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In this thesis, the applicability of the homogeneous mixture model of Finflo for the
free surface problem is studied. The free surface problem is fundamental in marine
hydrodynamics, and a special case in two phase flows. The work explores the basis
of this type of modelling from mathematical and numerical viewpoint, and verifies the
mixture model for the problem.

The mathematical background of the problem is presented, together with the nature
of it from the perspective of marine hydrodynamics. The bulk flow equations are
usually averaged conditionally such that the governing equations of the multiphase
model are formally the same as in the case of single phase flow. It can be shown that
one additional equation suffices for the description of the segregated phases. Here,
the convection equation of the void fraction is utilized. The void fraction equation is
derived in conservative form based on the incompressibility constraint of the individual
phases.

The convection of the void fraction corresponds to the so-called Riemann problem.
This is studied thoroughly by developing a two-dimensional solver for the comparison
of some well-known schemes for the spatial discretisation of the convective quantity.
This solver is applied to the convection of a discontinuous distribution of the void
fraction. In addition, the so-called SUPERBEE limiter is implemented to the Finflo
code for the extrapolation of the convective void fraction.

The numerical solution of the Navier-Stokes equations for simulations of two phase flows
is covered comprehensively. The code Yaffa, developed at the Aalto University, has a
modern VOF model implemented, and for this reason, it is here used as a reference code.
The solution algorithms, the computation of the convective quantities, the pressure
correction stages as well as the treatment of the segregated phases in both of the codes
are discussed in detail. The two phase flow over a submerged ground elevation is
computed using the codes Finflo and Yaffa, and the forming free surface wave is
compared to those found from the literature.

The aim of this thesis is to get acquainted with the nature of the problem in conjunc-
tion with the specific methodology used to solve such flows. This is done in order to
understand the requirements and possible modifications needed for the model when we
wish to accurately predict ship flow phenomena that are not solvable using the tradi-
tional free surface tracking strategies. This way, the verification of the mixture model
of Finflo is achieved.
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Insinööritieteiden korkeakoulu
Konetekniikan koulutusohjelma

DIPLOMITYÖN
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Tässä työssä tutkitaan Finflon homogeenisen seosmallin soveltuvuutta vapaan neste-
pinnan ongelmaan. Vapaan nestepinnan ongelma on keskeinen laivahydrodynamiikas-
sa, ja samalla monifaasivirtauksien erikoistapaus. Työssä perehdytään tällaisen mallin-
nuksen perusteisiin matemaattisessa ja numeerisessa mielessä, ja verifioidaan samalla
seosmallia tälle ongelmalle.

Työssä esitetään ongelman matemaattinen tausta sekä sen luonne laivahydrodyna-
miikan kannalta. Virtausta kuvaavat yhtälöt yleensä keskiarvostetaan ehdollisesti se.
käytettävän monifaasimallin perusyhtälöt ovat muodollisesti samat, kuin yksifaasises-
sakin tapauksessa. Voidaan osoittaa, että tässä tapauksessa erillisten faasien kuvauk-
seen riittää yksi lisäyhtälö, joksi työssä otetaan aukko-osuuden konvektioyhtälö. Aukko-
osuusyhtälö johdetaan säilymismuodossa perustuen faasien kokoonpuristumattomuuso-
letukseen.

Mainittu lisäyhtälö vastaa luonteeltaan konvektioyhtälön ns. Riemann-probleemaa, ja
tätä käsitellään perusteellisesti. Työssä kehitetään kaksidimensioinen ratkaisija, jolla
vertaillaan tunnettuja menetelmiä konvektoituvan suureen paikkadiskretoinnille sovel-
tamalla sitä epäjatkuvan aukko-osuusjakauman konvektioprobleemalle. Lisäksi imple-
mentoidaan Finfloon ns. SUPERBEE-rajoitin konvektoituvan aukko-osuuden ekstra-
polointiin.

Työssä käsitellään kattavasti Navier-Stokes -yhtälöiden numeerista ratkaisua kaksifaa-
sivirtausimulointimenetelmien kannalta. Referenssikoodiksi otetaan Aalto-yliopistossa
kehitetty Yaffa, johon nykyaikainen VOF-malli on implementoitu. Muiden muassa
koodien ratkaisualgoritmi, konvektoituvien suureiden laskenta, painekorjausvaihe sekä
erottuneiden faasien käsittely kuvataan perusteellisesti. Finflo- ja Yaffa -koodeilla
lasketaan kaksifaasivirtaus vedenalaisen kummun yli, ja syntynyttä aaltokuviota ver-
rataan myös kirjallisuudesta löytyviin tuloksiin.

Työn ajatuksena on tutustua vapaan nestepinnan ongelman luonteeseen yhdessä
tällaisen yleisemmän ratkaisutavan kanssa. Tavoitteena on ymmärtää mallille asetet-
tavia vaatimuksia sekä sitä, millaisia modifikaatioita siihen tulisi tehdä, kun esim. py-
ritään ennustamaan tarkasti sellaisia laivavirtauksiin liittyviä ilmiöitä, joihin perinteiset
pintaa seuraavat mallit eivät pysty. Tällä tavalla saatiin Finflon seosmallin verifiointi
aikaiseksi.

Asiasanat: VOF, CFD, kaksifaasivirtaus, hydrodynamiikka, vapaa nestepinta,
Finflo, Yaffa, numeerinen mallinnus, konvektio
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Chapter 1

Introduction

This thesis is an expedition to a special case in two phase flows, namely the free

surface problem between two immiscible and segregated fluids, and its prediction

with the methodology of computational fluid dynamics (CFD) using the Volume-

of-Fluid (VOF) approach. The free surface problem is fundamental in marine

hydrodynamics, and essentially a single most distinct feature distinguishing the

field in the discipline of fluid dynamics. Due to the complexity of the situation,

in this work, the physics are limited to the pure interface between a gas and a

liquid, excluding any time-dependent phenomena or the effects of surface tension

in addition to any surface piercing solids. The aim is to get acquainted with the

nature of the problem in conjunction with the specific methodology used to solve

such flows.

At the same time, the work presents a verification to a particular approach of

two phase modelling that reclines to the VOF strategy. This is to say the aim is to

show the applicability of a (more) general purpose two-phase CFD methodology

to the problem at hand. The VOF abbreviation has some ambiguity in it, but the

approach taken here is shown to effectively reduce to an incompressible mono-fluid

algorithm with varying fluid properties. Such is currently one of the most widely

used models in computational marine hydrodynamics for CFD analyses involving

the free surface. A homogeneous mixture model has been previously implemented

in the Navier-Stokes code Finflo (Finflo, 2013), and that development forms a

large part of this work.

This work consists of a computation of a test case that involves the free surface

with two existing flow solvers. The other code is the Navier-Stokes solver Yaffa

(Mikkola, 2009). This code has the standard VOF model implemented, and for

this reason it is used here as a reference code. As an outcome one hopes to ob-

tain details concerning their current applicability and subsequent requirements

for computational cases resembling the one at hand. This work also includes de-

velopment of a two-dimensional convection solver to study the numerical solution
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of the indicator equation used to identify the variable fluid properties in space

and time. That part is done in order to assess the current deficiencies in Finflo

with respect to the free surface problem, as well as to obtain guidance for future

work.

This thesis is organized as follows. The present chapter provides the back-

ground and introduction to the problem, as well as the perspective of a naval

architect for the motivation to solve it. Varying solution strategies for a Navier-

Stokes solver exist for the free surface problem, and these are briefly described.

The second chapter describes the governing equations used in this work, and the

third chapter deals with their discretisation using the control volume technique.

The fourth chapter introduces the two cases that are computed, one with the

developed convection solver and the other with the two existing codes. Finally,

the fifth chapter summarizes the work and draws future perspectives.

1.1. Background

Mathematically, the problem can be dissected unto such that one seeks the de-

scription for physical behaviour for a specific field, rather than restraining within

a type of fluid (Stewart and Wendroff, 1984). Two or more fields seize disjoint and

mostly time-dependent sub-domains within the global area of interest, involving

an equal amount of systems of partial differential field equations governing their

local state. This is illustrated in Fig. 1.1. The vector ~Ui depicts the state vari-

able of interest for the i:th field, and L a differential operator. Each system is

valid only in respective subset Ωi. Moreover, the domains are time-dependent,

i.e. Ωi = Ωi(t). It is of substantial difficulty to solve such systems. An explicit

distinction and time evolution of the different sub-domains would be necessary

for the system requires boundary conditions, as well as complex interaction be-

tween the interfaces and the fields. In a discrete mesh, such would thought to be

attainable by the information from only a few computational cells.

One remedy to the above difficulty is the process of conditional averaging; it

provides practical methods for prediction of multifield flow (Stewart and Wen-

droff, 1984). Such action can involve averaging by the space domain, time domain

or by more generally by ensembles (Hill, 1998). The application of a conditional

averaging operator χ to the PDE describing the i:th field results in systems of

the type

∂χ~Ui
∂t

= L (χ~Ui) + Ci , (1.1)

where Ci is a commutator. It denotes additional terms resulting from this av-

eraging procedure which couples the different fields. This coupling would need

either closure or modelling; a familiar analogue is the Reynolds stress tensor in
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∂Ω1

∂~U1
∂t = L (~U1)

∂~U2
∂t = L (~U2)

Ω1

Ω2

Figure 1.1: General two-field system.

resulting from Reynolds decompositioning and time averaging the Navier-Stokes

equations, to filter the effects of turbulence. The situation does not differ in

generic two-phase flows as the interface between two fluid systems needs descrip-

tion and details on the coupling between the phases is required. In this context

some authors go into great detail within the derivation and modelling of the two-

phase (two-fluid) systems in the sense of conditional averaging (cf. works of Hill

(1998), Rusche (2002), Montazeri (2010); Montazeri et al. (2012, 2014), Hong and

Walker (2000) and Weller (2005)). If one resides in certain point (~x, t) in space,

generally all phases will be encountered in the measured quantity. Discrimination

whether the present phase is a gas (say), certain conditioning need to be imposed

on the signal. This can be based on properties specific for that medium. The

treatment is equivalent to multiplication of the quantity by an indicator that

vanishes if the gas phase is not present at the point (~x, t), and is unity other-

wise (Hill, 1998, p. 331). This is to say an equation system is set up such that

each fluid is treated as a distinct continuum, and such systems are applicable to

all flow regimes since the topology of the flow is not prescribed (Rusche, 2002).

This type of system is sketched in Fig. 1.2 denoting that each field is indeed an

independent fluid.

The conditional averaging however results in additional terms in the balances

of mass and momentum, all of which need additional modelling or closure in

general multi-phase flows. This is due to the loss of information inherent in

the averaging process. One way to simplify these is to impose different types of

approximations, such as homogeneous, two-pressure or drift-flux models. These

follow from different types of assumptions made within the derivation, and result

in diverse systems of partial differential equations of the type of Eq. (1.1). (Hill,

1998; Rusche, 2002; Stewart and Wendroff, 1984)

Within the frame of this thesis, it is quite unnecessary to continue the previ-

ous discussion further. Rather, let us assume equal phasic velocities, casting the

model to be of the homogeneous mixture type. Further, let us exploit the fact

that the phases indeed are immiscible and completely segregated. This type of
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Figure 1.2: A sketch of a two-fluid
model (Rusche, 2002).

Figure 1.3: A sketch of the interface
capturing model (Rusche, 2002).

modelling is illustrated in Fig. 1.3. Additionally, we assume equal phasic pres-

sures. The conservation equation for momentum reduces to that of the mixture

whose properties are defined plainly through an indicator function. Such function

indicates the presence or absence of water, for instance, at a point in space and

time. Hereafter, this indicator is equivalent to the phase void fraction, or volume

fraction, α. Details of this derivation can be found from the work of Hill (1998).

The conservation equations are formally the same as in the case of single-phase

flow, and the commutator Ci between the fields vanishes. For computational pur-

poses instead of two distinct flow areas only one is needed, for which the balance

equations are applied. The two phases are separated by an interface whose form

implicitly follows from the flow solution, that is, the distribution of the void frac-

tion function (probe). No boundary conditions are explicitly imposed on such

surface, neither one needs coupling terms for the phases since it is assumed that

they do not interact in this sense. The mixture is defined to be either gas or liq-

uid through its physical properties, such as density and viscosity, i.e. through the

procedure of conditioning the signal. This provides a ’natural-like’ sharp surface

of contact discontinuity.

It is important to note, however, that the free surface problem per sé would

not require a two-phase model, but a surface model. Nevertheless, it will be

shown that the approach reduces in a sense to the standard VOF strategy, and

one could argue that, for relatively simple shapes of the interface, no relevant

flow details are suppressed within the model. It is worthwhile noting that such

an approach leads to apparent difficulties in the vicinity of the interface where

the material properties of the field change. By a quick inspection, such changes

are discontinuous by nature. This poses a challenge to the algorithm used to

solve the governing equations. The situation is in principle insensible as now

it is the intention to model both phases as a single continuum. It means the

interfaces can never be fully discontinuous within this approach. In addition, for

the interpretation of the interface to be an actual boundary as the free surface

between water and air, certain boundary conditions, namely the free surface

boundary conditions, must be satisfied on the interface. Using the VOF solution
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strategy, the algorithm does not see a boundary between the fluids, but merely

a varying distribution of material properties. The interface must somehow be

interpreted from these distributions. It will be the topic of this thesis to determine

whether the problem is solvable using such a model.

1.2. The free surface problem in naval hydrodynamics

Throughout the history of shipbuilding, the underlying principles have been

the overall efficiency of the vehicle. Within hydrodynamics, this relies in consid-

ering all possible aspects in its motion such that the net resistance is resolved as

well as the current capabilities extent. It is of great importance of a shipyard to

meet their proposed speed, the ’contract speed’, with the installed engine power.

Another equally important feature is the operability and seaworthiness of the

vessel. That is, she is to survive the seaway expected on her path, and remain

safe and stable during the intended operations. These define one of the design

bases of ships. Failure in any regard cannot be considered an option and none

should be included within the subtle art of compromise.

More specifically, a comprehensive description of a vessel afloat involves ex-

haustive amount of detail from a variety of phenomena. Following Wackers et al.

(2011) and including possible repercussions of interest here, one can list:

– Ship resistance. The air and water surrounding a vessel initially at rest

impose aero and hydrodynamical forces as the ship tries to make its way

through them. An accurate approximation of the machine power would

require adequate description of both fluids and their interaction with the

vessel.

– Ship propulsion. A propeller operating behind a ship changes the pressure

field behind her. This in turn can affect the behaviour of the free surface

at her aft, possibly causing ventilation.

– Seakeeping. As seaway composed of multiple different wave components

encounter a ship, slamming type loads and high amplitude motions can

occur. Their appropriate numerical prediction would require a method

capable of determining a degree of ’merger’ of the two fluids in a sense of

non-linear free surface shapes.

– Manoeuvring. The incoming flow and wave field encounter the vessel

obliquely, and complex flow separation near the free surface can occur.

A ship subtly starting to move will cause a disturbance to the surrounding fluid

domains that are initially at rest. The situation can be idealized with Fig. 1.4.
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(a) Infinite fluid depth (b) Finite fluid depth

Figure 1.4: Two-dimensional ideal flow past a cylinder (Matusiak, 2005).

A two-dimensional flow of ideal fluid over a cylinder submerged in considerable

depth causes symmetric pressure distribution around the object, and results in

zero net resistance. The distribution changes when the cylinder is brought to a

finite depth, resulting in a non-symmetric distribution of pressure. The presence

of the free surface lead to non-zero net resistance. Similarly, a ship acts as a

moving disturbance, leading to deformation of the interface of air and water.

Such is photographed in Fig. 1.5. Any water-borne vessel inevitably operates in

the vicinity of the interface, and quite analogously to the cylinder the pressure

distribution around the hull of the vehicle is altered by the free surface. The

deforming free surface acts on the hull as normal and shearing stresses, and

this gives rise to a term separated from the frictional drag, or the wave making

resistance. The situation can analogously be seen as a dissipation of the kinetic

energy of the ship to the formation of the wave field.

The advancing ship often initiates a wave system that involves breaking waves

in its bow region (Fig. 1.6), include a surface piercing bulbous bow (Fig. ??), or

involve different types of flow regions in its transom (Fig. 1.8). The deforming

wave field in the stern region of the ship can interact with the propeller (Fig.

1.10). The seaway that the vessel encounters consists of waves of varying severity.

Some may be steep enough such that slamming type loads will occur, or the

motions of the vessel become significant to compromise comfort, or considerable

green water incidents may take place. Harsh waters always pose risks to safe

ship operation. A recent event of rough seas was reported in the Daily Mail1,

where an Antarctic cruise ship encountered particularly sinister environmental

conditions. A slamming bow wave was photographed during that voyage (Fig.

1.9). Appropriate capturing of phenomena such as these is essential to the design

process.

In the above context, a naval architect is responsible in assuring that the vessel

is efficient, economic, operable, safe and better than the design of the competing

office. This is not a simple task, and involves expertise in many fields of hydro-

dynamics just to consider the above list alone. Practical design methods tend to

1”Pass the sea-sick pills: The terrifying moment a cruise ship was slammed by giant Antarctic

waves”, The Daily Mail, 10 December 2010

http://www.dailymail.co.uk/news/article-1337062/Cruise-ship-slammed-enormous-Antarctic-waves.html
http://www.dailymail.co.uk/news/article-1337062/Cruise-ship-slammed-enormous-Antarctic-waves.html
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Figure 1.5: A wave system created by a moving ship. Photograph taken from
van Dyke (1982).

move towards computer aided engineering due to the continuing increase in com-

puter capabilities, and also computational fluid dynamics is getting a foothold

in daily design of ships and marine structures. For example, the shape of the

bulbous bow can be optimized such that minimum wave resistance is achieved

at design speed (Fig. 1.11(a)), wave loads on offshore structures can be assessed

(Fig. 1.11(b)) or the motions and stability of the vessel in six degrees of freedom

in different circumstances can be determined (Fig. 1.11(c)). One interesting and

quite recent development includes the air cavities to reduce the frictional surface

are of large ships 1.11(d)) where the approximations depend mainly in accurate

computation of the wave in the ’trailing edge’ of the cavity. Additional infor-

mation on the phenomena involved in situations like those discussed above are

detailed by Matusiak (2005), Hänninen (2014), Kukkanen (2012), Paulsen (2013),

Larsson and Raven (2010), Stern et al. (2012), Eça et al. (2011), Bhushan et al.

(2009), Wöckner-Kluwe (2013) and Shiri et al. (2014) for instance.

Figure 1.6: An example of wave breaking near the bow of a ship (Queutey and
Visonneau, 2007).
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(a) An illustrative example of surface
piercing bulbous bow.

(b) Advancing ship with complex flow in the bow region.

Figure 1.7: Examples of surface piercing bulbous bows.

Figure 1.8: Possible flow re-
gions in transom stern area
(Larsson and Raven, 2010).

Figure 1.9: A slamming bow wave1.

Figure 1.10: An example of interaction between the propeller and the free
surface (Visonneau, 2013).

http://www.dailymail.co.uk/news/article-2575169/Adrift-sea-Extraordinary-photos-captain-Queen-Mary-II-standing-largest-ocean-liner-world.html
http://www.oossanen.nl/computational-fluid-dynamics/
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(a) An example of numerical prediction of waves
generated by different shapes of bulbous bows
(Larsson and Raven, 2010).

(b) An example of numerical predictions
of wave loads on an offshore structure
(Paulsen, 2013).

(c) An example of numerical
predictions of vessel trajectory
(Sadat-Hosseini et al., 2011).

(d) An example of air cavities to reduce the frictional drag.

Figure 1.11: Some illustrations of current capabilities of CFD predictions in
naval architecture regarding the free surface problem.

http://www.stenabulk.com/en/services-and-solutions/Pages/tankerevolution.aspx
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1.3. Solution methods for the free surface problem

Flows with free surfaces include deforming boundaries that follow the bulk

flow. They depend on the local flow solution; the local flow solution depends on

the shape of the boundary. In the past, two clearly distinct methodologies have

been developed for the numerical simulation of flows with free surfaces. They bear

resemblance to the traditional solution strategies employed for flows with shocks.

Without the loss of generality, these methods used are shortly summarized here.

A classification can be made based on whether the interface is tracked or captured

(Ferziger and Perić, 1999). For brevity, the focus is put only on methodologies

reclining on the CFD approach.

In interface tracking type methodologies, the free surface shape is tracked.

This is done by imposing the free surface boundary conditions explicitly on the

actual free surface, that is, on one of the boundaries of the computational domain.

This is to say the solution procedure actually ’sees’ a boundary between the two

fluids; thus in practice (of the kind that is relevant here) only the flow of the liquid

phase needs to be considered and correspondingly the computational domain

consists only of one constant property field in incompressible situations. The

interface in this sense remains sharp throughout the solution, and the evolution

is resolved very accurately, as the boundary of the computational domain moves

with the interface. This is the consequence of the method itself. The kinematic

boundary condition results directly into a partial differential equation for the free

surface elevation. This equation is of the convection type, and can be integrated

in time using similar routines that can be applied to the other field equations as

well. The dynamic boundary condition is then satisfied directly on this surface.

The tracking type methods can be further classified into subcategories based

on the actual variable used in the solution, e.g. the height function or marker

particles on the interface, or surface fitted techniques, as noted by Ubbink (1997).

Applying and implementing methods based on the tracking of the free surface can

be found in the works of Bet et al. (1996); Ferziger and Perić (1999); Meinander

et al. (2006); Mikkola (1999, 2009); Muzaferija and Perić (1997); Schweighofer

(2003); Wackers (2007); Wackers et al. (2011), for instance. An application of

the interface tracking method in a ship flow case is shown in Fig. 1.12.

The interface capturing methodologies identify zones in the computational

domain that are occupied by a specific fluid. That is, an indicator is used to

keep track on the material properties, and interfaces between the fluids follow

from these being different. For example, zones containing water are identified as

such by cells in which the density is significantly larger, i.e. that of water instead

of air. This is a rather natural way of distinguishing the two (or more) fluids,

and the volume fraction of a phase is convected along the bulk flow following
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Figure 1.12: An illustration of the
interface tracking approach. Figure
taken from Wackers et al. (2011).

Figure 1.13: Illustration of the LS
and VOF methods. Figure taken
from Berberović (2010).

the conservation of its mass. The solution procedure, however, does not see a

boundary between the fluids, merely a distribution of their material properties;

the interface itself follows from this distribution. The fact that the procedure

is blind in this sense sets stringent requirements for the algorithm to keep the

interface sharp, and special procedures must be taken to ensure this. Standard

numerical schemes suffer from diffusive and unbounded behaviour. Another pos-

sibility is to use a level set function, which is a signed distance from the interface.

That is, the zero-level contour represents the interface, and its time evolution

follows from similar convection equation as does the volume fraction. This strat-

egy is, however, completely artificial, namely the representation of the interface

is mathematical; the level set function has no physical meaning in the form of a

conservation law. The two commonly used strategies, the level-set (LS) and the

VOF method, are depicted in Fig. 1.13.

Recent progress in the field of computational marine hydrodynamics also show

an increased effort toward the use of a capturing model to account for the free

surface. This is evident from a simple example of Fig. 1.14. A complex re-gridding

procedure would be required if the simulated wave attains shapes deviating the

regular one, for instance. The capturing strategies form the only option for the

majority of the problems introduced in the previous section. The treatment of

the arbitrarily wetted transom stern is not a simple problem using the interface

tracking method. A ship advancing in waves might cause diffractive waves with

the oncoming waves such that the resulting wave field no longer smooth, and

the treatment of a partially dry bulbous bow is not possible. Furthermore, the

estimation of propeller ventilation cannot be done with the interface tracking

approach. None of these scenarios provide intrinsic difficulty to an interface

capturing model such as the VOF approach, since the free surface can obtain

arbitrary deformation. In addition, most commercial and non-commercial Navier-
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Figure 1.14: A difference interface tracking and interface capturing approach.
Figure taken from Ubbink (1997).

Stokes solvers tend to move towards the free surface capturing methods in ship

flow cases (Hino, 2005; Larsson et al., 2000, 2010). For example, the Isis-cfd

(Queutey and Visonneau, 2007), OpenFOAM (Weller, 2005, 2008), Fresco (Vaz

et al., 2009), CFDShip-Iowa (Carrica et al., 2005) and Fluent (Rhee et al.,

2005), use the interface capturing approach as the de facto standard.

1.4. Scope of this work

The aim of this work is to focus on one specific numerical strategy to take the

free surface into account in computational hydrodynamics. This is the volume of

fluid methodology to capture the interface between water and air. In ship flow

situations like those depicted in Figs. 1.6 – 1.11, the interface capturing strategies

are practically the only viable option. It is mainly this fact that motivates the

present work as well.

A homogeneous mixture model that utilizes the VOF methodology has been

implemented in the Navier-Stokes solver Finflo (Miettinen et al., 2006) currently

in use at VTT Technical Research Center of Finland. However, that development

deals with flow situations that involve cavitating flows, mass transfer and wall

boiling. A goal of this thesis is to verify the applicability of the homogeneous

mixture model to the free surface problem, and identify the issues that need

further attention. One should note that the free surface problem is essentially a

special case in two-phase flows.

The two-phase VOF strategy consists of two main features with respect to pure

single phase computations. First, a rather vague, is the capability of the solution

algorithm to handle the two different fields that are composed of vastly different

properties and maintain the distinction of the zones occupied by a specific field.

The second feature is the actual transport equation used to evolve the interface

in time, at the same time maintaining its sharp resolving capabilities. Naturally,

the two features are linked together. These issues will be detailed in the next
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chapters.

The former feature is approached with a study and application of the numer-

ical algorithms used in both codes Finflo and Yaffa. The latter code is used

as a reference one in order to verify that the solution procedure of Finflo in-

deed falls into the same VOF type strategy. The verification process is further

facilitated with the computation of a two-phase flow case with simple geometry

using both codes. The numerical uncertainty of the two-phase strategy is studied

qualitatively. The time evolution of the void fraction is a distinct feature of the

procedure and hence a computer program is developed to study this problem.



Chapter 2

Governing equations

In this chapter, the governing flow equations used in this study are presented.

In addition, the basic concepts of the isothermic homogeneous mixture model and

Volume of Fluid approach are described. The first section presents the governing

flow equations based on the conservation of mass for the two separated fluids and

conservation of momentum for the mixture. The second section describes the

indicator equation used in capturing the interface between the two fluids. This

equation falls within the traditional convection problem in CFD, which is briefly

revised. In the third section, the free surface boundary conditions are discussed.

In this work the flow regions are considered as incompressible and immisci-

ble with the two phases separated. The phases are assumed to share the same

velocity and pressure. The conservation of mass is formulated for both fluids,

and the conservation of momentum is applied to the homogeneous mixture. The

derivation of the flow equations, the continuity equation and the Navier-Stokes

equations, can be found in the books of Tannehill et al. (1997) and White (2006),

for example, for single phase flows and from the works of Stewart and Wendroff

(1984), Weller (2005), Montazeri (2010), Hill (1998) and Rusche (2002) for more

general multi-phase situations. The governing flow equations are merely recast

without further proof in the next section. The transport equation for the volume

fraction is derived in the subsequent section. It is here noted that both the stan-

dard form and the component form of the vector notation are used in this work,

or ~u and ui, respectively. This should not cause confusion, and tensor procedures

are used only when indicated.

2.1. Governing flow equations

In fluid dynamics, especially when considering flows within the naval realm,

two fundamental laws of conservation are sufficient to be applied to the fluid
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media, in search for the pressure and velocity fields. These are conservation

of mass and momentum, the latter being equivalent to Newton’s Second Law

of Motion. In naval hydrodynamics, it is just to allow for some simplifications

to the description of the flow, and it is usually considered as isothermal and

incompressible.

The conservation of mass in differential form for the fluid k without mass

transfer is
∂αkρk
∂t

+∇ · αkρk~V = 0 , (2.1)

where αk is the volume fraction for the k:th fluid, ρk its density and ~V is the

velocity vector. The above equation simplifies in the incompressible limit (ρk,t =

0) to the convection equation of the void fraction (see Sec. 2.2). Eq. (2.1) is also

referred to as the continuity equation. It merely states that, given the lack of

sources or sinks for the mass, matter is neither created nor destroyed within this

thesis. The conservation of momentum for the mixture is

∂ρ~V

∂t
+∇ · ρ~V ~V +∇p = ∇ · τij + ρ~g , (2.2)

where p is the thermodynamic pressure and τij the components viscous stress

tensor, and ~g the acceleration due to gravity. The first term on the left hand side

denotes the time rate of change of momentum, and the second its convection.

The components of the stress tensor are

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.3)

The clear majority of flows of interest to a naval architect are turbulent. The

effects of turbulence to the equations above result in the Reynolds-averaged sense

into an additional stress tensor, the Reynolds stress tensor. The velocity and

pressure in turbulent situations are decomposed to their mean and fluctuating

parts, or

ui = ūi + u′i and (2.4)

p = p̄+ p′ , (2.5)

where i denotes any component (i = x, y, z) and the overbar denotes time av-

erage. When these are substituted into the Navier-Stokes equations, and the

resulting equations averaged in time, one obtains a set of equations that governs

the incompressible turbulent mean flow. The formulation results into additional

terms, or to the so-called Reynolds stress tensor, the components of which can

be combined with the stress tensor

τ̄ij = µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ρu′iu′j . (2.6)
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For the sake of completeness, the Reynolds-averaged Navier-Stokes (RANS) equa-

tions are then
∂ρūi
∂t

+
∂ρūiūj
∂xj

+
∂p̄

∂xi
=
∂τ̄ij
∂xj

+ ρgi , (2.7)

where the tensor notation is used. Henceforth the overbar is dropped for time-

averaged variables. This thesis excludes the effects on turbulence in analyses

that will follow. For numerical simulations, the standard SST k − ω is used to

model the effects of turbulence on the flow. The reason for this exclusion, as well

as some aspects of the effects from turbulence to the free surface problems, are

discussed in Chap. 5.

Note that the conditional averaging required for decreasing the two fluid sys-

tem into a single field representation is achieved through the time averaging of

the momentum equations to filter the effects of turbulence and the condition-

ing of the conservation of mass to account for the two separated phases. If the

conditioning procedure were done for the conservation of individual momenta,

a so-called inter-phase momentum transfer terms would appear to Eq. (2.2) as

shown by Rusche (2002), for example. Further complexity is naturally encoun-

tered through the turbulence closures. The governing equations are formally the

same as in the case of single phase flow. The approach taken here treats the fluid

properties as variables across the interface separating them. These are defined as

φ =
∑
k

αkφk , (2.8)

where φ is any fluid property, e.g. density. Two fluids accompanying the same

computational cell share the same velocity and pressure. The fact that they are

treated as a mixture requires the time evolution of the void fraction α that is

convected with the flow velocity. This follows implicitly the solution of the bulk

flow equations and is based on the conservation of individual phase mass. This

discussion is resumed in the next section.

2.2. The volume fraction equation

One mentality to account for the presence of two segregated fluids is the use

of a mono-fluid approach, i.e. reducing the problem effectively to a single field

computation. This enables the use of the single-phase equations in the solution

procedure. The interface between the fluids follows implicitly from the solution

of the bulk flow field, and manifests itself in the sharp transition of the mixture

properties. The properties of the mixture consisting of k fluids are defined by

ρ =
∑
k

αkρk and µ =
∑
k

αkµk , (2.9)
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where α is the indicator function denoting whether a flow region is filled with fluid

k. The indicator is equivalent to the volume fraction, and it is a step function

αk(x, y, z, t) =

1 if the point (x, y, z, t) is in fluid k

0 if the point (x, y, z, t) is not in fluid k
(2.10)

presenting the probability that phase is present at the certain point in time and

space. It is immediately visible that the fluid properties become discontinuous

as well. This defines the interface as a contact discontinuity. With the definition

of changing density in the fluid domain, it is clear that ρ = ρ(x, y, z, t) in an

Eulerian mesh. However, as both fluids are treated as incompressible, we have

Dρ

Dt
= 0 (2.11)

for a fluid particle. Now noting for simplicity that we are dealing with two fluids,

there is only need for a single volume fraction via∑
k

αk = 1 , (2.12)

that is,

α1 = 1− α2 = α . (2.13)

Settling to air and water (say), the incompressible limit can be expanded

D

Dt
(αρa − αρw + ρw) = 0 , (2.14)

ρa is the density of air and ρw that of water. The above defines α as a Lagrangian

invariant, or sets up an Eulerian mesh within which its value is defined by the

movement of particles of water and air through it. For by writing an intermediate

step from Eq. (2.14)

(ρa − ρw)
Dα

Dt
+ α

(
Dρa
Dt
− Dρw

Dt

)
+
Dρw
Dt

= 0 (2.15)

and following the previous assumptions, we end up with

Dα

Dt
= 0 . (2.16)

Noting that α = α(x, y, z, t), and expanding between points (x1, y1, z1, t1) and

(x2, y2, z2, t2) using a Taylor series

α(x2, y2, z2, t2) ≈ α(x1, y1, z1, t1)+
∂α

∂xi
(xi,2−xi,1)+

∂α

∂t
(t2− t1)+H.O.T. (2.17)
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Figure 2.1: A schematic depiction of the VOF approach to capture the interface.

and taking the limit of t2 → t1, and accepting only the terms greater thanO(∆x2
i )

lim
t2→t1

α(x2, y2, z2, t2)− α(x1, y1, z1, t1)

t2 − t1
= lim

t2→t1

∂α

∂xi

xi,2 − xi,1
t2 − t1

+
∂α

∂t
, (2.18)

where the summation notation over the repetitive index i was used for brevity.

