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Speech carries information related to, e.g., the linguistic message, speaker identity, speaking 

situation, speaking style and speaker-related characteristics. Feature extraction refers to the 
process of converting the digital speech signal into acoustic parameters that can be used to 
automatically uncover such information, especially using machine learning systems that have 
been trained on speech data labeled with target information. Such analyses are central in 
automatic speech recognition, speaker recognition, speech event detection and computational 
paralinguistic analysis. Each of these application categories is covered in this thesis. With 
increasing computational and storage capacity of communication technology, speech 
applications become more widespread and are used in more challenging environments. 
Ambient noise, varying communication and recording channels and large speaker-related 
variability tend to cause variation in the acoustic feature statistics and thus mislead speech 
analysis systems. This study aims to improve the robustness of these systems through feature 
extraction, so that they better maintain their performance level with increased signal 
variability. 
 
In short-time feature extraction, the focus is on robust spectrum analysis using especially time-
weighted linear predictive methods, in which temporal locations of the signal are differently 
emphasized. These methods are found to improve additive-noise robustness in automatic 
speech, speaker and emotion recognition and to improve fundamental-frequency or vocal-
effort robustness in formant analysis and speaker recognition. In addition, emphasis of the 
spectral fine structure is found to improve the robust detection of shouted speech in ambient-
noise conditions. In long-term feature processing, modulation filtering of short-time features 
using multiple time scales is used to emphasize the typical long-term modulation dynamics of 
a given speech signal class in detecting emotions over a telephone channel in the presence of 
noise. Feature selection methods capable of tackling data sets with high dimensionality are 
developed and applied to find relevant utterance-level features to parametrize speech in 
different paralinguistic tasks with considerable speaker-related variability. 
 
The studies presented have developed speech feature extraction methods that succeed in 
improving the robustness of various speech analysis systems by focusing on relevant 
information and de-emphasizing or ignoring irrelevant information. These general-purpose 
modeling methods are not constrained to any particular application or system structure and 
thus have many potential uses. 
Keywords speech processing, machine learning, robust features, linear prediction 

ISBN (printed) 978-952-60-6005-7 ISBN (pdf) 978-952-60-6006-4 

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942 

Location of publisher Helsinki Location of printing Helsinki Year 2014 

Pages 205 urn http://urn.fi/URN:ISBN:978-952-60-6006-4 





Tiivistelmä 
Aalto-yliopisto, PL 11000, 00076 Aalto  www.aalto.fi 

Tekijä 
Jouni Pohjalainen 
Väitöskirjan nimi 
Robusteja menetelmiä puheen piirrelaskentaan 
Julkaisija Sähkötekniikan korkeakoulu 
Yksikkö Signaalinkäsittelyn ja akustiikan laitos 

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 203/2014 

Tutkimusala Puhe- ja kieliteknologia 

Käsikirjoituksen pvm 02.06.2014 Väitöspäivä 15.12.2014 

Julkaisuluvan myöntämispäivä 22.09.2014 Kieli Englanti 

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit) 

Tiivistelmä 
Puhe sisältää informaatiota puhutusta tekstistä, puhujan henkilöllisyydestä, puhetilanteesta, 

puhetyylistä sekä puhujakohtaisista ominaisuuksista. Piirrelaskennassa digitaalinen 
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weighted linear prediction. Speech Communication, vol. 51, no. 5, pp.

401–411, April 2009.

II Rahim Saeidi, Jouni Pohjalainen, Tomi Kinnunen and Paavo Alku. Tempo-

rally weighted linear prediction features for tackling additive noise in speaker

verification. IEEE Signal Processing Letters, vol. 17, no. 6, pp. 599–602,

June 2010.

III Jouni Pohjalainen, Tuomo Raitio, Santeri Yrttiaho and Paavo Alku. De-

tection of shouted speech in noise: human and machine. Journal of the

Acoustical Society of America, vol. 133, no. 4, pp. 2377–2389, April 2013.

IV Jouni Pohjalainen and Paavo Alku. Extended weighted linear prediction

using the autocorrelation snapshot–a robust speech analysis method and

its application to recognition of vocal emotions. In Proceedings of the 14th

Annual Conference of the International Speech Communication Association

(Interspeech 2013), pp. 1931–1935, Lyon, France, August 25–29, 2013.

V Paavo Alku, Jouni Pohjalainen, Martti Vainio, Anne-Maria Laukkanen and

Brad Story. Formant frequency estimation of high-pitched vowels using

weighted linear prediction. Journal of the Acoustical Society of America,

vol. 134, no. 2, pp. 1295–1313, August 2013.

5



List of publications
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1. Introduction

The goal of machine learning systems is to infer values of unobserved variables

and attributes on the basis of observed variables called features [4, 10, 34, 127].

In speech processing, the domain of this thesis, examples include automatic

determination of attributes, such as speaker identity or speaking style, based

on the digital speech signal. At the more complex end of the problem spec-

trum, automatic speech recognition is a speech machine learning application

that aims to uncover the spoken message.

Figure 1.1. Phases of an audio signal analysis system using supervised machine learning

(ML).

Figure 1.1 shows the phases of a typical machine learning (ML) system for

audio input. A central problem in the design of any ML system is the choice

of the feature set: what features should be used to parametrize the observed

raw data in order to reliably determine the values of the associated unobserved

variables? One might assume that using a high-dimensional, lossless feature
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representation, for example the raw data itself, would lead to optimal infer-

ence. In practice this is often not the case, because the training data available

to train the ML system is frequently too limited both in total amount and in

coverage of different conditions. When the dimensionality of the feature space

increases, the expected number of data points inside a volume unit decreases.

This so-called curse of dimensionality [10, 34] means, among other things,

that the statistical reliability of a higher-dimensional ML system (i.e., using

more features) easily becomes weaker than that of a lower-dimensional ML

system, trained with less features but based on the same original raw data.

In such a case, the high-dimensional system overlearns the training data be-

cause of having too many free parameters to account for the relatively small

amount of actual data points. On the other hand, a low-dimensional feature

representation may not preserve all the information required for optimal per-

formance. Therefore, intelligent feature generation, processing and selection

are important practical problems.

This thesis discusses techniques for the generation, transformation and se-

lection of acoustic features in various speech analysis tasks. Its focus is on

robustness against mismatch in ML applications, another effect of limited

training data: the limited training material fails to (sufficiently) cover all of

the conditions in which the ML system will be used. A common example in

speech processing is robustness with respect to acoustic noise: the ML system

is trained to process clean (not noisy) speech but applied in a noisy environ-

ment. The presence of noise in the test material causes a condition mismatch

which is reflected as differences in the feature statistics between the training

and test conditions.

The eight studies on speech feature extraction, which comprise this thesis,

attempt to alleviate mismatch and degradation conditions related to addi-

tive noise, transmission channel and speaker-related aspects. The applica-

tions studied are shout event detection in a noisy environment (Publication

III), recognition of emotions in a noisy environment (Publication IV) and

over the telephone (Publication VII), word recognition (Publication I), text-

independent speaker verification (Publications II and VI), formant analysis

(Publication V) and automatic voice-based analysis of personality traits and

characteristics (Publication VIII). The approaches adopted include spectrum

analysis methods which can be focused on the relevant information (Publica-

tions I-VI), a feature filtering technique to emphasize class-characteristic mod-

ulation frequencies (Publication VII) and novel feature selection techniques to

tackle large feature sets (Publication VIII).
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Before presenting the main studies, the basics of feature extraction in the

domain of digital speech processing, together with their motivations from the

perspective of human auditory perception, are reviewed in Section 2. Section

3 lists the main categories of speech applications where ML–and therefore also

feature extraction–is central. Section 4 discusses the causes of mismatch in

detail and reviews different approaches to improve robustness with different

types of mismatch. Section 5 summarizes the studies found in the end of this

thesis and Section 6 presents the main conclusions.
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2. Speech feature extraction

In this work, feature extraction refers primarily to the feature extraction stage

of machine learning applications (Figure 1.1), and secondarily also to auto-

matic computation of interpretable low-level features such as estimates of

formants (vocal tract resonances). Human auditory perception is generally

considered relatively robust and forms the basis of many feature extraction

methods. Its basic mechanisms are reviewed in Section 2.1. Popular feature

extraction methods, based in varying degrees on the auditory considerations,

are discussed in Sections 2.2-2.5.

2.1 Auditory perception

Many feature extraction and post-processing techniques are based on model-

ing different aspects of auditory perception, whose basics are briefly reviewed.

The human auditory system can be divided into two anatomically and func-

tionally distinct regions: the peripheral and the neural region. The main

approaches to modeling auditory perception in practice are the physiologi-

cal approach, where auditory models are derived from explicit physiological

and anatomical knowledge, and the psychoacoustical approach, which derives

functional auditory models based on the results of subjective listening tests.

