yo, Z) ) (60)
Uy = 0 > (61>

(Tw) -
Toyw = ——————w(x + Ay, Yo, 2) 62
= gy T At ?) %)

where C' is a dimensionless constant, and the mean wall shear stress is calculated
from the log-law. Similarly to the shifted model, the ejection model has been tested
only for plane channel flows, and there were no major differences in the results when
compared to the shifted model. The applicability of all aforementioned approxima-
tive boundary conditions is limited to simple geometries since the plane-averaging
( )-operator requires homogeneous flow behavior.

3.2.4 Auxiliary Grid Approach: TBLE Model

The auxiliary grid models can be considered as wall-stress models as well, since they
calculate the wall shear stress directly from the LES field. However, they differ from
the approximative boundary conditions, as they utilize a separate grid to calculate
the inner boundary layer. The finer auxiliary grid is typically placed inside the first
cell row or rows of the main grid. The coupling between the zones is weak, since the
LES quantities only affect the wall shear stress calculation through the boundary
condition between the layers. A typical grid structure of auxiliary grid approaches
is sketched in Figure 4.

The first auxiliary grid model was proposed by Balaras and Benocci [36] in 1994,
and it is usually referred to as the thin boundary layer equation (TBLE) model. As
the name suggests, the equations solved within the inner layer are the thin boundary
layer equations, which lean on the RANS-type thin shear layer approximation. The
simplification is based on the fact that the gradients in the wall-normal direction
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are dominant over the gradients in other directions, which allows neglecting the
streamwise and spanwise viscous terms [37]. Moreover, the pressure term normal to
the wall is also assumed to be negligible. The thin boundary layer equations can be
expressed as

ou; 0 ,_ op 0 (‘9ui], (63)

g T an ) = gt g [(” v

where n denotes the wall-normal direction within the wall-model and ¢ = 1,2 or
t = 1,3 depending on the plane orientation. The normal velocity u, in Equation
(63) can be calculated from the mass balance in the auxiliary grid. The velocity
at the first off-wall grid point obtained from the outer flow calculations is used
as the free stream boundary condition for the thin boundary layer equations, and
no-slip condition is used at the wall. The wall shear stress calculated from the
auxiliary TBLE simulation is then applied as the boundary condition to the outer
flow calculation to update the first off-wall LES velocities. [38|
Several variations of the thin boundary layer model have been proposed, but they
only differ in the eddy viscosity definitions. Balaras et al. [21] used an algebraic
eddy viscosity model in their extensive study in which they applied the model to
plane channel flows. The expression of the eddy viscosity in Balaras’ study is given
as
v, = (ky)’D(y)|S], (64)

in which D(y) is a van Driest-style damping function, which essentially limits the
eddy viscosity value in the viscous sublayer. The damping function formulation that
Balaras et al. used is defined as

D(y) =1 —exp[—(y*/AT)"] , (65)

where A™ is an adjustable constant, for which they used a value A" = 25.

Naturally, the auxiliary grid approaches are more expensive in terms of compu-
tational requirements than the models based on the approximative boundary con-
ditions, since another subsimulation needs to be included. However, they have been
found to produce better stress predictions, especially in areas where the equilibrium
assumption does not hold. [25]
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Boundary flux

Figure 4: Auxiliary grid model principle.

3.2.5 Dynamic Auxiliary Grid Approaches

For complex flows, the regular auxiliary grid approaches can be improved by intro-
ducing a dynamic procedure for the eddy viscosity calculation. The principle idea of
the dynamic wall-modeling is to take the small amount of resolved Reynolds stresses
that are retained in the wall-model layer into account, since the input values are
taken from the instantancous field. Wang & Moin (2002) [22] proposed an approach
where the total turbulent stress (resolved+modeled) is matched at the exchange lo-
cation by dynamically setting the wall-model eddy viscosity to be equal as the SGS
eddy viscosity calculated from the LES. This leads to a dynamical adjustment of
the von Karman constant x in the mixing length model, which can be expressed as

e (66)

(g (1 — emvw/AT)2)
where the angular brackets denote averaging in the homogeneous direction as well as
over 150 previous time steps. Wang & Moin applied this methodology for a flow over
an airfoil and found the results to improve for low to moderate Reynolds numbers.
Kawai & Larsson (2012) [39] applied the aforementioned methodology for a flat-
plate boundary layer and found that the eddy viscosity was significantly underes-
timated at high Reynolds numbers. The authors extended the approach into the
compressible framework and proposed an improvement, in which the coefficient & is
a function of y*. They motivated this change with the argument that the ratio of
the resolved and modeled stress increases with increasing y and is also dependent
on the generally anisotropic wall-normal resolution. In this new methodology, the
values of kK = 0.41 and Pr; = 0.9 are kept constant up to a certain critical height
Yerit, from which the values are linearly increased to match the stresses at the ex-
change location. The critical height location y is suggested to be y...; = o’ A, where
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A is the maximum wall-parallel cell dimension, and o' is a free parameter that needs
to adjusted accordingly to the grid resolution and numerical schemes. The authors
used an optimized value of o = 0.48.

The most recent dynamic wall-model approach was proposed by Park & Moin
(2014) [40]. While the previous dynamic approaches relied on the explicit matching
of the turbulent stresses at the exchange location, the new approach adjusts several
model constants to account the current turbulence state. The authors start from the
requirement that the governing turbulence model needs to model the total Reynolds
stresses,

2ut7wm5fj - gpkém - ﬁR” = 2/1:8% - gpk*&j s (67)
where R;; = Tu; is the resolved Reynolds stress tensor, S¢ is a notation for the
deviatoric part of the strain-rate tensor S¢ = Sij — 0ijSkk/3 and k is the mod-
eled turbulent kinetic energy. In addition, the superscript * denotes mixing length
modeled quantities and the overbar denotes averaging with respect to time and/or
homogeneous direction. In Equation (67), the entire left-hand side represents the
total Reynolds stresses and the right-hand side represents the mixing length mod-
eled Reynolds stresses with constant x and Pr. The authors reformulate Equation
(67) in a least square sense and minimize its Ly error norm to obtain the expression
for the dynamic von Karmén constant to be

R;;S4 1
K2 = R4 : 68
25057 151D (y) (68)

Furthermore, the authors extended the wall-model to predict transition by adopting
the dynamic turbulence sensor methodology by Bodart & Larsson [41]. The wall-
model was tested for a fully turbulent and transitional flat plate boundary layers,
and the results were found to be in good agreement with the wall-resolved and
experimental data.

3.3 RANS/LES Hybrids

Another approach for the near-wall treatment are the RANS/LES hybrids. These
models also divide the computational domain into LES and RANS zones, but they
differ from the auxiliary grid models by utilizing only a single grid. Therefore, the
LES and RANS zone division needs to be defined by a local change in turbulence
modeling. A schematic picture of this zone division is illustrated in Figure 5. The
most widespread RANS/LES hybrid is the Detached Eddy Simulation (DES) with
a modified Spalart-Allmaras turbulence model which was introduced by Spalart et
al. [23] in 1997. In DES, RANS equations are solved for attached boundary layers,
while LES equations are solved in the core flow and detached regions. In fact, the
Unsteady Reynolds Averaged Navier-Stokes (URANS) is a better term to describe
the boundary layer calculation, since the strong coupling between the zones causes
the inner zone to contain a time scale. [3§]
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In the modified Spalart-Allmaras model, the transition from LES to RANS is
defined by a single variable d, which is expressed as

CZ = min(yw, CDESA) s (69)

where y,, is the distance to the nearest wall, Cpgg is a calibrated constant, and A is
the largest cell dimension. In the boundary layer, where the cells are considerably
finer in the wall normal direction, d criterion deploys the turbulence model to behave
as traditional RANS type model, since y,, < CppsA — d = Yw- However, in the
core flow and separated regions, where the distance to the wall is larger than the
cell dimensions CppsA < Y, — d = CpesA, the turbulence model changes to a
Smagorinsky type SGS model and the large scales of turbulence are resolved.

One major drawback in DES is the appearance of an artificial buffer layer that
results from the time scale collision of the two zones. Since the time scales in the
boundary layer calculated by URANS are generally larger than the ones resolved
in LES, they tend to become dominating and cause unrealistic behavior near the
interface [42]. The so-called buffer layer can extend up to 20 % of the boundary layer
height above the RANS/LES interface and typically causes 10-15 % underprediction
for the wall shear stress. This unfavorable feature has been partly removed in
newer DES variations, such as Delayed Detached Eddy Simulation (DDES) [43] and
Improved Delayed Detached Eddy Simulation (IDDES) [44]. These more advanced
RANS/LES hybrids are based on artificially delaying the RANS to LES transition
in attached boundary layers to prevent grid induced separation and modeled stress
depletion when using finer meshes. [45]

" Buffer layer }Strong coupling

Figure 5: RANS/LES hybrid principle.
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4 System Rotation

As mentioned earlier, a spanwise rotating channel is the simplest case to study the
effects of system rotation. In this chapter, the accelerations resulting from the coor-
dinate transformation will be briefly derived and their effects on the flow quantities
in this particular configuration will be discussed. The examination is performed in
Reynolds averaged and incompressible sense. Furthermore, the physical flow phe-
nomena that have been identified in several experiments and numerical studies will
be presented.