The total change, or the substantial derivative, of the volume fraction can now

be written with its partial derivatives

Dα

Dt
=
∂α

∂t
+ ui

∂α

∂xi
. (2.19)

As is seen, the interface evolution is based on the conservation of mass, and in this

case follows directly from the assumption of incompressibility of the individual

phases. It also implies that the kinematic boundary condition on the free surface

is satisfied (Ferziger and Perić, 1999). The free surface boundary conditions are

discussed in section 2.3.

It was shown above that the value of α does not change throughout the domain.

This is to say an initial quantity of the fraction preserves throughout the space,

and it is neither created nor destroyed. In yet another words, the volume fraction

α is conserved within the solution domain. Eq. (2.19) is however in a primitive

form. Albeit the relation is exact, the conservation of α in a discretized space

consisting of finite computational molecules cannot be guaranteed. It would

require an infinitesimal shrinking of the discretised domain, which is not possible

for practical flow calculations. Luckily with the assumption of incompressibility

it is possible, and more convenient for a numerical solution, to write Eq. (2.19)

in a conservative form
∂α

∂t
+
∂αui
∂xi

= 0 (2.20)

which, once discretised, is appropriate for solving the time evolution of the volume

fraction. This equation essentially relates the time evolution of the interface to

the local flow, and forms the basis of traditional VOF strategies. As one merely

computes the values of the void fraction, complex re-gridding like procedures are

avoided (cf. Sec. 1.3) and the shape of the free surface can be determined from

the distribution of α. This determination is illustrated in Fig. 2.1. The location

of the interface is usually relying on the iso-surface of α = 0.5. Upon modelling

the flow field with the stated equations (2.1 – 2.2) the only distinction between
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the two media follows from their material properties.

It is interesting that the governing equations are formulated for a continuum

that now possesses a discontinuity. Clearly, the exact location of the free surface

cannot be found from this distribution alone. There are means to construct the

VOF-algorithm such that the interface will be sharp, that is, it is located between

only few cells. For the approach taken here, this requires appropriate discretisa-

tion for the convection Eq. (2.20), as this alone evolves the void fraction in time,

as well as possible modifications to the bulk flow solver. These will be introduced

later. Eq. (2.20) falls in fact in the general category of a convection problem in

fluid dynamics. Despite its deceivingly simple form the convection problem is an

extremely difficult one to solve numerically when it involves a discontinuity in

the dependent variable. One should note that based on the definition (2.10), we

are dealing with such a problem. It has been a topic for intensive scientific effort

since the 1970’s, mainly initiated by the possibility of shock formation in gas

dynamics since the Euler equations form a similar system. Those problems are

briefly introduced below. Now Eq. (2.20) adds to the governing flow equations.

The numerical solution of the convection equation of the void fraction and its

influence in the discretised flow equations is addressed in Chap. 3.

2.2.1. The problem of convection

The brief inspection below serves as an introduction to the basic difficulties

encountered with the numerical solution to the pure linear convection equation in

the presence of a discontinuity in the dependent variable. It has been the matter

of rigorous research in the past with many articles devoted to the numerical

solution of the convection equation. Throughout the history of CFD, methods

specifically developed for problems with discontinuities have been devised; cf.

the works of Darwish and Moukalled (2006); Davis (1994); Ferziger and Perić

(1999); Fletcher (1991); Gao et al. (2012); Harten (1983); Jasak (1996); Jasak

and Weller (1995); Jasak et al. (1999); Leonard (1991); LeVeque (1992); Rusche

(2002); Siikonen (2008); Sweby (1984); Tannehill et al. (1997); Ubbink (1997);

Waterson and Deconinck (2007); Weller (2005, 2008); Yee (1989); Yu et al. (2001),

for instance. The time evolution of the void fraction is basically a Riemann

problem. That is simply a conservation law together with initial data such that

two constant states are separated by a single discontinuity (LeVeque, 1992). The

problem is recast in one-dimensional form as

∂α

∂t
+
∂αu

∂x
= 0 (2.21)

with non-smooth initial data. With this single equation, the time evolution of α

seems deceivingly simple. It is purely of convective nature. In addition, the pure
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convection problem has an exact transient solution over time ∆t

α(x,∆t) = α0(x0 − u∆t) , (2.22)

where α0 is the initial distribution, x0 its location at t = 0 and u a constant

convection velocity.

It is the partial derivatives and their approximate (numerical) equivalents

that make the convection equation of discontinuous quantity one of the most

challenging problems in CFD. It is indeed the discontinuous variable that is of

great interest within the VOF method, cf. Sec. 2.2. In principle we are dealing

with the weak solution of the convection equation, since the derivatives are not

defined at a discontinuity. It is not a solution of a partial differential equation in

the classical sense1. This means that additional information needs to be provided

for the approximative solution if one is to declare it a physically unique solution

(Jasak, 1996; LeVeque, 1992; Sweby, 1984)2. The integral form of the equations

continues to be valid over discontinuities in the dependent variables, but only if

they satisfy the so called Rankine-Hugoniot jump conditions at the discontinuity

(LeVeque, 1992; Siikonen, 2008).

Still, one might want to approximate Eq. (2.21) somehow to devise an algo-

rithm to solve the convection problem numerically. The difficulty arises from the

discontinuous nature of the discrete problem as well. There are two main causes

for unsatisfactory numerical approximations of these contact discontinuities, and

these are numerical diffusion and dispersion. These are well known issues in nu-

merical analyses, and their origin will be given below. Next, let us illustrate the

difficulties with few examples. Recalling the Taylor series expansion

αi =

∞∑
m=0

∆xm

m!

(
∂mα

∂xm

)
i−1

(2.23)

one can rearrange for the spatial derivative of Eq. (2.21)

∂α

∂x
=
αi − αi−1

∆x
− ∂2α

∂x2

∆x

2
− ∂3α

∂x3

∆x2

6
− · · · (2.24)

Now approximating the derivative with a first-order accuracy, by accepting trun-

cation errors of O(∆x), leaves the so-called backward difference

αx ≈
αi − αi−1

∆x
. (2.25)

1The term ’solution in the classical sense’, or strong solution, denote that the dependent
variable is n times continuously differentiable, with n being an integer

2In fact, recently a proof was submitted for the yet-to-be-found existence of smooth solutions
for the full Navier-Stokes equations which is a Clay Institute millenium prize problem! Cf.
http://www.claymath.org/sites/default/files/navierstokes.pdf for the problem
formulation and http://www.math.kz/images/journal/2013-4/Otelbaev_N-S_21_12_
2013.pdf for the latest attempted solution

http://www.claymath.org/sites/default/files/navierstokes.pdf
http://www.math.kz/images/journal/2013-4/Otelbaev_N-S_21_12_2013.pdf
http://www.math.kz/images/journal/2013-4/Otelbaev_N-S_21_12_2013.pdf
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Using the similar difference representation for the time derivative but forward

in time, the approximate form of Eq. (2.21) accurate to first-order in space and

time is

αt + uαx ≈
αn+1
i − αni

∆t
+ u

αni − αni−1

∆x
. (2.26)

One should note that this corresponds to first-order accurate finite volume dis-

cretisation of Eq. (2.21) since the situation is approached in 1D with constant con-

vection velocity and grid spacing. Convection of a step profile and a sin-squared

wave are given in Fig. 2.2(a). The numerical diffusion inherent in first-order

methods is devastating, and completely smears the profiles to unrecognisably

smooth humps.

A hasty way of salvation might immediately lurk into one’s mind, namely a

mere raise in order of the truncation error of the method. For spatial discreti-

sation, this can be done using so-called central difference (cf. Fletcher (1991);

Siikonen (2008))

αt + uαx ≈
αn+1
i − αni

∆t
+ u

αni+1 − αni−1

2∆x
, (2.27)

which is second-order accurate in space. This algorithm is however unstable, and

the solution diverges despite the choice of the increments ∆t or ∆x; it is said

to be unconditionally unstable (Siikonen, 2008; Tannehill et al., 1997). A small

change in one term result in complete and utter u-turn in the behaviour of the

algorithm. It can be stabilized using more implicit information on the right hand

side, or

αt + uαx ≈
αn+1
i − αni

∆t
+ u

αn+1
i+1 − α

n+1
i−1

2∆x
. (2.28)

The resulting algorithm is unconditionally stable. However, the results are still

completely smeared due to its retained temporal accuracy (Fig. 2.2(b)). Again,

this can be raised by one order using so-called Crank-Nicolson method, where

averages between the two time levels are used in the spatial derivatives. The

computed results are in Fig. 2.2(e).

For further comparison, higher-order explicit time integrations can be obtained

using the Runge-Kutta method. Results using a fourth-order method are shown

in Fig. 2.2(f). Stable higher spatial order methods can be obtained using wider

stencils in space and with upwind biasing for unsymmetric stencils. The algorithm

used to compute the results will be detailed later.

Results from applying the above schemes are shown in Fig. 2.2. The least ac-

curate methods result to very diffusive algorithms. This is clear from Figs. 2.2(a)

and 2.2(b), where both profiles are smeared beyond recognition. Higher-order

approximations provide better approximation to the sin-squared wave. Solutions

with the implicit integrations are mildly lagging at the peak (Figs. 2.2(c)-2.2(e))
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and somewhat dispersive at either the trailing or leading edge, depending on

the discretisations. The opposing edge is again smoothed. These phenomena

escalate for the square wave, and the solution is highly oscillatory in the level

peak. For the highest order method given in Fig. 2.2(f), the leading edges come

with mild oscillation, but is much lessened. The trailing edges are still scantly

smoothed with this algorithm, though the level peak is better resolved yet still

not acceptable. Merely the resolution of the sin-squared peak is tolerable.

Measures to decrease the truncation error in time serve as somewhat stabiliz-

ing as the overshoots are diminished. The direction for dispersion and diffusion

changes depending on the combinations between temporal and spatial discreti-

sations. Increasing the spatial discretisation to a third-order enhances the reso-

lution minutely, but introduces dispersion downstream that evidently spoils the

solution.

One should note that the above mix of conceptual examples are qualitative at

most. Clearly the situation changes drastically when the spatial derivatives are

reconstructed purely form upwind or from upwind and downwind values3. This

can be seen especially in Figs. 2.2(c)-2.2(f). Also, the temporal discretisation has

clear impact on the stability of the method, and the directions for diffusion and

dispersion depend also on the time integration.

The problems associated with approximate solution of the convection equa-

tion were illuminated. The pure convection problem is not an easy one to solve

numerically. Trivially, the linear problem can be solved as it readily has an exact

solution, and provides one also numerically (in 1D) with the known characteristic

(convection) velocity. This situation is, however, complicated in multidimen-

sional cases where the computational cells might be skewed and the direction of

the convection velocity differs from the alignment of the grid lines. Also, when

solving the system of Navier-Stokes equations, Eq. (2.21) is not necessarily linear

any longer. Numerical schemes devised in simple circumstances reveal their weak

points clearer and provide information upon which each of the problems can be

solved. The problem is approached more quantitatively in the following chapters.

Numerical diffusion and dispersion

The features of a discrete scheme can be studied via so-called modified equa-

tion (LeVeque, 1992; Siikonen, 2008; Tannehill et al., 1997). It may be thought

as the partial differential equation that is actually solved when a particular dif-

ference scheme is applied for the numerical solution of the basic equation. For

3Since the problem was purely convective, the directions are unambiguous. That is, if one goes
in a direction opposite to that of the convection, it is denoted as going ’upwind’ or ’upstream’
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(a) First-order method in space with explicit Euler
time integration.
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(b) Second-order symmetric method in space with

implicit Euler time integration.

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

y

(c) Second-order symmetric method in space with
implicit Crank-Nicolson time integration.

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

y

(d) Second-order upwind biased method in space
with implicit Crank-Nicolson time integration.
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(e) Third-order method in space with implicit
Crank-Nicolson time integration.
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(f) Third-order method in space with explicit four
step Runge-Kutta time integration.

Figure 2.2: Example computations of the convection of step profile and a sin-
squared wave. The Courant number C ≡ u∆t/∆x = 0.5 in all computations.
The exact solution is colored with red, and the ordinate y ≡ α.
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example, the modified equation for Eq. (2.26) is

u∆x

2
(1− C)αxx −

(u∆x)2

6
(2C2 − 3C + 1)αxxx + · · · (2.29)

according to Tannehill et al. (1997); C = u∆t/∆x is the Courant number. The

first term u∆x
2 (1 − C)αxx, or more generally second (even) order derivatives on

the right hand side of the modified equation, represents the numerical or artificial

viscosity inherent and dominant in all first-order methods. Its highly diffusive

influence is especially evident in Figs. 2.2(a) – 2.2(b). However, the first-order

methods come with inherent monotonicity, that is, no new extrema are created

in the approximate solution. This comes with the expense of solution accuracy,

but produces physically meaningful solutions.

The modified equation for the Crank-Nicolson time integration applied to the

central difference scheme (Fig. 2.2(e)) is (Tannehill et al., 1997)

−
(
u(∆t)2

12
+
u(∆x)2

6

)
αxxx + · · · (2.30)

that is, it contains no numerical diffusion. Instead, the presence of the odd

derivative αxxx in the modified equation reveals itself in dispersive behaviour,

visible as oscillations in the numerical solution. Clearly, the result is unacceptable

despite its higher formal accuracy. This is inherent to all higher-order methods.

In addition, S.K. Godunov has shown in the 1950’s that no second or higher-order

scheme is monotone (Siikonen, 2008; Tannehill et al., 1997).

The effects of numerical diffusion and dispersion are present in most numerical

schemes. It is their interaction in the modified equation that determines the result

of using a specific scheme. Clearly, an adequate discontinuity-capturing method

needs to be monotone but at the same time the solution is hoped to be higher

than first-order accurate in order to dismiss the need of infinitely fine grids to

eliminate the inherent diffusion and assert a higher-order truncation error.

Non-uniqueness of the solution

A mathematical aspect of the weak form of the equations is that they some-

times allow for more than one solution to a conservation law with the same initial

data. That is, additional information is required if the result is to be called a

physically relevant solution; clearly, there can be only one of such. For most

flow cases, smooth solutions can be obtained using the Navier-Stokes equations

because they contain effects of physical diffusion that prevents the formation of

discontinuities due to the non-linearity, for example, but the mere convection

equation of the void fraction contains only an unsteady and a convective term; it
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also introduces the discontinuous properties to the former (the contact disconti-

nuity). For numerical methods, only monotone schemes converge to a physically

relevant solution, and, as was seen previously, the higher-order ones may choose

a non-physical solution. One way to assure the correct solution is to impose the

so-called entropy condition4. Another way is adding the effects of diffusion to

the model. See, e.g., LeVeque (1992), Siikonen (2008), Jasak (1996) and Yee

(1989). Possible issues are a result of the omission of some physical aspects of

the phenomenon in the model chosen to represent it5. Here the case is such that

the material interface between the two fluids is seen as a boundary whose thick-

ness approaches to zero; in reality it might be seen as a ’transition zone’ with

very steep gradients. It actually involves such microscopic interfacial physics that

depend on intermolecular forces or other details at the interface, such as the pres-

ence of surfactant molecules, and these come with time and length scales that are

not achievable without significant computer resources (Lafaurie et al., 1994); it

is also difficult to infer their significance in the problem at hand. The modelling

approach was already discussed. In practical flow calculations with the Navier-

Stokes equations, the viscous effects are always present. The non-physicality in

this respect may be an issue via the void fraction equation.

2.2.2. Requirements for the sharp resolution of contact discon-

tinuities

The ideal case on VOF strategies would be to reproduce sharp approxima-

tions to the discontinuous solutions automatically, that is, without the need of

explicit tracking or the use of separate jump conditions. It is evident from above

that standard discretisation methods either reduce the step profile into a smooth

hump and smear it across multiple cells, or introduce oscillations near the dis-

continuities and steep gradients. Either of these spoils the solution. Based on

the observations, one can list requirements from the methods to solve Eq. (2.20)

approximately:

1. Minimizing numerical diffusion

2. No spurious oscillations in the solution

3. No violations of the physical bounds of the dependent variable

4. At least second-order accuracy in smooth regions

These can overlap one other, of course. Judging from Sec. 2.2.1 only the highly

diffusive first-order methods are monotone, i.e. they do not produce new extrema

4From the second law of thermodynamics, the entropy should be a nondecreasing quantity
5Cf. the Euler equations
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Figure 2.3: Prediction of the cell face value in multiple dimensions. The darker
shaded area shows the amount of the dark fluid that has crossed the right face of
the donor cell during one time step. Figure taken from Ubbink and Issa (1999).

to the solutions. In fact, they could be used locally near the discontinuities to

uphold the monotonicity. The degree of this usage dictates the smearing of the

solution, and that can be countered by introducing negative artificial viscosity, or

compression in the discretisation; one must exercise caution since excessive neg-

ative diffusion is non-physical. Such discretisation schemes are non-linear, that

is, they depend on the local solution. The requirement of at least second-order

accuracy whilst preserving non-oscillatory solutions are called high resolution

methods. It is thus desirable to base the discretisation of Eq. (2.20) to some kind

of a combination with the schemes preserving the monotonicity and boundedness,

as well as schemes with sufficient accuracy in the smooth regions. These types

of discretisation schemes can be devised using different strategies, such as total

variation diminishing (TVD) criteria or convective boundedncess criteria (CBC).

These are considered in Sec. 3.3.2.

The problems encountered above were mainly related to situations in one

spatial dimension. Whilst also present in multi-dimensional computations, there

are additive issues that need consideration when extending the calculations in 2D,

for example. If a discrete mesh is laid atop a water wave as depicted in Fig. 2.1,

water can enter, or conversely air can leave (and vice versa), from a computational

cell over the four faces. While Eq. (2.20) is in the conservative form, the interface

itself does not necessarily align with the cell faces, or cells may be partially

filled. In a computer code the fluxes are usually calculated sequentially, that is,

one performs sweep in the i index direction first, after which the procedure is

repeated for the j and k index directions for three dimensional situations. This is

possible using structured grid systems, where each index direction can be viewed

as a one-dimensional case. The cell face values are calculated sequentially, in

isolation of each other, and the flux balance is predicted from these. An issue

can be illustrated with Fig. 2.3. While the final amount of the fluid convected
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over the right face of the donor cell is the same in all cases, the intermediate

face value is different, depending upon the order of the sweeps in the x and

y-directions. Most of the special discretisation schemes that are formulated to

encompass one or more of the above features were devised for one-dimensional

time-dependent problems. At present it is difficult to gather whether the severity

is of substantial nature. It should be noted that the aforementioned strategies

have been successfully used in many practical problems.

2.3. The free surface boundary conditions

Flows with free surfaces involve a boundary between two fluids. The time

evolution of the boundary follows from the behaviour of the two fluids on both

sides of it. For the interpretation of the boundary to be an actual free surface

such as air-water interface, certain conditions must be satisfied on it. It is impor-

tant to note that this is true regardless of the methodology used in the solution

of it. Here, the surface tension is neglected, both fields are considered as incom-

pressible and completely segregated. This eases the casting of the conditions, but

introduces other headache. The applicable boundary conditions are (Ferziger and

Perić, 1999; Matusiak, 2005):

1. The kinematic boundary condition, that is

~V · ∇α = ~V · ~nfs = 0 (2.31)

on the free surface (fs), since the gradient of the void fraction is the normal

(~nfs) to that surface. The velocity (~V = ~Vfluid− ~Vfs) component normal to

the free surface is the convection velocity of that surface, and the mass flow

through the surface is zero. This means that the interface is a streamline

in steady-state situations.

2. The dynamic boundary condition, which denotes that the forces acting

on the fluid at the free surface are in equilibrium. The normal component

of the forces acting on one side of the free surface is the same in magnitude

but opposite in sign to that on the other side of the surface.

The enforcement of the first condition in a numerical solution is not a straight-

forward task. It requires that the mass is strictly conserved, or the velocity field

is strictly solenoidal, within the iteration; the α equation can be seen as a special

case of the mass balance to segregated two-phase flows with no mass transfer.

This can be illustrated with Fig. 2.4, where the evolution of the interface is de-

picted between time instants t and t+∆t. The evolution of the contour of α = 0.5,

which is usually considered as a representation of the free surface, is convected
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by the velocity ~c. This velocity follows from the Rankine-Hugoniot argument and

it is the convection velocity ū (Lafaurie et al., 1994). The ’wave front’ merely

moves with the same velocity, and there is no transfer of mass between the phases

through this interface. The determination of this exact contour (the wave front)

is not possible with the VOF approach. All mixture properties are averaged in

the computational cell, and there is never really a surface present in mixture

model approaches. Instead, the interface should somehow be determined by the

scalar values of the void fraction in the cells. (It might seem that the single vi-

able option is to interpret the interface to be present at the cell faces only). The

continuity equation for the k:th field can be seen as

Dρk
Dt

= − ρk
αk

(
∂αk
∂t

+
∂αkuj
∂xj

)
(2.32)

with summation implied only over j. This indicates that inaccurate solution for
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Figure 2.4: Time evolution of an interface.

the equation of the void fraction results in a source of the mass in the iterative

solution. This violates the physics of the situation and could spoil the results,

possibly leading to a divergent method. The numerical solution of the latter term

is discussed in Sec. 3.3. For a numerical solution to the two-phase flow method-

ology taken here, it could only be said that the interface should be resolved as

sharply as possible, preferably to a thickness of only few cells. The convection

equation for the void fraction can thus be seen as the kinematic boundary con-

dition (cf. Hong and Walker (2000), Ferziger and Perić (1999), Vaz et al. (2009)

and Montazeri (2010), and Sec. 2.2). This facilitates the study of the discretisa-

tion practises commonly used in VOF solution strategies, forming a part of the

computations done in Chap. 4. How one reaches this goal with a computer code

is then again not a trivial task, as was demonstrated earlier.

The second condition is accompanied with its owns issues. Applying the mo-

mentum equations for the set-up of Fig. 2.5 leaves us with

∇p = ρ~g , (2.33)

that is, the pressure gradient term remains due to the gravity source. This

gives rise to the term hydrostatic pressure, which will be discussed later. The

expression can be integrated in a one-dimensional example shown in Fig. 2.5
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Figure 2.5: An interface of two fluids at rest.

across the interface

p+∫
p−

dp =

x+∫
x−

ρg dx

→ (p+ − p−) = (ρ+ − ρ−)gx̃ , (2.34)

where x̃ is an infinitesimal thickness of the interface, and the superscripts +/−
denote the values on the upper and lower sides of it, respectively. A rather

philosophical question emerges, namely the differential form of the equations

seizes to have a unique solution in the classical sense across the interface. The

integral form however remains valid. Then again, if the interface has a finite

thickness the dynamic boundary condition is not fulfilled, i.e. it is satisfied only at

the limit of x̃→ 0. One should remember that within this approach the interface

can never truly be a distinct surface, but merely a distribution of α (or the mixture

properties) that follows from the local flow solution. The void fraction is a multi-

valued function across the interface, free surface itself is usually (artificially)

defined as the iso-surface of α = 0.5. Clearly, this problem is not very well

posed. In order to be more realistic, this pressure jump at the interface should

be balanced by the surface tension on the interface through the Young-Laplace

relation

∆p = κσ , (2.35)

where ∆p is the pressure difference across the interface, κ is the local curvature of

the interface and σ is the constant coefficient of surface tension (Montazeri, 2010).

The appropriate discrete formulation of this could satisfy the dynamic boundary

condition, and it appears as another source term in the momentum equations

(2.2). In fact, it is possible to formulate this relation such that it is evaluated

only at the iso-surface α = 0.5 and so as to enforce the dynamic equilibrium

(Nandi and Date, 2009). In this work, the surface tension is considered negligible

as is the common practice in naval hydrodynamics. It hardly ever poses any sig-

nificance in the momentum balance for flows a naval architect can be interested

in general. Now the dynamic boundary condition needs special attention in this

respect. Problems can be circumvented again by declaring the existence of the

interface only at the cell faces, but in an approximate solution this may not be

the case. Also the grid alignment should be somehow adjusted (cf. the interface
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tracking approach!). This gives rise to so-called surface capturing methods that

use reconstruction of the free surface shape. Queutey and Visonneau (2007) pro-

posed a way to address the pressure jump without addition of the surface tension,

instead formulating an improved expression for the discretised cell face pressures

and densities; it was argued that such practice is the only choice. Hänninen and

Mikkola (2007) implemented those formulations in the code Yaffa, and they are

given later. Montazeri (2010) and Montazeri et al. (2012, 2014) continue on the

formalism of Hong and Walker (2000), that is incorporating the dynamic bound-

ary condition directly to the momentum equation by the use of the piezometric

pressure p+ρgz in the equations, but the model requires phasic pressures. Orych

(2013), Wackers and Koren (2005) and Wackers (2007) define the input states of

the hydrostatic contribution as averages in their approximative Riemann solvers,

cancelling the effects of the discontinuous density in a quiescent fluid. Such ap-

proach stems from the source term balancing method, introduced by e.g. Leveque

(1998) and Hubbard and Carcia-Navarro (2000). Qian et al. (2006) split the pres-

sure gradient normal to the initial still water level to kinematic and hydrostatic

terms and exchange the hydrostatic pressure gradient directly to the local density

values in cell centers in the normal direction. They discuss that the treatment

then exactly balances the gravity source term; this seems to be the same approach

as above.

In an incompressible situation an effective pressure must be used

p = pdif + p∞ + ρ~g · ~x , (2.36)

where p is the pressure, pdif is the pressure difference, p∞ a reference pressure

and the last term denotes the hydrostatic part that stems from Eq. (2.33). ~x

is the height from a reference level. This definition of the pressure difference is

necessary since the pressure level is undetermined a priori. The pressure affects

the momentum balance only through its gradients. It is usually convenient to

determine the initial free surface level with ~x = (x, y, 0). That is, the hydrostatic

component is zero on that level. To uphold this physicality, one should set p∞ =

patm at the standard sea level to remember the aerostatic contribution. This

definition is also convenient in the solution procedure since the constant ambient

pressure can be eliminated. That is, one calculates instead of the pressure the

term called pressure difference and obtains solutions where the pressures are

those relative to this constant value. This has also accuracy considerations, since

the pdif , or a pressure disturbance caused by an obstacle altering the flow field,

is in most cases smaller than the pressure by several orders of magnitude. In

many situations, the hydrostatic contribution can be neglected since it provides

a constant source term (with constant ρ and ~g) for the momentum equations

(Matusiak, 2005; Newman, 1977; Tannehill et al., 1997). That is, the same forcing

takes place throughout the solution, or the effects of it are the same for all
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computational cells and thus can be omitted. Now the gradient of this pressure

is actually

∇p = ∇pdif + ρ~g + ~g · ~x ∇ρ , (2.37)

that is, gradient of density appears on the interface. Integrating Eq. (2.37) for a

control volume V gives∫
∂V

p d~S =

∫
∂V

pdif + ρ~g · ~x d~S +

∫
V

ρ~g dV . (2.38)

Instead of the mere pressure difference, strictly speaking, the contribution from

the density gradient should be seen in the faces of the control volume in regions

where it contains the mixture. The use of pressure differences in the solution

procedure would require reformulation based on Eq. (2.37). This seems to be a

rather new approach. It has been accounted for by Rusche (2002), and applied by

him, Kissling et al. (2010), Berberović (2010) and Paulsen (2013). Some possible

implications will be discussed later. This problem can again be dodged if the

interface appears only on the cell faces; then there is no gradient of density and

the additional face term vanishes.

A short summary is in order. The kinematic boundary condition in the

VOF-methodology is related to the solution of the α equation as well as to the

divergence-free velocity field. The dynamic boundary condition is in this case

related to the pressure term in the momentum equations. These share a strong

coupling, as will be seen later. The former BC is studied through few solution

strategies of the α equation, and the pressure correction stage which is driven by

the mass (or volumetric) balance. For the latter BC, the approach of Queutey

and Visonneau (2007) was implemented in the reference code, whereas Finflo

uses simple averages for the cell face pressures. The fulfilment of the free surface

boundary conditions will be studied within the computations made in this thesis,

and notion is made in this respect in all relevant sections concerning the above

remarks.
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Numerical method

3.1. Flow solvers

In this section, the codes used to solve the two-phase flow case are presented.

Both solvers use a control volume method to discretise the governing flow equa-

tions but differ on the implementation of the two-phase models, for instance.

Such differences are fundamental, and lead to myriad of solution methods em-

ployed in one code that is completely outside of the realm of the other. However,

a physical phenomenon that is of the academic-test type is at the goal of the

quest here, and it is resolvable using either codes.

This chapter presents the unstructured and structured control volume meth-

ods used to discretise the governing flow equations, and the resulting sets of

algebraic equations. This is done in subsequent sections. Special features of both

codes and their modelling method for two-phase flows are described. The code

Yaffa is used as reference, and the description of it is left more superficial where

this comes with no hindering consequences.

3.1.1. Yaffa

Program Yaffa is a two-dimensional flow solver developed at the Helsinki

University of Technology (currently Aalto University) and described e.g. in a PhD

Thesis by Mikkola (2009). It is a Navier-Stokes solver with the SIMPLE-type

pressure correction method. Yaffa excludes any turbulence models. The solver

readily includes the free surface tracking method (cf. Sec. 1.3) for simulations of

free surface flows. Mikkola (2009) used this approach in simulating flows over a

NACA-0012 profile and a Gaussian ground elevation. The code had also been

developed to include a free surface capturing capability, namely through the VOF-

approach (Hänninen and Mikkola, 2007). That development forms a part of the
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basis for this thesis.

3.1.2. Finflo

Finflo (Finflo, 2013) is a general-purpose CFD code developed at Helsinki

University of Technology and currently maintained by Finflo Ltd. Finflo uses

multi-block structured control volume method for the discretisation of the compu-

tational domain. The equations can be solved with either the pseudo-compressibility

method or a SIMPLE type pressure correction method. Parallelization is done

using the MPI-standard. The code has been applied for numerous computations

of flows around ships (cf. Li and Matusiak (2001); Li et al. (2001)), and it cur-

rently has the capability to solve the free surface problem using a deforming grid

technique. This technique was also applied to the present case by Mikkola (1999).

Recently, a cavitation model has been implemented (Miettinen et al., 2006; Si-

ikonen, 2009; Siikonen et al., 2012), and applied for computations of cavitating

propeller flows (Sipilä, 2012). That development forms a part of the basis for this

thesis.

3.2. Discretisation of the flow equations

The governing flow equations form a set of non-linear partial differential equa-

tions. Few analytical solutions exist (cf. White (2006)), but each are for rather

simple cases that are not of considerable engineering use. If one seeks their solu-

tion to a problem that may be of interest to a naval architect (cf. Sec. 1.2), the

only option is still to solve them with an acceptable level of approximation. It is

common practice to achieve this numerically using a computer code that solves

Eqs. (2.1) and (2.2), amongst possible auxiliary relations e.g. for turbulence clo-

sure. However, for an exploitation of a computer the governing equations must be

cast to a sequence of algebraic procedures. This is achieved through the process

of discretisation.