Physiological models are mainly limited to modeling the auditory periphery,

whose anatomy and physiology are well known. Due to the lack of precise

physiological knowledge, psychoacoustics is the principal approach to model

the higher-level neural processing. Because psychoacoustical models are typ-

ically relatively simple, and computationally less demanding than physiolog-

ical models, psychoacoustical (functional) models are usually employed also

for modeling peripheral processing.
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2.1.1 Peripheral auditory processing

Auditory processing begins in the peripheral region consisting of the outer,

middle and inner ear. Figure 2.1 shows a schematic diagram focusing on

functional importance.

the outer ear the middle ear the inner ear

basilar membrane

pinna

ear canal

eardrum

Eustachian tube

malleus stapes

incus

oval window

auditory nerve

Figure 2.1. Simplified diagram of the human ear (after [67]). Note that the sizes of the

different parts are not in proportion and that the part representing the cochlea

has been drawn straight instead of coiled.

The outer ear consists of the pinna, relevant especially for sound localization

on the front-back axis, and the ear canal, whose length and width in an adult

are roughly 2–3 cm and 0.7 cm, respectively [92]. The ear canal, ending at

the eardrum, acts as a quarter-wavelength resonator and amplifies energy in

the frequency range around 4 kHz [143]. The eardrum marks the beginning of

the middle ear, an air-filled cavity of about 6 cm3 in volume, containing the

ossicular bones: malleus (hammer), incus (anvil), and stapes (stirrup). Their

function in hearing is to linearly transmit eardrum vibrations to the oval win-

dow membrane of the inner ear. The liquid medium in the inner ear has about

4000 times higher an acoustic impedance than the air medium in the outer

ear, and the ossicular bones also perform acoustic impedance transformation.

This transformation is based primarily on the large area difference between

the eardrum (about 65 mm2) and the stapes (about 3 mm2 [67]), but secon-

darily also on the lever action of the ossicular bones. The impedance match

is nearly perfect at frequencies around 1 kHz [143]. The middle ear filter thus

contributes, together with ear canal resonance and shadowing and reflection

due to the head and the shoulders, to make human hearing particularly sen-

sitive in the approximate frequency range between 1 kHz and 5 kHz. These

mechanical filtering effects are reflected in two prominent frequency-dependent

psychoacoustical phenomena: the absolute threshold of hearing in quiet and
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the equal loudness sensation [143]. The absolute threshold of hearing refers

to the lowest sound pressure level (SPL) at which a tone is audible at each

frequency. The equal loudness contours give, for each frequency of a tone and

for the loudness level associated with each contour, the SPL at which the tone

should be heard in order to sound equally loud as a 1000Hz tone heard at

the SPL equal to the nominal loudness level. Both the SPL and the loudness

level are typically expressed in decibels (dB) due to the large dynamic range

of hearing.

In the inner ear, of primary importance is the cochlea, a coiled tube forming

two and a half turns [143]. Filled with two different fluids, it consists of three

channels (scalae) that run in parallel from the base to the apex. Sound waves

arrive in the cochlea from the middle ear via the oval window, causing vibra-

tions of the fluid called perilymph located in the scala vestibuli. The vibrations

are transferred through the very thin and light Reissner’s membrane to an-

other fluid called endolymph located in the scala media. The vibratory motion

is transmitted through the endolymph to the basilar membrane, along which it

proceeds as traveling waves of vertical displacement of the membrane. A trav-

eling wave begins with a small amplitude near the oval window, grows slowly

and reaches its maximum at a certain location, after which it rapidly dies out

towards the apex of the cochlea. The basilar membrane gradually increases

in width and decreases in density along its length of approximately 32 mm

[143]. Each location along the basilar membrane responds to sounds of spe-

cific frequencies. High-frequency traveling waves resonate near the beginning

of the basilar membrane, where it is narrow and stiff, while low frequencies

travel across the basilar membrane to resonate near the apex, where the mem-

brane is massive and compliant [92]. The inner ear thus performs frequency

separation, or spectrum analysis, based on resonance location on the basilar

membrane. The resolution of this spectrum analysis is frequency-dependent,

being highest at low frequencies. This phenomenon is modeled by different

psychoacoustical scales, such as the Bark (critical band), ERB and mel scales

[67].

The organ of Corti, located on the basilar membrane, contains about 30

000 sensory hair cells arranged in several rows along the length of the cochlea

and the basilar membrane. Basilar membrane vibration in any location causes

the affected hair cells to send electrical impulses up the neural fibers of the

auditory nerve. By measuring these electrical signals, it has been found that

the voltage spikes corresponding to stimulation of the hair cells are closely

correlated with the mechanical vibration pattern on the basilar membrane up
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to frequencies of about 4 or 5 kHz [114]. The spreading effect, which man-

ifests itself in this excitation pattern of the basilar membrane and can be

modeled using functional approximations [126], gives rise to the psychoacous-

tical phenomenon of frequency masking. The instantaneous basilar membrane

excitation patterns are also closely connected to the perception of loudness

[143], which is additionally affected by temporal integration, meaning that the

loudness perception generally reaches its maximum after approximately 200

ms from the onset of the sound stimulus [66, 143].

The psychoacoustical approach to auditory modeling involves constructing

partial models of the functionality of the auditory system. One fundamental

concept is that of the critical band, related to the frequency resolution of

hearing discussed above. A critical band defines a frequency range for which

perception (as measured by psychoacoustical experiments) abruptly changes

as a narrowband sound stimulus is modified to have frequency components

beyond the band. When two competing sound signals contribute to the energy

passing through a critical-band filter, the sound with the higher energy within

the critical band dominates the perception andmasks the other sound. Critical

bandwidths can be measured by various, slightly different psychoacoustical

tests [67, 92]. Below 500 Hz, the critical bandwidth stays roughly constant at

about 100 Hz. For higher frequencies, it increases with the center frequency.

The increase is roughly logarithmic above 1 kHz. The critical bands reach

bandwidths of 700 Hz when the center frequency is close to 4 kHz. One

functional expression for mapping the frequency f , in Hz, onto the critical-

band rate z, or the Bark scale, is [92]

z = 13tan−1(0.76f/1000) + 3.5tan−1(f/7500)2. (2.1)

The mel scale is another, practically important, concept of functional mod-

eling of the auditory frequency resolution. It can be approximated by [67]

B(f) = 2595 log10(1 + f/700). (2.2)

The inverse of the mel scale is thus given by

B−1(b) = 700(10b/2595 − 1). (2.3)

2.1.2 Neural auditory processing

After the initial auditory spectrum analysis on the basilar membrane, recorded

by the hair cells, sound information continues on the neural level ascending
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through several nuclei until the auditory cortex. In general, the nuclei along

this ascending pathway generate progressively more sophisticated and longer-

term representations (with longer memory) of the auditory sensation while

also acting as relay stations for lower-level representations from the earlier

stages [86, 87]. There is also feedback from the higher neural stages back

to lower-level nuclei and to the cochlea. The specialized signal representa-

tions generated along the neural pathway involve, for example, modulation

frequency selectivity and binaural information related to spatial hearing.

The exact functionality of the different stages of the neural pathway is less

well understood than that of the inner ear. The first stage after the cochlea

is the cochlear nucleus (CN), whose neurons have different time responses:

primary-like, onset, chopper, pauser and buildup [87]. Various different types

of abstractions of the original auditory stimulus are generated already in spe-

cialized regions of the CN. These are passed on through the superior olivary

complex, which is the initial site of bilateral representation of the acoustic

environment, on to the inferior colliculus (IC), which is believed to be spe-

cialized in the representation of pitch and in localizing sound sources consisting

of complex temporal variations. The cells of the IC display modulation fre-

quency selectivity, phase-locking to amplitude modulations of the stimulus.

Phase-locking to amplitude modulation also occurs in the medial geniculate

nucleus (MGN), but with lower temporal resolution, i.e., with lower modu-

lation frequencies being represented. After the MGN, the various selective

representations of the auditory stimulus reach the auditory cortex. In addi-

tion to its role as a relay station on an auditory pathway which conveys all

the information necessary to characterize acoustic events, the MGN is also

thought to be involved in a second pathway that allows the auditory cortex to

selectively label stimuli with perceptual qualities [87]. It may therefore play

an essential role in the perception of the acoustic environment and in selective

attention in listening.

Psychoacoustical studies have examined the long-term temporal properties

of hearing by utilizing various approaches and concepts: temporal integration

[143], temporal (forward and backward) masking [66] and the ability of listen-

ers to detect sinusoidal amplitude modulation [7]. The modulation perception

studies typically examine the temporal modulation transfer function (TMTF)

which describes the sensitivity of hearing to amplitude modulation as a func-

tion of frequency. Generally, listeners have been found to be most sensitive to

amplitude modulation at modulation frequencies below roughly 10 Hz [7]. In

speech, incidentally, most of the modulation energy is concentrated between 2
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and 8 Hz and peaks around 4 Hz [49]. Energy in this range is generally largely

affected by phonemic and syllabic variation.

At the psychoacoustical level, the perception of sounds can be divided into

four components: loudness, pitch, timbre and subjective duration [114, 143].