4.1 Coriolis and Centrifugal Accelerations

Let us begin by considering an inertial frame with a basis (f, j, K ) and a rotating
frame with a basis (;, f, IZ), which are illustrated in Figure 6. In the figure Ry is the
position vector of the rotating coordinate system, Risa position vector of a moving
object in inertial coordinate system and 7 is the position vector of the same moving
object in the rotating coordinate system. The position vector of the moving object
can be expressed in either coordinate system as

R=XI+YJ+ZK F=xi+yj + 2k . (70)

Furthermore, it can also be expressed as the sum of the rotating frame origin vector
and position vector in the rotating frame vector

R=Ry+7. (71)

By differentiating the expression with respect to time, the relation for the velocity
is found to be

dR dRy dx- di dy- dj dz- dk
S _ S M G Yr L B 9
o a Ta Tt T e tat (72)

The expression can be simplified by adopting the definition of angular velocity v =
Q2 x 7, which can be written for the individual terms as

G A . . dE . . ARy s
a T aw T  w T o (73)
By substituting the expressions above into Equation (72), the following form for the

velocity is obtained

— =+ Qx R+ Qx7=0+QxR. (74)



23

The relation for the acceleration can be found by differentiating Equation (74) with
respect to time

2R d L
L e BN =
Gz g xR
d?:cﬁ dedi d*y- dydj d®z- dzdk ~ dR
Wa | EEp LG 75
~ T aa T w T aa T T aa T  a (75)

—d+QxT+Qx (T+0Q%xR)

—a+20x T+ Q0 x (QxR).
In the expression above, the term 2€) x 7 is the Coriolis acceleration and 2 x (Q X é)
is the centrifugal acceleration. These acceleration are fictitious and do not represent

any real forces. They are generated as compensatory terms for the real accelerations
to take into account the fact that the observer is rotating. [46|

Y

Z X

Figure 6: Inertial and rotating coordinate systems.

4.2 Spanwise Rotating channel: Average Quantities

Since the Navier-Stokes momentum equation essentially represents the Newton’s
second law, transforming it to the rotating frame introduces the previously de-
rived fictitious accelerations to its right-hand side. The incompressible Navier-Stokes
equations in a rotating reference frame are given by

(‘9ui
3@-

=0, (76)

ou; ou; 1 Opeyy 9%u;

— tuj— = —— +v

ot Oz p Ox; 83:]8
where the final term in the momentum Equation (77) is the Coriolis force, and €;;3
is the Levi-Civita tensor, which corresponds to the cross product. The Levi-Civita

+ 261]3U]Qk , (77)
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tensor is defined as

+1 when (i, 4, k) = (1,2,3),(2,3,1) or (3,1,2),
eigp = —1 when (i,5,k) = (3,2,1),(1,3,2) or (2,1,3), (78)

0 wheni=jorj=kork=1.

The tensor index k is fixed to a value of three, since only a spanwise rotation is
considered. When the flow is acknowledged to be incompressible, the centrifugal
force can be expressed as a force potential, which can be integrated into the effective
pressure as

1
Peff =P — 50927”2 : (79)

For the algebraic analysis, it is convenient to do the Reynolds decomposition by
dividing flow quantities into the mean and the fluctuating part as u = U + u/. By
assuming a steady-state situation, the Reynolds averaged momentum equation is
obtained

= OU; — 10peyy . 821, i,

U; v — L+ 23U, 80
T Ox; p Oz Ox;0x;  Ox; BTk (80)
oulul, . . .
where the term % is the Reynolds stress tensor, representing all turbulent activ-
J

ities. In case of a fully developed channel flow, the mean velocity in the y-direction
V is zero, and mean velocity in the z-direction U is only a function of y. More-
over, with a relatively rapid rotation rates 0.1 < Ro < 1, lower magnitude Reynolds
stresses can be neglected [12], and the momentum equations in z- and y-directions
can be written individually as

18p€ff d dU Y,
_ 1 a (v _ 1
0 > 0w +dy de u'v' | (81)
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200 = —;ag;f . (82)

Noteworthy in Equations (81) and (82) above is that, the Coriolis acceleration affects
the mean flow only through the Reynolds stress component, which imparts that the
mean velocity profile of a fully laminar flow would remain unaffected. From the
y-direction momentum equation, it is also noticed that a negative pressure gradient
is generated as the balancing force to the Coriolis acceleration. This leads to a
pressure difference between the walls, and it can be deduced that the pressure on
the upper wall channel is lower than on the lower wall for positive rotation rates.
From now on, these different sides will be referred to as the suction (low pressure)
and pressure (high pressure) side.

From Equation (82) it is also seen that the flow normal pressure gradient a%% is

Opeyy
oz

not proportional to x. Thus, the term is a constant and Equation (81) can be
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integrated from ¥, to an arbitrary point y to obtain the expression for the total
shear

Vo= = T ). (53)
Y=Ywall

Various experiments have shown that the wall turbulence is enhanced on the pres-
sure side and dampened on the low-pressure side [12]. Because of these differences
in turbulence levels, the magnitude of wall shear stress term 7,, = y%b:ywa” in
Equation (83) depends on whether the integration is started from the stabilized or
destabilized wall. However, since the total shear is constant for the entire channel,

Equation (83) can be written as

w ws 8 e
Twp + T, _ Deff 7 ( ] 4)
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where the subscript p denotes the pressure and s the suction wall. Furthermore, by

introducing the expression of the wall shear velocity

=
Ur = 4 — | (85)
p

Equation (84) can be further modified into

| _hOpesy
uT - p 81‘ 9 (86)

where u, is the global friction velocity defined as

1

In the literature, this friction velocity is used to scale all results that are presented
wall units and this is the convention we follow, unless otherwise mentioned.

4.3 Coriolis Stability

As briefly mentioned in the previous section, the Coriolis acceleration affects the
local stability of the flow. These effects can be studied with a local non-dimensional
parameter called the gradient Richardson or Bradshaw-Richardson number [11].
System rotation has a destabilizing effect on the region where the gradient Richard-
son number is negative, and on the contrary stabilizing effect where it is positive.
The gradient Richardson number for a rotating system is defined as

Ri=S(S+1), (88)

where
20
T v i
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In a spanwise rotating channel flow, the mean velocity profile has been found to fol-
low the 2(2 slope in the core flow where the Coriolis stability is neutral. A schematic
picture of a typical stability region flow is illustrated in Figure 7. From the expres-
sion of the gradient Richardson number it can be deduced that near the suction
side where the mean velocity gradient is below the value of background vorticity,
the flow is locally stabilized. On the contrary, near the high-pressure side, the flow
is locally destabilized, since the velocity gradient is dominant over the background
vorticity.

Stability changes resulting from the Coriolis acceleration have major effects on
the flow characteristics. Several studies have been performed to identify the physical
phenomena occurring within these destabilized and stabilized regions. Johnston et
al. [12] observed three stability related phenomena based on their experiments on a
spanwise rotating channel flow. Firstly, the rate of wall-layer streak bursts increases
and decreases on the pressure and suction side, respectively. This is the main reason
for the local increase or decrease in the turbulence production, and thereby also the
change in the mean velocity profile and the local wall shear stresses. Secondly, the
Coriolis acceleration can completely suppress or delay the transition of the laminar
boundary layer on the stabilized suction side. Thirdly, counter rotating Taylor-
Gortler type of vortices are generated in spanwise direction. The authors also found
that these large scale roll cells tend to move towards the pressure side with increasing
Rotation number.

In later studies Wallin et al. [17] and Brethower et al. [47] discovered cyclic in-
stabilities in their DNS simulations when the flow is locally close to laminarization.
The authors pointed out that high rotation rates suppress the oblique modes of the
flow, but the two-dimensional plane modes which resemble the Tollmien-Schlichting
(TS) waves, remain unaffected. The cycle where the TS waves grow, become un-
stable and finally break down into turbulence affects the flow quantities and can be
observed as temporal spikes in the Reynolds and wall shear stresses. According to
their results, if the rotation rate is moderately high, the growth of the TS waves is
confined to the suction side. However, by further increasing the rotation rate close
to the critical value where both sides laminarize, similar behavior begins to occur
also on the pressure side. [47]
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Figure 7: A schematic illustration of a typical mean velocity profile and the stability
zone division.

