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The Self-optimizing Wireless Mesh Network (SWMN) backhaul has been proposed as a 

backhaul solution for small cells. In SWMN, the nodes form a partial mesh topology, where 

routing and data transmission is based on pre-computed prioritized set of routes and link-

schedules. Hence, an entity that handles topology management functionalities is required, 

which enables automatic network configuration, network monitoring, optimization and 
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involved development of a simulator for creating test topology scenarios. Additionally, the 
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1 INTRODUCTION 

Mobile data consumption has been increasing exponentially over the last few years and this 

trend is set to continue for years to come. This would result in huge stress on the mobile 

networks to provide more capacity. Densification of the network by deploying small cells in a 

much greater magnitude than the existing macrocells tends to solve the capacity problem. But 

these base stations would have to be deployed across diverse locations with lack of existing 

backhaul infrastructure. Also, employing a wired backhaul requires cabling between cell 

sites. This results in increased installation costs and time taken for each small cell 

deployment. Hence, connecting these small cells with a scalable and cost-effective wireless 

backhaul transport becomes a major challenge. Additionally, increased number of base 

stations increases the network complexity. This in turn increases the difficulty of planning, 

controlling and optimizing the network operations for an operator in a cost-effective manner.  

Self-Organizing Network (SON) is viewed as a viable technology by operators to minimize 

the operating cost and effort by automating the network design, build and operate phases. 

Therefore, there arises a need to study the topology management mechanisms which are 

responsible for automating the network deployment, network configuration, optimization and 

network operation.  

Self-optimizing Wireless Mesh Network (SWMN) backhaul solution is being jointly 

developed by Nokia Networks and Valtion Tieteellinen Tutkimuskeskus (VTT) Technical 

Research Centre of Finland Ltd. In SWMN concept, computationally intense network 

topology optimizations are performed in a centralized entity, called as Wireless Mesh 

Network Controller. The main scope of this master‟s thesis is to build a simulator and proof-

of-concept system to study, validate and develop the Wireless Mesh Network Controller.   

1.1 Problem statement 

The mobile broadband usage is increasing at very rapid pace, creating a capacity crisis for the 

operators (Cisco, Feb 2014) [1]. Densification of the mobile network by deploying more cells 

in a coverage area is the solution to increase capacity and offer better service. Traditionally, 

more macro cells were deployed to satisfy the capacity demand. But, this approach results in 
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huge capital and operating costs. Therefore, Heterogeneous networks are used. These 

networks consists of a mix of cells types and radio technologies working together seamlessly 

in a given cell area [2].  

Since the number of small cells required is in an order of magnitude greater than current 

number of macro cells, there arises a challenge for providing a high capacity, cost effective, 

scalable and easy to deploy backhaul solution. The typical wired backhaul solution such as 

optical fiber is not always feasible due to unconventional installation location of small cells. 

Therefore, wireless backhaul solutions such as point-to-point microwave and millimeter wave 

radios, which offer the deployment, cost and high capacity advantage, are generally used. 

Since the availability of line-of-sight in dense urban areas is scarce, a direct connection to a 

gateway is not always possible. This calls for a topology where the cell sites are connected in 

the form of mesh architecture with few hops to the gateway. The large scale deployment of 

small cells results in increased network complexity and requires a high degree of automated 

mechanisms to handle the topology configuration, optimization, operation, management and 

maintenance. In other words, the backhaul solution must implement self-organizing 

functionality to reduce the efforts and costs required for managing the topology. 

A Self-optimizing Wireless Mesh Network (SWMN) with millimeter wave radios is a 

backhaul solution studied and developed jointly by Nokia Network and VTT. According to 

this concept, the architecture consists of networked wireless nodes that may be located in 

base stations, which are connected in a partial mesh using pencil beam millimeter wave links 

with built in self-healing, self-configuration and self-optimization mechanisms. These 

wireless nodes in the topology are managed by the Wireless Mesh Network Controller 

(WCC), which is mainly responsible for network monitoring, optimizing the network 

topology, calculating the route, link-schedule information, creating the network configuration 

and energy saving mechanisms. The WCC was developed alongside this thesis. Along with 

the development of WCC, thorough testing and verification of the topology management 

concepts were required. 
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1.2 Authors contribution and test result overview 

The main aim of this master‟s thesis is to validate the topology management functions 

implemented in the WCC of the SWMN system mentioned in the previous section. The 

validation process involved development of a simulator with a graphical user interface, which 

provided the network scenarios to WCC. Additionally, thesis also includes planning and 

execution of validation scenarios to verify the topology management functions, demonstrate 

the concept and automation of some of testing processes. 

The test scenarios covered the route computation, schedule computation, topology 

optimization, topology management, WMN configuration and virtual connection 

provisioning features implemented in the WCC. These scenarios included testing the 

autonomous network build, by node/link addition, by node/link removal and domain splitting 

and merging. In addition to these, the scalability of WCC was also tested. The execution of 

these scenarios also involved testing in the proof-of-concept demonstrator system with live 

traffic injected into network.  

During the testing and verification, ample errors and inconsistencies were found in WCC and 

Wireless Mesh Network node algorithms. These findings and suggestions provided for 

improvements were used for enhancing and expanding the SWMN concept and its 

implementation towards a working product. Also, the simulator and the demonstrator 

platform performed satisfactorily during the validation process. However, the emulation 

platform had minor bugs in the initial stages of validation which required noticeable work 

during the debugging process, but the system was functional as soon as the bugs were 

resolved. 

1.3 Structure 

This master‟s thesis consists of five main chapters. Chapter 2 describes the growth trend in 

mobile traffic and the reasons behind such a tremendous growth. The way in which mobile 

networks have evolved over the years, to cater for this growth, is presented. 

Chapter 3 introduces to the mobile backhaul and the need for more backhaul capacity. 

Traditional backhauling techniques used in mobile network are also described. Furthermore, 
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the concept of small cells is introduced and the requirements for a small cell backhaul are 

presented. Then, commonly used small cell backhauling methods are discussed. 

Chapter 4 presents an overview about the SWMN concepts, key functionalities and the key 

elements. Additionally, a detailed description of the topology management functions 

performed by the WMN controller (WCC) and its modules is presented. 

In Chapter 5, detailed description and objectives of the validation scenarios along with the 

topology are presented. Also, the validation setups used while testing are discussed. 

Chapter 6 explains the results of the validation and provides a brief reasoning on the obtained 

results. Additionally, a short discussion on the concept and future work is provided. 

Finally, Chapter 7 provides a summary and conclusion to this master‟s thesis. 



Supreeth Herle, 2015  5 
 

2 MOBILE TRAFFIC AND NETWORK EVOLUTION 

Access to internet has become a prerequisite for the current generation smart mobile devices. 

Availability of affordable smart mobile devices has led to the drastic rise in mobile traffic [3]. 

This in turn calls for a change in the mobile networks to handle the increasing mobile traffic 

and to provide better services. This chapter discusses about the changes undergone by the 

mobile traffic and also about the evolution of mobile networks. Section 2.1 presents a study 

about the current and future mobile traffic trends and how it has evolved over the years and 

also reasons behind such an evolution. Section 2.2 presents the earlier generation and present 

generation of mobile networks and also gives an insight on what is expected of the future 

mobile networks. 

2.1 Mobile traffic evolution 

Voice traffic has been part of mobile traffic since the advent of telecommunication system. 

But during the evolution of Second Generation of mobile networks (2G) systems, access to 

internet was also added. This gave rise to mobile data traffic [3].  Introduction of data 

services led to the widespread usage of mobile phones and demand for data and higher data 

speeds started growing. Higher data rates were offered in 3G (third generation of mobile 

networks) systems. This enabled high quality audio and video streaming along with the better 

quality of experience in accessing internet [3].  

In December 2009, mobile data traffic overtook voice traffic [4]. And, by the end of 

2013, the mobile data consumption per month reached 1.5 exabytes (1 exabyte = 10
18

 bytes) 

from 820 petabytes (1 petabyte = 10
15

 bytes) in the end of 2012, accounting for a total of 81% 

traffic growth in 2013 [1]. According to the forecast made by Ericsson, mobile data traffic 

will grow 10-fold from 1.1 exabytes per month in 2013 to 12 exabytes per month in 2019 [5]. 

Some of the major trends contributing to the growth of mobile data traffic are the increasing 

number of smart phones, tablets that have access to mobile networks, content being accessed 

over the internet and higher network speeds at an affordable price [5].  

Mobile data traffic is transitioning from a simple web browsing data, emails and file 

sharing to a more composite data consisting of video, audio and social networking content. 
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Among these data types video is more dominating and this is due to the higher bit rates of 

video content than other data content types [1]. According to Cisco, video traffic is expected 

to increase 14-fold between 2013 and 2018 which would result in video being 69% of the 

mobile data traffic [1]. Figure 2.1 illustrates the growth of mobile traffic content from 2013 to 

2019 [5].  

 

Figure 2.1: Forecast for different mobile data content by Ericsson [5]. 

One of the reasons behind this video dominance is due to the popularity of the cloud based 

applications and services such as YouTube, Spotify, Netflix, and Pandora. These applications 

contain unprecedented collection of high quality video/audio content enabling a mobile 

broadband user to access them anytime on their mobile device. Cloud based social 

applications such as Facebook, twitter and LinkedIn are major contributors for traffic 

generated through social networking. Social networking based traffic accounts for more than 

10% of mobile traffic in 2013 and is the second largest traffic volume among the mobile data 

[5]. But this is only part of the story. Increase in the number of smart mobile devices such as 

Smart Phones, Tablets, Laptops and Machine-to-Machine (M2M) devices also play a crucial 

role in mobile traffic growth [5]. 
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Smart phones and tablets usage is changing the internet access habits at a tremendous 

pace. These habits are so addictive that the smart phones are accessed almost constantly 

throughout the day.  Due to this reason and availability of smart phones in lower price ranges, 

there has been a sharp rise in mobile device connections [5] [1]. Smart phones arrive in 

various form factors and increased capabilities every year. These factors also affect the data 

traffic generated per subscriber. For example, it is seen that smart phone user with bigger 

screen size spend more time streaming videos and playing games and thus consuming more 

data [1]. M2M subscriptions which are the key parts of Internet of Things (IoT) are expected 

to grow from 341 million to 2 billion in 2018 [1]. These devices collect data, process it and 

communicate with each other to stay connected. Similar to end-user mobile devices, M2M 

connections also have access to mobile broadband and are contributors to the mobile traffic 

growth.  

The user base for Fourth generation of mobile networks (4G) subscriptions will reach 

2.6 billion accounting for 30% of total mobile subscriptions by 2019 [5]. This transition 

emphasizes the demand for higher network speeds and better services from the operators. 

Thus the operators rely on the mobile networks to cater these needs of the customer.  

Mobile networks play a key role in enabling all these technologies and to provide high 

quality user experience, as well as improved services. This calls for the mobile networks to 

evolve constantly according to the changing needs and demands. The details about previous 

and current generation mobile networks, followed by the overview of the next generation 

mobile networks are explained in following sections. 

2.2 Mobile network evolution 

Mobile network is a communication system that enables transfer of both data and voice by 

employing a radio network distributed over land areas called cells. Each of these cells is 

served by at least one fixed-location transceiver, known as cell site or Base Station (BS). 

When joined together these cells provide radio coverage over wide geographical area [3]. 

This enables a large number of portable transceivers, known as Mobile Stations (MS) to 

communicate with each other and fixed landline telephones anywhere in the network via base 

stations [6]. In addition to this global connectivity, mobile networks are also characterized by 
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ubiquitous mobility, global roaming, trustworthy authentication, secure connection and global 

standards. Ubiquitous mobility refers to the ability to offer smooth continuity in 

communication when the user moves from one cell to another. This ability is enabled by 

handoff mechanism in mobile networks. Additionally, mobile networks provide secure 

connection through its authentication service [6]. 

The increase in mobile subscribers has resulted in need for more user capacity from mobile 

networks. One of the solutions to this growing demand is to reduce the cell sizes. Thus, the 

traditional macro cells which covered the entire geographical area with radius ranging from 1 

to 20 km is also occupied by microcells and picocells, which have coverage areas from 400 m 

to 2 km  and 4 to 200 m respectively. Femtocells, which have a range of 10 m, are used to 

improve the cellular performance within the buildings [6]. Figure 2.2 depicts the high level 

system architecture of mobile networks. Radio Access Network (RAN) handles all the radio 

related functionalities by providing a connection between the mobile station and the core 

network. Radio traffic to and from the mobile station is handled by the base stations. 

 

Figure 2.2: General high level system architecture of mobile networks [7] 

Core network (CN) is responsible for switching, routing calls, authentication, charging, 

operations and maintenance and data connections to external networks. The interfaces 

between RAN and CN constitute the backhaul in a mobile network [8]. 

First Generation Networks 

Nippon Telephone and Telegraph (NTT), Nordic Mobile Telephones (NMT) and Total 

Access Communication Systems (TACS) are the most popular first generation mobile 
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systems (1G) introduced in 1980. Analog Frequency Modulated (FM) wireless access using 

narrowband Frequency Division Multiple Access (FDMA) was the technology used in these 

mobile systems [9] [10].  These systems were allocated a 40 MHz bandwidth within the 800 

to 900 MHz frequency range by the Federal Communications Commission (FCC) and had a 

channel spacing of 25-30 kHz [9]. Only a limited number of calls could be made at any given 

time due to the channel separation which resulted in inefficient utilization of the radio 

spectrum. Risks of eavesdropping and unencrypted communication are other drawbacks of 

first generation networks. These disadvantages formed the baseline for development of 

Second Generation mobile networks (2G) [10]. 

Second Generation Networks 

The main characteristics of 2G mobile systems are digitization, encryption and compression 

of speech. These resulted in higher spectral efficiency and better services when compared to 

1G mobile network systems [10] [11].  Second generation mobile networks uses digital 

multiple access technologies such as Time Division Multiple Access (TDMA) in Global 

System for Mobile Communication (GSM) and Code Division Multiple Access (CDMA) in 

IS-95 CDMA One [10] [12].  CDMA was deployed in United States, and the GSM 

technology was deployed as 2G standards in Europe, which led to a unified standard across 

Europe, thereby enabling seamless services such as international roaming. CDMA technology 

had greater network capacity than the GSM and TDMA based systems of 2G mobile systems 

and also provided superior voice quality with less background noise, enhanced security, 

fewer call drops and greater reliability [13] [14]. 

 Initial GSM systems were capable of handling data rate up to 9.6 kbps generated from 

fax and Short Messaging Services (SMS) [12]. But this data rate was not sufficient for web 

browsing which led to the evolution of the GSM system to support packet data service in 

addition to traditional voice service leading to 2.5G mobile systems.  

 2.5G began with the introduction of General Packet Radio Service (GPRS) and 

Enhanced Data rates for GSM Evolution (EDGE) that allowed sending of data over packet 

switched data networks via a separate connection from voice network. Gateway GPRS 

Support Node (GGSN) and Serving GPRS Support Node (SGSN) are the core network 
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elements that facilitate packet switching in the GSM network. GPRS provides a theoretical 

maximum data rate of up to 171.2 kbps if all the 8 timeslots are used, this throughput was 

much higher than that of circuit switched data services on GSM [13] [14].  With the 

enhancements in the physical layer by adopting more sophisticated coding methods, the 

EDGE technology achieves speeds of up to 384 kbps [12].  

2.2.1 Third generation networks 

The three main reasons for the development of 3G systems are multimedia, higher link 

capacity and global standards. The data rate provided in 2G was far too low to experience the 

rich internet information. Hence there was a need for wide data-rate range from kbps to a 

couple of megabits per second.  Next, with the rapid growth in the mobile communication, 

the issue of link capacity must also be addressed. Finally, establishing a global standard in a 

world where more and more people travel around is becoming very important, therefore 

International Telecommunication Union (ITU) defined International Mobile 

Telecommunications (IMT-2000) standard for 3G mobile networks [9]. 3GPP (3rd 

Generation Partnership Project) organization defined a mobile system called Universal 

Mobile Terrestrial System (UMTS) in Europe based on IMT-2000 standard. UMTS uses 

Wideband CDMA as the wireless access technology and employs a wider band than CDMA 

with a carrier bandwidth of 5 Mhz. Advantages of WCDMA are higher transfer speeds up to 

2 Mbps, increased system capacity and communication quality by statistical multiplexing 

[14]. The standards released by 3GPP are grouped into releases, the first UMTS network with 

CDMA air-interface was specified in Release 99 [15].  Figure 2.3 shows the 3G architecture 

of UMTS mobile system. 

The architecture of UMTS can be seen as an extension to GSM and GPRS. The main changes 

are in the radio access network part of the architecture. The access network in UMTS is 

called UMTS Terrestrial Radio Network (UTRAN). It consists of Node Bs and Radio 

Network Controllers (RNC). RNC is connected to multiple Node Bs, where each Node B is 

similar to BTS in the GSM network. RNC is equivalent to the BSC, but it also performs some 

of the functions of MSC such as management of radio resources. This is possible due to the 

connection between RNCs via Iur interface. As a result all the handover procedures are 

confined within UTRAN and unlike in 2G where handovers between BSC required 
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intervention of core network. Another important design improvement in UMTS is that the 

core network and access network are separate and independent. This allows any RAN to 

connect to any UMTS core network via the Iu interface [16]. 