Clear physical correlates can be found, in the properties of physical sounds,

for loudness (sound intensity), pitch (fundamental frequency) and subjective

duration (true duration). Timbre, which is frequently important in distin-

guishing between different classes of sounds, is a collective name for many

perceptual aspects for which no simple one-dimensional physical correlate can

be found [15, 67, 143]. It can be thought of as describing the auditory spec-

trum, closely related to the instantaneous basilar membrane excitation pat-

tern. Thus, the closest purely physical and signal-related representation of

timbre is the short-time magnitude spectrum. In speech and audio process-

ing applications, the size of a short-time analysis frame, during which spectral

properties are assumed to stay constant, is usually in the range 10–30 millisec-

onds, most commonly 20–25 milliseconds. The frame shift interval, i.e., the

temporal distance between two successive analysis frames, can vary according

to application but is most typically close to 10 milliseconds.

High-level neural auditory processing is manifested in the psychoacoustical

sense as formation of temporal auditory streams which, according to Bregman

[15], are perceptual representations in terms of which the auditory system or-

ganizes incoming auditory evidence. Distinct auditory streams tend to present

the evolution of distinct environmental sounds across time. Auditory stream

formation is evidently well predicted by the perceptual grouping principles of

Gestalt psychology. According to Gestalt theory, this organization into per-

ceptual patterns (Gestalt in German) is governed by a competition of “forces

of attraction” between sensory elements. According to the German Gestalt

psychologists in the early 20th century, it was impossible to perceive sensory

elements without their forming an organized whole. They argued that this

tendency of pattern formation is an innate tendency of the brain [15]. Gestalt

principles are often encountered in describing visual perception. Auditory

analogies presented by Bregman include:

• Principle of proximity: proximity of sound elements in time and/or fre-

quency favors their being grouped into the same auditory stream (compare

with spatial proximity in vision).

• Principle of similarity: sounds with similar timbre are more likely to be
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grouped into the same stream (compare with visual elements having similar

texture). While timbre is necessarily a multidimensional quality (e.g., the

auditory spectrum), brightness, or the approximate balance of high- and low-

frequency energy in the spectrum, has been identified as a central dimension

of timbral similarity in auditory stream formation.

• Principle of closure: sounds temporarily masked by other sounds tend to be

perceived as continuing during the masked segments (compare with partially

occluded objects in an image).

• Principle of common fate: different parts of the short-time spectrum that

change in a similar way at the same time tend to be perceptually grouped

together (compare with visual elements moving together being perceived as a

group). The said change in the spectral components can be frequency modu-

lation (common variation in the center frequencies) or amplitude modulation

(common variation in the amplitudes of the frequency components).

According to Bregman, the Gestalt grouping principles can be viewed as

heuristics that combine their effects, much like voting, to aid the auditory

system in decomposing a mixture of sounds into separate perceptual enti-

ties corresponding to different real-world events. In [15], grouping principles

in auditory stream formation are divided into sequential (temporal) and si-

multaneous (spectral) grouping. Bregman argues that there are two ways of

acquiring skills for auditory stream segregation: primitive segregation, which is

an innate mechanism, and schema-based segregation, which is based on learned

schemas and likely involves learned control of attention. Considering the prin-

ciple of similarity and the role of the different dimensions of timbre, brightness

appears to be important for primitive segregation of auditory streams; Breg-

man did not find evidence for other acoustic dimensions related to the timbre

perception being used at all in primitive segregation [15].

Allen [3] reviews the research on human speech recognition performed by

Fletcher et al. [43] and presents certain conclusions that are in line with Breg-

man’s findings. In particular, compared to across-frequency processing (spec-

tral or timbral templates), human recognition of speech is claimed to rely more

on across-time processing, with only local coupling across frequency. This

statement is reminiscent of auditory stream formation by the principles of

proximity, closure and common fate, as well as only the brightness dimension

being important in similarity-based primitive segregation. These perceptual
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studies thus highlight the importance of long-term modeling of auditory per-

ception. However, due to neural auditory processing being both complex and

less well understood than peripheral auditory processing, long-term modeling

is less straightforward than short-term modeling of peripheral processing.

2.2 Spectrum analysis

Given the role of the inner ear as a spectrum analyzer, modeling of the short-

time magnitude spectrum is fundamental for auditorily motivated speech sig-

nal processing (even though, under certain conditions, it is also possible to

apply the phase spectrum as an alternative representation with similar per-

ceptual importance [93]). This section reviews two of the most central tools

for spectrum analysis that find frequent application in feature extraction as

well as in speech, audio and signal processing in general: the discrete Fourier

transform and linear prediction.

2.2.1 Discrete Fourier transform

Fourier spectrum analysis is a central mathematical tool in signal processing.

For a continuous signal h(t), the continuous Fourier transform H(f) and its

corresponding inverse transform back to the signal domain are given by

H(f) =

∫ ∞

−∞
h(t)e−2πiftdt

h(t) =

∫ ∞

−∞
H(f)e2πiftdf. (2.4)

(2.5)

Here, t denotes a coordinate, typically time, and f denotes the number of

cycles per unit of t, i.e., frequency. For discretely sampled sequences of length

K1, the discrete Fourier transform (DFT) is given by

Hk =
K−1∑
n=0

hne
−2πink/K . (2.6)

It is related to the continuous Fourier transform as H(f = k/(KΔt)) ≈ HkΔt,

where Δt is the sampling interval of the discrete sequence hn [105]. The inverse

DFT (IDFT) for a DFT sequence of length K is given by

1For K less than or larger than the original number of samples N , the original signal

hn has been truncated or zero-padded, respectively.
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hn =
1

K

K−1∑
k=0

Hke
2πink/K (2.7)

A DFT of length K is called symmetric (even) if Hk = HK−k and antisym-

metric (odd) if Hk = −HK−k. Similarly, a sequence of length K is symmetric

if hn = hK−n and antisymmetric if hn = −hK−n. Some properties of the

DFT (which are similar to those of the continuous Fourier transform) include

[91, 105]:

1. The DFT/IDFT of a real sequence is conjugate symmetric.

2. The DFT/IDFT of a symmetric sequence is symmetric.

3. The DFT/IDFT of an antisymmetric sequence is antisymmetric.

4. The DFT/IDFT of a real and symmetric sequence is real and symmetric

(follows from properties 1 and 2).

5. The magnitude spectrum of a real sequence is symmetric (follows from

property 1).

Fast Fourier transform (FFT) algorithms are computationally efficient algo-

rithms for computing the DFT. Many variants of the FFT exist. Their time

complexity is generally O(K logK), instead of O(K2) that results when using

Eqs. 2.6 and 2.7 directly [91, 105].

The power spectrum (or power spectral density) P (f) of a wide-sense sta-

tionary random process is defined as the discrete-time Fourier transform of

the autocorrelation sequence [53]. The periodogram is a simple estimate of the

power spectrum of the random process that produces the observed signal hn.

For normalized frequency f , it is given by [53]

P̂ (f = k/K) =
1

K
|Hk|

2, (2.8)

where Hk is the K-point DFT of hn. The periodogram spectrum estimation

using the FFT is a very widely used method for short-time spectrum analysis.

It is also commonly applied in speech feature extraction.
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2.2.2 Linear prediction

A linear predictive model represents a time-domain signal sn parametrically

as a pth-order autoregressive process [82, 84, 109]

sn =

p∑
k=1

aksn−k +Gun, (2.9)

whose system function in the complex frequency domain (z domain) is of the

all-pole form

H(z) =
G

1−
∑p

k=1 akz
−k

=
G

A(z)
, (2.10)

i.e., it contains only poles outside the origin of the z domain. In the above

equations, the coefficients ak are known as the predictor coefficients, G is a

gain term and un is an excitation signal, with mean zero, acting as input to

the system. A(z) is known as the inverse filter or, alternatively, the prediction

error filter.

Based on Eq. 2.9, a prediction of the value of any signal sample sn can be

obtained as a linear combination of the past p samples, ŝn =
∑p

k=1 aksn−k.

Filtering sn by the inverse filter A(z) gives the prediction error signal (residual)

en = sn −
∑p

k=1 aksn−k = sn − ŝn. In order to solve the predictor coefficients,

linear prediction (LP) analysis minimizes the energy of the prediction error

E =
∑
n

e2n =
∑
n

(
sn −

p∑
k=1

aksn−k

)2

(2.11)

within the short-time analysis frame consisting of samples sn. The partial

derivatives of Eq. 2.11 with respect to each predictor coefficient aj are given

by

∂E

∂aj
= 2

p∑
k=1

ak
∑
n

sn−ksn−j − 2
∑
n

snsn−j, 1 ≤ j ≤ p. (2.12)

Setting each of these derivatives to zero yields the normal equations

p∑
k=1

ak
∑
n

sn−ksn−i =
∑
n

snsn−i, 1 ≤ i ≤ p, (2.13)

which are solved to obtain the model parameters, i.e., the predictor coefficients

ak.

LP can be used to model the broad shape, or upper envelope, of the short-

time magnitude spectrum as |H(z)|. In order to do this, two complex poles

are needed to model one spectral peak, such as a formant, over the signal

bandwidth (0, Fs/2) determined by the sampling frequency Fs. Thus, two
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poles should be allocated for each expected spectrum envelope peak within the

signal band. Speech has, on average, one formant per kHz of the signal band

(0, Fs/2) [109]. In addition, a few poles are required to model the excitation

source and lip radiation, affecting the spectral tilt. Thus, in order to model the

spectrum envelope, the order p is typically chosen as the sampling frequency

in kHz plus a small integer [109]. For a signal sampled at 16 kHz, for instance,

p = 20 would be a typical choice. With such a choice, the signal model has

a direct connection to the source-filter model of speech production [41]: the

filter H(z) depicts the vocal tract filter, while the excitation signal un plays

the role of the voiced (glottal) or unvoiced (fricative) source. An all-pole model

can also be viewed as a digital-filter representation of a lossless acoustic tube

model, a simplified physical model of the vocal tract [84]. This highlights the

suitability of all-pole models for speech spectrum modeling.

