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Speech is the most natural way through 
which humans communicate, and today 
speech synthesis is utilised in various ap-
plications. However, the performance of 
modern speech synthesisers falls far short 
from the abilities of human speakers—syn-
thesising intelligible and natural sounding 
speech with desired contextual and speaker 
characteristics and appropriate speaking 
style is extremely difficult. This thesis aims 
to improve both the naturalness and expres-
sivity of speech synthesis by proposing new 
methods for voice source modelling in sta-
tistical parametric speech synthesis. With 
accurate estimation and appropriate model-
ling of the voice source signal, which is 
known to be the origin for several essential 
acoustic cues in spoken communication, 
various expressive voices are created with 
high degree of naturalness and intelligibility. 
Evaluations in various listening contexts 
show that speech created with the proposed 
methods is assessed to be more suitable than 
that generated with current techniques, thus 
providing potentially large benefits in many 
speech synthesis applications. 
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Abstract 
Speech is the most natural way of human communication, and thus designing a machine that 

imitates human speech has long fascinated people. Only rather recently, due to digitisation of 
speech and increase in computing power, this goal has become feasible. Although speech syn-
thesis is used today in various applications from human-computer interaction to assistive tech-
nologies, the performance of modern speech synthesisers is far from the abilities of human 
speakers. 

The ultimate goal of text-to-speech (TTS) synthesis is to read any text and convert it to intel-
ligible and natural sounding speech with the desired contextual and speaker characteristics. 
Meeting all of these goals at once makes this task extremely difficult. Moreover, the quality of 
the speech signal cannot be compromised since humans are very sensitive in perceiving even 
the slightest artefacts in a speech signal. 

This thesis aims to improve both the naturalness and expressivity of speech synthesis by de-
veloping speech processing algorithms that utilise information from the speech production 
mechanism. One of the key algorithms in this work is glottal inverse filtering (GIF), which is 
used for estimating the voice source signal from recorded speech. The voice source is known to 
be the origin of several essential acoustic cues used in spoken communication, such as the fun-
damental frequency, but it is also related to acoustic cues underlying voice quality, speaking 
style, and speaker identity, all of which contribute to the naturalness and expressivity of speech. 
Accurate modelling of the voice source is often overlooked in conventional speech processing 
algorithms, and this work aims to improve especially this shortcoming. 

In this thesis, two new GIF methods are first proposed that can be used for improved estima-
tion of the voice source signal. Secondly, several novel voice source parameterization and mod-
elling methods are developed that can be used in statistical parametric speech synthesis (SPSS) 
to improve naturalness and expressivity. Thirdly, using GIF and the voice source modelling 
methods in the context of SPSS, expressive voices are created that aim to cover various human 
speaking styles used in everyday spoken communication. Finally, the created synthetic voices 
are assessed using extensive subjective evaluation in different listening conditions. The results 
of the evaluation show that the naturalness and expressivity of synthetic speech can be en-
hanced using the techniques proposed in this thesis, and that the voices are perceived to be 
more suitable in various realistic contexts. Thus, the methods presented in this thesis provide 
a large potential to enhance the naturalness, expressivity, and suitability of speech synthesis in 
various applications. 

Keywords statistical parametric speech synthesis, voice source modelling, glottal inverse 
filtering, voice quality, expressive speech synthesis 
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Puhe on ihmisten luonnollisin tapa kommunikoida, ja siksi puhetta tuottavan koneen suun-

nittelu on jo kauan kiehtonut ihmisiä. Kuitenkin vasta viime vuosikymmeninä puhesynteesistä 
on tullut käytännössä mahdollista, mikä suureksi osaksi on johtunut puheen digitaalisesta esi-
tysmuodosta ja kasvaneesta laskentatehosta. Vaikka puhesynteesiä käytetään nykyään monen-
laisissa sovelluksissa, kuten ihmisen ja tietokoneen vuorovaikutuksessa sekä avustavassa tek-
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tavaa, minkä lisäksi puhesignaalin laatu pitää olla erittäin hyvä, koska ihminen on hyvin herkkä 
havaitsemaan pienimpiäkin virheitä puhesignaalissa. 

Tämän väitöskirjan tavoitteena on parantaa sekä puhesynteesin laatua että ilmaisuvoimaa 
kehittämällä puheenkäsittelymenetelmiä, jotka tarkemmin hyödyntävät informaatiota pu-
heentuoton toimintatavasta. Yksi tämän työn tärkeimmistä menetelmistä onkin äänilähteen 
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Preface

This project started in 2007 when Prof. Paavo Alku recruited me to de-

velop technology for speech synthesis. Originally, I had started my stud-

ies at the Helsinki University of Technology (currently Aalto University)

aiming to major in signal processing and acoustics, since I had a great

interest in sound and music. Due to my thesis topic, I ended up doing re-

search on speech, which was not a bad choice after all. The first results of

the project showed tremendous potential, and I started to get really inter-

ested in the topic. Despite the occasional unavoidable moments of doubt

while doing PhD research, I decided to continue the journey deeper into

speech synthesis. After all, the positive decision was easy, for which I am

grateful to many people.

First of all, I would like to thank my supervisor Prof. Paavo Alku, who

has supported my research at every stage. No matter what I have pro-

posed to do research on, he has always given me encouraging and positive

feedback and given the freedom to dive into topics that really interest

me—this has kept my motivation towards this work really high. In ad-

dition to great guidance, he has been a truly invaluable source of infor-

mation, especially in topics related to speech production and analysis. He

has also provided me with a financially secure position, which has given

the required amount of confidence and continuity to this work. Finally,

he has been a great boss to me by never telling exactly what to do, but

instead he has subtly shared ideas to trigger the researcher in me.

Speech synthesis has a long history at the Department of Signal Pro-

cessing and Acoustics. During 1973–80 and 1987–90, Prof. Matti Kar-

jalainen (in memoriam 1946–2010), the founder or the acoustics lab, and

Prof. Unto K. Laine were developing speech synthesis by rule, a modern

method at the time. I ended up being part of the next phase of speech

synthesis research at Aalto University, which would not have been pos-
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Preface

sible without the long-term research on speech synthesis by the speech

research group at the University of Helsinki, and in particular that by

Prof. Martti Vainio and my closest colleague Antti Suni. Combining the

knowledge of these two groups has been the foundation of this successful

research.

Most of the research happens when working on a computer, but many

of the most relevant ideas and research directions emerge when sitting

down with one’s colleague for a discussion (or a beer). I am deeply grate-

ful to Antti Suni for years of fruitful collaboration on this research topic.

It has been a pleasure to develop and share ideas with Antti and draw

inspiration from his deep knowledge in speech synthesis, especially the

linguistic aspects. I also want to thank Prof. Martti Vainio for sharing his

ideas, and especially for always being enthusiastic about every aspect of

research in speech synthesis, which has helped this work a lot.

I am also grateful to the co-authors of the publications in this thesis:

Harri Auvinen for performing the Markov chain Monte Carlo computa-

tions; Samuli Siltanen for providing ideas and contributing to the writing

and mathematical equations; Brad H. Story for providing physically mod-

elled synthetic speech data; Junichi Yamagishi for years of collaboration

and sharing his expertise and ideas, Hannu Pulakka for helping me with

dozens of things while getting used to the work of a researcher; Jani Nur-

minen for sharing ideas and giving feedback at the time the research was

funded by Nokia; Lauri Juvela for running listening tests; Thomas Drug-

man for years of collaboration, good discussions, and sharing his expertise

on several issues; Jouni Pohjalainen for helping me record the shouting

database (which was pretty fun stuff); John Kane for enthusiastic collabo-

ration and sharing ideas; and Christer Gobl for feedback to an article and

a lovely Gaelic dinner with his charming family. I am also grateful to all

my co-authors in publications not presented in this thesis.

I am really grateful to all the people in the acoustics lab who have pro-

vided a really unique and inspiring working environment. First, I want to

thank all my current and former office roommates: Toni Hirvonen, Carlo

Magi (in memoriam 1980–2008), Jouni Pohjalainen, and Lauri Juvela, for

all the laughs, informal and professional discussions, and also the relaxed

atmosphere where working is easy and efficient. Equally well I want to

thank all the people with whom I have shared the lab, enjoyed lunch, and

had various interesting discussions, and of course, played table football

and built all kinds of things from Legos (thanks to Ville Pulkki). I am
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grateful to you all: Mikkis, Olli S., Antti, Tapani (especially for the band),

Hannu, Jouni, Manu, Magge, Okko, Symeon, Akis, Emma, Jussi R., So-

foklis, Sami, Seppo, Dhanu, Jukka (especially for the nice company dur-

ing occupational and recreational travels), Tomppa, Reima (especially for

good climbing company), Henkka, Jussi P. (especially for the mobile phone

orchestra), Mairas (for Lausumo), Ville P., Unski (especially for various in-

teresting discussions), Heikku, Marko, Henna, Javier, Juha, Miikka, Ju-

lia, Ville S., Ilkka, Teemu, Jykke, Vesa, Catarina, Olli R., Heikki, Mikko

K., Julian, Alessandro, Rémi, and all the rest of the current and former

lab colleagues who could not fit into this short list. I also want to thank

Heidi, Hynde, Lea, Mara, Markku, Mirja, Ulla, and Tarmo for taking good

care of all the practical issues in the lab. I also want to thank Prof. Simon

King for collaboration and hosting me during my 6-month visit at CSTR

at the University of Edinburgh. I want to thank all the colleagues and

friends at CSTR, especially Tom, Rasmus, Cassia, Gustav, Oliver, and my

office roommate Shinji. I also want to thank Luis Costa for proofread-

ing my thesis, and the pre-examiners of the thesis, Prof. Steve Renals

from the University of Edinburgh and Assistant Prof. Jon Gudnason from

the Reykjavik University, for their valuable comments on improving the

thesis. I am also grateful to the whole speech research community for

the encouraging and enthusiastic research atmosphere and for organis-

ing wonderful conferences around the world.

My work has been funded by several organisation, and I am really grate-

ful to them all for both the money and for seeing that speech synthesis is

really a topic worth investing all the time and money. During the years my

work has been funded by the Academy of Finland, Nokia, Graduate School

at Aalto University School of Electrical Engineering, Aalto University

Multidisciplinary Institute of Digitalisation and Energy, European Com-

munity’s Seventh Framework Programme Simple4All, and Finnish Fund-

ing Agency for Technology and Innovation (Tekes). I have also been sup-

ported in the form of personal grants by the Nokia Foundation, Emil Aal-

tonen Foundation, Finnish Science Foundation for Economics and Tech-

nology (KAUTE), HPY Research Foundation, and Research and Training

Foundation of TeliaSonera Finland Oyj.

They say time is money, but it is more. I have used many long days and

evenings doing this research not mainly for the money, but for the interest

in this fascinating topic. At the same time I have also been privileged to

spend time with my wonderful friends and various inspiring persons. I am
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very grateful for all the cheerful times with you. Finally, I would like to

express my warmest gratitude to my parents, Eija and Matti, my brother

Arimatias, and my sisters, Tuovi and Jenni, for all the joy and support

over the years. Regarding the topic of this thesis, I want to express special

thanks to my father and grandfather Pentti (in memoriam 1930–2014)

who evoked the interest in music and sound in me, which I have been

following since then in my own way.

Espoo, March 17, 2015,

Tuomo Raitio
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1. Introduction

“The limits of my language means the limits of my world”

— Ludwig Wittgenstein

“What did you do yesterday?”—Such a simple query, but how would you

give an answer to this question without speech and language? Communi-

cation between people using speech and language is certainly one of the

most important abilities we have, and it comes so naturally to us that we

do not pay much attention to it. The richness of human language enables

us to communicate arbitrarily complex meanings to other people, which

to a large extent constitutes our everyday lives. We use our language for

managing mundane social tasks as well as for creating and enjoying art,

cherishing culture, enhancing our environment, and in developing tech-

nology and science—even our own experiences are partly governed by the

inner speech.

Speech is the most natural mode of human communication, which has

been the driving force underlying several significant advances in speech

technology. Today, due to digital speech transmission and mobile phones,

communication using speech is no longer dependent on the location of

the speaker or listener. Digitisation of speech and advances in comput-

ing power and methodology have also enabled various speech technolo-

gies that imitate the human ability to speak and understand speech. Au-

tomatic speech generation (i.e., speech synthesis) and automatic speech

recognition (ASR) have a wide range of existing and potential applica-

tions, and currently various international companies are heavily invest-

ing in these technologies, aiming at better services and products for their

customers. At the same time, fundamental methods for these speech tech-

nologies are being developed in academia. New speech technologies are

also used in various assistive technology applications to help people with

disabilities. These emerging technologies have already provided an im-
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pressive demonstration of future ubiquitous speech technology, which find

applications wherever speech is used—in practice almost everywhere.

Clearly the performance of speech synthesis and ASR is not comparable

to the human capability of producing and recognising speech. Speech syn-

thesis and recognition are challenging problems, and there is a lot of room

to improve the existing technologies. Although ASR already performs

very impressively even in slightly noisy environments, speech synthesis is

still lacking, for example, in the human capability of expression. The prob-

lem of speech synthesis is the vast variability of the desired output—while

in ASR, the goal is to reduce variability by estimating the most probable

word sequence corresponding to a spoken utterance, in speech synthe-

sis, there are virtually infinite ways of expressing one particular word

sequence. Modelling and generating speech (by computers) that has the

same desired variability as human speech, in terms of, say, speaker char-

acteristics, speaking styles, and emotions, collectively called expressivity,

is a problem that still requires several technological inventions. On top

of that, while modelling the expressive characteristics of human speech,

the quality of the speech signal cannot be compromised since humans are

very sensitive in perceiving even the slightest artefacts in speech.

This thesis aims at improving both the naturalness and expressivity of

speech synthesis. This is achieved by developing speech processing al-

gorithms that utilise information from the speech production mechanism

in order to better model various perceptually important acoustic cues in

speech. The voice source is known to be the origin for several essential

acoustic cues used in spoken communication, such as fundamental fre-

quency, but it is also related to acoustic cues underlying voice quality,

speaking style, and speaker identity, which all contribute to the natu-

ralness and expressivity of speech. The accurate modelling of the voice

source is often overlooked in conventional speech processing algorithms,

and this thesis aims at improving especially this aspect of speech synthe-

sis.

One of the key algorithms in this work is glottal inverse filtering (GIF),

which is used to estimate the voice source signal from a recorded speech

signal. The voice source signal, also called the glottal flow, depicts the

glottal air flow as a function of time and is further filtered by the res-

onances of the vocal tract cavities. By revealing this perceptually im-

portant signal, it is possible to quantify and parameterize perceptually

relevant cues in the voice source and reproduce them in speech synthesis
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based on the desired context. However, the estimation, parameteriza-

tion, and modelling of this important signal are challenging tasks. First,

considering that GIF is a difficult inverse problem, the GIF algorithm

must yield accurate and robust estimates of the voice source in order to

provide a useful starting point for the parameterization and modelling

stages. Second, the parameterization of the glottal flow must simulta-

neously preserve the perceptually most relevant cues while enabling the

use of statistical modelling methods in order to successfully reconstruct

the excitation signal in synthesis. The synthetic voices created using glot-

tal flow modelling must be finally evaluated by human subjects to show

possible improvements or cases which require more attention and fur-

ther work. By repeating this process of developing new effective speech

processing algorithms combined with suitable statistical modelling and

evaluation (without forgetting the development of front-end and prosody

modelling), naturalness and expressivity of synthesis can be enhanced

significantly, as is shown in this work.

This thesis consists of two parts. In the first part of the thesis, a gen-

eral overview is given on the topics relevant to this thesis, namely speech

production and perception, voice source estimation and parameterization,

and speech synthesis. In the second part of the thesis, the most significant

publications resulting from this work are attached and sorted according

to three topics. The first two publications (I, II) describe new GIF methods

that improve the accuracy of voice source estimation. The following four

publications (III, IV, V, VI) describe the integration of new speech process-

ing algorithms, such as GIF and new methods for voice source modelling,

into a vocoder, which is used for speech synthesis. The last three publi-

cations (VII, VIII, IX) as well as publication V use the developed speech

processing algorithms and the vocoder for synthesising expressive speech,

such as breathy and Lombard speech, shouted speech, and speech with a

tendency for a creaky voice.
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2. Speech production and perception

This section gives an overview on human speech production and percep-

tion. First, the speech production mechanism is described, concentrating

on the two main vocal mechanisms and their functions in speech produc-

tion: the glottal excitation and vocal tract. Also, a rough classification of

the speech sounds used in spoken language is given. The function of the

voice source in speech production is further elaborated by describing dif-

ferent voice qualities and phonation types and their functions in speech

communication. A simplified speech production model, the source-filter

theory, which is used in various speech processing applications, is also

described. The perception of speech is also discussed by first shortly de-

scribing the hearing mechanism and its main properties, after which the

acoustic cues for speech perception are highlighted. Finally, the proper-

ties of speech other than those having phonemic function are discussed,

such as coarticulation, prosody, and the effect of context and the speaker.

2.1 Speech production mechanism

Speech production can be described as a result of three main components:

the respiratory system, larynx, and the vocal tract. Speech is produced

by exerting air from the lungs through the trachea and regulating the

air flow at the larynx and the vocal tract. At the larynx, the air flow is

modulated by the vocal folds, which creates the main excitation for voiced

speech. The vocal tract, consisting of the pharynx, oral cavity, and nasal

cavity, shapes the spectrum of the modulated air flow by creating reso-

nances and antiresonances. The dimensions of the vocal tract can be vol-

untarily modified by the speaker to create various speech sounds, in which

case the vocal tract acts as a time-varying filter. Speech is finally radiated

through the lips and nostrils to the surrounding air as an acoustic speech
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Figure 2.1. Speech production mechanism.

wave. The speech production mechanism is illustrated in Figure 2.1.

The produced speech sounds can be roughly classified into two cate-

gories: voiced and unvoiced. The source of voiced speech sounds is the

vibratory motion of the vocal folds, which generates a quasi-periodic exci-

tation signal rich in harmonics. Voiced speech sounds form the main part

of most West European languages (Catford, 1977). For example, 78% of

phonemes in English are reported to be voiced (Catford, 1977). Unvoiced

sounds are created by constricting the airflow somewhere in the vocal

tract, which creates a turbulent noise source without a harmonic struc-

ture. Unvoiced sounds can be further classified according to the place and

type of constriction in the vocal tract, which is discussed in more detail

in Section 2.2. Many speech sounds, however, consist of both voiced and

unvoiced components.

2.1.1 Glottal excitation

The respiratory system functions both as an air reservoir and as a means

to exert air in a controlled manner to the upper parts of the vocal organs

for the production of speech sounds. In normal inhalation and exhalation,

practically no sound is emitted. In the case of voiced speech, the vocal

folds are adducted using the musculature in the larynx, which results in

a self-oscillating vibratory movement of the vocal folds because of the air

flow. This movement results in a modulation of the air flow into small

pulses. The vocal folds (or vocal cords) are two elastic ligaments in the

larynx extending from the thyroid cartilage to the arytenoid cartilages, of

which the latter controls the V-shaped opening between the vocal folds.

36



Speech production and perception

Vallecula 
Medial glossoepiglottic fold 

Epiglottis 
Tubercle of epiglottis 

Vocal fold 

Ventricular fold 

Aryepiglottic fold 

Cuneiform cartilage 

Corniculate cartilage 
Trachea 

Figure 2.2. Illustration of the larynx, depicted as seen looking down from the pharynx
towards trachea. The vocal folds are the two ligaments partly covering the
trachea (adapted from Gray, 1918).

Figure 2.3. Photograph of larynx in phonation.

This opening is called the glottis (Flanagan, 1972a), which is illustrated

in Figures 2.2 and 2.3. The behaviour of the vocal folds in phonation

is illustrated in Figure 2.4. Unlike voluntary muscle movement, vocal

fold vibration is a result of both aerodynamics and the elasticity of the

vocal folds (van den Berg et al., 1957). First, the subglottal pressure is

increased as air from the lungs is pushed upwards to the closed glottis.

As the pressure builds high enough, it forces the vocal folds to open grad-

ually. The air flow is increased, which creates an underpressure between

the vocal folds, which in turn with the elastic force of the vocal folds draws

the vocal folds back together. The main excitation of voiced speech is gen-

erated when the vocal folds hit together, which is seen as a strong neg-

ative peak in the glottal flow derivative signal. After the glottal closure,

the subglottal pressure begins to increase again, starting a new glottal

period. Since the upper and lower parts of the vocal folds have different

elasticity, there is a small time lag between their movements during the
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Figure 2.4. Behaviour of the vocal folds in phonation. The uppermost figure depicts the
different phases of the glottal flow vibration, shown as a horizontal-frontal
cross-section of the vocal folds. The two signals below represent the corre-
sponding glottal volume-velocity waveform (upper) and its derivative (lower)
(uppermost figure adapted from Story, 2002; Pulakka, 2005).

glottal cycle (O’Shaughnessy, 2000). The periodic air flow generated by

the vibrating vocal folds is called the glottal flow, glottal volume-velocity

waveform, or simply the voice source. The glottal flow is approximately

proportional to the glottal open area, and the glottal flow signal resembles

a half sine wave with a smooth opening and more abrupt closing.

The tension of the vocal folds can be controlled voluntarily by the

speaker to control the pitch and phonation type of speech. The rate

at which the vocal folds vibrate defines the fundamental frequency (f0) or

the pitch of speech. The pitch is determined by the mass, length, and ten-

sion of the vocal folds relative to the glottal air volume velocity. Increased

vocal fold length and tension increase f0 while increased mass decreases

f0 (Mathieson, 2000). For example, Peterson and Barney (1952) report

that the average f0 is around 132 Hz for males, 223 Hz for females, and

264 Hz for children. In an arbitrary utterance, f0 can vary from as low as

30 Hz up to more than 600 Hz, and a soprano singer can reach an f0 of

over 1300 Hz (Titze, 1994, p. 176).

The position and tension of the vocal folds, controlled by the laryngeal

muscles, and amount of airflow also determine the type of phonation. A

stronger vocal fold tension will result in a more abrupt glottal closure and

thus a louder and more tense speech will be produced. Different phona-

tion types are discussed in more detail in Section 2.3.
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In addition to the periodic glottal excitation, there is always some de-

gree of aperiodicity present in the voice source signal. The aperiodicity in

the voice source may stem from various phenomena, such as jitter, shim-

mer or waveshape change, or additive aspiration noise originating from

the glottis or above it (Rothenberg, 1974; Murphy, 1999; O’Shaughnessy,

2000). Especially with female speech, the higher harmonics of speech are

covered by strong aspiration noise due to the incomplete closure of the

glottis (Hanson, 1995). These small deviations in the quasi-periodic glot-

tal excitation may be a likely reason for the natural character of speech

that, for example, speech synthesisers have difficulties replicating. Alto-

gether, the various properties of the glottal flow (in addition to cues from

the vocal tract) leave a specific signature on a voice, giving cues for recog-

nising gender, age, and the speaker (Klatt and Klatt, 1990; Childers and

Lee, 1991) and possible special traits or pathologies in a voice (Gómez-

Vilda et al., 2009), which are all important properties when creating per-

sonalised expressive synthetic voices.

2.1.2 Vocal tract

The vocal tract consists of the pharynx and the oral and nasal cavities,

which together shape the spectrum of the glottal excitation and create

different speech sounds. The shape of the oral cavity can be adjusted by

moving, the larynx, tongue, cheek, and lips, which results in different

resonant effects called formants. The formant structure is used to dis-

tinguish one phoneme from another. The length of the pharynx can be

also slightly modified by raising or lowering the larynx. Also, by raising

or lowering the soft palate, the air flow through the nasal cavity can be

controlled. The vocal tract can be considered as a single tube extending

from the vocal folds to the lips, with a side branch to the nasal cavity. The

cross-sectional area of the vocal tract mostly defines the resonant effects,

but different speech sounds can be also created by constructing the air

flow at some point in the vocal tract. An illustration of the profile of the

vocal tract and the resulting vocal tract spectral envelope in phonation of

three different vowels is show in Figure 2.5.

The dimensions and shape of the vocal tract vary across males, females,

and children, and they also vary from person to person (Fant, 1960; Peter-

son and Barney, 1952; Hillenbrand et al., 1995; Story et al., 1995). There-

fore, the resonant structure, and thus the resulting spectral characteris-

tics of speech, are slightly different for each person. The personal differ-

39



Speech production and perception

[a] 

[i] 

[u] 

M
ag

ni
tu

de
 (d

B
)

M
ag

ni
tu

de
 (d

B
)

0 1 2 3 4

M
ag

ni
tu

de
 (d

B
)

Frequency (kHz)

Figure 2.5. Illustration of the vocal tract shapes and the corresponding vocal tract spec-
tral envelopes in phonation of the vowels [a], [i], and [u].

ences are smaller than the differences between different speech sounds,

but they (in addition to cues from the voice source) give each speaker a

characteristic timbre from which humans recognise speakers from each

other and can yield lots of information about, for instance, the gender or

age of a speaker.

2.2 Classification of speech sounds

Speech sounds can be classified in various ways. The classification of

speech into voiced and unvoiced categories based on the speech production

mechanism was already briefly described in Section 2.1. In this section,

the classification of speech sounds is elaborated further with a linguistic

perspective.

The simplest classification divides speech sounds into two groups: vow-

els and consonants. Vowels are voiced sounds that are produced by unre-

stricted airflow in the vocal tract. Different vowels are determined by

their formant structure, primarily by their first and second formants.

Vowels can be assumed to be quasi-stationary for short periods of time

(e.g., 25 milliseconds) since the movement of the articulations is relatively

slow. Vowels usually have a rather high energy that is concentrated at the

low frequencies. The number of vowels in spoken language slightly differs

depending on language and definition. The classification of vowels based

on the open-closed and front-back dimensions of the vocal tract by the
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Figure 2.6. IPA classification of vowels. Where symbols appear in pairs, the one to the
right represents a rounded vowel (from International Phonetic Association,
2005).

International Phonetic Association (IPA) is shown in Figure 2.6. The clas-

sification information can be utilised, for example, in speech synthesis for

clustering similar speech sounds for handling data sparsity.

Consonants can be either voiced or unvoiced, but they consist of a com-

plete or partial closure somewhere in the vocal tract. Many of the con-

sonants involve a sudden change in the articulators, due to which the

quasi-stationarity assumption as in the case of vowels, does not always

hold. Many consonants are also characterised by a lower energy that is

concentrated at the high frequencies. However, voiced consonants have

many characteristics similar to vowels. Consonants can be further clas-

sified according to the place and manner of articulation or voicing. For

example, the following classification can be used to categorise consonants:

• Plosives (e.g., [k], [p], [t], [g], [b], [d]) are produced by completely block-

ing the air flow at some point in the vocal tract and then suddenly

releasing the air flow. Plosives are characterised by a pause, which is

followed by a transient noise burst.

• Fricatives (e.g., [f], [h], [s]) are produced by forming a constriction at

some point in the vocal tract so that the air flow becomes turbulent,

which produces a relatively long noise-based excitation signal.