4.4 Reynolds Stresses

To support the interpretation of the simulation results it is convenient to discuss ex-
plicitly how the rotation affects each component of Reynolds stresses. The transport
equation of Reynolds stresses is defined as

!,/ /,,/
Guiuj _ Oulu;

ot + Uy 6ka = gzij + Hij — € T @z‘j + cgij , (90)
where the terms on the right-hand side of the equation represent shear production,
pressure-strain, dissipation, diffusion and Coriolis effect, respectively. In this context

it is sufficient to only examine the shear production and Coriolis terms, which are
defined as
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By writing the tensors in a component form for a fully developed flow U = U(y
the only non-vanishing terms are
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From the equations above, it can be seen that there are no %55 and %33 components,
and thus no direct production of v/v" or w'w’. They are, however, present resulting

from the energy transfer by pressure-strain interactions. In a non-rotating case, u'v’
du

is known to have the opposite sign as &y which ensures the positiveness of 1,
in the whole domain [1|. Furthermore, since % has the opposite sign than the y

coordinate, &4 is found to always have the same sign as y.

For positive rotation rates, the destabilized side (pressure side) is on the lower
wall where y < 0 and stabilized side (suction side) is on the upper wall where y > 0.
Thus, it can be deduced from signs of the Coriolis Reynolds stress components that
increasing positive rotation is directly supposed to decrease w/u’ and increase v'v’
on the destabilized side, and the effect should be the opposite for the stabilized
side. In addition, the term %s is expected to decrease w/v’ in the whole domain,
when assuming v« > v'v/, which normally is the case. However, rotation natu-
rally has several indirect effects due to cross-relations. For example, the rotation
induced reduction in v/v’ on the stabilized side further reduces the shear production
P19 as well as Coriolis term %12. Due to these complex cross-relations, this kind
of examination does not give a complete picture of the Reynolds stress behavior,
especially for high rotations rates, but give a preliminary insight about the trends
to be expected.
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5 Low Re Simulation: Rotating Frame Validation

5.1 Charles® solver

The solver utilized in this project is the compressible LES/DNS in-house solver
Charles” originally developed at the Center for Turbulence Research, Stanford Uni-
versity. More recently, ISAE-SUPAERO joined the development, and therefore it is
available at the department.

Charles® supports an unstructured grid topology for arbitrary cell shapes, and
solves the filtered Navier-Stokes equations for conserved variables: Mass, momen-
tum and total energy. The SGS stresses are modeled using either the Vreman or
the dynamic Smagorinsky model. The SGS heat flux is modeled by the gradient hy-
pothesis and strong Reynolds analogy with a fixed Prandtl and Schmidt numbers.
j4s)

A solution-adaptive approach with second to fourth order schemes are used to
as the discretization method for perfectly regular grids. The computational domain
is partitioned with ParMETIS library and the parallel computing is performed with
MPI. The time-integration is done by a three-stage third-order Runge-Kutta scheme.
j4s)

5.2 Setup

In order to validate the solver and the Coriolis source terms, a low Reynolds number
simulation was performed and compared to the reference data by Kristoffersen &
Anderson’s [1] DNS simulations. The Reynolds number was approximately 2900 as
in the reference case, and the Rotation number was chosen to be 0.5. A negative
value for the angular velocity was used as in the reference case, which naturally swaps
the suction and pressure side compared to the preliminary discussion in Chapter
4. Furthermore, the same computational domain dimensions were used as in the
reference case: L,L,L, = 4mh x 2h x 2wh. The total number of cells used was 3
million and they were divided in different directions as n,n,n. = 200 x 100 x 150.
Although the purpose of the study is the wall-modeling aspect, the inner layer
was fully resolved in this simulation for the sake of validation, and the mesh was
refined near both walls to ensure y* < 1. The a posteriori measurement of the
grid parameters was found to produce Az* ~ 8 and Az" = 6, which lead to the
subgrid-scale modeled part to be almost negligible [32].

Periodic boundary conditions were set in z and y directions due to the homo-
geneousity. When using a periodic domain, the size of the domain needs to be
large enough in order to capture all the necessary scales and to avoid correlation
between the periodic values. However, since we are reproducing the simulation by
Kristoffersen & Anderson, the sufficiency of the domain size was not investigated.
A constant flow rate was ensured by using an adaptive momentum source term,
and the bulk Mach number was set as Ma = 0.2. The adaptive momentum source
term and periodicity also prevents thermovariation, which would result from the
pressure loss at the wall. In addition, the reference temperature of the fluid and
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the wall were set as equal. The Vreman model was chosen as the SGS model, and
turbulence was excited by superimpositioning random fluctuations into the initial
flow field. The Coriolis force was taken into account with additional source terms,
which were added into the x- and y-direction momentum equations separately. The
Coriolis acceleration component for a spanwise rotating flow is 2Q2pu in z-direction
and —2Qpv in y-direction.

The simulation was performed with a local cluster using 128 cores. The simu-
lation was first run into a steady state, where the turbulence was found to be fully
developed. Consequently, the statistical sampling was started and the simulation
continued until a statistical convergence was reached.

5.3 Post-Processing

Charles” solver produces solution files in the generic unstructured VTK data format
(.vtu). Due to the nature of the unstructured FVM solver, the solution points for
the cell data are not explicitly defined. Therefore, the most convenient approach
for post-processing is to exchange the cell data to point data at cell corners and
to remove duplicates. These steps can be easily done with Paraview’s CleanToGrid
and CellDataToPointData functions. The methodology of the CellDataToPointData
function is to ‘extrapolate’ the point data value by averaging the values of each
surrounding cell.

All post-processing in this thesis was performed within Paraview’s Python shell,
and visualizing was mainly done with regular Python’s Matplotlib library by extract-
ing the wanted data from the VTK point data using Paraview’s numpy support
library. All time-averaged quantities were also spatially averaged in x and z, since
the flow quantities are homogeneous in these directions. The spatial averaging can
be done by slicing the domain for each y-coordinate, integrating the variables in
the xz-planes and dividing the integrated values by the plane areas. This procedure
provides quicker convergence for the flow statistics, since the amount of uncorrelated
samples is increased.

5.4 Results

The phenomena resulting from the Coriolis effect listed in Chapter 4 were identified
in the results. Figure 8 presents the simulation configuration and instantaneous
velocity magnitudes. On the lower wall of the channel, the turbulence is clearly
dampened, which can be seen as a laminar like boundary layer, while upper side
still remains fully turbulent Figure 9 illustrates the secondary flow velocity lines of
the velocity vector V=u j + wk on the zy-plane at x = L/2. These shapes clearly
indicate the appearance of large scale roll cells on the unstable side, as Johnston et
al. [12] depicted.

The statistical values were found to be in good agreement with the reference
data. Figure 10 shows the mean velocity profile in the outer layer scaling as well as
in wall units. The mean velocities in wall units were made dimensionless with their
respective friction velocities u? and u? depending on the wall. From Figure 10, it can



31

be seen that in the outer layer scaling, the velocity profile almost perfectly matches
the DNS results, and the flow in the core region clearly follows the 22 slope, which
is also plotted in the figure. However, in wall units, minor differences in the results
can be observed, which are resulting from the differences in the resolved wall shear
stresses. The friction Reynolds number Re, = pu.h/u was found to be overestimated
by 1.5 % and 4.5% for the suction and pressure side, respectively. The Reynolds
stresses are presented in Figure 11. They are generally in good agreement with
the reference data, despite the small overprediction of wu' " near the pressure wall.
No further analysis, such as grid convergence study, was performed as the current
results already give confidence on the validity of the source term implementation.

Figure 8: Simulation configuration visualized with instantaneous velocity field when
Re = 2900 and Ro = 0.5.

Figure 9: Secondary flow velocity lines in an yz-plane, depicting the spanwise roll
cells.
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Figure 10: LES —, Kristoffersen & Andersson DNS --- 2Q-slope/Laminar velocity
profile . (a) Mean velocity profile in the outer layer scaling when Re =2900 and
Ro = 0.5. (b) Mean velocity profiles in respective wall units.
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6 High Re Simulation: Reference Data for Wall-
Model investigation

6.1 Setup

Very few reference cases of high Reynolds number simulations of a spanwise rotating
channel can be found in the literature. Thus, wall-resolved high Reynolds number
simulations were performed to obtain data for the wall-model analysis, and the DNS
simulation of Brethower et al. [47] was chosen as the general guideline for the current
simulations.

The simulations were performed with a bulk Reynolds number around 20000 as
in the DNS of Brethower et al. Three different Rotation numbers were studied: A
relatively low Ro = 0.15, a moderate Ro = 0.45 and a relatively high Ro = 1.2.
The computational domain was chosen to be L,L,L, = 87h x 2h x 3mh, and the
number of cells in every simulation was 10.5 million, n,n,n,. = 350 x 100 x 300. The
initialization was done in a 3 million cell mesh, from which the intermediate result
was interpolated into the finer mesh. Otherwise, the same simulation parameters
and boundary conditions were used as in the validation case. Table 1 gathers the
grid resolution details for each simulation. The Ay™ values in the table represent
the first off-wall cell heights and a stretching coefficient of 1.05 was used in the
refined inner layer region. In the a posteriori grid examination, the z-resolution
was found to be slightly above the guideline values suggested by Choi & Moin [32]
on the pressure side for the two lower Rotation number cases. However, this small
overstep in the resolution is not expected to cause major error in the wall shear
stress magnitude, which is the primary attribute for the modeling, and even coarser
spanwise resolutions can be found in literature [39]. The maximum average eddy
viscosity ratio p;/p was found to be 2.0, which occurs at the pressure side y; ~ 540.