In Eqs. 2.11–2.13, the range of summation of n has not been specified. A

proper choice of n gives rise to the two canonical methods of LP analysis:

the autocorrelation method, in which the prediction-error energy is minimized

over a theoretically infinite interval, but sn is considered to be zero outside the

actual analysis window; and the covariance method, in which the prediction-

error energy is minimized over the interval (p,N − 1) when the analysis frame

consists of samples sn, n ∈ (0, N − 1). The synthesis model H(z) = 1/A(z)

given by the LP autocorrelation method is guaranteed to be stable, meaning

that the roots of the denominator polynomial A(z) all lie inside the unit circle

[82]. It is thus more suitable for synthesis applications than the covariance

method. Moreover, an efficient solution algorithm called the Levinson-Durbin

recursion exists for the autocorrelation method [82, 109]. A third notable

method for the LP coefficient solution is the lattice-based Burg’s method [53].

Finally, adaptive filtering can also be used to learn a linear prediction model

and to update it sample by sample [53, 54].

Two sets of LP filter coefficients can be compared using metrics such as the

Itakura distance [64]. Often, however, the direct form filter coefficients are

converted to another form before further processing. In pattern recognition

and machine learning applications, there are two main approaches to repre-

senting the magnitude spectrum information of the linear predictive all-pole

filter. The inverse filter FIR coefficients A(z) can be interpreted as an im-

pulse response, and the FFT can be applied on them directly to obtain the

spectrum of the inverse filter. This spectrum can be inverted in the frequency

domain–taking care to limit the spectral dynamics in case the all-pole coeffi-

cient solution is not stable–to get the spectrum of the synthesis filter H(z).
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Another approach is to convert the filter coefficients directly to a cepstral

representation. Cepstral techniques are discussed in Section 2.3.

2.2.3 Spectral envelope and fine structure

The Fourier transform and LP are generally applied to different types of spec-

trum modeling. The Fourier transform represents the complete magnitude

spectrum, including its fine structure. In contrast, LP is normally applied to

model the broad spectral shape or, more specifically, the upper envelope of the

magnitude spectrum, which is mostly affected by the formants. This is illus-

trated in Figure 2.2. In speech coding, for example, LP is used to parametrize

the overall spectrum shape.
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Figure 2.2. Comparison of typical Fourier (solid line) and LP (dashed line) spectra for a

vowel frame.

With a high prediction order p, approaching the size N of the (typical)

analysis frame, LP could also model the harmonics and the fine structure of the

spectrum. However, this would still tend to focus on the spectral peaks rather

than valleys (an inherent property of LP, which is due to its goal of minimizing

the squared modeling error which, when viewed in the spectral domain, focuses

on the high-energy peaks) and would also be computationally less efficient

than FFT (FFT is O(N logN), while the correlation computation in LP is

O(Np), and the normal equation solution in the autocorrelation method is

O(p2) [109]).
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In many practical applications, modeling the short-term spectrum envelope

leads to sufficiently informative features for the speech signal. Exceptions

do, however, exist where the fine structure related to the glottal excitation

becomes particularly important, such as in Publication III of this thesis.

In addition to linear predictive (all-pole) methods, broad shapes and the

fine structure of the spectrum can also be separated using cepstrum analysis,

discussed in Section 2.3.

2.3 Cepstrum analysis

Two mutually convolved signal components that have sufficiently different

spectra can be decomposed using cepstrum analysis, which belongs to the

class of homomorphic signal processing techniques [91, 109]. For discrete-time

sequences, the real cepstrum is defined as

{Cj} = IDFT ({log (|DFT({sn})|)}) , (2.14)

where DFT({xn}) and IDFT({xn}) denote the discrete Fourier transform (Eq.

2.6) and the inverse discrete Fourier transform (Eq. 2.7), respectively, per-

formed on some discrete sequence {xn}. The input speech signal is denoted

by sn. From the selected properties of Fourier transforms listed in Section

2.2.1, it follows that the real cepstrum is real-valued and symmetric2.

It is assumed that two time-domain signals, sn and hn, have been convolved

and the result is observed as one composite signal rn = sn � hn. The goal

of the analysis is to find the magnitude spectrum |Sk| of sn. Applying the

convolution theorem [91], the magnitude spectrum of the observed signal is

given by

|Rk| = |Sk||Hk| (2.15)

where |Hk| is the magnitude spectrum of the “channel” hn. Taking the loga-

rithm (base not relevant) of both sides of the equation gives

log |Rk| = log |Sk|+ log |Hk|. (2.16)

In the logarithmic magnitude spectrum of rn, an undesired component appears

as an additive component log |Hk| instead of a convolved component. How-

ever, the two components still cannot be separated without an estimate of

2It is worth pointing out that the name “real cepstrum” does not refer to the fact

that it is real-valued. The real cepstrum and the complex cepstrum differ in whether

the real or complex logarithm is used [91].
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|Hk|. Suppose, however, that it is known from experience that the logarithmic

magnitude spectrum |Hk| of the convolved component will be systematically

different from |Sk|. Typically, this means that one spectrum changes much

more rapidly with frequency than the other. In other words, one of the mu-

tually convolved spectra contains mostly the fine structure while the other

has a broader shape. Taking the (inverse) DFT of the logarithmic magnitude

spectrum yields

{Cj} = IDFT ({log |Rk|}) = IDFT ({log |Sk|}) + IDFT ({log |Hk|}) , (2.17)

in which the components due to the two signals, sn and hn, remain mutu-

ally additive because the IDFT is a linear operation3. The two components,

originally convolved in the time domain, are now additive and should inhabit

different “quefrency” (a term for the cepstral-domain “frequency”) ranges.

This means they can be easily separated by “liftering”, that is, windowing

in the cepstral domain (similarly to how conventional filtering is performed

in the spectral domain). The low-quefrency components correspond to broad

spectrum shapes, while the higher quefrencies contain information about the

spectral fine structure.

The root-mean-square (rms) log-spectral distance is known to be a perceptu-

ally relevant distance measure between two audio signals because of the inner

ear’s spectrum analysis and the large dynamic range of human hearing [143].

It can be shown that the Euclidean distance between two cepstra, which have

both been liftered using a rectangular low-quefrency window and truncated

to the length of the window L, sets a lower bound on the rms log-spectral

distance [48]. With the inclusion of more cepstral coefficients by increasing

the lifter length L, more spectral fine structure information is included in the

truncated cepstrum, and the cepstral Euclidean distance approaches the rms

log-spectral distance from below [48]. In audio pattern recognition, the fact

that the simple Euclidean distance is perceptually meaningful permits the use

of simpler probabilistic models for the feature vectors4. Because of this de-

sirable property, the cepstrum is often used as a feature vector representation

3The choice of the IDFT instead of the DFT only affects the scaling and not the

shape of the real cepstrum. Because the logarithmic magnitude spectrum is real and

symmetric, its DFT or IDFT will be real and symmetric; if the DFT/IDFT is real,

it is known that the opposite phase between Eqs. 2.6 and 2.7 is canceled out in the

summation and does not affect the transform. Thus, the only practical difference

between using Eq. 2.6 or 2.7 in computing the real cepstrum is the scaling coefficient

1/K in 2.7).
4Because the Euclidean distance, which when applied to cepstral vectors approxi-

mates the perceptually relevant rms log-spectral distance, is a special case of the
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for magnitude spectral models computed by other means, such as LP anal-

ysis. Conversion from the filter coefficients of a stable LP filter to cepstral

coefficients can be accomplished by the recursive formula [84, 109]

c0 = log(G) (2.18)

cn = an +
∑n−1

m=1

(
m
n

)
cman−m, 1 ≤ n ≤ p. (2.19)

The conversion of cepstral coefficients to LP coefficients readily follows from

the same formulas. It should be noted that the conversion formula will only

produce as many coefficients as are present in the original representation.

When an LP model, representing the broad spectrum shape, is converted using

the formula, the resulting truncated cepstrum will not include high-quefrency

cepstral coefficients that would be responsible for parametrizing the spectral

fine structure. Cepstral representations often omit the “zeroth” coefficient (Eq.

2.18), which is related to the absolute energy of the signal being modeled.

The first step in the computation of a cepstrum is to obtain a magnitude

spectrum estimate, either by a DFT (as in Eq. 2.14) or by LP (conversion

formulas given by Eqs. 2.18-2.19). The replacement of such a conventional

spectrum model by an auditory spectrum leads to a cepstral representation

with increased perceptual emphasis, as discussed in Section 2.4.