 

 

Figure 2.3: 3G architecture of UMTS (Release 99) 

The 3GPP Release 99 helped in transitioning from the traditional 2G system to 3G systems 

by introducing new 3G radios. Meanwhile, features such as all-IP core network, virtualization 

of circuit switched network and packet switched voice service e.g. Voice over IP (VoIP) are 

the main highlights of the next release i.e. Release 4. Following this standard 3GPP Release 5 

was defined. The features of this release are IP Multimedia Service (IMS) and HSDPA (High 

Speed Downlink Packet Access). The Release 6 added features such as High Speed Uplink 

Packet Access (HSUPA), Generic Access Network (GAN), integration of UMTS to wireless 

LAN networks and enhancements to IMS. High Speed Packet Access (HSPA), which is a 

combination of both HSDPA and HSUPA, provides data rates up to 14.4 Mbps in downlink 

and 5.8 in uplink [10] [12]. Finally in Release 7, 64 Quadrature Amplitude Modulation 

(QAM) and Multiple Input Multiple Output (MIMO) antennas were used in enhancement to 

HSPA, i.e. HSPA+. Other significant enhancements include continued packet connectivity to 

conserve MS battery, 16QAM for faster uplink in HSUPA and Quality of Service (QoS) 
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improvements for VoIP applications. With each of the subsequent 3GPP releases there has 

been an improvement in terms of cell edge performance, system efficiencies, higher peak 

data rates and above all improved user experience. Release 8 defined the usage of dual-carrier 

HSDPA (2x10 MHz) with 64QAM or 64QAM with 2x2 MIMO and the Release 9 combined 

usage of the features in previous release, i.e. dual-carrier HSDPA plus the 64QAM and 2x2 

MIMO for increased throughput up to 84 Mbps in downlink. Support for dual-carrier HSUPA 

was also added in Release 9. Throughputs were doubled in Release 10 with the usage of multi 

carrier (2x20 MHz) rather than dual-carrier defined in the previous release. With the 

continued improvements for HSPA+ in Release 11, the possible downlink throughput rates 

have once more doubled to 336 Mbps by employing 8 carrier HSDPA, 4x4 MIMO and 

64QAM  [16] [17].  

2.2.2 Fourth generation networks 

With the persistent increase in the capacity demand and the intensification of competition in 

mobile broadband market the ITU issued requirements for 4G mobile networks in IMT-

Advanced standard [13]. The requirements are: operation in up-to 40 MHz radio channel with 

very high spectral efficiency of 15 bps/Hz, peak data rate of 1 Gbps for downlink and 500 

Mbps for uplink, reduced latency, support vehicular speed mobility, backward compatibility 

and interoperability with legacy systems [10] [12]. 3GPP Release 8 defines the first system to 

meet the IMT-Advanced requirements for 4G, called Long Term Evolution (LTE). LTE 

redesigned the mobile network architecture by introducing the Evolved Packet System (EPS), 

consisting of new flat-IP core network called the Evolved Packet Core (EPC)/ System 

Architecture Evolution (SAE) coupled with the new air-interface. Advantages of the EPS 

include easy transition from 2G and 3G systems, integration of WLAN and WAN, wide 

range of QoS capabilities, advanced security and flexible roaming. Orthogonal Frequency 

Division Multiple Access (OFDMA) technique is used for downlink in LTE as it can achieve 

high data rates in high spectrum bandwidth. This in contrast to 3G systems with WCDMA 

required highly complex terminals in order to achieve 100 Mbps over higher bandwidth 

channels. OFDMA also allows LTE systems to support carrier bandwidths ranging from 1.4 

MHz to 20 MHz. In uplink, LTE uses Single Carrier FDMA (SC-FDMA) to improve battery 

life of the handsets. New MIMO capabilities for LTE were also specified in Release 8 such as 
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Spatial Multiplexing (SM), Multi-User MIMO (MU-MIMO) and Beam Forming (BM). Other 

enhancements include voice call continuity between LTE-HSPA VoIP and CS domain called 

the Single Radio Voice Call Continuity (SRVCC), Common IMS and Multimedia Priority 

Service (MPS). Comprising of these enhancements, LTE is capable of peak data rates of 326 

Mbps in downlink and 86.4 Mbps in uplink at 20 MHz bandwidth, supports both Frequency 

Division Duplexing (FDD) and Time Division Duplexing (TDD) and reduced round trip 

latency time up to 10 ms for data and less than 100 ms for signaling between the MS and base 

station [10] [18] [19]. 

Figure 2.4 illustrates the overall architecture of the LTE. LTE consists of two main networks 

namely E-UTRAN and EPC. EPC is a simplified and flat all-IP core network designed to 

provide lower latency, higher data–rates and for increased network scalability and efficiency. 

Although EPC shares some similarities with UMTS packet core network, EPC is a significant 

departure from the core networks of previous generation mobile systems.  

The key components of EPC are Mobility Management Entity (MME), Serving Gateway (S-

GW), Packet Data Network Gateway (P-GW), Home Subscriber Server (HSS), Policy and 

Charging Control Function (PCRF) and Evolved Packet Data Network Gateway (ePDG). 

MME is a nodal element in LTE and performs signaling and control functions to manage 

connections between UE and network, terminal to network session handling, mobility 

management and controls radio access network elements. The primary functions of the S-GW 

are to manage user-plane mobility and act as demarcation point between the access network 

and the EPC. Similar to S-GW, P-GW is the termination point of the packet data interface 

towards the external Packet Data Network (PDN). P-GW also supports packet filtering, 

policy enforcement features and charging. HSS is the central database which holds the user 

subscription information and performs authentication, mobility management, session and call 

establishing functions. PCRF is a policy-based QoS control network element that supports 

service data flow detection, policy enforcement and flow based-charging. The ePDG is used 

for interworking with non-3GPP IP access networks [10] [20] [21]. 
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Figure 2.4: LTE network architecture 

The access network of LTE known as Evolved UTRAN (E-UTRAN) consists of a network of 

enhanced base stations called the Evolved Node B (eNodeB). These eNodeBs are capable of 

communicating with each other via X2 interface, thus reducing burden on the core network. 

The eNodeB is responsible for radio resource management, IP header compression, data 

encryption and handover management between eNodeBs [10] [18]. 

Standard developments for LTE continued with Release 9, this includes introduction of LTE 

femtocell as home eNodeB to improve indoor coverage, Self-Organizing Network (SON) 

features e.g. optimizing the random access channel, evolved multimedia broadcast and 

multicast service and location services. The Release 10 focuses on the next generation of 

LTE called LTE-Advanced (LTE-A). The most significant features of Release 10 are data-

rates of downlink up to 3 Gbps and 1.5 Gbps in uplink, carrier aggregation of up to 5 carriers 

to support 100 MHz bandwidth, 8X8 MIMO in downlink, 4X4 MIMO in uplink, relay nodes 

to support Heterogeneous Networks (HetNets) and enhanced inter-cell coordination to 

improve cell-edge performance. Further 3GPP releases mainly consist of enhancements to 

already existing capabilities and aim towards features to improve support for HetNets [10] 

[22]. 
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2.2.3 Fifth generation networks 

The industry has started laying the foundation for 5G with the world-wide deployment of 4G 

networks. 5G is associated with the enhancements to IMT-Advanced, initial requirements and 

standards for which are underway in the ITU. Some of the other standardizing bodies for 5G 

include the European Union‟s 5G PPP (5G Infrastructure Public-Private-Partnership), the 

Mobile and wireless communications Enablers for the Twenty-twenty Information Society 

Consortium (METIS) and Next Generation Mobile Networks (NGMN). The requirements 

that constitute 5G have not yet been defined but the capabilities and concepts expected from 

5G systems are being discussed by the standardizing bodies. 

Like 3G and 4G systems, 5G also focuses on system capacity increase and higher data rates. 

Additionally in 5G systems, wireless access must also be extended to any entity or machine 

that benefit from being connected. IoT is the term used for any object/machine that benefit 

from Internet access. The communication between these entities is referred as M2M [23]. The 

applications of IoT include smart cities, Advanced Driver Assistance Systems (ADAS) and 

autonomous vehicles in automobiles, telemedicine in the field of healthcare and also 

applications in the field of entertainment. These wide ranges of applications increase the 

number of connected devices that are predicted to reach 50 billion by 2020 [24]. As a result, 

the network must have high scalability and flexibility to handle all these devices. In addition 

to the tremendous increase in number of devices, media content such as 3D video, ultra-high-

definition videos, gaming and augmented reality are becoming more popular [1] [5]. This 

type of multimedia services requires the network to provide higher bandwidth and reduced 

latency to have good user experience.  

The above mentioned use cases and the demands are the guidelines for defining the 

requirements for 5G mobile systems. The guidelines include data rates of 10 Gbps or greater, 

latency less than 1 ms, use of higher frequencies (above 5 GHz up to the use of millimeter 

wave (mmWave) frequencies), usage of wider bandwidth of 1-2 GHz or greater, support for 

heterogeneous deployments and energy efficiency. This ensures good user-experience, real-

time control of systems, ubiquitous connectivity, system scalability and uniform user 

experience across the coverage area [23] [25] [26].  
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The potential technologies to meet the demands and the requirements for 5G include massive 

MIMO, RAN transmission at centimeter and millimeter wave frequencies, multi Radio 

Access Technology (RAT) integration and management, ultra-dense networks, device-to-

device communication, context aware networking and integration of wireless backhaul to 

access. The spectral efficiency can be greatly improved by using massive MIMO technique. 

This antenna technique enhances the multi-user MIMO technology by increasing the number 

of antennas on the base station to a value much greater than the number of users serviced at 

any given point of time and frequency. Radio transmissions in centimeter wavelength band (3 

to 30 GHz) and millimeter wavelength band (30 to 300 GHz) benefit from the large amount 

of spectrum and large continuous spectrum chunks. The latter enables several Gigabits per 

seconds (Gbps) of data rates through wider transmission bandwidth. The path loss at higher 

frequencies can be reduced with use of smart beam-forming and reduced size of basic 

antenna elements. Integrating multi-RAT enables support for multiple radio access 

technologies in a geographical area. This also improves the user experience by switching 

between RATs in a seamless way. Densification of the macro network with small cell 

networks increases the system capacity, coverage and energy efficiency in the coverage area 

of macro base station. With the increased interest in small cell networks, wireless backhauls 

are being used where wired backhaul is not feasible. The solution of wireless backhauls 

operating in the spectrum above 6 GHz, including the millimeter wavelength band allows 

Gbps of transport capacity. Additionally, to have a unified wireless access solution, the 

backhaul and access (BS-UE) link are integrated and same set of radio access technologies 

can be used on both links. This configuration allows efficient use of technology, spectrum 

and improve overall quality and performance in end-to-end links [23] [25] [26] [27].   

2.3 Summary 

This section describes the rise in mobile traffic, especially mobile data. The reasons for such 

as exponential growth include the availability of smart phones, tablets and mobile broadband 

at an affordable price. Mobile networks have also undergone a series of evolution to meet the 

growth demand. The first generation of mobile networks introduced analog based 

communication, but, lacked system capacity. This led to second generation of mobile 

networks, which transitioned from analog to digital communication and had higher spectral 
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efficiency than its previous generation networks. Also, mobile data was first supported in 

evolution of 2G (2.5G) networks by means of circuit switching, but the data rate was not 

sufficient. Therefore, in the third generation of mobile networks (3G), prominence was given 

to packet data and focus was to provide greater mobile data rate of several megabits per 

second. The 3G mobile networks were the first to introduce all-IP code network along with 

packet switched voice. With the advent of fourth generation of mobile networks (4G), the 

focus was not only to increase the mobile data rate but, also to provide Quality of Service to 

mobile subscribers. The mobile network architecture underwent a significant change during 

4G with the introduction of flat all-IP network architecture, which provided higher data-rates, 

reduced the latency and increased the network scalability. Additionally, the concept of 

Heterogeneous networks was presented as a solution in 4G for the capacity problem, which 

involved densification of macro cell area with smaller cells. With the mass rollout of 4G 

networks, the industry is looking forward to lay down the foundation for the next generation 

of mobile networks. In addition to the increased data rates, the future networks will also focus 

on providing connectivity to any object that benefit from internet i.e. Internet of Things. 
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3 MOBILE BACKHAUL 

The connections between radio access network and core network in a mobile network are 

called the mobile backhaul. It plays a crucial role in network performance and overall mobile 

network operation. Therefore, evolution of mobile backhaul becomes critical to cope with 

rapid growth in mobile data usage.  

In this chapter, Section 3.1 provides a brief introduction to mobile backhaul and its role in a 

mobile network. Section 3.2 describes the legacy backhauling techniques and transition to 

packet-based backhauling techniques to achieve cost-effectiveness and higher data rates. 

Section 3.3 discusses about backhaul requirements to support small cell networks and the 

challenges involved in designing such a backhaul. Additionally, this section also describes 

the currently existing wireless small cell backhauling solutions. Finally, Section 3.4 describes 

the backhaul solution that is used as a baseline for this thesis. 

3.1 Mobile backhaul overview 

Radio access networks are evolving rapidly to keep up with traffic growth and needs of 

customers. These advanced radio access networks have resulted in significant increase in data 

rates over the air interface. The fixed core network has also undergone many improvements. 

However, mobile backhaul that serves as a transport medium between the mobile access 

network and the regional mobile controller site (BSC/RNC) or mobile packet core 

(MME/SGW/PGW) needs to catch up with all these enhancements on the rest of the network. 

Additionally, the need to support for legacy and next-generation technologies increases the 

design complexity and management costs of the network. Meanwhile, mobile operators look 

forward to increase average revenue per user while reducing the Capital and operational 

expenditures (Capex/Opex) by implementing a flexible architecture. Designing a backhaul 

network taking into account all these requirements has proven to be challenging. Figure 3.1 

depicts a basic architecture of mobile backhaul in a mobile network. A typical backhaul 

network is usually divided into 3 domains: Access, Aggregation and Core. The domains are 

defined based on the network topology and technology used at the center and periphery of the 

backhaul network [28] [29] [30] [31].   
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Figure 3.1: Basic architecture of mobile backhaul [31]. 

The backhaul access network provides connectivity between the base stations and the 

aggregation point. Considering the entire backhaul network, access network has very large 

number of links (number of BSs) with relatively low link capacities. This represents 70-80% 

of backhaul network costs and will tend to increase as the cell sizes reduce [30]. The type of 

physical topology used in backhaul access network is either tree or chain. Also, the 

connecting infrastructure can be microwave wireless links, optic fiber and copper cables. 

Selection of topology and the connecting infrastructure is based on the geographical location 

of cell site and bandwidth requirement. The aggregation network aggregates the traffic from 

the several access networks. This network terminates at the controller sites consisting of RNC 

or BSC and typically uses optical fibers connected in ring or meshes topologies. The cost and 

number of links of aggregation network is in between that of access and core network. The 

core network further connects aggregation network to other controller sites and the packet 

core network (EPC). This connection typically uses IP/MPLS routed network. The reason 

behind having ring or mesh topologies in layers above the access network is to support 

network resiliency feature in the events of failure. The number of links is the least in the core 

network but the links have very high capacities carrying traffic from both fixed and mobile 

networks. Since large volumes of traffic can be transferred over lesser infrastructure (links 

and nodes), the cost of core network is the least in the total backhaul costs [30] [31]. 

3.2 General Backhauling techniques 

Many of the existing backhaul networks are hierarchical and implemented with legacy 

technologies that are incapable of supporting higher speeds and service requirements. These 

backhaul networks rely mainly on copper cables, optical fibers and microwave links as their 

physical medium for transmission. The wired backhaul solution such as copper cables and 

optical fibers are deployed in heavy traffic sites such as urban and sub-urban areas. But, 
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microwave and satellite links are used in locations where wired infrastructure deployment is 

not possible [32]. Traditional mobile backhaul were based on T1/E1 circuit switching. This is 

due to the fact that 2G and 2.5G technologies were primarily designed for voice services and 

required guaranteed QoS, low latency, low jitter, timing and synchronization. Backhauls in 

these generations were based on TDM technology (Plesiochronous Digital Hierarchy (PDH) 

and Synchronous Digital Hierarchy (SDH)), with PDH offering very low capacity. In order to 

achieve greater capacity more T1 carriers needed to be used. But, the increase in number of 

T1 carriers is directly proportional to rice in backhaul cost. Additionally, the backhaul is not 

scalable due to the lack of support for bandwidth reuse and combining links. The problem of 

scalability was improved in 3G by using ATM or IP technology on top of SDH/PDH between 

the base station and the controller sites instead of TDM. In ATM, T3/E3 can be used in 

densely populated areas to handle more capacity while T1/E1 is used in less dense area. The 

ATM allowed reusing of bandwidth to achieve bit rates of 34 or 45, and 155 and 620 Mbps 

but added an additional network layer resulting in increased operational cost [30]. 

The introduction of 4G began the use of entirely IP based RAN architecture with IP packets 

carried over Ethernet. The main factors driving toward packet based backhaul network is the 

increasing cost of the backhaul, requirement for QoS based traffic priority, support for native 

packet traffic, requirement for lower network latency and simple or flat network architecture. 

Unlike traditional backhauling technologies, packet based backhaul solutions employ packet 

routers and switches for forwarding IP packets. These routers and switches are directly 

connected by physical layer connections such as optic fiber or microwave links. The 

technology and interface improvements in packet based connections allow higher cost 

efficiency and handling higher volumes of traffic in addition to simplified network 

architecture. Widespread usage of packet based backhaul networks was not possible due to 

the huge number of existing legacy backhauls servicing 2G and 3G users. But at present, new 

connections to base stations are predominantly deployed with packet-based technology over 

Ethernet [28] [30].  