Re Ro | Ax) Ayt Azf Azl Ayl Az
20000 0.15| 80 092 35 54  0.62 23
20000 045 78 090 34 36 042 16

20000 1.2 45 051 19 24 027 10

Table 1: Summary of the simulation cases and grid parameters. Subscripts p and s
denote the pressure and suction side, respectively.

6.2 Results
6.2.1 Mean Statistics

The mean statistics of the three wall-resolved simulations are briefly studied to
investigate the Ro dependency, since it is a crucial aspect for understanding how
the wall-model needs to adapt to the system rotation. Average velocity profiles of
all three cases in the outer layer scaling and in wall units are presented in Figure
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12. Overall, the results show a similar trend as in the reference case, and it can
be seen that all mean velocity profiles follow the 2€2 slope in the core flow. In wall
units, the increase in the rotation number tends to move the suction side profiles
towards a laminar (parabolic) profile and thicken the viscous sublayer. On the
pressure side, the effect is opposite and the curves shift downwards diverging from the
standard viscous sublayer earlier. The distinctive behavior of the pressure side curve
of Ro = 1.2 can be explained with the fact that the neutral 2(2 slope region lengthens
with increasing Ro. This leads to a smaller destabilized zone which combined with
the adverse pressure tends to significantly shorten the logarithmic layer. If the
rotation rate would be further increased, the length of the destabilized region would
continue decreasing and finally the velocity profiles would start approaching the
laminar profile on the pressure side as well.

Figure 13 shows the Reynolds stresses normalized with global friction velocities.
In the graphs, it is visible that near the pressure wall, that wu' " decrease and
v’ increase with increasing rotation number. On the suction side the behavior is
opposite. However, these curves are not directly comparable with the preliminary
investigation of the Reynolds stress transport equation, since they are in wall units
and the wall shear stresses vary between the cases. The dimensional Reynolds
stresses were found to behave similarly and as predicted for v/ on the pressure
side and for v/v’ on suction side. The main difference observed was that the u/u/
is also dampened on the suction side unlike the preliminary study predicted. This
suggests that the direct shear production is significantly dominant over the Coriolis
production, which causes the reduction in total production due to the lowered wall
shear stress. Furthermore, the drop in w/'u’ on the destabilized side for Ro = 1.2
was found to be so large, that it causes €15 = —2Q(W — ﬁ) to locally change sign.
This leads to a local decrease in the negative level of u/v’ that explains the peculiar
behavior of the wv/ curve with Ro = 1.2. In this particular case, almost a fully
laminar region on the stabilized side can be identified, which is associated with the
very low values of all Reynolds stresses.
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6.2.2 Wall Shear Stress Patterns

An interesting aspect regarding wall-modeling is also the behavior of instantaneous
wall shear stresses and their local structures. In every case, the pressure side was
found to be fully turbulent regardless of the significant drop in wall shear stress
magnitudes with Ro = 1.2 as observed in Figure 14. However, small differences
can be identified in the wall turbulence structures as the streaks seem to shorten
with increasing rotation rate. In terms of wall-modeling, these patterns do not seem
alarming, as the flow seems to be in an equilibrium state in all cases.

More complex phenomena can be observed on the suction side, which seem to be
in a weakly turbulent transitional state for the two lower rotation rates. With the
lowest rotation rate Ro = 0.15, the turbulent areas on the suction side are constantly
present and form long ribbon shaped structures that can be seen in the suction side
wall shear stress pattern visualizations in Figure 15. With Ro = 0.45, the turbulent
areas were found to become more arbitrary shaped, and they tend to grow and shrink
in a long time scale. This behavior can be also identified as periodic deviation in
the time dependent and spatially averaged wall shear stress graph in Figure 16.
Similar periods was also noticed in the Ro = 0.15, but they were not as distinctive
since the turbulence ribbons were constantly present. This behavior is most likely
resulting from the of periodic boundary conditions as the elongated structures tend
to become so large that they correlate over the domain in the streamwise direction.
Regarding the wall-modeling, these local turbulent spots and the periodic behavior
might become problematic to capture, since the phenomena seems to be confined
very close to the wall. With Ro = 1.2, the variation in wall shear stress magnitudes
is very low compared to the other cases and the pattern has evolved into more
laminar like. The initial forms of plane waves can also be observed as Wallin et al.
depicted [17].
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Figure 14: Instantaneous wall shear stress field on the pressure side when
Re =~ 20000. (a )Ro = 0.15. (b) Ro = 0.45 (¢) Ro = 1.2. N.B. The differences in
the color bar scales.
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Figure 15: Instantaneous wall shear stress field on the suction side when Re ~ 20 000.
(a) Ro = 0.15. (b) Ro = 0.45 (c) Ro = 1.2. N.B. The differences in the color bar

scales.
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Figure 16: Time dependent, spatially averaged wall shear stress over time when
Re ~ 20000 and Ro = 0.45. Periodic behavior on the suction side (lower curve).
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6.2.3 Spectral Analysis

Two-point correlations were investigated to provide information about the sufficiency
of the domain size and to investigate the length scales of turbulent structures. Only
the simulation with Ro = 0.45 was studied, as it represents the most complex
situation in terms of turbulent behavior.

The two-point correlation function tells us how the velocity fluctuations correlate
with each other, and allows us to extract characteristic length scales of energy car-
rying turbulence structures. The two-point correlation normalized by the one-point
correlation and expressed in terms of an autocorrelation coefficient is mathematically

defined as

wj(z + r)u(x)
w ’

Rii(l','l") =

(98)

where r is the distance from the initial point. The correlations were calculated in the
streamwise and spanwise directions for each velocity component at each y-location.
This procedure essentially leads to a convolution operation. In order to produce
a quicker convolution algorithm, it is convenient to Fourier transform (Python’s
numpy.rfft) the velocity fields into Fourier space, since the Convolution theorem
states

Ri(z,r) = /0 I w;(z + r)u(z)de (99)

Rj;(€) = (&) - 4(€) (100)
where () denotes a Fourier transformed quantity, £ is the spatial frequency and
the superscript * implies the non-normalized correlation. Based on the Convolu-
tion theorem, the two-point correlation in the spectral space can be calculated by
multiplying the Fourier transformed values with their conjugates. To obtain the
normalized correlations in the physical space, the correlations in the spectral space
need to be inverse Fourier transformed (numpy.irfft) back and then scaled with the
one-point correlation, which is the value of the first element in the inverse Fourier
transformed field. The present streamwise correlations were averaged in z direc-
tion and spanwise correlations in x direction as well as both correlations in time by
including 25 uncorrelated time steps to make them less noisy.

Figures 17 and 18 show the two-point correlations in the x- and z-directions,
respectively. From the figures it can be observed, that the majority of velocity cor-
relations vanish, which suggests that the possible accumulating effects of periodicity
are not significant. However, on the suction side there is a visible correlation left
for u' very close to the wall, that explains the periodic behavior of the wall shear
stress. This behavior is originating from the significantly elongated structures which
cannot be fully captured even with a very long domain. Similar left-over correla-
tions have been found in several numerical studies of a spanwise rotating channel
flow, for example in the DNS study of Kristoffersen and Anderson [1|. The upward
turn of the correlation plane indicates that the turbulent structures become more
elongated towards the suction side, although after the peak they once more start to
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shorten. This behavior suggests that the turbulence state near the wall is indeed
semi-turbulent, comprising of a wide spectrum of meaningful length scales, and is in
agreement with the wall shear stress patterns. On the pressure side, the turbulence
length scales are generally small. As observed from the wall shear stress patterns,
the system rotation was found to shorten the streaks and similar behavior was iden-
tified by Kristoffersen & Andersson who compared the correlations of a rotating and
non-rotating channel.

In the spanwise direction, some left-over correlation of v’ can be observed near
the suction side. This is probably resulting from the inclined nature of the elongated
structures. In the pressure side side graphs, a large negative correlation ‘cavity’ of
R,, that continues until the first third of the suction side is distinguished. This is
a clear indicator of the roll cells, which tend to move towards pressure side with
increasing rotation number. The spanwise length scale of these vortices was identi-
fied to be r,/h = 0.68, which occurs at y/h &~ —0.3. The wall-normal length scale
can approximated with the y distance where the correlations for v'v’ vanish. The
distance was found to be r,/h ~ 1.4 starting from y/h = —0.97.