2.4 Mel-frequency cepstral coefficients

While using logarithmic spectra as features is already perceptually justified, as

discussed earlier, this does not yet sufficiently model peripheral auditory pro-

cessing. The most notable functionality not captured by logarithmic spectra

is the non-uniform frequency resolution of hearing. Auditory filterbanks im-

plement this frequency warping, which occurs on the basilar membrane where

sound pressure spectra are nonlinearly mapped to auditory excitation patterns

[143]. While sophisticated time-domain filter models have been developed that

attempt to duplicate the physiology of the inner ear, simple functional models

are typically sufficient for acoustic feature extraction in recognition applica-

tions. Mel-scale filterbanks are one such approach that has found great success.

They are often used to obtain mel-frequency cepstral coefficients (MFCCs) [27].

In the frequency domain, a triangular mel-filterbank with M filters, such as

the one whose transfer functions are shown in Figure 2.3, can be constructed

Mahalanobis distance, whose minimization is equivalent to maximization of the log

likelihood of a multivariate Gaussian distribution [127], a Gaussian assumption for

the distributions of cepstral vectors is perceptually justifiable.
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as follows. Denote the lowest and highest frequency of the filterbank by fl

and fh, respectively. Let Fs be the sampling frequency, K the DFT size and L

the DFT index corresponding to the Nyquist frequency Fs/2. Determine the

frequency boundaries of the filter transfer functions so that they are uniformly

spaced on the mel scale [63]:

f(m) =

(
K

Fs

)
B−1

(
B(fl) +m

B(fh)−B(fl)

M + 1

)
, 0 ≤ m ≤ M+1, (2.20)

where the mel-scale function B and its inverse function B−1 are given by Eqs.

2.2 and 2.3, respectively.

The transfer functions of the type shown in Figure 2.3 are given by [63]

Hm,k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, k < f(m− 1),
(k−f(m−1))

(f(m)−f(m−1)) , f(m− 1) ≤ k ≤ f(m),

(f(m+1)−k)
(f(m+1)−f(m)) , f(m) ≤ k ≤ f(m+ 1),

0, k > f(m+ 1).

(2.21)
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Figure 2.3. Triangular filters spaced evenly on the mel scale. The horizontal axis denotes

ordinary, non-auditory frequency and the vertical axis denotes the magnitude

of the filter transfer function.

Using these filters, logarithmic mel-filterbank energies for a signal frame whose

DFT is Sk are given by

Em = log

(
L∑

k=0

|Sk|
2Hm,k

)
. (2.22)
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MFCC analysis [27] is still the most widely adopted approach to speech

and audio feature extraction [60], although some recent feature extraction

solutions use the logarithmic mel-filterbank energies directly as input to neural

networks. The stages of MFCC computation (Figure 2.4) are

1. estimation of the short-time magnitude spectrum,

2. computation of mel-filterbank energies using triangular bandpass filters in

the frequency domain,

3. taking the logarithm of each filterbank output and

4. calculating the discrete cosine transformation (DCT) of the logarithmic

filtered energies.

Figure 2.4. Data-flow diagram of the MFCC computation.

The DCT-II discrete cosine transform for M logarithmic mel-filterbank out-

puts Em is given by [139] as

ci =

√
2

M

M∑
j=1

Em cos

(
πi

M
(j − 0.5)

)
. (2.23)

Comparing the steps of the MFCC processing chain with those of cepstrum

analysis (Eq. 2.14), the MFCC is seen to be essentially a variation of the real

cepstrum. It differs from the real cepstrum primarily in that logarithmic en-

ergies from an auditory filterbank are substituted for the ordinary logarithmic

magnitude spectrum. Another difference between mel-cepstral and standard

cepstral analysis is the use of the DCT-II in place of the IDFT to convert the

logarithmic spectral representation to a cepstral representation.

Basic MFCC computation uses the DFT in the first step for magnitude spec-

trum estimation (essentially equivalent to the periodogram method of power

spectrum estimation). In order to enhance the robustness of MFCC features in

the presence of environmental noise, the spectrum estimation can be replaced
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with another method. Simply replacing the DFT by LP, as done in some of

the publications of this thesis, is sometimes found to be helpful; e.g., [28].

Besides MFCC analysis, other perceptual feature representations, such as

perceptual linear prediction (PLP) [56], have been proposed especially in order

to improve system robustness. These will be discussed in Section 4.4.2.

2.5 Long-term processing

In general, features computed using short-term analysis can only characterize

the perceptual aspects of timbre, loudness and pitch (see Section 2.1.2). In

order to represent the modulation frequency content of the speech signal, pro-

cessing over longer time periods is necessary. As the (typically) frame-based

short-time features are, nevertheless, suitable for modeling other important

aspects, timbre in particular, long-term processing is often applied in cascade

after initial analysis based on short-time frames.

A common approach to include information beyond the short-term frame is

to concatenate short-term feature vectors with so-called delta (Δ) and double-

delta (ΔΔ) features [44] (henceforth simply “deltas”). One way to compute

them is to regress the feature xn, where n is the frame index, linearly on an

integer variable as [44]

Δn =

∑W
θ=−W θxn+θ∑W

θ=−W θ2
,

ΔΔn =

∑W
θ=−W θΔn+θ∑W

θ=−W θ2
. (2.24)

The parameter W determines the width of the window used in computing

the regression coefficients. In the studies of this thesis, a simpler approach is

generally used, in which the deltas are obtained by simple differentiation:

Δn = xn+W − xn−W

ΔΔn = Δn+W −Δn+W . (2.25)

Typically, the value of W is chosen as 1, meaning that the total time span

covered by the Δ and ΔΔ features are three and five frames, respectively.

Delta coefficients are a part of the typical frame-based feature vector, which

consists of 39 features: the logarithmic energy (or an equivalent loudness-

related parameter) and 12 MFCCs concatenated with the Δ and ΔΔ coeffi-

cients of those 13 base features.
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Despite taking into account information over neighboring frames also, deltas

cannot capture information related to the lower modulation frequencies which

are prominent in speech, e.g., down to 1 Hz (Section 2.1.2). Some long-term

modeling approaches, such as feature filtering and cepstral normalization, are

considered robustness-improving techniques and are discussed in Section 4.

Sometimes, “complete” long-term representations of the modulation frequency

characteristics of subbands are computed instead of relying on post-processing

of higher-level short-term features. These representations include the modu-

lation spectra, which in their simplest form can be implemented by frequency

transforms applied to short-term spectral parameters [137], and frequency-

domain linear prediction (FDLP) [6, 45], which generates minimum-phase

temporal envelopes of signal subbands by means of linear predictive analy-

sis applied to subband DCT sequences. These multivariate representations

can be used for arbitrarily accurate representation of the long-term dynam-

ics of each subband, but as the relevance of any individual variable may be

limited, they are typically used as bases for lower-dimensional feature rep-

resentations. In the general case, the most common approach for including

modulation frequency information in applications such as paralinguistic anal-

ysis is to compute selected functionals of carefully chosen short-term features,

or low-level descriptors (LLDs), typically on the utterance level [120]. Besides

modeling low modulation frequencies, these features have the advantage that

generic machine learning methods can be easily applied to their analysis. How-

ever, it is often not immediately clear which functionals to choose to represent

speech utterances. Therefore, a long-term feature set often ends up being large

and consisting of a diverse set of functionals applied to a comprehensive set of

LLDs to characterize the short-term acoustics. With a large long-term feature

set (often consisting of thousands of features), machine learning methods ca-

pable of tackling the effects of high dimensionality must be employed in order

to obtain ideal results in a given application [121, 122, 123]. Feature selection

methods, such as sequential forward selection [132], sequential backward elim-

ination [83] and their “floating” modifications [106], are also often used when

dealing with large feature sets. Publication VIII discusses feature selection

methods.
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3. Machine learning applications in

speech processing

Machine learning is used in many tasks across the field of speech processing.

The methods typically applied are briefly discussed in Section 3.1. This work

focuses on applications where machine learning is in a primary role, discussed

in Sections 3.2-3.5. In addition, application areas that use machine learning

secondarily include, e.g., speech enhancement and speech synthesis.

3.1 Machine learning methods

Machine learning methods that are frequently used in speech analysis, and

also used in the studies of this thesis, are briefly reviewed. The focus in this

thesis is on classification, but examples of applying the methods to regression

tasks are also mentioned.

Let X = {x1, . . . ,xM} be an observed dataset of feature vectors, each with

d elements. Let ω be a pattern of random variables, called the state of nature

[34], that produces X. The random variables constituting ω are chosen based

on the machine learning application. Examples of ω include speaker identity

(in speaker recognition), a sequence of words in a given language (in speech

recognition) or the age of the speaker (in paralinguistic analysis). The goal

of the machine learning application is to infer the true value of the state of

nature ω from the observed features X.