Microwave radio links are an alternate choice for wired backhaul and are deployed in 

geographically challenging areas where wired solutions are not economically or physically 

feasible. These wireless links are often used in access and aggregation tiers of backhaul and 

are operated in frequencies 6-38 GHz license bands and 2.5 and 5.8 GHz unlicensed bands. 
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Data rates that can be achieved by microwave links are in the range 4-32 Mbps in access tier 

and 140 Mbps in aggregation tier when operated in licensed bands [30]. Deploying 

microwave backhaul results in a high Capex due to equipment and spectrum licensing costs 

but these are compensated over time by lower operating expense when compared to T1/E1 

copper links. The underlying transmission technique can be based on PDH, SDH or Ethernet 

when used along microwave radio links. Millimeter wave radio links are seen as potential 

backhaul solution to provide capacity ranging from 1 to 10 Gbps [32]. 

3.3 Small cell backhaul 

Densification of the coverage area of existing macrocell base stations with small cells reduces 

the capacity bottleneck and improves radio coverage in access network. A small cell is a 

radio access network deployed and managed by the operators with coverage area less than the 

macrocell. The small cells are mainly characterized by small form factor base stations with 

low equipment and installation costs. The use cases include deployments to offload traffic 

from macrocells, enhance overall user experience, to provide connectivity to remote rural 

places and to improve the indoor coverage in shopping malls and apartments [33]. Figure 3.2 

illustrates a typical scenario of small cell deployed to complement macrocells, thereby 

forming a heterogeneous network. Due to less coverage area of small cells, the number of 

small cells must be much greater than the number of macro cells. Increase in the number of 

small cells creates a challenge for providing a backhaul connection of sufficient capacity and 

QoS. In addition, small cells need to be deployed closer to users they serve which require 

base stations to be placed below the rooftops and on street lamps and other utility poles where 

conventional wired backhaul solutions are usually not feasible. In order to address all these 

challenges a wide range of backhaul solutions are being proposed and considered [2] [33]. 

However, the backhaul solution that would be employed differs for each of the deployment 

use cases. 
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Figure 3.2: Small Cell deployment scenario [2]. 

3.3.1 Requirements and challenges 

This section defines the requirements for a LTE small cell backhaul that are formulated by 

Next Generation Mobile Networks Alliance (NGMN) and Small Cell Forum (SCF). But the 

requirements for 5G small cells would be more stringent than that of LTE small cells. These 

requirements must be satisfied by a backhaul solution to be used to connect small cell 

networks to the core sites.  

Backhaul coverage and connectivity 

In the context of small cell backhaul access, backhaul coverage refers to the ability of the 

backhaul to provide connectivity to the deployed small cells and core network. These small 

cells are usually deployed outdoors 3-6 m above the street level, spaced 50-300 m apart from 

each other and must be within few meters (~10 m) of high demand or servicing location when 

used as hot-spot on demand. The challenge of coverage lies in the difficulty in connecting the 

street level small cells to the rooftop macrosites. In the case of wired backhaul solution, the 

backhaul needs to be below ground or within buildings resulting in high installation costs. On 

the other hand, for wireless backhauls, there is a high chance of non-availability of line of 
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sight in dense urban areas due to obstruction caused by building or vehicles. This requires the 

wireless backhaul to implement multi-hop solutions to improve coverage [2] [33].  

Throughput and capacity 

An estimate of throughput requirement for small cell was given by NGMN by extending the 

simulation carried out to measure the variation in backhaul traffic from LTE base station to 

small cells [34]. The simulation considers user plane traffic generated during the quiet and 

busy times from a single LTE small cell site. Figure 3.3 shows the simulation results of 

backhaul traffic per small cell site.  

 

Figure 3.3: Backhaul traffic generated by HSPA and LTE small cell [2]. 

It can be observed from the simulation results that peak throughput rates from a single cell 

site are generated during quiet times i.e. when the base station is serving a single user with 

low cell interference and best signal conditions rather than fully loaded or busy times [2] 

[33]. The former case is more predominant in the case of small cells where the base stations 

are closer to users when compared to macrocells. But providing hundreds of Mbps capacity is 

not possible in all of the proposed backhaul solutions resulting in constrained backhaul 

approach. This approach reduces the achievable peak data but there is minimum impact on 

the user‟s Quality of Experience (QOE) since the user experiences data rates much higher 

than the rates during busy times. Further reduction in backhaul capacity would render 

addition of small cells useless [35]. Therefore, the backhaul must be designed based on the 

average traffic at busy times with a small margin for traffic variations [33]. 
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Delay or latency 

Latency plays a crucial role in QoE of users who have subscribed various services, and also 

limits the achievable throughput by the UE. With technologies beyond 4G focusing more on 

users QoE, 3GPP has recommended minimum acceptable one-way packet delays between UE 

and PGW for various services represented by Quality Class Indicators (QCIs) to label traffic 

priorities. The service with most aggressive delay requirement is gaming with 50ms and other 

real-time service such as voice and IMS signaling with 100 ms delay requirement [36]. 

However, these values are upper bounds to be considered in the delay budget and operators 

would try to keep the delay well within the specified limits. Delay budget calculation by SCF 

specifies 10 ms small cell backhaul delay in order to achieve 50 ms round trip delay [33]. 

This backhaul delay is so less that there is an excess 60 ms delay even if gaming service 

round trip delay requirement is considered. Hence, a small cell backhaul delay of 1-10ms can 

easily meet the stringent delay requirement for service and is tolerable up to 60ms above 

which QoE starts to degrade in delay sensitive services [33]. 

Availability, outage and resiliency 

Availability of a cell site is the percentage of time the backhaul is in fully working condition 

and is represented in terms of number of „nines‟ of percentage e.g. 99.999% (5). In general, 

packet transport networks are required to meet availability value of 5 nines (99.999%) in 

order to provide the same performance as SDH/SONET networks. But availability varies 

from one segment to other in an end-to-end connection and is typically lower at the last mile 

backhaul and RAN and highest at the core network [33]. When small cells are deployed in 

existing macrocell network the availability can be relaxed to 99-99.9% since macrocell is 

able to provide the radio coverage with an availability of 99.9-99.99% in case of small cell 

outage. But in the absence of macrocell network, small cells need to meet availability criteria 

of 99.9-99.99% [2].  

System failures or outages caused by equipment failures, power failures or obstruction to 

wireless links impact the availability. Hence resiliency is required to be implemented in the 

last mile for the connection to recover from outage or to avoid them. One of the ways to 

introduce resiliency is by using mesh topologies which offer multiple routing options 

between the source and destination [33] [2]. 
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QoS/ Classes of Service (CoS) support 

To ensure good user experience, transport networks must facilitate QoS prioritization of the 

traffic i.e. important traffic such as signaling, voice and synchronization must be able to take 

precedence over best-effort traffic during congestion. This is achieved by tagging the packets 

with QoS priority class e.g. Differentiated Services Code Point (DSCP) identifier in IP 

packets and Priority Code Point (PCP) in Ethernet frames. So, when the packets are received 

these priority bits are read and the corresponding packets are placed into appropriate „class of 

service‟ queues [33]. 

Synchronization 

Synchronization is very important aspect in RF systems since it helps in maintaining the 

correct operation of system along with satisfying the spectrum licensing conditions. Systems 

based on FDD require frequency synchronization, whereas TDD systems must be phase 

synchronized in addition to frequency [33]. The requirements for LTE small cell backhaul 

synchronization are defined in 3GPP specification 3GPP 36.104. Synchronization can be 

achieved with a reference source clock at the base stations like Global Navigational Satellite 

System (GNSS) or sending clock references to the base stations. However, GNSS will be 

rendered useless when used indoors due to signal loss caused by building or jammers [2]. 

Several techniques are developed to provide synchronization for packet based backhaul but 

not all techniques provide phase synchronization needed for TDD systems. These techniques 

include Network Timing Protocol (NTP), synchronized Ethernet and IEEE 1588 v2 [2] [33]. 

Operation, management and traffic engineering 

Small cells are usually deployed in very large numbers and are placed in busy areas where it 

is difficult to revisit site location to make changes. This deployment scenario calls for a high 

degree of self-configuration facility with configuration files being received from a centralized 

location [2]. Additionally, the backhaul solution must also provide provisions to monitor the 

operation and update the network configuration remotely. These features reduce the 

installation and operational expenses of an operator [33]. Finally, it is beneficial from the 

point of supporting end-to-end QoS to provide means to change the conditions of backhaul 
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dynamically based on demand or link status. This feature requires active network monitoring 

for delays, jitter and packet loss over the backhaul [2]. 

3.3.2 Small cell wireless backhauling techniques 

Different types of wired and wireless backhauling solution have been proposed for small 

cells. Wired backhaul solutions are used in scenarios where high capacity and reliability is 

required. But from the ease of deployment perspective of small cells, the wireless backhaul 

solution has an advantage of not needing to run cabling between cell sites, resulting in 

reduced installation costs and faster deployment [2]. These wireless solutions can be broadly 

categorized based on carrier frequency (~600 MHz to 80 GHz), line-of-sight (LOS) and non-

line-of-sight (NLOS) propagation, spectrum licensing arrangement, dynamic spectrum 

licensing and topology [33]. The following section discusses about the wireless backhaul 

solutions which fall under these categories and its challenges. 

Sub-6 GHz licensed and unlicensed bands 

Deployment of small cell backhaul in sub-6 GHz has number of benefits for applications 

requiring point-to-point or point-to-multipoint link, line-of-sight and non-line-of-sight link. 

But there are different challenges associated with licensing type of carrier frequency because 

these backhauls operate in both licensed and unlicensed bands (2.4 and 5 GHz). The license 

bands vary from one country to another [2]. The advantages of using licensed bands are: 

ability to provide guaranteed QoS and scalability by avoiding interference. Whereas, the 

operation in unlicensed band eliminates the cost incurred in securing the spectrum but creates 

a major challenge to eliminate the adjacent and co-channel interference. This interference is 

due to sharing of unlicensed spectrum with Wi-Fi, Bluetooth and other applications. In case 

of licensed band backhaul solution, capacity is limited by spectrum allocated and the channel 

bandwidth generally ranges from 5-20 MHz.  

Techniques such as Latency aware QoS scheduling are used to ensure QoS and to lower the 

latency. Depending on the deployment type and frequency, the coverage area ranges over few 

kilometers. On the contrary, in unlicensed bands, achievable coverage area is few hundreds of 

meters due to the interference. Unlicensed band backhaul solutions operate on 40 MHz 

channel bandwidth using contention-based protocols to access the unlicensed spectrum 
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simultaneously along with the existing radio technologies. From the capacity to cost ratio 

point of view, backhaul solution in sub-6 GHz unlicensed bands holds an edge over licensed 

bands counterparts by providing huge capacity in several hundreds of Mbps at a very low 

cost.  

The non-line-of-sight feature of sub-6 GHz backhaul makes it suitable for rapid deployment 

of small cells under a macrocell network. Installation times can be further reduced by using 

self-aligning antennas. Unlicensed backhaul solutions are typically used for Wi-Fi access 

points at remote locations, whereas the licensed band solutions are used to provide capacity 

and coverage [33]. 

Microwave: 6-50 GHz 

Microwave frequencies for mobile backhaul have been in use for decades and it accounted 

for about 55% of the global wireless backhaul at the end of 2011 [30]. In a wireless backhaul, 

link capacity is directly dependent on channel bandwidth and spectral efficiency. Multiple 

Gbps of throughput in a microwave backhaul is possible by utilizing multiple single carriers. 

On the other hand link capacity can also be increased by increasing the spectral efficiency by 

means of using higher modulation (1024QAM), 2X2 MIMO on a line of sight link and cross 

polar interference cancellation [37]. Also, higher spectral efficiency and wider channel 

bandwidth results in lower RTT latency over single hop (< 1 ms). In terms of coverage, there 

is a tradeoff between the availability, capacity and operating frequency. For small cell 

application, huge capacity at a high availability of 99.999% can be obtained with a point-to-

point backhaul at 30-42 GHz frequency. This results in coverage range of 2-4 km, the 

coverage is further reduced when used in point-to-multipoint link due to low gains of wide 

sector antenna [37]. But wider coverage area is obtained at lower operating frequency and 

availability. Rapid deployment of small cells with microwave backhaul offers microwave hub 

site to be connected to the small cells in point-to-multipoint configuration. Thus, only the 

small cell antenna needs to be aligned when the hub site is operational, thereby reducing 

installation times. Microwave backhauls are generally deployed in scenarios where high 

capacity is in demand and the provision for line-of-sight is available between the hub site and 

small cell. Propagation at microwave frequencies is vulnerable to signal fading during heavy 
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rainfall. Resiliency against this fading is supported in microwave backhaul systems by 

implementing link adaptation techniques [33].  

Millimeter Wave: 50-300 GHz 

The motivation behind operating in millimeter frequencies (50-300 GHz) for small cell use 

case is the generous availability of wideband RF-channels and Gbps of capacity using simple 

single channel configuration. Moreover, the small cells are expected to be as little as 50 m 

apart, making it ideal to use millimeter frequencies which provide high capacity with short-

range links. The typically used frequencies are V-band (60 GHz) and E-band (70-80 GHz) 

are contiguous bandwidth of license exempted 9 GHz (57-66 GHz) and two lightly licensed 5 

GHz bandwidths (71-76 GHz, 81-86 GHz) respectively [2]. This enables accommodation of 

large scale of small cells with wider channel allocation (50 MHz up to 1000 MHz) in a given 

area when compared to deployments and channel allocation at frequencies lower than 

millimeter wave frequency. Furthermore, operating at millimeter frequency has an implicit 

advantage of reduced antenna diameter of few centimeters resulting in smaller equipment 

size. High frequency of microwave enables high gain directional antennas to be used in long 

range links. But on the downside, high frequency results in narrow beamwidth which requires 

antennas alignment during installation [2]. The coverage range at 60 GHz and 70-80 GHz are 

up to 1 km and 3 km respectively which makes it ideal to use the low cost equipment 

operating at 60 GHz for street-to-street, street-to-rooftop connections and radios operating at 

70-80 GHz for roof-to-roof connectivity. In this way, cells with E-band backhaul are seen as 

aggregation points for the traffic from cells with 60 GHz backhaul.  

The drawbacks of operating at millimeter wave frequency are attenuation caused by the 

oxygen present in the atmosphere for 60GHz frequency range and due to water molecules for 

70-80 GHz frequencies. Moreover, transmission at these frequencies relies on line-of-sight 

communication through narrow beamwidth antennas with absence of reflection from or 

penetration through obstacles. As a result, there is very low risk of interference but multiple 

hops are required to reach a destination to go around obstacles in the propagation path. 

Another disadvantage associated with millimeter wave radio is the loss of link alignment by 

the pole sway in extreme weather conditions. The advantages such as scalable capacity and 

lower latency of millimeter wave technologies far outweigh the disadvantages. This makes 
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millimeter wave technology well suited for small cell backhaul in dense urban deployments 

[33] [2].  

3.4 Optimal backhaul solution for small cells 

Based on the requirements and the proposed solutions discussed earlier in this chapter, this 

section discusses about the technology choice to design an optimal backhaul solution for 

small cells. These include: 

 From the capacity and connectivity perspective of small cells access, wired backhaul 

solution offers higher capacity and reliability than the wireless solutions. But if we 

consider the large scale deployments of small cells, there arises the issue of cabling 

between the cells or to aggregation points. Also, the solution must be aimed at 

minimizing the installation time and cost. This makes wireless backhaul solution in 

millimeter wave in general as the most viable choice to satisfy the capacity needs of 

small cells. 

 High availability offered by present access backhaul network is also expected from 

small cell backhaul since small cells play a crucial role in providing connectivity in 

less coverage areas or used to offload the macro cell traffic. This requirement in turn 

requires the backhaul to implement a certain degree of resiliency because small cells 

backhaul links can be easily obstructed (e.g. trees, vehicles). Resiliency is improved 

by using mesh topology, wherein nodes in the network form multiple redundant links. 

This way traffic can be redirected via alternate paths in events of link outage and 

network load. 

 Small cell access backhaul must ensure QoS by supporting traffic prioritization based 

on priority class. This makes sure that certain class of traffic is given higher 

preference than other during congestion scenarios or based on delay requirement of 

traffic class. 

 Small cell backhaul require synchronization in frequency or phase domain based on 

the technology employed. Accurate synchronization over packet switched backhaul is 

more challenging than with legacy circuit switched (e.g. E1 or STM-1) backhaul. 

However, techniques such as IEEE 1588v2 (PTP) and Synchronous Ethernet are 

defined to allow base stations to extract synchronization from a remote clock 
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reference. Among these techniques, PTP provides accurate frequency and phase 

synchronization. 

 Large scale deployments of small cells, often located in unconventional locations and 

small form-factor of small cell base stations complicates the on-site operations and 

maintenance. This problem can be alleviated by introducing a high degree of self-

configuration in the small cells. Also, management tools to enable network-wide over 

the air-configuration and updates will help in minimizing installation and operational 

costs and simplify handling of several radio access technologies. 

The backhaul solution that satisfies above mentioned points is a wireless mesh network 

formed using millimeter wave radios with comprehensive routing and scheduling schemes 

along with provisions for Quality of Service and security. A lot of research has been 

conducted on the feasibility of wireless mesh networks on various applications. The most 

popular among them are IEEE 802.11 Wireless Local Area Network (WLAN) mesh, IEEE 

802.15.5 Wireless Personal Area Network (WPAN) mesh and IEEE 802.16 Wireless 

Interoperability for Microwave Access (WiMAX) mesh. But most of these proposed 

solutions offer a complete mesh solution and address only few problem area of mesh 

networking (e.g. Media Access Control (MAC), scheduling, protection, QoS). Therefore, the 

proposed solutions cannot be directly applied to fulfill the small cell backhaul requirements 

without extensive modifications [38]. 