It is here again noted that both the standard form and the component form

of the vector notation are used in this work, or ~u and ui, respectively. However,

mostly in description of the numerical schemes in the structured grid systems,

the index i denotes the i:th computational cell. In description of a differential

equation, or a numerical scheme in unstructured grid systems, the index i denotes

the i:th component. These should be unambiguous, but a notion is made when

tensor procedures are used.

In this work, the governing equations are discretised with the finite volume

method (cf. Ferziger and Perić (1999); Siikonen (2008); Tannehill et al. (1997)).
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V

V
~n

x

y

∂V

Figure 3.1: A general control volume V inside the computational domain V. ∂V
is the bounding surface of V and ~n its outward pointing normal.

The computational domain V is split into i subdomains V s.t.
∑

i Vi = V, see

Fig. 3.1. Variables are defined at the centers of these subdomains (computational

cells). Now the discretisation is based on the integral form of the governing flow

equations, which is valid for both laminar and turbulent flow. These are

∂

∂t

∫
V

ρ dV +

∫
∂V

ρ~V · d~S = 0 (3.1)

for the conservation of mass, where ρ is the density of the mixture, ~V its velocity

field and d~S = dS~n the oriented surface area element of the control volume V.

The mixture properties are conditioned with the void fraction; this procedure

was readily discussed in Sec. 2.2. The balance of momentum reads

∂

∂t

∫
V

ρ~V dV +

∫
∂V

ρ~V ~V · d~S =
∑

~f . (3.2)

This equation states that the time rate of change of momentum ρ~V in V results

from its convective fluxes through ∂V and from the sum of the vector ~f , which

includes the forces applied unto V or its bounding surfaces. Here, we are only

interested in surface forces due to pressure and stress, and volume forces due to

gravity, i.e.

~f =

∫
∂V

−p~n+ τij · ~n dS +

∫
V

ρ~g dV , (3.3)

where p is the pressure, τij are the components of the viscous stress tensor and

~g the acceleration due to gravity. If the conservation of mass and momentum

are satisfied for each individual cell, they are satisfied throughout the computa-

tional domain. This means that they are automatically conserved in a numerical

solution as well (Tannehill et al., 1997).

The two codes used here differ somewhat in the discretisation and solution

procedures used. This is taken into account in the organization and structure
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of the following subsections, where the discretisation of each term of Eq. (3.2)

is described. For the sake of brevity, the governing equations can be cast to a

general formulation, including the differential and integral forms as

∂~U

∂t
+
∂(~F − ~Fv)

∂x
+
∂(~G− ~Gv)

∂y
+
∂( ~H − ~Hv)

∂z
= ~Q and (3.4)

∂

∂t

∫
V

~U dV +

∫
∂V

(
~F − ~Fv + ~G− ~Gv + ~H − ~Hv

)
· d~S =

∫
V

~Q dV , (3.5)

where the vector ~U consists of the variables to be solved, ~F , ~G and ~H are the

inviscid fluxes in x, y and z-directions, respectively, and ~Fv, ~Gv and ~Hv the

corresponding viscous fluxes. Vector ~Q contains the possible source terms. These

are given explicitly below.

Eq. (3.5) can be approximated for a computational cell i as

Vi
d~Ui
dt

=
∑
faces

−F̂S + ViQi , (3.6)

where the fluxes on the cell faces are

F̂ = nx(F − Fv) + ny(G−Gv) + nz(H −Hv) (3.7)

with the surface normals ni in each direction i.

Flow equations in Yaffa In this study, the code Yaffa solves the incom-

pressible Euler equations in two-dimensions. The force vector on the right hand

side of Eq. (3.2) reduces to

~f =

∫
∂V

−p/ρ ~n dS +

∫
V

~g dV , (3.8)

that is, the viscous stress tensor τij is disappears, and only the pressure and

contribution from the acceleration due to gravity retain. To utilize the system

(3.4), the vector of unknown variables is

~U = (u, v, α)T , (3.9)

where α is the void fraction. The inviscid fluxes in the x and y-direction are

~F =

uu+ p/ρ

uv

αu

 , ~G =

 vu

vv + p/ρ

αv

 , (3.10)
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and the source terms
~Q = (gx, gy, 0)T , (3.11)

where gi are the components of the vector of gravitational acceleration. As the

incompressible limit was shown to hold in this variable density flow in Sec. 2.2,

the system can now be divided by the mixture density; a fundamental aspect of

the problem at hand. This will be detailed later. Unless otherwise stated, the

following sections considering the single-phase methodology of the code Yaffa

are based on the PhD thesis of Mikkola (2009). In this work, the documentation is

extended based on the work of Hänninen and Mikkola (2007) to the implemented

VOF-algorithm.

Flow equations in Finflo The code Finflo solves the Reynolds-averaged

Navier-Stokes equations for three dimensional flow cases. In two-equation turbu-

lence models, the scalar transport equations for the kinetic energy k and dissi-

pation ε (or the specific dissipation, ω) of turbulence are included. In two-phase

simulations, the scalar transport equation for the void fraction α is solved in-

terchangeably with the gas mass fraction, xg. The general vector of unknown

variables is
~U = (ρ, ρu, ρv, ρw,E, ρk, ρε, ρφ)T . (3.12)

The inviscid fluxes are

~F =



ρu

ρu2 + p+ 2
3
ρk

ρvu

ρwu

u(E + p+ 2
3
ρk)

ρuk

ρuω

ρuφ


, ~G =



ρv

ρuv

ρv2 + p+ 2
3
ρk

ρwv

v(E + p+ 2
3
ρk)

ρvk

ρvω

ρvφ


, ~H =



ρw

ρuw

ρvw

ρw2 + p+ 2
3
ρk

w(E + p+ 2
3
ρk)

ρwk

ρwω

ρwφ


. (3.13)

ρ is the mixture density and ~V = u~i+ v~j + w~k is the three dimensional velocity

vector, and φ a possible additional scalar variable. The total internal energy is

E = ρe+
ρ~V · ~V

2
+ ρk , (3.14)

where e is the specific internal energy. This is however not utilized in the current

cavitation model, and the energy residuals are set to zero. The viscous fluxes are

~Fv =



0

τxx

τxy

τxz

uτxx + vτxy + wτxz − qx
µk (∂k/∂x)

µω (∂ω/∂x)

0


, ~Gv =



0

τyx

τyy

τyz

uτyx + vτyy + wτyz − qy
µk (∂k/∂y)

µω (∂ω/∂y)

0


,
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~Hv =



0

τzx

τzy

τzz

uτzx + vτzy + wτzz − qz
µk (∂k/∂z)

µω (∂ω/∂z)

0


, (3.15)

where the viscous stress tensor is familiarly

τij = µ

(
∂uj
∂xi

+
∂ui
∂xj
− 2

3

∂uk
∂xk

δij

)
−
(
ρu′iu

′
j −

2

3
ρkδij

)
, (3.16)

and δij is the Kronecker delta. The turbulent diffusion coefficients are

µk = µ+
µt
σk

, µω = µ+
µt
σω

, (3.17)

where σi are the turbulent Schmidt numbers and µt the turbulent viscosity of the

fluid. qi are the heat fluxes. The source term has non-zero components for the

momentum equations due to the gravity, and for the turbulence closures. Unless

otherwise stated, the following sections considering the code Finflo are based

mainly in Ref. Finflo (2013).

3.2.1. Solution algorithm

Yaffa The basic solution algorithm is based on the pressure correction method

of the SIMPLE type. The equations are solved in a segregated manner, and the

procedure is started by computing the velocity components. The procedure is de-

picted in Fig. 3.2. The solution is based on finding a flux balance for each control

volume. The explicit residual is the balance of the non-conservative momentum

fluxes in a control volume. The fluxes are of convective type, and described in

Sec. 3.2.2. The linearizations of the momentum equations is based on the first-

order upwind method, and form the basis for the implicit stage. The explicit

residual is the driving force of the implicit stage. After solving for the change in

the velocity components, the error in the balances of volumetric fluxes is calcu-

lated based on the intermediate convection velocity, and that forms driving force

for the pressure correction equation. These steps form the inner loop, and are re-

peated O(20) times in order to obtain sufficiently converged solution. After this,

the void fraction equation is solved in a similar manner as is described in Sec.

3.3 with the exception that in Yaffa, a fully implicit three-level discretisation of

the time derivative is used.

Finflo The solution algorithm is based on the pressure correction method of

the SIMPLE type. Recently, some novel features have been included in the algo-
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Explicit stage
of momentum

equations, ~Rl =
−
∑
lm

~Flm + Vl ~Ql

Implicit stage,
A∆~Vl = Rl

Volumetric
balance,

V̇∗lm = (Sū∗)lm

Pressure
correction,

Ap̂′l = −
∑
lm

V̇∗lm

Correct
~Vl and pl

Iterate Solve αl

inner loop

yes no

Figure 3.2: Solution procedure of one iteration in Yaffa. The solution of the
void fraction αl bears resemblance to that described in Sec. 3.3.

rithm. These features resemble those used in traditional density-based methods.

In density-based methods, the equation system is coupled and solved as such,

and in Finflo this is done by transforming the conservative variables into char-

acteristic ones, with which the system reduces into a tridiagonal set of equations.

In the pressure-based solution sequence of Finflo, the residuals of the unknown

variables are calculated only once during an iteration cycle; in traditional pressure

correction methods this is done sequentially and in various parts of the proce-

dure, as can be seen above. This corresponds to the transformation matrix used

in density-based methods to change the residuals of the conservative variables

into those of primitive variables (and those would be then transformed to the

characteristic variables). The momentum residuals are transformed through

ρ∆~V = ∆(ρ~V )− ~V∆ρ . (3.18)

The same procedure is done for the scalar variables. The energy residuals are

more complicated, but luckily of no use here since they are set to zero before

the implicit stage. The error in mass balance from the previous iteration cycle

∆ρ must be eliminated from the residuals, since otherwise the equations must be

solved coupled to each other. Now this does not add to the error made in the

calculation of momentum balance. Siikonen (1987) used similar procedure for the

solution of the energy equation. In this approach the complexity of the coupled

set of equations is avoided by manipulating the explicit residuals. (Siikonen, 2009,

2011)

The solution is based on finding a balance in the fluxes for each control volume,

and the procedure depicted in Fig. 3.3. In addition to the momentum equations

(Eq. 3.2) for the mixture, an equation for the evolution of the interface is required.

In the homogeneous mixture model of Finflo, this is written with the gas mass

fraction xg
∂ρxg
∂t

+
∂xgρui
∂xi

= Γ , (3.19)

where the mass fractions are related to the void fraction through xgρ = αρg and
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Explicit residuals
and mass balance,

~Ri = −
∑
faces

~F + Vi ~Qi

Transform to
primitive variables,
ρ∆φ = ∆ρφ − φ∆ρ

Implicit stage of
momentum Eqs.,

A∆~Vi = Ri − ~Vi∆ρi

Pressure correction
Eq., Ap′i = −∆ṁ∗i

Implicit stage of
mass fraction Eq.,
A∆xi = Ri − xi∆ρi

Update velocities
~V ∗i = ~V n

i + ∆~Vi

Update pressures
pn+1
i = pni + αpp

′
i

Update void fractions
αn+1
i = αni + ∆αi

Correct velocities
to satisfy continuity
~V n+1
i = ~V ∗i + αu~V

′
i

AP

∆ṁ∗

Figure 3.3: Solution procedure of one iteration in Finflo. The solution of
the void fraction α, or gas mass fraction xg, is described in Sec. 3.2.6, and the
pressure correction stage is described in Sec. 3.2.5.

Γ is the mass transfer term between the phases; summation is implied over i.

Obviously, now Γ = 0. The use of the mass fractions is convenient in the implicit

stage, as the mixture density is used (Siikonen, 2009). The void fractions are

used in calculation of the convective fluxes.

The relevant field equations in their semi-discretised form for control volume

i are

Vi
dρixg,i
dt

+
∑
j

ρj ūjxg,jSj = 0 and (3.20)

Vi
dρi~Vi
dt

+
∑
j

ρj ūj ~VjSj +
∑
j

~njpjSj =
∑
j

τij · ~nj + Vi(ρi − ρ∞)~g , (3.21)

where the sum over j denotes summation over all the faces Sj bounding the

control volume i, and ū = ~V · ~n is the convection velocity. These can be written

with more concise notation

Vi
∆~Ui
∆t

= −
∑
faces

~Fn+1S + Vi ~Qi , (3.22)

where ~Ui is the vector of unknown variables (Eq. (3.12)), ~F are the flux vectors

on the cell faces, and ~Qi the source terms. The fluxes are expressed in the new

time level n + 1 and hence need linearising; otherwise the equations cannot be

solved. This is done for all terms as

~Fn+1 = ~Fn +
∂ ~F

∂~U
∆~U . (3.23)
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All the linearisations are based on the first-order upwind type for standard

convection-diffusion equation. The diffusion fluxes in the momentum equations

include derivatives on the cell face (cf. Sec. 3.2.3). However, the use of full diffu-

sion term in the implicit stage results into a fuller matrix (Miettinen et al., 2006),

i.e. the solution of the linear equations is more time consuming. In Finflo, the

linearisation of the diffusion flux is based on the expression

~Fv,i+1/2 = −
( µ

∆x

)
i+1/2

(~Ui+1 − ~Ui) (3.24)

whence
~Fn+1
v,i+1/2 = ~Fnv,i+1/2 +

µi
∆x

∆~Ui −
µi+1

∆x
∆~Ui+1 , (3.25)

where µ is the diffusion coefficient and ∆x is the distance between the center

points of cells i and i+ 1. The convective terms at the cell face for the gas mass

fraction and momentum are∫
∂V

xgρ~V · d~S ≈
∑
faces

Sjρj ūxg =
∑
faces

ṁxg and (3.26)

∫
∂V

ρ~V ~V · d~S ≈
∑
faces

Sjρj ūj ~V =
∑
faces

ṁ~V , (3.27)

that is, the mass flux of the mixture ṁ on the cell faces can be identified in the

equations. The calculation of the convective terms on the cell faces is detailed in

Sec. 3.2.2. The solution of the mass fraction (and α) is resumed in Sec. 3.2.6.

The Jacobians for the convection and diffusion fluxes in the momentum equa-

tions, Eqs. (3.13 – 3.15), multiplied by the respective change, are approximated

with expressions of the type

∂F

∂U
∆U

∣∣∣∣∣
i+1/2

= max(ṁi+1/2, 0)∆ui + max(−ṁi+1/2, 0)∆ui+1 , (3.28)

∂Fv
∂U

∆U

∣∣∣∣∣
i+1/2

=
Sµeff

∆x

∣∣∣∣∣
i+1/2

· (∆ui −∆ui+1) , (3.29)

where the max function is utilized to account for the flow direction, µeff = µ+µt

and ∆x is the distance between the center points of the cells i and i+ 1. These
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give the implicit stage in two-dimensional structured grids (Siikonen, 2011)

AW = −max(ṁi−1/2, 0)−
(
Sµeff

∆s

)
i−1/2

,

AE = −max(−ṁi+1/2, 0)−
(
Sµeff

∆s

)
i+1/2

,

AS = −max(ṁj−1/2, 0)−
(
Sµeff

∆s

)
j−1/2

,

AN = −max(−ṁj+1/2, 0)−
(
Sµeff

∆s

)
j+1/2

and

AP =
Viρi
∆t
− AW − AE − AS − AN (3.30)

for the u-momentum, for instance. Two additional arrays AT and AB are needed

in three-dimensional calculations. The set of linear equations for each control

volume is

A∆u = R , (3.31)

where R denotes the recalculated residual shown in Eq. (3.18), added together

with the contribution of the cell face pressure in the inviscid fluxes as well as with

the source term. The cell face pressures are calculated as averages from the nodes

surrounding the face, and the contribution from the gravity source is discussed

in Sec. 3.2.4. The pressure correction stage is described in Sec. 3.2.5, and the

void fraction equation in Sec. 3.2.6. The discretised equations are solved using

the DDADI-factorisation (diagonally dominant alternating direction implicit).

3.2.2. Convection term

Yaffa The inviscid fluxes are

~Flm =
(
ū~V − p~n/ρ

)
lm
Slm (3.32)

for the bulk flow variables and

Flm = (ūα)lm Slm (3.33)

for the void fraction. Above, the index lm denotes the face between the cells l and

m, see Fig. 3.4. Familiarly, ūlm is the convection velocity and Slm is the surface

area. The inviscid fluxes are calculated based on the flux difference splitting of

Roe

Flm =
1

2

(
ū(Ul + Ur)− |ū|(Ur − Ul)

)
, (3.34)

where U is the vector of the unknown variables, consisting of the velocity and

the void fraction. The indexes l and r denote the left and right sides of the face,
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Figure 3.4: Finite volume discretisation used in Yaffa (Mikkola, 2009). Note
that in this work, rectangular control volumes are used.

Table 3.1: The Gamma Differencing Scheme (GDS) of Jasak (1996).

Value in cell l Value at face lm Scheme

α̃l ≤ 0 α̃l First-order upwind

0 < α̃l ≤ βm − α̃2
l

2βm
+
(

1 + 1
2βm

)
α̃l Blending

βm ≤ α̃l < 1 1
2 + 1

2 α̃l Central difference
α̃l ≥ 1 α̃l First-order upwind

respectively. The cell face pressures are calculated according to

plm,1 =
h+ρmpl + h−ρlpm
h+ρm + h−ρl

, (3.35)

due to the possible discontinuity in the density (cf. Sec. 3.2.6).

The convection velocity ū is calculated as a weighted average of the left and

right side cells of the face. The weighing factor depends on the normalized dis-

tance between the opposite cell centers from the face. The discrete counterpart

of the convected velocity components ~V on the cell face is based on the first-order

Taylor expansion in a control volume l. The cell face value is

ui,lm = ui,l + γ
∂ui,l
∂xj

∆xj , (3.36)

where the index i denotes the i:th component of the vector, ∆xj is the distance

between the cell face lm and its center l; γ is a global user defined parameter

controlling the amount of the correction; summation is implied over j. A Rhie-

Chow type damping term is added to the convection velocity in calculation of

the error in mass balance; this is discussed in Sec. 3.2.5.

Two different extrapolation procedures have been implemented for the cell face

value of the void fraction. These are the Gamma Differencing Scheme (GDS) of

Jasak (1996) and the Inter-Gamma Differencing Scheme (IGDS) of Jasak and

Weller (1995), which are based on the normalized variable (NV) formulation. It
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Table 3.2: The Inter-Gamma Differencing Scheme (IGDS) of Jasak and Weller
(1995).

Value in cell l Value at face lm Scheme

α̃l ≤ 0 α̃l First-order upwind
0 < α̃l ≤ 1

2 −2α̃2
l + 3α̃l Blending

1
2 < α̃l < 1 1 First-order downwind
α̃l ≥ 1 α̃l First-order upwind

is here reminded that the NV formalism changes in the case of arbitrary com-

putational grids, and this obliges one to use a specific blending function, usually

denoted as fx, in the expression of the non-normalized quantity on the cell face

(Jasak, 1996; Jasak et al., 1999). Here only orthogonal, or very closely orthog-

onal, grids are used, so further attention is not needed for this. The GDS is

defined in Tab. 3.1, where βm is the pre-specified constant for the scheme, and

the IGDS is given in Tab. 3.2. More detailed discussion of these schemes and the

normalized variable (α̃) formulation follows in Sec. 3.3. In this study, the IGDS

is used in computations with Yaffa.

Finflo The inviscid fluxes on the cell faces are based on the Roe’s method

Fi+1/2 =
1

2
(F (Ul) + F (Ur))−

1

2
|Ã|(Ur − Ul) , (3.37)

where F is the flux vector in x-direction, as in Eq. (3.13) consisting of convection

and convected velocities as well as pressures, total energy and turbulence vari-

ables. Ã is the Jacobian of the flux vector that is based on the Roe average. That

is, it is based on the familiar expression ∂F/∂U but satisfies certain conditions

such that the solution of the linear problem becomes an approximate solution of

the Riemann problem. These methods contain intrinsic dissipation that is due

to the upwind based extrapolation (Siikonen, 2011; Tannehill et al., 1997). Here,

only the different velocity components are discussed together with the convec-

tive void fractions. The cell face pressures are obtained using simple averages of

the cells surrounding the face i + 1/2. The convected turbulence quantities are

calculated with a second-order upwind extrapolation.

The convective values of ~V and α are MUSCL-extrapolated to the cell face (cf.

Sec. 3.3.2). In the calculation of the mass fluxes ṁk = Sρkαkū the values of α on

the cell faces are always extrapolated using the second-order upwind method and

limited using the van Albada limiter; the concept of limiter is introduced to allow

the TVD propery. This will be discussed later in Sec. 3.3.2. Additionally, the void

fractions are constrained to the range [0, 1]. In this work, another limiter, the

SUPERBEE of Roe was implemented in the Finflo code. The case in Sec. 4.2

was calculated using both the original van Albada limiter and the SUPERBEE

limiter. The motivation for this is evident from Sec. 3.3. The van Albada limiter
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i− 1 i i+ 1 i+ 2

i+ 1/2

DIFF0 DIFF1 DIFF2

r−
r+

IT0 IT1 I IT2

Figure 3.5: Definitions of some array pointers and variables used in the code.

is

φva =
r + r2

1 + r2
, (3.38)

and the SUPERBEE is

φsb = max
(
0,min(2r, 1),min(r, 2)

)
, (3.39)

where r is the ratio of upwind slopes to the downwind ones at the cell face. These

will be detailed later in Sec. 3.3.2. The MUSCL-formula is implemented in an

alternative way

U li+1/2 = Ui +

PHIBI︷ ︸︸ ︷
φ(r)

4

(
κ1(Ui − Ui−1) + κ2(Ui+1 − Ui)

)
and (3.40)

U ri+1/2 = Ui+1 −
φ(r)

4︸ ︷︷ ︸
PHIFI

(
κ2(Ui+1 − Ui) + κ1(Ui+2 − Ui+1)

)
, (3.41)

where the corresponding slope is used in the argument of the limiter function φ,

and the superscripts denote the left (l) or right (r) side of the face. PHIBI and

PHIFI are the coefficients in the code. In Finflo, the void fraction is extrapolated

in subroutine DXTRAP. Three variables are needed for the limiter function

DIFF0 = U(IT1)− U(IT0) , (3.42)

DIFF1 = U(I)− U(IT1) and (3.43)

DIFF2 = U(IT2)− U(I) , (3.44)

where the array pointers are seen in Fig. 3.5. The differences correspond to those

used in the MUSCL extrapolations above. Note that for the void fraction κ2 = 0.

The SUPERBEE limiter is then implemented into the code simply

PHIBI = MAX(0.0, MIN(2.0 ∗ RIII, 1.0), MIN(RIII, 2.0)) and (3.45)

PHIFI = MAX(0.0, MIN(2.0 ∗ RII2, 1.0), MIN(RII2, 2.0)) , (3.46)
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where the expressions MAX and MIN correspond to the Fortran statements of a

maximum or minimum of the real arguments. The variables RIII and RII2 are

RIII = DIFF0/DIFF1 and (3.47)

RII2 = DIFF2/DIFF1 , (3.48)

that is, they are the different sided slope ratios r− and r+, respectively.

In an incompressible case, the convection velocities need additional dissipation

terms that couple them with the pressures and hence avoids the possible formation

of checkerboard-like pressure fields (Patankar, 1980; Siikonen, 2011, 2013). This

dissipation is added to the mass flux formula in the so-called spirit of the Rhie

and Chow interpolation. The convection velocity is calculated as

ūi+1/2 =
1

2
(ūi+1 + ūi) + C

Si+1/2

AP,i+1/2
(pi+2 − 3pi+1 + 3pi − pi−1) , (3.49)

that is, the convection velocities at the cell centers surrounding the face i +

1/2 together with the neighbouring pressure values are used to calculate the

convective velocity at the cell face. The term AP comes from the linearisations

of the momentum equations (see Sec. 3.2.1). The factor C can be used to reduce

the added dissipation. The above term is of the fourth order, and the resulting

truncation error O(∆x2). (Siikonen, 2011)

3.2.3. Diffusion term

Yaffa In this study, the Euler equations were used in computations with Yaffa.

Finflo In this work, the viscous fluxes are evaluated based on the thin layer ap-

proximation. In the code, the thin layer model can be activated in any coordinate

direction. This approximation posits on the fact that in the boundary layer, the

gradient of a variable perpendicular to the wall is clearly larger than that along

the wall. The approximation is also valid if the cell face areas are much greater

in direction along the wall than they are perpendicular to it. The diffusion fluxes

in the momentum equations include derivatives on the cell face. The calculation

of the velocity derivative is for example in the x-direction in the cell i

∂u

∂x

∣∣∣∣∣
i

≈
(nxu)i+1/2 − (nxu)i−1/2

di
, (3.50)

where di is the thickness of the cell. This formula is applied to a shifted control

volume Vi+1/2, and used to replace the derivatives in of the viscous fluxes in Eq.
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(3.15) yielding

Fv2,i+1/2
= −

µeff
di+1/2

(
(ui+1 − ui) +

nx,i+1/2

3
(ūi+1 − ūi)

)
, (3.51)

where µeff = µ+ µt and the contravariant velocity defined now as

ūi+1− ūi = nx,i+1/2(ui+1−ui)+ny,i+1/2(vi+1−vi)+nz,i+1/2(wi+1−wi) . (3.52)

Equations similar to Eq. (3.51) are used for diffusion fluxes in y and z-directions

with the corresponding velocity components used in the first term on the right

hand side.

3.2.4. Source term

The source term contains non-zero components only for the momentum equa-

tions, and for turbulence closure. The acceleration due to gravity is a body force

that applies to the whole fluid in a cell. Its discrete representation was Vi ~Qi
where the source term is now ρ~g. The source term has not been linearised per sé,

but the value for density is obtained from the previous cycle. Presumably this

does not affect the stability.

Yaffa Recalling that the code solves the Euler equations in primitive form, the

source term contribution changes to

~Ql = ~g . (3.53)

This manipulation eliminates the large term from the momentum equations.

Finflo In the incompressible solution of Finflo pressure differences are used.

The source term is then (Miettinen et al., 2006)

~Qi = (ρi − ρ∞)~g , (3.54)

where ρ∞ is the free stream (reference) density. If the density of either of the

phases in question is used as the free stream density, this term reduces to zero

for that phase. Additionally, the source term is linearised in a peculiar way to

ρn+1 = ρ0, that is, setting this term to a constant value throughout the iteration

by

ρ(x, y, z)n+1 =

ρg if z > z0

ρl otherwise,
(3.55)
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where z0 denotes the initial still water level. The turbulence model is presented

in Finflo (2013)

3.2.5. Pressure correction stage

As was already discussed in Sec. 2.3 the conservation of mass within the itera-

tive solution is of vast importance. This is enforced mainly through the pressure

correction stage. One could note that throughout the Sec. 3.2.1 the enforcement

of the mere momentum balance, Eq. (3.2), was pursued. This by no means states

that mass balance, Eq. (3.1), is reached in the approximative solution since it was

not explicitly sought at any stage above; rather, it was implicitly assumed in the

coefficients of the linearised momentum equation. Furthermore, it provided no

description for the pressure field p. The pressure gradient appears in the Navier-

Stokes equations (2.2) and the pressures are explicitly needed in the fluxes (e.g.

Eqs. (3.10) and (3.13)) at the cell faces. Since most flow situations within the

problems encountered at naval hydrodynamics can be considered as incompress-

ible, there is no equation of state for the pressure. To overcome these difficulties,

one general way in computational fluid dynamics (cf. Patankar (1980)) is to write

instead for the new time level

un+1
i = u∗i + u′i , (3.56)

where the latter part on the right hand side is so-called velocity correction, and

i denotes any of the components. Now u∗i is an intermediate velocity field that

satisfies the momentum equation, but it needs to be corrected by the amount of

u′ in order for it to satisfy the mass balance as well. Similar decomposition is

possible for the pressure

pn+1 = p∗ + p′ , (3.57)

where the p∗ is a guessed pressure field for the solution of the momentum equa-

tions, i.e. it follows from the initial pressure field or is that of the previous it-

eration cycle. p′ the correction part to provide a pressure field that promotes

the mass balance as well. (Previously the primed values were used to denote the

presence of turbulent fluctuation; per sé, they are not connected to the pressure

correction stage). The mass balance for the new time level is∑
j

ṁn+1
j =

∑
j

(Sρū)n+1
j = 0 , (3.58)

where ūj = (~V · ~n)j are the convection velocities at the cell faces j. Substituting

Eq. (3.56) to the mass balance gives∑
j

ṁ∗j = −
∑
j

ṁ′j , (3.59)
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where the summation over j denotes that over the faces of the computational cell.

The likely mass imbalance for a cell i, ∆ṁ∗i , resulting from the velocity field that

satisfies the momentum equations is the left hand side of Eq. (3.59). The pressure

correction equation is obtained by replacing the contravariant velocity corrections

ū′ in the mass flux correction ṁ′ = Sρū′ by an expression involving the pressure

corrections p′ at the cell faces. The link between these pressure corrections and the

velocity corrections is found through the linearised momentum equation (3.31).

The linearisation of the continuity equation can be done in many different ways,

and this will be described later.

The pressure correction equation is based on the expression (3.59). In other

words, if the mass balance is satisfied, the pressure corrections are zero, i.e. p′ = 0.

Thus, the nature of the pressure correction stage is essentially in providing guid-

ance to the solution so that it converges to the mass balance as well. This allows

for some simplifications in its derivation that could lead to faster convergence or

a more stable algorithm. Earlier the kinematic boundary condition was directly

linked to the same aspect (the mass balance). This implicit coupling of α and p

is then further strenghtened by the dynamic boundary condition.

The values u∗ and p∗ already satisfy the momentum equations. The substi-

tution of the decompositions (3.56) and (3.57) to Eq. (3.31) applied to a shifted

control volume, supplied with apt exploitation of the aforementioned facts gives

a link

AP,i+1/2u
′
i+1/2 = −Si+1/2nx,i+1/2(p′i+1 − p′i) , (3.60)

where u′i+1/2 are the u-velocity corrections at the cell face i+ 1/2, Si+1/2 the cell

face area and nx,i+1/2 the x-component of its normal vector. The term AP,i+1/2

is based on the linearisations of the flux vectors, i.e. they are the coefficients

of the momentum equations for their implicit stage, Eq. (3.30). Again, similar

forms are obtained for y and z-directions as well. Eq. (3.60) is the SIMPLE

approximation commonly taken in computational fluid dynamics. (Ferziger and

Perić, 1999; Patankar, 1980; Siikonen, 2013; Tannehill et al., 1997)

After solving the pressure correction equation, which will be given below for

both codes, the mass balance is exactly satisfied. The corrections on the veloci-

ties is performed using Eq. (3.60). Conversely, the momentum balance was not

explicitly enforced within this step. The procedure is iterative, and converged

solution is reached in several cycles where these steps are repeated. A known fea-

ture of the SIMPLE algorithm is the need for an under-relaxation of the pressure

corrections, i.e. the pressures are updated from

pn+1 = p∗ + αpp
′ , (3.61)

where αp ≤ 1 is the under-relaxation factor for the pressure. The SIMPLE
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procedure may overestimate the pressure correction due to the approximation

(3.60), which in turn can lead to unstable computations. For this reason, it

may be necessary to apply only a fraction of p′ to the pressure. The values

for αp depend on the case at hand. Patankar (1980) recommends the range

αp ∈ [0.5, 0.8] but quite usually significantly smaller values are the only cure for

the calculations to converge. In addition to the pressures, similar practice can

be applied to the velocity corrections via un+1 = u∗ + αuu
′. If this is done, the

resulting velocity field no longer satisfies the continuity condition exactly. Such

under-relaxation is unfortunately frequently necessary for the same reasons as

above. The problem may be so non-linear that the iterative algorithm must be

heavily under-relaxed; it does not effect the converged solution. It only may take

even several tens of thousands of iteration cycles to reach it.

The linearisation of the continuity equation is another aspect of the pressure

correction methods. It can be done in many different ways depending on the

problem at hand and the flow equations being solved. Note that Eq. (3.59)

does not yet contain indication of the two-phase problem, but is based on the

traditional way to linearise the equation since such is the current practice. In

principle, in this case (cf. Sec. 2.2), the pressure correction equation can be based

on the volumetric fluxes as well, i.e on the incompressibility constraint
∑

j Sj ūj =∑
j V̇j = 0. This form guarantees conservative volumetric fluxes, rather than

mass fluxes, which can in fact be argued to be advisable in the VOF algorithm.