• Nasals (e.g., [m], [n]) are produced by opening the nasal tract by low-

ering the velum and closing the oral tract. Nasal sounds are charac-

terised by antiformants in addition to formants. Antiformants (i.e.,

spectral valleys) are created since the closed oral cavity traps speech

energy at certain frequencies.

• Approximants (e.g., [V] [l], [ô], [j]) usually involve a partial constriction
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Figure 2.7. IPA classification of pulmonic consonants. Where symbols appear in pairs,
the one to the right represents a voiced consonant. Shaded areas denote artic-
ulations judged impossible (from International Phonetic Association, 2005).

of the vocal tract but does not create a significant amount of turbulent

noise. Due to the partial constriction, antiformants are also produced

(Kent and Read, 1992).

• Other consonants, such as taps and flaps, where an articulator is

rapidly hit against another, or trills (e.g., [r]), where the air flow causes

an articulator to vibrate.

A detailed classification of pulmonic (produced by air pressure from the

lungs) consonants by IPA is shown in Figure 2.7. In addition to pulmonic

consonants, there are also non-pulmonic consonants, such as ejectives,

implosives, and click consonants, but they are rather rarely used in lan-

guages. Similar to the classification of vowels, the classification of con-

sonants can be utilised, for example, in speech synthesis for clustering

similar speech sounds.

2.3 Voice quality and phonation types

Humans can use their voice in multiple different modes depending on the

configuration of the glottis and the amount air pressure generated by the

respiratory system. There are multiple ways to characterise and classify

different voice qualities (for example, see Abercrombie, 1967; Ladefoged,

1971; Laver, 1980; Gobl, 1989; Klatt and Klatt, 1990; Gobl and Ní Cha-

saide, 1992; Gordon and Ladefoged, 2001). Based on a simplified function-

ing of the larynx, voice quality can be described as a continuum that is

determined by the aperture between the arytenoid cartilages (Ladefoged,

1971). The continuum spans from whisper, whispery, and breathy speech

to modal and finally to tense and creaky voice, as the aperture between

the vocal folds is decreased. In the following, a more detailed overview
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of different speech qualities is given in the order of the aforementioned

continuum. However, modal speech is described first since it is the most

common phonation mode to which all other voice qualities are compared.

Virtually all speech employs the modal register1, for which the function-

ing of the vocal folds was already illustrated in Section 2.1.1. In modal

speech, the vocal folds function in an efficient manner using moderate ad-

duction and achieving complete glottal closure. As a result, modal speech

is rather quasi-periodic with only small amounts of perturbations or aspi-

ration noise.

In whisper and whispery voice, the vocal folds form a small triangular

opening between the arytenoid cartilages, which results in a strong aspi-

ration component. In whisper, the vocal folds do not vibrate, and thus the

only excitation is the turbulent noise component. Whispery voice, how-

ever, contains also glottal vibrations, but the triangular opening makes

the glottal closure incomplete, and therefore it contains both a relatively

weak voicing component and a strong aspiration noise component.

In breathy phonation, the vocal folds vibrate in a less efficient manner

than in modal phonation, and due to the greater air flow in comparison to

the glottal flow vibration, there is also a strong aspiration component. The

glottal closure is often incomplete in breathy voice, which results in a re-

duced excitation peak at the instant of glottal closure. Therefore, breathy

voice is characterised by a steep spectral tilt, emphasising the low fre-

quency components.

If the adduction is higher than in modal speech, a tense voice quality

is produced. Due to the higher tension in the vocal folds, the air pulses

through the glottis become shorter and the glottal closures become more

abrupt. Therefore, tense voice is characterised by a decreased spectral

tilt, but the phonation is still rather quasi-periodic. Breathy, modal, and

tense speech, and their glottal and spectral characteristics are illustrated

in Figure 2.8.

Harsh voice has even higher tension than tense voice (Gobl and Ní Cha-

saide, 2003), and therefore the vocal folds do not vibrate in a normal peri-

odic manner. Harsh voice has additional aperiodicity and is characterised

by the perception of an unpleasant, rasping sound, caused by the irregu-

larities.
1Modal speech is often also referred to as normal speech, but in order to avoid
confusion with medically normal speech, the term modal speech is used in this
work.
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Figure 2.8. (a) Schematic illustration of the glottal configuration in breathy (left), modal
(middle), and pressed (right) phonation. (b) Waveform of a sustained vowel
[a] produced by a male speaker using the corresponding voice qualities. (c)
Corresponding glottal flow signals estimated with glottal inverse filtering. In
breathy phonation, the pulses are longer and there is no clear closed phase,
whereas in modal and pressed speech, the glottal flow pulses are shorter
compared to breathy phonation, and there is a clear closed phase between
pulses. (d) Spectra of the estimated glottal flow signals (only shown for 0–
2 kHz). The spectrum of breathy phonation shows a clear emphasis on the
fundamental frequency component. The spectral envelope is also steeper, and
there is more noise at the higher frequencies. In pressed phonation, the first
few harmonics are emphasised in comparison to modal and breathy speech.

Creaky voice, vocal fry, or laryngealisation is a register where the vocal

folds are tightly adducted and thus only a small amount of air is passed

in each glottal cycle (Blomgren et al., 1998). The open phase of the glot-

tal flow is extremely short and there is an abrupt glottal closure. Creaky

voice is usually produced with a very low fundamental frequency, and it

occurs often at the end of an utterance where the subglottal pressure is

low. Creaky voice may also involve a secondary excitation peak due to the

opening of the glottis (Gobl and Ní Chasaide, 1992; Blomgren et al., 1998).

The temporal excitation pattern of creaky voice can be rather regular if

the vocal folds can maintain the low frequency vibration, but often irreg-

ular excitation is observed. Creaky voice may also involve a diplophonic

excitation pattern (Hedelin and Huber, 1990), where long and short glot-
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tal cycles alternate. Creaky voice is characterised with the sensation of

perceiving individual pulses due to a low f0 and strong glottal closure.

According to another definition, creaky voice is used to describe a voice

quality with very high tension at the larynx, which results in an irregular

f0 and low intensity, whereas vocal fry or pulse register is characterised

with relaxed vocal folds and and a low f0 (O’Shaughnessy, 2000).

Finally, in the falsetto register, longitudinal tension makes the vocal

folds thin, and a small subglottal pressure is used so that the vocal folds

vibrate only by the edges of the ligament with only a very small ampli-

tude. The glottis closes only briefly or not at all and the rate of vibration

is high, resulting in a steep spectral tilt (Monsen and Engebretson, 1977)

and a high pitch, respectively. Falsetto is not normally used in speech, but

frequently in singing.

In medical applications, there are additional voice quality classes, such

as hoarse voice (see other voice quality classes, e.g., in Davis, 1979) which

is characterised by strong aperiodicity and aspiration noise, usually due

to a pathological condition of the vocal folds.

Different voice qualities and phonation types are used in spoken lan-

guage for several purposes. Although rare, phonation type has a linguis-

tic function in some languages (see, e.g., Laver and Trudgill, 1979; Gordon

and Ladefoged, 2001). Normally, voice quality is used for a paralinguis-

tic function, such as communicating intention, attitude, or affective state

(Gobl and Ní Chasaide, 2003). Voice quality or voice source dynamics play

an important role in prosody and intonation, signalling prominence or fo-

cus (Vainio et al., 2010; Yanushevskaya et al., 2010; Ní Chasaide et al.,

2011) in spoken utterances.

Humans also adapt their vocal communication to the acoustic and audi-

tory environment in order to successfully and efficiently deliver a message

to a listener without using unnecessary effort. This results in the adjust-

ment of vocal effort. For example, in environments with high levels of

interfering noise, more effort is required in order to increase the signal-to-

noise ratio (SNR) and thereby the intelligibility of speech. This automatic

effect, known as the Lombard effect, has been widely studied (Lombard,

1911; Junqua, 1993). Depending on the acoustic environment, speech is

produced at a different point in the vocal effort continuum (Raitio et al.,

2014c), ranging from whispery or soft through normal and finally to Lom-

bard speech and shouting. The change in the vocal effort can be trig-

gered by interfering noise (Summers et al., 1988) or the need to commu-
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nicate over a distance (Traunmüller and Eriksson, 2000), but also due to

a change in emotional expression (Ishi et al., 2010; Gobl and Ní Chasaide,

2003).

Shouting is the loudest mode of vocal communications and differs from

other phonation modes (Rostolland, 1982a,b, 1985). A shout is charac-

terised by an increased sound pressure level (SPL) and a higher f0 due

to the increased subglottal pressure and vocal fold tension, which also

results in an emphasis on the higher harmonics (Rostolland, 1982a; El-

liott, 2000). In very loud shouting, the phonation also becomes irregular.

Shouting is also less articulated and thus less intelligible than Lombard

or modal speech (Pickett, 1956; Rostolland, 1985).

2.4 Source-filter theory

Although the speech production mechanism is a single continuous physio-

logical apparatus, the contributions of the glottal excitation and the vocal

tract filter to speech can be determined rather independently. This no-

tion has led to the source-filter theory of speech production (Fant, 1960),

which considers the source and filter to be independent from each other.

The filter is assumed to be linear time-invariant (LTI), which means that

each short-time segment of speech is assumed to have constant parame-

ters without any interaction with the glottal source. These assumptions

are clearly simplifications, since the accurate physical description of the

generation and propagation of sound in the vocal organs leads to a com-

plex set of differential equations (Rabiner and Schafer, 1978). However,

the source-filter theory serves as a useful approach for various speech

technology applications, such as speech analysis, coding, and synthesis.

According to the source-filter theory of speech production (Fant, 1960),

speech can be uniquely represented as source and filter characteristics.

The primary sound source of voiced speech is the excitation generated

by the vibrating vocal folds, called the glottal flow. The spectrum of the

quasi-periodic glottal flow signal is rich in harmonics, whose energy de-

clines with increasing frequency on average by 12 dB per octave (Flana-

gan, 1972a; Kent and Read, 1992). In the case of unvoiced speech, the

sound source is assumed to be white noise arising from a constriction at

some point in the vocal tract, leading to turbulent air flow. The vocal tract

is assumed to be a tube that is closed at the glottis, open at the mouth,

and having a varying cross-sectional area. Since the diameter of the tube
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is small compared to the wavelength of relevant speech sounds, plane-

wave propagation can be assumed. The vocal tract modifies the glottal

flow spectrum by creating formants, or antiformants2 in the case of nasal

sounds. Finally, the spectrally modified glottal flow exits through the lips

and nostrils and radiates to the surrounding air as a sound pressure wave.

This process, transforming the air flow into a pressure wave, is called lip

radiation. It can be approximated by a time derivative of the flow, which

acts as a high-pass filter (Flanagan, 1972a) increasing the magnitude of

the spectrum approximately by 6 dB per octave. Assuming an LTI system,

where the source and filter are independent, the source-filter theory can

be stated in the z domain as

S(z) = G(z)V (z)L(z), (2.1)

where S(z) is the speech signal, G(z) the glottal excitation, V (z) the vocal

tract filter, and L(z) the lip radiation (Fant, 1960; Markel and Gray, 1980).

The lip radiation can be approximated by a first-order differentiator

L(z) = 1− ρz−1, (2.2)

where, depending on the definition, ρ is set to a constant close to, but less

than, 1. This differentiating operation is commonly combined with the

glottal source model G(z) so that the speech production model becomes

S(z) = Ĝ(z)V (z), (2.3)

where Ĝ(z) = G(z)L(z). The vocal tract filter V (z) is usually described

as an all-pole linear filter with complex conjugate poles. However, the

all-pole model is not ideal for modelling antiresonances, for example, in

nasal sounds (Rabiner and Schafer, 1978), which also requires zeros in the

transfer function. However, as suggested by Atal and Hanauer (1971), the

zeros can be modelled adequately by including more poles in the model.

Moreover, zeros are perceptually less important than poles (Malme, 1959;

Klatt, 1987), and thus an all-pole filter is usually a reasonable choice.

Very often linear prediction (LP) is used for estimating the filter part,

capturing the overall spectrum of speech. Therefore, the source spectrum

is forced to be approximately flat, ignoring the natural spectral properties

of the source. This approach has the benefit of simplicity without trying to

specifically estimate the separate contributions of the natural voice source

2In the case of nasal sounds, a more complicated tube model needs to be used to
model the three cavities: the pharynx, oral cavity, and the nasal cavity.
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Figure 2.9. Illustration of the source-filter model of speech production. (a) The excitation
signal of voiced speech generated by the vibrations of the vocal folds, which
produces a rich periodic spectrum, whose energy declines with increasing
frequency. (b) The vocal tract modifies the glottal excitation by forming reso-
nances. (c) The spectrum of the signal before radiating from the lips. (d) The
radiation of sound from the lips and nostrils to the surrounding air produces
an effect that enhances the higher frequencies of the signal. (e) The final
spectrum of the speech signal after the lip radiation.

and vocal tract filter, but it also limits the analysis and modelling of nat-

ural speech production, for which, for instance, glottal inverse filtering is

required (see Section 3.1). The schematic illustration of the source-filter

theory is presented in Figure 2.9. The detailed derivation of the theory

is presented, for example, in Fant (1960), Flanagan (1972a), and Rabiner

and Schafer (1978).

The simplifications made in the source-filter model naturally have some

implications that limit the accuracy of the modelled speech. The first is-

sue is the time invariance. For voiced speech sounds such as vowels, the

parameters of the quasi-stationary model vary rather slowly and thus the

model is sufficient, but for transient sounds, such as stops, the model is

not that accurate due to the rapid changes in the excitation signal. How-

ever, the model is still perceptually adequate for several applications. The

second limitation is the already mentioned incapability of modelling the

zeros if all-pole modelling is used. However, by adding more poles to

the model transfer function V (z), the lack of zeros can be partially com-

pensated (Atal and Hanauer, 1971). Thirdly, the model does not provide

means for modelling, say, voiced fricatives if a binary voiced/unvoiced de-

cision is assumed. Finally, the model does not take into account the in-
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teraction between the source and the filter and the nonlinearities therein.

The source-filter interaction has been widely studied (see, for example,

Rothenberg, 1981; Ananthapadmanabha and Fant, 1982; Ananthapad-

manabha, 1984; Fant et al., 1985b; Lin, 1987; Fant and Lin, 1987; Klatt

and Klatt, 1990; Teager and Teager, 1990). Effects such as skewing, rip-

ple, and damping of the glottal flow pulse due to the interaction have been

observed. Although articulatory synthesis experiments have not provided

significant perceptual improvements in speech naturalness when utilising

source-filter interaction (Nord et al., 1986; Lin, 1990), it cannot be con-

cluded that the source-tract interaction does not play an important role in

speech production and perception. Especially in speech processing appli-

cations that aim to modify or generate speech, the source-filter interaction

may be crucial for the naturalness of speech. The source-filter interaction

has not been used explicitly, for example, in statistical parametric speech

synthesis (Zen et al., 2009), which might be one of the reasons for the

unnatural speech quality, as is speculated in the studies by Merritt et al.

(2014); Henter et al. (2014).

2.5 Characteristics of hearing

The purpose of the hearing system is to transfer information conveyed by

the sound pressure waves into meaningful information for further pro-

cessing in the brain. The first component of the hearing system is the

ear, which consists of three regions. The first, the outer ear, consisting

of the pinna and the ear canal, funnels sound waves into the ear drum

and helps in the localisation of sounds. The resonance of the ear canal

boosts the frequencies in the 3–5-kHz range, which aids the perception of

sounds at these frequencies (O’Shaughnessy, 2000). The middle ear, con-

sisting of the ear drum and the ossicular bones, serves as an impedance

transformer between the air medium and the liquid medium of the inner

ear. There is a large boost in sound amplitude at 1 kHz due to the struc-

ture of the the middle ear, and it also acts as a low-pass filter above 1 kHz

(O’Shaughnessy, 2000). Finally, the ossicular bones transfer the vibra-

tions through the oval window and to the fluid in the cochlea in the inner

ear. The moving fluid makes the basilar membrane vibrate at different

positions for different frequencies, which results in hair cell movements,

causing frequency-dependent neuronal firings in the auditory nerve. The

neural information follows a pathway to the brain for further processing,
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Figure 2.10. Approximate hearing range in terms of frequency and sound pressure level
(SPL), and the most important area for speech perception thereof (adapted
from Rossing et al., 2002; O’Shaughnessy, 2000). SPL is defined Lp =

20 log10(prms/p0), where prms is the root mean square sound pressure, and
p0 is the reference sound pressure, both measured in Pa. Here p0 = 20μPa.

leading finally to the auditory cortex.

Human hearing ranges approximately from 20 Hz to 20 000 Hz (Rossing

et al., 2002), but since hearing most probably has evolved in parallel with

speech production, hearing is most sensitive at those frequencies relevant

to speech communication, that is, 200–5600 Hz (O’Shaughnessy, 2000).

The human hearing range with respect to the sound pressure level (SPL)

and frequency is illustrated in Figure 2.10. The range commonly used

in speech is also depicted, although the range depends slightly on the

speaker and the speaking style. For example, in shouting or whispering,

the SPL may be higher or lower than the depicted area, respectively.

The perception of sounds depends both on the frequency and the SPL,

but in a rather complex and nonlinear manner due to the behaviour of the

cochlea and the neural processing. The perception of pitch with respect

to the actual frequency is nonlinear due to the characteristics of the basi-

lar membrane; low frequencies make the basilar membrane vibrate over

a much wider area than high frequencies do. Therefore, the perceived

pitch with respect to frequency is logarithmic, and it can be approximated

using, for example, the mel-scale (Stevens et al., 1937)

m = 2595 log10(1 + f/700), (2.4)

where f is the frequency in Hz and m is the perceived pitch in mel

(O’Shaughnessy, 2000). For many applications, it is thus convenient to

describe the frequency-related quantities, such as pitch or formant fre-
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quencies, with perceptually weighted auditory scales instead of linear

frequency.

The basilar membrane consists of tonotopically organised hair cells

(O’Shaughnessy, 2000), which form the so called critical bands (Fletcher,

1938a,b). Critical bands are frequency bandwidths inside which the per-

ception of two tones interfere with each other. Critical bands can be

described by, for example, the Bark scale (Zwicker, 1961) or the equiv-

alent rectangular bandwidth (ERB) scale (Moore and Glasberg, 1983).

The perception of sound is highly dependent on the relative energies in

different critical bands as well as their distribution in time. This has

effects on loudness perception and gives rise to effects such as masking

(O’Shaughnessy, 2000) in time and frequency, and interference (Moore,

2002). Due to the masking effect in frequency (among other effects), the

spectral peaks are more easily perceived than spectral valleys (Malme,

1959), which is an especially important feature in speech perception,

where formants mostly define the identity of different speech sounds

while spectral valleys mostly affect the amplitudes of the nearby for-

mants (Klatt, 1987).

A common conception has long been that human hearing is not sensi-

tive to phase due to early studies on the topic (Ohm, 1843; von Helmholtz,

1863). Although phase information is perceptually not as important

as spectral information, subsequent studies (see, e.g., Schroeder, 1959;

de Boer, 1961; Plomp and Steeneken, 1969; Bilsen, 1973; Carlson et al.,

1979; Schroeder and Strube, 1986; Patterson, 1987; Moore and Glasberg,

1989; Moore, 2002) show that phase plays a perceptually important role

in certain signals, such as in speech (Carlson et al., 1979; Schroeder and

Strube, 1986; Pobloth and Kleijn, 1999; Laitinen et al., 2013; Drugman

and Raitio, 2014). The mechanism of phase perception is based on the

phase-locking of the neuronal firing in the cochlea. If a single sinusoid is

presented to the hearing system, the neuronal firing rate of the hair cells

shows a pulse for each period of the sinusoid corresponding to the specific

value of the phase of the sinusoid. Thus, a sound is perceived differently

if the neuronal firing between different frequencies are synchronous or

asynchronous.

However, phase perception is only limited to signals with a low repeti-

tion rate (i.e., f0 in speech) (Patterson, 1987). Since the electrical pulses

fired by the auditory nerves have a finite duration, the phase-locking ef-

fect is lost in the high frequencies (Joris et al., 1994). The pulse duration
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is 0.5–1.0 ms, depending on the neuron type and frequency (Joris et al.,

1994), and the temporal accuracy of hearing is approximately 1–2 ms with

impulsive signals (Moore, 1982). Various experiments on phase percep-

tion have been conducted. Patterson (1987) suggests that humans are

phase deaf for signals with repetition rate approximately above 400 Hz

but not below 200 Hz. In Laitinen et al. (2013), in-phase and random-

phase periodic signals with repetition rates from 50 Hz to 1600 Hz were

used as test stimuli, and the difference due to phase was found to gradu-

ally decrease with the repetition rate. Beyond 800 Hz, test subjects could

not reliably tell the difference between the two signals based on the phase

differences.

Phase perception has a complex dependency on repetition rate, signal

intensity, bandwidth, and phase characteristics (Patterson, 1987; Laiti-

nen et al., 2013). Humans are most sensitive to harmonic complex signals

in which the phases of the harmonics have certain fixed relations, such

as in speech, trumpet, and trombone (Laitinen et al., 2013). All these sig-

nals originate from a physiological sound source, that is, the fluctuations

of the vocal folds or lips. Phase perception has important implications

for speech technology, as the naturalness of most men’s voices and many

women’s voices, depending on the f0 of the speaker, is dependent on the

phase relation of the harmonic components (Patterson, 1987).

2.6 Speech perception

From physiological perspective, speech perception begins as the sound-

pressure waves of speech arrive at the ear and create neuronal firing in

the cochlea. The neural information is further processed to extract and

perceive acoustic cues for speech, and to classify this information into

meaningful entities based on the learnt language. Finally, the speech

information is used for higher level speech and language processing, for

example, using Wernicke’s and Broca’s areas in the brain.

In the auditory system, frequencies from 200 Hz to 5600 Hz contribute

most to the perception of speech signals (O’Shaughnessy, 2000). Hear-

ing is most sensitive in this frequency range, which is where most of the

speech energy is also concentrated. A speech signal can be band-limited

to about 10 kHz with only minor effects on its perception (Paliwal and

Kleijn, 1995), and rather intelligible speech can be obtained with a much

narrower bandwidth, such as is used in the traditional telephone band
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of 300–3400 Hz. However, the bandwidth corresponding approximately

to the full hearing range is required for reproducing completely natural

sounding speech. In speech synthesis, a sampling rate of 16 kHz is com-

monly utilised for simplicity, which enables reproducing frequencies up

to 8000 Hz. This yields rather good speech quality, although some higher

frequencies are lost. Also higher sampling rates can be utilised, such as

44.1 kHz or 48 kHz, which enable the reproduction of all frequencies in

human hearing.

From the human perspective, speech perception can be described us-

ing subjective terms such as intelligibility, naturalness, expressivity, and

speaker identity. All of these are ultimately defined by the acoustic prop-

erties of the speech signal, but different acoustic cues have varying de-

grees of relevance, depending on the measured quantity. For example,

natural speech contains multiple redundant acoustic cues for the percep-

tion of phonemes, but the irrelevant cues may have other functions, for

instance in terms of recognising the speaker. Most sounds are perceived

on a continuous scale as the acoustic cues change, but certain stimuli,

especially many speech sounds, are perceived categorically, that is, the

ability to discriminate two sounds depends on labelling them as linguis-

tically different. This has important implications in speech understand-

ing, where speech sounds with varying acoustic cues due to, say, context

and speaker, can be perceived to have the same linguistic meaning. Most

current TTS systems are able to deliver rather intelligent speech by re-

producing the required phonetic information but may not succeed in re-

producing all other cues that contribute to naturalness and contextual

aspects of speech. In the following, the most salient cues for recognis-

ing different speech sounds are described, after which other perceptually

relevant cues in speech are discussed.

Vowels are perceived when the sound is periodic and it has sufficient

energy and duration and a strong formant structure. Vowel perception

is relatively simple since the positions of the three first formants define

the vowel identity (Hillenbrand and Gayvert, 1993; Pickett, 1999). The

higher formants remain rather constant regardless of changes in articu-

lation. The perception of vowels is very sensitive to the formant location

in frequency and also to the formant amplitude, but less to its bandwidth.

The just-noticeable difference (JND) for the first and second formant fre-

quencies have been measured to be 3–5% of the centre frequency (Flana-

gan, 1972a). The formant amplitude JND is estimated to be 1.5 dB and
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3 dB for the first and second formants, respectively (Flanagan, 1972a).

However, changes in formant bandwidth (−3 dB) of the order of 20–40%

have been found to be just noticeable (Flanagan, 1972a).

The perception of consonants is more complex, since the categorisa-

tion is based on multiple cues, such as spectrum, amplitude, voicing,

and duration as well as on the interaction with surrounding phones

(O’Shaughnessy, 2000). Different consonants are often distinguished

from each other using cues such as noise burst frequency distribution,

voice onset time (VOT) (Lisker and Abramson, 1964), formant transitions

before and after the consonant, and duration of a closure.

However, several factors may alter the acoustic properties of the proto-

typical speech sounds, such as coarticulation, context, speaker, and speak-

ing style. In coarticulation, adjacent speech sounds become more similar

to each other due to the physical constraints of the articulatory move-

ments. Changing from one sound to another is performed in an efficient

manner so that the trajectories of the articulators are smoother. Thus, the

articulators might not be in the final position of each phoneme, but some-

where between that and that of the adjacent phoneme. This effect is also

called reduction, undershooting, or assimilation. Also, the hypothetical

boundaries between different (isolated) phonemes appear as a continu-

ous change from one phone to another, which makes it impossible to ex-

actly define a discrete point where one phoneme ends and the next begins.

This is illustrated in Figure 2.11, which shows a speech signal, its spec-

trogram, and the approximate boundaries between different phonemes.

Coarticulation is important for producing smooth and connected speech,

and it helps in auditory stream integration and continuity (Cole and Scott,

1974). However, in speech recognition, defining the boundaries of the un-

derlying phonemes based on the acoustic cues becomes difficult. In speech

synthesis, if coarticulation is not modelled, different speech sounds, such

as vowels and fricatives, are heard as two separate sound streams in-

stead of connected speech (O’Shaughnessy, 2000). Coarticulation is in-

creased in conversational, expressive, casual (hypo-articulated) speech,

and in speech with an increased speaking rate, while in formal, read-

aloud, and hyper-articulated or clear speech, coarticulation is decreased

(Lindblom, 1983). Coarticulation varies also in terms of speakers and

their motivation, emotion (Beller et al., 2008), and relation to the listener.