The turbulence energy spectra were studied to provide information about Large
Eddy simulation filter cut-off and also to provide reference data for WMLES simula-
tions. The spectra also are only examined for the Ro = 0.45 case, since the possible
changes resulting to the wall-modeling should be distinguishable even by considering
a single case. The streamwise turbulent kinetic energy F,. in the spectral space can
be calculated from the Fourier transformed fluctuations as

1.
Eyo(ky) = 5u/z , (101)
The wavenumber in the streamwise direction is defined as
2t N
k, = , 102
= (102)

where N is a streamwise cell index corresponding a single velocity point. The Energy
spectra was only studied in the streamwise direction, and the results were made less
noisy by averaging the Fourier transformed velocities in the z-direction and time.

Watmuff et al. [49] have studied the effects of system rotation on the streamwise
turbulence energy spectrum through experimental research. Their primary observa-
tion was that the system rotation mainly modifies the energy of the largest scales
by increasing it for the pressure side and decreasing for the suction side. This trend
is also visible in the present simulation results, but not in the vicinity of the walls
due to the significantly higher rotation rate. In the present study, the suction side
undergoes a transition into semi-turbulent state, whereas Watmuff et al. used low
rotation rates, where both sides remain completely turbulent.

Energy spectra at different local y* values are presented in Figure 19. In the
immediate vicinity of the walls, it can be seen that the turbulent kinetic energy is
overall lower on the suction side than on the pressure due to the significant stabi-
lization into quasi-turbulent state and the thickening of the viscous sublayer. When
moving away from the wall, the trend of the rotation mainly affecting the large scales
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can be observed, although the effect is opposite than Watmuff et al. had identified.
The present simulation suggest that the streamwise turbulent kinetic energy is in
fact increased at low wave numbers near the area of the elongated structures if the
rotation is moderately high. The observation is in agreement with the correlation
graphs, as they indicate the presence of the very long structures on the suctions
side. Furthermore, the energy levels of these large structures confirm that they are
highly energetic structures, and the correlation values are not resulting from the
normalization (a very small divided by a very small). Instantaneous u velocity fluc-
tuation field at y = 40 in Figure 20 visualizes these elongated structures. After this
highly correlated area of elongated structures y* > 220, the spectra start behaving
similarly as in the experimental results of Watmuff et al, and the energy of largest
scales is decreased on the suction and increased on the pressure side. In the middle
of the domain, the spectra naturally merge into each other. When considering the
total turbulent kinetic energy E = %(d’z + o + 113’2), the rotation was found to
globally decrease or increase the energy at especially at low wave numbers. Thus,
it is possible to conclude that large modes of v'v" and w'w’ are most affected by the
system rotation.

Because of the LES cut-off, the smallest scales cannot be considered as absolute.
Therefore, the differences in the smallest scales are most likely resulting from dif-
ferences in resolution, as the suction side is known to be better resolved than the
pressure side. Furthermore, there is a small amount of energy accumulation occur-
ring at the smallest scales. This small peak in energy likely results from too low
dissipation of the subgrid-scale model, and it has been encountered in the context of
more advanced models. The effect could probably be reduced by using a more dissi-
pative SGS model, such as Smagorinsky or significantly refining the mesh. However,
the energy peak is very small compared to more energetic scales and similar levels
of energy accumulation has been neglected in the literature [50].

It is also interesting to study length scales of the most energetic turbulence scales
as a function of y in the whole domain. It provides good reference data in order
to study whether or not the wall-model affects the dynamically most important
structures in the outer layer. This procedure was done by thresholding the local
largest 20 % of spectral density k, F,,, dividing them into equally spaced isocontours
and visualizing them as a function of dimensionless wavelength in global wall units
AT = %M and y. Figure 21a presents these isocontours in the whole domain and
the different stability zones can be distinguished in the figure. In the neutral zone,
the most energetic turbulence scales are clearly constant. In the stabilized suction
side boundary layer, these scales tend to become larger, since the moderate scales
are more diminished than the largest scales as seen in Figure 19. The behavior of
the destabilized pressure side is examined more closely in 21b in which the axes
are scaled with pressure side friction velocity u2. In this figure, the most energetic
scales are nearly constant up to y™ & 30, after which they tend to grow linearly
in a logarithmic scale. The reason behind this phenomenon is the energy cascade
principle, as the turbulent structures are yet to scatter into the smallest scales. The
shape the destabilized region curve resembles the shape of the corresponding curve
of non-rotating channel by Jimenez [33]. However, the length of the logarithmic
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region clearly differs, since the self-similar logarithmic layer is modified, as also
observed in the mean velocity graphs. In addition, the ‘universal’ region at y* < 30
is slightly translated in A", since the system rotation affects the local wall shear
stress magnitudes.
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Figure 17: Streamwise two-point correlations for the velocity fluctuations as a func-
tion of the streamwise length scale and y for the Ro = 0.45 case.
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Figure 20: Elongated turbulent structures at y = 40 visualized with the instanta-
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0.9875 0.9875

0.9667 0.9667
0.9458 0.9458

0.9250 0.9250

rx,max

0.9042 + 0.9042 [
=

y/h

0.8833 0.8833

kEII/kEICEJHHI
kE,,/k

0.8625 0.8625

0.8417 0.8417

0.8208 0.8208

0.8000 0.8000

Figure 21: (a) Local spectral density of the turbulent kinetic energy k,E,, as a
function of a length scale A\ and dimensionless y coordinate for the Ro = 0.45 case.
Shaded isocontours represent the highest 20 % of the most energetic scales. (b)
Local spectral density of k,F,, as a function of y[‘f for the pressure side.
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7  Wall-Model for Charles*

7.1 Current Inner Layer Wall-Model

The current wall-modeling methodology implemented in the Charles® solver was
proposed by Kawai & Larsson [2]. Tt is based on solving the equilibrium boundary
layer equations in an embedded auxiliary grid, which is extruded from the wall.
The auxiliary calculation is done in one dimension sequentially for each ’pillar’ of
cells within the wall-model layer, and only the viscous term is included in momen-
tum the equation. Thereby, the momentum equation could be understood as a
one-dimensional (viscous) diffusion equation for a scalar, which is the wall-parallel
velocity. The energy equation representation is also one-dimensional and can be
derived from the total energy equation with equilibrium assumptions |7]. The gov-
erning wall-model equations are defined as

d duy,

o Twm) 7 :07 103

o |0 o) 5 (103)
d duH dT
v T,wm -5 A A wm) 3 | & 0 s 104
o |0 b 2 O M) (104

where p; denotes the turbulent viscosity, u|; denotes the wall-parallel velocity, v, is
the coordinate normal to the wall, and A is the thermal conductivity. In the present
wall-model, the turbulent viscosity is calculated by a simple mixing length model,

which is defined as
Tw
Ht = KPYy | ?D ) (105)

D= (1—¢evi/Ah?2, (106)

where & is the von Karméan constant x = 0.41, and A" is a case specific van Driest
damping constant describing the dimensionless thickness of the viscous sublayer,
for which Kawai and Larsson used a value AT = 17. The mixing length model
produces values of turbulent viscosity based on the logarithmic velocity profile. Since
the standard logarithmic velocity profile is forced within the embedded grid, the
calculation of the wall shear stress is completely unaffected by the system rotation.
This was found be the main disadvantage for applying this model for rotating flows
and the baseline for further improvement.

The main difference of the methodology by Kawai & Larsson compared to tra-
ditional auxiliary grid methods is the placement of the auxiliary grid, which is no
longer confined within the first off-wall LES cell. Thereby, in this methodology the
input velocity and temperature are not taken from the first off-wall cell, where LES
is necessary underresolved, but from a grid-independent location, which will be re-
ferred to as the exchange location. By overlapping few cells of the LES grid with
the auxiliary wall-model grid, it is possible to obtain better estimation for the wall
shear stress as the inputs are taken from a better resolved area. The authors sug-
gested that the exchange location should be chosen from the log-layer in a manner
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that there are at least four LES cells within the wall-model layer. After taking the
input velocity and temperature as boundary conditions at the exchange location,
the equilibrium equations are calculated with FVM in the auxiliary grid to obtain
the wall shear stress and heat flux at the wall. Finally, these values are input to the
LES calculation as boundary fluxes to update the first values of the off-wall LES
cells. A schematic of this process is illustrated in Figure 22.

Since Charles® solver also supports unstructured grid topology, the grid inde-
pendence of the exchange location is a necessary feature, since the extruded and
structured auxiliary grid cannot be matched perfectly with the LES grid for com-
plex geometries. Therefore, an interpolation procedure has to be introduced to
obtain velocities at the exchange location, and it is done with a simple first order
Taylor expansion

9ui

EL _  .fa

’LLZ»EL _ ulfa +

in which the superscripts FL and fa refer to the values at the exchange location
and at the face center closest to the exchange location, respectively. Furthermore,
the wall shear stress is assumed to be aligned to the interpolated velocity vector at
the exchange location. [41]

Exchange
Locations

Wall shear stress: 7, «—

Wall heat transfer: g,

No-slip BC

Figure 22: A schematic illustration of the auxiliary grid wall-modeling approach
found in Charles™ [41].