The pressure correction stage of Yaffa is based on the balance of the volumetric

fluxes, whereas in Finflo, the starting point is the phasic mass balance. It is

important to remember the principle of the guiding role of the whole procedure.

The pressure correction equation is formed differently in the codes used here and

will be discussed below.

Yaffa The pressure correction equation applied in Yaffa is based on the volu-

metric conservation. In this work, the SIMPLE method is applied, or the pressure

correction equation follows from the discretised and simplified momentum equa-

tion. The form of that equation differs slightly in unstructured discretisations,

Alu
′
i,l = −

∑
lm

Slmp̂
′
lmni,lm , (3.62)

where the coefficients Al follow from the upwind linearisation, u′i,l are the com-

ponents of the velocity corrections for the cell l, Slm are the cell face areas, p̂′lm
are the pressure corrections on the cell faces and ni,lm are the components (i)

of the normal vector of the cell face. This has the same meaning as the expres-

sion (3.60), but with the exceptions that it is formulated directly for the cell l,

and the terms p̂′lm do not have the dimensions of pressure. The latter is due to

the primitive form of the momentum equations that are being solved; also the
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diagonal term changes to

Al =
Vl
∆t
−
∑
m

alm . (3.63)

This follows from the linearisation of the momentum equations in a similar fashion

as was done previously in Sec. 3.2.1 with Finflo. The off-diagonal terms are now

alm = −Slmmax(−ūlm, 0) . (3.64)

Note that the matrix consists of volumetric fluxes, rather than mass fluxes. The

convection velocity correction on the cell faces are needed for the continuity equa-

tion, and these are obtained by projecting the Cartesian components to the cell

face via a dot product of the Eq. (3.62), divided by the diagonal coefficient, and

the normal vector of the face, and by using suitable averages. The right hand

side can be then transformed using the Gauss theorem, and the correction of the

convection velocity is

ū′lm = −Vlm
Alm

(
∂p̂′

∂n

)
lm

. (3.65)

The cell face volumes and inverses of the coefficients Alm are taken as the average

values of the cells l and m surrounding the face. The pressure gradient is approx-

imated with the difference of the values at these cells, divided by the distance of

their centers in the normal direction to the face. The convection velocity is then

ū′lm =
Vl + Vm
Al +Am

·
p̂′m − p̂′l

(xi,m − xi,l)ni,lm
, (3.66)

where summation is implied over the vector components i. The mass balance

reduces into a volumetric one, and is calculated in the spirit of the Rhie-Chow

interpolation basing on the expression

V̇∗lm = Slm

(
ū∗lm + C

Vlm
Alm

dlm

)
, (3.67)

where V̇∗ is the volumetric flux on the cell face, C is the Davidson factor used

to control the amount of the damping, and the term dlm is originally used in

Rhie-Chow type expression in relating the convection velocity explicitly to the

pressures and pressure gradients surrounding the face. The Rhie-Chow interpola-

tion provides an explicit link between the cell face velocities and pressures, and it

is only needed in calculation of the error in the volumetric (or mass) flux balances,

Eq. (3.67). The first pressure gradient in this interpolation should correspond to

the discretisation used for the temporary velocity ū∗lm, that is, in the solution of

the momentum equations. The second gradient, that is subtracted from the first

one, is discretised identical to that used in the normal derivative of the pressure

corrections. Because of the two-phase problem (cf. Sec. 3.2.6), the term dlm is
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Figure 3.6: Notations around the cell face lm.

based on different expressions

dlm =

(
∂p̂

∂n

)
lm,1

−
(
∂p̂

∂n

)
lm,2

(3.68)

for these pressure gradients. For the first gradient, the pressure on the cell face

is calculated similarly as in the inviscid fluxes from

plm,1 =
h+ρmpl + h−ρlpm
h+ρm + h−ρl

, (3.69)

where the distances h± and cells l and m are shown in Fig. 3.6. This equation

stems from the work of Queutey and Visonneau (2007). The cell face pressures

are multiplied by the normal to the face, and then the Gauss theorem is used

to transform these into gradients. In the code, these gradients are calculated

to the cell centers, and divided by the values of the respective densities. The

interpolation of these gradients to the cell faces is done by a distance weighed

formula. The second gradient is calculated from the expression(
∂p̂

∂n

)
lm,2

=

(
1

ρ̂

pm − pl
h

)
lm

, (3.70)

where the distance h = h+ +h−, and the distance weighed density ρ̂lm is defined

by

ρ̂lm =
hlρl + hmρm

h
. (3.71)

An intermediate stage is in order by substituting the correction of the convection

velocity, Eq. (3.66), to the incompressibility constraint
∑

j V̇ ′j = −
∑

j V̇∗j to yield

∑
m

Slm

(
Vl + Vm
Al +Am

p̂′m − p̂′l
(xi,m − xi,l)ni,lm

)
= −

∑
lm

V̇∗lm , (3.72)

whence the final pressure correction equation is available

allp̂
′
l +
∑
m

almp̂
′
m = −

∑
lm

V̇∗lm , (3.73)
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where the diagonal term is the sum of the off-diagonal ones

all = −
∑
m

alm , (3.74)

and those are

alm = − Vl + Vm
Al +Am

Slm
(xi,m − xi,l)ni,lm

. (3.75)

The solution of the system of equations, Eq. (3.73), yields the pressure corrections,

but normalized with ρ. Hence, they must be multiplied with the density when

the pressures are corrected, or pn+1 = p∗ + αpρ
np̂′. Here the previous value of

the density is used, since the void fraction equation is solved after the pressure

correction stage as in Fig. 3.2. The system is solved using the conjugate gradient

(CG) algorithm.

Finflo The pressure correction method applied in Finflo belongs to the cou-

pled approaches, since now the residuals of mass and momentum are calculated

simultaneously and only once during an iteration cycle. The coupled set of equa-

tions were avoided by manipulating the explicit residuals via Eq. (3.18). The

continuity equations form the basis of the linearisation for the mass balance. The

linearisation resides in separating the change in density into suitable expressions

such as

∆ρk =
∂ρk
∂p

p′ +
∂ρk
∂hk

∆hk , (3.76)

where hk is the enthalpy for phase k. That is, the time derivative is not dropped

despite ρk is constant, since the pressure correction equation results in a very stiff

system, cf. Eq. (3.73). Traditionally, the coefficients of the pressure correction

equation come directly from the correction term in mass balance into which the

link of Eq. (3.60) is substituted. One writes instead

Vi
∆ρ

∆t
+
∑
j

(
Sρū′

)
j

= −∆ṁi (3.77)

for the mass flux correction for the cell i. Slight diagonal dominance is enforced

with the time derivative term. ∆ρ can be interpreted as an imbalance in the mass

flows at the time level n (Siikonen, 2011). Now it is expanded approximatively

for phase k

ρk,iVi
∆αk,i

∆t
+
∑
out

Sjρk,j ūj∆αk,i +(
Viαk,i

∆t
+
∑
out

Sj ūjαk,j

)
∂ρk
∂p

p′i +(
Viαk,i

∆t
+
∑
out

Sj ūjαk,j

)
∂ρk
∂hk

∆hk,i .
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Further simplifications follow from ignoring the outgoing sums in the first two

terms and disregarding the linearisations with respect to enthalpy. An approxi-

mation for the speed of sound can be identified, or 1/c2
k ≈ ∂ρk/∂p. Taking these

into account leaves

ρk,iVi
∆αk,i

∆t
+
Viαk,i
∆tc2

k,i

p′i +
∑
j

(
Sαkρkū

′)
j

= −∆ṁk,i . (3.78)

The error in mass balance for the cell i after the solution of the momentum

equations for the mixture (from the previous iteration cycle) is the sum of Eq.

(3.78) over both phases. A term resembling the speed of sound in the mixture is

defined as
1

ρc2
0

=
α

ρgc2
g

+
1− α
ρlc

2
l

, (3.79)

where cg is the speed of sound in the gas phase and cl the speed of sound in

the liquid phase. After division by the phase density ρk the changes in the void

fraction can be eliminated on the basis of ∆αg + ∆(1−αg) = 0, and one obtains

by writing that sum

Vi
ρic2

0,i∆t
p′i +

∑
k

1

ρk,i

∑
j

(Sjαk,jρk,j ū
′
j) = −

∑
k

∆ṁk,i

ρk,i
. (3.80)

Using the first-order linearisation for the cell face densities αk,jρk,j in case of

an outflow, and further approximating them with that of the cell i even in the

case of an inflow, it is possible to eliminate them. The void fraction may differ

significantly on the different sides of the face, and consideration could be put on

it; now it is disregarded. The correction of the convection velocity is obtained

by taking the dot product with the Cartesian components, Eq. (3.60), and the

normal vector of the cell faces. Substituting this to the above expression results

in
Vi

ρic2
0,i∆t

p′i −
∑
j

S2
j

ĀP,j
(p′j+ − p′i) = −

∑
k

∆ṁk,i

ρk,i
, (3.81)

where the index j+ denotes the value in the cell on the other side of the face j,

the other neighbour is always the cell i. The error in mass balance for phase k is

weighed with the density of that phase, and their sum is on the right hand side.

The coefficients AP,j are the same for all momentum equations since they are not

updated after the solutions of the consecutive components. It is important to

calculate the coefficient correctly at the cell face. A robust way of doing that is

1

ĀP,i+1/2

=
1

2

(
1

AP,i+1
+

1

AP,i

)
, (3.82)

since use of a simpler average would result to a very unstable algorithm. Using

similar compass notation as in Sec. 3.2.1 the two-dimensional pressure correction
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equation can be written as

AW = −
(
S2

ĀP

)
i−1/2

AE = −
(
S2

ĀP

)
i+1/2

AS = −
(
S2

ĀP

)
j−1/2

AN = −
(
S2

ĀP

)
j+1/2

ApP =
Vi

ρi∆tc2
0,i

− AW − AE − AS − AN , (3.83)

where the term ĀP,i+1/2 denotes the diagonal term of the linearized momentum

equations (3.31), averaged to the cell face. The use of Eq. (3.81) for the solution

of the pressure corrections p′ has proven robust and efficient for the cases that

did not involve mass transfer; the very desirable feature within this work as well.

This discussion will be resumed in Chap. 5.

3.2.6. Two-phase methodology

Yaffa The inclusion of the segregated phases is done with the standard con-

vection equation of the void fraction α, Eq. (2.20). However, in order to remove

the steep density gradient from the hydrostatic pressure contribution, the non-

conservative form of the momentum equations is applied. In addition, the bulk

flow solution procedure is modified to account for the discontinuity in the mate-

rial properties (Hänninen and Mikkola, 2007). Some of these changes correspond

to those introduced by Queutey and Visonneau (2007). In order to account for

the jump conditions along the interface of the two phases, the cell faces pressures

are interpolated in the inviscid fluxes according to

plm =
h+ρmpl + h−ρlpm
h+ρm + h−ρl

, (3.84)

where h denotes the distance between the cell center and the face, and the indexes

m and l denote the cells on both sides of the face (Fig. 3.6). The use of simple

distance weighted averages leads to an inaccurate approximation of the cell face

pressure profile (cf. Sec. 2.3), whereas Eq. (3.84) was specifically designed to

account for the jump conditions. Queutey and Visonneau (2007) showed that

these types of interpolations satisfy the jump conditions due to discontinuity in

the density in the hydrostatic case. Similarly, the pressure gradient on the cell

face is normalized by a modified density for the pressure correction stage in the
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Rhie-Chow interpolation (
~∇p · ~n
ρ

)
lm

=
1

ρ̂lm

pm − pl
h

(3.85)

with the distance weighted density defined by

ρ̂lm =
hmρm + hlρl

h
. (3.86)

This was described in Sec. 3.2.5. The pressure gradient normalized by the density

is continuous through the face (Queutey and Visonneau, 2007).

The inclusion of the two-phase methodology in the solution algorithm consists

of two separate loops within an iteration cycle or time step. This was illustrated

in Fig. 3.2. The bulk flow equations are solved within an inner loop, and the

convection equation of the void fraction is solved in an outer loop. The solution

of the void fraction is based on the same procedure as the momentum equations,

that is, the loop begins with calculation of the explicit residuals of α through

the flux balance αū, which forms the right hand side of the implicit stage. The

implicit stage yields the change ∆α. After updating the void fraction values via

αn+1 = αn + ∆α, the iteration is advanced to the next step. These loops can be

repeated if required, and typically O(20) is sufficient. The solution procedure of

Yaffa was already given in Sec. 3.2.1, and a similar algorithm to solve the time

evolution of the void fraction is detailed in Sec. 3.3.

Additionally, the governing equations in Yaffa were modified into the prim-

itive form. This eliminates the need of calculating the density values on the cell

faces. It was observed in development of the interface capturing model that the

interpolation of the coefficients like Al on the cell faces posed a problem when the

density discontinuity was present. This mainly deals with the pressure correction

stage, and was discussed earlier in the respective section.

Finflo The void fractions α and the mass fractions x are used interchangeably in

the solution procedure. The void fractions are used in the explicit stage, whereas

the mass fraction is used in the implicit stage. The continuity equation for the

gas phase is utilized. This is rewritten for convenience

Vi
∆(αiρg,i)

∆t
= −

∑
faces

Sjαjρg,j ūj . (3.87)

The MUSCL-discretisation is used for the convective fluxes of the void fraction.

The values are extrapolated from the center points of the control volumes to the

faces using the second-order upwind biased method, and the fluxes are limited

with either the van Albada or SUPERBEE limiter. The explicit residual is the
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difference in the fluxes into a computational cell i through its faces j, or the right

hand side of Eq. (3.87). The residual is ∆(αiρg,i).

For the implicit stage, the convective fluxes can be linearised in an upwind

manner as

(ṁxg)
n+1
i+1/2 = (ṁxg)

n
i+1/2 + ṁi+1/2∆xg,i (3.88)

if flow is in the direction of the increasing index i. Since the mixture density

was used, the mixture mass flow appears in the expression and consequently

exactly the same routines that are used for the change of the velocity compo-

nents can be used for the solution of the change of the gas mass fraction. Note

that earlier in Sec. 2.2 and also later in Sec. 3.3 the convection equation for the

void fraction is assessed. One should remember that based on the assumption

of incompressibility, the individual field densities could be eliminated from the

continuity equation, and the algorithm would result to that consisting merely

of α and the contravariant velocity; that is the de facto standard in interface

capturing type methods employing the VOF concept. Now also the novel idea

of Miettinen et al. (2006), essentially Eq. (3.18), can be used. For illustration,

insertion of the above linearisations to a two-dimensional continuity equation for

the gas mass fraction yields

Vi
d(ρxg)i
dt

= −Fi+1/2 + Fi−1/2 − Fj+1/2 + Fj−1/2︸ ︷︷ ︸
=Ri

− ṁi+1/2∆xg,i − ṁj+1/2∆xg,i (3.89)

+ ṁi−1/2∆xg,i−1 + ṁj−1/2∆xg,i−imax ,

where Ri is the explicit residual. There the discretisation practices taken for α

(the void fraction was used in the explicit stage) on the cell faces are of utmost

importance. These are discussed in Sec. 3.2.2, and further insight is shed in Sec.

3.3.2. The change in the mass fraction is also transformed

ρ∆xk = ∆
(
ρxk
)
− xk∆ρ . (3.90)

The term ∆
(
ρxk
)

is the error in mass balance for phase k. For the term on the

left hand side of Eq. (3.89) can be simplified from linearisation of the continuity

equation

Vi
∆ρi
∆t

=

=Rm
i︷ ︸︸ ︷

−
∑
j

ṁn
j −

∑
j

δṁj , (3.91)

where ∆ρ is interpreted as the mass imbalance from the previous iteration, the
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left hand side can then be written as

Viρi
∆xi
∆t

+ xi

Rmi −∑
j

δṁj

 .

If the mass balance is assumed to hold implicitly, the correction term
∑

j δṁj

can be dropped. The terms involving the mass flows can then be grouped, and

the implicit stage for the gas mass fraction is analogously(
Viρi
∆t
−
∑
in

ṁj

)
∆xi +

∑
in

ṁj∆xj = Ri − xiRmi , (3.92)

where the summation denotes that over the faces of the computational cell with

the direction of inflow determined in the convection velocity, or the sign of the

mass flux. If the time derivative term is removed, the diagonal term is exactly the

same as the sum of the off-diagonal terms. The first-order upwind linearisation is

used for the changes of the mass fractions on the cell faces. The modified residual

is now on the right hand side. In traditional pressure-correction algorithm, the

mass imbalance is assumed to be zero. Since the residuals are calculated simulta-

neously, the effect of this imbalance must be filtered away (Siikonen, 2011). Now

an implicit stage can be written for two-dimensional flow calculations

AW∆xi−1+AE∆xi+1+AS∆xi−imax+AN∆xi+imax+AP∆xi = Ri−xiRmi , (3.93)

where the one-dimensional index notation was used for simplicity. The coefficients

of the matrix are

AW = −max(ṁi−1/2, 0) ,

AE = −max(−ṁi+1/2, 0) ,

AS = −max(ṁj−1/2, 0) ,

AN = −max(−ṁj+1/2, 0) and

AP =
Viρi
∆t
− AW − AE − AS − AN , (3.94)

where the max functions are again used to account for the flow direction. For

three-dimensional situations, additional arrays would be needed for the mass

fluxes through the faces k ± 1/2. Formally, these resemble the ones above, of

course. The coefficients are exactly the same as the inviscid part of the momentum

equations, Eqs. (3.30).
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3.2.7. Initial and boundary conditions

In order to obtain solutions to flow cases of interest, one must set the proper

boundary conditions. Roughly speaking, it is mainly those that distinguish a flow

case from another. Additionally, to begin the computations, the initial solution

inside the domain must be known. The initial state is usually set to correspond

undisturbed free surface, that is, the void fraction is initialized according to given

free surface level and the velocity is set to that of the free stream. The boundary

conditions that are applied in computational fluid dynamics are usually either of

the Dirichlet or von Neumann type (Siikonen, 2008), i.e.

U = C and (3.95)

∂U
∂n = C

∂U
∂s = C

}
, (3.96)

respectively. Above, U is a flow variable, C a known value, n denotes the normal

direction of the boundary and s the tangential direction of the boundary. These

two types state that either the flow variables are assigned to a known value at the

boundaries (the Dirichlet condition), or their derivatives are set to a prescribed

value (von Neumann condition).

Unfortunately in practical calculations, the physical domain must be confined

such that problems can be simulated in comprehensible computer times. How-

ever, the solution is seldomly known outside these artificially defined boundaries.

Should one require the influences from upstream and downstream locations to di-

minish, the domain would extend to infinity. Other boundaries are of the physical

type, e.g. solid surfaces. The boundaries involved in this work are of five different

types. These are inflow, outflow, mirror, slip and no-slip boundary conditions,

and will be detailed below. Note again that no free surface boundary conditions

need addressing here, since there is no free surface.

Inflow boundary condition. The inlet of the computational domain is as-

sumed to be sufficiently far such that undisturbed free stream boundary condi-

tions can be applied. This means that a Dirichlet condition can be imposed for

the velocity, or ~V = (uin, 0, 0)T. A von Neumann condition is applied to the

longitudinal pressure gradient, such that it is set to zero, or ∂p/∂x = 0 at the

inlet boundary. This means that the vertical pressure distribution reduces to the

hydrostatic one. The gas volume fraction is set to a prescribed value according

to the initial still free surface, or α(x, y, z) = 0 if z is in the liquid phase and

α(x, y, z) = 1, otherwise.
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Outflow boundary condition. It is assumed again that the outflow boundary

is sufficiently far downstream, i.e. no flow disturbance reaches the boundary. The

velocity is linearly extrapolated from the domain. The pressure is set to a pre-

described value, which in this case corresponds to the hydrostatic pressure at the

initial still water level. The gas volume fraction is also extrapolated from the

computational domain.

Mirror boundary condition. The mirror boundary is imposed on the bound-

aries in the normal directions of which the flow can be assumed to be symmetric.

This requires transformation of the velocity into a local Cartesian coordinate

system that has a coordinate direction normal to the boundary face. After the

transformation, the velocity components in the computational domain can be

mirrored to the ghost cells on the other side of the mirror boundary. The normal

gradients of the pressure and the void fraction can again be set to zero.

Slip boundary condition. This corresponds to the inviscid wall boundary

condition. The normal component of the velocity is zero, and the tangential

velocity component is free to slip along the surface. The gradients of the pressure

and the void fraction are set to zero in direction normal to the slip boundary.

No-slip boundary condition. This corresponds to the viscous wall boundary

condition. The the velocity is set to zero at the boundary. The gradients of the

pressure and the void fraction are again set to zero in the normal direction of the

boundary.

The casting of boundary conditions is one of the most important tasks in CFD

analyses. In the present computations, the typical boundary conditions have been

imposed. In free surface problems in particular, the inflow and outflow condi-

tions are especially sensitive to the flow case, as there may appear non-physical

reflections where one would expect a still state. Note also that no attention of

the turbulence quantities was given. This discussion will be resumed in Chap. 5.
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3.3. Numerical method for the convection

problem

To further assess the numerical solution to the convection problem, a two-

dimensional convection solver is constructed. The discretisation is based on struc-

tured finite volumes, and the conservative form of the Eq. (2.21) is considered.

The convection equation for the void fraction was derived in Sec. 2.2

∂α

∂t
+
∂αuj
∂xj

= 0 , (3.97)

where uj ≥ 0 is the velocity component in j-direction; summation is implied over

j. In order to devise a finite-volume scheme for the discretisation of Eq. (3.97),

the integration of it over an infinitesimal control volume V is required. Such

operation gives ∫
V

∂α

∂t
dV +

∫
∂V

αū dS = 0 , (3.98)

where ū = ~V · ~n is the convection velocity. This can be put in an approximative

form for each discrete control volume Vi, similarly to Eq. (3.6)

Vi
∆αi
∆t

+
∑
faces

fjSj = 0 . (3.99)

The numerical flux of α through the faces of the computational cell Vi are f∗i+1/2 =

ūi+1/2αi+1/2. This can written for two-dimensional problems as

Vi,j
∆αi,j

∆t
= −Fi+1/2,j + Fi−1/2,j − Fi,j+1/2 + Fi,j−1/2 , (3.100)

where Fi+1/2,j = f∗(αi+1/2,j)Si+1/2,j is the flux on the surface (i + 1/2, j) of a

computational cell (i, j), for instance. Such is depicted in Fig. 3.7. The difference

of the fluxes

Ri,j = −Fi+1/2,j + Fi−1/2,j − Fi,j+1/2 + Fi,j−1/2 (3.101)

represents the explicit residual.

The convection equation of the void fraction, Eq. (3.99), consists time deriva-

tives at the cell centers and numerical fluxes at the faces of the cells. The fluxes

are purely convective, and the equations do not have a diffusion nor the source

term. Discretisation of these is done separately. In the following subsections,

the discretisation processes are detailed and their implementation to the two-

dimensional computer program is described.
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Figure 3.7: Two dimensional computational cell.

3.3.1. Temporal discretisation

In this section, the implemented time integrations are described. They can

be of explicit or implicit nature, the former implying the fact that the time

derivative is evaluated by terms from the previous time level, i.e. those values are

known. Implicit methods treat certain terms also on the right hand side of the

equations as unknowns, that is, they are also evaluated on the new time level.

Generally implicit methods are preferred in CFD due to their better coupling

and consequently improved stability characteristics over explicit methods. They

however require the simultaneous solution of system of equations.

The simple first-order time integration of Eq. (3.99) is the so-called explicit

Euler method (cf. Press et al. (1992, p. 704))

Vi,j
∆αi,j

∆t
= Rni,j , (3.102)

where n denotes the time level. The resulting algorithm is first-order accurate in

time and has also stability restrictions with the choice of the time increment ∆t,

or the cell size V. An implicit Euler method can be written as (cf. Press et al.

(1992, p. 729))

Vi,j
∆αi,j

∆t
= Rn+1

i,j , (3.103)

where the residual is taken on the new time level. Now the right hand side cannot

be computed using the results from the previous time level. The application of

an implicit time integration requires linearization of the flux terms that appear

on the new time level. This is done as

Fn+1
i+1/2,j ≈ F

n
i+1/2,j +

∂Fn

∂α

∣∣∣∣
i+1/2,j

·∆αn+1
i,j (3.104)

with the simple upwind approximation. Note that ∆α is a vector of length

imax× jmax, if imax is the amount of cells in i-direction and jmax the amount

of cells in j-direction. The Jacobian is a single element scalar (ūS)i+1/2,j which in
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this case is trivial. The method results in bi-diagonal matrix in 1D and prevents

the stability issues of its explicit counterpart but is still possesses first-order

temporal accuracy. The equations can be written as

A∆α = R , (3.105)

where ∆α is a column vector of the change and R is a column vector of the

explicit residual. The u and v are now positive, so in two dimensions the non-

zero elements of the coefficient matrix are

Ai,i =

(
Vi,j
∆t

+ (ūS)i+1/2,j + (ūS)i,j−1/2

)
, (3.106)

Ai,i−1 = −(ūS)i−1/2,j and (3.107)

Ai,i−imax = −(ūS)i,j−1/2 , (3.108)

where the one-dimensional indexing of the coefficient matrix is adopted for sim-

plicity. The resulting algorithm is no longer bi-diagonal but consist of a diagonal

band, one below it and one band a distance of imax to the left of the diagonal

due to the upwind linearization. The matrix, though very sparse, of the size

of imax × jmax needs to be in principle inverted for the change ∆α for every

time step. No boundary condition cells need to be considered in this study. The

Crank-Nicolson method is obtained if an average is used (cf. Press et al. (1992,

p. 840))

Vi,j
∆αi,j

∆t
=

1

2

(
Rni,j +Rn+1

i,j

)
, (3.109)

which is now second-order accurate in time. The elements of the matrix are

simply

Ai,i =

(
Vi,j
∆t

+
1

2

[
(ūS)i+1/2,j + (ūS)i,j−1/2

])
, (3.110)

Ai,i−1 = −1

2
(ūS)i−1/2,j and (3.111)

Ai,i−imax = −1

2
(ūS)i,j−1/2 . (3.112)

A higher-order Runge-Kutta time integration method is implemented. This

is possible, since Eq. (3.97) reduces to an ODE for each control volume. The

implementation described by Tannehill et al. (1997, p. 125) is applied here, that

is a fourth order accurate method (the truncation error is O(∆t4)) the steps of
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which are

∆α
(1)
i,j =

∆t

2Vi,j
Rni,j ,

∆α
(2)
i,j =

∆t

2Vi,j
R

(1)
i,j ,

∆α
(3)
i,j =

∆t

Vi,j
R

(2)
i,j and

∆αi,j =
∆t

6Vi,j

(
Rni,j + 2R

(1)
i,j + 2R

(2)
i,j +R

(3)
i,j

)
. (3.113)

The notations ∆α(m) and R(m) denote the temporary change and residual from

the values of m:th step, i.e. R(m) = R
(
α(m)

)
. Four loops within a time step are

required. Additional logical statements are needed for the updating of the change

∆α.

After solving for the change ∆α by whichever method described above, the

new time level solution is calculated

αn+1 = αn + ∆α , (3.114)

where αn denotes the solution from the previous time level.

3.3.2. Spatial discretisation

This section focuses on the discretisation of the flux term at the cell faces. The

void fraction is convected only through the faces with the convection velocity

ū = ~V · ~n. In this study, the velocity field is predescribed. The computation

of the flux on a cell face from the nodal values is a fundamental problem in

computational fluid dynamics. In principle, this averaging process can be done in

two ways. First is direct extrapolation (or interpolation) of the dependent variable

to the cell face. Another way is to compute the fluxes at the nodal points as well,

after which they are somehow extrapolated to the cell faces. The first approach is

used here. Special procedures are needed for the discretisation of the convection of

α as was described in Sec. 2.2. Here, the TVD (total variation diminishing), and

NVF (normalized variable formulation) using the CBC (convective boundedness

criterion) discretisation strategies are used.

The analytical flux of the void fraction is

F = αū . (3.115)

The discrete representation of this on the surface of the computational cell i+1/2

is the so-called numerical flux f∗i+1/2. It is a function of the values of α at both
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Table 3.3: Some MUSCL differencing schemes.

Extrapolation κ

2nd-order upwind -1
Fromm’s method 0

3rd-order upwind biased 1/3
QUICK 1/2

Central difference 1

sides of the face, or

f∗i+1/2 = f∗(αi, αi+1) . (3.116)

The consistency of the numerical flux with the analytical one is of great im-

portance (Davis, 1994; Siikonen, 2008; Tannehill et al., 1997). This is enforced

through the condition

f∗(α, α) = F (α) . (3.117)

A higher-order numerical flux is functionally

f∗i+1/2 = f∗(αl, αr) , (3.118)

where the sub-indexes l and r denote the left and right sides of the faces i+ 1/2.

A second-order approximation promotes the fact that now the values of α may

vary linearly inside a cell; the first-order flux function assumes that the states are

constant within each cell. If one is to employ the Roe scheme for the numerical

flux function, it turns out that

Ā =
F (αr)−F (αl)

αr − αl
= ū , (3.119)

where Ā is the mean value matrix (cf. Davis (1994); Tannehill et al. (1997)).

It follows from the approximate Riemann solver of Roe, and is of use also in

the hyperbolic Euler system, for instance. Now the higher-order numerical flux

function reduces simply to

f∗i+1/2 = ūαli+1/2 , (3.120)

where αli+1/2 is the value of the void fraction on the left side of the cell face i+1/2.

The explicit indication of the left side is hereafter dropped. Now, this form

ensures that the correct jump is recovered when a discontinuity is encountered

and the correct solution in regions where α is smooth (Tannehill et al., 1997).

The flux on the cell face is obtained from the dependent variable, but they are

known only on the cell centers. Traditionally the cell face values are calculated

with the aid of the MUSCL formula

αi+1/2 = αi +
1

4

(
(1− κ)(αi − αi−1) + (1 + κ)(αi+1 − αi)

)
, (3.121)
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Figure 3.8: Definitions of the different sided slope ratios, Eq. (3.125).

where the variable is extrapolated or interpolated from the values of the neigh-

bouring cell centers, depending on the value of the parameter κ. Several well-

known schemes can be obtained with different values of the parameter κ, and

these are listed in Tab. 3.3. All methods for which −1 ≤ κ ≤ 1 approximate

αi+1/2 at least to second-order accuracy (Siikonen, 2008). As was demonstrated

previously, any higher-order spatial discretisation inevitably includes oscillations

in the approximation of discontinuous profiles. Such is the distribution of the

void fraction α. These are unphysical and usually completely spoil the calcula-

tions by introducing new extrema into the numerical solution. Again, first-order

methods, whilst monotone, smear the solution over multiple cells. In this study,

two commonly known strategies are implemented to tackle these, and they are

the TVD and NVF discretisation methods.

Total variation diminishing

It has been shown that total variation of a physically possible solution for a

scalar conservation law does not increase in time (Harten, 1983; Sweby, 1984).

The total variation is defined by

TV =

∫ ∣∣∣∣∂α∂x
∣∣∣∣ dx , (3.122)

which is for discrete cases

TV (α) =
∑
j

|αj+1 − αj | . (3.123)

A numerical method is said to have the property of total variation diminishing,

or TVD, if it satisfies the condition

TV (αn+1) ≤ TV (αn) . (3.124)

The crucial fact is that such method is monotonicity preserving. When a solution

is known to contain very steep gradients or discontinuities, the order of discreti-

sation is lowered in those regions in order to prevent the oscillations (first-order

methods are monotone, cf. Fig. 2.2(a)), and higher-order accuracy is retained in
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Figure 3.9: The Sweby diagram with the TVD area shaded by the diagonal
lines. The second-order TVD region is colored with grey.

smooth regions. This type of switching introduces a non-linear dependency of

the discretisation scheme on the solution itself. This is accomplished by the use

of limiters. That is, the discretisation is based on local ratios

r+
i+1/2 =

αi+2 − αi+1

αi+1 − αi
and r−i+1/2 =

αi − αi−1

αi+1 − αi
, (3.125)

which are the different sided gradients near the face i + 1/2, see Fig. 3.8. The

consecutive differences are of different sign in presence of discontinuities. The

construction of a TVD scheme relies on choosing a function φ(r) such that it

adds the limited anti-diffusive flux that originates from e.g. the second-order

accurate Lax-Wendroff scheme to the monotone first-order scheme, and does this

in such a way that the anti-diffusion does not violate the convergence properties1

of the scheme (Sweby, 1984). The function φ is called a limiter function. It is

subject to the TVD constraints, which have been shown shown to be

0 ≤
(
φ(r)

r
, φ(r)

)
≤ 2 . (3.126)

Second-order accuracy is further assured by demanding that the limiter function

lays within the range set by so-called Warming-Beam and Lax-Wendroff schemes,

for which φ = r and φ = 1, respectively; it can be shown that any TVD scheme

relying on points in Fig. 3.8 can be constructed as a linear combination of these

two. Details are given by Sweby (1984), Tannehill et al. (1997) and Siikonen

(2008), for instance. The values of φ > 1 produce artificial compression in the

extrapolation. The Sweby diagram displaying the TVD area, Eq. (3.126), to-

gether with the second-order TVD region, are plotted in Fig. 3.9. Some limiter

functions φ that are of use here will be given later. The MUSCL formula (3.121)

1The convergence of this non-linear coupling can however be strictly proven for the explicit
methods in one space dimenison (Jasak, 1996)
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Figure 3.10: Normalized variable α̃.

can be written with limited upwind and central parts as

αi+1/2 = αi +
1

4

(
(1−κ)φ

(
1/r−i+1/2

)
(αi−αi−1) + (1 +κ)φ

(
r−i+1/2

)
(αi+1−αi)

)
.