The natural probabilistic approach would be to find the inferred value ω̂

such that

ω̂ = argmax
ω

P (ω|X). (3.1)

However, explicitly modeling the probability distribution P (ω|X) in the case

of continuous-valued features X is difficult. Even if these conditional distri-

butions of ω were to be estimated in a limited number of vector quantization

regions that together cover the space spanned by the vectors in X, the curse
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of dimensionality would make this estimation from any practically feasible

amount of training data inaccurate already with a relatively low dimensional-

ity of X [34]. A common solution to this problem is the application of Bayes’

formula:

P (ω|X) =
P (X|ω)P (ω)

P (X)
(3.2)

so that Eq. 3.1 becomes

ω̂ = argmax
ω

P (X|ω)P (ω)

P (X)
. (3.3)

Because P (X) does not depend on ω, Eq. 3.3 obviously simplifies to

ω̂ = argmax
ω

P (X|ω)P (ω), (3.4)

where P (ω) is the prior distribution of ω. It can be chosen as uniform, in which

case it does not effect Eq. 3.4, or it can be chosen based on prior considerations

about ω. In automatic speech recognition (ASR), P (ω) is determined by

language modeling, an important component of an ASR system. P (X|ω) is the

conditional density of the observed feature vector (or vector sequence) given

the state of nature ω. Thus far, we have discussed ω in general terms, including

the possibilities that it is a continuous-valued or an ordered variable. In these

cases, the machine learning task would amount to regression. However, this

thesis concentrates on automatic recognition of speech classes so that ω is

effectively a categorical variable. In these applications, X typically consists of

continuous-valued features. With these considerations, P (X|ω) is the class-

specific probability density function (PDF) of an observed feature vector or

feature vector sequence X.

A unimodal distribution, such as a (univariate or multivariate) Gaussian dis-

tribution, is frequently an inadequate model for representing probability dis-

tributions with complex shapes. However, an arbitrarily complex PDF shape

can be modeled by using a mixture of a sufficiently large number of such distri-

butions [113]. A Gaussian mixture model (GMM) with J mixture components

is parametrized by λ = {P1, . . . , PJ ,μ1, . . . ,μJ ,Σ1, . . . ,ΣJ}, where Pj are the

mixture weights (component priors) and the pairs (μj ,Σj) of (d × 1) mean

vectors μj and (d×d) covariance matrices Σj specify J multivariate Gaussian

distributions. The PDF according to a GMM is given by

p(x|λ) =

J∑
j=1

Pjbj(x) (3.5)

with Gaussian component distributions
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bj(x) =
1

(2π)d/2|Σj|1/2
exp

(
−
1

2
(x − μj)

′Σ−1
j (x − μj)

)
. (3.6)

Prior constraints applied to the covariance matrices Σj have a large effect

on the GMM. Each covariance matrix can be full or diagonal. In practice,

diagonal covariance is typically applied because such GMMs are easier to train

and often perform better than full-covariance GMMs [112]. In addition, if the

amount of training data is very limited, diagonal-covariance GMMs can be

trained with less data because they have less free parameters to estimate.

Each GMM component typically has its own dedicated covariance matrix,

although the covariance matrix can also be shared among components. In

the case of one global covariance matrix shared by each component, a full

covariance structure may again become feasible, but its modeling capacity

may not reach that of component-specific diagonal covariances matrices. In

the following, the training data is denoted as x1, . . . ,xN .

The parameters λ of a GMM can be iteratively trained using an application

of the expectation-maximization (EM) principle [30]. For component-specific,

diagonal covariance matrices, the re-estimation algorithm is [9]:

1. Either initialize λ and start from step 2 or initialize γn,i and start from step

3.

2. Expectation (E) step: Compute the difference en,i = (en,i(1), . . . , en,i(d))
′

of each vector to each of the component means:

en,i = xn − μi, 1 ≤ n ≤ N, 1 ≤ i ≤ J.

Use en,i to compute posterior probability of the nth data vector being gen-

erated by the ith component:

γn,i =
Pibi(xn)∑J
j=1 Pjbj(xn)

=
Pi(1/

√
(2π)d|Σi|) exp

(
−1

2e
′
n,iΣ

−1
i en,i

)
∑J

j Pj(1/
√

(2π)d|Σj |) exp
(
−1

2e
′
n,jΣ

−1
j en,j

) .

3. Maximization (M) step: Re-estimate mixture weights:

pi =
1

N

N∑
n=1

γn,i, 1 ≤ i ≤ J.

Re-estimate component mean vectors:

μi =

∑N
n=1 γn,ixn∑N
n=1 γn,i

, 1 ≤ i ≤ J.
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Re-estimate the variance parameters for the diagonal covariance matrices:

σ2
i,j =

∑N
n=1 γn,ie

2
n,i(j)∑N

n=1 γn,i
, 1 ≤ i ≤ J, 1 ≤ j ≤ d.

(Note that in some variants of GMM re-estimation, e.g., [113], en,i are re-

computed using the newly estimated mean vectors μi before estimating the

variances σ2
i,j).

4. If a convergence criterion is met or a specified number of iterations has been

run, exit. Otherwise, go to step 2.

Any EM algorithm is guaranteed to converge at least towards a local, if

not the global, likelihood maximum, because each iteration is guaranteed to

increase the model likelihood L(λ|x1, . . . ,xN ) [30].

In using GMMs for supervised classification of the sequenceX = {x1, . . . ,xM},

with ω ∈ {ω0, . . . , ωC−1}, logarithmic posterior probabilities are typically ob-

tained and averaged over the M = |X| vectors as (1/M) log(P (X|ω = ωk)) =

(1/M)
∑M

n=1 log(p(xn|λk)) = (1/M)
∑M

n=1 log(
∑J

j=1 Pj,kbj,k(xn)). Eq. 3.4

can be used to select the most likely class. In detection applications where C =

2, a logarithmic likelihood ratio test is typically used for averaged logarithmic

likelihoods [112]: class ω1 is decided if log(P (X|ω = ω1))/M − log(P (X|ω =

ω0))/M > T , where T is an adjustable threshold value. The choice of T gives

rise to different values of the miss rate pmiss (the rate of failing to detect class

ω1) and the false alarm rate pfa (the rate of mistakenly detecting class ω1) over

an evaluation data set. A detection-error-tradeoff (DET) curve can be plotted

to show pmiss against pfa over these different operating points [85]. The older

receiver operating characteristics (ROC) curve shows the same information as

a DET curve but plots 1 − pmiss against pfa without using logarithmic axes

like the DET plot. Both curves can be plotted by increasing the detection

threshold T such that pfa decreases from 1 to 0 and pmiss increases from 0 to

1. The equal error rate (EER) is obtained as pmiss = pfa at the corresponding

value of T .

The popular k-means algorithm, which is used both for clustering and for

generating vector quantization (VQ) codebooks [63], is identified by Bottou

and Bengio as an EM-style iterative algorithm [13]. In a sense, k-means is a

deterministic version of Gaussian mixture learning. The VQ model learned by

k-means is parametrized only by the cluster mean vectors as λ = {μ1, . . . ,μJ}.

The similarity between the two algorithms can be noticed by considering the

following formulation of k-means:
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1. Either initialize λ and start from step 2 or initialize gn,i and start from step

3.

2. Quantization step: Compute the difference en,i = (en,i(1), . . . , en,i(d))
′ of

each vector to each of the component means:

en,i = xn − μi, 1 ≤ n ≤ N, 1 ≤ i ≤ J.

Use the en,i to assign (quantize) each of the data vectors into the nearest of

the J clusters (squared Euclidean distance):

gn,i =

⎧⎨
⎩ 1 : i = argminj(e

′
n,jen,j)

0 : otherwise

3. Re-estimation step:

Re-estimate component mean vectors:

μi =

∑N
n=1 gn,ixn∑N
n=1 gn,i

, 1 ≤ i ≤ J.

4. If a convergence criterion is met or a specified number of iterations has been

run, exit. Otherwise, go to step 2.

Each iteration of k-means is guaranteed to decrease the total quantization

error
∑N

n=1

∑J
i=1 gn,ie

′
n,ien,i and, therefore, to converge towards its local min-

imum.

In both GMM estimation and k-means, the fact that the likelihood can only

increase constrains the directions that parameters can change towards during

the iteration. Therefore, both methods converge towards a local optimum de-

termined by the initial parameter set and are sensitive to initial parameter

values. In practice, it has been noticed that GMM re-estimation is not partic-

ularly sensitive to the initial values of the weights Pi or the covariance matrices

Σi as long as they are initialized reasonably (positive weights and sufficiently

small, positive variances). Initialization of the mean vectors is often noticed to

be more critical, and indeed, many initialization methods have been proposed

for k-means [2, 14, 55, 68, 98]. The mean vectors in GMM re-estimation can

be initialized by using the same methods, or by using the result of the k-means

algorithm after its convergence. Katsavounidis, Kuo and Zhang [68] proposed

a simple, deterministic method for the initialization of k-means (also known

as Lloyd iteration):

1. Choose the vector with the maximum Euclidean norm ‖xn‖ = x
′
nxn as the
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first cluster center:

μ1 = argmax
xn

‖xn‖.

2. For i = 2 to J :

Choose the vector with the greatest distance from the current codebook

as the new center:

μi = argmax
xn

‖xn − argmin
μ

j
,1≤j≤i−1

(
‖xn − μj‖

)
‖.