7.2 Rotation Corrected Wall-Model

As observed from the wall-resolved results, the system rotation essentially modifies
the logarithmic velocity profile, which causes the standard mixing length turbulence
model to be unfeasible. Several studies, such as the work by Howard et al. [51],
have been performed to study the rotation corrected mixing length model as part of
general turbulence modeling in RANS framework. As most of the RANS turbulence
models tend to reduce to the mixing length model near the wall, applying a similar
methodology for wall-modeling in LES framework is now proposed. The principle
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idea is to change the standard mixing length turbulence model in the present wall-
model to adapt to the stabilizing and destabilizing effects of the Coriolis force by
locally decreasing and increasing the value of turbulent viscosity. The approach
is logical, since the Coriolis acceleration only affects the main flow through the
turbulence as discussed in Chapter 4. In other words, by increasing and decreasing
the turbulent viscosity in destabilized and stabilized regions, it is possible to modify
the forced velocity profile in the auxiliary grid to mimic the real velocity profile.

The modified mixing length was first introduced by Bradshaw [11]| and it is a
function of the local stability parameter, the gradient Richardson number. Several
different formulations of the mixing length model and the correction have been
proposed, but they all have a common coefficient defined as

L (1— BRi)*, (108)
lo

where [y is the corresponding non-rotating mixing length, and 3 is a constant, which
value varies between different studies and is dependent on the chosen exponent .
By substituting the mixing length to the expression of turbulent viscosity, a rotation
modified mixing length model is obtained to be a form of

se = (1= BRI Kpy /%"D , (109)

D= (1—evs/ATy2 (110)

Ri=S(S+1), (111)
20)

S = T (112)

As seen in Equation (112), the model is now dependent on the rotation rate and
thus also on the rotation number.

7.3 Stand-Alone Wall-Model Algorithm

A stand-alone wall-model with the rotation correction option was implemented in
a separate python program using FVM to provide a quick testing tool for the a
priori wall-model analysis. Only the momentum equation was considered, since
the simulations were done in the incompressible flow regime without heat transfer.
Furthermore, from the Navier-Stokes equations it can be seen that rotation does
not directly affect the energy equation. The auxiliary grid in the stand-alone wall-
model is determined by user defined parameters, which are the exchange location
(wall-model height), the numbers of cells and a stretching coefficient of two subse-
quent cells. The structure of the stand-alone wall-model algorithm with governing
equations are presented next.

Let us start from the wall-model Equation (103), which gives a steady-state
boundary value problem to calculate the wall shear stress. The equation is elliptic,
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meaning that a disturbance at an arbitrary point would immediately affect all other
points, and thus it needs to be solved by considering the entire domain simultane-
ously. Equation (103) can be integrated over a control volume, and by utilizing the
Gauss’ divergence theorem

/ flo)-dS = - / V. f(¢)dv (113)

it is possible to express the volume integral as a surface integral. By expressing the
surface integrals discretely, Equation (103) can be written as

> fluyy) A8 =0, (114)

—

where f(u;) is the flux density through one surface of a control volume j, 7 is the
normal vector of the cell surface, and ASj is the area of the cell surface, which we
from now on refer to as S;. Since the wall-model is applied only in the wall-normal
direction 7i is either positive or negative y,, direction. Therefore, Equation (114) can
be written in a more compact form with volume fluxes as

—Fjvyz + Fja2 =0, (115)

where the volume flux is

Fivi2 = fiv172- Sjr1y2 - (116)
According to the Gauss’ theorem, the expression of the flux density can be found

under the V operator in the original Equation (103). Thus, the Volume flux at the
surface Sj41/2 can be expressed as

du J+1/2
F = (,u + ﬂt)j+1/2%8j+1/2 . (117)
The derivative can be approximated with the second order accurate centered scheme

as
duy,; Uj| 11— Y| 5

dyy, j+1/2 Yw,j4+1 = Yuw,j . (118)
The eddy viscosity is calculated from the mixing length model (109) with the wall
shear stress obtained in the previous iteration round. In the first round, an initial
guess T, = uyf!m% can be used. The velocity gradient for the gradient Richardson
number parameter S is calculated with the central difference scheme similarly as for
the viscous flux. Furthermore, it is necessary to add an ad hoc type of limitation for
the gradient Richardson number, since in the beginning of the iteration the gradients
are zero or close, which causes the parameter S to become extremely large and R:
to have unrealistic values. For the suction side, the gradient Richardson number
also needs to be limited to prevent the production of negative turbulent viscosity.
By substituting the expression of the volume flux to Equation (115) and group-
ing the terms for different velocities resulting from the discrete differentiation, the
following form is obtained
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The equation above can be expressed as a matrix equation Au = cf, where the
vector )| contains the velocity values for all nodes 0...jmax + 1. The indices 0 and
jmax + 1 refer to ghost cells, which are used to evoke the boundary conditions. The
tridiagonal matrix A contains the corresponding coefficient values from Equation
(119) and d is a zero vector excluding the boundary condition values for the ghost
cells. The indexing follows the convention of Python arrays, which start from zero.

The no-slip condition at j = 1 — 1/2 can be set by mirroring the velocity value
of the first true cell and the ghost cell . This can be implemented by setting the
matrix coefficients Agy = 1 (ghost) and Ay, = 1, which leads to uj + w1 = 0.
The constant velocity at the exchange location can defined similarly by setting the
coefficients Ajaz+1 jmar+1 a0d Ajmazt1 jmaee to unity and the right-hand side to
Ajmaz+1 = 2u),Lps- This essentially leads to defining the velocity at the border of
the domain to be %(UHJWM + U maz+1) = U||.LES-

Since the coefficient matrix A is tridiagonal, the system of equations can be
directly solved by Thomas algorithm. In the context of Thomas algorithm, let us
denote the lower, main and upper diagonal with a, b and ¢, respectively. The Thomas
algorithm comprises of two parts, the forward sweep and backward substitution.
In the first phase the coefficient matrix is manipulated into a form, where @ is
eliminated, b is normalized to produce unity and ¢ and d are modified as

) o when j7 =0 190
9T % whenj=1.jmazr+1, (120)

bj—zz]-c;._l
p ‘Z—g when 7 =0 191
i % when j = 1...jmaz +1 . (121)
a5

In the backward substitution phase, the | values are obtained from the forward

sweep modified matrix with the relations

u — d%-mamﬂ when]: = j:max +1 (122)
d; —ujp1 when j = jmaz +1..0 .

The Thomas algorithm produces the exact solution for the system of equations and
the wall shear stress can be calculated by

U1

123
yw,l ( )

Tw = W
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However, since the matrix coefficients are dependent on the turbulent viscosity,
which is coupled to the wall calculated wall shear stress, this entire process needs to
be repeated to until the solution has converged. The convergence criterion used in
the a priori analysis was that the difference in L?-norm of 1)) between two sequential
iteration rounds is below 1-107%, which takes less than 10 iteration rounds.

7.4 A Priori Testing Methodology

The a priori testing in the context of wall-modeling is a term for an approach, where
a stand-alone wall-model is applied to wall-resolved results. It is a quick method to
examine wall-models and see how different modifications affect the calculated wall
shear stress and the wall-model velocity profile. The a prior: analysis is typically
done only for average quantities by taking the input exchange velocity from the
statistical mean profile to obtain the estimation for the mean wall shear stress.
However, since the wall-model in true wall-modeled simulations always uses the
instantaneous velocities, having the averages to match with this method might be
misleading because of non-linearities. Therefore, in addition to studying the average
quantities, the statistics of the instantaneous wall shear stresses are examined by
applying the model to every cell on the exchange plane and several time steps. With
this method, it is possible to investigate the distribution of different wall shear stress
magnitudes as well as their direction through the joint probability density function.
This approach also provides insight, whether or not it is sufficient to investigate the
mean shear stress by taking the mean velocity as an input.