(3.127)

The chosen extrapolation scheme (value for κ) does not affect the limited value

for α in regions where the limiter is active (Siikonen, 2008). The implementation

is convenient in this way, and considering overall accuracy, the third-order scheme

is used.

Normalized variable formulation

Now introducing the normalized variable of Leonard (1988, 1991), that is

α̃ =
α− αi−1

αi+1 − αi−1
(3.128)

or a definition of a dimensionless variable that depends on two differences, one

including its own nodal position and an upwind node and the other comprising

of the farthest nodes in the molecule. One can then define so-called normalized

variable diagram (NVD). The one-dimensional normalizations of αi, αi+1, αi−1

and αi+1/2 are plotted in Fig. 3.10. With this new definition, it can be seen that

α̃i+1/2 = f(α̃i) (3.129)

only (Jasak et al., 1999; Leonard, 1991). In fact, the MUSCL scheme, Eq. (3.121),

can now be written in terms of the normalized α̃i as

α̃i+1/2 = α̃i +
1

4

(
(1− κ)α̃i + (1 + κ)(1− α̃i)

)
, (3.130)

since the far upwind and downwind nodes are known in their normalized rep-

resentation. By inspecting Fig. 3.10, the normalized variable satisfies the mono-

tonicity condition, that is, it does not produce new extrema in the solution if
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Figure 3.11: Normalized variable diagram (NVD) and various MUSCL schemes.
The shaded area denotes bounded region, and the red line the first-order upwind
extrapolation.

certain criteria are met. Using the normalized variable formulation, the so-called

convective boundedness criteria (CBC), usually accredited to Gaskell and Lau

(1988), can be written as

α̃i+1/2 = α̃i for

α̃i < 0

α̃i > 1
and

α̃i ≤ α̃i+1/2 ≤ 1 for 0 ≤ α̃i ≤ 1 , (3.131)

which apply to steady state problems. The lower limit is the first-order upwind,

the most diffusive, and the upper limit the first-order downwind, the most com-

pressive, extrapolation. The latter condition changes in transient calculations

to

α̃i ≤ α̃i+1/2 ≤ min

(
1,
α̃i
C

)
for 0 ≤ α̃i ≤ 1 , (3.132)

which is given by Leonard (1991) and Ubbink (1997). The conditions from Eqs.

(3.131 – 3.132) are shown in Figs. 3.11 and 3.12. The former is plotted together

with the various MUSCL schemes given in Tab. 3.3. All second-order schemes

go through the point (1/2, 3/4). The expressions (3.131 – 3.132) are the neces-

sary conditions for monotonicity on α̃i+1/2, as noted by Leonard (1991), Ubbink

(1997), Ubbink and Issa (1999), Jasak (1996), Jasak and Weller (1995), Jasak

et al. (1999) and Darwish and Moukalled (2006), for instance. The lower bound

for the CBC is the first-order upwind extrapolation, or α̃i+1/2 = α̃i, and the

upper bound the first-order downwind extrapolation, α̃i+1/2 = 1. It should be

noted that the explicit CBC result in the exact solution of Eq. (2.21) with C = 1.
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Figure 3.12: Normalized variable diagram (NVD) for transient calculations.
The shaded area denotes bounded region for transient flow calculations (Leonard,
1991; Ubbink, 1997) and C the Courant number on the cell face (i + 1/2). The
red line shows the first-order upwind extrapolation.

From the above it is evident that the gradient ratio r−i+1/2 used in construction

of a scheme fulfilling the TVD criterion is analogous to the normalized variable α̃i,

using which the CBC were set. In addition since the MUSCL type extrapolation

can be recast in terms of the normalized variable, the equivalent expression for

limited MUSCL schemes is

α̃i+1/2 = α̃i +
1

4

(
(1− κ)φ

(
1/r−i+1/2

)
α̃i + (1 + κ)φ

(
r−i+1/2

)
(1− α̃i)

)
. (3.133)

The TVD conditions can also be cast with the normalized variables, and these

are

α̃i+1/2 = α̃i for

α̃i < 0

α̃i > 1
and

α̃i ≤ α̃i+1/2 ≤ min(2α̃i, 1) for 0 ≤ α̃i ≤ 1 , (3.134)

which are given by Leonard (1991). These are plotted in Fig. 3.13. One should

note that the TVD conditions are more stringent in terms of the allowable cell

face values than the CBC. The NV approach in itself does not guarantee the

convergence of the differencing scheme, even on one-dimensional problems (Jasak,

1996).

The blending2 strategy

Moreover, it is common practice to base some discretisation schemes to the

angle γ between the interface and the cell face normals (Darwish and Moukalled,

2This should not be confused with the blending function fx mentioned in Sec. 3.2.2. There,
it denoted the need of blending between different schemes depending upon α̃ as in Tabs. 3.1 and
3.2, without the angle γ, arising solely from the usage of arbitrary grids. In this work, arbitrary
grids are excluded.
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α̃i+1/2

1

1

2α̃i

1/2

3/4

Figure 3.13: The TVD criteria plotted using the normalized variable. The TVD
region is shaded with green, and the second-order TVD region is shaded by the
diagonal lines. The blue line shows the first-order upwind extrapolation.

2006; Lafaurie et al., 1994; Ubbink, 1997; Wackers, 2007). That angle is defined

in Fig. 3.14. This practice stems from the donor-acceptor strategy introduced

by Hirt and Nichols (1981), now switching to a proper discretisation for the

cell face value of the void fraction such that it follows the composition of the

cells surrounding it more accurately. In other words, the blending option aids

in the choice of a more compressive scheme when this is necessary, and reverts

to higher-order discretisation when their diffusion is not a problem, since overly

compressive schemes, such as the pure first-order downwind scheme, tend to

wrinkle the interface (Lafaurie et al., 1994; Leonard, 1991; Ubbink, 1997).

~n

~∇α

γ×
i

i+ 1/2

Figure 3.14: The angle between the cell face i + 1/2 and the interface normal
~∇α.

This can be illustrated with Fig. 3.15. Following Darwish and Moukalled

(2006), the need for a compressive discretisation arises in situations where the

donor cell has started to fill from the upwind side and the interface is parallel

to the cell face normal, which is shown in Fig. 3.15(a). This is to say that only

the fluid that is present in the downstream cell should convect through the cell

face, denoted as f in the figure. If the interface is perpendicular to the cell face

as in Fig. 3.15(b), the situation is the opposite, and a high resolution scheme

should be used. The case of Fig. 3.15(c) would allow for either of the schemes,

whereas blending of the compressive and high resolution schemes is needed in

configurations where 0 < γ < 90 as in Fig. 3.15(d). The blending is based on



82

Figure 3.15: Different flow configurations when either compressive (a), high
resolution (b), either of these two (c), or blending of the schemes (d) based on
the angle of the interface and the cell face is needed (Darwish and Moukalled,
2006).

expressions of the type

α̃i+1/2 = f(γ) · α̃s1i+1/2 + (1− f(γ)) · α̃s2i+1/2 , (3.135)

where f(γ) is the blending function, and si denote different discretisation schemes

taken for respective α̃. This way, families of high resolution and compressive

schemes can be easily devised for interface capturing algorithms.

In order to obtain the angle γ, one needs the gradient of the void fraction

since this is the normal of the interface. The angle γ follows from the expression

cos(γi+1/2) =
~∇αi+1/2 · ~ni+1/2

|~∇αi+1/2| |~ni+1/2|
. (3.136)

It must be noted here that the computation of this angle is not a well defined

task since the distribution of the void fraction is supposed to be a step function.

It could be watered down in a steady state problem (cf. Chap. 5); now it is

computed using the particular simplicity of the uniform grid.

Implemented discretisation schemes

Finally, several different discretisation schemes for the convection of the void

fraction were implemented. The choice of these was based on a revision of recent

development of few promising schemes, as well as studying the schemes applied

in Sec. 3.2. Hence, two TVD schemes and six schemes based on the NVF were

implemented. The former are plotted in the Sweby diagram and the latter in the

normalized variable diagram; the relationship of these two visualisations is shown

in Fig. 3.13.

The implemented TVD schemes are the limiter of van Albada (Siikonen, 2008)

and the SUPERBEE limiter of Roe (Leonard, 1991; Siikonen, 2008). These are
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Figure 3.16: Plots of the van Albada and SUPERBEE limiters in the Sweby
diagram.

plotted in Fig. 3.16, and they have the expressions

φva =
r + r2

1 + r2
(3.137)

and

φsb = max
(
0,min(2r, 1),min(r, 2)

)
, (3.138)

respectively.

The following schemes basing on the NVF were implemented. Second- and

Third-Order Interpolation for Convection (STOIC) of Darwish (1993), Compres-

sive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) of Ubbink

(1997), Switching Technique for Advection and Capturing of Surfaces (STACS)

of Darwish and Moukalled (2006), Fast Interface Capturing Scheme (FICS) of

Schmonde et al. (2007), Inter-Gamma Differencing Scheme (IGDS) of Jasak and

Weller (1995) and Blended Interface Capturing Scheme (BICS) of Wackers et al.

(2011). These are given below with their NVD. Only the schemes that explic-

itly involve the local Courant number are shown with such dependency in the

respective NVD.

The STOIC is an un-blended scheme given by

α̃stoici+1/2 =



α̃i for α̃i ≤ 0 ,

1
2 + 1

2 · α̃i for 0 < α̃i ≤ 1
2 ,

3
8 + 3

4 · α̃i for 1
2 < α̃i ≤ 5

6 ,

1 for 5
6 < α̃i ≤ 1 and

α̃i for 1 < α̃i ,

(3.139)

where the second scheme corresponds to central differencing and the third to the

QUICK scheme. It is noted that this implementation differs by the absence of

an ”ad hoc linear function in the [0-0.2] segment” as was used in the original

STOIC by Darwish (1993), since it is not necessary given the Courant numbers

of the problem in the next chapter. More recently application by Darwish and
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Moukalled (2006) omits this altogether due to the implicit transient discretisation;

also here the lowest C = 0.2. The STOIC is composed of the central difference,

QUICK and the first-order downwind schemes, in addition to the first-order up-

wind when α̃i ≤ 0 or α̃i > 1. The NVD of STOIC is shown in Fig. 3.17.

α̃i

α̃i+1/2

1

1

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Figure 3.17: STOIC in the normalized variable diagram.

The CICSAM scheme is a blended one, comprising of the upper limit of the

CBC

α̃cbci+1/2 =


α̃i for α̃i ≤ 0 ,

min
(
1, α̃i

C

)
for 0 < α̃i ≤ 1 and

α̃i for 1 < α̃i .

(3.140)

The transient CBC is actually the HYPER-C scheme (Leonard, 1991), which is

the most compressive scheme, i.e. the limited first-order downwind. The sec-

ond scheme is mixture of the so-called ULTIMATE-QUICKEST (UQ) and the

previous one

α̃i

α̃i+1/2

1

1

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

C = 0.2

C = 0.5

(a) HYPER-C

α̃i

α̃i+1/2

1

1

C = 0.2

C = 0.5

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

(b) ULTIMATE-QUICKEST

Figure 3.18: Schemes used in the CICSAM discretisation in the normalized
variable diagram.
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α̃uqi+1/2 =


α̃i for α̃i ≤ 0 ,

min
(

8C·α̃i+(1−C)(6·α̃i+3)
8 , α̃cbci+1/2

)
for 0 < α̃i ≤ 1 and

α̃i for 1 < α̃i .

(3.141)

The blending function is

fcicsam = min

(
kc

cos(2γ) + 1

2
, 1

)
, (3.142)

where kc is a constant that was introduced to control the dominance of different

schemes; kc = 1 increases the influence of the most compressive HYPER-C and

the choice kc = 0 reduces the scheme to the UQ. Ubbink (1997) recommends

kc = 1 which was adopted here. The CICSAM scheme is then

α̃i+1/2cicsam = fcicsam · α̃cbci+1/2 + (1− fcicsam) · α̃uqi+1/2 . (3.143)

The NVD of CICSAM is shown in Fig. 3.18. The original CICSAM features

a complex predictor-corrector sequence (Ubbink, 1997; Ubbink and Issa, 1999);

here, the path of Darwish and Moukalled (2006) is followed in the implementation.

The STACS is again a blended scheme, and comprises of the HYPER-C and

STOIC schemes, or

α̃stacsi+1/2 = fstacs · α̃hyper−ci+1/2 + (1− fstacs) · α̃stoici+1/2 (3.144)

with the blending function of

fstacs = cos4(γ) . (3.145)

The NVD of STACS is shown in Fig. 3.19.
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(a) HYPER-C.
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(b) STOIC.

Figure 3.19: Schemes used in the STACS discretisation in the normalized vari-
able diagram.
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The FICS consists of modes where the interface is parallel (p) or normal (n)

to the cell face, or

α̃pi+1/2 =


α̃i for α̃i ≤ 0 ,

min (10 · α̃i, 1) for 0 < α̃i < 1 and

α̃ for 1 ≤ α̃i , and

(3.146)

α̃ni+1/2 = 0.45 + 0.55 · α̃i+1/2 , (3.147)

respectively. The parallel mode reduces quickly to the first-order downwind, and

the normal resembles the central difference. The scheme is then

α̃ficsi+1/2 = ffics · α̃pi+1/2 + (1− ffics) · α̃ni+1/2 (3.148)

and its blending function

ffics = cos2(γ) . (3.149)

The NVD of FICS is shown in Fig. 3.20.
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(a) Parallel mode.
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(b) Normal mode.

Figure 3.20: Schemes used in the FICS discretisation in the normalized variable
diagram.

The IGDS is an un-blended and given by

α̃igdsi+1/2 =



α̃i for α̃i ≤ 0 ,

−2 · α̃2
i + 3 · α̃i for 0 < α̃i <

1
2 ,

1 for 1
2 < α̃i < 1 and

α̃i for 1 ≤ α̃i ,

(3.150)

introducing quadratic profile in the second term, and the first-order downwind

for the third. The NVD of IGDS is shown in Fig. 3.21.
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Figure 3.21: IGDS in the normalized variable diagram.

The first half of the BICS is given by

α̃bics
∗

i+1/2 =



α̃i for α̃i < 0 ,

1−p
β2 α̃

2
i +

(
p+ 2(1−p)

β

)
· α̃i for 0 ≤ α̃i ≤ β ,

p · α̃i + 1− p for β < α̃i ≤ 1 and

α̃i for 1 < α̃i ,

(3.151)

where the new terms are

p(C) = αp(C) · pigds + (1− αp(C)) · pgds (3.152)

and the coefficient

αp =

1 for C ≤ 0.3 and

C−0.3
exp(C−0.3)−1 for C > 0.3 ,

(3.153)

in addition to pgds = 1/2 and pigds = 0. β has a linear dependency on on p

β(p) = a0 + a1 · p , (3.154)

where a1 = (βgds − βigds)/(pgds − pigds), a0 = βigds − a1 · pgds together with

βgds = 0.1 and βigds = 0.5. The scheme is blended, this time with the GDS of

Jasak (1996)

α̃bicsi+1/2 = fbics · α̃bics
∗

i+1/2 + (1− fbics) · α̃gdsi+1/2 , (3.155)

and the blending function for this scheme is

fbics =
√
|cos(γ)| . (3.156)
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(a) BICS*.
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(b) GDS.

Figure 3.22: Schemes used in the BICS discretisation in the normalized variable
diagram.

The GDS is given by

α̃gdsi+1/2 =



α̃i for α̃i ≤ 0 ,

− α̃2
i

2β +
(

1 + 1
2β

)
· α̃i for 0 < α̃i < β ,

1
2 + 1

2 α̃i for β ≤ α̃i < 1 and

α̃i for 1 ≤ α̃i ,

(3.157)

introducing quadratic profile in the second term, and the central difference in

the third. The coefficient β is a constant for the scheme for which Jasak (1996)

recommends 1/10 ≤ β ≤ 1/2, here, the value of β = 1/2 is chosen. The NVD of

BICS is shown in Fig. 3.22. The first half resembles the IGDS, but introduces

more diffusive extrapolations when the Courant number is increased. The GDS

is also close to the lower limit of the second-order TVD criterion.



Chapter 4

Results

4.1. Convection of a step profile in oblique velocity

field

This section presents the flow of a step profile in an oblique velocity field. The

computations are done with the developed two-dimensional convection equation

solver. The solver was described in Sec. 3.3. The purpose of this study is to asses

and obtain acquaintance to few recent schemes and thus provide experiences and

information upon which such can be chosen for the Navier-Stokes solver. Addi-

tionally, the performance of the discretisation schemes used in the computation

of flow over the submerged ground elevation in Sec. 4.2 is studied in this section.

The cases chosen for the study in this section differ slightly from some 2D

test cases used in the literature. For example, Ubbink and Issa (1999), Darwish

and Moukalled (2006), Moukalled and Darwish (2012) and Rudman (1997) take

hollow squares and hollow and slanted circles, among others, which are convected

in an oblique velocity field. Ubbink (1997), Yu et al. (2001), Gao et al. (2012),

Wei et al. (2003), Hoekstra et al. (2007), Lafaurie et al. (1994) study similar

types of problems as was chosen here, among many others, but focus on these

rather qualitatively. The same problem, although with differing parameters, was

considered by Ubbink (1997), Yu et al. (2001), Hoekstra et al. (2007) and Lafaurie

et al. (1994). Here, the intention is to study the different well-known discretisation

schemes for the convection equation of α, and to examine their behaviour for the

problem at hand. Rather than comparing to the reference cases, focus is put on

the different spatial and temporal schemes that have been implemented in the

code. The motivation in the previous studies have mainly originated from the

behest of proposing a new family of discretisation schemes.
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4.1.1. Problem description and computational conditions

The problem has relatively simple characteristics. The velocity field is pre-

described as ~V = (u0, v0). The velocity vector makes an angle of θ with the

x-axis. The scalar profile is a step as depicted in Fig. 4.1. Two shapes, a square

located between x = [0.05, 0.25] m and y = [0.05, 0.25] m and a circle centered at

(0.15, 0.15) m with a radius of 0.1 are considered. These are shown in Figs. 4.2

and 4.3, respectively. The problem is solved using Courant numbers of Cmax =

[0.2, 0.5], with the Courant number defined as

Ci =
ui∆t

∆xi
(4.1)

where the index i denotes the coordinate direction. Three grid resolutions are

y

x

~V

α = 1 α = 0

θ

Figure 4.1: Schematic figure of the two-dimensional convection problem

used with 50×50, 100×100 and 150×150 cells in total. Furthermore, two different

angles θ = [15◦, 45◦] are considered. The former is approximately the same as

was the observed maximum in the flow over the submerged ground elevation; that

case is described in the next section. If the velocity vector forms a 45◦ angle with

the grid lines, the numerical diffusion is at its maximum with standard schemes,

and poses a very challenging problem for the numerical solution of the convection

equation.

The profile is convected a distance of 0.5 m in x and y-directions for the cases

where θ = 45◦. The distance in cases where θ = 15◦ changes in y-direction to

0.14 m. The total number of time steps required for each case to reach the final

positions are listed in Tab. 4.1.

Table 4.1: Time steps required for each case

Courant number Coarse Medium Fine

0.2 138 275 413
0.5 55 110 165

Since the exact solution is known, the solution error can be defined to qualify

the different schemes. The same approach taken by Yu et al. (2001) is used to
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Figure 4.2: Square shaped step profile
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Figure 4.3: Circle shaped step profile

examine the convergence of each scheme towards the exact solution. The average

error is

Eav =
1

N

N∑
i=1

∣∣∣∣αexacti − αi
αexacti

∣∣∣∣ (4.2)

where N is the number of cells and α denotes the approximative solution. The

exact solution is the mere translation of the step profile to the final location.

4.1.2. Results

The results from the convection of the step profile in an oblique velocity field

are presented. First figures depict one-dimensional cuts of the profiles along their

center lines. The cuts are taken in x-direction in the cases where θ = 45◦ and in y-

direction when θ = 15◦, since otherwise the effects of the different angle are barely

visible. The exact solution is denoted with the red line. Also the convergence

of each scheme is studied via the average error defined by Eq. (4.2). The two-

dimensional plots of each scheme and case are given in App. A, where the final

position of the profile is shown together with the contours of α = [0.1, 0.5, 0.9].
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STACS FICS IGDS BICS
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C = 0.2 , θ = 45◦
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Figure 4.4: Center lines of the square step profiles. Implicit time integration
with C = 0.2 and θ = 45◦

MUSCL van Albada MUSCL SUPERBEE STOIC CICSAM
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C = 0.2 , θ = 45◦

Explicit 4-step Runge-Kutta

Figure 4.5: Center lines of the square step profiles. Explicit time integration
with C = 0.2 and θ = 45◦

MUSCL van Albada MUSCL SUPERBEE STOIC CICSAM

STACS FICS IGDS BICS

fine

medium

coarse

C = 0.5 , θ = 45◦

Implicit Crank-Nicolson

Figure 4.6: Center lines of the square step profiles. Implicit time integration
with C = 0.5 and θ = 45◦
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Figure 4.7: Center lines of the square step profiles. Explicit time integration
with C = 0.5 and θ = 45◦

MUSCL van Albada MUSCL SUPERBEE STOIC CICSAM
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C = 0.2 , θ = 15◦

Implicit Crank-Nicolson

Figure 4.8: Center lines of the square step profiles. Implicit time integration
with C = 0.2 and θ = 15◦
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C = 0.2 , θ = 15◦

Explicit 4-step Runge-Kutta

Figure 4.9: Center lines of the square step profiles. Explicit time integration
with C = 0.2 and θ = 15◦
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Figure 4.10: Center lines of the square step profiles. Implicit time integration
with C = 0.5 and θ = 15◦
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Figure 4.11: Center lines of the square step profiles. Explicit time integration
with C = 0.5 and θ = 15◦
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Figure 4.12: Center lines of the circle step profiles. Implicit time integration
with C = 0.2 and θ = 45◦
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Figure 4.13: Center lines of the circle step profiles. Explicit time integration
with C = 0.2 and θ = 45◦
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Figure 4.14: Center lines of the circle step profiles. Implicit time integration
with C = 0.5 and θ = 45◦
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Figure 4.15: Center lines of the circle step profiles. Explicit time integration
with C = 0.5 and θ = 45◦
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Figure 4.16: Center lines of the circle step profiles. Implicit time integration
with C = 0.2 and θ = 15◦
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Figure 4.17: Center lines of the circle step profiles. Explicit time integration
with C = 0.2 and θ = 15◦
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Figure 4.18: Center lines of the circle step profiles. Implicit time integration
with C = 0.5 and θ = 15◦
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Figure 4.19: Center lines of the circle step profiles. Explicit time integration
with C = 0.5 and θ = 15◦

0.0067 0.01 0.02
0

0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018
0.02

E
a
v

∆x

Implicit Crank-Nicolson, C = 0.2, θ =45◦

 MUSCL van  Albada
 MUSCL SUPERBEE
 STOIC
 CICSAM
 STACS
 FICS
 IGDS
 BICS

(a) Implicit time integration

0.0067 0.01 0.02
0

0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018
0.02

E
a
v

∆x

Explicit 4-step Runge-Kutta, C = 0.2, θ =45◦

 MUSCL van  Albada
 MUSCL SUPERBEE
 STOIC
 CICSAM
 STACS
 FICS
 IGDS
 BICS

(b) Explicit time integration

Figure 4.20: Convergence of the approximate solution of the square shape
towards the exact solution with different grid densities. The Courant number
C = 0.2 and the angle θ = 45◦
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Figure 4.21: Convergence of the approximate solution of the square shape
towards the exact solution with different grid densities. The Courant number
C = 0.5 and the angle θ = 45◦
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Figure 4.22: Convergence of the approximate solution of the square shape towards the
exact solution with different grid densities. The Courant number C = 0.2 and the angle
θ = 15◦
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Figure 4.23: Convergence of the approximate solution of the square shape towards the
exact solution with different grid densities. The Courant number C = 0.5 and the angle
θ = 15◦
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Figure 4.24: Convergence of the approximate solution of the circle shape towards the
exact solution with different grid densities. The Courant number C = 0.2 and the angle
θ = 45◦



99

0.0067 0.01 0.02
0

0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018
0.02

E
a
v

∆x

Implicit Crank-Nicolson, C = 0.5, θ =45◦

 MUSCL van  Albada
 MUSCL SUPERBEE
 STOIC
 CICSAM
 STACS
 FICS
 IGDS
 BICS

(a) Implicit time integration

0.0067 0.01 0.02
0

0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018
0.02

E
a
v

∆x

Explicit 4-step Runge-Kutta, C = 0.5, θ =45◦

 MUSCL van  Albada
 MUSCL SUPERBEE
 STOIC
 CICSAM
 STACS
 FICS
 IGDS
 BICS

(b) Explicit time integration

Figure 4.25: Convergence of the approximate solution of the circle shape towards the
exact solution with different grid densities. The Courant number C = 0.5 and the angle
θ = 45◦

0.0067 0.01 0.02
0

0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018
0.02

E
a
v

∆x

Implicit Crank-Nicolson, C = 0.2, θ =15◦

 MUSCL van  Albada
 MUSCL SUPERBEE
 STOIC
 CICSAM
 STACS
 FICS
 IGDS
 BICS

(a) Implicit time integration

0.0067 0.01 0.02
0

0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018
0.02

E
a
v

∆x

Explicit 4-step Runge-Kutta, C = 0.2, θ =15◦

 MUSCL van  Albada
 MUSCL SUPERBEE
 STOIC
 CICSAM
 STACS
 FICS
 IGDS
 BICS

(b) Explicit time integration

Figure 4.26: Convergence of the approximate solution of the circle shape towards the
exact solution with different grid densities. The Courant number C = 0.2 and the angle
θ = 15◦
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Figure 4.27: Convergence of the approximate solution of the circle shape towards the
exact solution with different grid densities. The Courant number C = 0.5 and the angle
θ = 15◦
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4.1.3. Discussion

One of the most challenging individual problems in CFD was computed in

this section. Many schemes especially devised for this were implemented in a

two-dimensional computer code, and step profiles of two different shapes were

considered. It can be shown that such schemes provide accurate and bounded

results for one-dimensional situations, for example those that were considered in

Sec. 2.2.1. Numerical experiments were also performed for all schemes presented

in Sec. 3.3.2 in one-dimensional test cases, and the experience confirms the similar

behaviour. The nature of the problem changes when multiple spatial dimensions

are considered, since the flux can both enter a computational cell and leave from

it over four faces in this case (cf. Fig. 3.7). The two-dimensional calculations

were here reduced to a one-dimensional problem in each index direction since

this provides no fundamental difficulty in structured meshes.

Overall, the implemented discretisation schemes performed well. On average

the discontinuity was captured within five computational cells on the finest grids,

and the best result was within two cells. Clear majority of the computations

maintained their physical reasonableness. These are significant steps considering

same formal accuracy is mostly maintained as was discussed in Sec. 2.2.1, and

are due to the splendid accomplishments of the special numerical schemes.

Convection of the square profile

The results obtained with the smaller Courant number with the square profile

and θ = 45◦ provide mostly excellent results for all schemes and profile shapes.

Overall grid convergence is good, and especially on the finest grid level the so-

lutions are very close to the exact one. The STACS scheme presents a small

overshoot in the square case on the coarsest mesh using the implicit time integra-

tion. STOIC, CICSAM and BICS tend to smear the upper trailing edge of the

profile a little with implicit time integration, but this does not spoil the result.

The FICS presents an instability starting at the medium grid, and produces se-

vere oscillations in the top right corner not visible in the one-dimensional plots,

but only with the implicit integration. This disappears when using the explicit

integration. The overshoots are clearly visible in the convergence plots. It is

difficult to distinguish the best scheme in this problem, since computations done

with SUPERBEE limited, IGDS, STACS and BICS give very sharp results. The

latter two are suffer however from some diffusion on the corners.

The results obtained with the higher Courant number with the square pro-

file and θ = 45◦ show an increased difficulty. Most schemes present over- and

undershoots on the coarsest grid using implicit time integration. These oscilla-
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tions do not disappear when refining the grid for the FICS and IGDS, rather

they explode such that the whole computations are meaningless. Other schemes

stabilize upon refinement when the implicit integration is used, and provide good

results on the finest grid. Notably the best are SUPERBEE limited, STACS and

BICS schemes, when van Albada limited, STOIC and CICSAM seem to suffer

from excessive smearing. An interesting turn of events is observed when the four

step explicit Runge-Kutta scheme is used. No violations on the physical bounds

are produced by any schemes. However, the value of C = 0.5 is strictly the upper

bound for the stability of this scheme in two dimensions, and that seems to pro-

duce a checkerboard-like behaviour for all schemes in regions where 0 < α < 1;

the compressive nature of these schemes can have an influence as well. Using

the explicit integration the grid convergence of all schemes is good, and this time

the best results are obtained using the FICS, IGDS and BICS schemes. This is

interesting, since using the implicit integration, the former two broke down com-

pletely. It is also observed that the explicit integration provides more spreading

to the SUPERBEE limited, STOIC, CICSAM and STACS schemes.

The results obtained with the smaller Courant number with the square profile

and θ = 15◦ repeats the behaviour of the corresponding case with the higher angle,

with naturally less overall diffusion. Both explicit and implicit time integrations

provide good results, and all computations stay in their physical bounds. The

best results are obtained for both cases using the SUPERBEE limited, FICS or

IGDS schemes. The upper trailing edge of STOIC, CICSAM, STACS and BICS

are mildly smeared, and grid refinement seems to minimize this smearing. The use

of higher Courant number introduces more diffusion in the profiles. Otherwise,

the results obtained with the higher Courant number with the square profile and

θ = 15◦ do not notably deviate from the previous observations.

Convection of the circle profile

The results obtained with the smaller Courant number with the circle profile

and θ = 45◦ provide mixed results. Using the implicit integration, the SUPER-

BEE limited and IGDS schemes show good grid convergence and very sharp

resolution, but they seem to change the shape of the circle towards an oblique

rectangle. In addition, the IGDS predicts a small under-shoot at the trailing edge.

Van Albada limited schemes preserves the shape perhaps the best, but is very

diffusive. Decent qualitative grid convergence is shown by CICSAM and BICS

schemes in this sense. The FICS diverges and fails. Clearly the best results are

obtained using the SUPERBEE limited and IGDS discretisation schemes when

implicit time integration is used, but they do not preserve its shape very well on

the finest grid. Again, the explicit time integration stabilizes the computations so

that no physical bounds are violated. The SUPERBEE limited, IGDS and FICS
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turn the circle into an oblique rectangle, whereas CICSAM and BICS distort

it. The van Albada limited computations preserve the circular shape, but still

they are the most diffusive on all grids. The STACS and STOIC schemes give

sharp results and also preserve the shape of the circle in the explicit computations

better than the other schemes.