The rhythm, stress, and intonation of speech, collectively called as

prosody, is used to help the listener understand the message by pointing
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Figure 2.11. Spectrogram (upper) and the speech signal (lower) of a Finnish utterance
“Yksi hänen tulevis. . . ”. The aligned monophone transcription is shown be-
low the spectrogram. The hash (#) symbol denotes a silence.

out important words and creating logical breaks in the speech flow, thus

segmenting and highlighting speech. Prosody is also used to convey addi-

tional information, such as the utterance type (statement, question, com-

mand), irony or sarcasm, emphasis, contrast, focus, and emotional state of

the speaker. For example, emotions have a major effect on speech prosody

(Scherer, 2003; Laver, 1980), introducing changes to various speech fea-

tures at both the segmental and the suprasegmental level. Emotions

affect the intonation, duration, intensity, speaking rate, and articulation

as well as the phonation of speech. In noisy environments, prosody can

also be used as a continuity guide to follow a specific speaker (Brokx and

Nooteboom, 1981). Prosody extends beyond phonemes to syllables, words,

phrases, sentences, and even to longer term structures. The acoustic cues

conveying this information are mainly duration, intensity and f0, but also

voice quality (Sluijter et al., 1997; Campbell and Mokhtari, 2003; Vainio

et al., 2010; Yanushevskaya et al., 2010; Ní Chasaide et al., 2011) and

the degree of articulation (Pfitzinger, 2006; Beller et al., 2008) have been

shown to have prosodic functions. Almost all prosodic cues originate from

the voice source while only minor changes in prosody are conveyed by

articulation. Rhythm, intonation, stress, and prominence, for example,
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are subclasses of prosody that relate to the changes in different acoustic

cues and their combinations. Although intonation, defined by pitch, is

perceptually very important, it seems that the fine variations in pitch are

not easily perceived (Rosenberg et al., 1971). The most salient pitch cues

are large rises and falls, with more emphasis on rises (’t Hart, 1974) and

high-energy (vowel) parts of speech (Léon and Martin, 1972). Also the

perception of pitch slope is rather accurate (Klatt, 1973), which indicates

its perceptual importance in prosody.

Finally, speakers vary substantially from each other in terms of gender,

size, age, and other individual differences. The largest difference between

speakers is due to gender. Male speech is generally different from female

speech due to the differences in the size and shape of the vocal folds and

the vocal tract. Children are also physically very different from adults,

which results in a different type of speech. In addition, each speaker has

a personal voice based on the properties of the vocal organs. Finally, the

individual differences in speaking style, such as language, accent, speech

rate, and dialect, affect the use of the speech production organs, and thus

each individual has a specific character in their speech. In speech tech-

nology, these personal traits are dealt with differently depending on the

application. In speech recognition, the acoustic effects of personal traits

should be normalised or removed in order to achieve good recognition ac-

curacy for any speaker (Leggetter and Woodland, 1995). In contrast, in

speech synthesis, it is often desired to reproduce the personal traits in

order to make the speech sound natural, and usually as close as possible

to a specific voice (Yamagishi et al., 2009a). Speaker traits can be also

used for speaker recognition (Kinnunen and Li, 2010), identification, and

verification (Kinnunen et al., 2006).

2.7 Summary

This section described the human speech production mechanism, elabo-

rating on its two distinct parts, the glottal excitation and the vocal tract,

and their function in speech production. The properties and classification

of different speech sounds in spoken language were briefly covered, af-

ter which voice quality and its functions were discussed. The simplified

source-filter theory of speech production, widely used in speech technol-

ogy, was also described. Finally, the hearing mechanism and its implica-

tions to speech perception were discussed, and the acoustic cues for speech
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perception and contextual effects on speech were presented.
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3. Voice source estimation and
parameterization

Extracting information originating from the voice source is used virtu-

ally in all speech technology applications. The most common speech fea-

tures that originate from the voice source are speech energy and pitch.

However, since the voice source conveys a lot of perceptually relevant in-

formation, it is often useful to look for more detailed characterisation.

The estimation of the voice source signal from speech, although not triv-

ial, provides a rich source of information and allows the detailed analysis

and modelling of the speech signal. This section describes the estimation

of the voice source signal through glottal inverse filtering and presents

methods and applications on how the voice source information can be fur-

ther utilised.

3.1 Glottal inverse filtering

Glottal inverse filtering (GIF) is a technique for estimating the glottal

volume-velocity waveform from a recorded speech signal. This is per-

formed by cancelling the effects of the vocal tract and lip radiation from

the speech signal, thus revealing the time-domain waveform of the glottal

source. Since the lip-radiation effect can be approximated with a fixed

first-order differentiator (Flanagan, 1972a), the challenge of GIF is in the

estimation of the vocal tract filter. GIF is a difficult inverse problem since

a speech signal can be decomposed into the two components, glottal flow

signal and vocal tract filter, in infinitely many ways. Thus, a priori infor-

mation about the characteristics of the glottal flow and vocal tract filter

must be utilised for successful glottal flow estimation.

According to the source-filter theory of speech production (Fant, 1960),

speech can be defined as S(z) = G(z)V (z)L(z), where S(z), G(z), V (z), and

L(z) denote the z-transforms of the speech signal, glottal flow signal, vocal
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Figure 3.1. Illustration of a speech signal of male vowel [a] (top) and corresponding glot-
tal flow (middle) and differentiated glottal flow (bottom) estimates.

tract resonances, and the lip-radiation effect, respectively. Conceptually

GIF corresponds to obtaining the glottal volume velocity G(z) from the

equation

G(z) =
S(z)

V (z)L(z)
, (3.1)

where L(z) is a fixed differentiator. Thus, the parameters of V (z) need to

be estimated to solve G(z).

In the GIF process, the two components G(z) and V (z) should corre-

spond as closely as possible to the physiological phenomena at the glottis

and the vocal tract, respectively. This is the main difference between glot-

tal inverse filtering and conventional inverse filtering using, for example,

LP, where the filter captures the overall spectral characteristics of the

speech signal and the source signal, namely the LP residual, is spectrally

white. In contrast to the LP inverse filtering, the voice source signal of

GIF is allowed to have a varying spectrum depending, for example, on the

phonation type.

An illustration of GIF of the vowel [a] uttered by a male speaker is

shown in Figure 3.1. The figure shows the original speech waveform, the

estimated glottal flow, and the differentiated glottal flow estimate wave-

forms.

3.1.1 Glottal inverse filtering methods

The first study on GIF was published by Miller (1959), where a manually

tuned analog circuit was used to cancel the first formant of a speech sig-
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nal. Since then, GIF has developed from using analog circuitry to digital

signal processing (DSP), and from manually tuned to completely auto-

matic methods. Modern GIF methods can be divided roughly into three

categories: closed-phase (CP) methods, phase-based methods, and iter-

ative methods. In the following, a short review is given on GIF methods

that are capable of automatically estimating the glottal flow from a speech

signal recorded outside the lips.

With the introduction of LP (Makhoul, 1975) in speech processing, the

automatic computation of the vocal tract filter became an attractive al-

ternative to older, manually tuned techniques. One of the oldest auto-

matic GIF methods utilising LP is the closed-phase covariance method

(Strube, 1974; Wong et al., 1979), which uses LP with the covariance

criterion (Rabiner and Schafer, 1978) for estimating the vocal tract all-

pole response during the CP of the glottal excitation. In theory, the CP

is optimal for estimating the vocal tract transfer function since the ef-

fect of the glottal excitation to the vocal tract filter response is minimal

when the glottis is closed. Indeed, CP analysis yields accurate estimates

of the glottal flow for modal speech with a well-defined CP (Veeneman

and BeMent, 1985; Krishnamurthy and Childers, 1986). However, the

method is very sensitive to the estimation of the CP position since even

a slight error in the estimated position may significantly distort the vo-

cal tract estimate (Larar et al., 1985; Riegelsberger and Krishnamurthy,

1993; Yegnanarayana and Veldhuis, 1998). This problem can be partly

alleviated by using two-channel analysis (Krishnamurthy and Childers,

1986), where the CP boundaries are estimated from the electroglottogra-

phy (EGG) signal instead of the acoustic speech signal. However, the EGG

signal may not be available for the given speech data, and the recording

of the EGG signal requires special arrangements and equipment. An-

other downside of the two-channel analysis is the undetermined (and of-

ten varying) acoustic delay between the EGG signal and the microphone.

The estimation accuracy of the CP method also remains poor with high-

pitched or breathy speech where the CP is either short or absent due to

incomplete glottal closure.

Even before the time LP was used in speech processing, GIF experi-

ments utilising DSP were conducted by using homomorphic analysis of

speech (Oppenheim and Schafer, 1968). In this approach, speech is trans-

formed into additive components using cepstral analysis. This technique

was later refined into a method called zeros of the z transform (ZZT)
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(Bozkurt et al., 2005, 2007; Sturmel et al., 2007), or if formulated other-

wise, the method is called complex-cepstrum-based decomposition (CCD)

(Drugman et al., 2009a). The methods are based on decomposing speech

into source and filter characteristics based on the mixed-phase charac-

ter of the speech signal, which is composed of the maximum phase (anti-

causal) glottal excitation and the minimum phase (causal) vocal tract fil-

ter. The ZZT method utilises the z transform of a speech frame (Bozkurt

et al., 2005), and separates the roots based on their position in the unit

circle. Roots that are outside the unit circle correspond to the anti-causal

open phase of the glottal source, and the roots inside the unit circle cor-

respond to the causal vocal tract filter and the return phase of the glot-

tal source. The CCD method utilises complex cepstrum to perform the

separation, which is computationally more efficient than the ZZT decom-

position. Since both ZZT and CCD require the estimation of the glottal

closure instants (GCIs), these methods are prone to errors in GCI estima-

tion. A major drawback of these methods is that there is no separation of

the return phase from the vocal tract filter, which is required in many ap-

plications, especially in those that require the estimation of the complete

glottal flow waveform, such as speech synthesis.

Several GIF methods based on iterative glottal flow estimation have

been proposed. Matausek and Batalov (1980) have proposed estimating

the spectral contribution of the glottal flow by using simple low-order au-

toregressive (AR) modelling. In their work, the final glottal flow estimate

is achieved by filtering an impulse train through the AR model. A more

elaborated method called the iterative adaptive inverse filtering (IAIF)

was proposed by Alku (1992), in which low and high-order LP or discrete

all-pole modelling (DAP) (El-Jaroudi and Makhoul, 1991) is used succes-

sively in order to estimate the glottal flow and vocal tract contributions,

respectively. IAIF has been used and evaluated in various experiments

(see, e.g., Alku et al., 2006a,b; Drugman et al., 2012a). IAIF has been

shown to yield rather robust estimates of the glottal flow. However, IAIF

is prone to the biasing effect of the excitation with high-pitched speech,

especially for vowels with a low first formant frequency.

GIF requires the accurate estimation of the vocal tract spectrum in or-

der to cancel the formant frequencies from the speech signal. However,

the periodic glottal excitation makes this estimation rather hard, since

its harmonic structure biases the formant estimates towards harmonic

peaks. This effect is especially prominent with high-pitched speech, where
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the harmonics are sparse. The effect of the excitation on the glottal flow

estimate can be reduced, for instance, by using CP analysis that esti-

mates the spectrum from those parts of the speech signal that are not

corrupted by the excitation, or using spectral estimation methods that

are more robust to the biasing effect of the harmonics, such as DAP (El-

Jaroudi and Makhoul, 1991) or weighted linear prediction (WLP) (Ma

et al., 1993). Alternatively, the bias can be diminished by jointly estimat-

ing the vocal tract filter and a glottal flow model. Such approaches were

utilised, for example, in the studies by Milenkovic (1986) and Fujisaki and

Ljungqvist (1987), where autoregressive moving average (ARMA) mod-

elling is used to allow the modelling of both spectral peaks (poles) and

dips (zeros). In these methods, the zeros are assumed to stem from the

voice source, and the Fujisaki–Ljungqvist (Fujisaki and Ljungqvist, 1986)

glottal flow model is assumed as an input. Similar methods were pro-

posed in the work by Ding et al. (1997) and Kasuya et al. (1999), in which

ARX (autoregressive with exogenous input) modelling is utilised using the

Rosenberg–Klatt (RK) glottal flow model (Rosenberg, 1971; Klatt, 1980;

Klatt and Klatt, 1990) as an input. Fröhlich et al. (2001) have also pro-

posed a method that utilises ARX modelling through DAP (El-Jaroudi and

Makhoul, 1991) for spectrum estimation and the Liljencrants–Fant (LF)

glottal flow model (Fant et al., 1985a; Fant, 1995) as an input. Similarly,

the LF glottal flow model is also used as an input within ARX modelling

in the work by Fu and Murphy (2003, 2006).

More extensive reviews on GIF can be found, for example, in the studies

by Walker and Murphy (2005), Alku (2011), and Drugman et al. (2014).

This thesis presents two new GIF methods that aim to reduce the bias-

ing effect of the excitation. First, a GIF method using joint estimation

of a simple glottal flow model and the vocal tract spectrum through the

Markov chain Monte Carlo (Gilks et al., 1996; Hastings, 1970; Gamer-

man, 1997; Smith and Roberts, 1993; Tierney, 1994; Roberts and Smith,

1994) algorithm is presented in Publication I (Auvinen et al., 2012, 2014).

Next, in Publication II, another new GIF method is introduced that uses

the idea of CP analysis, but in this method the analysis is performed over

multiple fundamental periods using WLP (Ma et al., 1993) and a specific

attenuation function aligned with the glottal closure instants in order to

reduce the effect of the excitation on the spectrum estimation (Airaksinen

et al., 2014).
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3.1.2 Applications of glottal inverse filtering

GIF finds applications in several areas of speech technology and re-

search. First of all, it has an important role in the research of voice

communication. Information on the glottal flow characteristics, obtained

through GIF, have been used to study, for example, general speech produc-

tion, phonation type, voice quality, vocal emotions, intensity regulation,

prosodic features, singing voice, ageing, and source-tract interaction.

Secondly, glottal flow estimation finds applications in medical research,

such as in the analysis of pathological voices and assessing vocal loading.

Finally, GIF is used in various speech technology applications. Speech

synthesis is probably the oldest and the most obvious application area,

where artificial glottal source models have been used to excite the for-

mant based vocal tract filter to create synthetic speech (see, e.g., Klatt,

1987; Carlson et al., 1989; Pinto et al., 1989; de Veth et al., 1990; Klatt

and Klatt, 1990; Carlson et al., 1991; Karlsson, 1991, 1992; Fant, 1993;

Childers and Hu, 1994; Childers, 1995; Childers and Ahn, 1995). In ad-

dition to these methods, which mostly utilised the Liljencrants–Fant (LF)

glottal flow model (Fant et al., 1985a; Fant, 1995), glottal flow pulses

estimated from natural speech have been used to create the excitation in

speech synthesis (Holmes, 1973; Matsui et al., 1991; Karjalainen et al.,

1998; Fries, 1994; Alku et al., 1999). Although the use of glottal flow exci-

tation in speech synthesis has become less popular due to the emergence

of unit selection synthesis, GIF has recently found novel applications in

vocoding for statistical parametric speech synthesis (Raitio, 2008; Raitio

et al., 2008, 2011c,a). For example, GIF is used for speech synthesis

in Publications III, IV, V, VII, and VIII. Other areas that utilise GIF

include, for example, voice modification and conversion, speaker identi-

fication, dialect identification, emotion and speaking style classification,

speech coding, and aid for phonetic segmentation.

3.2 Glottal flow parameterization

Usually the aim of GIF is not only to reveal the underlying glottal flow

waveform, but to express the information obtained from the estimated

voice source signal in a meaningful manner. This calls for the parameter-

ization of the glottal flow that represents the most important features of

the computed waveform in a compressed numerical form. Glottal flow pa-
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rameterization plays an important role in voice production research and

in various speech technology applications. A large number of different

parameterization methods have been developed, most of which are dis-

cussed in this section. The parameters are divided into three categories:

time-domain parameters, frequency-domain parameters, and parameter-

ization by model fitting. However, first the issue of glottal closure instant

detection is discussed, which is important both for many GIF methods as

well as for several glottal parameterization methods.

3.2.1 Glottal closure instant detection

Glottal closure instant (GCI) detection (Naylor et al., 2007) aims to find

the exact time positions of the GCIs from a speech signal. This is the same

task as epoch detection (Ananthapadmanabha and Yegnanarayana, 1975;

Smits and Yegnanarayana, 1995; Murty and Yegnanarayana, 2008), since

epoch is defined as the point of maximum discontinuity in the deriva-

tive of the glottal waveform (Flanagan, 1972a). GCI detection is impor-

tant for various applications (see a review by Yegnanarayana and Gan-

gashetty, 2011), such as speech analysis, modification and transforma-

tion (Moulines and Charpentier, 1990; Rao and Yegnanarayana, 2006;

Agiomyrgiannakis and Rosec, 2009), GIF (Wong et al., 1979; Alku, 1992;

Bozkurt and Dutoit, 2003; Bozkurt et al., 2005; Drugman et al., 2009a),

data-driven voice source modelling (Thomas et al., 2009; Gudnason et al.,

2012), and speech synthesis (Stylianou, 2001; Raitio et al., 2008, 2011c,a;

Drugman et al., 2009b; Drugman and Dutoit, 2012).

Although GCI detection can be performed without actual GIF, most

methods aim to remove the contribution of the vocal tract system from

the speech signal, either by GIF or deriving an LP residual as a pre-

processing step for GCI detection. GCI detection is discussed here for two

reasons: it is closely related to GIF, and it is crucial in many methods

concerning further glottal flow processing.

With the introduction of advanced data-driven speech processing meth-

ods and applications, there is an increasing demand for automatic and

robust GCI detection methods. Recently, various GCI detection meth-

ods have been proposed (see reviews, for example, by Drugman, 2011;

Drugman et al., 2012c; Kane, 2012). Also, GCI detection methods for

use in adverse conditions (Drugman and Dutoit, 2009) or to improve per-

formance with various voice qualities (Cabral et al., 2011a; Kane and

Gobl, 2013) have been studied. GCI detection algorithms can be based
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on various different methods, like the Hilbert envelope of the LP resid-

ual (Ananthapadmanabha and Yegnanarayana, 1975, 1979; Cheng and

O’Shaughnessy, 1989; Rao et al., 2007), the Frobenius norm (Ma et al.,

1994), the wavelet transform to find discontinuities in the speech sig-

nal (Kadambe and Bourdreaux-Batels, 1992; Tuan and d’Alessandro,

1999; Sturmel et al., 2009), weighted nonlinear prediction (Schnell,

2007), detecting abrupt changes in the short-term spectral character-

istics (Moulines and Di Francesco, 1990), and the group delay function

(Smits and Yegnanarayana, 1995). However, maybe the most widely used

methods today are the DYPSA algorithm (Kounoudes et al., 2002; Naylor

et al., 2007) that uses the phase-slope function and dynamic program-

ming (DP); ESPS (Talkin, 1989, 1995) that utilises detecting the maxima

in the short-term energy (STE) normalised LP residual and DP; YAGA

(Thomas et al., 2012) that combines several methods, such as wavelet

analysis, the group delay function and DP, zero-frequency filtering (ZFF)

(Murty and Yegnanarayana, 2008) that uses a zero-frequency resonator

and mean subtraction to reveal the epochs; and SEDREAMS (Drugman

and Dutoit, 2009; Drugman et al., 2012c) that uses the mean-based signal

to estimate approximate regions of GCIs and then detects the maxima in

the LP residual. To improve detecting the GCIs from speech with varying

voice quality, Kane (2012) and Kane and Gobl (2013) have proposed a

method called SE-VQ that extends the SEDREAMS algorithm by, for ex-

ample, adding DP and post-processing. In the work of the present author

(Raitio et al., 2011a, 2013b, 2014a,b), a method close to the SEDREAMS

algorithm is used, but the determination of the approximate time win-

dows for the GCI search is performed differently. Instead of using the

mean-based signal, a global minimum of the glottal flow derivative is first

sought within a frame, which is assumed to be the most significant GCI.

From that time instant, the preceding and following GCIs are sought

within predefined time windows at fundamental-period intervals.

Often the ground truth GCIs are estimated from the EGG signal. EGG

is free from the resonances of the vocal tract and aspiration noise, and

thus the estimation of GCIs from EGG is more reliable. Alternatively, the

voice source can be characterised using an accelerometer signal (Mehta

et al., 2012). However, without special recording equipment for EGG or

accelerometer signal, the only practical (non-invasive) way of estimating

GCIs is to utilise the acoustic speech signal. In addition to GCIs, some-

times the goal is to estimate the glottal opening instants (GOIs), such
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as in the work by Brookes and Loke (1999), Bouzid and Ellouze (2004),

Drugman and Dutoit (2009), and Thomas et al. (2012).

It is also important to note that many glottal flow estimation and pro-

cessing methods require that the analysed speech signal has the correct

polarity. The polarity has relevance due to the asymmetry of the glottal

excitation. In the correct polarity, which means that the speech signal is

not inverted due to, say, the recording equipment, the glottal closure in-

stant in the differentiated glottal flow waveform shows a negative peak.

There are several methods for polarity detection (see, for example Ding

and Campbell, 1998; Saratxaga et al., 2009; Drugman and Dutoit, 2013;

Drugman, 2013). For a review and comparison of speech polarity detec-

tion algorithms, see the extensive study by Drugman and Dutoit (2014).

3.2.2 Time-domain parameters

Since glottal flow is a quasi-periodic signal, it is straightforward to define

simple time-based quantities, such as the GCI, GOI, and the instant of

maximum glottal flow. Based on these instants, several quotients can be

defined, such as the open quotient (OQ) (Timcke et al., 1958), speed quo-

tient (SQ) (Timcke et al., 1958), and the closing quotient (ClQ) (Monsen

and Engebretson, 1977). Sometimes the closed quotient (CQ) is used in-

stead of OQ (Iwarsson et al., 1998; Sundberg et al., 1999a,b). Also the

return quotient (RQ) can be used for characterising the return phase. The

quantities are defined as

OQ = (to + tcl)/T0,

SQ = to/tcl,

ClQ = tcl/T0,

CQ = tc/T0,

RQ = tret/T0,

(3.2)

and their parameters are illustrated in Figure 3.2. These quantities have

been used in various studies related to, for example, gender, age, pitch,

loudness (Holmberg et al., 1988; Sulter and Wit, 1996), assessment of

vocal disorders (Hillman et al., 1989), measuring vocal loading (Vilkman

et al., 1997), speech perception (Childers and Lee, 1991), and singing voice

(Sundberg et al., 1993).

Often the estimation of specific time instants in the glottal flow is rather

ambiguous due to the formant ripple originating from incomplete can-

celling of formants by the inverse filter or due to the noise present in the
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Figure 3.2. Time and amplitude characteristics of the glottal flow (upper graph) and its
derivative (lower graph).

waveform, which may originate either from the voice source itself (aspi-

ration noise) or from the recording environment (Alku, 2011). Also, the

gradual opening of the glottis makes estimating the time instant rather

difficult. Therefore, parameters based on the approximate time instants,

defined when a glottal flow crosses a certain amplitude ratio (e.g., 50%)

compared to the maximum amplitude, have been proposed (Dromey et al.,

1992; Sapienza et al., 1998). Maybe the most widely used such parame-

ter is the quasi-open quotient (QOQ) (Hacki, 1989), which is defined as

the time during which the glottal flow amplitude is higher than 50% of

the maximum level divided by the pitch period. In order to alleviate the

difficulty of measuring the time-based features, the glottal flow can be

also characterised by measuring the amplitude features from both glottal

flow and its derivative. One such parameter is the normalised amplitude

quotient (NAQ) proposed by Alku et al. (2002), which is defined as the ra-

tio between the maximum amplitude of the glottal flow and the negative

peak amplitude of the glottal flow derivative

NAQ = fac/(dpeakT0). (3.3)

The ratio of these two values can be shown to be a time-domain quan-

tity. Since the two values are the maximum and minimum of the glottal

flow and its derivative, respectively, they are easy to extract. NAQ has

a close relation to ClQ and voice source parameter Rd (Fant et al., 1994;

Fant, 1995, 1997) in the LF glottal flow model (Fant et al., 1985a; Fant,

1995), but it has been shown, for instance, that NAQ is more robust to
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noise than ClQ (Alku et al., 2002; Bäckström et al., 2002). Airaksinen

and Alku (2014) also proposed a phase plane symmetry (PPS) parameter,

which is based on the properties of the phase-plane plot (Edwards and An-

gus, 1996). The PPS parameter was shown to perform similarly to NAQ.

In addition to the time-domain parameters that characterise the prop-

erties of the glottal waveform based on a few critical time instants, such

as GCI or instant of maximum flow, data-driven voice source waveform

modelling approaches have been proposed. These methods are based on

segmenting the voice source waveform into individual cycles, normalising

each cycle in scale and amplitude (depending on pitch and energy, re-

spectively), and then using machine learning techniques for constructing

a voice source model. In Thomas et al. (2009), a set of prototype wave-

form classes is derived that can be used for the analysis and synthesis of

an unknown utterance based on mel-frequency cepstrum coefficients and

Gaussian mixture modelling. Gudnason et al. (2009, 2012) use similar ap-

proach, but they utilise principal component analysis (PCA) for the data-

driven voice source modelling. Various PCA-based voice source modelling

techniques have been utilised for statistical parametric speech synthesis,

(Drugman et al., 2009b; Drugman and Dutoit, 2012; Sung et al., 2010;

Raitio et al., 2013b, 2014c; Drugman and Raitio, 2014). Also a deep neu-

ral network (DNN) based voice source modelling method was proposed in

Raitio et al. (2014a) and utilised for synthesising various voice qualities

in Raitio et al. (2014b).

3.2.3 Glottal flow models

Instead of characterising the estimated voice source signal with individ-

ual amplitude or time-based parameters, it is possible to fit a mathemati-

cal glottal flow model to the estimated waveform or its derivative. In this

approach, a glottal flow model is first selected, after which the model pa-

rameters are fitted to the estimated glottal flow so that the error between

the two waveforms, the artificial model and the natural one, is minimised.

The fitting can be performed in several ways depending on the glottal flow

model (see, e.g., Strik et al., 1993; Strik, 1998; Airas, 2008; Kane, 2012).

There are several artificial glottal flow models of which perhaps the sim-

plest one is the third order polynomial, the Klatt model (Klatt, 1980),
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which is defined as

g(t) =

⎧⎪⎨
⎪⎩
at2 + bt3, 0 ≤ t ≤ OQ · T0,

0, T0 ·OQ < t ≤ T0,
(3.4)

where t is time and T0 is the length of the glottal cycle. Since OQ defines

the numerical values for a and b, the model effectively has only two pa-

rameters, OQ and T0. However, the return phase in the Klatt model can-

not be modelled, which limits the use of this model in many applications.

A more complex and the most widely used glottal flow model is the LF

model proposed by Fant et al. (1985a) and Fant (1995), in which the glot-

tal flow derivative consists of two separate waveform segments. The first

segment models the derivative waveform from one glottal opening to the

following glottal closure using an exponentially decaying sinusoid. The

second segment models the closure of the vocal folds after the abrupt flow

termination with a set of exponential terms, causing the flow derivative

to return to zero with a specific time constant. The LF model is uniquely

defined by 4 parameters:

g(t) =

⎧⎪⎪⎨
⎪⎪⎩

E0e
αt sin(ωgt), t < te,

−Ee/(εta)
(
e−ε(t−te) − e−ε(tc−te)

)
, te < t < tc,

0, tc < t < T0,

(3.5)

where ωg = π/tp and tc = T0 = 1/f0. Parameters α and ε can be cal-

culated from Equation 3.5 by assuming g(te) = Ee and the energy bal-

ance
∫ T
0 g(t) = 0. Thus, parameters tp, te, ta, and Ee uniquely define

the model. Another way of defining the model is presented in Fant et al.