The self-organizing wireless mesh network backhaul presented in the Chapter 4 satisfies the 

above listed small cell backhaul requirements. The term self-organizing network (SON) 

refers to automation of network operations, and is categorized along key OAM areas of 

configuration, optimization and troubleshooting. They are self-configuration, self-

optimization and self-healing. Self-configuration is a process to reduce the human operator 

intervention when a new network element is brought into service. This process is carried out 

in three phases namely auto-connectivity setup, auto-commissioning and dynamic radio 

configuration. Self-optimization involves optimization of the network parameters during its 

operation. Some of the features under self-optimization are load balancing, traffic steering, 

energy saving and capacity optimization. Finally, self-healing is an attempt to reduce the 
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troubleshooting effort in case of cell degradation or outage [39]. Detailed implementation of 

these self-organizing features in the proposed backhaul solution is discussed in Chapter 4. 

3.5 Summary 

A mobile backhaul is a connecting transport medium between the mobile access network and 

the mobile core network. The backhaul network is divided in to 3 domains: access, 

aggregation and core, presented in the decreasing order of cost and number of links in each 

tier. Typically, a backhaul connection is provided by using copper cables, optical fiber and 

microwave radios. In order to keep up with the growth of radio access and core network, the 

backhaul network technology has also evolved from low capacity TDM based technology to 

ATM and entirely packet based i.e. IP backhaul transport. The advantage of IP based 

backhaul is the provision for employing QoS scheme, support for native packet data, lower 

network latency and flat network architecture. However, with the introduction of small cells 

in 4G, the wired backhaul solution is not always feasible due to the unconventional 

deployment location of small cells. Therefore, an entirely new wireless backhaul solution, 

which provides high capacity cost-effective backhaul, must be designed.  

The requirements for a backhaul for small cells include high throughput, coverage area of 

few hundred meters, lower latency, high availability, resiliency, support for QoS and traffic 

engineering capabilities.  

Some of wireless backhaul technologies used in small cells are based on usage of microwave 

radios. However, an optimum wireless backhaul solution for small cells can utilize the 

millimeter wave radios, which offers high data rates. High availability and resiliency can be 

achieved by connecting the small cells in the form of a mesh network. Additionally, to 

facilitate large scale deployment of small cells in a cost effective manner, implementation of 

self-organizing functionalities such as self-configuration, self-optimization and self-healing 

along with the network-wide management tools makes such a backhaul solution ideal for 

small cell deployment. 
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4 TOPOLOGY MANAGEMENT FOR WIRELESS MESH 

SELF-ORGANIZING NETWORK BACKHAUL 

This chapter discusses about a mobile backhauling concept jointly developed by Nokia 

Networks and VTT with inherent self-configuration, self-optimizing and self-healing 

capabilities targeted for small cell deployments [40] [41].  

Section 4.1 gives an overview description of concepts of proposed wireless mesh solution and 

its key features and elements. Section 4.2 introduces to the topology manager entity of the 

centralized controller (WCC) and its role in enabling self-organizing functionality in Self-

optimizing Wireless Mesh Network (SWMN) system. 

4.1 Overview of wireless mesh self-organizing network concept 

The Self-optimizing WMN (SWMN) backhaul concept is designed to provide very high 

capacity first mile access backhaul to small cell mobile base stations. According to this 

concept, in a heterogeneous network of macro, micro, and pico base stations, the base stations 

are connected in the form of a partial mesh using point-to-point wireless backhaul. The 

network elements are connected to each other mainly with pencil beam point-to-point 

directional millimeter wave radio links. These radios can be electronically steered to point in 

any direction, thereby allowing the establishment of wireless links between base stations in 

all directions. However, the base stations can also be connected via wired medium such as 

fiber [38] [42] [40] [41].  

SWMN system employs an extensive set of self-organizing features resulting in autonomous 

network management and network configuration. This leads to a reduced or zero OAM 

intervention. These self-organizing features are implemented in the following ways self-

configuration in the form of automated mechanism from link alignment of the millimeter 

wave radio, neighbor discovery, authentication till the connection establishment between the 

end points (e.g. a set of base stations and an aggregation transport network gateway). Self-

healing feature is implemented through automated resiliency schemes which reduce the 

effects of link or equipment outage. And, self-optimization is employed by offering flexible 
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QoS scheme, comprehensive set of traffic engineering mechanisms such as load balancing 

and congestion control mechanism. These mechanisms allow autonomous deployment of cell 

sites with reduced installation times, provision for QoS based traffic engineering and 

flexibility in handling the traffic inside the mesh network. Thus enabling efficient use of 

backhaul transport capacity [38] [42] [40] [41].  

Typically, a Self-optimizing WMN (SWMN) network consists of 20-200 backhaul nodes 

connected in partial mesh topology. These backhaul nodes are grouped into local sub-

networks. The sub-networks can overlap over each other to provide coverage to larger area. 

Within these sub-networks, the nodes are linked with each other through point-to-point 

wireless or wired connections. The partial mesh topology assumes a certain level of 

redundant links to enable the link protection and other resiliency features of SWMN [40] 

[41].  

There are two types of backhaul nodes, a SWMN generic node (GN) and a SWMN gateway 

node (GW). A SWMN generic node provides local transport connectivity to one or more base 

stations to connect to the SWMN sub-network. The SWMN generic nodes can also act as 

relay points in the absence of client base stations. The gateway nodes connect the SWMN 

nodes to the external transport network. Thus, the gateway nodes handle all the incoming and 

outgoing traffic to and from its SWMN sub-network. A large SWMN sub-network can have 

more than one gateway node to provide multiple points of traffic entry and exit to the external 

transport network. This also ensures that connectivity with the external network is maintained 

in the events of non-redundant gateway node failure. Figure 4.1 illustrates a typical wireless 

mesh network. A gateway node is usually present in the macro base station or in a small cell 

site having reliable access medium to other transport network, and the generic backhaul 

nodes are present at small cell sites [42] [40] [41].  

The intelligence in the gateway and generic SWMN nodes is called Protocol Engine (PE). 

Additionally, SWMN concept also introduces a centralized intelligence called WMN 

Centralized Controller (WCC). The WCC is responsible for implementing automated 

topology management functionalities such as network configuration, network optimization 

and among other functionalities. Thus, it maintains an optimum topology and connectivity in 

a SWMN sub-network, also known as domain. A WCC can handle multiple domains, which 
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collectively constitutes a SWMN area. The centralized controller can be deployed either in 

SWMN gateways or in the core network cloud. But the latter option is more beneficial since a 

single WCC present in the cloud can have access to entire network [42] [38] [40]. 

 

Figure 4.1: Wireless Mesh Network [38]. 

4.1.1 Transport Service, routing and forwarding 

SWMN offers Ethernet transport service. The layer 2 solution was chosen as a baseline to 

develop the Proof-of-Concept (PoC) system, but can be extended to support layer 3 or IP 

transport service as well. The connectivity between the backhaul nodes is mainly wireless 

pencil beam point-to-point millimeter wave radio links. The channel access scheme can be 

either Frequency Division Duplexing (FDD) or Time Division Duplexing (TDD) [43] [42] 

[40] [41]. 

The routing in SWMN is based on pre-computed routing paths and forwarding information 

from the centralized controller. Each SWMN node computes the local forwarding table upon 

receiving pre-computed prioritized list of alternative routing paths sent by the WCC. A 

forwarding table consists of routing path information, node identification number and an 

output interface. The forwarding tables at each node are used to forward the traffic 

dynamically based on path/route availability, max vs. available (link/path) capacity, path 

congestion status and traffic priority [42] [43]. 
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The use of pre-computed routing scheme makes it possible to switch to alternate paths within 

few microseconds in cases of failure or load balancing situations with no data loss or no 

retransmissions (“hitless switching”). The use of pre-computed routing requires the number 

of nodes in a domain to be within a certain range. This leaves the decision of node count in a 

domain to the WCC, which is responsible for network optimization [43]. 

4.1.2 Shared resources and scheduling 

Scheduling is a process of allocating time slots to links during which a node can transmit or 

receive. Since in SWMN wireless communication is based on the concept of shared 

resources, where a shared resource can be, for example, a wireless transceiver or antenna, 

scheduling for data transmission becomes a challenge. In the simplest implementation of 

shared resources, a SWMN node can communicate with its neighbors only one at a time. This 

creates a restriction on resource access. However, with the use of shared hardware resource 

and smart beam steering algorithm a node can connect to several neighboring nodes without 

any manual intervention, thereby reducing the capital and operational expenses. To enable all 

these and to provide resource access to the nodes on a shared basis, a network wide 

scheduling scheme is required. Network level scheduling has an implicit advantage of 

reducing the interference caused due to simultaneous transmissions [42] [43] [44]. 

4.1.3 Network self-configuration 

The term self-configuration refers to mechanisms which facilitates „Plug-and-Play”, for 

example, automatic connection setup and auto commissioning [39].  Such a feature is enabled 

in SWMN by the WCC through highly automated process from the power on phase of system 

till the connection setup to the mesh network. The operations involved in the self-

configuration phase are radio link alignment, neighbor discovery, authentication and 

distribution of configuration messages [44].  

The self-configuration mechanism can be briefly explained by the steps followed in 

autonomous deployment of SWMN nodes the first step involves deploying new node at the 

installation site and powering on the new node by the installing person. The only pre-

configuration required for the node is its Hardware ID (HW ID), authentication parameters 

and some radio related parameters. Moreover, skilled workforce is not needed for the node 
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installation since the link alignment of the antennas and the manual configuration is avoided 

by the electrical beam steering and self-configuration functionality. This way deployment of 

nodes is made quick, easy and economical [44].  

In the next step, the new node starts neighbor discovery procedure. This procedure involves 

scanning periodically for new nodes by the nodes already existing in the network using a 

beacon message. The scanning process is facilitated by the beam steering mechanism and 

beam sweeping within RF antenna range. The new node receives and acknowledges the 

beacon message once its antenna gets aligned to the existing node. Then, the beam directions 

for both ends of the link are fixed and a notification about the newly added node is sent to 

WCC. Finally, the node is authenticated by WCC for its hardware and software validity and 

to prevent security attacks [44].  

Once the node is authenticated, the new topology is fed to the topology optimizer which 

decides whether computation of routes and link schedule information is required or not. The 

new configuration is distributed to the entire network including the new node. The switch 

over to the new configuration occurs synchronously in all SWMN nodes so that ongoing 

traffic in the network is minimally affected [44].  

After receiving the new configuration message, the new node is able to connect to the 

network and start forwarding traffic, including traffic from its local client. A similar process 

occurs when a new link is introduced between two existing SWMN nodes. The self-

configuration is called upon by WCC whenever there is any persistent change to the existing 

topology e.g. caused by node or link failure [44]. 

4.1.4 Resiliency, fault management and self-healing 

The SWMN system employs a comprehensive and automated resiliency mechanism to 

minimize the impact of node and link failures in the mesh network. The need for resiliency 

arises due to faults in the system during its operation. These faults are effectively managed in 

the SWMN by detecting the faults and re-routing the traffic to alternate pre-computed routing 

paths. The fault detection mechanism is event-based i.e. as soon as the fault is detected (e.g. 

weak received signal strength of the radio link) a Link Status Update (LSU) message is 

broadcasted along the routing paths that traverse the affected link. This informs the nodes 
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about the faulty links or nodes. Fast fault detection combined with per-packet link quality 

monitoring results in a near-hitless protection scheme. Upon detection of fault, the 

hierarchical fault recovery scheme built into SWMN concept is triggered as described in [44]. 

Depending on the failure situation one of the recovery mechanisms is applied. The time scale 

taken by various mechanisms varies from few microseconds to tens of seconds. The fastest 

method involves re-direction of the traffic that is to be transmitted along the broken link 

along alternate pre-computed routing path. If the path failure is persistent, local correction to 

the routing paths can be made. Finally, if the failure situation lasts a long time (i.e. considered 

permanent), the WCC re-computes all the routing paths and re-configures the entire network 

[45] [42] [44]. 

4.1.5 Quality of Service 

The SWMN system employs nine priority classes ranging from highest priority to lowest 

priority: HP1, HP2, HP3, HP4, HP5, LP1, LP2, LP3 and LP4. The HP1 priority class is 

mainly used for transmitting internal control messages and for carrying time synchronization 

messages. The remaining higher and lower priorities are used for traffic. The HP1 and HP2 

frames are scheduled in Strict Priority Queuing (SP) while the other high and low priority 

classes are scheduled using Weighted Fair Queuing (WFQ). The strict priority classes are 

scheduled first and are optimal for carrying delay sensitive traffic, whereas the remaining 

effective capacity of the link is scheduled in WFQ manner for other traffic priority classes. 

The priority classes are mapped to the Priority code point (PCP) in the Ethernet frame (IEEE 

802.1Q) header of the client traffic. The weights of WFQ and the queue sizes for the different 

priority classes can be configured as per the needs [42] [45] [44]. 

4.1.6 Load, congestion management 

The SWMN system includes load and congestion management mechanism which ensures 

efficient backhaul capacity utilization by selecting the best routing path (usually the path with 

large available capacity) for each traffic flow or alternatively for an individual data packet 

[44] [42]. The system is based on the monitoring of link capacity and link quality. The 

monitored load management parameters are available link capacity, link quality, output queue 

length and frame drop rates. These parameters are measured and maintained for each traffic 
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priority at each of the nodes. Congestion status is determined based on queue lengths and 

drop rates. A SWMN node originating the traffic measures the usability of the routing paths 

based on the flow‟s intensity and congestion status in the path. If the node finds the routing 

path to be congested it may move the traffic away from the congested link to an alternate path 

with more available capacity. Any change in the link or load status triggers a LSU indicating 

the available capacity in that link and the congestion status [42] [45]. 

4.1.7 Synchronization 

Accurate time synchronization is very essential in the SWMN nodes in order to follow 

network-wide link scheduling. The SWMN system employs IEEE 1588-2008 Precision Time 

Protocol (PTP) based time synchronization technique. According to this technique, the 

synchronization is distributed in a SWMN system via a synchronization tree. Either one of 

gateway node acts as grandmaster clock or an external grand master clock forms the root of 

the synchronization tree. New SWMN nodes form the branches to the synchronization tree 

and act as PTP boundary clocks offering bridged synchronization transport for timing 

messages. This way neighbors to gateway node or master clock reference act as slaves to 

grandmaster and the next tier act as slaves to first tier and so on. The grandmaster clock that 

can be used in the SWMN system is chosen by relying on PTP‟s best master clock algorithm 

[46] [42]. 

4.1.8 Elements of WMN 

The SWMN system consists of SWMN nodes and a centralized controller (WCC) [44]. 

Node elements 

As mentioned earlier, there are two types of nodes namely: SWMN generic nodes (GN) and 

SWMN gateway nodes (GW). The SWMN nodes have Ethernet interfaces to the client 

system e.g. base stations and wireless network interface to interact with the neighboring 

SWMN nodes. The generic nodes send and receive topology change messages and 

configuration messages to and from centralized controller through the gateway nodes. A 

gateway node is very similar to a generic node except that it has an Ethernet interface to the 

external transport network and is logically connected to the centralized controller. The main 



Supreeth Herle, 2015  39 
 

functions of the gateway node are to provide access to aggregation networks and to relay 

control/configuration messages between the centralized controller and generic nodes. 

Additionally, the gateway node may act as a grand master clock to provide time 

synchronization in the SWMN [44]. 

 

Figure 4.2: High level architecture of basic SWMN system [44]. 

 

 

Node SW components 

The SWMN functionality and intelligence in a SWMN node is called the Protocol Engine 

(PE). The PE architecture consists of two parts namely: the control plane and the data plane. 

The data plane part of the PE handles all routing of user traffic in the mesh and also sending 

control messages to control plane, queuing and de-queuing of packets, low-level link state 

monitoring, load balancing and fast local re-routing. The control plane is mainly responsible 

for establishing a connection to WCC in case of gateway node, handling LSUs and TCRs, 

neighbor discovery, synchronization and monitoring congestion [44]. 
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WMN centralized controller (WCC) 

The architecture of the centralized controller is depicted in Figure 4.3. 

 

Figure 4.3: Functional architecture of WCC 

The main functions performed by the WCC can be briefly overviewed by mentioning the 

tasks of the various blocks in WCC architecture. The topology manager is the vital part of the 

WCC as it controls all the functions of the WCC and is responsible for all the re-computation 

and re-configuration decisions. It also maintains information about physical topology 

extracted from SWMN nodes. The topology optimizer deals with network optimizing 

decisions such as number of nodes or links in a SWMN domain and decisions regarding node 

or link inclusion into the network. The tasks of route and schedule computation blocks 

include computation of prioritized set of alternative routing paths and link-schedule 

information. These computations are performed whenever the physical topology changes as 

initiated by the topology manager. Once the computations are completed, the topology, 

routing and schedule information is composed in SWMN configuration messages by the 

configurator. The energy efficiency and authentication procedures are handled by the energy 

saving control and access control elements respectively. The Virtual Connection (VC) 
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end points of the date paths. Finally, the network status monitors are responsible for 

performance and status monitoring of the network based on the messages received from 

SWMN nodes and decisions on forwarding this network state information [47] [44]. 