The results obtained with the larger Courant number with the circle profile and

θ = 45◦ provide perhaps the most difficult case in this battery. Only van Albada

limited and CICSAM schemes maintain their physical bounds, but computations

with the CICSAM scheme deteriorate the circular shape completely when the

implicit integration is used. All other schemes fail, and present wavy behaviour of

varying severity atop and in the wake of the profile. Yet again, the use of explicit

time integration ensures the solution is bounded. Sharp results are obtained

with the FICS and IGDS but the profile distorts into hexagon. The BICS scheme

gives decent results, but does not preserve the circular shape adequately. Notable,

though relatively small, oscillations are still visible in the SUPERBEE limited

computations, and again the result is smeared.

The results obtained with the smaller Courant number with the circle profile

and θ = 15◦ give good results compared to the previous case. Very good conver-

gence and sharp approximations to the profile are obtained using the SUPERBEE

limited, STACS and IGDS schemes using both time integration methods. SU-

PERBEE limited and the tad more diffuse STACS provide better shape of the

profile than the IGDS, which turns toward an oblique square. The FICS scheme

shows an overshoot at the upper leading edge of the circle profile when using

implicit integration. The use of explicit integration removes the overshoot, and

that scheme gives then very sharp results but with distortions to the shape. The

STOIC, STACS and BICS schemes show a tiny increase in the diffusion of the

upper leading edge when the explicit time integration is used, and hence the

circular shape is better retained. The results obtained with the higher Courant

number with the circle profile and θ = 15◦ do not notably deviate from these

observations.

Effects of the shape of the profile

In this work, the circle shape profile provides means to study the shape preser-

vation properties of the discretisation. In the convection of the square shape, this

is not so obvious since more compressive schemes retained the step like front au-

tomatically using this grid configuration. Some schemes however found it difficult

to produce good approximations to the sharp corners of the square where also

the angle γ goes through an abrupt change. Once the more diffusive behaviour

had stepped in, also the angle changed in a more continuous fashion and this
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Figure 4.28: Blending functions of the CICSAM, STACS, FICS and BICS
schemes. Note that those for CICSAM and FICS are the same

sustained the diffusive process. In the cases involving the circle profile, the afore-

mentioned squeezing was clearly visible, but this time rather obliquely to the grid

lines. This was observable in the most compressive schemes.

In the computations with the square shape, the normal direction of the α

distribution mostly aligns with the normal direction of the cell faces when a

step is present. Therefore, the more compressive FICS, IGDS and BICS show

somewhat similar behaviour, albeit only on the leading edges of the profile. The

BICS maintains the compressive characteristic until higher angles γ as is shown in

Fig. 4.28 but reverts to more diffusive GDS scheme. The computations using the

circle profile enhance this diffusive tendency. The STACS returns to higher-order

schemes earlier than the other that come with the blending, but the STOIC in

itself is a combination of different discretisations, and comes with mildly more

anti-diffusion than the GDS scheme. For this reason STACS sharper at the

trailing edge than the BICS or CICSAM, but more diffuse than the FICS. The

latter observation is due to the mentioned differences in the blending, and the

FICS biases to a more compressive scheme on wider range of angles γ, which

is also visible in the notable similarities between the IGDS and FICS schemes.

The CICSAM scheme has the same blending function as the FICS does, but it

blends the HYPER-C with UQ. Especially with the higher Courant number it is

very diffusive, as could be expected from its formulation. The circle case however

proved to be very challenging, and most schemes distort its original shape. It

seems that the STOIC scheme is very good for this, and the STACS mimics this

behaviour successfully with the good shape preservation properties.

The convergence upon grid refinement has a steeper slope throughout the

most computations when the square shape is considered. The absolute values
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however are slightly smaller from the circle shapes, albeit the case was clearly

more challenging for most schemes. The form of the equation for the average

error is relative such that it omits these types of effects. It alone will not give

sufficient indication of one scheme over the other in this case, but combined with

the observations on the convected shapes it provides good qualification on the

characteristics of the schemes.

Effects of time integration

A rather curious result was that the explicit time integration showed the sta-

bilizing properties in such a way that a computed solution remains in its physical

bounds. That is, all schemes that were integrated with the explicit method, given

that its own stability limits were not violated, remained within these bounds. Ef-

fort has been put on the spatial discretisation of the convection term, but the stan-

dard higher-order time integration methods have been used here. Jasak (1996)

showed that the simple implicit Euler integration, Eq. (3.103), produces a nu-

merical diffusion comparable to that of first-order spatial discretisation, whereas

the explicit Euler integration, Eq. (3.102), produce similar anti-diffusion. The

use of the second-order centered discretisation in space is stabilized by such im-

plicit treatment, for instance. Unfortunately, first-order methods with positive

artificial diffusion smear the discontinuity into unrecognisably smooth humps on

practical temporal and spatial grids. The Crank-Nicolson integration, which is

an average of the explicit and implicit terms, Eq. (3.109), is just on the stability

limit.

The pure convection equation does not contain any physical diffusion. Hence,

for the solution algorithm to be stable, and for the solution to converge toward

the weak solution of the conservation law, non-negative amount of diffusion must

follow from the numerical scheme. It has been shown to be necessary to employ

compressive characteristics in the numerical approximation of the α equation

(Ubbink, 1997), since it is supposed to be a step profile. Moreover, this has other

consistency requirements (cf. Sec. 2.3). It was observed that the CBC in itself

in the spatial discretisation will not guarantee physically reasonable solutions,

for certain two-dimensional cases considered here. Even the upper limit of the

TVD seems not to suffice in the most severe case. The spatial discretisation

schemes that include the most negative diffusion obviously proved to be the most

unreliable1. When viewing the case of C = 0.5 and θ = 45◦ with the circle

profile, all but the van Albada limited (TVD) and the CICSAM scheme (NVF)

fail when using implicit time integration, the best results provided by the former.

The CICSAM scheme turns more diffusive as the Courant number is increased,

and is additionally blended between very compressive and the most diffusive of

1Naturally no program is free of coding errors, but the results are consistent
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the NV schemes used in this study. Yu et al. (2001), Gao et al. (2012) and

Wei et al. (2003) discuss on the applicability of the CBC, concluding that it is

only a sufficient condition. That is to say there may be other areas located in

the NVD that produce bounded schemes. None of these were addressed in this

study. This is due to the fact that the requirement of a discretisation to be a

second-order TVD scheme is more restrictive than any of these (Waterson and

Deconinck, 2007), including the CBC. Leonard (1991) discusses that the NVF was

motivated to overcome the inherent Courant number dependency of the TVD,

to devise less restrictive and more general approach for the boundedness of the

convection discretisation scheme.

These give some indication of two issues. Firstly, the four step explicit Runge-

Kutta time integration seems to contain enough of positive diffusion to stabilize

all computations such that the physical bounds are always preserved (with one

exception, i.e. the same case as above using the SUPERBEE limite, where one

sees tiny wiggles over the value of 1). This reveals itself upon close inspection

of the square profile case using C = 0.5 with θ = 15◦. The implicit integration

gives almost exact step profiles throughout the computations with the most com-

pressive schemes, while the explicit integration introduces slightly more diffuse

approximations in the direction of the higher Courant number. Similar effects

can be seen in App. A. This behaviour might be enough to enforce small pos-

itive diffusion coefficient in the modified equation, and provide a more stable

algorithm. Further study is definitely needed. It is here noted that the Crank-

Nicolson integration was sometimes used with tiny implicit bias, but tests proved

it too diffusive to exercise in this study. This presents, however, an idea worth

considering.

Secondly, as was mentioned many times before, both the TVD conditions and

the CBC were initially formulated for one dimensional problems with explicit inte-

gration. Here, they are used in a one-dimensional fashion in both index directions

on the cell faces. The flux calculation is first performed in the i-direction, and

then in the j-direction, after which the residual is evaluated. Earlier in this thesis,

one issue was presented with respect to the calculation of the fluxes in this way.

It is obvious from certain results here that the two-dimensional implementation

need more caution, and cannot necessarily be implemented in this manner for the

α equation. For example, Ubbink (1997) propose a complex predictor-corrector

type scheme to account for the multidimensional cases on arbitrary grids. Again,

the use of the explicit time integration respected the physical bounds in all cases

(with the above exception). In the literature the NVF has received wide atten-

tion, but only a recent article by Moukalled and Darwish (2012) accounts for

specific bounded time integration schemes.



106

Effects of grid resolution and Courant number

Nearly all studied cases and schemes present monotone convergence upon grid

refinement. On majority of cases, the relative average error is reduced below

0.002. This behaviour is also visible in the figures depicting the final shapes

of the profiles. The use of the most compressive methods usually capture the

discontinuity between two cells. This was clearly visible in most results obtained

with FICS and IGDS schemes. Thus, upon grid convergence, the ’smearing’ is not

mitigated but merely the discontinuity is captured within the smaller cells, and

the grid convergence is rather linear. In less compressive schemes, the numerical

diffusion is a function of the cell size, and the grid convergence is not as dramatic.

The use of the smaller Courant number gave good results in all cases. Only

the FICS failed when the circle profile was considered. Very sharp results were

obtained with the smaller Courant number on the finest grids. Also the con-

vergence upon grid refinement was better in the square case using the smaller

Courant numbers. In the more challenging circle cases the Courant number had

more pronounced influence than on the square case. Few schemes that utilize the

blending option turn to more diffusive ones as the Courant number is increased,

which can be expected from their NVDs.

Behaviour of the different schemes

It is here noted that most schemes present very good resolution in the majority

of cases, but some are better than the other in terms of consistency. A specific

scheme does not immediately rise above all, nor does one plummet below the

tolerance. Next, general remarks and observations on all schemes are provided.

The van Albada, as is expected, provided the most diffusive solutions to the

convection problem. This is evident e.g. from Fig. 3.16. Two alluring features,

likely originating from this behaviour, were observed. Even in the most demand-

ing cases, the shape of the profile was uphold, and the approximations never came

with non-physicalities. The scheme maintains a steady grid convergence in all

cases. It is very close to linear in the square case and changes the slope toward

a steeper one in the circle case upon grid refinement. Note that this scheme was

also used in computation of the flow over a submerged ground elevation in the

next section.

The SUPERBEE is a compressive limiter, and maintains the second-order

TVD property. It is due to these facts that it proved one of the best methods

for the problems studied here. Mostly the step discontinuity is resolved within

four cells, and the performance is comparable to the most compressive NVFs.

The convergence upon grid refinement is nearly monotone throughout, and often
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better than most schemes. This consistent behaviour is an asset amongst these

methods. Note that this scheme was also used in computation of the flow over a

submerged ground elevation in the next section.

The STOIC scheme is an early one basing on the NVF. Qualitatively it pro-

vided good resolution in all cases. It is mainly a combination of central difference

and QUICK schemes, and its compressive segment is rather short. Due to this,

it provides slightly more smeared solutions than the other schemes. The con-

vergence upon grid refinement is monotone throughout, and the scheme shows

mediocre levels when compared to the other schemes in most cases considered.

The CICSAM is a blended discretisation scheme, and it blends the HYPER-C

and the UQ discretisations, but in such a way that it depends on the local Courant

number. This provides good results on cases where C = 0.2, whereas higher values

increase numerical diffusion in all cases studied. The CICSAM, however, tends

to distort the original shape of the square and circle profile toward a Siberian

Flying Squirrel, by the looks of it. Among the schemes that were studied, the

overall convergence upon grid refinement is rather poor though monotone in all

cases.

The STACS is a blended discretisation scheme, and it blends the HYPER-C

and the STOIC schemes. The latter proved to be a good one in itself. HYPER-C

is the most compressive of all the schemes, and together these seem to give good

resolution. Overall the results obtained using the STACS scheme are qualita-

tively among the top. Its convergence is in the within the best four schemes in

comparison to the others. It is somewhat similar to, though better than, that of

the STOIC scheme. The scheme started the biasing toward the high resolution

scheme at smaller angles γ than the other blended schemes, and this seemed to

be an asset.

The FICS is a blended discretisation scheme, and it blends a highly com-

pressive scheme in the parallel mode and one resembling the central difference

in the normal mode. The difference between the two schemes, in terms of their

compressive behaviour, is one of the steepest among all that were studied here.

This type of blending provided ones of the sharpest results upon the cases studied

here, and there are several ones in which the FICS gave the best results. The

convergence upon grid refinement is amongst the two best in such cases. It, how-

ever, showed the most abrupt behaviour of all schemes, and completely exploded

in few instances.

The IGDS is another early scheme basing on the NVF. It features a quadratic

profile in the NVD, and gives more compressive behaviour than the STOIC, for

instance. The NVD is quite close to that of the FICS scheme in cases where the

normal of the α distribution aligns with the normal of the cell faces, and this
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explains the myriad of similarities that are observable with these schemes. The

overall performance of the IGDS is likewise very good, and it is among the best

schemes in terms of resolution. It is observed that the scheme does not diverge as

easily as the FICS does. The convergence upon grid refinement is among the two

best in cases where the physical bounds are not violated. Note that this scheme

was also used in computation of the flow over a submerged ground elevation in

the next section. It is here pointed out that Jasak and Weller (1995) give a

recommendation of a limit of C < 1/3 in multidimensional cases, but it was here

observed that in many, but not in every, cases this posed no problems. This also

seems to be the first time the scheme is reportedly applied with an explicit time

integration, and it showed very good results for convection problem.

The BICS is a blended discretisation scheme, this time blending between a

quadratic and the GDS schemes. The quadratic one resembles closely the IGDS

but it depends slightly on the local Courant number. It is observed that this

type of behaviour showed a stabilizing effect in cases where the IGDS failed,

and naturally otherwise a bit more diffusive approximations than the IGDS. The

BICS maintain the compressive properties for higher angles θ than any other

blended scheme (Fig. 4.28). The BICS, however, tends to distort the original

shape of the square and circle profile toward a Siberian Flying Squirrel, by the

looks of it. This behaviour is much akin to the CICSAM scheme, and this comes

in varying severity throughout the battery. The resemblance to CICSAM is not a

surprise, since the NVDs of these schemes are quite similar in this respect. These

effects are then again slightly more serious with the CICSAM scheme. Be that

as it may, the convergence upon grid refinement appears within the top four.

In conclusion, basing on accuracy, consistency and the resolution of the α

distribution, the best out of the eight studied here is the SUPERBEE limited

MUSCL differencing scheme. It gives non-physical results in only one case (the

van Albada limited and CICSAM give none), and otherwise shows very sharp

resolution with good grid convergence and the shape preservation properties. It

is most evident that a compressive method is necessary, and a more compressive

scheme than the SUPERBEE, like the FICS, IGDS or STACS, will provide better

resolution, but with the observed limitations. The best resolution obtained with

the SUPERBEE limited scheme was capturing the discontinuity within four cells,

whereas with the more compressive FICS, IGDS, STACS and BICS this was two

cells. The idea of blending the schemes is definitely worthwhile considering in

the future. It goes without saying that one needs to compare these also using an

actual flow problem, in sync with a Navier-Stokes solver.
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4.2. Computation of flow over a submerged ground

elevation

This section presents the computation of flow over a ground elevation sub-

merged in water, with the computational domain extending to the gas above the

water. The aim of this section is to assess the capabilities of the homogeneous

mixture model of Finflo against the code Yaffa that has a traditional VOF

method implemented. It also serves as aid to recognize possible future issues

within this approach for this thesis serves as an intermediate stage for the devel-

opment process of Finflo. The bump case was chosen for this purpose due to the

simple geometry that was involved, and the intuitive exclusion of any trouble that

may arise from e.g a body in the flow field or an object piercing the interface. Ad-

ditionally, the reference results were rather consistent and straightforward. Then,

to get acquainted with the capabilities of the model, the parameters affecting the

approximation of the forming wave, the stability and convergence properties as

well as the applicability of the solution algorithm itself, and also due to the nature

of the stage, only the sub-critical case is considered in this work.

4.2.1. Problem description

The flow of water over a ground elevation submerged to a finite depth is a

straightforward test case for flow solvers with free surface resolving capability.

Here, flow over and underwater elevation of Gaussian shape is chosen (Bet et al.,

1996; Mikkola, 1999, 2009). It is a problem with simple geometry and features

only two parameters that affect the physics of the flow. The flow is dominated

mainly by pressure and inertial forces, so the deficiency in turbulence modelling

bears no hindering effect at present. The steepness of the bump is rather mild, so

no flow separation is expected to occur with the velocities used. In addition, the

reference computations by Mikkola (1999, 2009) have been performed with same

codes as used in this work but with the different free surface solution method.

Bet et al. (1996) used both deforming grid and a level-set method to compute the

case. Additionally, in this work, the present case is computed with the current

interface tracking model of Finflo as well. Details of that can be found in the

work of Meinander et al. (2006). Similar parameters as were used by Mikkola

(1999) are chosen here.

The ground elevation is of Gaussian shape and given by the expression

z = z0 +A exp(−β2(x− x0)2) , (4.3)

where z0 = −1 m, A = h−hb, β = 1 and x0 = 0 are chosen to match the reference
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Undisturbed free surface
Subcritical flow Fnh < 1
Supercritical flow Fnh > 1

Figure 4.29: Examples of the types of the free surface deformations in subcrit-
ical and supercritical cases. Flow is from the left

computations. The present case corresponds to a so-called subcritical situation,

i.e. the depth based Froude number Fnh = 0.567 < 1 (Lowery and Liapis, 1999).

Distinction of the cases are depicted in Fig. 4.29. The grid constructed for the

computations extends from −30 m to +30 m in x-direction and from −1 m to

+5 m in z-direction.

4.2.2. Initial and boundary conditions

A schematic view of the case is given in Fig. 4.30 with the initial distribution of

the void fraction α. Acceleration due to gravity is in the negative z-direction, i.e.

~g = (0, 0,−1)T ·g, where g = 9.81 m/s2 is its magnitude. The inflow velocity ~Vin is

chosen such that Fnb = |~Vin|/
√
ghb = 0.567. In Yaffa, the free stream boundary

condition is set based on flow direction. In the inflow boundaries, velocity is set

to the pre-described value ~Vin and the pressure is linearly extrapolated from

the domain. The volume fraction is copied from the domain. In the case of

the outflow boundary, pressure is set to the hydrostatic value and the velocity

is linearly extrapolated from the domain. The void fraction is copied from the

domain. In Finflo, the free stream (external) boundary condition is set based

on flow direction. In the inflow boundaries, velocity is set to the pre-described

value ~Vin and the pressure is extrapolated. The volume fraction is set according

to the initial still water level. In outflow boundaries, the pressure is set to the

hydrostatic value based on the initial still water level, and velocity is extrapolated

from the domain. The volume fraction is set according to the initial still water

level. The boundary conditions are given in Tab. 4.2.

Table 4.2: Boundary conditions (BC) used with the flow solvers

Boundary BC for Yaffa BC for Finflo

Inlet Free stream External
Lower wall Slip No-slip

Outlet Free stream External
Upper boundary Mirror Mirror
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α = 1

α = 0
~Vin

h= 1hb = 0.9

wall

x

z

Figure 4.30: A schematic view of the submerged ground elevation. α denotes
the gas volume fraction. The solid blue line depicts the initial free surface level
and the dashed one gives hint on the formation of the wave downstream of the
bump.

4.2.3. Computational conditions

For both flow solvers, the computational grid was created using the commercial

grid generation tool Numeca IGG. A grid format conversion tool was written

for converting the structured PLOT3D format to the unstructured one used in

Yaffa. The two-dimensional computational domain corresponding to Fig. 4.30

is set to x = [−30, 30] m and z = [−1, 5] m with the center of the bump located at

(0,−0.9) m. The domain is stretched so in order to seek low sensitivity to far-field

boundary conditions. FINFLO uses multi-block structured grids, i.e. problems

can be run in parallel. Two grids, one finer and one coarser, were constructed for

the computations with Finflo. The effects of grid resolution, clustering and cell

sizes near the free surface are investigated with the two different types of grids.

Results with the program Yaffa are reported from only one grid.

Finflo is a three-dimensional RANS code, obliging one to use three-dimensional

computational grids as well as a sufficient grid for the boundary layer. The code

uses small Reynolds number models, hence the grid needs appropriate resolution

in the boundary layer. A correlation from White (2006) for the skin friction

coefficient is

Cf =
τw

1
2ρV

2
in

≈ 0.027

Re
1/7
x

, (4.4)

where Rex = ρVinx/µ is the Reynolds number. Now remembering the definition

of friction velocity

uτ =

√
τw
ρ

(4.5)

and the dimensionless wall distance

z+ =
zuτ
ν

, (4.6)

where z is the perpendicular distance from the wall, one can write for the first

cell

z =
z+ν√
CfV

2
in

2

, (4.7)
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Figure 4.31: Computed free surface profile by Bet et al. (1996). h0 is the height
of the undisturbed free surface

Table 4.3: Details of the grids used with Finflo

Grid Detail Description
Coarse Number of cells 745 472
Fine Number of cells 2 981 888

Coarse Clustering in x-direction 4 blocks asymmetrically around the bump with ∆x = 44.9 mm
Fine Clustering in x-direction 4 blocks symmetrically around the bump with ∆x = 8.9 mm

Coarse Clustering in z-direction 60 cells around the free surface with ∆z = 3.3 mm
Fine Clustering in z-direction 60 cells around the free surface with ∆z = 3.3 mm

one may compute the first cell height z = 1×10−5 m for which z+ ≈ 1. The code

Yaffa allows the use of significantly coarser grids in the vicinity of the wall, the

main goal being the sufficient resolving of the disturbance created by the bump.

The computed, steady-state interface is to resemble that of Fig. 4.31. The

wave length is λ/h0 ≈ 2 with the approximate maximum amplitude A/h0 ≈ 0.1.

In this study, a resolution of consisting at least 30 computational cells for both

is assumed to suffice. This sets the limits around the interface

∆x/h0 ≤ 0.067 , and (4.8)

∆z/h0 ≤ 0.0033 . (4.9)

Relevant details of the grids used with Finflo are gathered it Tab. 4.3. These

limits are not followed with the reference code, and the reason will be given later.

The grid constructed for Yaffa has the size of 500×150 cells in x and z-directions,

respectively, and 75 000 cells in total. The grid spans as x = [−30, 30] m and

z = [−1, 1] m, and it is uniform throughout the domain.

The coarser grid for Finflo consists of 16 blocks. Each block has the size of

56 × 4 × 208 cells in x, y and z-coordinate directions, respectively. The whole

grid has 745 472 cells in total. The grid spans as x = [−30, 30] m, y = [0, 10] m

and z = [−1, 5] m. The grid is divided so that eight blocks are initially filled with

liquid phase and lay beneath the z = 0 level i.e. the initial free surface level. The

other eight blocks are on top of the z = 0 level and are initially filled with the gas
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phase. The block division is depicted in Fig. 4.32(a) and an overall view is given

in Fig. 4.32(b). Clustering of the grid points near the free surface in z-direction

is done such that there are 60 cells with constant spacing of ∆z = 3.3 mm around

the initial free surface. Outside this range, the grid is gradually coarsened with

approximately the factor of 1.05, and again clustered for the boundary layer in

the bottom blocks. Four blocks with constant spacing of ∆x = 44.6 mm are

located asymmetrically around the bump in both below and above the z = 0

level; this exceeds the requirement by a factor of 1.5. The first of these begins at

x = −2 m and the last ends at x = 8 m. Their length is 2.5 m each. The outer

blocks are gradually coarsened towards the ends of the computational domain

with similar expansion factor as was used in the z-direction. This grid was also

used with the interface tracking model of Finflo.

The finer grid for Finflo consists of 16 blocks. Each block has the size of

224 × 4 × 208 cells in x, y and z-coordinate directions, respectively. The whole

grid has 2 981 888 cells in total. The grid spans as x = [−30, 30] m, y = [0, 10] m

and z = [−1, 5] m. The grid is divided so that eight blocks are initially filled with

liquid phase and lay beneath the z = 0 level i.e. the initial free surface level. The

other eight blocks are on top of the z = 0 level and are initially filled with the gas

phase. Clustering of grid points is done in the vicinity of the bump by blocks,

and the grid is symmetric around the bump. The block division is depicted in

Fig. 4.34(a) and an overall view is given in Fig. 4.34(b). Clustering of the grid

points near the free surface in z-direction is done such that there are 60 cells

with constant spacing of ∆z = 3.3 mm around the initial free surface. Outside

this range, the grid is gradually coarsened with approximately the factor of 1.05,

and again clustered for the boundary layer in the bottom blocks. There are two

blocks directly before and after the bump in both below and above the z = 0

level with uniform grid spacing in x-direction, with ∆x = 8.9 mm; this exceeds

the requirement over seven times. Their length is 2 m each. These are followed

by two blocks with length of 6 m where grid points are clustered towards the

denser blocks. The first and last blocks in both above and below the z = 0 level

are coarsened towards the ends of the computational domain, and they are 20 m

each, again with clustering towards the denser blocks.
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(a) Overview of the block division of the coarser grid. The blocks initially above the free surface are colored
with red, and those initially below it are colored with blue. The different shadings distinguish the blocks

(b) Overview of the coarser grid. The blue line denotes the undisturbed free surface level

Figure 4.32: Overall views of the coarser grid

(a) Overview near the bump (b) Closer view near the bump

Figure 4.33: Details of the coarser grid near the bump. The initial free surface
level is colored with blue
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(a) Overview of the block division of the finer grid. The blocks initially above the free surface are colored with
red, and those initially below it are colored with blue. The different shadings distinguish the blocks

(b) Overview of the finer grid. The blue line denotes the undisturbed free surface level

Figure 4.34: Overall views of the finer grid

(a) Overview near the bump (b) Closer view near the bump

Figure 4.35: Details of the finer grid near the bump. The initial free surface
level is colored with blue
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4.2.4. Results

The results from the simulation of two-dimensional flow over the submerged

ground elevation are presented. All simulations with the mixture model of Fin-

flo are presented from three grid levels, and with the interface tracking model of

Finflo using one grid level. The computations were initiated on the third grid

level of both grids, that is, every index direction has third of the nodes as the

original grid. Once those computations had reached a steady state, the results

were interpolated to the finer grid level and the same procedure repeated. Com-

putations with the mixture model of Finflo are performed on six different grids

in total, and the reference computations using Yaffa are done on one grid. This

section presents the formation of the interface between the gas and liquid as well

as relevant plots of different pressure and velocity distributions, and convergence

curves of various quantities. The evolution of the interface is studied from several

iteration cycles, and the performance of the different discretisations for the void

fraction is studied. Most focus is put on the results obtained from Finflo.

The gas volume fraction distribution resolved with Yaffa is given in Fig.

4.36, and the distribution of the pressure difference is given in Fig. 4.37. The

distribution of the pressure difference predicted with the interface traking model

of Finflo is given in Fig. 4.38. The gas volume fraction distribution resolved

with Finflo are given in Fig. 4.39 and Fig. 4.40 for the coarse and fine grids,

respectively. The corresponding distributions of the pressure difference are given

in Fig. 4.41 and Fig. 4.42. Predictions of the free surface shape from all grid

levels of the both grids are shown in Fig. 4.43. Comparison of the free surface

shape from the reference results and those obtained from present computations is

plotted in Fig. 4.44. More detailed plots of the pressure difference, total pressure

and speed along various cuts in the x-direction are given in Fig. 4.45. Closer

views of the distributions of the total pressure, which are given from several

different locations along the interface, are gathered in Apps. B.1 and B.2 from

computations with Finflo, and in App. B.3 from computations with Yaffa.

Most conclusions are drawn from the first grid levels of the two grids.

The computations started with the coarser grid using enough of relaxation

such that a solution could be obtained. Once it was established that the problem

is solvable, a preliminary study of the parameters affecting the computations was

made. These included the method of extrapolation of the convective term in the

bulk flow equations, the under relaxations for the pressure and velocity and the

Courant number. Additionally, the effects of grid density and the discretisation

method used for the convection of the void fraction was included in these investi-

gations. Observations will be presented for the two first, whilst more quantitative

information is provided for the rest. And since the model is supposed to solve

the free surface problem, investigation is done to see whether this is the case.
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Figure 4.36: Distribution of the gas volume fraction from computations with Yaffa. The horizontal coordinate ranges as x = [−2.0, 15.0] and
the vertical as z = [−1.0, 1.0]
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Figure 4.37: Distribution of the pressure difference from computations with Yaffa. The horizontal coordinate ranges as x = [−2.0, 15.0] and
the vertical as z = [−1.0, 1.0]

Figure 4.38: Distribution of the pressure difference from computations with Finflo and the moving grid. The horizontal coordinate ranges as
x = [−2.0, 15.0]
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Figure 4.39: Distributions of the gas volume fraction from computations with Finflo using the three grid levels of the coarser grid. The first
(finest) grid level is the topmost figure. The horizontal coordinate ranges as x = [−2.0, 15.0] and the vertical as z = [−1.0, 1.0]
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Figure 4.40: Distributions of the gas volume fraction from computations with Finflo using the three grid levels of the finer grid. The first
(finest) grid level is the topmost figure. The horizontal coordinate ranges as x = [−2.0, 15.0] and the vertical as z = [−1.0, 1.0]
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Figure 4.41: Distribution of the pressure difference from computations with Finflo using the three grid levels of the coarser grid. The first
(finest) grid level is the topmost figure. The horizontal coordinate ranges as x = [−2.0, 15.0] and the vertical as z = [−1.0, 1.0]



121

Figure 4.42: Distribution of the pressure difference from computations with Finflo using the three grid levels of the finer grid. The first
(finest) grid level is the topmost figure. The horizontal coordinate ranges as x = [−2.0, 15.0] and the vertical as z = [−1.0, 1.0]
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4.2.5. Discussion

This section presents the first reported computations with the homogeneous

mixture model of Finflo to capture the free surface. These are extension to

those the author readily presented at a recent Numerical Towing Tank Sympo-

sium (Viitanen, 2014). The model is mostly used as it is, and the mass transfer

is disabled along with some auxiliary relations of the material parameters that

are dependent of the cavitation number. In the beginning there were lots of

headache, numerous trouble-shootings, test calculations and try-outs to deter-

mine if the model is indeed capable to the problem at hand. Revision of the

solution algorithm presented earlier shed hope into this phase. Piece by piece the

puzzle was placed together, and the results and some experiences can be summa-

rized here. By observing Figs. 4.36, 4.37, 4.38, 4.39, 4.40, 4.41 and 4.42 it is seen

that the results are very promising in comparison to the reference solutions.

The distributions of the pressure difference are qualitatively very similar, dif-

fering mainly in magnitude. Yaffa predicts higher positive pressure differences

at the wave crests, Fig. 4.37, whereas the Finflo gives slightly greater negative

pressures near the bump on the finer grid, Fig. 4.42, but the negative pressures are

very close to those obtained with Yaffa in the wave troughs. The computations

with the interface tracking method of Finflo provides similar distributions of

the pressure difference, given in Fig. 4.38, as was predicted with the coarser grid,

Fig. 4.41, which is expected since the initial grids used were the same. However,

the interface tracking method gives slightly higher values of the positive pressure

differences at the wave crests, being approximately the same as were obtained

with the finer grid. The results from all grid levels on both grids, in terms of the

contour α = 0.5, are plotted in Fig. 4.43. The computations with the coarser grid

show very good results, whereas the finer grid shows increased phase difference

and slightly inconsistent convergence. The plots show also the results obtained

from the SUPERBEE limited discretisation for the volume fraction; this is dis-

cussed in more detail later.

The comparison of the present computations with the reference results are

plotted in Fig. 4.44. The results show satisfactory agreement in terms of the

contour of α = 0.5 using the interface capturing methods, and the actual free

surface that is obtained from the interface tracking methods. Some of the refer-

ence results resolve only approximately two waves, while those of Mikkola (2009)

give the development of a steady wave train far downstream, and in the first

three wave crests there is not much damping. Similar overall trend is observable

from the present computations, and those results are then considered the most

appropriate for comparison. The computations from the coarse grid give best

correspondence to the first wave lengths such that there is only a tiny phase dif-

ference observable. Their amplitudes are however below the other computations.
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Figure 4.43: Comparison of the free surface shapes in of computations from
Finflo on the coarse and fine grids. The computed shapes are in terms of the
contour of α = 0.5
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Figure 4.44: Comparison of the free surface shapes in of computations form
Yaffa and from Finflo to the reference computations. Both results from the
mixture model of Finflo are van Albada limited. The shapes computed with
the capturing models are in terms of the contour of α = 0.5
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(a) Yaffa
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(b) Finflo, coarse grid
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(c) Finflo, fine grid

Figure 4.45: Distributions of pressure difference, pressure (= pdif − ρgz) and
non-dimensional speed on several cuts along the x-axis. The constant ambient
pressure p∞ has been subtracted from the pressure calculated with Finflo. Note
the different scale of the z-axis in the last column
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The computations using the fine grid give wave amplitudes that are closer to the

results of Mikkola (2009), but the first wave trough is deeper using the fine grid

than that of any other computation. The best overall correspondence in both

wave height and amplitude in these first waves, but not in the first trough, to the

results of Mikkola (2009) and those obtained with the VOF model of Yaffa is

obtained from the second grid level of the finer grid. The results from the current

tracking model of Finflo show good agreement to the other results in the first

wave crest and the two first troughs, but then a phase difference becomes increas-

ingly visible. The results obtained with the VOF model of Yaffa show excellent

comparison of those of Mikkola (2009) for the first wave, but then predicts ei-

ther a small phase difference or deviation in the amplitudes. Those computations

give better approximation of the interface than those obtained with the mixture

model of Finflo. There is some disturbance left in the first downward slope

of the wave, but these are believed to be caused of the far-field boundary con-

ditions, and they posed extended difficulty also in the computations made with

the mixture model of Finflo. These will be addressed below. Qualitatively, the

formation of the interface and the distributions of the pressure difference corre-

spond well to each other between these eight computations, in addition to the

reference results. Experiences from these initial computations as well as a more

quantitative comparison of the all of the results are given in this section.