(1994), which is also linked to the voice source parameter Rd, proposed

in Fant et al. (1994); Fant (1995, 1997). Rd effectively describes the func-

tioning of the LF model in normal covariation of the full set of LF pa-

rameters. In addition to the Klatt and LF models, several other glot-

tal flow models have been proposed (see, e.g., Rosenberg, 1971; Rothen-

berg et al., 1975; Hedelin, 1984; Ananthapadmanabha, 1984; Fujisaki and

Ljungqvist, 1986).

Another way of estimating the parameter Rd based on phase minimisa-

tion, was proposed by Degottex et al. (2011) and further refined by Huber

et al. (2012). The methods are based on estimating the parameter Rd of

the LF model by minimising a phase-based criterion. The advantage of

the method is that it does not require GIF or specific GCI-synchronous

model fitting.
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3.2.4 Frequency-domain parameters

The time-domain changes in the glottal flow, for example the changes in

the phonation type from breathy to pressed, are also reflected as changes

in the frequency domain. Therefore, several frequency-domain parame-

terization methods have also been proposed, especially those focusing on

the quantification of the spectral decay of the glottal flow. This type of

approach is beneficial in the sense that the processing can be made over

several pitch periods, if desired, and thus no epoch detection is required.

The source spectrum is typically computed using the fast Fourier trans-

form (FFT), but also all-pole modelling has been used.

The simplest parameterization method for spectral skewness is the al-

pha ratio (Frøkjær-Jensen and Prytz, 1973), depicting the ratio between

the spectral energies below and above a specific point in frequency. How-

ever, a more specific way of calculating the spectral decay of the glottal

source is to utilise the amplitudes of the source harmonics. Childers and

Lee (1991) have proposed a measure called the harmonic richness factor

(HRF) to quantify the spectral decay of speech. The HRF is defined as

the ratio between the sum of the amplitudes of the harmonics above the

fundamental frequency (f0) and the amplitude of the f0 peak, that is

HRF =

∑
i≥2Hi

H1
, (3.6)

where Hi is the amplitude of the ith harmonic and H1 is the amplitude of

the f0 peak. A similar but slightly simpler quotient, denoted by H1–H2,

was proposed by Titze and Sundberg (1992) to measure the amplitude

difference between the first and the second harmonics. H1–H2 has been

widely used as a measure of voice quality. Also linear regression (How-

ell and Williams, 1988, 1992) and the parabolic spectral parameter (PSP)

(Alku et al., 1997) have been proposed to model the spectral slope of the

glottal flow. Alternatively, the glottal flow spectrum can be parameterized

and modelled using a simple all-pole model (Raitio et al., 2011c). In addi-

tion to these glottal-flow-based features, there are methods that measure

the contribution of the glottal source directly from the speech signal with-

out using glottal inverse filtering (Hanson, 1997; Hanson and Chuang,

1999; Iseli et al., 2007). These methods, among other frequency-domain-

based measures, are discussed in more detail in the study by Kreiman

et al. (2007), in which the relationship between different parameters that

measure the spectral decay are also studied. Finally, some methods di-

rectly create a mapping from frequency-domain parameters into glottal
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features. For example, an artificial neural network is used to create a

mapping from speech cepstrum to the OQ in Kane et al. (2013a).

As mentioned in Section 2.1.1, the glottal excitation also has an aperi-

odic component in addition to the quasi-periodic component. Character-

ising and quantifying this aperiodic component is useful in several appli-

cations, such as in speech modification and synthesis, where the degree

of voicing and voice quality can be controlled by adjusting the amount of

the aperiodic component. The simplest method for estimating the aperi-

odic component is to define a boundary frequency, often called the max-

imum voice frequency (Fm), which divides the spectrum into two parts,

where the lower spectral band is dominated by the periodic excitation

and the upper band is dominated by the aperiodic excitation. This idea

is used in various vocoders (Griffin and Lim, 1988; Stylianou, 2001; Pan-

tazis et al., 2008; Erro et al., 2014; Drugman et al., 2009b; Drugman and

Dutoit, 2012) due to its simplicity and robustness. Fm can either be fixed

(usually 4 kHz) for a given speaker and voice quality, as in the studies

by Stylianou (2001), Drugman et al. (2009b), and Drugman and Dutoit

(2012), or Fm can have a varying value from one frame to another, as in the

study by Erro et al. (2014). Dynamic modelling of Fm has been observed to

improve the naturalness of the synthesis in Drugman and Raitio (2014),

which is Publication VI of this thesis. The estimation of Fm can be per-

formed in several ways, such as using the peak-to-valley (P2V) measure

calculated for all possible harmonic candidates (Stylianou, 2001), using

a sinusoidal likeness measure (SLM) of the harmonic peaks (Erro et al.,

2014), or by exploiting both the amplitude and phase information of the

harmonics (Drugman and Stylianou, 2014).

Another way of quantifying the aperiodic part of the glottal flow is to use

a multiband approach, where the energy ratio between the periodic and

aperiodic components is estimated for each spectral band. These aperiod-

icity measurements can be computed in various ways. Yoshimura et al.

(2001) calculate correlation coefficients for several frequency bands that

define the amount of aperiodicity in each band. In the work by Kawahara

et al. (2001) and Raitio et al. (2011a), aperiodicity, or the harmonic-to-

noise ratio (HNR), is determined based on the ratio between the upper

and lower smoothed spectral envelopes, which is defined by the ampli-

tudes of the harmonic peaks and the interharmonic valleys, respectively.

The ratios are then averaged across frequency bands in accordance with

the equivalent rectangular bandwidth (ERB) scale (Moore and Glasberg,
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1983) for perceptual weighting.

Usually the aim of the aperiodicity estimation is to quantify the amount

of additive noise in the voice, which originates from the turbulent air at

the glottis or above it. However, the aperiodicity of the glottal excitation

may stem from other effects as well, such as jitter, shimmer, waveshape

change, or some unknown combination of these factors (Murphy et al.,

2008). Thus, more developed methods, such as glottal harmonics-to-noise

ratio (GHNR) (Murphy et al., 2008), may be helpful for estimating the

amount of the additive noise component.

3.3 Summary

This section described voice source estimation and parameterization.

First, the concept of GIF was introduced, after which various GIF meth-

ods were described. Also the applications of GIF were shortly discussed.

Next, GCI detection and polarity detection were introduced, which are

required for many glottal flow parameterization algorithms. The param-

eterization of the estimated glottal flow was illustrated, categorising the

parameterization methods into time-domain methods, glottal flow models,

and frequency-domain methods. Finally, the estimation of the aperiodic

part of the glottal flow was described.
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4. Speech synthesis

The ultimate goal of text-to-speech (TTS) synthesis is to read any text

and convert it to intelligible and natural sounding speech with desired

speaker, contextual, and other extralinguistic characteristics such as emo-

tion and speaking style. Although converting text to speech has a long

history (see Section 4.1), meeting all of these goals simultaneously is ex-

tremely difficult. The complexity and difficulty of TTS synthesis can be

easily illustrated by observing the corresponding process for a human

speaker.

For humans, reading a text and speaking it aloud seems very effortless,

although this process is very complex, and many of the phenomena in the

brain are both functionally and physiologically not understood. In a very

simplified and high-level view, reading a given text and speaking it aloud

begins with the perception of the letters and words using our visual sys-

tem: the eyes and the visual cortex. In the Wernicke’s area in the brain

(among other areas), the neural information is further processed for un-

derstanding the sentence and its meaning. Understanding the meaning of

the text is important to produce a fluent and appropriate prosody for the

utterance instead of just reading isolated words. Finally, the correspond-

ing articulatory information is formed using, for example, the Broca’s area

in the brain and sent to the motor cortex and further to the articulators

in the speech production mechanism. The movements of the articulators

create speech sounds, forming a natural sounding and intelligible utter-

ance with the voice characteristics of the speaker and having a convenient

prosody and speaking style for the context. Accurate speech production,

however, requires a constant feedback loop through the hearing mecha-

nism in order to adapt and compensate our articulatory movements.

Although TTS synthesis is an extensive engineering problem, which re-

quires sophisticated and complex algorithms, the process of converting
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text into speech using a machine is less complex than the corresponding

human process due to many simplifications. Firstly, machines are not yet

capable of extracting high-level meaning from text, so this step is gener-

ally omitted in TTS synthesis. Secondly, speech generated by the physi-

ological speech production mechanism is governed by the laws of physics

as the air-flow from the lungs is modulated in the larynx and the vocal

tract. This complex process is difficult to model accurately, and approx-

imations are required in order to make speech synthesis feasible. These

approximations result in less natural prosody and the possible misinter-

pretation of the meaning by the listener. Also, the approximations made

at the signal level result in the loss of some of the perceptually relevant

acoustic cues in speech, which may compromise naturalness, intelligibil-

ity, and extralinguistic factors of speech.

Despite the difficulty of speech synthesis, and the fact that we have bil-

lions of human speakers around us, the automatic generation of speech

by machines has numerous existing and potential future applications—as

already mentioned in the introduction, speech synthesis can be used any-

where where speech is to be used. Moreover, present-day high-quality

TTS systems are approaching many of the qualities of human speech,

which makes them useful and acceptable for increasingly many purposes.

For example, speech synthesis has been widely used in assistive technolo-

gies to help people with a wide range of disabilities. TTS synthesis can be

used in screen readers for people with mild or severe visual impairments.

Screen readers can be implemented, for example, in computers and tele-

visions to enable the user to listen to the speech generated from the dis-

played text. TTS is often used also as a communication aid for people with

difficulties in producing speech due to, say, vocal disorders or dyslexia. For

example, a speech-generating device (SGD) can be used as a personal de-

vice carried by the user to communicate with people through synthetic

speech. Probably the most famous user of an SGD is Stephen Hawking,

an English theoretical physicist and cosmologist who is also known for

his work in popular science. In addition, a synthetic voice can be per-

sonalised for the user by voice banking (Yamagishi et al., 2012). Speech

synthesis is also widely used in various telecommunication services, such

as in information-retrieval systems. TTS synthesis also finds applications

in computer-assisted language learning (CALL) (Handley, 2009), in the

creation of audio books, talking toys, and entertainment products such

as games and animations. In connection with other speech technologies,

76



Speech synthesis

such as automatic speech recognition (ASR), speech synthesis is also in-

creasingly used in human-computer interaction (HCI), such as in mobile

phones, where a user can give commands or ask questions, based on which

the phone can give answers and feedback through synthetic speech (for ex-

ample, Google Now, Apple’s Siri, and Microsoft’s Cortana). Finally, speech

synthesis provides a fundamental tool for research in the production and

perception of speech and language.

A system that can produce speech indistinguishable from a human with

all the required expressivity is yet a distant dream, but already the cur-

rent applications show that speech synthesis is becoming a part of people’s

lives, and most probably the use of speech synthesis will only increase

with time. In the next section, the history and development of speech syn-

thesis is briefly described, which shows that a machine that can imitate

human speech has long been in people’s minds, but only rather recently it

has become widely useful in practice.

4.1 History of speech synthesis

In this section, the history and development of speech synthesis is briefly

reviewed. The purpose of this section is not to give a complete and detailed

discussion on the topic, but to give a general perspective and examples on

the development of different synthesis techniques. More complete reviews

on the development of speech synthesis can be found, for example, in Klatt

(1987), Linggard (1985), and Flanagan (1976, 1972a,b).

The first successful attempts to produce artificial speech were based on

imitating the speech production organs. In 1791, Wolfgang von Kempe-

len published a book presenting his speaking machine, which consisted

of bellows (lungs), a vibrating reed (glottis), and a rubber tube modeling

the vocal tract. The machine could produce many speech sounds if oper-

ated correctly. Several similar approaches have been studied since then

(and probably even before), and today physical modelling of the vocal or-

gans has applications from research to education. In the early 1920s,

the research on speech synthesis started moving from physical modelling

to using electric circuitry. Stewart (2012) built the first formant synthe-

siser, being able to produce static vowels. The system consists of two

resonant circuits to model the two first formants which are excited by

a buzzer. The first machine that could produce continuous speech was

the vocoder by Dudley (1939), developed at the Bell Telephone Laborato-
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ries. The device decomposed speech into slowly varying parameters and

was able to reconstruct an approximation of speech from them. In the

1950s, the source-filter theory, summarised by Fant (1960), was applied

to speech synthesis. The first such dynamically controlled synthesisers

were Walter Lawrence’s PAT (Lawrence, 1953) and Gunnar Fant’s OVE I

(Fant, 1953). Both of these synthesisers were later refined (Anthony and

Lawrence, 1962; Fant and Martony, 1962), and they could produce a good

approximation of human speech when the parameters were fine-tuned.

Starting from the 1960s, speech synthesis techniques split into two

paradigms, articulatory-based synthesis (e.g., Kelly and Lochbaum, 1962)

and signal-based synthesis. In articulatory synthesis, the physiological

speech production mechanism is modelled more or less in detail. In signal-

based synthesis, the speech signal itself is modelled, with any convenient

means, in order to reconstruct the signal so that it is perceptually close

to the original one. Although articulatory synthesis has not provided as

good results as signal-based synthesis, it has been widely used to study

speech production and perception, especially in conjunction with the

latest measurement technologies, such as magnetic resonance imaging

(MRI) and electromagnetic articulography (EMA). Recently, articulatory

information has also been used in conjunction with the latest signal-based

methods (see, e.g., Ling et al., 2009; Black et al., 2012; Astrinaki et al.,

2013). However, signal-based methods, such as formant synthesis and

LP synthesis provide better naturalness for synthesis applications. At

the same time, several improvements in the modelling of the voice source

waveform were also introduced. Instead of using simple (filtered) im-

pulse trains or a sawtooth signal to model the glottal flow, detailed glottal

flow models were introduced, such as the Rosenberg’s model (Rosenberg,

1971), Klatt’s model (Klatt, 1980), and the Liljencrants–Fant model (Fant

et al., 1985a), providing improved flexibility and naturalness. Holmes

(1973) also proposed the use of inverse-filtered glottal-flow waveforms to

improve the naturalness of synthetic speech.

In parallel with the development of speech processing techniques, the

generation of speech from text instead of mere speech analysis and syn-

thesis was gaining more interest. Development work was done both at the

signal and linguistic levels, and in 1968, the first full TTS synthesis sys-

tem was developed by Umeda et al. (1968). Commercial speech synthesis

products were introduced in the late 1970s, such as Dennis Klatt’s MITalk

formant synthesiser (Allen et al., 1987), which was later developed into
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the product DECTalk. At that time, the first portable speech synthesis-

ers appeared, such as the Synte 2 for Finnish in 1977 (Karjalainen et al.,

1980) followed by the more widely known Speak & Spell toy by Texas

Instruments, an example of the first mass production devices for speech

synthesis.

In the 1980s, the paradigm started to shift from light and rule-based ex-

pert systems to database (corpus)- based systems, as speech data could be

recorded, stored, and processed more efficiently. This was enabled by the

reduced price in memory and increased computing power, and motivated

by the potential to achieve better quality using concatenative synthesis

methods. In concatenative speech synthesis, speech units (that can be

of different size) are extracted from a speech database and concatenated

at the synthesis stage according to specific rules or models. High-quality

concatenative speech synthesis appeared in the 1990s, which was made

possible again by the increased computational capacity and new meth-

ods in signal and natural language processing (Black and Taylor, 1994;

Black and Campbell, 1995; Black and Taylor, 1997b; Hunt and Black,

1996). Purely software based synthesisers also became feasible for the

same reasons, such as ATR’s CHATR (Black and Taylor, 1994; Campbell

and Black, 1996; Hunt and Black, 1996) and University of Edinburgh’s

Festival speech synthesis system (Black and Taylor, 1997a; Black et al.,

2001). Unit selection-based systems provide rather natural speech qual-

ity. However, the concatenation of units may introduce some distortion,

and thus the method may occasionally produce very low quality synthesis.

In the 1990s, statistical parametric speech synthesis (SPSS) using hid-

den Markov models (HMMs) (Tokuda et al., 1995b, 1999, 2002b; Zen

et al., 2009; Tokuda et al., 2013) was introduced and has since then been

the most researched paradigm in speech synthesis. The development of

HMM-based speech synthesis was facilitated by the extensive research in

ASR using HMMs since the same tools, such as the widely used hidden

Markov model toolkit (HTK) (Young et al., 2006) can be utilised in both

techniques. In SPSS, speech is converted into parameters that are statis-

tically modelled and generated for synthesis using, for example, HMMs.

The most widely used platform for SPSS is the HMM-based speech syn-

thesis systems (HTS, 2014) developed in Japan.

Around the turn of the millennium, hybrid systems were introduced,

which aim at combining the flexibility and robustness of SPSS and high

segmental quality of unit selection synthesis. In the 2010s, deep learning
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has been a strong trend in speech synthesis, and much of the research is

still in progress (see Section 5.6). Deep learning utilises artificial neural

networks with multiple hidden layers for the acoustic modelling, aiming

at a better performance compared to the conventional HMM and Gaus-

sian distribution-based acoustic modelling. Today, unit selection synthe-

sis, SPSS, deep learning, and their various combinations constitute the

state-of-the-art in TTS synthesis both for commercial and research pur-

poses.

4.2 General TTS architecture

Language is the ability to express thoughts and ideas using a set of signs,

whether acoustic, visual, or haptic. Speech is the oldest and most widely

used comprehensive means of communication between people. In speech,

different acoustic signals produced by the vocal organs are used as a set of

signs of a language to convey information. Written text is another way of

conveying information using a set of discrete symbols. There are, however,

several differences between spoken language and written text. Spoken

language is rich in contextual information; the way speech is produced

depends largely on the speaker, whom it is directed to, what the context

of the conversation or speech is, what the background knowledge of the

speaker and listener(s) is, and so on. Speech is directed to someone at

a specific time instant while written text can be read by anyone at any

time and in any context. Due to these reasons, written text is only a

shallow representation of spoken language1, and the conversion from text

to speech is not a trivial problem as it requires predicting several aspects

of spoken language, such as pronunciation, prosody, and speaking style.

A TTS system aims to convert a text string into an acoustic speech pres-

sure wave. A high-level flow chart of a speech synthesiser is shown in Fig-

ure 4.1. In general, a TTS system is composed of two parts: a linguistic

or natural language processing (NLP) front-end and a DSP back-end. The

front-end first normalises the text input to a standard written text, that

is, it converts numbers and abbreviations into their full written forms.

Then, the text is converted into a narrow phonetic transcription, which

describes how the text should be pronounced, and generates information

1The relationship between the spoken and written language is not without a
debate (Moxley, 1990), although written language is clearly more influenced by
the spoken language.
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Figure 4.1. Functional diagram of a general TTS architecture.

for the intonation and rhythm, that is, the prosodic properties of the ut-

terance. The back-end generates a speech waveform based on the specifi-

cations given by the front-end. In the following, the tasks and processes

of the front-end and the back-end are described in more detail.

4.2.1 Front-end

Speech is composed of acoustic, phonetic, phonological, morphological,

syntactic, semantic, and pragmatic levels of information (Dutoit, 1997).

A written text is a shallow representation of speech, consisting of letters,

numbers, symbols, punctuation marks, words, sentences, and paragraphs,

indicating what and (approximately) how the text should be read by a hu-

man. For computers, however, such rules are not explicit enough, and the

task of the front-end is to give exact specifications for the back-end on the

characteristic of the speech signal to be generated.

The linguistic front-end first performs text normalisation or pre-proc-

essing to convert numbers, acronyms, and abbreviations into equivalent

written-out words. This task is not straightforward since the correct con-

version often depends on the context of appearance. After text normalisa-

tion, morphological and contextual analysis is applied, which categorises

words into different word classes (also called part of speech (POS) or lex-

ical class) in order to help predicting their pronunciation, which in many

languages depends on the POS tag.

Based on previous information, the words are converted into a phonetic

transcription which defines how the words are pronounced. This is also

called letter-to-sound (LTS) conversion. In some languages, the LTS con-

version is straightforward, such as in Finnish and Spanish, where each

letter corresponds to a specific type of sound rather independently of the

context2. In contrast, in many languages, such as in English and French,

2Despite possible simple pronunciation rules, the acoustic properties of the
phonemes vary slightly depending on the context, which is handled in the lat-
ter stages of the speech synthesis process (see, e.g., Section 5.3.1).
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the relationship between written and spoken languages is more complex,

and the LTS conversion is more complicated due to the context-dependent

nature of the LTS rules (Black et al., 1998), which usually also include a

lot of exceptions. The LTS conversion can be performed either based on a

pre-built lexicon, which consists of the list of words (or lexemes) of a given

language and their pronunciations and POS tags, or using LTS rules for

the conversion. Often both are used such that first the word pronuncia-

tion is sought from the lexicon, and if the word is not found3, LTS rules

are used to predict the pronunciation of the unknown word.

Finally, prosodic patterns of speech, such as phrasing and accentuation

(manifested in the variation of pitch, intensity, segmental durations, and

voice quality), are predicted by mapping linguistic and structural features

of the text onto the patterns observed in speech. Each language has ded-

icated rules (although not explicit) on how the shallow textual informa-

tion should be converted into the flow of speech. Simple heuristics or

grammar-based systems can be used to parse the desired information for

prosody generation. However, corpus-based modelling methods are more

widely used in modern synthesisers, such as in unit selection and SPSS.

For example, a prosodic model can be constructed by learning a mapping

between the acoustic speech features of the corpus and the linguistic fea-

tures (such as punctuation marks, POS tags, syntactic constituents, n-

gram (Brown et al., 1992) distributions, etc.) extracted from the text.

Thus, the learnt model or rules can be applied in the synthesis to predict

phrases and accentuation from text. Alternatively, the whole statistical

modelling framework of acoustic speech features (such as in SPSS) can

be used to indirectly model the prosodic features based on the lower-level

linguistic features.

Usually there is interaction between the difference phases of the front-

end, since one phase cannot unambiguously guarantee a correct result,

but outputs many possibilities of which the most probable is selected

based on the information given by other phases. A more complete descrip-

tion of the linguistic front-end and various methods used for text parsing

are described, for instance, in the work by Dutoit (1997) and Taylor (2009).

3It is practically impossible to construct a lexicon that contains all possible words
and their pronunciations in a language. For example, the Google Web Trillion
Word Corpus (Franz and Brants, 2006) contains 13,588,391 unique words, even
after the words that appear less than 200 times are removed.
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4.2.2 Back-end

The task of the back-end is to convert the symbolic linguistic representa-

tion given by the front-end into speech sounds. In many TTS systems, this

part also includes the computation of the target prosody (pitch, intensity,

duration, etc.), which is used for synthesis. The back-end may be based on

several different methods to generate the actual speech waveform, such

as concatenation of speech units, or to utilise statistical modelling and

the source-filter based vocoder for generating speech from parameters.

Although the back-end relies on the information given by the front-end,

much of the naturalness and intelligibility depends on the type and im-

plementation of the back-end. In the following section, different back-end

synthesis methods are described in more detail.

4.3 Speech synthesis methods

The front-end is often rather language dependent while the back-end

methodology is more independent of language—in corpus-based meth-

ods, the back-end is only trained with the speech material of the given

language. Thus, a linguistic front-end for a language can be used for

driving various types of back-end synthesis methods. If the LTS conver-

sion in the front-end works well, the most important contribution of the

front-end after that is to provide appropriate prosody, or appropriate con-

textual information for the back-end to generate the prosodic properties

of speech. The modelling of prosody is considered hard, and the topic is

partly outside the scope of this thesis. The segmental speech quality and

various voice characteristics of synthesised speech, however, are highly

dependent on the back-end synthesis method. Therefore, TTS systems

are often classified based on the back-end type into different synthesis

methods, which are described in the following sections.

4.3.1 Formant synthesis

Formant synthesis, also known as rule-based synthesis, is based on using

a set of parameters to create speech, such as formant frequencies, am-

plitudes, and bandwidths as well as fundamental frequency, voicing, and

amount of aspiration noise. The voice source of speech is often modelled

as a series of pulses or noise, and the formants are modelled as individ-
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ual formant filters connected in parallel, series, or both. Speech is pro-

duced by creating rules on how the parameters vary with respect to time

based on the input from the front-end. The rules are often created manu-

ally by human experts, which often also requires laborious trial-and-error

work by comparing the original and synthesised utterances to optimise

the rules.

Formant synthesis is one of the oldest synthesis techniques, and it re-

ceived much attention through Dennis Klatt’s publication of a sophisti-

cated formant synthesiser (Klatt, 1980, 1982). The naturalness of for-

mant synthesis is generally rather poor due to the limited set of rules

constructed by human experts and due to the overly simplified synthesis

techniques. However, formant synthesis can be very intelligible even at

very high speaking rates, as it avoids the acoustic glitches that commonly

occur in concatenative systems. Theoretically, formant synthesis can pro-

duce high-quality synthetic speech, as was shown by Holmes (1973) by

creating a synthetic speech sample sounding so natural that an average

listener could not tell the difference between the synthetic and natural

samples (Klatt, 1987). However, in practice, it is difficult to build a com-

prehensive set of rules in order to yield high-quality TTS synthesis. De-

spite the weaknesses, formant synthesis has applications in, for example,

reading machines for the disabled and in speech research (Pickett, 1999).

4.3.2 Articulatory synthesis

Articulatory synthesis aims to model the speech production mechanism

as accurately as practically possible. Theoretically, articulatory synthe-

sis is able to produce very natural sounding speech if an accurate enough

model is used. However, for practical reasons, such as limitations in the

current speech production models and computational power, articulatory

synthesis has not achieved much success compared to other speech syn-

thesis methods. Articulatory synthesis is, however, useful in basic speech

research, and articulatory features obtained through the latest measure-

ment technologies, such as magnetic resonance imaging and (MRI) and

electromagnetic articulography (EMA), have been used in modern statis-

tical parametric speech synthesisers (Ling et al., 2009; Black et al., 2012;

Astrinaki et al., 2013).

84



Speech synthesis

4.3.3 Linear prediction synthesis

Similar to formant synthesis, LP synthesis is based on time-varying

speech parameters, but LP filter coefficients can be automatically esti-

mated from a short-time frame of the speech signal instead of manually

finding the parameters for individual formant filters. LP-based synthesis

utilises the source-filter model of speech production (Fant, 1960), which

was reviewed in Section 2.4. Thus LP synthesis is based on two compo-

nents, a driving excitation signal and a time-varying filter, as is depicted

in Equation 2.3. In LP analysis, the spectral contributions of the vocal

tract filter and the glottal voice source are both captured by the estimated

LP filter, and the excitation signal becomes white. Therefore, the driving

excitation in LP synthesis in the simplest form consists of impulses at

the glottal closure instant for voiced frames and white noise for unvoiced

frames.