This method is sometimes termed the KKZ algorithm, according to the initials

of the authors (e.g., [55]). The first cluster center selected is the one with the

maximum norm within the data set and the second center selected is the one

furthest away from it. Therefore, this method tends to select initial points

near the outer boundaries of the d-dimensional point cloud represented by the

data set {x1, . . . ,xN}. During the subsequent EM or k-means iteration, these

center points typically converge towards more central locations with respect

to the point cloud, as illustrated in Figure 3.1.
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Figure 3.1. Illustration of the EM algorithm to train an eight-component Gaussian mixture

model, with mean vectors initialized by the KKZ algorithm, applied to the

sepal length and sepal width measurements in Fisher’s iris data set [42]. The

mean vectors at each iteration stage are shown as squares. The colors indicate

the component-specific cluster to which each point belongs with the highest

posterior probability γn,i.
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Bayesian classification according to Eq. 3.4 requires explicit modeling of

class-specific observation PDFs P (X|ω = ωj). Nearest-neighbor classification

is an alternative approach that avoids the difficulty of estimating explicit PDF

models, or any kind of models. Starting from the basic problem in Eq. 3.1, k-

nearest-neighbors (kNN) classification [10, 34, 127] estimates the conditional

class distribution P (ω|X) by (1) finding in the training data the k feature

vectors or sequences of feature vectors that are closest to the test input X

(based on some metric), (2) calculating the frequencies of the different classes

among these k nearest neighbors and (3) choosing the mode, or most frequent

value, of that distribution as the predicted class label.

kNN classification counters the most obvious effect of the curse of dimen-

sionality – that the high-dimensional feature space is mostly empty of training

samples–by centering distribution modeling specifically around each test input

X and requiring the neighborhood to contain at least a predefined number (k)

of training points. This enables using Eq. 3.1 directly to make class decisions.

When the discriminative nature of the features is high, kNN is a powerful, non-

linear classification method. However, each feature contributes to the size of

the k-neighborhood and irrelevant features may bring irrelevant points within

the k-neighborhood. This biases the estimation of P (ω|X) based on k sam-

ples. kNN classification is thus subject to the curse of dimensionality in this

respect. In Publication VIII, kNN is used as the classifier in evaluating feature

selection methods.

While kNN is most often used for classification, it is also applicable to re-

gression, e.g., [111]. In this case, the regression result is obtained simply as

the average of the dependent variable among those k observations for which

the predictor variables are closest to the test input X.

The support vector machine (SVM) is a popular machine learning method

[4, 10, 18]. It can be used for both classification and regression problems.

For the purpose of binary classification, when the data is linearly separable,

the aim is to find the separating hyperplane that maximizes the distance (the

margin) between the hyperplane and the correctly classified class instances

closest to it on either side (the support vectors). In classification problems that

are not linearly separable, slack variables and a misclassification cost tradeoff

factor can be added in the margin optimization to allow misclassifications (the

soft margin method). Alternatively, using a suitable basis or kernel function,

the feature vectors can be implicitly mapped into a higher-dimensional space

in which linear separation of the classes in the training set becomes possible.

Classification and regression trees (CART) [17] is a method for learning de-
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cision trees for either classification or regression. It builds a binary decision

tree which always splits the data by thresholding one of the features, leading

to a rectangular partition of the feature space. In training, the choice of the

feature and threshold at each node is determined by the purity of the two sub-

sets generated by the split operation. Random forests [16] is a related method

which uses multiple decision trees, each typically based on a randomly selected

subset of the features [61]. Similarly to SVMs, random forests are often found

to be robust against irrelevant or noisy features in high-dimensional problems.

They both appear as baseline methods in Publication VIII.

Recently, artificial neural networks [87] have re-emerged as a prominent

pattern analysis and modeling method in the form of deep neural networks

(DNNs). These networks are motivated by computational modeling of the

central nervous system. They consist of layers of neurons, each of which com-

putes an output activation using a nonlinear, monotone activation function

of a linear combination of its inputs. Successive layers of conventional feed-

forward networks are fully connected in the sense that each of the outputs of

the preceding layer act as inputs to each of the neurons of the following layer.

This way, the network generates a new kind of multidimensional abstraction

of its multidimensional input in every layer. Modern DNNs are called “deep”

because of having at least two hidden layers (between the input and output

layers) and generally more hidden layers than the earlier networks which were

used in the 1980s and 1990s. Advancements in computation and data stor-

age technologies, as well as in training methods, have permitted training and

deployment of these larger networks, which can generate more complex ab-

stractions and thus solve more complex practical problems, as evidenced by

their recent success in ASR applications [60]. DNNs can also be recurrent, i.e.,

contain feedback connections, so that they can model long-term temporal de-

pendencies. DNNs can be considered a “black box” as well as a “brute force”

learning method which, given sufficient training data, can learn to model var-

ious complex dependencies between the input and output variables.

The Euclidean distance is a typical metric to use in nearest-neighbor meth-

ods. When X is a sequence of vectors, dynamic time warping (DTW) can be

applied instead [92]. DTW is a dynamic programming technique that finds a

minimum-cost path through a N1×N2 grid, where N1 and N2 are the lengths

of the two sequences. The cost associated with one point of the grid is a mea-

sure of dissimilarity between the corresponding elements of the two sequences.

The result of DTW is an alignment between the two sequences that is op-

timal according to the chosen constraints. Minimized costs can be used as
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distance measures between sequences in nearest-neighbor methods, as is done

in Publication I.

Hidden Markov models (HMMs) are stochastic models for the PDFs of fea-

ture vector sequences [65, 108]. They can be viewed as containing elements

from both Gaussian mixture modeling and dynamic time warping. Similarly

to GMMs, HMMs are specified by discrete probability parameters that char-

acterize the prior distributions of a hidden variable as well as the (typically

continuous) observation distribution parameters associated with each state

or component. HMMs are typically trained using an implementation of the

EM principle known as the Baum-Welch algorithm. Similarly to DTW, an

optimal path through a trellis of the states of a HMM can be found using

an implementation of dynamic programming (the Viterbi algorithm). HMMs

are extensively used in large-vocabulary continuous speech recognition. Like

DNNs, they are not used in the studies of this thesis but are mentioned for

completeness due to their importance in both ASR applications and statistical

parametric speech synthesis.

3.2 Speech event detection

Speech event detection can be viewed as a sub-category of audio event de-

tection [52], where the target class of detection is some type of vocal activ-

ity. Examples include detection of speech in general; shouts [115] (as dis-

cussed in Publication III); screams [129, 130]; and non-neutral speech [110].

On a time scale in the order of seconds, these detection tasks have applica-

tions in audio-based automatic surveillance and acoustic environment moni-

toring [52, 110, 115, 129, 130]. Similarly to paralinguistic analysis (Section

3.4), long-term speech event detection may also be used to assist speech and

speaker recognition systems in choosing suitable acoustic models or in assist-

ing speech-based user interfaces to be aware of the speaking situation. The

latter applications can be related to a system with microphones listening to

its environment or a telephone-based system (typically in a call center). On

a related note, when detection of speech activity is done on a fine time scale,

such as the short-time frame level, it is commonly referred to as voice activity

detection (VAD) [125] and is an important component that saves computa-

tional resources by assisting speech coding, speech recognition and speaker

recognition systems to only process meaningful speech frames.

A typical approach in speech event detection is to start with short-time

timbral features, such as MFCCs [110, 115], and to apply a generic pattern
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recognition method, such as GMM-based Bayesian classification [110, 115, 129,

130] or SVM [115]. However, detection of a more specific target speech class

with its typical characteristics, such as angry speech [19, 40, 99], has typically

been found to benefit from long-term modeling of the modulation frequency

content in order to separate the target class from other types of speech. On

the other hand, such applications approach paralinguistic analysis (Section

3.4).

3.3 Speaker recognition

Supervised speaker recognition can be divided into speaker identification, where

the goal is to identify the speaker among a closed speaker population, and

speaker verification (or speaker detection [112]), where the goal is to detect

whether the speaker is a known target speaker or someone else. Both ap-

proaches can be text-dependent or text-independent, depending on whether

the user is required to speak a given phrase or not. Publications II and VI

focus on text-independent speaker verification.

Speaker verification has been a topic of active research and certain paradigms

have emerged over the years. The Gaussian mixture model-universal back-

ground model (GMM-UBM), by Reynolds et al. [112], has been widely used.

It consists of first training a universal background model (UBM), a large GMM

with typically hundreds or some thousands of components, to parametrize

the complete background speaker population. Speaker-specific GMMs are

obtained by adapting the UBM with speaker-specific training data. In the

detection phase, a logarithmic likelihood ratio test, for logarithmic likelihoods

averaged over the frames of an utterance, is performed between the speaker-

specific model and the UBM in order to accept or reject the test speaker as

the target speaker. SVM-based classification of GMM supervectors, formed by

concatenating the mean vectors of each GMM component, is a more recent

approach which gives good performance with nuisance attribute projection

(NAP) [21]. Recently, Dehak et al. proposed a factor-analysis-based front-end

[29]. The output representation, commonly referred to as i-vectors, generally

outperforms the previous approaches and is currently considered to be the

state-of-the-art in speaker verification.
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3.4 Paralinguistic speech analysis

Paralinguistics refers to the study of information carried by speech alongside

(para-) its linguistic content [120]. Computational paralinguistics refers to

computerized analysis of paralinguistic aspects of the speech signal. Obviously,

speech recognition does not belong to this field, as it is exclusively concerned

with the linguistic content. Typically, neither the detection of speech events

nor speaker recognition are considered to be essentially paralinguistic tasks,

as they can be viewed to be concerned with the speaking situation rather than

the information conveyed by the speech. These constraints leave the following

types of information to be uncovered by computational paralinguistic analysis

of speech (see also [119, 120]):

• Short-term/instantaneous: e.g., speaking mode/vocal effort (normal, shouted,

whispered) [90, 102, 142]; voice quality (normal, creaky, breathy) [33]; de-

tection of non-speech events such as laughter [123]; melody transcription in

singing or humming [46, 104].