Fig. 4.45 shows the profiles of pdif , p and |~V |/Vin along five different vertical

cuts along the x-axis. The topmost row shows those predicted with Yaffa, and

the following two rows those obtained with the coarse and fine grids of Finflo,

respectively. The presence of the bump at x = 0 m is clearly visible in the pdif .

It creates almost similar zones of under pressure in the computations on fine grid

and with Yaffa, the absolute value being greater from in the computations with

Finflo. The other x-locations differ between these two codes. Yaffa develops

peculiar values for the pdif before the bump, which is most likely due to the

upstream advancing solitons. Finflo predicts consistent and almost constant

profiles in both phases; however in x-locations before the bump, the presence of

the interface is more pronounced than with the reference code, presenting itself

as a jump in the profiles of pdif . Both codes give agreeing profiles of pdif for

x = 5 m, but they differ in sign and magnitude for the last location. This is

due to the stronger dampening of the downstream waves. The distributions of

the total pressure nearly overlap each other before the bump in computations

with Finflo. They differ somewhat with Yaffa, but also the distributions of

pdif were different. Otherwise the distributions of p do not show any significant

aspects. There is a wave trough in locations of x = 0 m x = 5 m which explains

the lower levels. The markedly different levels at x = 10 m is a result of the same

matter; there is an ascending wave slope at x = 10 m in the computations with

Yaffa and hence the distribution of p is close to that of the previous cut. The
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notably different shapes from Finflo at the last cut are explained by the stronger

dampening of the waves that far downstream, as well as with the observation that

the interface grew in thickness with the vertical distance from the bump. The

distributions of the normalized speed show consistent behaviour with Yaffa,

but there are some oscillations especially downstream of the bump. The presence

of the interface shows itself as a small jolt in the speed. Finflo gives good

predictions for the speed in the liquid phase, but the gas phase show increased

difficulty on both grids. The disturbances before the bump are rather mild. At

x = 0 m the speed nearly reduces to zero in the gas phase above the interface.

This was observed in all computations using Finflo within this study. The

oscillations in this location are more severe using the fine grid. The results on

the coarse grid settle to somewhat similar values after the bump when viewed

with the finer grid, which show strange behaviour of the gas phase. Throughout

the computations there was a peculiar vertical tube of higher speed in the gas

phase, and it extended almost the whole length of the domain. This can be a

result of the used turbulence model.

Computations on the coarse grid and effects of the Courant number

The parameters that were considered include the discretisation scheme chosen

for the convection terms as well as the under relaxation factors for the velocity

and pressure. The initial studies were performed using the van Albada limited

scheme for the convection of the void fraction. One by one, these could be raised

to the final values with the coarse grid to speed up the convergence. The under

relaxations for velocity and pressure were set to their usual values, or αui = 0.7

and αp = 0.3. These were used in all simulations presented on the coarser grid and

the van Albada limiter. The order of extrapolation for the velocity was gradually

risen to the second-order upwind biased extrapolation in the 12 blocks of interest.

The first-order upwind extrapolation were used in the four blocks farthest from

the bump (one above and one below the z = 0 level on both ends), as well as in

the transverse direction since the interest was in the 2D problem. This appeared

as a good solution. The convergence was improved since the forming waves, and

other disturbances caused by them, remained in a confined zone. This treatment

in addition erased another problem, to be dealt with below. The solutions, in

terms of the contour α = 0.5, on all grid levels of the coarse grid are shown in Fig.

4.43. Those computations were performed without altering the under relaxation

factors.

The comparison from computations with different Courant numbers is shown

in Fig. 4.46 on the coarse grid. The choice of this seemed to be of great im-

portance. The lowest value fails to obtain a steady state even after 100 000

iterations, whereas those close to the optimum reach this in roughly third of that
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Figure 4.46: Convergence history of the L2 norm of the mass balance and the
gas mass balance with different Courant numbers on the coarse grid. Data set
one corresponds to C = 10, two to C = 5, three to C = 1 and four to C = 0.1

computational cost. Additionally, a higher value can show a steady state much

earlier, but the level of convergence remains rather modest; however, the total

mass balances do go by approximately the same rate using C = 5 and C = 10.

This does not tell the whole truth. It is clear from Fig. 4.47 that even while the

residuals of the computations using C = 5 do advance to the lowest level, the

interface resolution in terms of the contour α = 0.5 is not improved, but rather

it gives a bit clipped approximations to the wave height when compared to the

computations using the higher C. The same is observable from computations

using C = 1 with even more severe under-prediction, and this time also with an

increasing phase difference to the other computations. The computations using

the lowest Courant number show surprisingly good behaviour in this respect, but

it is most likely due to the fact that the interface ’lives on’ until the steady state

is reached; time-accurate simulations used with the reference code confirm this

type of behaviour, as in fact do Figs. 4.43 and 4.51, for instance. In addition, the

sharpness of the interface is not improved by using a lower value for the Courant

number, and all smear the interface over the same amount of cells; this is further

addressed together with the free surface boundary conditions later. Based on

these considerations, the C = 10 was chosen for the representative case on the

coarse grid with the van Albada limited discretisation for the void fraction.

The iteration history of the contour α = 0.5 is plotted in Fig. 4.48. It shows

that the final shape is obtained very early in the solution. This is due to the

fact that a steady level was reached with all grid levels. The markedly quick

settlement to this steady value of the computations using the C = 10 was then

investigated. Judging by Fig. 4.48, the contour of α = 0.5 reaches its steady value

within the order of mere thousands of iterations. This was an unexpected turn
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Figure 4.47: Comparison of the interface profiles from computations with dif-
ferent Courant numbers on the coarser grid. The lines correspond to contours of
α = 0.5
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Figure 4.48: Iteration history of the shape of the contour α = 0.5 on the coarser
grid

of events within this study, despite the fact that the convergence of it did settle,

but the other residuals followed upon that of the mass balance. Further analyses

shown in the same figure indeed indicate that it remained very closely the same

throughout the computations. A closer look at the first wave crest, shown in

Fig. 4.50, reveal that the amplitude does change but only of the order of the

cell size. However, it is evident in the plots that there exists a rather interesting

downward slope towards the downstream boundary of the domain throughout

the computations. A possible cause of this is discussed later.
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Figure 4.49: Convergence history of the L2 norm of the mass balance and the
gas mass balance with different Courant numbers on the fine grid

Computations on the fine grid

The computations done on the fine grid reveal more serious problems of the

study. The finer grid was over four times denser in the x-direction than the coarse

one. This required significantly more under-relaxation in the algorithm, and it

was found that using as low a value as C = 0.1 was the only option. Due to

the larger amount of cells, and to a non-standing access to 16 processors, the

computations were very time consuming. For example, on the third grid level the

calculations were run for 250 000 cycles, and still the residuals maintained their

steady descend. The convergence curves from the three grid levels are shown

in Fig. 4.49. The jumps that can be seen in all grid levels on the gas mass

balance were typical for situations where there was some instability observable

in the α distribution but it seems to stabilize as the iteration is carried on. The

use of a larger Courant number ultimately crashed the computations. The most

usual case was a continuation of the instabilities and a bizarre break-up of the

interface at some part along the first waves, leading to crash of the solver. In

those cases the wave seemed as if it started to break, or to turn inwards, even at

such mild slopes. Naturally, this by itself should not crash the solver. Perhaps

the dispersion-type errors were not smeared but propagated still along the fine

grid. The under-relaxation factors for the velocity and pressure did not prove to

be as important a measure. However, it was not possible to extend the study in

the previous degree to these values. Some fine tuning was earlier allocated to the

MUSCL formula in each index direction. The similar damping zones were used

here as well, but the solution was stabilized using second-order upwind method

for the interesting blocks. The results from the second grid level give better

predictions on few downstream waves, and the solution is plotted also in Fig.

4.44.
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The boundary conditions

The denser blocks of the finer grid were located symmetrically around the

bump. The grid spacing in the x-direction was significantly smaller, and hence

enabled the disturbances to propagate easier in both negative and positive di-

rections, even on the third grid level. This is notable in Fig. 4.51, where some

longer waves are transmitted upstream of the bump even though the simulations

were not accurate in time. It seems that not even the first-order extrapolation,

employed for the velocity in all index directions, was enough to erase these. Ad-

ditionally, the ’damping zone’ is clearly too fine, even on third grid levels. It

is here noted that when the first-order extrapolation was tried in all blocks of

the finer grid, also the downstream wave train damped completely after the first

wave. Obviously the term ∆x was small enough not to very notably affect the

upstream waves in the former case, though the waves do decrease in amplitude as

they approach the inflow boundary. The grid spacing in the z-direction around

the interface stays the same throughout the domain. Same phenomenon was

observed by Lowery and Liapis (1999), although they studied a submerged semi-

circle. Mikkola (1999) reports similar findings. On the coarse grid, the shape of

the interface does not significantly change after a mere 1000 iteration cycles, and

the possible upstream solitons are dampened very early in the iteration. This

marvellous achievement is mainly due to the well converged results from the pre-

vious grid levels. In Fig. 4.43 there is next to no visible phase difference between

the grid levels, for instance, and Fig. 4.52 shows the change of the average wave

length to be of the order of the one cell width on the first grid level. On the fine

grid, on the other hand, such is still observable, most notably from the third grid

level (even at such high amount of cycles). Note that also in Fig. 4.52 all slopes

of the coarser grid are linear.

Computations on the fine grid presents one great challenge in these types of

computations. As was mentioned earlier, problems arise from not having suffi-

cient information of the flow solution outside the domain boundaries, and the

approximations made to comply this. The simplification made here was the ex-

tension of the domain towards infinity, that is, assuming initial undisturbed states

at the inflow and outflow boundaries. This corresponds to the numerical beach

approach in the literature. The approximation of still inlet and outlet conditions

would require that all disturbances created inside the domain vanish at these

boundaries. Fig. 4.51 shows that this is not the case; even the first-order dis-

cretisation for the velocity did not suffice. The free surface exhibits unsteady

behaviour at both the inflow and outflow boundaries. The upstream advancing

solitons seem to give rise to reflections in the inflow boundary. After 60 000 cy-

cles, the water level also near the outflow boundary begins to climb, and seems

to shed a very long wave to the solution domain. From the stationary solutions



131

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.084

−0.082

−0.08

−0.078

−0.076

−0.074

−0.072

−0.07

−0.068

−0.066

x [m]

z
[m

]

1000 cycles
2000 cycles
3000 cycles
4000 cycles
5000 cycles
6000 cycles
7000 cycles
8000 cycles
9000 cycles
10000 cycles

Figure 4.50: Iteration history of the
shape of the first wave crest in terms
of the contours α = 0.5 on the coarser
grid on the first grid level.
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Figure 4.51: Iteration history of the
shape of the contour α = 0.5 on the
finer grid. One contour denotes every
10000th iteration on the first grid level.

obtained from the coarse grid the contour of α = 0.5 settles to a mild downward

slope in direction of the flow (it might seem as if there was one very long wave)

instead of the level of z = 0, accompanied with the jumps at the inflow and

outflow for the values to correspond to those of the undisturbed situation.

The casting of the boundary conditions is a very difficult topic especially in

cases where there are supposed to be waves in pressure and velocity in the domain,

and their extent is not known a priori. This necessitates future studies on these

far-field boundary conditions. Quite self-explanatory the grids used here were

too fine for the adequate numerical diffusion to take place, even on the third

grid levels. But instead they, rather impishly, served in providing the mentioned

illumination. Time-accurate computations done with the reference code showed

very clearly the problem created by these reflecting waves. It is most likely those

that presented a big problem in the calculations, and a reminiscent is clearly seen

in Fig. 4.44 in the results of the code Yaffa. These did not appear to diminish in

time, but continued their propagation downstream as well as upstream directions

within the domain. This is very unfortunate, and one main reason for presentation

of the results on the rather coarse grid; in this sense they merit the consideration

of ad hoc information. The discussion is resumed in Chap. 5. A mirror boundary

condition was used in other parts of the domain, except for the slip or no-slip

wall on the bottom, and no problems were encountered from these.

Convergence upon grid refinement

The computations were carried out with Finflo with six different grids. Fig.

4.43 readily provided the interface shapes obtained from all of these. The grid

convergence is briefly considered here by simply doubling the amount of cells in
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Table 4.4: Observed wave lengths λ, wave amplitudes A and wave heights h
from the computations. The number of waves n denotes that used in the average

Computation λ [m] n Amax [m] Amin [m] hmax [m]
Yaffa VOF 2.06 7 0.052 −0.079 0.141

Finflo, coarse grid, 1st level 2.12 8 0.041 −0.079 0.120
Finflo, coarse grid, 2st level 2.09 6 0.031 −0.074 0.105
Finflo, coarse grid, 3st level 2.07 3 0.021 −0.070 0.091
Finflo, fine grid, 1st level 2.12 6 0.054 −0.096 0.150
Finflo, fine grid, 2st level 2.11 5 0.054 −0.077 0.131
Finflo, fine grid, 3st level 1.98 4 0.046 −0.074 0.120

Finflo, moving grid 2.24 7 0.054 −0.079 0.133
Mikkola (2009) 2.07 3 0.062 −0.088 0.150
Mikkola (1999) 2.11 2 0.050 −0.088 0.138

Bet et al. (1996) 2.11 2 0.050 −0.088 0.138
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Figure 4.52: Convergence of the wave length, amplitude and height upon grid
refinement. Note that the results of Mikkola (1999) and Bet et al. (1996) are
essentially the same

every index direction, and the six different grids correspond to the three grid

levels on the coarser and finer grids. The convergence is checked with the wave

lengths, amplitudes and heights, and these are given for all cases in Tab. 4.4, and

in Fig. 4.52. The computations with the current tracking model of Finflo show

greater wave heights than any other computation by over 10 cm, but the wave

amplitudes and heights are all within 3 cm. Exception to the wave amplitudes

and heights follows from the computations on the third level of the coarse grid,

since the resolution is poor. The discrepancy in the wave lengths is greater than

in the wave amplitudes, but the absolute values of the wave lengths are roughly

fifteen times larger than the wave heights.

From Fig. 4.43 it can be seen that the coarser grid shows uniform convergence

upon grid refinement. The interface shape becomes sharper as the grid is refined.

As could be expected, and there is no pronounced phase difference between the

waves. This is due to the fact that a steady state result was accomplished in all

grid levels, and can be seen as the linear plots in Fig. 4.52. The differences in the

wave lengths are of the order of the grid spacing.
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From Fig. 4.43 it is evident that a no steady solution was obtained on the finer

grids. Some discussion was presented earlier on the possible causes of this. A

clear phase difference is observable between the solutions on the third grid level

and those on the two finer. The convergence of the interface shape, or the contour

α = 0.5, does not evolve as expected, and the second grid level provides better

estimations for most waves than the finer grid does. Reasons for this were readily

presented. These issues manifest themselves as the non-linear convergence curves

in Fig. 4.52.

The discretisation scheme for the convection of the void fraction

The bump case was computed using two different limiter functions for the

MUSCL extrapolation. These were the van Albada and SUPERBEE limiters.

They were introduced in Sec. 3.3.2 and studied more thoroughly in the previous

section. Here the purpose is to study their performance with the Navier-Stokes

solver. Once the solution had reached a steady level on the first grid level using

the van Albada limiter, the computations were continued with the SUPERBEE

limited flux calculation for the α equation.

The continued computations proved very unstable. The compressive limiter

required more under-relaxation in the algorithm. Now the relaxation factors for

velocity and pressure appeared more influential, and when lowered to αui = 0.25

and αp = 0.01 the computations stabilized on both grids. For the same reason,

the Courant number had to be lowered to C = 0.1 on the coarse grid and to

C = 0.07 on the fine grid. These consequently slowed the convergence down so

significantly, that a steady state solution was not possible to be reached within

this work. The cycles amount to around 150 000, on a single case, on both grids

and on the first grid levels.

A comparison in terms of the contour α = 0.5 using the different limiters

and grids is shown in Fig. 4.43. The plots show very little difference in the free

surface resolutions, and the two contours mainly overlap each other. On the fine

grid, the SUPERBEE seems to present the water side slightly lower than the van

Albada limiter, except for the beginning of the first trough. On the coarse grid,

no conclusion can be drawn based on the contour.

A closer inspection of the resolution in the z-direction using the both lim-

iters is shown in Fig. 4.53, together with the computational grids, as well as the

corresponding plot from Yaffa. The figure shows the second wave trough and

the contours of α = [0.010, 0.255, 0.500, 0.745, 0.990]. Based on these limits, the

interface is smeared over O(35) (≈ 12 cm) cells on the coarse grid using the van

Albada limiter, and over O(25) (≈ 8 cm) using the SUPERBEE limiter. On the

fine grid, the interface is smeared over O(25) (≈ 8 cm) cells using the van Albada
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limiter, and now the SUPERBEE limited is sharper by only two cells on the water

side. The contours of α = 0.5 nearly overlap each other in both cases (cf. Fig.

4.43). As could be expected, the IGDS approximates the interface within two

to three cells, analogously to the previous section. Also its highly compressive

behaviour is clearly visible in this computation as well; this could have caused

some of the oscillations that are still persistent. The SUPERBEE limiter per-

forms somewhat as expected on the coarse grid, and provides some compression

to the steady state interface obtained with the van Albada limiter. As the grid

is refined in the x-direction, also the van Albada limited predictions are sharper,

and also slightly more favourably than the SUPERBEE limited. This is a bit

confusing based on the results from the previous section, but Finflo uses the

Euler implicit method in the steady state solution. Additionally, the computa-

tions made on the first level of the finer grid failed to moderate. However, the

SUPERBEE limiter gave slightly better predictions for the fulfilment of the free

surface boundary conditions, and these will be discussed next.

The free surface boundary conditions

The free surface boundary conditions corresponding to the kinematic one is

related to the solution of the volume fraction equation. The continuity equation

reduced to the volume fraction equation, and also the satisfaction of the mass

balance in the iterative solution, i.e. the pressure correction stage, reflects into

this. Fig. 4.46 shows the convergence of the mass balance and the gas mass

balance for the first level of the coarse grid. It is clear that the machine accuracy

is not reached but, whilst dropping several orders of magnitude, the residuals

remain oscillating around an apparently steady level. The gas mass balance

shows better and faster convergence than the mixture mass balance. Although

the volume fraction residuals converge to a lower level using the C = 1 and C = 5,

as was mentioned earlier, the solution obtained with C = 10 gave interface shapes

that were in a better agreement with the reference solutions. This convergence

can however influence the rather smeared interface observed as well, and further

study is needed based on the experiences learned from the previous section. It is

noted, however, that the estimations for the interface thickness were not improved

when using C = 5, for instance. Convergence histories from the finer grid are

shown in Fig. 4.49. The gas mass balance reaches comparative levels, but the

mixture mass balance is still over an order of magnitude higher when viewed with

the coarse grid.

The dynamic boundary condition is related to the total pressure in the vicinity

of the free surface. If the interface is seen as a transition zone with zero thickness,

the pressure on it equals to the atmospheric pressure at this level. Here, that is

investigated the following way. The contours of the void fraction α = [0.1, 0.5, 0.9]
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Figure 4.53: Comparison of the resolution of the interface from computa-
tions with Yaffa and with the two limiters. In the results with Finflo,
the red lines denote computations using the van Albada limiter and the blue
lines those with the SUPERBEE limiter. The lines correspond to contours of
α = [0.010, 0.255, 0.500, 0.745, 0.990]. This figure shows the second wave trough
together with the computational grid. The horizontal coordinate ranges as
x = [2.4, 3.2] m and the vertical as z = [−0.15, 0.15] m.
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Figure 4.54: Comparison of the interface profiles from computations with dif-
ferent definition of the contour on the coarser grid. Computations from the fine
grid and with Yaffa are also shown using the traditional definition

are taken to represent the computed interface, and its finite thickness. These are

plotted together with the distributions of the total pressure along several wave

locations, and shown in Apps. B.1 and B.2 for computations from the coarse

and fine grids, respectively, and in App. B.3 for computations from Yaffa. The

results from Finflo are given from both the van Albada and SUPERBEE limited

calculations, and the constant ambient pressure p∞ is subtracted from the total

pressure for the post-processing. The inspections are made from the crests and

troughs of the first and third waves.

The first wave crest shows a peculiar behaviour of the interface from both

grids of the Finflo computations. The total pressure seems to spread up to

the gas phase, and this tendency increases on the finer grid. The SUPERBEE

limiting seems to compress this mildly, but still the total pressure smears far to

the gas phase. The pressure from the liquid side however remains sharp, but

that is due to the hydrostatic part. The same behaviour is observable on the

first wave crest, but this time slightly milder. Again, the SUPERBEE limiting

provides more compression. The results from the third wave trough and crest

then again shows much more confined zone for the total pressure. The use of the

denser grid does not seem to have a pronounced effect in the sharpness of the

pressure distribution. Both grids and limiters show sharper approximations to

the transition zone as well as the pressure in the wave troughs than in the wave

crests. The SUPERBEE limited computations do not show much improvement

on the fine grid.

The computations with Yaffa were done with the very compressive IGDS

discretisation for the void fraction equation, as well as with the modifications

to the bulk flow solver to account for the contact discontinuity. These features

together with the coarser grid employed still provide superb free surface resolu-

tion in terms of the dynamic boundary condition. The pressure jump is always
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confined in the narrow zone between the volume fraction values of αg = [0.5, 0.9].

The first wave is as sharp as the third one. The seemingly unfortunate smearing

of the interface is due to the rather coarse grid that was used.

At best the mixture model of Finflo captures the dynamic boundary con-

dition almost within the zone αg = [0.5, 0.9] as well. The SUPERBEE limited

computations manage to squeeze all but last O(20) Pa in this zone. Very mildly

bigger error is made with the van Albada. It also seems that in terms of this

boundary condition, the contour of α = 0.5 does not represent the free surface,

but rather some value in the aforementioned zone. Same is observable from the

results form Yaffa, but prior to more decisive comment, a more thorough study

should be conducted using that code. The results from the coarse grid but in

terms of the contour α = 0.75 are plotted in Fig. 4.54. It reveals that this treat-

ment does not produce any improvement in the prediction of the interface, but

merely lifts it up as the interface is nearly equally thick throughout. It can be

interpreted that the interface is located somewhere near this zone, most likely to-

ward the traditional contour; further grid refinement studies are needed. Finally,

within this work, it can be concluded that the mixture model of Finflo makes

an error of O(50) Pa in capturing the dynamic boundary condition on the free

surface.



Chapter 5

Closure

The intention of this work was to verify the applicability of the homogeneous

mixture model for the free surface problem. In a sense this could be seen as rather

straightforward, since the problems involving the free surface, as described in Sec.

1.2, are a special case in multiphase flows, and the model used here is a more

general approach in that category. The special nature mainly stems from the

fact that the immiscible phases are segregated. This was described in detail in

Sec. 1.1. It is important to understand that this speciality does not automatically

guarantee the applicability of the more general approach to the precise problem at

hand. It should be clear by now that a computer program that numerically solves

the Navier-Stokes equations for practical flow cases, is a complex composition of a

group of numerical methods that are specifically designed for such problems. The

successful utilisation of such a composition to other complex flow cases is not by

any means obvious. The inspection of the numerical methods was one attempt to

understand the aforementioned invocation. The betaken quest is then in essence

the verification of the model, and this will be concluded below.

Verification of the mixture model

The process of verification can be stated following Oberkampf and Trucano

(2002): ”Effectively, verification provides evidence (substantiation) that the con-

ceptual (continuum mathematics) model is solved correctly by the discrete math-

ematics computer code. Verification does not address whether the conceptual

model has any relationship to the real world.” It is appropriate to note that the

model is verified for the problem; the formulation of the problem was mathemat-

ical in the respect that no stand was given for the relationship to the real world

per sé. Here, one asserts both that the right equations are solved (Chap. 1 and

Chap. 2), and that they are solved in a right way (Chap. 3 and Chap. 4).
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The title concerning the verification of the model is clarified and summarized in

the following. It was discussed in Sec. 1.1 that the mixture model is indeed a direct

consequence of the conditional averaging procedure which has been exercised to

obtain such a (numerical) model that can distinguish between two segregated

phases. Such system is represented by water and air, for instance. Therefore, it is

deducible that the foundations upon which the model is built do lay in the region

that governs the free surface problem, and hence the notion of a special case is

rather obvious. One however needs to obtain that verification prior to proceeding

to the actual validation of the model, and that verification is composed of several

parts.

The use of the volume fraction transport equation determines the shape of the

interface (free surface) between the two fluids in traditional interface capturing

models that use the VOF strategy. Additionally, it can be seen as the kinematic

free surface boundary condition. The present model belongs to this category,

but the way in which this equation is solved differs from the traditional one. As

was noticed, this is a rather distinctive feature of the algorithms used in Finflo.

Thus far it is concluded that the methodology for the capturing of the free surface

is legitimate, and this argument bases on the discussion presented in Sec. 4.2.

The approximation of the same averaged velocity and pressure fields for both

phases is the unified approach in the VOF strategy. That is, the equations are

formally the same as in the case of single phase flow, and a discrimination of one

specific field can be made from the indicator. Again, if one craves for a more

accurate depiction of the interface of the separated phases, there are myriad of

modelling possibilities. It is seen, however, that these types of approaches would

need justification of the sort that one interests in the true interface phenomena,

whereas the practice is instead to focus on more appropriate scales. The present

motivation has additionally always originated from a perspective of a naval ar-

chitect. It can then be concluded that the use of such conditioned (and averaged)

equations is, thus far, appropriate for the free surface problem, as the problem

was defined in this thesis. This justifies the simplifications made earlier, and adds

to the verification of the model.

Ideally, the interface would exist only between one or two cells. Only then,

strictly speaking, the assumptions imposed in Sec. 1.1 would be valid in a con-

verged approximative solution. And only then, it is possible to satisfy both of

the free surface boundary conditions. Requirements for the algorithm to achieve

this were already discussed. But if we solve the pressure differences instead of

the pressure, as was the juxtaposition here, the momentum equations would need

reformulation due to the change of the working variables. This is discussed later.

It is hypothesized that the error made earlier could then be diminished. Addi-

tionally the continuity equations were under relaxed to account for quite different
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physics. This is addressed below as well. Be that as it may, one cannot help but

to cogitate if, perhaps, there is a trade-off between the strong solution of the

governing equations and the fulfilment of the boundary conditions.

Next, attention is given to individual phases of the solution process. This

is done in order to establish the verification, as it was given earlier and in Sec.

1.4, as well as to pinpoint and give remarks on issues that need revision before

proceeding to the validation which is obviously the next priority.

The solution algorithm

The solution algorithms in the free surface capturing type strategies commonly

reduce to those of the single continuum mixture. Such a model can be constructed

by adding a transport equation for the indicator to the underlying single-phase

flow model. Conversely, such a model can be attained by reducing an existing

multi-phase model to comply with the previous requirements only. As was seen,

the application of such model as it is can produce good results also for these

external problems. But now the model of Finflo was designed for cavitating and

boiling flows, that is, in cases where there occurs phase change and consequently

mass transfer. The implementations and fine tunings were done focusing on the

extension of the code into these very demanding phenomena. This is to say the

transition to the free surface capturing VOF model is not ready, but promising

results are available.

There are numerous ways to construct a SIMPLE algorithm. Two variants

were included in this study. In the mixture model of Finflo, the explicit stage is

the same for both the pressure and density based algorithms. Additionally some

ideas originating from the density based methods had been incorporated in the

present model. The algorithms of Finflo for the solution of the indicator are

based on the mass balance, whereas other implementations prefer the use of vol-

umetric balances also in the implicit stage. Then the mass balance is indirectly

enforced with the solution of the volume fraction equation (cf. Sec. 2.2), and the

pressure correction stage acts to account for the pressure, and conservative volu-

metric fluxes. At present this deviation had been done also because of the close

resemblance to the solution of the momentum equations. Then again, if purely

the primitive variables are solved, which is possible since the phases are assumed

incompressible, also the momentum equations readily reduce to the same form.

In principle, then the momentum fluxes cannot be discretised in a conservative

way1. Another novel feature of Finflo in the SIMPLE strategies was the trans-

formation of the explicit residuals, which commonly is done only in the density

1It could be hypothesized that thicker the interface, the more severe conservation error is
made in the solution
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based methods. The algorithms of Finflo for the solution of α present thus a

novel approach to the problem.

The flux calculation

The calculation of the momentum flux can be done similarly as in the case of

single phase flow, since the interface is in fact a streamline in steady-state situa-

tions. Traditionally, the flux-difference splitting of Roe has been used. A problem

arises in the case of the void fraction equation, and this has been discussed exten-

sively. In transient computations, the conservative flux of momentum comes also

with a discontinuity, but the Roe scheme should be able to tolerate this when a

suitable scheme is used for α.

In this work, the viscous fluxes do not provide intrinsic difficulty since the

no-slip condition was applied in regions of essentially unit phase fraction. Then,

the material properties are constant (the homogeneous mixture approximation

provides for the inter-phasic slip). The coefficient of viscosity is also a changing

material property, and consideration should be put on its behaviour in the dis-

cretised equations. Additionally, the nature of turbulence in the presence of a

mixture is not a well known subject, and rather it is assumed that, for example,

the viscosity varies linearly through the interface. In practice, the standard mod-

els are used, whereas in ship flow cases, it is the location of the interface on the

ship hull that can bear a great influence.

The pressure correction stage

It is interesting that the pressure correction stage of Finflo is derived from

the mass balances, whereas that in Yaffa follows from the incompressibility

condition. In fact, the latter is the approach that is commonly taken in these

types of flow problems, e.g. by Darwish and Moukalled (2006), Moukalled and

Darwish (2012), Vaz et al. (2009), Queutey and Visonneau (2007), Ubbink (1997)

and Kissling et al. (2010). This stems from the fact that the fluid densities

can differ significantly, and Rusche (2002) notes that the lighter phase hardly

influences the mixture mass imbalance.

The pressure correction equations were written for both variants earlier in this

thesis. It was shown that by making certain simplifications, the phasic continu-

ity equations reduce to the form where the driving force becomes the mixture

mass imbalance, or sums of the phasic mass balance errors, but weighed with

the component densities. The equation then eludes the previous problem, and is

suitable for these types of computations. Rusche (2002) and Queutey and Vison-

neau (2007) formulate the semi-discretised momentum equation, resulting to the
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pressure corrections, differently but both retain the gravity term accompanying

the pressure gradient in the intermediate step

~uP =

∑
nbAnb~unb +RP

AP
− ∇p
AP
−
−→
G

AP
, (5.1)

where the coefficients AP and Anb are the diagonal and off-diagonal terms re-

sulting from the linearisations of the momentum equations, respectively, ~unb the

velocities in these cells neighbouring the cell P , known after the solution of the

momentum equations, RP the explicit source terms (without the gravity and

pressure), and
−→
G the contribution from the gravity. This velocity is then used to

enforce the continuity constraint. Furthermore, Queutey and Visonneau (2007)

present a novel approach to account the pressure gradient discontinuity in the

SIMPLE algorithm, by instead basing the pressure correction equation to ∇p/ρ
which is continuous across the interface; then the gravity term reduces to

−→
G = ~g.