4.2 Topology management function by centralized controller 

The autonomous functions performed by the WCC to configure, optimize, monitor and 

maintain a topology are collectively called as topology management. As an example this 

refers to network optimization in terms of end-to-end (E2E) latency, reliability and energy 

efficiency. These functions handle any changes in the network and optimize the physical 

topology by dynamically including or excluding links or nodes. This way the WCC ensures 

that route and schedule re-computation triggered due to topology change results in highly 

delay optimized routing paths and link schedule. The topology management functions of 

WCC also include monitoring the network performance, resource utilization, and to provide 

simple OAM functionality [44]. 

The main functions performed by the SWMN topology management are deciding the 

optimum SWMN domains within a SWMN area, determining the active network topology 

within a SWMN domain, shutting down nodes and links as part of energy saving control, 

routing and link schedule computation, monitoring the performance of SWMN domains and 

control the update of network configuration [44].  

The Topology Manager Module (TMM) is responsible to carry out the topology management 

functionalities and the operations within WCC. To track down the changes in the network, 

topology manager gathers SWMN-area wide status information through Network Status 

Monitors (NSM). Based on this information, the topology manager triggers appropriate WCC 

modules and procedures if topology reconfiguration or optimization is necessary. For 

example, if topology change has been detected TMM initiates Topology Optimizer Module 

(TOM) and passes the current physical topology along with the topology changes as its input. 

The TOM decides which links and nodes to be included into the active topology and which to 

exclude. TMM then triggers the route and link-schedule computation units upon the active 

topology computed by the TOM. If the computation of optimal routing path and link-

schedule computation turns out to be infeasible, then the cycle repeats from the topology 
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optimization process. Upon obtaining an optimum route and schedule, WMN configurator is 

initiated to form the configuration message. This message is then distributed to the SWMN 

nodes. The TMM also exercises energy saving functionalities by triggering the energy saving 

control module [47] [44]. 

4.2.1 Topology optimizer 

The process of topology optimization starts with status information regarding the current 

topology sent by the topology manager. With this information as an input, the topology 

optimizer groups the nodes in the SWMN area into domains and decides upon the active and 

dormant links of the topology. The topology optimizer makes the decision of active links by 

comparing the results of the optimization algorithm and the given physical topology. The 

important links are retained and the redundant links are selectively removed based on 

topological constraints until each node has number of links equal or less than number of links 

allowed for a node. The end-result obtained from the topology optimizer module is the active 

topology which is given as an input for route and link-schedule computation [47] [44]. 

4.2.2 Route computation 

Based on active topology information, Route Computation Module calculates a prioritized set 

of alternative routing paths from any node to any node for the given topology. Since the 

traffic flows in the mesh network are primarily between generic nodes and their primary 

gateways, the route computation is optimized for those paths. However, the traffic between 

the generic nodes is also supported to provide e.g. fast X2 connectivity. The route 

computation can be influenced by traffic engineering parameters such as link capacities, 

traffic along certain links and path delay constraints. However, the most important 

optimization parameter is the bi-directional end-to-end delay between the nodes. The route 

computation is performed only when the topology changes i.e. after addition or deletion of 

node, after permanent link failures or link removal [42] [44]. 

4.2.3 Link-schedule computation 

Similar to route computation, the scheduling information is also pre-computed by the WCC 

for the given topology. The computation of scheduling information involves dividing the 
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given topology into activity sets. An activity set is a collection of links that can be active 

simultaneously. An optimized subset of activity sets is calculated based on end-to-end delay 

and optionally using similar traffic engineering parameters as where used in route calculation. 

The resulting optimized activity set will be repeated cyclically providing a schedule to the 

nodes which they can transmit or receive [42] [44]. 

 

Figure 4.4: Example of schedule computation. The colors represent the active links during a certain 

transmission opportunity. 

4.2.4 WMN configurator 

The main task of WMN Configurator Module (WCM) is to distribute the new configuration 

to all the nodes in the SWMN network. It forms the configuration messages consisting of new 

active topology, new routing path information and new link-schedule information. The 

configuration messages compiled by the WMN configurator are distributed among the 

SWMN nodes through the gateway nodes in each domain. In addition, WCM determines the 

required order of topology change actions i.e. domain splitting, merging and node handover 

between domains in order to reach the new optimized topology. The WMN configurator also 

determines the suitable time to switch to new configuration based on the network status. 

Furthermore, synchronization of nodes in the events of domain splitting and node handover 

between domains is carried out by the WCM [47]. 

4.2.5 Energy-saving control 

The Energy –saving Control Module (ECM) handles all the energy saving processes at 

SWMN node level. These include for example determining nodes or links which have been 
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inactive for a very long period. Upon detection of these nodes or links, re-configuration of 

SWMN network is triggered to shutdown or put to the nodes sleep to save energy [47].  

4.2.6 Network status monitor 

The Network Status Monitor (NSM) observes the network for topology changes and 

maintains an up-to-date status of the network. It is also responsible for collecting the link 

quality and load information delivered through LSUs to analyze the performance of the 

network and to identify when some topology change is permanent. Based on the state of the 

network, the NSM may decide upon the network status information (e.g. permanent topology 

change) and the time at which it needs to be forwarded to other parts of the network. Also, 

these monitors may be used as a countermeasure against denial-of-service attack on access 

control module by filtering out authentication attempts by blacklisted nodes [47] [44].  

4.2.7 Virtual connection (VC) provisioning  

The VC provisioning module manages all the virtual connections that overlay the SWMN 

network. The task of this module is to map Attachment Circuits (AC) to a VC, that is, 

establish connectivity between client ports in source and destination [47].  

4.2.8 Access control 

All the node authentication procedures are carried out in the Access Control module. 

Whenever a new node is added to the network, it is authenticated by this module through 

AAA infrastructure. Also, the access control has the ability to black-list un-authorized nodes 

[47] [44]. 

4.3 Summary 

This section describes a novel concept for small cell deployments called the Self-optimizing 

Wireless Mesh Network (SWMN). According to this concept, the backhaul nodes that may 

be present in base stations are connected to the gateway in the form of a partial mesh network 

using point-to-point directional millimeter wave radio links. The routing and data 

transmission in the mesh network is based on prioritized list of alternate routes and active 

link-schedule times pre-calculated for a given topology respectively. The concept also 
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implements self-organizing features to automate the neighbor discovery, link establishment, 

provide high resiliency, optimization based on flexible QoS scheme, load and congestion 

management. The key modules in this concept are SWMN gateway node, SWMN generic 

node and Wireless Mesh Network Centralized Controller (WCC). Among these elements, the 

WCC is responsible for executing the topology management functionalities in the network. 

The modules present in WCC are topology manager, topology optimizer, energy saving 

control, VC provisioning, route computation, link-schedule computation, network status 

monitor, access control and WMN configurator. These modules help in automating the 

network configuration, network optimization and network management. Also, the WCC 

maintains a network status through network monitoring mechanisms. 
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5 TOPOLOGY MANAGEMENT VALIDATION SYSTEM 

The Chapter 4 explained the concepts of topology management in SWMN backhaul. This 

chapter provides the validation scenarios for topology management functions and also gives 

an overview about the proof-of-concept system used for validation. This chapter also talks 

about the author‟s contribution to Self-optimizing WMN (SWMN) system. The main 

contributions by the author are: 

 Defining the validation scenarios to test the topology management functions and 

autonomous network build-up features in the Lanner MR-730 environment and 

simulator environment. 

 Development of python based simulator to test topology management functions of 

the WMN centralized controller (WCC). 

 Testing and debugging of the SWMN PE and WCC Proof-Of-Concept software 

implementation in target environment i.e. in the Lanner MR-730 network processor 

and in a Linux machine, respectively. 

 Detecting concept anomalies in the PE and WCC proof-of-concept systems and 

resolving them with the implementation team. 

 Developing an interactive GUI based visualization and network management controls 

in the simulator. 

Section 5.1 discusses about validation scenarios and the testing methodology for verifying 

different topology management functions. These scenarios include node addition, node 

deletion, domain formation, domain split and merge, etc. Section 5.2 provides a survey on 

potential systems that could be used for proof-of-concept validation. Finally, Section 5.3 

provides details about emulator and simulator validation test setups. 

5.1 Validation scenarios 

The validation scenarios provided in the following sections will test the topology 

management functions and features of WMN centralized controller. These scenarios involve 

incremental addition or deletion of SWMN nodes or mesh links to trigger certain events 
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which help in validating the topology management functionalities at a basic level. Since the 

SWMN system is unlike any other system that implements standardized set of protocols, the 

validation tests are created only for this system in particular [42]. The validation plan created 

in conjunction with the developed system provides an extensive set of test cases for each of 

the topology management functions. Therefore, a handful of test cases which provide an 

overview over the topology management function are chosen and explained in the validation 

scenarios. These scenarios test the validity of the WCC through various topology scenarios, 

which are created by addition or deletion of node or link to the SWMN network. This way, 

autonomous network build-up, an essential feature of SWMN, can also be verified. 

Furthermore, the scalability of the system is verified by adding a large number of SWMN 

nodes to the network. 

5.1.1 Autonomous network build-up 

Objective and background 

One of the prime features supported by the topology management mechanism of WCC is the 

autonomous network build-up. This is enabled through autonomous neighbor discovery 

functionality in the SWMN nodes and optimizer, route computation, link-schedule 

computation, VC provisioning and WMN configurator modules in WCC. The verification of 

these topology management modules during a network build-up are carried out in this test 

scenario through incremental addition of SWMN nodes. 

Method for testing autonomous network build-up 

The basic test for autonomous network build-up starts by connecting the gateway node to the 

WMN centralized controller and subsequently adding new SWMN nodes and connections. 

The validity of this feature can be verified through a WCC visualization which shows the 

current topology of the network. The indications of new nodes can be inferred from the log 

messages in the WCC Linux terminal and the primary gateway node. Since the routing in the 

mesh network is based on prioritized list of alternative routes generated by the route 

computation module, the correctness of routing information can be verified by sending 

different priority traffic between SWMN nodes using the predefined VLANIDs. Meanwhile, 

the packets with undefined VLANIDs should be rejected. 
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Figure 5.1: Gateway node and new node detection procedure in autonomous deployment scenario. 

 

Figure 5.2: Topology for testing autonomous network build-up, routing and scheduling functionality. 

Similarly, the network-wide schedule computed by the link-schedule computation module of 

WCC can be verified by sending traffic between nodes and observing the timing of the 

packets received at the receiving node. The timing of packets must be coherent with the 

configured transmission slot duration. Thorough test for schedule computation can be carried 

out by varying the configured transmission slot and observing the corresponding change in 

the packet timing. The tests for routing and schedule computation can be done using Spirent 

packet capture or a packet sniffer tool. Figure 5.1 shows the control message exchange 

performed during neighbor discovery. The topology used to verify the autonomous network 

build-up is depicted in Figure 5.2. 
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5.1.2 Node addition/deletion 

Objective and background 

The motive behind this test scenario is to verify one of the basic topology management 

functions, also known as a node insertion or removal from the active network topology. As 

explained earlier in Chapter 4, the topology manager initiates the route and link-schedule re-

computation whenever the physical topology changes, i.e. addition of node or removal of 

node. Based on the type of SWMN nodes (GW or GN node), two different node addition and 

node deletion validation scenarios have been defined. These scenarios are also tested against 

live traffic situations in the SWMN network. 

Method for testing node insertion/removal with ongoing traffic in mesh network 

The objective of this scenario is to verify the topology management functions when multiple 

nodes are added/deleted at a time to/from the existing mesh network and also to portray that 

ongoing traffic in the mesh is unaffected by this network change. It is assumed initially that 

the network consists of few SWMN generic nodes and a SWMN gateway node connected to 

the WCC. Also, traffic is flowing between existing SWMN generic nodes and the gateway 

node. Ethernet traffic of specific data rate and packet length is sent using Spirent Test Center 

traffic generator, where the input client port of SWMN gateway node Lanner MR-730 unit 

and receiving client port of a SWMN node are connected to Spirent unit for traffic 

measurements. In the next step, a group of three SWMN nodes are added/ removed and the 

result is observed in WCC topology visualization. The newly added nodes appear in the 

visualization once the network is re-configured with the new routing and schedule 

information. Furthermore, dropped packet count and latency can be monitored in the Spirent 

Test Center application to verify that whether the node addition / removal have not affected 

the ongoing network traffic. Figure 5.3 represents a real-life network topology of Arlington 

Heights, a suburb of Chicago used as reference topology to test addition of new group of 

nodes. Similarly, Figure 5.4 depicts the topology used to test the node removal scenario. 
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Figure 5.3: Arlington Heights, a suburb of Chicago topology for multiple nodes addition to network. 

 

 

Figure 5.4: Arlington Heights, a suburb of Chicago topology for multiple nodes deletion from network. 
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Method for testing gateway node insertion/ removal 

This test scenario verifies the topology manager operations when a gateway node is inserted 

or removed. This requires complete network re-configuration forcing the topology manager 

to re-compute the routing and schedule information taking the inserted/removed gateway 

node into consideration. The WCC visualization verifies the added or removed GW node in 

the topology. Also, the change in the hop count between the SWMN nodes due to the re-

computed routing paths and schedule information can be examined from the visualization. 

The initial state of the network consists of few configured SWMN generic nodes and a single 

gateway connected to WCC. Figure 5.5 and Figure 5.6 depicts the topologies used to test new 

gateway node addition and primary gateway node removal scenario respectively. 

 

Figure 5.5: Test topology for inserting new gateway node. 
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Figure 5.6: Test topology to make use of alternate gateway by removing a gateway node. 

5.1.3 Link addition/deletion 

Objective and background 

The objective of the test cases discussed in this section is to verify the topology optimizer 

functionality when a link is added or removed between existing SWMN nodes. The 

verification of topology optimizer includes testing the decision making ability to allow or 

deny a new link from being added to the active network topology. The scenarios used for this 

purpose are: inserting a new link between SWMN nodes and removing link between nodes to 

depict permanent link damage situation in the presence of ongoing traffic. 

Method for testing inclusion of a link into active topology when discovering a new link 

In this test case, a new link is added between a SWMN generic node and the gateway node, 

where the number of outgoing links to the gateway node and generic node is less than or 

equal to maximum allowed links per node. This way the topology optimizer is able to allow 

the new link to be added to the active topology. The inclusion of newly added link can be 



Supreeth Herle, 2015  53 
 

verified from the thick black line representing a scheduled link in the WCC topology 

visualization. Additionally, this link is also included in the new route configuration and is 

scheduled for transmission which must be depicted in the spanning tree and link-schedule 

generated by the WCC. This test case is also applicable for link addition between two SWMN 

generic nodes and between gateway nodes as well, given that they satisfy the above 

mentioned criteria. The topology used in this scenario is shown in Figure 5.7, where new link 

is added between node 1 and node 7. 

 

Figure 5.7: Test topology for new link addition between node (n7) and gateway node. 

Method for testing exclusion of a link from active topology when discovering a new link 

This test case involves adding a new link between two SWMN nodes existing in the mesh 

network. But these nodes should have the number of outgoing links greater than the value of 

maximum allowed links per node. Therefore, the topology manager detects the newly added 

link but the topology optimizer module takes only the maximum number allowed links per 

node into consideration for each SWMN node while determining the optimum active 

topology. This can be verified in the simulator visualization which represents the topology 

with active and dormant links. Furthermore, it can be verified from WCC visualization that 

certain link is absent in the active topology diagram but present in the physical topology. 
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Figure 5.8 depicts the topology used to verify the exclusion of link from active topology 

when a new link is added between node 2 and node 11. 

 

Figure 5.8: Test topology for new link addition between node (n2) and node (n11). 

Method for testing the link removal between nodes with ongoing traffic in the link 

As stated earlier in SWMN concept description, the system employs an extensive resiliency 

scheme which routes the traffic via pre-calculated secondary path to the destination in the 

events of link failure. But a prolonged link failure requires the topology manager to intervene 

and re-calculate the routing and schedule information by not considering the faulty link. This 

test case targets the above mentioned situation of link removal or permanent link failure. The 

test setup for this test case consists of few SWMN nodes with traffic flowing from GW to a 

non-leaf GN which is at two hop distance from gateway node. Ethernet traffic is introduced 

using the Spirent Test Center traffic generator and the client port of receiving node is 

connected to Spirent equipment to measure the packet loss and packet delay. The traffic sent 

through the gateway is configured to be of specific frame length, priority and data rate. Once 

the link is removed the traffic flows through the secondary path as per resiliency scheme in 

SWMN nodes and at the same time calls for network re-configuration. The change in the 
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traffic path due to link removal must not result in packet loss but there may be slightly 

increase in packet delay. The secondary path taken by the traffic can be observed from the 

WCC topology visualization. Finally, after the network re-configuration the visualization 

must show the most optimum path for the traffic to the destination node. The topology used 

to verify the link removal scenario is given in Figure 5.9, where the link between node 6 an 

node 7 is removed. 

 

Figure 5.9: Test topology with link removed between node (n6) and node (n7). 

5.1.4 Domains split or merge 

Objective and background 

Once the topology optimizer receives the physical topology information it will group the 

SWMN nodes into domains containing one or more gateway nodes. The network size in 

SWMN system is constrained by the complexity of link schedule computation and also by 

requirement to maintain network-wide scheduling scheme. Therefore, a large SWMN 

network is divided into smaller entities. These domains operate on each of their own specific 

link-schedule. The current implementation of optimizer algorithm considers number of 
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SWMN nodes in a SWMN domain as the optimization parameter to perform splitting or 

merging of domains. Moreover, the topology optimizer also implements the functionality to 

handover SWMN nodes from one domain to another to balance the domain formation. The 

basic verification tests of domain formation include increasing the node count in domain to 

enable domain split and vice versa to validate domain merge functionality. This can also be 

achieved through introducing a new gateway node in a network with huge node count for 

domain split and removing one of the existing gateway nodes from the current network. 