7.5 A Priori Testing Results
7.5.1 Mean Quantities

Figures 23, 24 and 25 show the average velocity profiles calculated with the a prior:
stand-alone wall-model for the different Rotation numbers with and without the
rotation correction. The wall-resolved results are visualized in the graphs for com-
parison, and the exchange velocities for the wall-model were taken from these mean
velocity profiles. The wall-model velocity profiles are scaled with the shear velocity
resulting from the model, as the wall-resolved profiles are scaled with the true wall
shear stress. Thus, the differences in wall shear stresses can be seen in the differences
of U values at the exchange location (the end of the wall-model curves). Different
curves in each graph represent different values of van Driest damping constant A™
and they need to be chosen adequately and given as an input for both sides in each
case, since the system rotation locally changes the thickness of the viscous sublayer.
The parameters in the rotation correction (1 — SRi)® were chosen as = 3.6 and
« = 1, based on manually testing different combinations found in the literature.
The first observation in all of the graphs is the significance of the van Driest
damping constant AT. With or without the rotation correction, the optimal selec-
tion of A* will produce almost a perfect prediction for the wall shear stress on the
pressure side. However, in each case, the rotation corrected model clearly finds the
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correct slope of the logarithmic profile slope significantly better than the standard
model, which indicates that it is less dependent on the exchange location. This was
proven to be true by studying the error in the wall shear stress with different A* and
exchange location combinations. The error graphs for the case Ro = 0.45 in Figure
26 show us that the rotation corrected model is almost independent on exchange
location while the standard model requires the optimum combination of both pa-
rameters. The same trend was identified in the two other cases as well. Although
with Ro = 1.2 the profile slope becomes remarkably shorter, and thus limits the cor-
rect interval for the exchange location. Nevertheless, the necessity of the rotation
correction also increases with increasing Ro, as the deviation from the standard log-
arithmic profile slope becomes larger. The independence on the exchange location is
a highly desirable feature for WMLES, which causes A1 to behave only as an offset
to take into account the change in the viscous sublayer thickness. This behavior
is exceptionally important for the current wall-model implementation in Charles¥,
since the exchange location can be chosen grid independently.

For the suction side, the trends are similar and the rotation correction tends to
turn the curves towards the correct profile, although there are no clear logarithmic
slopes especially with the higher two rotation numbers. The shapes of the wall-
model profiles now indicate that the error tends to grow with increasing exchange
location especially for high rotation numbers. This behavior naturally excludes high
exchange locations especially for high rotation rates. The rotation corrected wall-
model for with Ro = 1.2 behaves uniquely on the suction side, since the rotation
correction completely suppresses the turbulent viscosity, as seen in Figure 22b. This
is not a problematic feature, since it only occurs at high Ro when the correct profile
is anyhow very close to fully laminar.

The optimal values for the van Driest damping constant A™ behave as expected,
and their integer values with corresponding relative wall shear stress errors are gath-
ered in Table 2. The clear trend is that the value A* needs to be increased for the
suction and decreased for the pressure side because the system rotation increases and
decreases the height of the viscous sublayer respectively. Since stability effects are
proportional to the combination of Ro and Re, proposing an empirical correlation
is difficult, as it would have to be a function of both numbers.

+ + p P P s s s s
Ro ‘ Ap AS TwyRC/T’w Tw75q/7—w Tw,RC/Tw Tw,eq/Tw

015 | 15 32 1.00 0.94 1.00 1.06
045 | 11 50 0.99 0.87 1.02 1.06
1.2 | 8 50 0.99 0.85 0.96 1.07

Table 2: Summary of the a priori test results. Subscripts and superscripts p and
s denote pressure and suction side respectively. The subscript RC refers to the
rotation corrected wall-model and eq to the standard equilibrium model.



53

20 - 30

Figure 23: A priori wall-modeled velocity profiles when Re = 20000 and

Ro = 0.15. Rotation corrected wall-model —, standard wall-model ---, wall-
resolved -'--, standard logarithmic velocity profile and laminar profile . (a) Pres-
sure side when van Driest damping constant AT = 13 — 23. (b) Suction side when
At =25 —35.
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Figure 24: A priori wall-modeled velocity profiles when Re = 20000 and

Ro = 0.45. Rotation corrected wall-model —, standard wall-model ---, wall-
resolved ----, standard logarithmic velocity profile and laminar profile . (a) Pres-
sure side when van Driest damping constant AT = 7 — 17. (b) Suction side when
AT =40 — 50.
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Figure 25: A priori wall-modeled velocity profiles when Re = 20000 and Ro =
1.2. Rotation corrected wall-model —, standard wall-model ---, wall-resolved ----,
standard logarithmic velocity profile and laminar profile . (a) Pressure side when
van Driest damping constant AT =5 — 15. (b) Suction side when A" = 40 — 50.
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Figure 26: The relative error in the wall shear stress magnitude compared to the wall-
resolved value as a function of van Driest damping constant AT and the exchange
location. (a) Rotation corrected wall-model (b) Standard wall-model.

7.5.2 Instantaneous Statistics

Instantaneous wall shear stress statistics were investigated by the joint probability
density function. The joint probability density function fulfills the conditions

02 Twoy

Pr(0, <0 <0y, 7y, <7y < Twy) = / / fo(0) fr, (T0)dOdT | (124)

01 Twq
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where Pr is the probability, 6 is the wall shear stress angle and f,, and fy denote the
probability density functions for the wall shear stress and its angle, respectively. Dis-
crete probability density functions can be calculated using the 2Dhistogram function
found in Python’s Numpy library.

Joint probability density study based on the magnitudes and angles of instanta-
neous wall shear stresses was performed for the Ro = 0.45 case. The input velocities
were taken from 25 uncorrelated exchange location planes at y™ ~ 45 for the pres-
sure and yt = 20 for the suction side. The a priori testing algorithm was applied
to each cell on these planes, providing us statistics of over 2.6 million individual a
priori analyses. The rotation correction was switched on and A% was chosen to be
11 for the pressure and 50 for the suction side.

Figures 27 and 28 show graphs of the joint probability density on the pressure side
and suction side, respectively. From these graphs it can be seen that, wall-modeling
seems to significantly change the statistical distribution of instantaneous wall shear
stresses. In terms of magnitude, the changes are not drastic, but surprising is
that the wall-model seems to increase the maximum and minimum values compared
to the wall-resolved results on the pressure side. This observation suggests that
the wall-model actually overestimates the highest and underestimates the lowest
instantaneous wall shear stresses, while still keeping the average approximately the
same. The significant filtering of the wall-modeled wall shear stress angles was
completely expected, since the angles are defined by the velocity orientation at the
exchange location. As the exchange location is further away from the wall, where
the u-velocity component is always more dominant than w, the variation in terms
of angles becomes smaller. This effect was found to be even more prominent on the
suction side.

Statistical studies for the instantaneous wall shear stress were not performed for
the other two rotation case, as they are expected to behave similarly. Furthermore,
these probability tests suggest that the average wall shear stress can be estimated
by directly examining the mean values, since they produce the probability peak very
close to the correct wall shear stress value.
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Figure 27: Probability densitities for the wall shear stress magnitude and angle on
the pressure side when Ro = 0.45. (a) Wall-resolved (b) A priori wall-modeled.
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Figure 28: Probability densitities for the wall shear stress magnitude and angle on
the suction side when Ro = 0.45. (a) Wall-resolved (b) A priori wall-modeled.
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8 Wall-Modeled Large Eddy Simulation

After establishing the rotation correction principle to be feasible through a priori
testing, it was implemented into the Charles® solver. Wall-Modeled Large Eddy
Simulations were then performed to investigate if the promising behavior observed in
the analysis is still maintained when the wall-model works as part of the simulation.
Although the a priori testing is a good approach to have preliminary guidance about
the wall-model, it cannot predict failures due to robustness or coupling effects. Since
the wall-modeled wall shear stress defines the velocity at the first off-wall grid point,
it has an indirect effect to the exchange velocity as well. Therefore, it is possible
that the modeling errors accumulate compared to the a priori predictions, although
utilizing several true LES cells within the wall-modeling zone should make it less
significant. Furthermore, with the WMLES data it is also possible to study the
changes in the flow field dynamics.

8.1 Setup

Wall-Modeled Large Eddy simulations were performed with a similar setup as the
wall-resolved simulations. The same amount of grid points were used in the stream-
wise and spanwise directions, but the number of grid points in the y-direction was
decreased to from 100 to 70 resulting in 315000 total decrease in LES control vol-
umes. The exchange location was fixed at yo/h = 0.04 for both sides, and four LES
cells were placed within this region. In wall units, the exchange location was found to
be at y™ = 45 for the unstable, and y™ = 20 for the stable side. Although four LES
cell was placed to overlap the wall-model region, the first LES cell height was seven
times larger than in the wall-resolved case. This provides a significant advantage
in terms of the time step, which is constrained by the Courant-Friedrichs-Lewy
CFL condition, since explicit time integration was used. The CFL condition is
proportional to dimensions of the smallest cell as

ulAt v At wAt
— ) 12
C=——+ A A < Crnax (126)

The seven times larger cell height was found to produce approximately a seven times
larger time step. The number auxiliary grid cells in the wall-normal direction was
chosen to be 30 for both sides. Although these auxiliary cells in fact increased the
number of total cells (LES + WM), due to the simplicity of the wall-model equations,
which were found to converge in approximately three iterations, the simulation could
theoretically lead up to ten times cheaper simulation based on the combination of
total LES cells and the appropriate timestep, 1(37"%1},)41\717 = 10 . In order to get a
proper idea about the quicker flow development and convergence, the initial velocity
field was interpolated from the same three million cell result as the wall-resolved
simulations, not from the converged wall-resolved field. Only the Ro = 0.45 case was
performed as wall-modeled, as it should be sufficient to find problematic behaviors
by considering only one case. Nevertheless, an underresolved simulation, which
utilizes the WMLES grid without the wall-model, was performed to investigate the
necessity of the wall-modeling.
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As the converged wall-resolved simulation required around 320000 CPUh, the
wall-modeled simulations was found to be converged in around 80000 CPUh. The
preliminary estimate of ten times faster was clearly overestimated, as the auxiliary
grid computation time was neglected. Furthermore, additional slowdown can occur
if the partitioning is not optimized for the wall-model, since the partitions containing
many wall cells become more demanding due to the auxiliary wall-model computa-
tion. This can lead to bottlenecks in message passing and MPI barriers, and thereby
it is reasonable to use dual-constraint partitioning. The dual-constraint partition
algorithm evens the number of wall-model cells for each partition with a certain
given threshold, for example allowing 2% difference. In the current simulation, a
threshold value of 1% was used.