Similar formulation2 was used in the construction of the pressure correction equa-

tion of Yaffa in Sec. 3.2.5. If the solution is sought using the conservative

variables, the novelty is then based in dividing the semi-discretised momentum

equations by the cell center density, and extrapolation that velocity to the cell

faces to form the volumetric fluxes. That is, the pressure gradient based on p̂ is

used in Eq. (5.1); consequently the equation is then multiplied by an expression

involving the same ρP as noted previously. When that velocity is extrapolation

to the cell faces, the interpolation of the densities in the continuous gradient is

based on Eq. (3.86). This could be interpreted in the present notation through

the momentum equation which is constructed similarly as in Sec. 3.2.5

Alu
′
i,l +

∑
m

almu
′
i,m = −

∑
lm

Slmp
′
lmni,lm , (5.2)

where i denotes a vector component; the off-diagonal coefficients are now alm =

−(ρS)lmmax(−ūlm, 0) and the diagonal one Al = ρlVl/∆t−
∑

m alm. The division

by the density of the cell l leads to(
Vl
∆t
−
∑
m

alm
ρl

)
u′i,l +

∑
m

alm
ρl
u′i,m = −

∑
lm

Slm
p′lm
ρl
ni,lm . (5.3)

If one uses the SIMPLE approach, the velocity correction results in

u′i,l = −

(
Vl
∆t
−
∑
m

alm
ρl

)−1

·
∑
lm

Slm
p′lm
ρl
ni,lm . (5.4)

The correction of the convection velocity, which is used in the equation for the

2The authors discuss that the gravity term must be retained with the pressure gradient in
the pressure correction equation so that the pure hydrostatic equilibrium is satisfied. This had
not been done with Yaffa
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volumetric balance, is obtained by taking a dot product of Eq. (5.4) and the cell

face normal ni,lm, and using suitable averages for these convection velocities at

the cell centers, the coefficients and geometric terms. If the cell face pressures

are transformed into gradients with the Gauss theorem, this form in fact reduces

to the same that was used earlier, but with the exception that the densities were

then based on more local information (cf. Sec. 3.2.2). Despite the success, these

ideas might be worth considering with Finflo as well, and this could be achieved

by similar manipulation for the coefficient AP that result from the linearizations

of the momentum equations, Eq. (3.30). At the moment it is not clear, however,

whether this is necessary since the working variables were different. It is here

noted that the interpolation of the coefficient Al to the cell faces posed a great

problem in the development process3 of the code Yaffa when the jumps in the

density were present, and these were solved by removing the density.

With the non-constant density in the domain, the gradient of the modified

pressure was ∇p = ∇pdif + ρ~g + ~g · ~x ∇ρ. Insertion of this into the momentum

equations gives

∂ρ~V

∂t
+∇ · ρ~V ~V = −∇pdif +∇ · τij − ~g · ~x ∇ρ . (5.5)

The difference to the conventional form of momentum equation is that the density

gradient now appears near the interface, and the other gravity source vanishes.

Rusche (2002) notes that this form enables efficient numerical treatment of the

steep density jump at the interface, by including the term ~g · ~x ∇ρ to the Rhie-

Chow interpolation. Now the gravity contribution in Eq. (5.1) is
−→
G = ~g · ~x ∇ρ.

The density gradient could be approximated with central differences, or trans-

ferring it to the surface integral via the Gauss theorem. This is a rather new

approach in a single pressure system, and it has not been detailed by anyone

but Rusche (2002). A natural interpretation to relate this to the present work is

simply the reformulation of the pressure correction stage, described in Sec. 3.2.5,

such that this term is retained. This notion applies only to the solution procedure

of Finflo, of course.

In this work, it was assumed that the volume fractions of the two phases

can be combined, i.e. the other phase is always obtainable from α1 = 1 − α2.

If this is true also in the numerical solution, the velocity field must be strictly

divergence-free in incompressible cases; cf. Sec. 2.3, Lafaurie et al. (1994) and

Ferziger and Perić (1999). This is easily seen via the substitution to Eq. (3.99)

for a computational cell i

Vi
∆(1− αi,2)

∆t
= −

∑
faces

(
ū(1− α2)S

)
(5.6)

3Private communications with D.Sc. Satu Hänninen
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which yields

Vi
∆αi,2

∆t
= −

∑
faces

(
ūα2S

)
+

=̂∇·~Vi︷ ︸︸ ︷∑
faces

(
ūS
)
. (5.7)

As was discussed a few times before, the enforcement of this condition is mainly

done via the pressure correction stage. However, the novelty of the solution al-

gorithms of Finflo bases also on the subtraction of the error in mass balance

from the conservative residuals, when they are transformed to those of the prim-

itive variables; see e.g. Eq. (3.92). The pressure correction stage was discussed

previously, but this in conjunction with the solution for α (or x in case of the

mass balance) would be an interesting topic for future research. For example,

one could blend the volumetric balance and that of the auxiliary phase in the

pressure-correction equation, and thus provide better coupling between α and p.

The indicator equation

The motivation for the use of the gas mass fractions came partly from the

possibility to use unified expressions for the implicit stage. The mass fraction

is however considerably smaller than the volume fraction, and e.q. the value of

α = 0.5 corresponds to xg ≈ 0.001, and xg = 0.5 to α ≈ 0.999. If the mass

fractions were extrapolation to the cell faces in the explicit stage, this could

diminish accuracy. The relationship between xg and α is plotted in Fig. 5.1.

The value of the void fraction goes through a steep change as the mass fraction

approaches the value 1. In the vicinity of the interface, if one defines it as the

traditional iso-surface, the slope of the mass fraction is very small. That is,

tiny changes in xg (O(10−3)) can produce even two orders of magnitude larger

variations in the void fraction. If one craves for this being confined, problems

could arise in the numerical algorithm considering these differences since the mass

fluxes can vary considerably. It could seem to be advisable to base the solution

process, at least for the interface evolution, on the α equation alone. The mass

fraction, however, goes through a very sharp transition near the lighter phase

boundary; a closer study of these aspects would be intriguing.

Sipilä (2012) used the homogeneous mixture model of Finflo, sometimes

referred to as the cavitation model, in RANS analyses of cavitating propeller

flows. He, contrary to the present work, reports capturing half of the cavitating

propeller tip vortex4 within nine computational cells. Here, the interface was

captured with over 20 cells at best. In the original model, no sharpening of the α

distribution was sought. These discrepancies are rather unexpected, but it must

be remembered that the equations that are solved were not the same. In the

cavitation model, the right hand side of the void fraction equation is non-zero,

4The tip vortex core is filled with almost pure vapour
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Figure 5.1: Gas mass fraction as a function of the gas volume fraction

instead consisting of a mass transfer model, since the equation is the continuity

equation for the gas phase. The calculation of the explicit residuals is different

since the source term is added to the differences in the fluxes. Additionally, the

source term can be linearised for the implicit stage to provide more diagonal

dominance than the pseudo-time derivative alone. Out of these differences, it

is most likely the former that provides sharper predictions, whereas the latter

could influence more on the robustness. Sipilä (2012) performed systematic tests

varying the coefficients of the mass transfer model, and studied their effect on

the cavitating tip vortex. It was found from those results that a tad more ’com-

pression’, in present terms, was achievable. This depended on the coefficients of

the evaporation and condensation used in the model, whereas some other values

for those coefficients came with more smearing in this sense. In the VOF models,

the continuity equations do not have source terms, and the only possibility to

affect the sharpness in that equation in principle comes from the treatment of

the convection. Some observations on the robustness were readily made in the

previous chapter.

The results of convection problem presented in Sec. 4.1 demonstrated the

outstanding performance of the SUPERBEE limited MUSCL differencing scheme

together with few schemes basing in the NVF. Similar correspondence was not

seen in the results of the bump case, merely a favourable trend. Again, this was

not expected, but few plausible reasons can be pointed out. As was mentioned in

Sec. 4.2, there were significant convergence problems when the more compressive

limiter was turned on. No computations using this could be continued so that a

steady state was reached within this work. These are discussed more below. In

addition regarding the future developments, the discretisation of the α equation

should be carried out so that it is blended in similar fashion as some of the modern

schemes. Now it was compressed in every index direction, which is not necessary

(in fact, the effects of this might be visible in Fig. 4.53, where there is a small

but visible step in the contour α = 0.99, as well as in the results obtained with

the reference code). This could require more under-relaxation in the algorithm.

However, it is important to remember that next to no difference was seen in
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the traditional definition α = 0.5. The dynamic boundary condition then again

was approximated slightly better using the more compressive discretisation with

Finflo, and very accurately using Yaffa.

Many of the NVF type of schemes do not seek for the higher-order formal

accuracy, since this is not required when the distribution of α is not expected

to be smooth in all coordinate directions (cf. Sec. 3.3.2 and Ubbink and Issa

(1999)). Wackers (2007) discusses that in the numerical solutions the spatial

derivatives of α, which are not defined due to its discontinuous nature, do not

converge upon grid refinement. The higher-order terms in the truncation error do

not necessarily become smaller than the low-order terms. Then, seeking a higher-

order scheme by eliminating the low-order truncation terms does not necessarily

guarantee lower truncation error than the low-order schemes; thus, the fourth

requirement in Sec. 2.2.2 could be partially omitted. Therefore, it is advisable5

to base the discretisation upon the angle γ as was discussed in Sec. 3.3.2, and fur-

ther demonstrated in Sec. 4.1. Time-accurate simulations performed with Yaffa

indicated that neglecting this might cause trouble. In steady state situations,

the interface always follows the velocity vector, and the angle γ can be obtained

from this quite easily. Wackers (2007) mentions that the monotone discretisation

scheme is sufficient for reasonable prediction of the steady state interface, since

even the limited downwind scheme can only wrinkle the interface and not deform

it. In unsteady cases, such as those computed in Sec. 4.1, the time stepping must

be taken into account. This was found to be problematic in certain occasions,

for if the time step is large enough, then the incoming fluxes can cause α > 1

in a cell. In addition, the steady state computations using Finflo were done

with constraining the α to its physical bounds. Ubbink and Issa (1999) note that

they observed spurious velocity fields, originating from the conservation error

that affected the momentum equations, when they reset the non-physical volume

fraction values; they however focused on transient problems.

In search of a steady-state, the time step acts as an under-relaxation param-

eter. The inherent dependency, because of either stability or accuracy, of the C

in some of the schemes that were presented here is then a major disadvantage,

usually obstructing the use of an optimum value for it. Several ways have been

presented in the literature to deal with this. For example, Wackers et al. (2011)

build half of their BICS to define the NVD such that it approaches the limited

central difference scheme as the C is increased to prevent the instabilities of the

more compressive schemes. Wackers (2007) designs a specific steady-state com-

pressive scheme that blends between the upper limit of the TVD criterion and a

third-order MUSCL scheme, based on familiar angle γ; in a steady-state case this

5Despite these, the SUPERBEE limited scheme was found to perform best in the few prob-
lems that were computed here. This conclusion was based on different aspects, and those were
already discussed. It should be kept in mind that only one type of unsteady problem was
computed
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angle is directly that of the velocity vector. If a time integration is used to achieve

the steady state, the recent bounded integration schemes of Moukalled and Dar-

wish (2012) (for transient problems) show very promising results. Leroyer et al.

(2009) present a temporal sub-cycling for the α equation by splitting the time

step used for the bulk flow variables. Then, the α equation is solved sequentially

several times within one global time step. Such method has been applied also at

least by Wöckner-Kluwe (2013) and Berberović (2010). Berberović (2010) notes

that a problem using this approach stems from the treatment of the fluxes during

each sub-cycle. The implicit solution of Finflo uses local time stepping, and

already using the moving grid technique a different value for the pseudo-time step

of the solution for the wave height than for the bulk flow variables is advisable

(Meinander et al., 2006; Mikkola, 1999) when computing steady wave fields. Sim-

ilar can be advised for the α equation, since now the code uses only one Courant

number; this could have eluded some of the problems encountered in Sec. 4.2.

The treatment of gravity

In the solution of the flow equations with Finflo, the pressure difference is

used. But using the previous form (5.5), the working variable is explicitly pdif and

the casting of wall pressure boundary condition, as well as the still gravity source

term in a quiescent fluid-fluid interface, on a single pressure system would be

simplified (Rusche, 2002); another way to achieve the latter was addressed in Sec.

2.3 as well. Yaffa used a third means which was based on the work of Queutey

and Visonneau (2007). The pressure profiles predicted by Finflo are surprisingly

good considering the fact that their calculation is based on the simple averages.

The pressure difference is however not exactly the same by its definition as it is

in Yaffa, for instance. This stems from the rather different treatment of the

source term, given in Sec. 3.2.4, which is constant. That is, the hydrostatic part

of the pressure remains constant despite the evolution of the interface. The total

pressure is unaltered by this manipulation. This approach seemed to provide good

results in the computed case. Note again that the interface that was predicted

was not sharp.

Future work

There are auxiliary aspects that need to be dealt with, in addition to the

remarks made above, if the model is to be applied to certain practical flow cases.

Because of the types of problems that were solved here, many of these have

been avoided. But for the sake of completeness, without being exhaustive, some

important issues will be briefly addressed below.
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Figure 5.2: An example of the gas
phase entrapment near the hull surface.
Figure taken from Orych (2013)

Figure 5.3: A sketch of a wave inflow
boundary condition. Figure taken from
Vaz et al. (2009)

Looking back to Sec. 1.2, in predictions of the resistance of a ship it is very im-

portant that the location of the free surface along the hull is estimated accurately.

A great error can be made in the viscous resistance if the wetted surface is not

approximated adequately, and additionally dissipation of kinetic energy is pro-

portional to the square of the wave height. The modern moving grid techniques

accomplish this with ease, but obvious difficulties were already discussed. How-

ever until grid convergence, it is unclear where the free surface is in simulations

with a capturing strategy that uses the volume fractions. This can be remedied

based on the study of the volume fraction equation that was presented in this

thesis; also the mesh refinement criterion is rather simple. Another issue can rise

due to the no-slip boundary condition. Especially when using small Reynolds

number models, the y+ ≈ 1 on the hull of the ship which results in very thin

computational cells with high aspect ratios. Then the local convection velocity

is very small, and consequently the time evolution of the volume fraction as well.

This can result in a halted convergence close to the hull surface, and oscillations

in the normal direction of it. A third problem, partially relating to the above,

has been reported in applications of these capturing strategies to ship flow cases.

Orych (2013) and Asén (2014) discuss that the risk of entrapment of the gas phase

beneath the hull in these simulations is substantial. Such an occasion is depicted

schematically in Fig. 5.2. It is clear that this behaviour is erroneous with regard

to the physics of the situation, but the mono-fluid approach still bases on their

simplifications, especially on the interface (cf. Sec. 1.1); moreover, now a third

phase is present. In addition, no turbulence model is valid in this region, so the

assumption of the complete phase segregation must hold. Orych (2013) solves

this problem by extrapolating the water volume fraction a distance from the wall.

With regard to the mixture model, the closer inspection of the two latter is left

for a future study. It could also base on an artificial diffusion term that is written

to the α equation (cf. Meinander et al. (2006)), or on a wall-oriented force.

The extension of the code to the other half of those given in Sec. 1.2 obliges

a description for the water wave. A pressure-based isothermal solver has one
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additional variable, namely the volume fraction. The α equation is hyperbolic,

so in an incompressible case also its value is needed at the inflow boundary. If we

consider a linear wave progressing in the direction of the x-axis, the free surface

elevation is of the form

η = A cos(kx− ωt) , (5.8)

where A is the amplitude of the elevation, k = 2π/λ the wave number and ω

the angular frequency (Newman, 1977). Newman (1977) further shows that this

elevation can be related to the local velocity components via the potential theory.

Those can then be used for the inflow boundary to simulate the desired wave.

The values for the volume fractions at the inflow boundary follow from the wave

elevation, Eq. (5.8), as shown in Fig. 5.3. The pressure is a numerical condition

at the inflow boundary, and can be extrapolated based on the distribution of α.

Care must be taken in the simulation of the progressing wave over long distances,

since the diffusion and dispersive type errors are naturally present. This type of

an approach is not restricted to linear waves, but can be used with other wave

theories such as irregular waves (Düz et al., 2011; Paulsen, 2013), Stokes waves

(Vaz et al., 2009), cnoidal and solitary waves, as mentioned by Lin (2008).

The boundary conditions at the outflow boundaries are not as straightfor-

ward. One immediately can think of the similar wave theory to account for the

pressure via the Bernoulli relation. This would be valid for an undisturbed wave;

Wöckner et al. (2007) use similar approach but with the velocity components,

and show that this results in a phase error of the progressive wave. The present

case produced waves in the initially undisturbed domain, and these progressed

toward the outlet6; that is, there is no way of knowing the solution past a fi-

nite downstream boundary of the domain. Due to the nature of the equations,

usually the pressure boundary condition is used as the sole physical one at the

downstream boundary. The typical way in dealing with these at the outlet is the

numerical beach approach, in which the numerical diffusion is used to fade any

disturbance before they reach the domain boundary, and the initial state prevails.

In this study, too fine grids were used, and the problems stemming from this had

been discussed. Below, few possible solutions are considered.

A widely referenced alternative is the Sommerfeld radiation boundary condi-

tion, cf. Lin (2008), Düz et al. (2011), Wellens (2012) and Wöckner-Kluwe (2013).

This is (
∂

∂t
+ c

∂

∂x

)
U = 0 , (5.9)

where c is the local wave phase speed and U is any flow variable (Lin, 2008). Con-

dition of this type allow the majority of the waves to leave the domain without

6It is reminded that upstream advancing solitons invoked reflections at the inflow boundary
as well; this can take place also if there is a solid body inside the domain. Lin (2008) presents
a discussion for dealing with these, similarly to the Sommerfeld condition
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significant reflection. Düz et al. (2011) formulate similar relation for absorbing

irregular waves. Wellens (2012) present a good discussion of these types of bound-

ary conditions. Similar condition can be arrived at based on the nature of the

flow equations. If we consider a hyperbolic system, it is possible to present the

equations in a characteristic form. Those equations consist of waves of the charac-

teristic variables that are propagated with the characteristic velocities, which are

the eigenvalues of the hyperbolic system; for the equations used in Yaffa, these

are the flow velocity components. Using the characteristic form, waves in each

characteristic variable can be considered separately at the domain boundaries, as

described by Thompson (1987, 1990). This way, we can require that the waves in

these characteristic variables vanish at the domain boundaries, and efficient non-

reflecting conditions can be constructed using the primitive variables. Wellens

(2012) applies the method of characteristic to the wave equation φtt−c2φxx, with

φ being the velocity potential, which can be factored to the same form. For pro-

gressive waves, the phase velocity must follow from local flow convection velocity,

as stated by the Rankine-Hugoniot conditions for the propagation of the contact

discontinuity; note that this presents a non-linearity.

A third approach is detailed by Wöckner-Kluwe (2013). It bases on an implicit

coupling of an inviscid wave description in the far field to the viscous flow in the

interior of the domain. She manipulates the linear system by modifying the

diagonal coefficient and the source term, interpreted to the present notation, as(
1 + βαm

)
APU

n+1
P +

∑
nb

AnbU
n+1
nb = R+ APβα

mU∗P , (5.10)

where the new term β controls the intensity of this manipulation and αm is now

defined as a shape function (to the power of m); the matrix coefficients are given

by Eq. (3.30) for the momentum equations and in Eq. (3.94) for the gas mass

fraction; the summation is taken over the cells neighbouring (nb) the cell P ; U

denotes either the velocity or the gas mass fraction. In application of this method,

the changes of these variables were not used by Wöckner-Kluwe (2013); this has

been the present practice. But if we assume the solution on the current iteration

level already satisfies these linear equations, they can be written solely in terms of

these variables on the new level. The shape function restricts this manipulation

to prescribed regions near the inflow and outflow boundaries; it gets the value of

α = 1 at these boundaries and α = 0 in the domain outside the zone of λ/2 from

the boundaries, being linear (m = 1) or quadratic (m = 2) in this zone. This

manipulation results in UP ≈ U∗P for large values of βαm. The U∗P = (α, u, v, w)

are known, determined from the inviscid method such as the above linear wave

theory. β is the most crucial parameter in this strategy. Using this implicit

approach and a ship in head waves as an example, the outflow boundary can

be placed at only 2/3 · Lpp, where the Lpp is the length between perpendiculars,
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behind the ship (Wöckner-Kluwe, 2013); usually, a successful computation entails

this distance to be an order of magnitude larger.

The α equation can also be written in an alternative form. This has not

been addressed earlier in this thesis, but it is nonetheless worthwhile to present

here since it provides interesting features. The form originates from the ’counter-

gradient’ transport that plays an important role in the dynamics of turbulent

flames in complex combustion models (Weller, 2008). It is based on a single

expression of the convection equation for α that still possesses conservative and

bounded behaviour

∂α

∂t
+
∂αui
∂xi

+
∂α(1− α)ui,c

∂xi
= 0 , (5.11)

where ui,c is the ’compression velocity’. It corresponds to the relative velocity

of the burnt and un-burnt gases (Weller, 2008). The artificial compression term

is only active in the region of the interface because of the non-linear term. The

benefit of this is the evasion of the specific discretisation strategy for the tra-

ditional convection term, the only requirement being a bounded version since

the compression comes from this additional term. Bounded schemes were read-

ily introduced in this work, and such can be constructed from practically any

of the TVD or NVF discretisation strategies for the cell faces value of α in the

control volume equivalent of Eq. (5.11). However, the nature of the compres-

sion term is not a convective one but rather ’counter-diffusive’. For this reason,

even an upwind scheme produces decent results, and Weller (2008) suggests a

weighed blending between central differencing and the upwind scheme using a

suitable ’limiter’ for this weighing. In a homogeneous system the compression

velocity must be modelled, and a general form suggested by Weller (2008) is

ui,c = min
(
cα|ui|,max(|ui|)

)
∇α/|∇α|, with cα being a compression coefficient

for the scheme, which should be of the order 1, and max(|ui|) now the maximum

value for the speed in the domain. This discretisation strategy has been applied

at least by Rusche (2002)7, Berberović (2010), Kissling et al. (2010), Paulsen

(2013) and Asén (2014). Berberović (2010) performed studies varying the coeffi-

cient cα, which showed that decent results can be achieved even with cα = 0, and

that the interface becomes more confined, ultimately between two cells, as it is

increased cα → 1. All workers show that good results can be achieved from using

Eq. (5.11) in practical flow cases. Moreover, Paulsen (2013) and Asén (2014)

applied this for numerical simulations of wave impacts on offshore structures and

for flows around a cruise ferry, respectively, by using the OpenFOAM solver.

7He refers to private communications with Henry Weller in the description of this discretisa-
tion
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It is evident that an efficient free surface capturing strategy that uses the VOF

method must reflect to almost all parts of the solution algorithm. Additionally,

there is not a single method of solution that can be raised atop every other. By

following certain guidelines, an effective algorithm can be constructed. Few of

those guidelines have been addressed in this study. The existence of some others

have been acknowledged in this chapter.

One goal of this study was to gather the state-of-the-art of the aforesaid parts.

The present VOF model, the mixture model, is not in its entirety completed, and

further developments are inevitably involved with those aspects that were studied

and discussed within this thesis. The issues that were found to be important

within this work have been discussed earlier in this chapter. For example, if one

considers any of the flow cases introduced in Chap. 1, the discretisation of the

void fraction equation must be based on another and more suitable method; it

faces, in principle, the same requirements that were discussed in Chaps. 2, 3 and

4 in all cases.

In the above context, a built-in aspiration was also to track and detect the

deficiencies or differences of the current algorithm compared to what would im-

pose better applicability to the free surface problem, in addition to those used by

others. The solution methods were implemented to separate codes which makes it

impossible to investigate all of them in one master’s thesis, but it proved fruitful

to consider some of the most important ones on a more abstract, or general, level.

Then, it is possible to establish the verification, and indeed, such a conclusion

can be made. If one returns to the definition of the process of verification, it is

possible to conclude that the discrete mathematics model, the mixture model, ap-

plies the conceptual model, which was here the problem of a free surface present

between two immiscible and segregated fluids. But as was noted above, it is not

complete. Henceforth, the previously presented guidelines should be followed.
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Appendices



Appendix A

Results from the convection of the step

profile in an oblique velocity field



Figure A.1: Results from the square case with C = 0.2 and θ = 45◦, coarse grid.

Figure A.2: Results from the square case with C = 0.2 and θ = 45◦, medium grid.
Red lines are contours of α = [0.1, 0.5, 0.9].
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Figure A.3: Results from the square case with C = 0.2 and θ = 45◦, fine grid.

Figure A.4: Results from the square case with C = 0.2 and θ = 45◦, coarse grid.
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Figure A.5: Results from the square case with C = 0.2 and θ = 45◦, medium grid.

Figure A.6: Results from the square case with C = 0.2 and θ = 45◦, fine grid.
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Figure A.7: Results from the square case with C = 0.5 and θ = 45◦, coarse grid.

Figure A.8: Results from the square case with C = 0.5 and θ = 45◦, medium grid
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Figure A.9: Results from the square case with C = 0.5 and θ = 45◦, fine grid.

Figure A.10: Results from the square case with C = 0.5 and θ = 45◦, coarse grid.
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Figure A.11: Results from the square case with C = 0.5 and θ = 45◦, medium
grid.

Figure A.12: Results from the square case with C = 0.5 and θ = 45◦, fine grid.
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Figure A.13: Results from the square case with C = 0.2 and θ = 15◦, coarse grid.

Figure A.14: Results from the square case with C = 0.2 and θ = 15◦, medium
grid.
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Figure A.15: Results from the square case with C = 0.2 and θ = 15◦, fine grid.

Figure A.16: Results from the square case with C = 0.2 and θ = 15◦, coarse grid.
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Figure A.17: Results from the square case with C = 0.2 and θ = 15◦, medium
grid.

Figure A.18: Results from the square case with C = 0.2 and θ = 15◦, fine grid.
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Figure A.19: Results from the square case with C = 0.5 and θ = 15◦, coarse grid.

Figure A.20: Results from the square case with C = 0.5 and θ = 15◦, medium
grid.
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Figure A.21: Results from the square case with C = 0.5 and θ = 15◦, fine grid.
———————————————————————————–

Figure A.22: Results from the square case with C = 0.5 and θ = 15◦, coarse grid.
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Figure A.23: Results from the square case with C = 0.5 and θ = 15◦, medium
grid.

Figure A.24: Results from the square case with C = 0.5 and θ = 15◦, fine grid.
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Figure A.25: Results from the circle case with C = 0.2 and θ = 45◦, coarse grid.

Figure A.26: Results from the circle case with C = 0.2 and θ = 45◦, medium grid.
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Figure A.27: Results from the circle case with C = 0.2 and θ = 45◦, fine grid.

Figure A.28: Results from the circle case with C = 0.2 and θ = 45◦, coarse grid.
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Figure A.29: Results from the circle case with C = 0.2 and θ = 45◦, medium grid.

Figure A.30: Results from the circle case with C = 0.2 and θ = 45◦, fine grid.
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Figure A.31: Results from the circle case with C = 0.5 and θ = 45◦, coarse grid.

Figure A.32: Results from the circle case with C = 0.5 and θ = 45◦, medium grid.
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Figure A.33: Results from the circle case with C = 0.5 and θ = 45◦, fine grid.

Figure A.34: Results from the circle case with C = 0.5 and θ = 45◦, coarse grid.
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Figure A.35: Results from the circle case with C = 0.5 and θ = 45◦, medium grid.

Figure A.36: Results from the circle case with C = 0.5 and θ = 45◦, fine grid.
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Figure A.37: Results from the circle case with C = 0.2 and θ = 15◦, coarse grid.

Figure A.38: Results from the circle case with C = 0.2 and θ = 15◦, medium grid.
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Figure A.39: Results from the circle case with C = 0.2 and θ = 15◦, fine grid.

Figure A.40: Results from the circle case with C = 0.2 and θ = 15◦, coarse grid.
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Figure A.41: Results from the circle case with C = 0.2 and θ = 15◦, medium grid.

Figure A.42: Results from the circle case with C = 0.2 and θ = 15◦, fine grid.
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Figure A.43: Results from the circle case with C = 0.5 and θ = 15◦, coarse grid.

Figure A.44: Results from the circle case with C = 0.5 and θ = 15◦, medium grid.
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Figure A.45: Results from the circle case with C = 0.5 and θ = 15◦, fine grid.

Figure A.46: Results from the circle case with C = 0.5 and θ = 15◦, coarse grid.

186



Figure A.47: Results from the circle case with C = 0.5 and θ = 15◦, medium grid.

Figure A.48: Results from the circle case with C = 0.5 and θ = 15◦, fine grid.
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Appendix B

Results from the bump case



B.1. FINFLO, coarse grid

(a) Van Albada limiter

(b) SUPERBEE limiter

Figure B.1: First wave trough. The three thick black lines denote the void fraction
α = [0.1, 0.5, 0.9], and the red line the still water level z = 0. The horizontal coordinate
ranges as x = [−0.5, 1.2] m and the vertical z = [−0.3, 0.3] m

(a) Van Albada limiter

(b) SUPERBEE limiter

Figure B.2: First wave crest. The three thick black lines denote the void fraction
α = [0.1, 0.5, 0.9], and the red line the still water level z = 0. The horizontal coordinate
ranges as x = [1.2, 2.4] m and the vertical z = [−0.3, 0.3] m.
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(a) Van Albada limiter

(b) SUPERBEE limiter

Figure B.3: Third wave trough. The three thick black lines denote the void fraction
α = [0.1, 0.5, 0.9], and the red line the still water level z = 0. The horizontal coordinate
ranges as x = [4.4, 5.6] m and the vertical z = [−0.3, 0.3] m.

(a) Van Albada limiter

(b) SUPERBEE limiter

Figure B.4: Third wave crest. The three thick black lines denote the void fraction
α = [0.1, 0.5, 0.9], and the red line the still water level z = 0. The horizontal coordinate
ranges as x = [5.3, 6.5] m and the vertical z = [−0.3, 0.3] m.
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B.2. FINFLO, fine grid

(a) Van Albada limiter

(b) SUPERBEE limiter

Figure B.5: First wave trough. The three thick black lines denote the void fraction
α = [0.1, 0.5, 0.9], and the red line the still water level z = 0. The horizontal coordinate
ranges as x = [−0.5, 1.2] m and the vertical z = [−0.3, 0.3] m

(a) Van Albada limiter

(b) SUPERBEE limiter

Figure B.6: First wave crest. The three thick black lines denote the void fraction
α = [0.1, 0.5, 0.9], and the red line the still water level z = 0. The horizontal coordinate
ranges as x = [1.2, 2.4] m and the vertical z = [−0.3, 0.3] m.
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(a) Van Albada limiter

(b) SUPERBEE limiter

Figure B.7: Third wave trough. The three thick black lines denote the void fraction
α = [0.1, 0.5, 0.9], and the red line the still water level z = 0. The horizontal coordinate
ranges as x = [4.4, 5.6] m and the vertical z = [−0.3, 0.3] m.

(a) Van Albada limiter

(b) SUPERBEE limiter

Figure B.8: Third wave crest. The three thick black lines denote the void fraction
α = [0.1, 0.5, 0.9], and the red line the still water level z = 0. The horizontal coordinate
ranges as x = [5.3, 6.5] m and the vertical z = [−0.3, 0.3] m.
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B.3. YAFFA
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Figure B.9: First wave trough. The three thick black lines denote the void fraction
α = [0.1, 0.5, 0.9], and the red line the still water level z = 0. The horizontal coordinate
ranges as x = [−0.5, 1.2] m and the vertical z = [−0.3, 0.3] m
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Figure B.10: First wave crest. The three thick black lines denote the void fraction
α = [0.1, 0.5, 0.9], and the red line the still water level z = 0. The horizontal coordinate
ranges as x = [1.2, 2.4] m and the vertical z = [−0.3, 0.3] m
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Figure B.11: Third wave trough. The three thick black lines denote the void fraction
α = [0.1, 0.5, 0.9], and the red line the still water level z = 0. The horizontal coordinate
ranges as x = [4.4, 5.6] m and the vertical z = [−0.3, 0.3] m
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Figure B.12: Third wave crest. The three thick black lines denote the void fraction
α = [0.1, 0.5, 0.9], and the red line the still water level z = 0. The horizontal coordinate
ranges as x = [5.3, 6.5] m and the vertical z = [−0.3, 0.3] m
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