LP is a widely used method in speech technology (for a review, see, for

example, Makhoul, 1975; Rabiner and Schafer, 1978; Markel and Gray,

1980), and its usefulness is based on its accuracy to estimate the spectral

envelope of speech and in its relative speed of computation. LP coefficients

also have good interpolation and smoothing properties when converted

to, for example, the linear spectral pair (LSP) representation (Soong and

Juang, 1984). The weaknesses of LP synthesis are its inability to model

spectral valleys and the possible bias in the estimated speech spectrum

due to the voice source harmonics. LP-based synthesis also suffers from

buzziness if a simple excitation model consisting only of impulses and

white noise is used. Today, LP-based synthesis techniques are not com-

monly used in rule-based synthesis but in conjunction with other speech

synthesis techniques, such as for representing spectral information in sta-

tistical parametric speech synthesis or for speech compression and modi-

fication in concatenative synthesis.

4.3.4 Concatenative synthesis

Concatenative synthesis provides a different approach to speech synthe-

sis. Instead of artificially generating speech, a prerecorded speech corpus

is first split into (small) speech segments, which are then concatenated

smoothly in the synthesis phase to generate new sentences. Generally,

concatenative synthesis provides high-quality speech output, but it may

often suffer from audible glitches in the output due to imperfect concate-
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nation of the units.

There are three subtypes of concatenative speech synthesis that use

different types of units in concatenation. In domain-specific synthesis,

recorded words and phrases are used to create complete utterances. This

type of approach can be used in applications were the desired speech out-

put is limited to a small specific domain so that all possible outputs can

be generated with a reasonable effort. Such applications are, for example,

scheduled announcements in public transportation and weather reports.

The synthesis quality can be very high due to the natural speech record-

ings, but often the prosody of the concatenated utterances can be rather

poor.

In diphone synthesis (see, e.g., Dutoit et al., 1996), a minimal speech

database is constructed that contains all the diphones (phone-to-phone

transitions) occurring in a language. In diphone synthesis, only one ex-

ample of each diphone is contained in the speech database, and the num-

ber of diphones depends on the language. In synthesis, the diphones are

concatenated with the aid of signal processing methods, such as LP and

pitch-synchronous overlap-add (PSOLA) (Charpentier and Stella, 1986;

Moulines and Charpentier, 1990). However, diphone synthesis often suf-

fers from glitches when concatenating two diphones that are not compat-

ible with each other. The naturalness of diphone synthesis can also suffer

from artefacts stemming from signal processing methods, which are ap-

plied in order to compress the diphone inventory or modify the diphones

in order to aid the concatenation.

Unit selection synthesis is today the most common concatenative speech

synthesis method, and probably the most widely used commercial syn-

thesis method of all. Unit selection systems are usually based on a large

speech corpus, which is segmented into units that can be of various length:

frames, half-phones, phones, diphones, triphones, demisyllables, sylla-

bles, morphemes, words, phrases, sentences, or a combination of these

(Breen and Jackson, 1998; Segi et al., 2004). Most commonly the units

are rather small (not words, phrases, or sentences) in order to preserve

the flexibility of the synthesis. The speech database is segmented into

the units using a specially designed speech recogniser that performs force

alignment, and possibly checked and corrected manually. The speech

units are then indexed, clustered, and labelled according to linguistic and

acoustic features, such as phone identity, f0, energy, spectrum, and dura-

tion, and contextual information, such as position in the syllable, word,
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and phrase, and neighbouring phones (Black and Taylor, 1997b). In the

synthesis, optimal target units for a sentence are selected by minimis-

ing target and concatenation costs (Black and Campbell, 1995; Hunt and

Black, 1996; Black and Taylor, 1997b). The target cost defines how well a

unit matches the linguistic and acoustic features and context provided

by the front-end. The concatenation cost measures how well adjacent

units can be concatenated and is evaluated by comparing the acoustic

features of the two units at the concatenation point. The weights of the

target and concatenation costs and different features thereof can be either

hand-tuned or more often automatically trained to optimise the synthesis

quality (Black and Campbell, 1995; Hunt and Black, 1996). Also, signal

processing techniques called smoothing algorithms can be used to aid the

concatenation if a suitable unit is not found.

Unit selection synthesis can provide highly natural and intelligible

speech if a large (single-speaker) corpus is used and the system is well

optimised. Best unit selection systems can be indistinguishable from

human speech in the style the system is optimised for. However, the con-

catenation points may still cause audible glitches or anomalies in prosody,

especially when using smaller corpora. Despite the high quality, only a

single speaking style, usually read-aloud, can be produced using one

extensive speech corpus. Sampling-based approaches, such as unit selec-

tion, are inherently inflexible and limited by the available samples in the

database, which limits the ability of the system to change, for example,

voice quality, speaking style, or expression (Black, 2003). Designing and

recording a unit selection corpus that includes all the desired variation is

highly impractical. Unit selection synthesis also requires large data stor-

age for the recorded units, which may limit its use in some applications,

although this limitation is likely to be less important with decreasing

prices and increasing capacity of memory and data storage.

4.3.5 Statistical parametric speech synthesis

SPSS (Zen et al., 2009; Tokuda et al., 2013) uses principle similar to for-

mant synthesis, that is, parameterizing and reconstructing speech with

whatever means works best, but the parameters are estimated automat-

ically from a speech corpus and modelled statistically for representing

speech sounds in different contexts. Usually, a source-filter model is

utilised to represent speech signal as a set of excitation and spectral fea-

tures, although other parameterization methods can be also used, such as
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the harmonic plus noise model (Erro et al., 2014; Degottex and Erro, 2014)

or the dynamic sinusoidal model (Hu et al., 2014). Usually decision-tree

clustered context-dependent HMMs are utilised for modelling the time-

varying speech parameters, and thus SPSS is often called HMM-based

speech synthesis. However, the latter is only one instance of SPSS, since

also, for instance, deep neural network (DNN) can be used instead.

SPSS consists of two phases. First, in the analysis stage, a dedicated

vocoder is used to decompose the speech corpus into speech parameters.

In HMM-based speech synthesis, each context-dependent phoneme (de-

fined in the front-end) is represented with a left-to-right HMM, which rep-

resents the properties of the phoneme by modelling each acoustic param-

eter with a Gaussian distribution in each state. The states of the context-

dependent phonemes are clustered using a decision tree (discussed in

Section 5.3.1) in order to handle data sparsity. In the synthesis stage,

a phoneme sequence given by the front-end is created by concatenating

context-dependent HMMs from which smooth parameter trajectories can

be generated using the means and variances of the Gaussians. Finally,

the vocoder is used to generate the speech waveform from the parameter

trajectories. The detailed methodology of HMM-based speech synthesis is

discussed in Section 5.

Since SPSS uses a parametric form of speech, it can generate smooth

and intelligible speech. Unlike the unit selection method, SPSS is able

to generate speech that is not included in the original corpus by predict-

ing the parameter values for a new context. SPSS is also flexible in the

sense that it can be adapted (Yamagishi et al., 2009a) to a different voice

quality, speaking style, or speaker identity by using a small amount of

corresponding speech material. SPSS does not require as large a speech

database as the unit selection methods, and the footprint of SPSS is very

small; the statistical model required only a fraction of the size of a large

corpus. However, due to the parametric representation of speech, SPSS

suffers from lower segmental speech quality than unit selection synthe-

sis. The generated parameter trajectories and the spectrum are also over-

smooth due to averaging in the statistical modelling, which degrades the

synthesis quality. Recently, several improvements have been introduced

in SPSS to improve the synthesis quality, which makes SPSS acceptable

even in commercial use.
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4.3.6 Hybrid methods

Although unit selection and statistical parametric speech synthesis use

completely different waveform generation, they also have a lot in com-

mon. Clustering methods used in unit selection synthesis are very similar

to the ones in HMM-based synthesis, the main difference being the repre-

sentation of clustering: the statistics of the context-dependent HMMs or

the multi-templates of speech segments. Also, the decision trees used in

SPSS (discussed in Section 5.3.1) are essentially equivalent to the regres-

sion trees in unit selection systems. The likelihoods of static and dynamic

features in SPSS also correspond to the target and concatenation costs in

unit selection synthesis.

Due to these similarities, there are several hybrid approaches where the

benefits of both methods are exploited (Zen et al., 2009). For example, the

HMM-based approach has been used in unit selection synthesis to predict

targets units or calculating costs (Kawai et al., 2004; Hirai and Tenpaku,

2004; Rouibia and Rosec, 2005; Yang et al., 2006; Krstulović et al., 2007;

Lu et al., 2009; Qian et al., 2010; Jiang et al., 2010; Chen et al., 2011, 2013;

Zhang et al., 2009; Meen and Svendsen, 2010; Yu et al., 2007; Ling et al.,

2008; Yu et al., 2013b; Huang et al., 1996; Hon et al., 1998; Kominek and

Black, 2006; Okubo et al., 2006; Ling and Wang, 2006, 2007; Ling et al.,

2007), and guiding smoothing (Plumpe et al., 1998; Wouters and Macon,

2000). Mixing natural and synthetic units in multi-form speech synthesis

has also been proposed in order to fix data sparsity (Okubo et al., 2006;

Aylett and Yamagishi, 2008; Pollet and Breen, 2008; Sorin et al., 2011;

Tiomkin et al., 2011; Sorin et al., 2014). Also, the complete unification of

both approaches has been investigated (Taylor, 2006).

Hybrid approaches provide several benefits compared to either plain

unit selection or HMM-based synthesis. The over-smoothing problem of

SPSS and quality degradation due to vocoding is avoided by using natu-

ral units. The HMM-based costs also help to capture the detailed context-

dependencies. On the other hand, hybrid approaches lose the flexibility

and small footprint by using the natural units.

4.4 Evaluation of synthetic speech

A great thing in speech synthesis research is that the results can be

assessed by listening to the synthesis output. This is commonly done
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by speech researchers when developing new methods for TTS synthesis.

However, in order to guarantee consistent comparison and improvement

of TTS systems, the synthesis output must be evaluated in a more formal

manner. The evaluation of synthetic speech is not a trivial problem for

several reasons. Firstly, there is no absolute reference speech waveform

to compare with, since the TTS process means generating new instances

of speech. Even if the same utterance is spoken by a human speaker

and generated by a TTS system, the two speech waveforms would be dif-

ferent with respect to many aspects, such as prosody and duration, and

thus objective measures, such as used in speech coding, cannot be gen-

erally used. Secondly, there are multiple criteria on how to assess syn-

thetic speech (see, e.g., Mayo et al., 2005, 2011; Hinterleitner et al., 2011,

2013). A TTS system aims to produce both natural and intelligible syn-

thetic speech that should also represent speaker characteristics, expres-

sions, and contextual cues. Various TTS techniques may have a different

degree of success in achieving each of these goals, and depending on the

desired application, emphasis on different aspects may be used. Thirdly,

usually the best means for assessing synthetic speech is subjective test-

ing, which is usually time-consuming and expensive. In order to yield

useful results, evaluation criteria, question setting, and the evaluation

methodology must be carefully considered. Subjective assessment also re-

quires special arrangements, such as appropriate equipment for the test

and native speakers of the language, who are also influenced by their fa-

miliarity with the evaluation methodology, the possibility for rehearsal,

and the listening conditions. Finally, a statistical analysis of the evalua-

tion results must be performed in order to draw meaningful conclusions.

Through careful and rigorous test design and assessment, useful and re-

liable results can be achieved for developing new techniques both in the

TTS front-end and back-end.

Since a speech synthesis system consists of various components which

themselves can be highly complex, an engineering point of view is often

adopted for evaluating synthetic speech. Although single TTS system

components can be assessed individually (for example, text normalisa-

tion in the front-end), usually a TTS system can be seen as a black box

that outputs speech, which is the final measurable quantity. In general,

synthetic speech is assessed by its naturalness, intelligibility, or extralin-

guistic characteristics, such as speaker similarity or identity, expressivity,

and suitability for the context. In the following, the evaluation of these
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Table 4.1. Rating scale for overall speech quality (International Telecommunication
Union, 1996).

Quality of the speech Score

Excellent 5
Good 4
Fair 3
Poor 2
Bad 1

criteria is discussed further.

4.4.1 Evaluation of naturalness

Naturalness4 of synthetic speech is a very multi-dimensional concept

since various aspects in synthetic speech can make it sound unnatural to

a human listener; both the linguistic front-end and the signal processing

back-end may produce their own artefacts, such as mispronunciation,

unexpected prosody, or signal artefacts and robotic sound quality. Nev-

ertheless, humans have a good idea of how natural speech sounds, and

therefore naturalness of synthetic speech is often assessed by humans in

subjective listening tests.

Naturalness can be assessed, for example, by playing synthetic speech

samples to listeners and asking them to rate the samples on a Likert

scale (Likert, 1932) from 1 to 5, where each number is given a verbal de-

scription. In the evaluation of overall naturalness (or quality, as defined

in International Telecommunication Union, 1996), the scale in Table 4.1

is commonly used. This type of test is also known as the absolute cat-

egory rating (ACR) test (International Telecommunication Union, 1996).

Averaging the scores results in the mean opinion score (MOS), which in-

dicates the quality of each evaluated system. This usually gives a rea-

sonably accurate figure for systems’ performance if enough listeners are

used in the evaluation. For example, such a test is used in Publication IX.

However, small differences between systems is harder to assess using the

MOS. Also, the interpretation of the MOS score is harder—it is difficult

to determine which aspects listeners paid attention to when assessing the

4Speech naturalness and speech quality are often considered to be comparable
terms, and both are used to describe the overall impression on synthetic speech.
In this thesis, both terms are used depending on the context, but it is important
not to confuse them with the term voice quality, which is discussed in Section
2.3. For a discussion on the perceptual quality dimensions of TTS systems, see,
e.g., Mayo et al. (2005, 2011) and Hinterleitner et al. (2011, 2013).

91



Speech synthesis

Table 4.2. Preference rating scale between two systems when comparing the quality of
the second utterance to the quality of the first (International Telecommunica-
tion Union, 1996).

Quality of the second sample compared to that of the first Score

Much better 3
Better 2

Slightly better 1
About the same 0
Slightly worse −1

Worse −2
Much worse −3

samples. MOS tests do not necessarily give absolute results that are com-

parable between evaluations performed at different times and in different

conditions. Especially the systems included in a test greatly affect the re-

sults. For example, if natural speech is included in a test, the synthetic

speech samples will be rated worse than without a natural reference.

In order to compare two or more systems directly and to assess smaller

differences between systems, a comparison test can be used. In such a

test, test subjects listen to two samples, one from each system, and choose

the sample they prefer or rate the quality difference between the two sam-

ples. If the test subject is instructed to select the preferred sample, a

preference score is obtained by calculating the percentage of how often a

system was preferred over the other. Such preference tests are used in

Publications IV and IX. If the objective is to measure the quality differ-

ence between two or more systems, a comparison category rating (CCR)

test (International Telecommunication Union, 1996) methodology can be

used, which utilises a discrete seven-point scale ranging from −3 (much

worse) to 3 (much better), which is presented in Table 4.2. The results

are averaged to obtain the comparison mean opinion score (CMOS) for

each system, which gives the order of preference of each system and the

amount by which the quality differs. Such tests are used in Publications

III, IV, V, VI, and VIII.

As stated earlier, naturalness is a complex concept, and rating natu-

ralness depends on several other things than might be obvious at first:

factors such as expectations and experience of the test subject and the

context of the application may have significant effects on the final impres-

sion. For example, the final “naturalness” can be assessed only in the end

product where the synthesiser is used, whether it is a human-computer

interaction using a mobile phone or an animated character in a movie. In
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such situations, likability or believability (Campbell, 2007) may be better

descriptors for the goodness of a system to the user.

Finally, verbal, written, or any other type of feedback from listeners or

real users may be crucial for developing a TTS system (see, e.g., Lu et al.,

2011). Especially if the user feedback and corrections can be performed in

an automated fashion, the TTS system can be constantly improved (see,

e.g., Simple4All, 2014).

4.4.2 Evaluation of intelligibility

Speech intelligibility can be measured either by evaluating overall speech

comprehension or by evaluating the recognition of single speech segments,

phonemes or words in isolation or in a sentence. Comprehension tests

evaluate how well a message delivered by a synthetic utterance is under-

stood by the listeners (or alternatively how much time or resources speech

comprehension takes). Comprehension of speech might be one of the key

aspects in developing a TTS synthesiser—after all, the final goal of a TTS

system is to deliver a message to a listeners as accurately and with as

little effort as possible. Some studies have shown that the comprehension

of synthetic speech is more difficult compared to natural speech (Duffy

and Pisoni, 1992). On the other hand, the results by Paris et al. (1995)

and Chang (2011) show that the comprehension of synthetic speech is not

worse than that of natural speech. The discrepancy between the results

may be explained by the evaluation methodology. In general, conventional

comprehension tests may not be appropriate for assessing real life speech

comprehension, where attention is a significant factor, influenced by the

naturalness, prosody, and possible artefacts of synthetic speech. Thus

laboratory-based comprehension tests, where attention is maximised by

definition, may have to be replaced with more realistic comprehension

test scenarios. Nevertheless, intelligibility tests based on, say, word recog-

nition are easier to conduct than speech comprehension tests, and these

methods, discussed below, have shown their power in the systematic as-

sessment of speech synthesisers and their components.

The earliest intelligibility evaluation methods based on single segments,

phonemes, or phoneme combinations are rarely used today for evaluat-

ing complete TTS systems. Instead, word recognition tests are commonly

used for evaluating the intelligibility of a TTS system. In a word recogni-

tion test, words are played either in isolation or in sentences to subjects

who are requested to indicate what they have heard. The intelligibility is

93



Speech synthesis

measured by the word error rate (WER) evaluated from the answers. For

example, in the (diagnostic) rhyme test (DRT) (Fairbanks, 1958; Voiers,

1977) and the modified rhyme test (MRT) (House et al., 1965), similar

sounding words are played to the listeners, such as BAD, BACK, BAN,

BASS, BAT, BATH. Intelligibility testing at the sentence level can be per-

formed using for example Harvard sentences (IEEE Subcommittee on

Subjective Measurements, 1969), such as “JAZZ AND SWING FANS LIKE

FAST MUSIC”, which are designed to represent the natural distribution of

phonemes in English. Such a test in Finnish is used in Publication VII.

However, words in semantically sound sentences are rather easy to

guess even if a word is not properly heard. Depending on the selected

sentences, this may result in a very low WER with good synthesisers,

which limits the discrimination ability of the test. Therefore, semanti-

cally unpredictable sentences (SUS) are often used in order to prevent

guessing. SUS sentences are grammatically correct so that they form

valid sentences, but the sentences do not necessarily make sense, for ex-

ample, “THE PLANE CLOSED THE FISH THAT LIVED”. A SUS test (Benoît

et al., 1996) can be used to obtain more reliable intelligibility scores. Such

test in Finnish is used in Publication III. Alternatively, the flooring (or

ceiling) effect of such tests can be avoided by using a speech reception

threshold (SRT) test (Plomp and Mimpen, 1979; Vainio et al., 2005). In

the SRT test, the test material is presented in noise with an adaptive

SNR, and the intelligibility is defined by the SNR at which a specific

WER, usually 50%, is obtained.

Often intelligibility in a specific environment can be of interest as well.

Various noise types affect the intelligibility of speech, and even the spatial

noise distribution has some effect on speech intelligibility (Raitio et al.,

2012a). By modifying the speech output, for instance, by simulating Lom-

bard speech (Raitio et al., 2011b, 2014c), improved intelligibility in noise

can be achieved. An intelligibility test in noise with natural sentences is

used in Publication VII.

4.4.3 Evaluation of extralinguistic characteristics

In addition to naturalness and intelligibility, speech carries a lot of ex-

tralinguistic information, such as speaker identity, expressivity, and var-

ious other voice characteristics. Often speaker similarity is assessed in

order to test how well a synthesiser can reproduce specific speaker traits.

Speaker similarity can be evaluated using an approach similar to that
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used in the evaluation of naturalness by changing the question setting

and descriptions in the verbal scales. For example, synthetic speech sam-

ples can be presented to subjects with a (different) natural reference sam-

ple, and they are asked how similar or different the speaker in the test

sample sounds compared to the reference sample using a Likert scale

ranging from 1 (totally different person) to 5 (exactly the same person).

Alternatively, if two or more methods are compared in terms of similarity,

an ABX test can be performed so that the subject is presented with two

samples and instructed to select the one (A or B) that is more similar to

the reference natural speech (X). Such an approach is used in Publications

IV and V. A similar approach can be used to measure virtually any char-

acteristic of speech, such as suitability and likability of different speak-

ing styles in different sound environments (Publication VII), impression

of shouting and use of vocal effort (Publication VIII), and impression of

creakiness (Publication IX).

The evaluation of prosody is especially difficult since it builds on several

characteristics of speech (Sonntag and Portele, 1998). While evaluating

one dimension of speech, other dimensions may easily affect the results,

especially when the assessment extends from the evaluation of individ-

ual speech segments to the analysis of full paragraphs. Even if listeners

are asked to rate specific prosodic features, they may have difficulties in

pinpointing specific causes for their perception. For example, perceptual

rating of intonation is affected by the segmental quality of speech (Vainio

et al., 2002). Moreover, there is no such thing as “correct” prosody, which

complicates the evaluation even more.

There are no established standards in prosody evaluation, and thus gen-

eral assessments have been conducted, such as measuring the acceptance

of a human-machine dialogue by simulating the dialogue situation (Pols,

1989), which, however, is unable to provide diagnostic information. A sim-

ilar approach was adopted in the Blizzard Challenge 2012 for evaluating

the prosody of audio-book reading (King and Karaiskos, 2012). Other ex-

periments on the evaluation of prosody have utilised, for example, delex-

icalisation (Sonntag and Portele, 1998; Vainio et al., 2009), objective as-

sessment (Hirst et al., 1998), and eye-tracking (Rajkumar et al., 2010) in

addition to conventional methods.
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4.4.4 Objective evaluation

Since subjective experiments are expensive, time consuming, and often

not reproducible, automatic objective evaluation would offer an attractive

alternative for assessing synthetic speech. However, objective evaluation

of synthetic speech is often not possible due to the lack of a reference

signal—whereas in speech enhancement and coding, the original unpro-

cessed speech signal can be used as a reference, synthetic speech is cre-

ated from text and thus there is no reference speech waveform available.

However, in certain cases, a reference natural speech waveform can be

used. For example, synthetic speech can be generated according to the

specifications based on natural speech samples. If the phonetic and con-

textual labelling and duration information is first extracted from natural

speech and then used to generate synthetic speech, the original natural

speech sample can be used as an approximate reference signal for the syn-

thetic sample. Various methods can then be used to compare the synthetic

signal to the natural reference. A possible problem in this sort of evalua-

tion is that even slight differences in alignment and duration may result

in quite different objective scores.

Common objective measures include various distortion measures based

on the speech spectrum, such as log-spectral distortion (LSD) (Gray and

Markel, 1976; Gray et al., 1980), cepstral distance measure (Gray and

Markel, 1976; Gray et al., 1980), mel-cepstral distortion (Kubichek, 1993;

Toda et al., 2007), Itakura–Saito distortion (Itakura and Saito, 1968; Gray

and Markel, 1976; Gray et al., 1980), and Kullback–Leibler distance (Veld-

huis and Klabbers, 2003), which all give a measure of how different the

synthesised speech signal is from the original speech signal in terms of the

spectrum. Similarly, measures such as root mean squared error (RMSE)

(Clark and Dusterhoff, 1999), correlation (Clark and Dusterhoff, 1999),

and log likelihood ratio (Lu et al., 2010) can be used to compare the speech

parameters generated by a synthesiser to the ones extracted from the

original speech file, or alternatively their probability distributions using,

for example, Kullback–Leibler divergence (Do et al., 2014). Commonly

used speech features in evaluations are, for example, log f0, intensity, and

various spectrum-based parameters. Also the voiced/unvoiced error rate

is often used as a measure of quality. The SNR in comparison to origi-

nal speech file can also be used to indicate quality differences, such as is

used in segmental SNR and frequency-weighted segmental SNR (Hu and
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Loizou, 2008). However, the problem with all of these methods is that

they are often less correlated with human perception, and thus they can

be used only as an indication of perceptual difference or improvement.

Objective methods that aim to model human perception have also been

developed, such as perceptual evaluation of speech quality (PESQ) (Inter-

national Telecommunication Union, 1997; Rix et al., 2000, 2001), which

was originally developed for evaluating speech quality in speech trans-

mission technology. PESQ estimates the MOS for a given speech signal

when compared to a natural reference. PESQ first converts both speech

signals into features that correlate with perception and then maps the

parametric difference to a MOS scale.

Similar methods can be used to objectively estimate the intelligibility

of synthetic speech, although this task is even harder than estimating

the naturalness. Usually objective intelligibility methods measure the in-

telligibility in the presence of noise. The most commonly used measures

are the articulation index (AI) (French and Steinberg, 1947; Fletcher and

Galt, 1950; Kryter, 1962), speech transmission index (STI) (Steeneken

and Houtgast, 1980), speech intelligibility index (SII) (American National

Standards Institute, 1997) or its modification, coherence SII (Kates and

Arehart, 2004), Dau measure (Christiansen et al., 2010; Dau et al., 1996),

glimpse proportion (GP) (Cooke, 2006), and short-time objective intelli-

gibility measure (STOI) (Taal et al., 2011). PESQ has also been used to

estimate the intelligibility of speech (Beerends et al., 2004, 2005). Taal

et al. (2009) and Hu and Loizou (2008) have evaluated various measures

for speech intelligibility prediction in noise. Valentini-Botinhao et al.

(2011a,b) have measured the correlation of multiple objective measures

with respect to subjective intelligibility ratings with synthetic speech,

concluding that the Dau measure and glimpse proportion had the highest

correlation. The correlating of subjective results and PESQ with synthetic

speech has been studied with promising preliminary results by Cerňak

and Rusko (2005). Also, the relation of subjective and objective scores for

prosody evaluation has been studied by Hirst et al. (1998).

Due to the correlation of subjective and objective evaluation methods,

attempts have been made to construct an evaluation method based on

large subjective evaluation data, for example, from the Blizzard Challenge

(2014). Such objective measures have shown to provide promising results

(Falk et al., 2008; Hinterleitner et al., 2010; Huang, 2011). Also speech

recognition has been used to assess synthetic speech without the need for
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a natural reference signal (Cerňak et al., 2009).

4.4.5 Public speech synthesis evaluations

Finally, in order to achieve comparable evaluation results for various syn-

thesis techniques, the testing conditions should be ideally the same. Dif-

ferences in the speech database, evaluation method, listening test setup,

listening conditions, and listeners may lead to different results. Also,

if only the signal processing back-end is evaluated, the same front-end

should be used as the results may highly depend on it. This has long

been a problem in evaluating speech synthesis, and it still exists. Us-

ing generally known and publicly available reference methods for com-

parison is widely used, but still differences due to settings, corpora, and

testing conditions may lead to different results. Only recently, a public

speech synthesis assessment has been devised called the Blizzard Chal-

lenge (Black and Tokuda, 2005; Blizzard Challenge, 2014; King, 2014).