Method for testing domain splitting 

The optimization of mesh network by topology optimizer which involves splitting of domains 

can be verified by using a network topology with a single domain containing two gateway 

nodes and number of generic nodes less than the maximum allowed nodes in a single domain. 

In the next step, a group of generic nodes are added to this initial topology in such a way that 

number of nodes in the domain is greater than domain node count limit. This causes the 

single domain to split into two domains. The presence of two domains can be verified by 

observing nodes in the simulator output. The value of maximum allowed nodes in a domain is 

a configurable parameter in the WCC, which can be set to verify splitting of domains. 

Method for testing domain merging 

Merging of domains is the opposite of domain splitting where the topology optimizer merges 

two or more smaller domains into a single large domain for effective utilization of shared 

resources. The initial test setup for this test scenario consists of two domains with one 

gateway in each domain and the sum of generic nodes in both domains must be slightly 

greater than configured maximum node count in domain. In the next step, a small group of 

nodes are removed from either of the domains causing the domains to merge when the total 

number of nodes in the mesh network satisfies maximum node count value in a single 

domain. The process of merging can be observed in simulator output. This is further validated 

by the inclusion of all the nodes in the second domain merged into a single domain in the 

WCC visualization. 
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5.1.5 Scalability 

Objective and background 

Scalability is a very important requirement in the mobile backhaul given the expected almost 

exponential increase in the number of base stations and a step towards heterogeneous 

networks as explained in Chapter 3.  The SWMN concept provides a scalable backhaul 

solution enabled through the topology optimization performed by WCC. In addition to the 

previously described basic domain split and domain merge operations, the basic verification 

tests for scalability inclde identifying the maximum limit on the number of nodes that can be 

accommodated in a single domain, total number of nodes and total number of domains in 

SWMN that could be handled by WCC. 

Method for testing scalability with respect to the number of nodes in a domain 

The validation method to test the scalability of nodes in a domain involves configuring the 

maximum allowed node count in a single domain to a high value such that WCC is no longer 

able to accommodate newly added nodes in a single domain. Thus, the initial network 

topology consists of single domain with one gateway and a large number of generic nodes. 

Following this, a large group of SWMN generic nodes are added to the network and an 

optimum number of nodes that can be accommodated in a single domain are identified. This 

can be inferred from the simulator visualization which represents the different node states 

from non-configured state to scheduled state. Also, the log messages in the WCC Linux 

terminal provide the count of number of nodes in the mesh network. 

Method for testing scalability with respect to number of nodes in a SWMN area 

The basic verification to analyze the maximum number of nodes that can be handled by WCC 

starts with a topology with five or more domains each containing a gateway node and total of 

forty or more generic nodes. In the next step, large groups of generic nodes are added 

randomly to the existing mesh network to an extent that WCC is no longer able to detect any 

more nodes. This threshold value can be determined from the simulator visualization which 

differentiates between nodes included/excluded in the SWMN area. 
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5.2 Study on validation systems 

In order to validate SWMN concept, a suitable emulation and/or simulation platform is 

required. In terms of selecting an emulation platform, many solutions from Cisco and Juniper 

offer the required hardware processing capabilities but their operating software could not be 

altered to the needs of SWMN concept. The other solution is to use a General-purpose 

processor system as nodes. These nodes may be inter-connected using hub or switches and 

networking could be implemented using network socket programming APIs (Application 

Programming Interface). This solution fits perfectly to all the needs of SWMN concept 

except for the requirement of providing gigabit data rates. Therefore, the solution sought after 

and used in the validation are the systems that employ a network-processor. These systems 

provide the flexibility of a general-purpose processor along with the required packet 

forwarding capability similar to Application Specific Integrated Circuit (ASIC). Finally, the 

Lanner MR-730 with Octeon network-processor from Cavium Networks was chosen as 

emulation platform [42].  

Meanwhile, to test the topology management function in emulation platform, it is required to 

have large number of Lanner MR-730 units for larger topologies. But due to high cost of 

these units, it is not feasible to validate large topologies in emulator platform. Thus, simulator 

platform needs to be used for larger networks while the emulator platform can be used for 

small networks. Since the SWMN concept does not employ a standardized set of protocols, 

usage of existing simulators such as Network Simulator (NS) and OPNET require additional 

programming and challenges to adapt to the SWMN protocols. For example, NS implements 

two different languages, Object Tool Command Language (TCL) in control plane and C++ in 

data plane which simulates the packet processing in simulator. This adds up to the challenge 

of working and debugging in two different planes [42]. Moreover, some of the simulators are 

proprietary which makes it difficult to alter their code. Thus, a dedicated new simulator for 

implementing specific topology management functions was selected as the complementary 

validation approach to emulation. Python was selected as the programming environment 

because of the rich python libraries, which help in easy implementation of complex event 

handling structures, time management and link modeling. 
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5.3 Test setup 

The validation test setup involves using both hardware emulation platform and software 

simulation platform. Emulator or simulator is used based on the size of the topology and 

existence of traffic in the network in the test scenario. 

5.3.1 Emulator environment 

The emulator environment mainly consists of Lanner MR-730 Cavium network processors 

representing SWMN nodes, Ethernet cables for wired link and an experimental millimeter 

wave radio system for wireless links interconnecting the nodes. The Lanner MR-730 network 

processors are equipped with Octeon Quad-core CN5230 processor [48] [42]. 

 

Figure 5.10: Lanner MR-730 Network Processor Platform. 

These Lanner MR-730 units are loaded with proof-of-concept software called the SWMN 

Protocol Engine (PE) and are arranged according to given partial mesh topology. Each 

Lanner MR-730 consists of two Fast Ethernet ports, four Gigabit Ethernet ports with facility 

for optical transceiver. The two Fast Ethernet ports are used for management access, i.e. one 

is used for system access and the other is used for client traffic e.g. traffic from base stations. 

The four Gigabit Ethernet ports emulate the wireless links between the SWMN nodes when 

these nodes are joined with Ethernet cables. In terms of storage, Lanner units offer Serial 

ATA interface and a Compact Flash interface. To load the SWMN PE software, a Compact 

Flash Card of 4-gigabyte is partitioned into two separate planes. One of the planes is loaded 

with Linux image and binary file for data plane of SWMN PE software and the other plane 

with file system of Linux. Furthermore, Cavium Networks also offers extensive set of C-
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libraries which help in controlling certain set of features that the chipset offers e.g. Quality of 

Service features [42] [48].  

 

Figure 5.11: Wireless mesh network with Lanner MR-730 units in NSN Mobile Backhaul Advanced 

laboratory. 

Figure 5.11 shows the proof-of-concept demonstrator system with Lanner MR-730 network 

processor platforms arranged in partial mesh topology through Ethernet cabling. During the 

validation process Ethernet cabling is used to emulate the wireless links between SWMN 

nodes. Ethernet cabling ensures reliable and less loss during communication between nodes 

when compared to varying characteristics of wireless medium. Thus the SWMN concept has 

also been successfully validated using real wireless link by replacing few Ethernet 

connections with millimeter wave wireless links [40]. 

The SWMN nodes are synchronized based on IEEE 1588v2 PTP. For this, the SWMN nodes 

are connected to an external switch to which a desktop computer is also connected such that a 

LAN is formed where PTP synchronization messages are exchanged by PTP daemon 

software in the nodes and the desktop computer. The desktop computer is configured to be 

the master clock and the nodes as slave clocks. Periodically the master clock sends the 
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synchronization messages for the slave clocks to synchronize. Then control plane of the PE 

software in the SWMN nodes sends the PTP-corrected time information regularly to data 

plane for schedule synchronization.  

The traffic used in the SWMN network is Ethernet traffic with support for specifying the 

required QoS through VLANID and PCP fields in the 802.1Q header. The VLANID specifies 

the destination node in the mesh and the PCP value represents the Quality of Service class. 

The traffic is injected into SWMN nodes through the client management port. The traffic 

sources that could be used to introduce traffic are Spirent Test Center traffic generator and 

PackEth software in Linux PC. The Spirent Test Center provides extensive set of 

measurement tools to conduct rigorous performance testing. Additionally, it allows data of 

desired traffic type, data rate, frame length and priority to be injected into client port of a 

SWMN node and receive at client port of another SWMN node to perform traffic analysis. 

Traffic generation through PC involves usage of vconfig and ifconfig utilities to modify 

VLANIDs and IP address configuration which ensures that right kind of Ethernet packet is 

sent through the client port of Lanner MR-730 equipment [42].  

For the purpose of validation the topology varies from one test case to other, however a 

common reference topology used is a real-life small deployment topology in Arlington 

Heights, a suburb of Chicago. Due to the limitation of number of GbE port in Lanner MR-

730, the Arlington Heights topology had to be slightly modified to accommodate the 

limitations of the emulator platform. 

Wireless mesh protocol software 

The protocol software in the Lanner MR-730 platform mainly consists of data plane running 

on one of the Octeon processors cores and control plane in separate Octeon core as is 

depicted in Figure 5.12. The control and data plane are written in C programming language. 

The control plane is configured to run in daemon mode on top of Debian Linux. During the 

operation of a SWMN node, the control plane is responsible for synchronization and neighbor 

discovery procedures. Whenever the node receives a configuration message from WCC, the 

control plane parses it to extract route and link schedule information. This information is used 

to compute local forwarding table, path preferences and scheduling so that it is used by data 
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plane to forward packets. The communication between control planes of any two SWMN 

nodes is through the Link State Update messages. 

 

Figure 5.12: SWMN protocol software running on Octeon processor [42]. 

The data plane handles all the packet forwarding tasks between the gigabit Ethernet ports and 

also packets from client management port, also known as User-to-Network (UNI) interface. 

The data plane sends link status information to control plane by performing low level link 

testing. The communication between the control plane and data plane is through shared boot 

memory blocks or internal messaging provided by the Octeon processor. The protocol 

software also offers a comprehensive set of debugging options which can be used to validate 

the proof-of-concept system. 

5.3.2 WCC SW 

The WCC software is implemented using Python programming language. This software 

consists of route and link-schedule computing algorithm, and the intelligence to carry out 

topology management functions. Additionally, it is responsible for establishing and 
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maintaining a logical connection with the gateway backhaul nodes. This connection is used to 

send network configuration and obtain topology change information from gateway nodes.  

To observe the topology management functions performed by the WCC, a graphical 

visualization, which depicts the active network topology, computed routing paths and link-

schedule information is implemented in the WCC PoC software. 

5.3.3 Simulator Environment 

As mentioned earlier, in order to verify the WCC functionalities and performance parameters 

such as scalability among other things, usage of only emulation platform is not feasible. 

Moreover, in complex topologies, the link addition/removal and node addition/removal 

involves laborious tasks such as manually unplugging/plugging the Ethernet wires and 

powering up/shutting down the nodes. This requirement led to the development of a simulator 

platform for simulating large topologies with multiple SWMN domains and various network 

growth and failure scenarios. The simulator is written in Python and is based on SimPy 

discrete–event simulator. The simulator is able to randomly construct and modify topology 

incrementally based on simple deployment, failure and repair probability models. To offer 

flexibility, automation, and repeatability in creating and executing test scenarios, the 

simulator provides script based topology generation along with events to toggle the states of 

nodes or links. A mix of both random and script based topology generation is also possible. 

The topology generation and modification is made simpler through an interactive Graphical 

User Interface (GUI) webpage which is implemented using JavaScript (d3js), HTML and 

Cascading Style Sheets (CSS). The webpage receives or sends topology updates from or to 

the simulator through a webserver written in Python. The simulator implements most of 

control plane functionalities such as TCP connection to WCC, handling of Topology Change 

Report (TCR) and configuration message among other things. Additionally, it partly models 

the network connectivity to WCC to ensure that TCRs from the nodes are able to reach WCC. 

Furthermore, the simulator uses networkx and matplotlib python libraries for graph functions 

and visualization respectively. Through this visualization, the simulator is able to display the 

current physical topology and states of nodes and links in the network. The simulator 

visualization depicts nodes, links and their various states such as broken, scheduled and 
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unscheduled and the domain of a node. Figure 5.13 shows an example of simulator 

visualization along with the notation followed for representing nodes, links and their states.  

To track the events occurred in topology, the simulator creates an event log which stores the 

duration, event type and the event related information. This event log can be further fed as an 

input script to the simulator to reproduce the test scenario. The types of events supported by 

the simulator are creating a node, toggle node state, create a link and toggle link state. 

 

Figure 5.13: Sample topology in simulator visualization  

5.4 Summary 

This section describes the test specification and design for the different topology management 

functions implemented in the WMN centralized controller (WCC). The defined test cases 

validate the correct operation of the topology manager in scenarios of autonomous network 

build-up, node/link addition, node/link removal and domain split/domain merge. 

Furthermore, the scalability of WCC was also verified to ensure that the topology manager is 

capable of handling large topologies and future node additions. To decide on the system to be 

used for testing, various validation systems were considered, but, finally a dedicated topology 

simulator was developed to simulate the specified topology management scenarios. The 

simulator is built using python libraries, and also contains an interactive graphical user 

interface for easy creation of various network scenarios. An emulator platform consisting of 

Lanner MR-730 running the SWMN PE was also used during the verification process to 



Supreeth Herle, 2015  65 
 

prove the working of topology management functions in the network scenarios involving 

traffic. 
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6 TEST RESULTS 

The validation environment and the test cases to validate the topology management 

functionalities have been presented in Chapter 5. In this chapter, the results of the test cases 

are discussed in detail.  

Sections 6.1 to 6.4 provide the validation results of validation and their analysis.  Section 6.5 

draws conclusion on the overall findings in the validation process and mentions the future 

research topics in this concept.  

6.1 Autonomous network build-up 

Results of autonomous network build-up 

As mentioned earlier in Section 5.1.1, the motive behind this scenario is to verify the ability 

of autonomous network build-up in the proof-of-concept demonstrator system. To conduct 

the validation, the process starts off with running the WCC program in a Linux PC that has its 

Ethernet port connected to the management port of Lanner MR-730 unit which acts as a 

gateway. This step is followed by the powering up the gateway node and generic nodes 

incrementally along with connecting the GbE mesh ports of the nodes with Ethernet cables. 

However, the SWMN system offers the flexibility in order of deployment by allowing the 

generic nodes to be powered on first and connecting the gateway node last. In Figure 6.1, it 

can be observed from the highlighted WCC log messages that whenever there is a change in 

the physical topology WCC receives a Topology Change Report (TCR) message. Similarly, 

from the gateway‟s control plane messages, we can observe that when a gateway node is 

powered up, it tries to connect to WCC through a TCP socket and then sends a TCR with its 

own Hardware ID (HWID) to WCC. Upon receiving the TCR, WCC performs topology 

management procedures and sends a configuration message to the gateway node. The 

topology diagram produced by the WCC visualization is an effective tool in illustrating the 

incremental network build-up. It is also useful in verifying the number of links and nodes 

included in the active topology after topology optimization. Figure 6.2 shows the incremental 

network build-up starting from only the gateway node till the detection of all the 6 nodes 
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mentioned in the test scenario. The final topology diagram in Figure 6.2 also shows the 

optimum route for Ethernet traffic of two different priority classes with orange color link. 

 

Figure 6.1: Control message exchange between gateway node and WCC during gateway node installation. 

 

Figure 6.2: Active topology depicted by the WCC visualization tool. 

Furthermore, the new node detection procedure mentioned in Chapter 5 is verified through 

control plane message exchange between new nodes and the nodes already existing in the 

SWMN. This can be seen in Figure 6.3 which shows the neighbor discovery procedure 

between node 6 and node 7, where node 6 is the new node added and the node 7 is already 

part of the mesh network. Upon addition of all the nodes, the computed routing and link-

schedule information by the WCC is depicted in Figure 6.4 and 6.5. In the figures, we can 
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observe that there are two alternate routes to the gateway node, also known as spanning trees 

and the link-schedule contains 4 time slots for data transmission. 

 

Figure 6.3: Neighbor discovery procedure between Node 6 and Node7. 

 

Figure 6.4: Routing paths for the test topology. 

For verification of the routing information computed by the WCC, the client ports of node 1 

and node 6 are connected to transmitting and receiving ports of the Spirent traffic generator 

for traffic measurements. Further, VLANID is provided in the configuration file of the WCC 
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for communication between node 1 and node 6. Using the Spirent Test Center, the traffic to 

be sent is configured with the above mentioned VLANID, a priority (PCP) and a data rate. 

For the testing purpose, the configured VLANID value is 8 and PCP value is 5 (101), 

corresponding to high priority traffic e.g. video. 

 

Figure 6.5: Link-schedule for test topology. 

 

Figure 6.6: Packet captured in Spirent test center. 
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Figure 6.6 shows the traffic received at the receiving port of Spirent test center. The reception 

of transmitted packets with proper mapping of VLANID and priority value as seen in Figure 

6.6 verifies the correctness of the routing information. Furthermore, traffic with undefined 

VLANID was sent but was not received at the receiving port of the Spirent test center. Hence, 

the routing mechanism works as expected. In order to verify the link-schedule information, 

the client ports of node 1 and node 6 are connected to a Linux PC with VLANID configured 

to the value mentioned in WCC configuration file. The configured length of a transmission 

slot is 200 microseconds. This value is chosen because of the delay and throughput 

requirements laid down for 4G and 5G mobile networks. A longer transmission slot defies the 

delay requirement whereas in the case of a shorter slot, the throughput of data transmission is 

affected. 