8.2 Results

The mean velocity profiles in the outer layer scaling and in wall units are shown in
Figure 29. The wall-resolved and underresolved simulation results are also visualized
in the graphs as a reference. From the results, it can be seen that the wall-modeled
simulation very well predicts the shape of the mean profile despite the small deviation
near the suction side. Also the velocity profiles in wall units are in very good
agreement with the wall-resolved results beginning from the exchange location. The
overlapping LES cells within the wall-model region should not be included in the
results, since they do not properly capture the turbulence physics due to the low
resolution. The underresolved simulation also produces surprisingly good results
on the stable side. This behavior suggests that even the coarser wall-model grid
seems to provide sufficient resolution for the inner layer, as the viscous sublayer is
extended by the stabilizing effect of the Coriolis force. Therefore, for high rotation
rates when the flow is surely expected to be very close to laminarization on the stable
side, it might be a feasible approach to disable the wall-model, since the exchange
location needs to be anyhow defined very close to the wall. On the pressure side,
underresolving the viscous sublayer produces approximately 9% overprediction for
the wall shear stress compared to the 0.7% error resulting from the wall-model.
This advocates the necessity of wall-modeling on the pressure side. Naturally, if the
wall-model thickness would be increased and less overlapping cell placed within the
wall-model region, the necessity of the wall-model would even further increase.

Figure 30 presents the Reynolds stresses of the wall-modeled simulation. Wall-
modeled results are mainly in good agreement with the wall-resolved results, despite
the notable underprediction of the streamwise Reynolds stress v/ near the pressure
side. This underestimation is associated with the fact that the flow is underresolved
within the first LES cells. The reason why this spike in the underresolved simulation
is slightly better is due to the increased shear production resulting from the overes-
timation of the wall shear stress. The results for Reynolds stresses v/’ and w'w’ are
in good agreement in the whole domain. The trend of the wall-model clearly im-
proving the results compared to the underresolved simulation can also be identified.
Again, the differences are expected to become remarkably larger, if the wall-model
height and the grid would not be chosen as conservatively.
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Figure 29: WMLES —, wall-resolved LES ---, under-resolved LES -, exchange
locations vertical . Re =~ 20000 and Ro = 0.45 (a) Mean velocity profiles in the
outer layer scaling. (b) Mean velocity profiles in respective wall units.
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Figure 31 shows the instantaneous wall shear stress patterns for the WMLES
case. These patterns behave as expected, as they are defined by the footprint of
the instantaneous velocity field at the exchange location. From the figure it can
be observed that the smaller structures are filtered on the pressure side, since the
turbulence scales grow with increasing y. Similar trend can also be seen on the
suction side, but also some smaller scale turbulence spots can be detected. However,
these turbulent spots tend to follow the elongated ribbon shape structures, compared
to more arbitrary shapes detected in the wall-resolved case. In addition, the wall-
model is not able to maintain the periodic behavior of the shrinking and growing of
these spots, and as a result the total shear stress deviations become random. The
instantaneous wall shear stress patterns would naturally become even more filtered
if the exchange location would be selected to be further away from wall.

Figure 32 shows the two-point correlations in the z- and z-directions close to the
exchange location for the pressure and suction side, respectively. The wall-resolved
correlations are visualized in the graphs for comparison. From these graphs, it
can be observed that the wall-modeling does not essentially change structure of
turbulence on the pressure side. The small deviations most likely result from the
difference in the y-resolution. However, on the suction side the correlations clearly
differ from the corresponding wall-resolved values, and support the fact that the
periodic behavior of the intensive wall shear stress spots cannot be fully captured.
Especially, the spanwise correlation for /v’ vanishes almost completely, which is
associated with the transporting spanwise velocity fluctuations being filtered due to
the wall-modeling. Despite the distortion of the turbulent structures at this complex
semi-turbulent region, the correlations were found to be in good agreement further
away from the wall when yF > 250.

The spectral density graphs of k,FE,, were also studied to examine if the wall-
model significantly changes the length scales of the most energetic turbulent struc-
tures, and these are presented in Figure 33. Overall the curves are in good agreement
with the wall-resolved data and the primary observation is that the dynamically im-
portant scales in the outer layer are unaffected by the modeling. However, small
differences can be noticed near the wall-model area on the pressure side, which is
separately visualized in Figure 33b. The main observation is that the logarithmic
slope is slightly more vague, as the trend of most energetic scales becoming larger
seems to start slightly earlier. Nevertheless, there is no clear buffer layer where the
most meaningful scales would be significantly distorted. Since the wall-model is not
expected to capture real turbulence physics near the modeling region, the spectral
results are in fact very promising and surprisingly good even in this region. The
reason behind this beneficial behavior is most likely the weak coupling of the two
zones.
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Figure 31: (a) Instantaneous wall shear stress field on the suction side when Re ~
20000 and Ro = 0.15, (b) Pressure side.
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Figure 33: (a) Local spectral density of the turbulent kinetic energy k,FE,, as a
function of the length scale A\ and the dimensionless y-coordinate for the WMLES
Ro = 0.45 case. Shaded isocontours represent the locally largest 20% red being
the maximum. (b) Local spectral density of k,F,, as a function of local y* for the

pressure side.
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9 Conclusions and Future Work

The results obtained in this study suggest that the Wall-Modeled Large Eddy Sim-
ulation is a viable approach for high Reynolds number rotating flows. However,
since the traditional wall-models do not take the system rotation into account, they
cannot be utilized without a modification. In general, the rotation modification can
be done by adjusting the governing turbulence model within the wall-model layer
to adapt to the local stability effects resulting from the Coriolis force.

In this study, we studied the auxiliary grid wall-modeling approach by Kawai and
Larsson and modified the traditional mixing length turbulence model with a coeffi-
cient based on the local stability parameter, the gradient Richardson number. This
modification was found to significantly enhance the results, the main improvement
being the independence on the wall-model height. Another promising feature dis-
covered in the project was that this kind of auxiliary grid approach does not change
the turbulence physics in the outer layer probably due to the weak coupling of the
two layers. This suggests that the approach might also be feasible for more com-
plex geometries. However, instantaneous wall shear patters cannot be considered as
exact, since they are based on the velocity footprints at the exchange location and
tend to become increasingly filtered with increasing wall-model height.

The main difficulty of this auxiliary grid method with the rotation corrected
mixing length model is to find the correct van Driest damping constant A (dimen-
sionless thickness of viscous sublayer), which is a function of Reynolds and rotation
numbers. This feature is very difficult to avoid in any weakly coupled model, since
most of the turbulence models reduce to the mixing length model near the wall,
or require other user defined parameters. Therefore, replacing the mixing length
model with another RANS type turbulence model does not seem promising. For
now, a reasonable value for A" could be found by performing a cheap preliminary
simulation. In fact, the preliminary simulation generally is a good starting point,
since it provides a guideline for the required mesh parameters as well.

A natural follow-up for this project would be to focus on studying the behavior
of the dimensionless thickness of the viscous sublayer and thereby the optimal value
of van Driest damping constant A™ as a function of Reynolds and rotation numbers.
For this purpose it would be necessary to properly study the turbulence phenomena,
which causes the decrease in the wall shear stress on the pressure side, although the
turbulence is locally increased on the wall. The primary objective would be to find a
property at the exchange location, which would dynamically adjust the value of A™.
Furthermore, strongly coupled RANS /LES hybrids would be an intriguing approach
to examine, but they would also require a new type of trigger for the zone division.
Another topic for the future work would be to extend the wall-model to include the
effects of the wall (streamline) curvature in addition to the system rotation, which
would be great improvement towards practical applications, such as turbomachinery.
As there is a similar Richardson number based analogy for the curvature effects, the
combined effect of rotation and curvature should be relatively straightforward to
implement.
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