Blizzard Challenge is an annual open assessment where speech synthesis

entries are built and evaluated using the same data and a large subjective

evaluation. Blizzard Challenge has been organised since 2005, and it has

been recognised as a reliable and valuable benchmark for speech synthe-

sis techniques. Various speech materials for building the voices have been

used from large to small corpora in many different languages and rang-

ing from the read-aloud TTS style to audio-book data. Various evaluation

methods and criteria have also been used. For example, speech natural-

ness, intelligibility, speaker similarity, and intelligibility in the presence

of noise have been assessed. Blizzard Challenge has raised a lot of aware-

ness on speech synthesis and its evaluation, and it has given valuable in-

formation on speech synthesis techniques and evaluation, which are sum-

marised by King (2014). Blizzard Challenge has also created spin-offs,

such as the Albaysin Challenge (Campillo et al., 2011), which is similar

to the Blizzard Challenge but uses Spanish speech data, and the Hurri-

cane Challenge (Cooke et al., 2013), which evaluates the intelligibility of

natural and synthetic speech in noisy conditions. The vocoder and related

techniques presented in this thesis have been used in several submissions

for the Blizzard Challenge evaluation (Suni et al., 2010, 2011, 2012; Watts

et al., 2013; Suni et al., 2014). For example, the system described in Suni

et al. (2010) was the most intelligible in the presence of noise among all

systems, even more intelligible than natural speech. Also, the system

described in Suni et al. (2014), using DNN-based voice source modelling
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(Raitio et al., 2014a,b), was very successful among parametric speech syn-

thesisers with the six different Indian languages.

4.5 Summary

This section described the fundamental concepts in speech synthesis and

briefly reviewed the history and development of speech synthesis tech-

niques. The general architecture of a TTS system and the roles of the

linguistic front-end and the signal processing back-end were described.

Various techniques for speech synthesis were presented with their advan-

tages and disadvantages. Finally, the problem of evaluating synthetic

speech was discussed, and various methodologies for speech synthesis

evaluation, both subjective and objective, were presented, concentrating

on different aspects of synthetic speech, namely naturalness, intelligibil-

ity, and extralinguistic characteristics.
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5. Statistical parametric speech
synthesis

SPSS (Black et al., 2007; Zen et al., 2009; Tokuda et al., 2013), already

briefly introduced in Section 4.3.5, is one of the most widely used speech

synthesis technologies today. Although SPSS does not yet provide as good

naturalness as the best unit selection methods, its flexibility (Yamagishi

et al., 2009a) and robustness (Yamagishi et al., 2009b) makes it an attrac-

tive method for almost any speech synthesis application. Moreover, the

speech quality of SPSS has improved a lot during the last decade, and

currently the quality of SPSS has reached a level where it can stand in its

own right (Zen et al., 2009).

The idea of SPSS is to utilise a parametric representation of speech,

using a vocoder that can convert speech into a meaningful set of pa-

rameters that describe the perceptually most important characteristics

of speech. Using the parametric representation of speech and the linguis-

tic information extracted from text, the context-dependent statistics of the

speech sounds can be modelled. Usually decision-tree clustered context-

dependent HMMs are utilised for the statistical modelling of the time-

varying speech parameters, and thus SPSS is often called HMM-based

speech synthesis. In synthesis, new speech parameters can be generated

according to the text input, and the parameters can be fed back to the

vocoder to reconstruct the speech signal.

This simple principle has led to a totally new paradigm in speech syn-

thesis, which is more thoroughly described in this section. First, the

fundamental principles and architecture of HMM-based speech synthe-

sis are reviewed, after which SPSS is discussed in more detail, concen-

trating on topics such as flexibility and adaptation, various vocoders, and

voice source modelling. Finally, possible future directions of SPSS are

discussed.
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a11 a22 a33

b1(ot) b2(ot) b3(ot)

o1 o2 o3 o4 o5 o6 o7 o8

a12 a231 2 3

Observation
sequence O

State
sequence Q 1 1 1 2 2 3 3 3

…

State transition
probability aij

Output prob-
ability bi(ot)

Figure 5.1. Example of a three-state left-to-right HMM. The states of the HMM are de-
noted with large circles numbered from one to three. A state transition prob-
ability from state i to state j is denoted as aij . An output probability density
of state i is denoted as bi, and the generated observation at time instant t is
denoted as ot. Adapted from Tokuda et al. (2013).

5.1 Hidden Markov model

The HMM is a powerful statistical tool for the modelling, segmentation,

and classification of a discrete time-series. The basic theory of the HMM

was first published in a series of papers by Baum and Eagon (1967) and

Baum et al. (1970), and today HMMs are widely used in various applica-

tions. HMMs have been successfully used in speech and language process-

ing, such as in speech recognition, enhancement, and synthesis as well as

in language modelling, translation, and understanding.

A Markov chain (Norris, 1998) is a random process that incorporates

a minimum amount of memory without being totally memoryless, that

is a transition from one state to another only depends on the current

state. This characteristic is called the Markov property. In a Markov

chain, each state corresponds to a discrete observable event, but in the

HMM (Rabiner, 1989; Rabiner and Juang, 1993; Huang et al., 2001),

the observation itself is a random process. Thus, an HMM is a double-

embedded stochastic process consisting of the underlying stochastic pro-

cess, the Markov chain (state sequence) that is not observable (hidden)

but can be observed through another set of stochastic processes associ-

ated with each state that produces the sequence of observation features.

An illustration of a 3-state left-to-right HMM is shown in Figure 5.1, in

which the state index increases or stays the same with each time step.

Generally, left-to-right HMM structures are used to model systems whose

properties evolve in a successive manner, such as speech and written lan-

guage (Rabiner, 1989).
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Formally, an HMM is defined by:

• The number of states N and the set of states Q = {q1, q2, . . . , qN}.

• The number of output observation alphabets M and the alphabet

itself O = {o1, o2, . . . , oM}1.

• The state transition probability distribution A = {aij}Ni,j=1, where

aij is the probability of a transition occurring from state qi to qj .

• The output probability distribution B = {bi(o)}Ni=1, where bi(o) is the

probability of emitting an observation o in state i.

• The initial state probability distribution π = {πi}Ni=1.

In conclusion, an HMM is defined by the constants N and M , represent-

ing the total number of states and the size of the observation alphabet,

the observation alphabet O, and three probability measures A, B, and

π. A compact notation for the set of model parameters for an HMM is

represented as

λ = (A,B,π). (5.1)

There are basically three problems associated with an HMM:

1. The evaluation problem: Given an observation sequence O = {o1,
o2, . . . ,oT } and a model λ, what is P (O|λ), the probability that the

model generated the observation sequence?

2. The decoding problem: Given the observation sequence O = {o1,
o2, . . . ,oT } and the model λ, what is the optimal state sequence Q =

{q1, q2, . . . , qT }?

3. The learning problem: How to adjust the model parameters λ =

(A,B,π) to maximise the joint probability
∏
O

P (O|λ)?

The first problem can be used to evaluate how well a given model matches

a given observation sequence. This is especially useful for scoring between

different competing models and can be utilised, for example, in pattern

recognition. The probability can be calculated from

P (O|λ) =
∑
∀Q

P (O|Q, λ)P (Q|λ). (5.2)

1Only in the case of a discrete HMM. For continuous density HMM (CD-HMM),
single multivariate Gaussian distributions are commonly used for modelling the
observation vector.
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The direct calculation of P (O|λ) is straightforward, but the number of

operations involved is of order of 2TNT . Thus, the problem is usually

evaluated with the forward algorithm (Rabiner, 1989; Huang et al., 2001),

which requires only N2T operations.

The most widely used criterion for finding an optimal state sequence

for the decoding problem is to find the single best state sequence that

maximises the probability P (Q|O, λ). This can be solved with the Viterbi-

algorithm (Viterbi, 1967; Forney, 1973). The decoding problem is used, for

example, in ASR to find the best path (optimal state sequence) of letters

for the observed acoustic feature sequence.

The third problem, learning, is the most difficult one. No analytical

solution is known for solving the model which maximises the probabil-

ity of the observation sequence. However, iterative algorithms, such

as the Baum–Welch algorithm (Baum et al., 1970), which utilises the

expectation-maximisation (EM) algorithm (Dempster et al., 1977), can be

used to maximise
∏
O

P (O|λ). A speech recogniser or synthesiser involves

this learning process to train the HMM with given speech data.

HMMs can be extended with various additional features to make their

use more versatile and efficient. For example, null transitions (Bahl et al.,

1983), state tying (Bellegarda and Nahamoo, 1990), explicit state duration

modelling (Russell and Moore, 1985; Levinson, 1986), and autoregressive

HMMs (Poritz, 1982; Juang and Rabiner, 1985; Shannon et al., 2013) are

utilised in speech recognition and synthesis. Also, alternative training

criteria instead of the common maximum likelihood estimation can be

used, such as discriminative training using maximum mutual informa-

tion (MMI) in speech recognition (Bahl et al., 1986) or minimum gener-

ation error (MGE) training in speech synthesis (Wu and Wang, 2006).

Other useful features in HMM-based speech synthesis are described in

the following parts of this section.

5.2 Speech parameter training and generation using HMM

In HMM-based speech synthesis, the time-varying speech parameters ex-

tracted by a vocoder are modelled using left-to-right phoneme HMMs,

such as depicted in Figure 5.1. The observation vector consists of contin-

uous-valued speech parameters, and the state-output probabilities are as-

sumed to be single multivariate Gaussian distributions. Thus, the state-
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output probabilities are defined as

bi(ot) = N (ot;μi,Σi)

=
1√

(2π)d|Σi|
exp

{
− 1

2
(ot − μi)

�Σ−1
i (ot − μi)

}
,

(5.3)

where μi is the d-by-1 mean vector, Σi is the d-by-d covariance matrix, d

is the dimension of the speech parameter vector, and ot is an observation

vector, representing speech features at frame t.

Let O =
[
O�

1 ,O
�
2 , . . . ,O

�
T

]� be the parameters of a speech corpus, W

the linguistic specifications extracted from the corresponding text, and

o =
[
o�1 ,o�2 , . . . ,o�T ′

]� the speech features to be generated according to

linguistic specifications w. The training of an HMM system can be written

as follows:

λmax = argmax
λ

p(O|λ,W ), (5.4)

where

p (O|λ,W ) =
∑
∀Q

πq0

T∏
t=1

aqt−1qtbqt(Ot), (5.5)

and Q = {q1, q2, . . . , qT } is a state sequence. The speech parameter gener-

ation, or synthesis, can be written as

omax = argmax
o

p(o|λmax, w)

≈ argmax
o

T ′∏
t=1

N (
ot;μqmax

,Σqmax,t

)
,

(5.6)

where

qmax = argmax
q

P (q|λmax, w) . (5.7)

Equation 5.7 can be maximised using the explicit state-duration proba-

bility distributions (Russell and Moore, 1985; Levinson, 1986; Zen et al.,

2004), which is discussed in more detail in the following section along

with other additional features used in HMM-based speech synthesis.

5.3 Core architecture

An overview of an HMM-based speech synthesis system is shown in Fig-

ures 5.2 and 5.3, concentrating on signal flow and statistical modelling

with HMMs, respectively. HMM-based synthesis consists of two parts:

training and synthesis. As most modern speech synthesisers, HMM-based

speech synthesis is a corpus-based method—it requires a recorded speech
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SPEECH
CORPUS

Parameter extraction

Training of HMM

using a vocoder

Text analysis

Text

Speech signal

Label

Speech parameters

Synthesis partTraining part

Speech

Parameter generation
from HMM Text analysis

Label

Synthesis from parameters
using a vocoder

parameters

Synthesised speech

HMM

Text input

Figure 5.2. Overview of an HMM-based speech synthesis system. The system consists
of two stages, training and synthesis. In the training stage, utterances of a
speech database are parameterized using a vocoder and trained in a frame-
work of an HMM. In the synthesis stage, speech parameters are generated
according to the text input from the HMMs, and speech is synthesised from
the parameters using the vocoder.

corpus and the corresponding text as input data. First, in the train-

ing part, a vocoder is used to extract speech parameters from the cor-

pus. Also, a linguistic front-end (text analysis) is used to extract phonetic

and contextual information from the corresponding text. Various types

of vocoders and speech parameterizations can be used, which will be dis-

cussed further in Section 5.5. The training of the HMM is performed using

the speech parameters and the contextual labels generated by the front-

end and aligned according to the speech data. In the synthesis part, the

text input is first analysed using the linguistic front-end. Speech param-

eters are then generated according to the labels and fed to the vocoder,

which finally reconstructs a speech signal from the parameters. In the

following sections, the specific features that lay the foundation for mod-

ern state-of-the-art HMM-based speech synthesis are described in more

detail.

5.3.1 Context dependency and parameter tying

As described earlier, the acoustic characteristics of different phonemes are

largely context dependent. Thus, the linguistic specifications given by the

front-end must be taken into account instead of using simple phoneme

specifications. Various linguistic features can be used in HMM-based

speech synthesis to describe the context, such as phoneme, syllable, word,

and phrase level information as well as lexical stress, pitch accent, tones

and break indices (ToBI) (Silverman et al., 1992; Beckman et al., 2005),
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Context-dependent phoneme HMMs

SPEECH DATABASE

HMM training

. . .

Concatenate HMMs

Synthesis using vocoder

Synthesized speech

TEXT

Front-end

TEXTFront-end

Vocoder

Generate speech parameters

Figure 5.3. Illustration of statistical parametric speech synthesis using HMMs. First,
in the training part, speech data is parameterized using a vocoder and the
corresponding text is converted into linguistic specifications. Then HMM
training is performed to construct context-dependent phoneme HMMs. In
the synthesis part, HMMs are concatenated according to linguistic specifica-
tions extracted by the front-end from the text input. Speech features are then
generated from the concatenated HMM and fed to a vocoder, which generates
the synthetic speech waveform.

and POS information, which are all language dependent. For example,

the contextual features of the HTS English recipe (HTS, 2014) is shown

in Table 5.1. The contextual features are especially important for gener-

ating natural prosody and duration for a synthetic utterance.

However, in practice, the amount of speech data is too limited to cover

all possible contexts, since the number of different context combinations

increases exponentially as the number of contextual factors is increased.

The more contextual factors are used, the less data will be used to model

each specific context combination, which leads to poor models. To over-

come this problem, a state tying approach (Young et al., 1994; Odell, 1995)

is used to cluster similar states of the HMMs and to tie the model pa-

rameters among several context-dependent HMM states. The state tying

is performed by using decision-tree-based context clustering (Yoshimura

et al., 1999), which is a top-down, data-driven clustering technique based
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Table 5.1. Contextual features of the HTS English recipe (HTS, 2014).

Phoneme Current phoneme

Preceding and succeeding two phonemes

Position of the current phoneme in current syllable

Syllable Number of phonemes in preceding, current, and succeeding syllables

Stress and accent of preceding, current, and succeeding syllables

Position of the current syllable within the current word and phrase

Number of preceding and succeeding stressed syllables in current phrase

Number of preceding and succeeding accented syllables in current phrase

Number of syllables from the previous stressed syllable

Number of syllables to the next stressed syllable

Number of syllables from the previous accented syllable

Number of syllables to the next accented syllable

Vowel identity within the current syllable

Word Estimate of the POS of preceding, current, and succeeding words

Number of syllables within preceding, current, and succeeding words

Position of the current word within the current phrase

Number of preceding and succeeding content words in phrase

Number of words from the previous content word

Number of words to the next content word

Phrase Number of syllables in preceding, current, and succeeding phrases

Position of the current phrase in major phrases

ToBI endtone of the current phrase

Utterance Number of syllables, words, and phrases in the utterance

on a greedy algorithm that makes the decision tree grow by splitting the

data so as to maximise the likelihood of the data. The idea of decision-

tree-based context clustering is shown in Figure 5.4. The size of the de-

cision tree is determined automatically using, for example, the minimum

description length (MDL) (Shinoda and Watanabe, 2000) criterion. The

decision-tree-based context clustering is performed individually for every

stream (e.g., spectral features, f0, duration, etc.) since they have different

context-dependencies. Based on the decision tree, model parameters are

then tied across context-dependent HMM states associated with the same

class (leaf node), thus being able to represent all possible contexts. In

synthesis, appropriate parameters for each state are found by using the

decision trees built for each parameter type, which is illustrated in Figure

5.5.

5.3.2 Explicit state duration modelling

In HMM-based speech synthesis, each HMM state has its explicit state

duration probability distribution for modelling the temporal properties
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Figure 5.4. Illustration of decision-tree based context clustering for the centre states of
phone /a/. The parameters within similar context based on the contextual
question set are clustered together and corresponding states in the leaf nodes
(marked as grey) are tied in order to avoid poor models due to data sparsity.

of speech (Russell and Moore, 1985; Levinson, 1986; Yoshimura et al.,

1998). Although conventional HMM utilises state transition probabilities

to determine the duration in each state, it is incapable and too simplistic

for modelling speech due to the exponentially decreasing probability with

increasing duration. Therefore, hidden semi-Markov models (HSMMs)

are used in speech synthesis where Gaussian distributions are used for

duration modelling in training and synthesis (Zen et al., 2004). Although,

strictly speaking, modern statistical parametric speech synthesisers use

HSMMs instead of HMMs, including the explicit state duration modelling,

the term HMM-based speech synthesis is often used for convenience.

5.3.3 Incorporating dynamic features

Since each state outputs static mean and variance speech parameter vec-

tors, the output speech parameter trajectories are stepwise sequences in-

stead of having smooth transitions as in natural speech. To overcome this

issue, dynamic features (Furui, 1986) are trained along with the static

features, usually consisting of first and second time derivatives, which

are usually called delta (Δ) and delta-delta (Δ2) features.
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Figure 5.5. Illustration of decision-tree based parameter generation. Each parameter
stream (e.g., spectrum, pitch, and duration) has a decision tree which defines
the tying of the context-dependent HMM states. In synthesis, the correct tied
context-dependent HMM states are determined by the lead node of a decision
tree. Hypothetical correct paths in the decision trees are shaded grey.

In parameter generation, the speech parameter trajectories are gener-

ated using the Δ and Δ2 features as constraints, therefore enabling the

modelling of the dynamics of speech parameter trajectories (Tokuda et al.,

1995a,b, 2000).

5.3.4 Modelling of the fundamental frequency

As the fundamental frequency consists of both continuous f0 values and

discrete symbols2 indicating unvoiced frames, conventional CD-HMM

cannot be used successfully for modelling such discontinuous data. In

HMM-based speech synthesis, this problem can be solved, for example, by

using multi-space probability distributions (MSD) (Tokuda et al., 1999,

2002a). In MSD-HMM modelling, continuous f0 values are modelled

for voiced frames using a continuous probability distribution, and the

voiced/unvoiced decision is modelled by a discrete distribution. By switch-

ing between these two distributions according to a label associated with

2Unvoiced values are usually indicated by zeros, although its numerical value
has no meaning in terms of pitch.
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each observation, variable dimensions combining f0 and voicing informa-

tion can be modelled in a unified manner. In order to model other speech

features as well, like spectral and aperiodicity features, a multi-stream

HMM (Young et al., 2006) is used, where each feature set is modelled in

individual streams by different output state probability distributions. For

example, spectral parameters are modelled by a CD-HMM and f0 by a

MSD-HMM.

Alternatively, the f0 values can be interpolated for unvoiced regions and

then modelled using a CD-HMM (Yu and Young, 2011), while the voic-

ing decisions are made separately. Also, various representations for mod-

elling f0 have been proposed, such as the discrete cosine transform (DCT)

(Teutenberg et al., 2008; Stan and Giurgiu, 2011), the wavelet transform

(Suni et al., 2013), or other hierarchical models (Lei et al., 2010), simi-

larly to older studies in f0 modelling, for example by Öhman (1967) and

Fujisaki et al. (1971).

5.3.5 Compensating for over-smoothing

One specific drawback of HMM-based speech synthesis is that the gener-

ated speech parameter trajectories are over-smooth compared to the nat-

ural ones. This stems from several processes in the HMM training and

synthesis. First, the statistical averaging of the parameters for different

phonemes in different contexts introduces smoothing—although the av-

eraging improves robustness against data sparsity, the natural variation

in the original parameter trajectories cannot be reconstructed after this.

Second, the maximum likelihood parameter generation (MLPG) using the

dynamic features generates smooth trajectories, thus introducing addi-

tional smoothing. The over-smoothing takes effect both in the time and

the spectral domain—the variation of time-domain trajectories is reduced

and also, for instance, the modelled formants are smoother than natural

ones. These effects, for example, make the synthetic speech sound unnat-

urally buzzy and muffled.

Maybe the simplest method to compensate the over-smoothing is post-

filtering, which in this context means emphasising the spectral structure

using post-processing after parameter generation. This processing modi-

fies the spectral model so that the dynamics between the formant peaks

and the spectral valleys is increased, aiming at a more prominent for-

mant structure depending on the spectral representation. Different post-

processing methods have been proposed depending on the spectral repre-
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sentation. The adaptive post-filter, originally developed for speech coders

(Chen and Gersho, 1995; McCree and Barnwell, 1995), has been adapted

for SPSS and implemented in the current HTS version (HTS, 2014; Zen

et al., 2007) that generally uses mel-cepstral parameterization (Tokuda

et al., 1994). Another technique that works on the line spectral frequency

(LSF) domain (Soong and Juang, 1984) was proposed in Ling et al. (2006).

A third method was introduced by Raitio et al. (2010) that works on the LP

coefficients by appropriately modifying the power spectrum. These meth-

ods have been shown to be effective in enhancing the muffled speech qual-

ity, although extensive use of post-filtering usually results in an overly

sharp formant structure, which results in an artificial speech quality and

degrades the similarity of the synthesised speech.

One of the most common methods for preventing over-smoothing is pa-

rameter generation using global variance (GV) (Toda and Tokuda, 2007).

In this method, speech parameters are generated in a maximum likeli-

hood sense that also considers the original and generated variance of the

speech parameter trajectories, thus aiming to reproduce the original dy-

namics of the speech parameters. Using GV has a similar effect to post-

filtering, but also their complementary use is often beneficial. GV can

be also implemented in various different ways, such as proposed by Silén

et al. (2012). Also, the speech dynamics in the modulation spectrum do-

main can be compensated in a similar way (Takamichi et al., 2014; Chen

et al., 2014), which acts as a frequency dependent GV.

The over-smoothing can also be reduced by utilising natural speech

data. Speech parameters can be generated by explicitly using training

data for generation (see, e.g., Yu et al., 2007). Alternatively, the original

detailed spectral structure can be predicted from a lower level spectral

representation (such as mel-cepstrum) using restricted Boltzmann ma-

chines (RBM) (Ling et al., 2013), deep belief networks (DBN) (Ling et al.,

2013), or DNN (Chen et al., 2014). Also MGE training (Wu and Wang,

2006) may result in a less over-smooth parameter trajectories.

5.4 Flexibility of statistical parametric speech synthesis

In unit selection synthesis, once a voice has been built, there is no

easy way to alter the voice characteristics. Voice conversion techniques

(Stylianou et al., 1998; Stylianou, 1999) can be used to alter voice char-

acteristics to some extent, but high-quality voice conversion is still prob-
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lematic. On the other hand, it is easy to modify and change voice char-

acteristics, speaker identity, speaking style, or emotion in HMM-based

speech synthesis by modifying the parameters of the statistical model.

Flexibility, among other benefits described in this section, makes SPSS

particularly attractive.

Adaptation (mimicking of voices) (Masuko et al., 1997; Tamura et al.,

2001; Yamagishi et al., 2009a) is one of the most widely used transforma-

tion techniques used in HMM-based speech synthesis. Originally adapta-

tion was used in speech recognisers for adapting the models to a specific

speaker or environment to improve recognition accuracy (Gauvain and

Lee, 1994; Leggetter and Woodland, 1995). Similar techniques are used

in statistical speech synthesis for mimicking, for example, specific voices

or speaking styles by using a small amount of corresponding speech ma-

terial (Masuko et al., 1997; Yamagishi et al., 2009a). Two major tech-

niques have been used for adaptation: maximum a posteriori (MAP) esti-

mation (Gauvain and Lee, 1994) and maximum likelihood linear regres-

sion (MLLR) (Leggetter and Woodland, 1995). The combination of these

has been shown to be especially effective (Yamagishi et al., 2009a).

Adaptation techniques have been used for various purposes in HMM-

based speech synthesis. First, adaptation can be used to easily create

new voices (speaker identities) using average voice-based speech synthe-

sis (AVSS) (Yamagishi et al., 2003; Yamagishi, 2006). In AVSS, an av-

erage voice is first trained using a large multi-speaker speech database,

after which the model is adapted to a specific speaker using only a few

minutes of the target speaker’s data (Yamagishi et al., 2008, 2010). In

speaker-adaptive training (SAT) (Anastasakos et al., 1996; Yamagishi and

Kobayashi, 2007), specific speakers from a large database are used as the

initial model for the adaptation, which further increases the adaptation

quality. In addition to different speaker identities, also different speak-

ing styles and emotions can be easily reproduced, controlled, and trans-

formed by using similar techniques, such as style modelling (Yamagishi

et al., 2005), model adaptation (Tachibana et al., 2006), model interpola-

tion or morphing (Tachibana et al., 2005), and multiple-regression HMMs

(Nose et al., 2007). Speaking style adaptation is also used in Publications

V, VII, and VIII.

In addition to adaptation, different voices (adapted or separately trained)

can be interpolated (Yoshimura et al., 1997) to create intermediate voices

by mixing them. Similarly, new voice characteristics can be created using
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the eigenvoice technique (Kuhn et al., 2000), in which data from multiple

speakers is analysed using the principal component analysis (PCA), and

the voice characteristics are defined by the combination of eigenvectors

(Shichiri et al., 2002). Multiple regression (Fujinaga et al., 2001) has

also been used to control voice characteristics more intuitively (Miyanaga

et al., 2004; Nose et al., 2007).

SPSS has several other benefits. The footprint of the synthesis module

is usually very small, being usually less than 2 MB with the possibility of

further reducing the size (Oura et al., 2009). SPSS also has a better cover-

age of the acoustic space since speech is generated from statistical models.

SPSS is robust against various recording conditions (Karhila et al., 2014)

or to the lack of some speech units in the case of average voice speech syn-

thesis. SPSS is rather easy to train since there are less tuning parameters

than in unit selection synthesis. SPSS is flexible due to the generation

of speech by a vocoder, which enables the individual control of the exci-

tation, spectral components, and duration. Finally, multilingual speech

synthesis is easier with SPSS since less speech material is required to be

recorded. Also, a singing voice synthesis is possible using SPSS (see, e.g.,

Saino et al., 2006; Oura et al., 2010).