 

Figure 6.7: Packet captured for link-schedule verification in Wireshark. 

For purpose of testing, ping utility is used in a Linux machine connected to node 1 to send 

traffic with an interval of 200 microseconds. The received packets at node 6 are sniffed using 

Wireshark tool. From the computed link-schedule information in Figure 6.5, we can deduce 

that data transmitted from node 1 takes 3-4 transmission slots plus an additional control slot 

in the schedule to reach node 6. Hence, a packet transmission must occur in around 1 

millisecond intervals. Thus, from the packet timestamps in Figure 6.7 we observe that 

transmission of ping packets occurs in about 1 millisecond with a slight deviation of few 

microseconds. The deviation is mainly caused due to timing inaccuracies between the Lanner 

MR-730 unit and the Linux PC. Overall, the link-schedule computed by the WCC and the 

scheduling mechanism work according to the SWMN concept in the demonstrator system. 
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6.2 Node addition/deletion 

Results of nodes insertion/removal with ongoing traffic in mesh network 

This test case is a typical scenario during deployment of base stations wherein there is an 

already established network infrastructure. Additionally, traffic is flowing in this network and 

new base stations are added to improve the coverage or offload the data traffic. In the case of 

node removal, the test case resembles a base station failure scenario or manual shutdown of 

base stations for energy saving. The addition of new nodes or removal of existing nodes is 

expected to not cause disturbance in the traffic flowing in the network. Additionally, all the 

added/removed nodes must be detected and included/excluded in/from topology management 

procedures such as topology optimization, and route and link-schedule computations. The 

verification process involves making traffic measurements during node insertion/removal and 

detection of all the nodes inserted/removed to/from the network respectively. 

 

Figure 6.8: Topology visualization showing the new nodes added into the mesh network. 

To execute this test case, the initial test topology is setup by powering up the nodes and 

connecting them according to the given test topology. Once the initial topology is setup, the 

client ports of node 1 and node 8 Lanner MR-730 units are connected to the configured 

transmitting and receiving ports of Spirent test center. In the next step, the traffic in Spirent 

test center is configured with a data rate of 40 Mbps, priority of H2 (e.g. video) i.e. PCP 
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value is 101 and VLANID of 10. Finally, traffic is measured for the duration of 60 seconds 

before and after nodes insertion/removal. Figure 6.8 shows the inclusion of newly added 

nodes into the active topology computed by the WCC which is depicted through the WCC 

visualization tool. The inclusion or exclusion of nodes in the active topology verifies that the 

nodes are included or excluded in the route and link-schedule computation. 

Trial 1 
Measurement before 

addition of new nodes 

Measurement after 

addition of new nodes 

Transmitted frames 287357 287357 

Received frames 287357 287357 

Dropped frames (%) 0 0 

Average latency (microseconds) 983.713 1066.25 

Minimum latency (microseconds) 357.01 515.99 

Maximum latency (microseconds) 6675.77 19394.83 

Trial 2 
  

Transmitted frames 287357 287357 

Received frames 287357 287357 

Dropped frames (%) 0 0 

Average latency (microseconds) 1075.833 1229.135 

Minimum latency (microseconds) 429.12 518.11 

Maximum latency (microseconds) 6466.85 20217.91 

Table 6.1: Traffic statistics from Spirent test center before and after insertion of new nodes. 

It can be seen from the Table 6.1 that no packets are dropped during node insertion but there 

is a huge rise in the maximum latency in the measurements taken after node insertion. This is 

due to the peak delay caused during the broadcast of the new configuration message from 

WCC to all the nodes. 

Similar to the node addition scenario, in the node removal scenario the nodes are removed 

from the network while the traffic is flowing in the SWMN network. Figure 6.9 represents 

the active topology from the WCC visualization tool verifying the exclusion of removed 

nodes from the network. 
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Figure 6.9: Topology verifying the removal of nodes from the mesh network. 

Trial 1 
Measurement before 

node removal 

Measurement after 

node removal 

Transmitted frames 287357 287357 

Received frames 287357 287357 

Dropped frames (%) 0 0 

Average latency (microseconds) 1176.015 1238.885 

Minimum latency (microseconds) 516.9 599 

Maximum latency (microseconds) 10348.96 19309.96 

Trial 2   

Transmitted frames 287357 287357 

Received frames 287357 287357 

Dropped frames (%) 0 0 

Average latency (microseconds) 1140.862 1228 

Minimum latency (microseconds) 513.89 463.25 

Maximum latency (microseconds) 11002.42 23794.76 

Table 6.2: Traffic statistics from Spirent test center before and after removal of nodes. 



Supreeth Herle, 2015  74 
 

For testing, the client ports of node 1 and node 9 are connected to Spirent test center and 

traffic is configured with the parameters used for the node addition scenario but with H3 

(PCP value of 100) traffic priority class and VLANID of 11. The traffic measurements in 

Table 6.2 proves that ongoing traffic is unaffected by the removal of nodes from the mesh 

network by resulting in no packet loss. However, there is variation in the maximum latency 

before and after node removal due to the delay caused in distributing the new configuration 

message. The new configuration is always re-computed by the WCC due to the network 

topology change such as removal of node as in this test case. Thus it can be concluded that 

the topology manager works as expected when nodes are added into the network or removed 

from the network. 

Results of gateway node insertion 

Validation of the topology management functions during new gateway node insertion 

involves verifying the detection of newly inserted gateway node by the WCC, inclusion of 

new gateway in route and schedule computation and depicting the topology change in the 

visualization. This test case is verified using the simulator with initial test topology as shown 

in the Figure 5.5. The initial test topology is setup using a text file containing scheduled node 

and link addition events given as an input to the simulator. The simulator executes these 

events in the defined chronological order which is reflected in the visualization. This process 

can also be accomplished by manually creating the topology using the interactive GUI 

provided by the simulator. Once the initial test topology is created, a new gateway node is 

inserted using the input file with a properly timed node addition event which contains the 

node‟s coordinates in the topology, event time, node type. Alternatively, the gateway can be 

added in the simulator GUI by clicking with keyboard key combinations on the point where 

the node is to be inserted. Following this step, the topology manager must be able to detect 

the new gateway node, which can be seen in the WCC log messages as shown in Figure 6.10.  
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Figure 6.10: WCC log message indicating the detection of new gateway with HWID 3 inserted to the mesh 

network. 

Upon detecting the topology change, the topology manager re-configures the network after 

re-calculating the active topology, routes and schedule information by taking the new 

gateway node into account. Figure 6.11 shows the change in topology with the gateway node 

with Hardware ID (HWID) 3 appearing in the re-configured active topology. 

 

Figure 6.11: WCC visualization depicting the change in topology due to new gateway insertion. 

Furthermore, this test case also validates the ability of the topology manager to take 

advantage of the newly inserted gateway node to optimize the routes and schedules between 

the SWMN nodes. This can be verified from Figure 6.12 that shows the difference between 

the number of hops taken for communication between the nodes before and after the new 

gateway node insertion. Thus, topology management functions performed due to gateway 

node insertion work as expected. 
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Figure 6.12: Change in the hop count between SWMN nodes due to new gateway inserted into network. 

 

Results of gateway node removal 

The test case aims at validating the topology management function in case of gateway node 

failure. In a network that contains two gateways, if one of the gateways fails, only the 

remaining gateway must be taken into consideration for topology optimization, route and 

link-schedule computation. The verification of topology management functions performed 

during gateway node failure includes detection of the failure, comparing routes computed by 

the WCC before and after removing one of the gateway nodes and transition of auxiliary 

gateway to primary gateway in the simulator visualization. 
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Figure 6.13: Simulator visualization depicting the gateway node failure in the network. 

 

Figure 6.14: Alternative set of routes generated before gateway node removal. 

The initial test topology provided in Chapter 5 for the gateway node removal is set up in a 

similar way as for gateway addition scenario. Upon setting up the initial topology in the 
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simulator, the primary gateway (node 1) is removed from the topology. In Figure 6.13, the 

colored rings and squares around the nodes represent the domain to which the node belongs 

to. Also, the gateway nodes are differentiated from generic nodes by being represented as 

green nodes enclosed inside a colored square. It can be inferred from the simulator 

visualization that the auxiliary gateway takes the role of primary gateway upon existing 

primary gateway failure. The generated set of routes for the gateway node in Figure 6.14 and 

6.15 can also be used to verify this test case scenario. 

 

Figure 6.15: Alternative set of routes generated after primary gateway node removal. 

In Figure 6.14, we observe that the routes were generated including the auxiliary gateway as 

part of route and topology optimization mechanisms but once the primary gateway is 

removed, the alternative set of routes generated contain routes originating only from the 

auxiliary gateway (node 18) as shown in Figure 6.15. This verifies detection of gateway node 

failure by the topology manager. Thus, the WCC is effective in handling the gateway node 

failure scenarios and works according to the concept. 
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6.3 Link addition/deletion 

Result of testing inclusion of a link into active topology when discovering a new link  

This test scenario serves as a mean to verify the topology optimization feature of WCC. The 

test case involves setting up the topology optimization parameters and adding a new link 

between two SWMN nodes already existing in the mesh network in such a way that topology 

optimizer includes the new link into active topology. Once the new link is added to active 

topology, the link can be scheduled for data transmission at times mentioned in the 

recomputed link-schedule information. The verification process involves examining the 

active topology and the WCC log messages to validate the new link addition. Initially, the 

test topology is setup as given in the Figure 5.7, and one of the topology optimization 

parameters such as the maximum number of links per node is set to 4 in the WCC 

configuration. In this test case, a new link is added between node 1 and node 7, by injecting a 

link addition event to the simulator. Here, the number of links in the end nodes is less than 

the max limit of 4. Thus, it can be assumed that the new link will be included in the active 

topology after topology optimization. 

 

Figure 6.16: WCC log message indicating the new link added to the topology. 

From Figure 6.16 it can be observed that WCC detects the new link added through a TCR 

sent by node 1 to WCC. Upon detection of change in physical topology, the physical 

topology is fed as an input to topology optimizer to calculate the active topology and the 

result of this can be observed in Figure 6.17. Thus, it can be seen that the new link is included 

into active topology and the topology optimizer module works as expected. 
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Figure 6.17: Change in active topology visualization due to new link addition. 

 

Result of testing exclusion of a link from active topology when discovering a new link 

This test case validates the topology optimization module by forcing the topology optimizer 

to optimize the links per node that can be active. Similar to link addition scenario, the initial 

network topology is built up according to the test topology given in Figure 5.8 and the 

optimization parameter of maximum number of links per node is set to 4.  In the next step, a 

new link is added between existing SWMN nodes (node 2 and node 11), by injecting a link 

addition event to the simulator. It can be observed from the topology before link addition that 

node 2 and node 11 have the number of outgoing links equal to 4. Hence, adding an 

additional link between these nodes forces the topology optimizer to optimize the topology in 

such a way that the number of outgoing links in each node remains within the maximum limit 

of 4. The topology manager keeps track of the non-scheduled links i.e. links not included in 

the active topology and may re-activate these dormant links based on further changes in the 

topology, traffic conditions in the network and other network optimization parameters. 
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Figure 6.18: WCC log messages indicating de-activation of link between nodes. 

The verification of topology optimization involves examining the active topology 

visualization, WCC log messages indicating the links not included in the route and schedule 

re-computation and simulator topology depicting physical and active topology. As can be 

inferred from Figure 6.18, the new link added between node 2 and node 11 is detected but 

after re-optimization of topology, the link between node 2 and node 5 and also the link 

between node 10 and node 11 are excluded from active topology. 

 

Figure 6.19: WCC visualization depicting the topology optimization due to addition of new link. 

Figure 6.19, presents the change in the topology after addition of a new link between node 2 

and node 11 resulting in network re-optimization. It can be observed from the topology 

diagram that the number of outgoing links in node 2 and node 11 is maintained at the 
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configured maximum limit. Thus, it can be deduced that topology optimization mechanism 

correctly adheres to the maximum links per node as one of the optimization parameters. 

Results of link removal between nodes with ongoing traffic in the link 

This test scenario targets the case of prolonged or very frequent link breaks which requires 

the topology manager to intervene and re-compute and re-optimize the routing and schedule 

information. The verification of topology management procedures during link-breaks 

involves introducing a link break in a stable network and observing the re-configured 

topology. Furthermore, to measure the effect on traffic in the network while responding to 

link-breaks, traffic with low data rate is transmitted in the link which undergoes the link-

break. For this test case, the emulation demonstrator platform is used with the initial topology 

given in Figure 5.9. The client ports of node 1 and node 6 are connected to transmitting and 

receiving ports of Spirent test center and L1 priority traffic of 20 Mbps data rate and with 

VLANID 8 is introduced for the duration of 120 seconds. Upon introducing the traffic in the 

link, a link break is created by unplugging the Ethernet cable between node 7 and node 6. The 

packet loss and delay are measured before and after the link-break. 

 

Figure 6.20: WCC log messages indicating the link-break between node 6 and node 7. 

It can be inferred from Figure 6.20 that the network is effective in detecting and notifying of 

the link-break through a topology change report sent by node 6. As a result of the topology 

change, the topology manager re-configures the topology by excluding the broken link from 

topology optimization, route and schedule re-computation phases. Upon re-configuration, the 

traffic is re-routed along the new optimum path as seen in Figure 6.21. 
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Figure 6.21: Topology visualization before and after link-break between node 6 and node 7. 

Trial 1 
Measurement before 

link-break 

Measurement after 

link-break 

Transmitted frames 287357 287357 

Received frames 287357 285462 

Dropped frames (%) 0 0.659 

Average latency (microseconds) 1275.169 10448.872 

Minimum latency (microseconds) 423.76 643.71 

Maximum latency (microseconds) 14461.13 911309.78 

Trial 2   

Transmitted frames 287357 287357 

Received frames 287357 285489 

Dropped frames (%) 0 0.650 

Average latency (microseconds) 1184.338 10509.473 

Minimum latency (microseconds) 423.31 593.58 

Maximum latency (microseconds) 2243.06 911188.59 

Table 6.3: Traffic statistics from Spirent test center before and after link-break. 
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From Table 6.3 we can observe that there is very small amount of dropped frames when there 

is a link-break. Packet loss is mainly due to delay in detecting Ethernet link-breaks and the 

timeout concept in the WCC to prevent unnecessary network re-configuration. Another 

noticeable change in traffic statistics is the huge rise in the mean latency because of peak 

packet delays occurring immediately when the Ethernet cable is unplugged and also during 

the network re-configuration. Overall, the link-break detection and the topology management 

functions due to link-break work as specified. 

6.4 Domains split or merge 

Result of testing domain splitting 

As mentioned in Chapter 5, the SWMN nodes are grouped together forming SWMN 

domains. This is one of the steps in the topology optimization procedure which depends on an 

optimization parameter of maximum allowed nodes in a domain. In this test scenario we 

consider an initial topology with two gateway nodes and the total number of nodes less than 

the configured value of maximum nodes in a single domain. The initial test topology, shown 

in Figure 6.22, consists of 35 nodes while the maximum number of nodes under a domain is 

set to 40 nodes.  This initial topology can be created by using the random node deployment 

feature of the simulator which takes the number of generic nodes, gateway node IDs and 

gateway node positions as parameters. Furthermore, links between randomly mounted nodes 

are generated using parameters such as the maximum number of links between nodes, 

minimum number of neighbors, minimum distance between neighbors and radio range. From 

Figure 6.22 it can be observed that all the nodes have been circled with a ring having the 

same color i.e. silver denoting that all the nodes belong to the same domain. In the next step, 

6 generic nodes are added to initial topology. This causes the total number of nodes to be 

greater than the maximum limit in a domain, which results in the split of the domain into two 

after topology re-optimization. The process of domain splitting can be verified by Figure 6.23 

which represents the simulator topology visualization after domain splitting.  
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Figure 6.22: Initial topology with single SWMN domain in simulator visualization. 

 

Figure 6.23: Domain split in the simulator topology visualization. 

Figure 6.23 presents two SWMN domains differentiated by gold and silver rings around the 

nodes. All the nodes in with gold-colored rings communicate with WCC through gateway 

node 3 and have a different set of alternate routing paths and link schedules than the nodes 
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with silver-colored rings. Meanwhile, nodes with silver-colored rings use gateway node 15 to 

communicate with WCC and vice versa for configuration message distribution. Thus, the 

operation of splitting up of domain as part of topology optimization works as described. 

Result of testing domain merging 

Similar to domain splitting, domain merge is also one of the tasks involved in topology 

optimization if two neighboring domains have the total number of nodes less than the 

configured maximum number of nodes in a domain. The initial test topology for testing 

domain merge can be setup more or less the same way as for domain split scenario. However, 

here the sum of number of nodes in the SWMN area must exceed the maximum domain size. 

Figure 6.24 shows the initial topology with 41 nodes with the maximum domain size of 40.  

In the next step, 6 nodes are removed such that the total number of nodes in both domains 

combined becomes less than the maximum domain size. This causes the topology optimizer 

to merge the two domains into a single domain containing two gateway nodes. This can be 

verified from the topology visualization in the simulator as shown in Figure 6.25. The single-

colored domain rings around nodes indicate the process of domain merging. 

 

Figure 6.24: Initial topology with two SWMN domains in simulator visualization. 
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Figure 6.25: Domain merge in the simulator topology visualization. 