5.5 Vocoders in statistical parametric speech synthesis

In SPSS, the aim is to parameterize speech into a relatively small set of

parameters that represents the perceptually relevant characteristics of

speech. The parameters should also be suitable for statistical modelling

and enable the reconstruction of speech from the parameters. Various

types of such parameterizations and analysis/synthesis strategies have

been proposed. In this section, different vocoding schemes and param-

eterization methods used in statistical parametric speech synthesis are

presented and discussed.

In speech analysis, a vocoder takes in a speech signal and outputs

speech parameters at certain time intervals. Vocoders process speech in

short-time frames, that is, the speech signal is segmented to individual

frames from which parameters are extracted. Usually the length of a

frame is 25 ms, and commonly a frame shift of 5 ms is used, although

variations also exist. For instance, to evaluate f0 for low-pitched male

speaker, a longer frame may be required to correctly estimate the lowest

f0 parts.
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In synthesis, once the frame-wise parameters of a speech corpus have

been modelled using, for example, HMM and parameters are generated

from the HMM according the text input, the vocoder reconstructs speech

from the parameters. Usually the vocoding process utilises the source-

filter model, which is based on the separate modelling of the source and

filter parts, although alternative approaches exists, such as the harmonic

plus noise model (Erro et al., 2014; Degottex and Erro, 2014) and the dy-

namic sinusoidal model (Hu et al., 2014). In the following, various meth-

ods for estimating and modelling the spectrum and the excitation signal

are presented.

5.5.1 Modelling of the speech spectrum

There are two main methods in SPSS for estimating and modelling the

spectrum of speech: LP-based methods and cepstrum-based methods.

LP or all-pole modelling is a widely used spectral estimation method

(for a review, see, e.g., Makhoul, 1975; Rabiner and Schafer, 1978; Markel

and Gray, 1980) that models the resonances (i.e., the formants) of speech

using the poles of the LP model. This assumption is acceptable for most

speech sounds, but not for nasal sounds or some fricatives. However, by

increasing the order of the LP model, also antiformants (i.e., the zeros)

can be approximated. Usually the order of the all-pole model is set by

p =
fs

1000
+ γ, (5.8)

where fs is the sampling frequency and γ is set approximately to between

2 and 4. The first part of the equation approximates the number of for-

mants in the modelled frequency range, and the second part (γ) compen-

sates for the poles needed to represent the spectral tilt due to the glottal

spectrum. However, in practice, slightly increasing the order will often

result in higher speech quality, since a more detailed spectrum will be

modelled (Raitio et al., 2011c). It is important to select an appropriate

order since too low an order cannot properly model all the formants and

too high an order will result in the modelling of the harmonics of the voice

source (which is not the goal in estimating the speech spectrum), and thus

biased spectral estimates. However, the biasing effect of the voice source

harmonics is especially severe with high-pitched speech. In order to alle-

viate this effect, for example discrete all-pole modelling (DAP) (El-Jaroudi

and Makhoul, 1991), weighted linear prediction (WLP) (Ma et al., 1993),

true envelope estimation (Roebel and Rodet, 2005; Roebel et al., 2007), or
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two-pitch-period synchronous analysis (Babacan et al., 2014) can be used

instead. For example, WLP is used in Publication VIII for alleviating the

biasing effect of the harmonics in shouted speech.

Alternatively, warped linear prediction, a variant of LP, can be used for

the spectral modelling. The idea of warped LP is to use non-uniform

frequency resolution, which allows more efficient allocation of the poles

with respect to perceptually relevant information in the speech spectrum.

Warped LP was originally proposed by Strube (1980), and later it has been

studied, for example, in Laine et al. (1994), Tokuda et al. (1994), Kar-

jalainen et al. (1998), and Harma and Laine (2001). For wide-band speech

synthesis (Yamagishi and King, 2010), the use of warped LP has been

shown to be especially beneficial compared to conventional LP (Raitio

et al., 2012b).

LP coefficients are not appropriate for statistical modelling as such, and

thus they must be converted into other representation forms before mod-

elling. There are several representations that can be used, of which the

most widely used is the LSF representation (Soong and Juang, 1984),

which provides good interpolation and smoothing properties needed for

the modelling. In synthesis with LP parameters, the direct form filter

structure is used. The vocoder presented in this thesis (used in Publica-

tions II, III, IV, V, VII, and VIII) uses the LSF-based spectral representa-

tion.

The other commonly used spectral representation in SPSS is the cep-

strum (Oppenheim and Schafer, 1968). The cepstrum is defined as the in-

verse Fourier transform (IFT) of the logarithmic magnitude of the Fourier

transform of a signal, defined as

c(m) = F−1
{
log |F{s(n)}|}, (5.9)

where s(n) is a speech signal with time index n and c(m) is the cepstrum

with quefrency index m. Cepstral modelling enables the modelling of both

poles and zeros. Usually the mel-cepstrum (Imai, 1983; Tokuda et al.,

1994) is used instead of the cepstrum in order to adjust the frequency res-

olution closer to that of human perception. The cepstrum is truncated to

a low order cepstrum in order to only model the overall spectral structure

and not the harmonics of the voice source. Usually a cepstral order of

20–60 is used, depending on the modelled frequency range. However, a

higher order usually results in improved quality, so special methods may

need to be used in order to prevent the biasing effect of the harmonic
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peaks. The most common method to prevent this phenomenon is pitch-

adaptive time-frequency smoothing (Kawahara et al., 1999), such as used

in the STRAIGHT vocoder (Kawahara et al., 1999, 2001), or true envelope

estimation (Roebel and Rodet, 2005; Roebel et al., 2007).

Synthesis with mel-cepstral coefficients requires the approximation of

the filter with the mel-log spectrum approximation (MLSA) filter tech-

nique (Imai, 1983; Fukada et al., 1992). The cepstral-based spectral rep-

resentation is used in Publications VI and IX.

5.5.2 Modelling of the voice source

One of the key factors for the recent improvements in quality in SPSS

has been the advances in the excitation modelling methods. The earli-

est vocoders used a periodic train of impulses (Makhoul, 1975) located at

the GCIs to model the excitation of voiced speech. The quality of impulse-

train-excited speech is poor with a buzzy sensation due to the unnaturally

identical excitation peaks and the zero-phase character of the excitation.

In such a scheme, excitation features other than f0 and energy cannot

be varied, which limits both the quality of speech and the ability to vary

voice quality. In order to model the natural aperiodicity in the speech

signal, the mixed excitation (Yoshimura et al., 2001) and the two-band

excitation (Kim and Hahn, 2007) approaches have been proposed, which

mix aperiodic noise with the periodic impulse excitation. In the mixed ex-

citation approach, noise is added to several frequency bands according to

aperiodicity weights that define the amplitudes of the periodic excitation

relative to the aperiodic noise excitation (see Section 3.2.4 for aperiodicity

estimation). Mixed excitation is used, for example, in STRAIGHT (Kawa-

hara et al., 1999, 2001), which is one of the most widely used vocoders in

SPSS. In the two-band excitation approach, a maximum voiced frequency

is defined above which voiced excitation is composed only of an aperi-

odic component. Both the mixed and two-band excitation techniques have

been shown to improve the synthesis quality compared to systems using

the traditional impulse train excitation. In another approach, the closed-

loop training method (Maia et al., 2007, 2010), voiced periodic impulse

excitation and unvoiced aperiodic noise excitation are fed through state-

dependent filters, thus maximising the likelihood of the excitation signal

in comparison to the original one. The synthesis quality is greatly im-

proved compared to a conventional impulse train excitation (Maia et al.,

2007), and the synthesis quality was comparable to that of a STRAIGHT-
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based method (Zen and Toda, 2005). Also parametric models of the glottal

flow have been used in speech synthesis (Vincent et al., 2007; Cabral et al.,

2007, 2008, 2011b, 2014; Lanchantin et al., 2010; Muthukumar et al.,

2013) hence allowing for the ability to modify the voice source charac-

teristics. The results obtained indicate that the problem of buzziness can

be partly avoided. In addition, the phase characteristics of the glottal

flow have been modelled by Maia et al. (2012, 2013) by using the complex

cepstrum. The study shows that the modelling of the phase characteris-

tics results in synthesised waveforms that are closer to natural ones, thus

achieving improved speech quality.

The natural excitation of voiced speech, the glottal flow, and its context-

dependent variation, is difficult to represent and model using a com-

pressed parametric vector. Therefore, vocoding techniques have been

proposed that utilise the excitation waveform per se rather than its pre-

defined compressed representation, hence capturing the natural charac-

teristics of the signal, such as the correct phase as discussed in Section

2.5. The excitation signal to be modelled can be either the glottal flow

estimated by GIF or the residual computed by LP, for example. The

idea of using the natural excitation to improve the synthesis quality is

not new (see, e.g., Holmes, 1973; Matsui et al., 1991; Karjalainen et al.,

1998; Fries, 1994; Alku et al., 1999), but the development of SPSS and

especially vocoders have provided new applications for the approach. In

Raitio (2008) and Raitio et al. (2008, 2011c) (last Publication III), a glottal

flow pulse estimated from natural speech with GIF is used to construct

the voiced excitation. In synthesis, the pulse is first interpolated in time

according to f0, scaled in amplitude based on the energy measure, after

which an aperiodic noise component is added to five separate bands in the

frequency domain. The pulses are then concatenated in order to create

a continuous excitation, which is then modified using an infinite impulse

response (IIR) spectral matching filter. The synthesis quality was shown

in Raitio et al. (2011c) to outperform STRAIGHT for a low-pitched male

voice and to be as good as or better than STRAIGHT in another experi-

ment by Suni et al. (2010) for one male and one female voice. In Drugman

et al. (2009b), Drugman and Dutoit (2012), Sung et al. (2010), and Raitio

et al. (2013b), PCA is applied to the pitch-synchronous residual/glottal

flow signal in order to model the waveform with eigen-residuals, similarly

to the methods by Thomas et al. (2009) and Gudnason et al. (2009, 2012).

The method in Drugman et al. (2009b) was shown to outperform a simple
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excitation, and the method by Sung et al. (2010) was rated better than a

simple excitation and a two-band excitation (Kim and Hahn, 2007), and

the deterministic plus stochastic model (DSM)-based vocoder (Drugman

and Dutoit, 2012) was rated comparable to the quality of STRAIGHT. The

study by Raitio et al. (2013b) shows that using the principal components

in addition to the mean pulse does not increase the quality of synthetic

speech, corroborating the results obtained in the study by Drugman and

Dutoit (2012). In Raitio et al. (2014c) (Publication III), it was shown

that mean pulses calculated for three different voice qualities (breathy,

normal, and Lombard) are also useful for reproducing these voice qual-

ities in synthesis. In Drugman and Raitio (2014) (Publication VI), the

impulse excitation, the natural residual, and the eigen-residual were

compared using a female and a male voice, arriving at the conclusion

that the residuals of natural origin improve the quality for a low-pitched

(male) speaker while for a high-pitched speaker the phase information of

the natural residual is not of perceptual relevance, and using the natu-

ral residual may even deteriorate the quality if the extracted residual is

noisy.

Instead of using only a single pulse to construct the excitation, resid-

ual/glottal flow pulse codebook based approaches have also been sug-

gested. In Drugman et al. (2009c), a pitch-synchronous residual code-

book is constructed, and residual frames are selected to synthesise the

excitation. The resulting quality was shown to outperform a simple

impulse-train excitation approach. In Raitio et al. (2011a) (Publication

IV), a library of various estimated glottal flow pulses is constructed, and

pulses are selected for the synthesis of excitation based on a target cost of

voice source (and vocal tract) features and a concatenation cost between

adjacent pulses. In Raitio et al. (2011a), the pulse library method was

shown to be equal in quality to the method in Raitio et al. (2011c) but

with slightly better speaker similarity. In Suni et al. (2011, 2012), a pulse

library technique was shown to perform comparably to STRAIGHT-based

techniques. Raitio et al. (2013b) show that pulse codebook (or library)

methods, where individual pulses are selected for synthesis, have a risk

of occasionally selecting inappropriate pulses, which can degrade the

synthesis quality.

A DNN-based approach for voice source modelling was proposed in

Raitio et al. (2014a,b), which avoids the problem of occasionally selecting

inappropriate pulses but has the ability to change the excitation wave-
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form in response to acoustic speech features. The method uses a DNN to

model the context-dependent variability of the glottal flow signal by find-

ing a mapping from acoustic speech features to the sample-wise glottal

flow signal. The method in Raitio et al. (2014a) was shown to be equal

in quality to a single-natural-pulse-based excitation method (Raitio et al.,

2011c), and the method in Raitio et al. (2014b) (Publication V) was shown

to provide better voice quality reproduction by synthesising higher qual-

ity Lombard speech compared to a PCA-based excitation (Raitio et al.,

2013b). However, the speaker similarity was slightly lower compared to

the PCA-based method, where a voice-quality-specific pre-selected mean

glottal flow pulse was used for each evaluated voice quality. While a

speaker-dependent voice source DNN was used in Raitio et al. (2014a,b),

a multi-speaker voice source DNN was successfully trained and used for

the synthesis of various speakers in Suni et al. (2014).

The DNN-based approach, which predicts the glottal flow signal from

various acoustic speech features modelled by an HMM, is well justified

since the glottal flow pulse shape and its context dependent variation is

indeed dependent on the acoustic features. The acoustic features in the

method include the vocal tract spectrum, the voice source spectrum, f0,

energy, and the HNR. These speech features and the glottal flow shape

are speaker dependent in general (Fant, 1997). The glottal flow shape

also varies according to f0 (Strik and Boves, 1992; Tooher and McKenna,

2003; Fant, 1997), the phonetic context (Tooher and McKenna, 2003; Fant,

1997), prosody (Strik and Boves, 1992; Fant, 1997; Airas et al., 2007;

Vainio et al., 2010), and voice quality (Gobl and Ní Chasaide, 2003), which

are reflected in the acoustic features (Lorenzo-Trueba et al., 2012). Also

modelling the source-filter interaction3 is possible, at least in theory, since

the vocal tract spectrum is used as an input feature to predict an appropri-

ate glottal flow pulse. However, the pseudo-random variation from pulse

to pulse that occurs in natural speech and may be crucial for the natural-

ness of speech, cannot be modelled with the current DNN-based method

3The source-filter interaction can be interpreted in two slightly different ways.
Conventionally, the source-filter interaction means effects such as skewing, rip-
ple, and damping of the glottal flow pulse due to the interaction between the glot-
tal flow and the vocal tract (Rothenberg, 1981; Ananthapadmanabha and Fant,
1982; Ananthapadmanabha, 1984; Fant et al., 1985b; Lin, 1987; Fant and Lin,
1987; Klatt and Klatt, 1990; Teager and Teager, 1990). In speech synthesis, how-
ever, the source-filter interaction may also mean that the modelling of these two
components should not be considered independent of each other (Merritt et al.,
2014; Henter et al., 2014).
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since the input acoustic features vary smoothly and, therefore, so does the

predicted glottal flow shape.

Although natural glottal flow pulse based methods, such as the DNN-

based method, produce an improved model of the glottal flow signal re-

garding correct shape and phase characteristics, the modelling of the ape-

riodic component still remains a challenge. Various methods to measure

aperiodicity have been proposed (basic techniques were reviewed in Sec-

tion 3.2.4). A simple and robust technique for noise spectral weighting

makes use of a maximum voiced frequency Fm, which depicts a boundary

between the periodic low-frequency component and the aperiodic high-

frequency component. This method is commonly used to model the exci-

tation in SPSS (Drugman et al., 2009b; Drugman and Dutoit, 2012; Lan-

chantin et al., 2010). An improved version of the aperiodicity estimation

using Fm was presented by Drugman and Stylianou (2014). Another tech-

nique is to estimate the amount of aperiodicity in each spectral band.

For example, in mixed excitation (Yoshimura et al., 2001), the voicing

strength in each band is estimated using the normalised correlation co-

efficient around pitch lag. In Raitio et al. (2008, 2011c), the strength of

the cepstral peak at the pitch lag is used to measure the periodicity at

each band. In Kawahara et al. (2001) and Raitio et al. (2011a), aperiodic-

ity, or HNR, is determined based on the ratio between the upper and lower

smoothed spectral envelopes and averaged across frequency bands accord-

ing to the ERB scale (Moore and Glasberg, 1983). Such a technique is

used both in the STRAIGHT (Kawahara et al., 1999, 2001) and the latest

GlottHMM (Raitio et al., 2011c,a, 2014b) vocoders. The perceptual effect

of different aperiodicity measurement techniques and methods of mixed

noise with the periodic component has been investigated in the study by

Drugman and Raitio (2014), which is the Publication VI of this thesis. The

study shows that using a noise model is essential in improving the syn-

thesis quality, and the dynamic modelling of Fm (Drugman and Dutoit,

2012) and the bandwise HNR-based model (Raitio et al., 2011a) are both

appropriate for synthesising the aperiodic component. On the other hand,

the perceptual impact of the noise time-envelope, that is, the distribution

of noise energy in time per pitch period, seems to be negligible.
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5.6 Future directions

SPSS has developed at a very fast pace during the past ten years, and

it has clearly exceeded the popularity of unit selection methods in re-

search. The technology originally used for speech recognition has been

successfully used for automatic speech generation, which has sped up the

progress. Recently, the two synthesis paradigms have converged towards

each other, which has led to hybrid techniques combining the benefits of

SPSS and unit selection synthesis. There are still fundamental restric-

tions in both methods, but combining the naturalness of unit selection

synthesis and the flexibility of SPSS is a reasonable goal in the near fu-

ture.

Another new paradigm in SPSS is the introduction of deep learning.

Previously the training of deep architectures of artificial neural networks

was widely considered too problematic, but new algorithms, increased

computing power, and large corpora have produced remarkable results

in speech recognition (Hinton et al., 2012), and now similar techniques

are used for speech synthesis with promising results (Ling et al., 2013;

Kang et al., 2013; Zen et al., 2013; Fernandez et al., 2013; Lu et al.,

2013; Zen and Senior, 2014; Fan et al., 2014a,b). There are several lim-

itations in the current decision-tree clustered context-dependent HMM

approach. First, the spectrum is hard to model directly due to high di-

mensionality and strong correlation between adjacent spectral bins. Us-

ing the spectrum instead of its compressed representation (e.g., LSF or

mel-cepstrum) has shown to yield better synthesis quality (Ling et al.,

2013; Chen et al., 2014). Second, data fragmentation occurs using the

decision-tree context clustering, and thus it is inefficient for representing

complex dependencies between linguistic and acoustic features. On the

other hand, deep learning can efficiently model high-dimensional, highly

correlated features, such as speech spectrum, and it can automatically

integrate the feature extraction and acoustic modelling. Deep learning

methods are also exponentially more efficient than fragmented methods,

such as decision-tree-based context clustering (Young et al., 1994; Odell,

1995). Current deep learning methods, such as the deep belief network

(DBN) (Ling et al., 2013; Kang et al., 2013), the DNN (Zen et al., 2013;

Lu et al., 2013; Fan et al., 2014a), the DNN-Gaussian process (Fernandez

et al., 2013), the mixture density network (MDN) (Zen and Senior, 2014),

and the long short-term memory (LSTM) recurrent neural network (RNN)
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(Fan et al., 2014b) have already given promising results in combination

with HMMs or without. Generally, deep learning is prone to overfitting,

and thus large amounts of data may be required for successful training.

Although some studies have used huge amounts of speech material (Zen

et al., 2013; Zen and Senior, 2014), others have achieved successful results

even with moderate-sized data (Fan et al., 2014a,b). The deep learning

scheme is developing fast, and probably new methods will find applica-

tions in speech synthesis, which will lead to improved synthesis quality

and possibly also increased flexibility. The flexibility of deep learning is

still questionable since the same adaptation methods as with HMM can-

not be used. There are methods for adapting DNNs (see, e.g., Yao et al.,

2012; Saon et al., 2013; Liao, 2013; Yu et al., 2013a; Deng et al., 2013;

Swietojanski and Renals, 2014), however, they have not yet been applied

to speech synthesis.

In the near future, deep learning will be used increasingly for speech

synthesis. Methods that integrate feature extraction and mapping from

linguistic features to acoustic ones will be used. Possibly only speech

frames and corresponding text information will be used as an input to

a deep learning architecture, which finds the optimal feature extraction

and linguistic features, and can thus generate new speech frames based

on new input text. The first steps in this direction have already been

taken is ASR, as the method in Tüske et al. (2014) takes a raw speech

signal as an input. Also speech synthesis is being approached with direct

waveform modelling (Vishnubhotla et al., 2010; Raitio et al., 2014b,a) us-

ing deep learning architectures (Hinton and Salakhutdinov, 2006; Hinton

et al., 2012) and with unsupervised learning of linguistic features from

text (Watts, 2012; Lu et al., 2013).

TTS synthesis methods that utilise the source-filter model may be im-

proved by modelling the two components, source and filter, in a unified

manner. Currently, the source and filter are modelled independently, ne-

glecting the source-filter interaction and the fact that separating the two

components is a difficult task, and usually it is performed in a rather arbi-

trary manner. The degrading effect of this assumption has been observed

and argued in recent speech synthesis studies by Merritt et al. (2014) and

Henter et al. (2014). The current excitation methods are unable to model

the source-filter interaction, although some methods, such as the ones

by Raitio et al. (2014a,b), have the capability to model this phenomenon

in theory. However, the method in Raitio et al. (2014a,b) is unable to
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model longer context inter-pulse variations, which might be needed for

improved quality. Deep learning may also provide a solution to this prob-

lem, since longer context can be easily modelled, for example, by using

stacked frames (Chen et al., 2014) or recurrent architectures such as the

LSTM (Fan et al., 2014b). However, such approaches have not yet been

tested extensively. For example, the study by Fan et al. (2014b) seems

to improve especially the modelling of the long-term prosodic information

but less the segmental speech quality. This is probably due to the source-

filter model utilised in the study, which neglects interaction. Also, using

direct waveform modelling instead of a source-filter-model-based vocoding

should, in theory, provide an adequate model of the source-filter interac-

tion.

5.7 Summary

This section presented the basic theory and methods used in SPSS.

HMMs were first shortly reviewed, after which the speech parameter

training and generation using HMMs was described. The core architec-

ture and special methods used in HMM-based speech synthesis were also

presented. The flexibility and other benefits that statistical parametric

synthesis offers were described, after which various vocoder technologies,

emphasising the spectrum and voice source modelling methods, were pre-

sented. Finally, possible future directions of SPSS were provided with the

main focus on deep learning methods.
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6. Summary of publications

This section summarises the publications in the thesis.

Publication I: “Automatic glottal inverse filtering with the Markov
chain Monte Carlo method”

In the first publication (Auvinen et al., 2014), a new GIF method is pro-

posed that makes use of a simple glottal flow model, the Rosenberg–Klatt

(RK) model (Rosenberg, 1971; Klatt, 1980; Klatt and Klatt, 1990), and

Bayesian inversion (Kaipio and Somersalo, 2005) using the Markov chain

Monte Carlo (MCMC) sampling method (see, e.g., Gilks et al., 1996; Hast-

ings, 1970; Gamerman, 1997; Smith and Roberts, 1993; Tierney, 1994;

Roberts and Smith, 1994). The new method first estimates an initial vo-

cal tract model and a glottal flow signal using an existing inverse filtering

method, the IAIF (Alku, 1992). Then, the open phase of the glottal flow

model and the radii and angles of the first eight poles, defining the four

first formants, are varied using MCMC. A new signal is synthesised us-

ing the new vocal tract model and the glottal flow model, which is then

compared to the original speech frame to get feedback to the MCMC esti-

mation, which aims to minimise the error between the synthetic and the

original speech waveforms. MCMC approximates the posterior distribu-

tion of the parameters, and the final estimate of the vocal tract is found

by averaging the parameter values of the Markov chain. By adjusting the

poles of the initial vocal tract and the glottal flow models, a more accurate

vocal tract estimate is obtained, which is less affected by the biasing effect

of the voice source harmonics.

The proposed method, MCMC-GIF, is compared with two well-known

GIF methods, IAIF (Alku, 1992) and the complex-cepstrum-based decom-

position (CCD) (Drugman et al., 2009a, 2011). Since the reference glot-
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Figure 6.1. Overall average error of H1–H2, NAQ, and QOQ for IAIF, MCMC-GIF, the
fitted RK model, and CCD in GIF of synthetic vowels. Data are represented
as means and 95% confidence intervals.

tal flow waveform is unknown in natural speech, synthetic vowel data

generated using the physical modelling of the vocal folds and the vocal

tract (Alku et al., 2006b, 2009) was used in the experiments. The inverse-

filtering performance was measured using H1–H2 (Titze and Sundberg,

1992), the normalised amplitude quotient (NAQ) (Alku et al., 2002), and

the quasi-open quotient (Hacki, 1989). The summarised results with syn-

thetic speech are shown in Figure 6.1.

Overall, the results show that the proposed method gives more accu-

rate inverse-filtering results compared to the two well-known reference

methods. Examples with natural speech also show positive results for the

proposed method. The need for accurate glottal closure instant detection

and high computational load are the drawbacks of the proposed method.

Nevertheless, the study shows that the proposed method is feasible and

further developments can be made for practical applications.

Publication II: “Quasi closed phase glottal inverse filtering analysis
with weighted linear prediction”

In the second article (Airaksinen et al., 2014), another new glottal in-

verse filtering method is proposed. The method is based on perform-

ing closed phase analysis (Strube, 1974; Wong et al., 1979) over multiple

pitch periods using WLP (Ma et al., 1993) with a special weighting func-

tion called the attenuated main excitation (AME). The weighting window

downgrades the contribution of the glottal excitation in the LP model op-

timisation. The new method is thus called quasi-closed phase inverse

filtering (QCP).
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Figure 6.2. Subjective listening test results comparing the LP and QCP methods in
vocoder analysis-synthesis quality for different voice types. Data are pre-
sented as means and 95% confidence intervals. The grey bars indicate the
results for no preference.

The new QCP method is compared to four other GIF methods: CP

(Strube, 1974; Wong et al., 1979), IAIF (Alku, 1992), CCD (Drugman

et al., 2009a), and WLP (Ma et al., 1993) using the short-term energy

weighting function. The test data includes both synthetic vowels pro-

duced with the conventional source-filter model using the LF glottal flow

model (Fant et al., 1985a; Fant, 1995) as an excitation as well as data pro-

duced using the physical modeling approach (Alku et al., 2006b, 2009).