 

6.5 Scalability 

Results of testing scalability with respect to the number of nodes in a domain 

The test scenario aims at validating the scalability in terms of the number of nodes that can be 

accommodated in a single domain containing one gateway node. The number of nodes in a 

domain has a direct relation to the configuration message size produced by WCC. In this test 

case, the maximum number of nodes in a domain is configured to 100 nodes, and the 

topology is created with a single gateway followed by randomly mounting 100 nodes. 

Ideally, all the nodes would be included into the domain. But the actual outcome of testing is 

visualized in Figure 6.26 which presents the topology output in the simulator. In Figure 6.26, 

it can be observed that all nodes are not configured by the WCC. Since the length of the 

configuration message produced by the WCC exceeded the maximum value of Ethernet 

frame size (1500 bytes) causing the topology build to be interrupted. A total of 70 nodes were 

included in the domain out of the 100 randomly deployed nodes. Additionally, re-

computation time of route and link-schedules by WCC increases with the rise in number of 

nodes in a single domain. 
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Figure 6.26: Topology visualization in simulator for testing scalability of nodes in a single domain. 

 

Figure 6.27: WCC log message indicating the error during re-computation of configuration message. 

Figure 6.27 presents the error message provided by the WCC in the event of too large 

configuration message size. However, by increasing the maximum message size in the 

configuration allows all the nodes to be configured and included in the domain but those 

setups would not be possible in real SWMN nodes without changing the structure and 

mechanism of how the new configuration from WCC is distributed to the network nodes. 

Overall, all the nodes get configured to a single domain as long as the configuration message 

fits in an Ethernet frame. 

Results of testing scalability with respect to number of nodes in a SWMN area 

This test case aims at validating the scalability of WCC in handling a large number of 

domains and nodes in a SWMN area. The verification process involves adding of nodes up to 

a point where WCC is no longer able to accommodate any more nodes in any of the domains. 

To test the limit of scalability, the number of randomly deployed generic nodes in the 

simulator is chosen to be 250. To make it possible for all the nodes to be configured by WCC, 



Supreeth Herle, 2015  89 
 

a total of 8 gateway nodes are used and the value of maximum nodes in a domain is set to 30. 

As a result, all the nodes are included in one of the 6 domains formed as shown in Figure 

6.28. The domains are represented by gold, silver, white, brown, blue and black colored rings 

around the nodes. However, the limiting factor in this test case is the Generic Node Id 

(GNID) numbering scheme implemented in the current WCC PoC SW which restricts the 

maximum number of nodes in a SWMN area to a value of 255. 

 

Figure 6.28: SWMN area with 250 nodes in simulator topology visualization. 

6.6 Discussion and future work 

The topology management functionalities of WMN Centralized Controller (WCC) have been 

properly validated and they work as described in the SWMN concept specifications. For the 

purpose of testing, both emulation and simulation platforms were used. The errors and 

inconsistencies found in WCC were used as a baseline for development towards a working 

product. The emulation platform using the Lanner MR-730 interoperates as intended with the 

WCC. However, in early stages of testing, minor bugs such as crashing of SWMN nodes due 

to a large configuration message size and large delays in node detection when using small 

schedule slot lengths were experienced. However, these bugs were resolved alongside the 

development of WCC and the PE softwares. The simulator platform was purely developed for 
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extensive validation of topology manager module by mimicking only the control plane 

functionality of emulator nodes. The PE and WCC PoC code provided was of high quality 

and well documented. This was possible due to excellent programming efforts by VTT and 

accurate concept documentation and specification by Nokia Networks. 

The overall objective of this testing process was to verify the topology management features 

supported by WCC during network deployment scenarios e.g. addition of nodes and links, 

and network changes due to node failures and link breaks. Furthermore, testing was needed to 

be carried out in traffic scenarios to justify that the concept works with traffic flowing in the 

network and does not require the traffic to be interrupted due to network expansion or 

maintenance. The results of the verification have been explained and the reasoning behind the 

results has been provided.   

During the time of writing this thesis, the WCC PoC included modules such as route 

computation, link-schedule computation, basic topology optimization, network configurator 

and VC provisioning. With these modules, the WCC provides effective topology 

management mechanisms features, which facilitates autonomous network build-up and 

optimized network operation for a 5G mobile backhaul network. The modules which are yet 

to be defined and implemented in WCC include network status monitors, access control and 

energy saving control. The increased use of wireless SON techniques for the mobile backhaul 

requires strict authentication and access control of SWMN nodes being added to the network. 

The access control must make sure that a new node added is from a trusted source and 

prevent a rogue node from gaining access to the SWMN and cause harm to the transport and 

access network. At present, a framework of Authentication, Authorization, and Accounting 

(AAA) is under consideration for access control. 

As mentioned earlier, Link State Update (LSU) messages are used to communicate between 

the SWMN nodes about the link state. In the current implementation, LSUs report link states 

but it would be beneficial for network monitoring if LSUs were to report interface specific 

packet loss, packet delay and jitter. This information could potentially be used by the WCC to 

estimate the overall traffic distribution and carry out capacity analysis. However, the 

throughput of network would be affected if all the LSUs were reported. Hence, it is necessary 

to filter the LSUs at the gateway node before reporting to WCC. As part of OAM scheme, the 
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WCC could use this information to monitor the network and carry out suitable topology 

management procedures. 

Finally, from the perspective of an operator, there is a need for minimizing the energy costs. 

Therefore, effective energy saving mechanisms need to be implemented which help in 

reducing the power consumption by putting the least burdened nodes and links to sleep, and 

activating them when there is a demand. This leads to a challenge of developing smart energy 

saving algorithms that takes the network state as a parameter and go on to decide the links 

and nodes that need to be put to sleep, and to wake up so that the resulting routes and link-

schedules are optimal. 

6.7 Summary 

The topology management modules implemented in WMN Centralized Controller at the time 

of writing this thesis were route computation, link-schedule computation, VC provisioning, 

topology optimizer, topology manager and WMN configuration. All topology management 

concepts implemented using these modules have been verified and they were proven to be 

feasible and realizable. The validation setups performed well in all the validation scenarios. 

No major bugs were found in the demonstrator or simulator systems. Minor bugs were 

experienced in the demonstrator system during early stages of testing, but they were resolved 

alongside the development of the WCC. Above all, it is noteworthy to mention that the 

software implementations in the nodes and in the WCC were of high quality and well 

documented. Future areas of research in this concept involve defining implementations of 

access control, network monitoring mechanisms and energy saving control mechanisms. 
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7 SUMMARY AND CONCLUSION 

The mobile data consumption is increasing very rapidly and is set to increase even more in 

future. The main reasons behind this growth are the increased usage of smartphones and 

tablets, and access to mobile networks at an affordable price. To cope up with the capacity 

demand for the mobile data, mobile networks are evolving towards providing higher link 

capacity and user Quality of Experience. The third generation of mobile networks introduced 

to data rates of several megabits per second and an all-IP core with packet switched voice 

service. In fourth generation of mobile networks, flatter network architecture was introduced 

along with the higher data rates than in the previous generation networks. However, faster 

radio access and upgraded macro network capacity alone will not be able to tackle the whole 

capacity problem. The concept of heterogeneous networks introduced in the fourth generation 

of mobile networks is seen as an effective solution to increase coverage and capacity. The 

concept behind heterogeneous networks is cell densification, where small cells are used to 

enhance the coverage and capacity in a macro cell area. In fifth generation of mobile 

networks, transmission at millimeter wavelength band and sophisticated antenna technologies 

are being considered to achieve more capacity and higher throughput 

A mobile backhaul is the connecting transport network between the radio access network and 

core network. The backhaul links mainly use copper cables, optical fibers and microwave 

links. Similar to access networks, the technology employed in backhaul networks has also 

evolved from TDM based technology and ATM to IP/packet based technology, offering more 

transport capacity in a cost effective manner. Providing a cost-effective mobile backhaul 

solution becomes challenging with the increasing deployments of small cell networks in a 

magnitude much greater than the number of deployed macro cells. Since small cells are also 

deployed in unconventional locations such as rooftops, street lamps and other utility poles, 

providing a wired backhaul solution is generally not possible. Wireless small cell 

backhauling methods involve for example the use of microwave or millimeter wave radio. 

However, an optimal backhaul solution for a small cell must satisfy the requirements of high 

throughput, low delay, high availability, resiliency and support for Quality of Service and 

traffic engineering. 
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The concept of Self-Optimizing Wireless Mesh Network (SWMN) as a backhaul solution for 

small cells is jointly studied and developed by Nokia Networks and VTT. According to this 

concept, the backhaul nodes residing in the base stations are connected in the form of a 

partial mesh using directional Point-to-Point millimeter wave radio links. This concept also 

employs self-organizing capabilities such as self-configuration in the form of automated 

neighbor discovery and link-establishment, self-healing through robust and automated 

resiliency scheme and self-optimization by offering provision for flexible QoS scheme, 

congestion control and load balancing mechanisms. In addition to these, the concept also 

includes a central intelligence called the Wireless Mesh Network Centralized Controller 

(WCC), which is responsible for topology management. Topology management is an 

automated mechanism to handle changes in the topology. This mainly involves topology 

configuration, optimization, route computation, link-schedule computation, network 

monitoring and energy saving mechanisms. 

Testing of topology management functionalities was required alongside the development of 

WMN Centralized Controller. As part of my master‟s thesis and to carry out testing on large 

topologies, it was necessary to develop a simulator, which could also help in creating 

complex network scenarios. For validating the SWMN system, extensive test cases were 

planned and executed, targeting each of the modules used in topology management. 

Furthermore, an initial part of my thesis also involved testing the feasibility of WCC on the 

proof-of-concept demonstrator system. The test cases designed to test the topology 

management functionalities involves autonomous network build-up with live traffic 

scenarios, node/link addition, node/link removal and domain splitting/merging. 

Overall, in all of the test cases the WCC worked as specified, and the simulator and 

demonstrator system performed well throughout the validation process. No major errors were 

found in the WCC implementation. Minor bugs appeared in the demonstrator system in the 

initial stages of testing the feasibility, but these were resolved through extensive debugging. 

Thus, the main objective of this master‟s thesis can be considered to be fully and successfully 

completed. The topics for future research in the development of WCC include network status 

monitoring, access control and energy saving mechanisms. 



Supreeth Herle, 2015  94 
 

REFERENCES 

[1] Cisco, "Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 

2013–2018," 2014. 

[2] Julius Robson, "Small Cell Backhaul Requirements," Next Generation Mobile Networks 

(NGMN), June 2012. 

[3] Andrea Goldsmith, Wireless Communications.: Cambridge University Press, 2005. 

[4] Ericsson, "Mobile Data Surpasses Voice," 2010. 

[5] Ericsson, "Ericsson Mobility Report," 2014. 

[6] Lourens O. Walters and P. S. Kritzinger, "Cellular networks: past, present and future," 

vol. 7, no. 2, p. 4, December 2000. 

[7] Jyri Hämäläinen. Radio Communication Systems - General high level system 

architecture of mobile networks. 

[8] Rajesh Chundury, "Mobile broadband backhaul:Addressing the challenge," Ericsson, 

2008. 

[9] Adachi Fumiyuki, "Wireless Past and Future - Evolving Mobile Communication 

systems," IEEE, 2001. 

[10] Tinatin Mshvidobadze, "Evolution Mobile Wireless Communication and LTE 

Networks," IEEE, 2012. 

[11] Pankaj Sharma , "Evolution of Mobile Wireless Communication Networks-1G to 5G as 

well as Future Prospective of Next Generation Communication Network," vol. 2, no. 8, 

pp. 47-53, August 2013. 

[12] Amit Kumar, Yunfei Liu, Jyotsna Sengupta, and Divya , "Evolution of Mobile Wireless 



Supreeth Herle, 2015  95 
 

Communication Networks:1G to 4G," vol. 1, no. 1, December 2010. 

[13] Vasco Pereira and Tiago Sousa, "Evolution of Mobile Communications: from 1G to 

4G," University of Coimbra, 2004. 

[14] Jingyuan Zhang and Ivan Stojmenovic, "Cellular Networks," University of Alabama, 

University of Ottawa, Cananda, 2005. 

[15] 3GPP. Releases. [Online]. http://www.3gpp.org/specifications/67-releases 

[16] Harri Holma and Antti Toskala , WCDMA For UMTS - HSPA Evolution and LTE, 4th 

ed.: John Wiley & Sons Ltd., 2007. 

[17] Sauter Martin. (2010, January) WirelessMoves - The Most Important 3GPP Features 

From Release 5 to 10. [Online]. 

http://mobilesociety.typepad.com/mobile_life/2010/01/the-most-important-3gpp-

features-from-release-5-to-10.html 

[18] 4G Americas, "4G Mobile Broadband Evolution," White Paper 2014. 

[19] Rysavy Research, "Mobile Broadband Explosion," 4G Americas, 2013. 

[20] Alcatel Lucent, "Introduction to Evolved Packet Core," White Paper 2009. 

[21] Per Beming et al., "LTE-SAE architecture and performance," Ericsson, 2007. 

[22] Alastair Brydon, "Summary of 3GPP Standards Releases for LTE," 2012. 

[23] Afif Osseiran et al., "Scenarios for 5G mobile and wireless communications: the vision 

of the METIS project," 5G Wireless Communications Systems: Prospects and 

Challenges, vol. 52, no. 5, pp. 26-35, 2014. 

[24] Ericsson, "More than 50 Billion Connected Devices," 2011. 

[25] Bernhard Raaf et al., "Vision for Beyond 4G Broadband Radio Systems," in Personal 

Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International 

http://www.3gpp.org/specifications/67-releases
http://mobilesociety.typepad.com/mobile_life/2010/01/the-most-important-3gpp-features-from-release-5-to-10.html
http://mobilesociety.typepad.com/mobile_life/2010/01/the-most-important-3gpp-features-from-release-5-to-10.html


Supreeth Herle, 2015  96 
 

Symposium on, Toronto, 2011, pp. 2369 - 2373. 

[26] Gerhard Fettweis and Siavash Alamouti, "5G: Personal Mobile Internet beyond: What 

Cellular Did to Telephony," , vol. 52, 2014, pp. 140-145. 

[27] 4G Americas, "4G Americas' Recommendations on 5G Requirements and Solutions," 

White Paper 2014. 

[28] Juniper Networks, "Mobile Backhaul Reference Architecture," 2009. 

[29] Juniper Networks, "Universal Access and Aggregation Mobile Backhaul Design Guide," 

2013. 

[30] Esa Metsala and Juha Salmelin , Mobile Backhaul.: John Wiley and Sons, 2013. 

[31] NGMN Alliance, "LTE Backhauling Deployment Scenarios," Next Generation Mobile 

Networks (NGMN), White Paper 2011. 

[32] Orawan Tipmongkolsilp, Said Zaghloul, and Admela Jukan, "The Evolution of Cellular 

Backhaul Technologies:Current Issues and Future Trends," vol. 13, no. 1, pp. 97 - 113, 

February 2011. 

[33] Small Cell Forum, "Backhaul Technologies for Small Cells," 2013. 

[34] NGMN Alliance, "Guidelines for LTE Backhaul Traffic Estimation," Next Generation 

Mobile Networks (NGMN), White Paper 2011. 

[35] AT&T Radio Technology Group, "Constrained Backhaul Simulations for Small Cells," 

2012. 

[36] (2012, July) 3GPP TS23.203 - Policy and charging control architecture. 

[37] Ericsson, "Microwave Capacity Evolution," 2011. 

[38] Pekka Wainio et al., "Mobile Networks Evolution for Individual Communications 

Experience(MEVICO) – Innovative Solutions for Mobile Backhaul," Celtic 



Supreeth Herle, 2015  97 
 

Telecommunication Systems, 2012. 

[39] Seppo Hamalainen, Henning Sanneck, and Cinzia Sartori, Eds., LTE Self-Organising 

Networks (SON): Network Management Automation for Operational Efficiency.: Wiley, 

December 2011. 

[40] David T Chen, Joseph Schuler, Pekka Wainio, and Juha Salmelin, "5G Self-Optimizing 

Wireless Mesh Backhaul," in IEEE Conference on Computer Communications, 2015. 

[41] Kari Seppänen, Pekka Wainio, and Tapio Suihko, "Self-optimizing Last Hop Backhaul 

Network for 5G ," in WCM, 2015. 

[42] Tuomas Taipale, "Feasibility of wireless mesh for LTE-Advanced small cell access 

backhaul," Aalto University, Espoo, 2012. 

[43] Kari Seppänen, "Detailed specification of directional WMN protocols and algorithms," 

2010. 

[44] Pekka Wainio et al., "Mesh SON Wireless Backhaul Baseline," Nokia Networks, 2014. 

[45] Kari Seppänen , "Wireless Mesh Network, Algorithm Update," MEVICO, 2012. 

[46] Kari Seppänen, "Analysis of existing ToP standards for WMN internal clock 

synchronization and time signal distribution," DiMeRTS, 2011. 

[47] Jorma Kilpi, Jori Paananen, Kari Seppänen, Tapio Suihko, and Pekka Wainio, 

"TM+WCC concept functional specification," Nokia Networks, 2014. 

[48] Lanner. (2012) MR-730 datasheet. [Online]. http://www.lannerinc.com/download-

center/Datasheets/Network-Processing-Appliances/MR-730_DM 

 

http://www.lannerinc.com/download-center/Datasheets/Network-Processing-Appliances/MR-730_DM
http://www.lannerinc.com/download-center/Datasheets/Network-Processing-Appliances/MR-730_DM