Various glottal flow parameterization methods are used to measure the

performance of the GIF methods, namely, NAQ (Alku et al., 2002), QOQ

(Hacki, 1989), H1–H2 (Titze and Sundberg, 1992), HRF (Childers and

Lee, 1991), and the mean-squared error of the estimated glottal flow

waveform. The results show that the new QCP method improve the

GIF performance both in low and high-pitched speech. In addition, the

QCP method is used within a physiologically oriented vocoder (presented

in Publication III) to evaluate the analysis-synthesis quality of speech

and shout. The subjective evaluations show that by using the new QCP

method instead of the IAIF method improved the perceptual quality of the

vocoded normal and shouted speech. Figure 6.2 shows the results of the

subjective listening test comparing the LP and QCP methods in vocoder

analysis-synthesis quality for different voice types.
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Publication III: “HMM-based speech synthesis utilizing glottal
inverse filtering”

The third article (Raitio et al., 2011c) presents a new vocoder that utilises

GIF in speech parameterization. The vocoder, called GlottHMM, utilises

the IAIF GIF method (Alku, 1992) to decompose speech into a voice source

signal and a model of the vocal tract, thereby enabling the detailed analy-

sis, parameterization, and modelling of the voice source signal and the vo-

cal tract spectrum. The voice source signal is parameterized into several

features, namely, the fundamental frequency, the HNR, and voice source

spectrum. In synthesis, the excitation voice source signal is reconstructed

by modifying and concatenating a pre-computed glottal flow pulse. The

pulse is first interpolated in time and scaled in magnitude to match the

given fundamental frequency and energy, respectively, after which noise

is added in the spectral domain based on the band-wise HNR measure to

produce the correct degree of voicing. Finally, the spectrum of the exci-

tation is modified using a spectral matching IIR filter in order to control

the spectral tilt and also the spectral details of the voice source. The syn-

thesised excitation is finally filtered with the vocal tract filter to create

speech. This vocoder scheme enables the more accurate reconstruction of

the voice source and preservation of the glottal flow signal phase. The

parameterization also enables the separate modelling and modification of

the voice source and the vocal tract filter.

The proposed vocoder is compared with two other commonly used

vocoders, one with an impulse-train-based excitation with mel-cepstral

spectral modelling (Imai, 1983) and the most widely used vocoder STRAIGHT,

which uses a mixed excitation scheme (Yoshimura et al., 2001) and mel-

cepstral spectral modelling as well. The proposed method outperformed

both methods in terms of synthesis quality and intelligibility with a

Finnish male voice. Figure 6.3 shows the results of a CCR subjective lis-

tening test comparing all the three methods, indicating that the proposed

method achieves the best synthesis quality. Figure 6.4 shows the results

of a pair comparison test between the proposed method and STRAIGHT,

which indicate that the proposed method is almost always preferred over

the STRAIGHT method.
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Figure 6.3. Results of the subjective listening test comparing the following systems: pro-
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train excited system (impulse). The mean score has no explicit meaning, but
the distances between the scores define the amount of preference relative to
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Figure 6.4. Results of the pair comparison test applied to the proposed system (glottal)
and the STRAIGHT-based system (straight). The bars indicate the percent-
age of the total number of answers to the question “Which one would you
rather listen to?”. The centre bar (no pref.) indicates no preference for either
of the methods. The 95% confidence intervals are presented for each bar.

Publication IV: “Utilizing glottal source pulse library for generating
improved excitation signal for HMM-based speech synthesis”

This conference paper (Raitio et al., 2011a) extends the work presented

in Publication III by introducing a glottal flow pulse library for the ex-

citation generation, in addition to other important refinements to the

GlottHMM vocoder. The main difference between the original vocoder

proposed in Raitio et al. (2011c) and this work is the excitation genera-

tion technique. While in the original implementation, a single glottal flow

pulse is used and modified for excitation generation per utterance, the

new method utilises a library (or codebook) of various glottal flow pulses,

from which the best matching pulses are selected at synthesis time for

excitation generation.

In addition to the methods in the original vocoder, such as GIF, the

new algorithm requires GCI detection in order to extract individual glot-
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Figure 6.5. Windowed two-period glottal volume-velocity derivative waveforms from
the pulse library of a male speaker extracted with the automatic analysis
method.

tal flow pulses from the voice source signal. After GCI detection, each

two-pitch period glottal flow derivative pulse is extracted and windowed

with the Hann window, and stored in a library. Figure 6.5 shows a set

of these windowed glottal flow derivative waveforms. The speech param-

eters extracted by the vocoder are linked with each pulse in the library.

Thus, at synthesis time, a search is performed to find the best matching

pulses from the library based on the target cost of the speech features

and the concatenation cost of adjacent pulses. This method enables the

generation of a rich and varying voice source signal for synthesising more

natural speech with specific speaker characteristics and different voice

qualities. Also, a new HNR estimation technique is introduced. While the

old method used cepstral peak prominence for the task, the new method

evaluates the degree of voicing from the glottal source signal based on the

ratio between the upper and lower smoothed spectral envelopes (defined

by the harmonic peaks and interharmonic valleys, respectively), which

are then averaged across five frequency bands according to the ERB scale

(Moore and Glasberg, 1983).

The new method is evaluated in a series of subjective listening tests.

First, the quality difference between the existing and the new method is

evaluated using a CCR listening test, where the two methods show simi-

lar performance—the new method is rated slightly higher in quality, but

the result is not statistically significant. In a second test, natural speech

is also included in the CCR test. The results are similar to the first test:

the two methods show similar performance, but both are rated less natu-

ral than natural speech. Finally, a speaker similarity test is performed to
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find out if either of the methods can reproduce the speaker characteristics

more accurately. In the similarity test, listeners are presented with two

samples at a time (one from each method) and asked which one of the two

samples sounds more similar to the speaker in the third reference sample.

The results of the similarity test show that the new pulse-library method

is able to better reproduce speaker characteristics in comparison to the

existing method.

The new method has the benefit of being able to generate a more natural

excitation signal by imitating the natural variation in the voice source,

but it also suffers from the difficulty of selecting appropriate pulses, which

may distort the synthetic speech if not successful.

Publication V: “Deep neural network based trainable voice source
model for synthesis of speech with varying vocal effort”

The second conference paper (Raitio et al., 2014b) introduces a new ex-

citation generation technique based on DNN. The new method is based

on learning a mapping between the acoustic speech features extracted

by the vocoder and the time-domain pitch-synchronous glottal flow wave-

form. The DNN-based voice source modelling method partly solves the

issues with the methods presented in Publications III and IV, that is, it

achieves appropriate variation in the glottal flow pulse shape in response

to the acoustic speech features, but it avoids the occasional errors when

selecting pulses from a pulse library.

The study shows how the proposed DNN-based voice source modelling

method can be used to synthesise various degrees of vocal effort (from

breathy through normal to Lombard) using only a single DNN trained

from speech data including the three different vocal effort levels. The

DNN-based method is compared to a reference method where a PCA-

based pulse is manually selected for each speaking style to account for

the required voice quality change. A demonstration of the pulse mod-

elling capability is illustrated in Figure 6.6, where pulses are generated

for various degrees of vocal effort using the corresponding adapted acous-

tic speech features.

Subjective evaluations show that the proposed method is equal in qual-

ity to the manual method with breathy and normal speaking styles, and

better with Lombard style. However, speaker similarity is rated worse

with breathy speech. This most probably stems from the spectral match-
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Figure 6.6. Demonstration of the DNN-based excitation modelling by interpolating and
extrapolating different HMM-based speaking styles from original breathy
(1.0), normal (0.0), and Lombard speech (−1.0) and generating the DNN-
based pulses corresponding to the generated speech parameters of various
degrees of the styles. The resulting pulses (without interpolation in time,
scaling in magnitude or noise added) are shown for vowel [u] uttered by a
female speaker.

ing scheme that is not used in the current DNN-based method for sim-

plicity. However, such a scheme can also be used with the proposed DNN-

based method if desired.

In summary, the paper shows that the proposed DNN-based voice source

modelling method is capable of successfully reproducing different degrees

of vocal effort with high quality. Moreover, the method is completely au-

tomatic, and thus no manual tuning is required, as was done in the ref-

erence method. The proposed method is also more robust compared to

previous methods, such as the pulse-library-based method (Raitio et al.,

2011a), which is prone to errors in the pulse selection.

Publication VI: “Excitation modeling for HMM-based speech
synthesis: Breaking down the impact of periodic and aperiodic
components”

In the third conference paper (Drugman and Raitio, 2014), the perceptual

effects of the accurate modelling of the periodic and aperiodic components

in voice source modelling are investigated using a generalised mixed ex-

citation. There are three main components that can affect the quality

of synthesis: 1) the type of periodic waveform used to synthesise voiced

speech, 2) the spectral weighting of the aperiodic component in voiced

speech, and 3) the time envelope of the aperiodic component. The aim of

the study is to evaluate the relative perceptual importance of each fac-

tor and to seek the most appropriate method to model the periodic and
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aperiodic components.

A generalised mixed excitation scheme is used to study all the three

components. Three types of periodic excitation schemes are used: im-

pulse excitation, eigenresidual (Drugman and Dutoit, 2012), and a resid-

ual extracted from natural speech. Four types of noise spectral weighting

methods are studied: no added noise at all, noise added according to the

fixed maximum voiced frequency (Fm) (Stylianou, 2001), noise added ac-

cording to a dynamic Fm, and noise added according to the HNR measure

used in Raitio et al. (2011a). Also, three types of noise time envelopes are

evaluated: constant, triangular, and DSM-based (Drugman and Dutoit,

2012) time envelopes.

A large subjective listening test is conducted using the different meth-

ods and a female and a male English speech database. Since it is not

practical to test all possible combinations of the different methods, a se-

quential evaluation method is adopted. First, the noise spectral weighting

methods are evaluated using the simplest impulse excitation. Then, the

effect of noise time modulation is evaluated using the impulse excitation

and the highest rated noise spectral weighting. Finally, the three periodic

waveforms are evaluated using the highest rated noise time envelope and

noise spectral weighting methods revealed by the first two evaluations.

The results of the first test, depicted in Figure 6.7 (top graph), show that

the spectral weighting methods HNR and dynamic Fm are rated equal for

male speech, while dynamic Fm is rated better for female speech. The

fixed Fm method and a pure impulse excitation without noise are always

rated the worst. The results indicate that adding noise to voiced excitation

is beneficial and HNR and dynamic Fm are both appropriate methods for

the spectral weighting. Since the system with dynamic Fm is rated higher

in quality for female speech, it is chosen as the spectral weighting method

for the following evaluations.

The results of the second test, depicted in Figure 6.7 (middle graph),

show that the noise time envelope does not have a perceptually relevant

effect, and thus the simplest one, the constant time envelope, is chosen

for the third evaluation.

The results of the third test, depicted in Figure 6.7 (bottom graph), show

that results diverge for male and female speakers. For the male voice, the

natural residual frame and the eigenresidual have the highest quality rat-

ings while the impulse excitation is rated lower in quality than the natu-

ral residual. For the female speaker, impulse excitation and eigenresidual
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Figure 6.7. Results (mean and 95% confidence intervals) of the subjective evaluation
comparing noise spectral weighting (uppermost), the noise time envelope
(middle), and the periodic waveform (bottom).

are rated equal in quality while natural residual is rated the worst. The

results indicate that the perception of the periodic waveform depends on

the f0 of the speaker. This is due to the human phase perception where

the phase of a signal with a low repetition rate (pitch) has a perceptual

effect which vanishes when the repetition rate is increased enough. Thus,

with male speech, the natural residual is perceived as the most natural

one, but in the case of female speech, impulse excitation and eigenresid-

ual give the best results, although impulse excitation completely lacks the

natural phase of the original excitation. The natural excitation is rated

significantly lower in quality due to the (undesired) noise present in the

female residual pulse, which results in a buzzy sound quality.
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Figure 6.8. Results of the intelligibility test for the female (left) and male (right) voices in
three noise conditions: silence, moderate street noise (63 dB, SNR = −1 dB),
and extreme street noise (70 dB, SNR = −8 dB).

Publication VII: “Synthesis and perception of breathy, normal, and
Lombard speech in the presence of noise”

The fourth journal article (Raitio et al., 2014c) studies the synthesis of

speech with varying vocal effort and its perception in various noise en-

vironments. Three types of speech are recorded from a male and female

subjects, breathy, normal, and Lombard speech, and the corresponding

synthetic voices are built using the vocoder presented in Publications III

and IV with additional modifications. The voice building consists of first

computing the mean glottal flow pulses for each speaker and each vocal ef-

fort level from the pulse libraries extracted from the corresponding speech

corpora. Then, normal (modal) speaking style voices are trained using the

normal speech material for each speaker. In the synthesis of varying vo-

cal effort, normal voice models are first adapted to breathy or Lombard

speech using the corresponding breathy or Lombard speech data, and the

mean pulses of the corresponding vocal effort level are used to reconstruct

the excitation.

The intelligibility, quality, and suitability of the natural and synthetic

(loudness normalised) samples of breathy, normal and Lombard speech

are evaluated in three types of realistic multichannel noise environments:

silence, moderate street noise (63 dB), and extreme street noise (70 dB).

The results of the intelligibility, shown in Figure 6.8, show that increased

vocal effort improves the intelligibility of speech both for natural and syn-

thetic voices. Although the synthetic voices generally have slightly higher
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Figure 6.9. Results of the subjective evaluation for female (upper) and male (lower)
voices. The measured quantities are quality, suitability, and impression of
the speaking style (pleasant vs. irritating).

word error rates than natural speech, the reproduction of vocal effort in

synthesis is successful.

The results of the subjective evaluation of quality, suitability, and im-

pression of the speaking style are shown in Figure 6.9. The results show

that the synthesised voices with varying vocal effort are rated very sim-

ilarly to their natural counterparts. Especially the suitability ratings of

natural and synthetic voices have a very high correlation. Only the qual-

ity ratings show a clear separation between the natural and synthetic

voices, but the perceived quality differences decrease or vanish as the

SNR is decreased.

The results indicate that when synthetic speech is reproduced in natural

environments with background noise, a speaking style adaptation is ben-

eficial both in terms of intelligibility and suitability. Especially Lombard

speech is evaluated as more intelligible and suitable to be heard in the

presence of noise. However, the breathy speaking style is not considered

more appropriate nor more pleasant in the silence than normal speech.

The study show that the quality of synthetic speech is not significantly

degraded by the adaptation, and in the presence of noise, the degrada-

tion of speech quality caused by statistical modeling and vocoding loses

its significance, therefore justifying the use of such synthetic voices in the
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presence of noise.

Publication VIII: “Analysis and synthesis of shouted speech”

In the fourth conference paper (Raitio et al., 2013c), the acoustic prop-

erties of shouted speech are analysed in relation to modal speech, and

various techniques are studied for generating synthetic shouted speech.

The analysis of the acoustic parameters of normal and shouted speech,

collected from 12 male and 12 female Finnish speakers, show large differ-

ences between the two styles, which induces difficulties in conventional

speech processing methods. Especially the high f0 of shouted speech may

distort the spectral estimates of speech. Due to this, three different spec-

tral estimation methods are compared in analysis-synthesis experiments

using the vocoder presented in Publications III and IV. The three meth-

ods are LP, WLP with an STE window (Ma et al., 1993), and WLP with an

AME window (Alku et al., 2013) (similar to the method in Publication II).

The results of a subjective evaluation using the analysis-synthesis sam-

ples show that the WLP with the AME window is best suited for modal

speech and WLP with the STE window is best for shouted speech. The

results show that using a spectral estimation method that is not biased

by the sparse harmonics of the voice source is beneficial.

The synthesis of shouted speech is performed using two different tech-

niques, through adaptation and voice conversion. In the adaptation exper-

iment, two spectral estimation techniques were compared: LP and WLP

with the STE window. The results show that the method using WLP with

the STE window gives s better adaptation quality for both the male and

female voices.

Finally, natural and synthetic normal and shouted speech are assessed

in a subjective listening test in order to evaluate the quality, degree of

perceived shouting, and degree of perceived vocal effort. The results of

the evaluation are shown in Figure 6.10. Both voice conversion-based and

adapted shouted speech are evaluated. The results show that the syn-

thetic shouting voices preserve the impression of shouting and the used

vocal effort fairly well, although the quality is degraded due to processing

in adaptation and voice conversion. The adaptation and voice conversion

techniques are rated equal in quality, but the degree of shouting and per-

ceived vocal effort is better preserved with the adaptation method.
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Figure 6.10. Results of the subjective evaluation (impression of quality, shouting, and
used vocal effort) for natural and synthetic normal and shouted male and
female voices. Synthetic shouted voices were created by adaptation (syn
shout) and voice conversion (vcn shout).

Publication IX: “HMM-based synthesis of creaky voice”

The fifth and last conference paper of this thesis (Raitio et al., 2013a)

studies the synthesis of creaky voice. Creaky voice quality is frequently

used in many languages, and therefore the synthesis of creaky voice was

expected to enhance the naturalness of synthetic speech if present. The

study is part of previous work by the authors, including, for example,

creaky voice detection (Kane et al., 2013b), creaky excitation modelling

(Drugman et al., 2012b), and prediction of creaky voice from context

(Drugman et al., 2013). In this paper, a fully functioning creaky voice syn-

thesis is built. The method is based on first detecting creaky voice from

a creaky speech corpus using an existing method (Kane et al., 2013b),

and then training the frame-wise probability of creak along with normal

vocoder parameters using SPSS. Thus, the statistical model learnt to pre-

dict the creaky voice from the contextual factors of the input text. Also,

a specific f0 estimation algorithm (Raitio et al., 2011c) is used and evalu-

ated to enable the accurate estimation of the low-f0 parts in the creak. In

synthesis, the creaky excitation parts are rendered using creaky excita-

tion instead of normal excitation and using the DSM vocoder (Drugman

and Dutoit, 2012; Drugman et al., 2012b). Three voices are built to evalu-

ate the described improvements in creaky synthesis: 1) the conventional

system without special f0 estimation or creaky excitation rendering, 2)

an improved system with new f0 estimation, 3) an improved system with

new f0 estimation and creaky voice rendering. The voices are evaluated

138



Summary of publications

MOS test

N
at

ur
al

ne
ss

1
2

3
4

Creaky test

C
re

ak
in

es
s

1
2

3
4

Figure 6.11. Subjective evaluation results of creaky transformation for the MOS (left)
and the creaky preference test (right). The data is displayed as means and
95% confidence intervals.

in subjective listening tests, which indicate a clear improvement in natu-

ralness when using the improved f0 estimation and a preference for the

system using the creaky excitation over the one without.

Finally, creaky voice transplantation methods are experimented with,

meaning that a synthetic voice without creaky characteristics is aug-

mented with a creaky voice capability. The transplantation strategy aims

to transform two speech components, f0 contours and creaky excitation,

in order to enable creaky voice characteristics. The synthetic voice of the

original non-creaky speaker and three different creaky-modified systems

are evaluated in order to find out which strategy results in the perceptu-

ally most natural and creaky synthesis output: 1) the original speaker;

2) use of another speaker’s creaky excitation in those parts where that

speaker used a creaky voice; 3) in addition to 2), the use of a trained

f0 model from the creaky speaker; and 4) in addition to 2), the use of a

data-driven f0 transformation to model the f0 contours for creaky voice.

The evaluation results in terms of the MOS and overall creakiness are

shown in Figure 6.11. The results show that all except system 3 are rated

equally natural. System 3 is rated worse probably due to the inconsistent

f0 stream from another speaker. The creaky-modified systems 2–4 are

all rated equally creaky and much more creaky than system 1, indicating

successful creaky voice transplantation.
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7. Conclusions

Speech synthesis is a difficult problem. Converting a given text to speech

requires not only the successful synthesis of the linguistically impor-

tant acoustic features, but also generating appropriate extralinguistic

cues, such as speaking style and speaker characteristics. In combination,

the linguistic and extralinguistic information finally define the ultimate

meaning of an utterance. Thus, speech synthesis requires both the suc-

cessful prediction of context (and meaning) from the input text and the

modelling and reproduction of all perceptually relevant acoustic cues in

speech. This thesis concentrates on the latter by giving special emphasis

on the estimation and modelling of the voice source of speech.

This thesis presented two new glottal inverse filtering methods, that

were shown to provide better glottal flow estimates than well-known ref-

erence methods. The latter GIF method was also shown to provide bet-

ter speech quality than an existing GIF method, when used for analysis-

synthesis of normal and shouted speech using GIF-based vocoding.

Several voice source modelling methods were also developed that utilise

GIF-based analysis and synthesis of speech. All of them incorporate voice

source analysis using GIF, and a detailed voice source parameterization

thereof, which aims to enable more natural and expressive speech synthe-

sis. A full vocoder utilising GIF was constructed, which incorporates sev-

eral synthesis methods using the developed voice source modelling meth-

ods. The first method uses a glottal flow pulse extracted from natural

speech using GIF, which is modified in synthesis to reconstruct the voiced

excitation of speech. An important part of the modification is the spectral

matching filter that allows the voice source to have a varying spectrum

based on the context. Another developed method uses a library of win-

dowed two-pitch-period glottal flow derivative pulses, which can be used

for the unit selection type of voice source synthesis, where individual glot-
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tal flow pulses are selected and concatenated based on their target and

join costs. This allows the voice source to vary from one pitch period to an-

other in order to reproduce more natural voice source characteristics. Fi-

nally, a third voice source modelling method was presented, which utilises

a deep neural network to learn a mapping between extracted speech fea-

tures and the time-domain glottal flow derivative waveform. The third

method enables the automatic and robust generation of a voice source that

is allowed to vary its spectrum and waveform shape from one pitch period

to another. All of the methods were shown to yield high-quality synthetic

speech based on the results of extensive subjective listening tests, and in

many cases better quality was achieved when compared to well-known

and widely used reference vocoding methods.

In addition to modelling the deterministic glottal flow pulse waveforms,

a study was conducted to find the perceptual contribution and to develop

synthesis methods for the aperiodic part of the voiced excitation. The

study shows that a noise model is crucial for synthesis quality, and mod-

eling of the time-varying spectrum of the noise is beneficial. The same

study also shows that the phase characteristics of the excitation wave-

form have a significant perceptual effect in low-pitch speech.

Finally, the developed vocoding methods utilising GIF were used to syn-

thesise various types of expressive speech. Firstly, the acoustic differences

of breathy, normal, and Lombard speech were studied, and a synthesis

scheme for generating speech with varying degrees of vocal effort was con-

structed. The resulting breathy, normal, and Lombard speech were eval-

uated in a series of extensive subjective listening tests in varying noise

conditions. The results showed that the intelligibility of both natural and

synthetic speech increases as the vocal effort is increased even if the loud-

ness of the speech samples is equalised. The results also show that the

synthetic speech with varying vocal effort was rated very similarly to nat-

ural speech with the corresponding variation in the vocal effort. This is

backed up by the conducted suitability evaluations that show similar rat-

ings for both synthetic and natural speech in different noise conditions.

Secondly, the differences of normal and shouted speech were studied, and

a synthesis scheme for shouted speech was developed. The study showed

that spectral estimation methods that are not biased by the sparse har-

monics of shouted speech is beneficial for synthesis quality. The exper-

iments also showed that despite some quality degradation due to large

differences in normal and shouted speech, the impression of shouting and
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use of vocal effort was fairly well preserved in synthetic shout. Finally,

a synthesis scheme for creaky voice was developed. The method consists

of creaky voice detection, robust f0 estimation, prediction of creaky voice

from context, and rendering of the specific creaky excitation waveform

in synthesis. Subjective listening tests showed that the synthetic creaky

voices were rated more natural and more creaky compared to a conven-

tional voice.

This thesis has shown several important aspects regarding statistical

parametric speech synthesis. First, the modelling of the voice source sig-

nal is crucial for high-quality speech synthesis. Although the vocal tract

shape and the resulting spectral filter is the most salient cue in speech,

the voice source contributes considerably to the naturalness and expres-

sivity of speech. An important aspect in the modelling of the voice source

is the phase characteristics of the glottal flow waveform. This is especially

important with low-pitch speech, where humans can perceive the phase

characteristics of a repetitive signal, the voiced excitation of speech. In

contrast, with speech of higher pitch, such as female speech, the phase

correctness has less perceptual significance, but the modelling of the ape-

riodic component becomes the main factor for voice source quality.

For synthesising expressive speech, the modelling of the voice source

waveform becomes even more important. However, although the mod-

elling of the voice source signal has been shown to yield improvements

in both segmental and suprasegmental quality, especially improving the

segmental quality requires more than just the correct modelling of one

pitch period, in particular, its phase characteristics. Since the repetitive

patterns in speech are not perceived as individual units but in relation to

each other, correct modelling of the modulation of the voice source from

one pitch period to another is important. This is especially important for

expressive speech, where the glottal vibrations show more irregularities

than in modal speech. Such patterns are difficult to model using cur-

rent techniques, but modelling approaches that meet such goals should

be developed to improve the segmental quality of parametric speech syn-

thesis. Similarly, an important aspect is the source-filter independence

that is commonly assumed in methods utilising source-filter models. This

assumption makes modelling easier, but also discards important correla-

tions between the source and filter. In conventional HMM-based synthesis

using a source-filter model, this correlation is lost, and as a result, syn-

thetic speech with low segmental speech quality is produced. For example,
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in conventional frame-based analysis of the source and filter, all the spe-

cific time-dependent details that occur during an excitation instant and

during the time that follows before the next excitation are lost, although

they have significant effects in the physiological speech production mech-

anism. These effects may significantly contribute to the segmental quality

of speech. Regardless of whether this phenomenon is called source-filter

dependence or source-filter interaction, the aim should be to link these

two components more closely together. Finally, a key to successful speech

synthesis is robustness. All the individual components in TTS synthesis,

from data construction, recording, segmentation and labelling to parame-

ter extraction, for example, should be performed as accurately as possible.

If one step is not properly designed and performed, the whole chain will

fail to produce the desired quality. Thus, speech synthesis needs careful

planning, execution, and robust and well-functioning methods and algo-

rithms.

In conclusion, the findings in this thesis support the use of data-driven

voice source modelling methods in SPSS. Recently introduced automatic

and robust tools for voice source analysis are most likely to propel the

advancements in data-driven voice source modelling for SPSS. Combined

with advanced machine learning techniques, this will probably have a sig-

nificant impact on the quality of SPSS. Although the quality of SPSS has

been increasing steadily, SPSS will probably not surpass the segmental

quality of high-quality unit selection synthesis in the near future. How-

ever, the quality of SPSS will be acceptable for most products, and the

strength of SPSS, such as the flexibility, will make it useful for various ap-

plications. In addition to improving segmental quality of synthetic speech,

the main scientific and engineering challenges lie in the synthesis of ex-

pressive speech and specific voices, such as females and children, that ex-

hibit a large variation in pitch, voice source spectrum, and excitation pat-

tern. SPSS provides a feasible framework for synthesising various speak-

ing styles and voices where unit selection methods are often impractical,

but this also poses a challenge for voice source analysis and modelling.

Steady progress has already been made in this area, but further research

is required in order to get closer to the goal of speech synthesis, which is to

generate synthetic speech that has the naturalness of real human speech

and the ability to vary the type of expression and character depending on

the context and requirements of the application.
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Errata

Publication IV

The sentence in Section 2.2. “However, with a large number of concatena-

tion points, the full Viterbi search is not computationally feasible.” is not

correct, and later a Viterbi search was implemented.
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