• Medium-term states: e.g., emotional state (e.g., happy, sad, angry, sur-

prised) [36, 75, 89, 118, 136]; affective dimensions (activation, valence and

dominance) [20, 131, 135]; depression [80]; physical stress [47, 51, 97]; sleepi-

ness [74]; intoxication [12].

• Long-term characteristics and traits: e.g., age and gender [77]; height [133];

various pathologies [100, 111]; likability of voice [100]; personality traits

[100].

Collectively, the long-term traits have an evident connection to speaker

recognition [120]: in theory, reliably identifying a sufficient number of such

variables permits us to single out a given speaker from an arbitrarily large

speaker population. More generally, the inferred variables generated by par-

alinguistic analyses can themselves serve as high-level features for other prob-

lems. For example, analysis of vocal effort could serve as one feature extrac-

tor in an emotion detection system, or paralinguistic features could influence

acoustic modeling in the decoding phase of automatic speech recognition (Sec-

tion 3.5).

Many of the above listed paralinguistic characteristics of speech can variably

be expressed as either continuous-valued or ordered categorical variables. In

53



Machine learning applications in speech processing

many occasions, such as in the Computational Paralinguistics Challenges of

the Interspeech conference [121, 122, 123], binary categorical variables are

considered as targets of prediction, often on a scale of “low” and “high” or

“present” and “not present”.

As discussed in Section 2.1.2, the basic components of auditory perception

are loudness, pitch, timbre and subjective duration. Most speech feature ex-

traction methods are based on timbre and have been originally developed for

automatic speech recognition, but are also applicable to speaker recognition.

This is because timbre is a good discriminator of speech sounds (in non-tonal

languages) as well as of speaker-specific vocal tract configurations. In paralin-

guistics, timbral features are frequently not sufficient, however. Depending on

the exact task, pitch and subjective duration of component sounds can also

play an important role (loudness, however, can be reduced to a combination of

absolute sound level, which is generally not useful, and timbral aspects [143]).

Pitch perception is connected to the fundamental frequency F0, which can

be explicitly modeled by pitch estimation algorithms [59] and also manifests

itself in the harmonic fine structure of the spectrum. Subjective duration

leads to the perception of rhythm. It is closely associated with the modula-

tion frequency content of the signal (in the physical domain) or its auditory

representations in the perceptual domain.

Given that different paralinguistic machine learning problems may require

quite different feature representations, it is probably natural that more than

a few different types of systems are being employed. Most systems can be

roughly organized into two major categories.

The first main approach is based on timbral features and statistical pattern

recognition but includes pitch and modulation aspects as needed, in some

form. For example, the timbral feature vector can be appended with addi-

tional features related to pitch or modulation frequencies [89], or class-specific

modulation frequency characteristics can be modeled by explicit modulation

filtering [99].

The second, feature-intensive approach does not assume to know exactly the

types of features that would be useful for the given task. Instead, a large num-

ber of long-term functionals of short-term acoustic parameters are computed

(in a sense, a brute-force approach facilitated by increased computational re-

sources), leading to a high-dimensional feature space. This initial feature set

can be designed to be very comprehensive [121, 122, 123] or to focus on some

timbral and some modulation-related features [25, 136]. As discussed earlier, in

machine learning, the curse of dimensionality [34] means that high-dimensional

54



Machine learning applications in speech processing

feature spaces are sparsely populated by limited training data since the num-

ber of data points inside a volume unit decreases with an increasing feature

space dimensionality. One effect of this is to weaken the statistical reliability

of trained systems. Therefore, the machine learning methods applied by the

feature-intensive approach must be resistant to this aspect of the curse of di-

mensionality. Methods that meet this requirement include SVM and random

forests [122] as well as feature selection and dimensionality reduction methods

capable of working with high-dimensional feature spaces [100, 111].

In this thesis, Publications IV, VII and VIII belong to the field of paralin-

guistics while publication III has a connection to the detection of the speaking

mode, even though its immediate application is in the field of speech event

detection.

3.5 Automatic speech recognition

Automatic speech recognition (ASR) is a field of speech technology that has

been extensively studied since the 1960s. ASR has found its first practical

applications with constrained speech inputs, such as in control tasks (sim-

ple speech commands) and dictation (speech-to-text transcription). In recent

years, the prominence of ASR has further increased with, e.g., the advent

of workable speech-based user interfaces and conversational search agents in

smartphones. In addition to relaxing the domain constraints of these applica-

tions, projected future applications of ASR (not yet in wide use at the time of

this writing) include speech-to-speech translation and reliable speech index-

ing for searching large multimedia archives with greatly varying content. As

the real-world applications target less and less constrained speech material, ro-

bustness with respect to natural speech signal variability becomes increasingly

important.

In comparison to the other speech-related machine learning applications dis-

cussed above, the ASR problem is clearly the most complex. In applications

such as text-independent speaker recognition, speech detection and speaking

mode analysis, it often suffices to model the statistics of short-time timbral

features. Additional modeling of long-term rhythmic patterns of loudness, tim-

bre and pitch may be required in the more complex paralinguistic analyses.

ASR, however, requires the modeling of sequences of word tokens consisting

of timbral variations on a fine time scale; in the long term, this task is still

usually accomplished by finding (decoding) an optimal path through a net-

work of HMMs [65], while modeling of short-term acoustic properties with
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GMMs has recently been mostly replaced by DNNs. Still, despite the already

higher complexity in comparison to the other applications, the performance

of ASR cannot rely simply on accurate acoustic modeling, regardless of the

time scale. Information about the language being spoken is also required. For

this purpose, ASR systems employ language models that model the probabil-

ity distribution of linguistic sequences. The importance of language models

can be understood by considering speech recognition by humans: it is very

difficult to accurately transcribe text spoken in a strange language (even with

knowledge of the phoneme space of that language). Current language models

are often low-order n-grams, which can provide good performance in limited

linguistic domains (e.g., broadcast news transcription and voice search appli-

cations). However, it can be argued that understanding the spoken message

is also fundamental to robust and accurate speech recognition that will match

human performance. For example, humans can often guess the content of the

next sentence based on long-term context (perhaps also applying paralinguis-

tic and visual cues when applicable), which is arguably more than what can be

accomplished by simple language models that consider short word sequences.

The contribution of this thesis to ASR is twofold. Firstly, the methods pro-

posed for short-time feature extraction and long-term feature post-processing

can find application in improving the robustness of ASR systems. In addition

to the word recognition experiments in Publication I, additive-noise robust-

ness of large-vocabulary continuous speech recognition (LVCSR) systems has

been improved by time-weighted linear predictive methods in recent studies

[69, 101]. In [69], LVCSR performance is improved using a special case of the

generic XLP formulation described in Publication IV. This special case was

originally proposed for robust speaker verification in [103]. Another contri-

bution of this thesis to ASR is to provide paralinguistic analysis systems for

detecting different speaking styles, such as various emotional states (Publica-

tions IV and VII) or speaking with high vocal effort (Publication III). Such

analyses can allow ASR systems to choose or adapt the acoustic models in the

decoding phase according to the current speaking style [8, 140, 141].
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This section discusses signal variability, its contribution to mismatch in ma-

chine learning systems and robustness-improving techniques designed to coun-

teract the mismatch.

4.1 Causes of signal variability

4.1.1 Additive noise

The desired clean signal sn is typically corrupted by additive noise vn, i.e.,

yn = sn + vn. (4.1)

Ambient sounds of the recording environment as well as effects of the recording

or transmission channel can cause additive noise to be present in the speech

signal. The noise may make it more difficult to discern the acoustic properties

of the original signal. The way in which additive noise affects recognition

task performance is determined by the interaction of the spectral/temporal

characteristics of the additive noise and the class-separating cues [79].

4.1.2 Effect of the channel

Broadly, the channel comprises the acoustical transfer function of the record-

ing environment (room response and echoes) and the acoustical and electrical

transfer functions of the recording equipment and the actual transmission

channel. Each of these effects causes a convolutive distortion which can be

modeled in the time domain as

yn = sn ∗ gn (4.2)

and, equivalently [91], in the frequency domain as
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Y (z) = S(z)G(z). (4.3)

4.1.3 Source variability

In the context of speech processing, source variability–signal variability due to

different representations of semantically similar information–refers to acous-

tic variation caused by speaker-related effects. These include fundamental

frequency patterns, vocal effort, speaking rate, speaking styles and transient

emotional or physical states of the speaker, among other things. They affect, in

different ways, the different aspects of auditory perception: timbre, loudness,

pitch and subjective duration (Section 2.1.2) via their physical counterparts

of the short-time spectrum, intensity, fundamental frequency and rhythm or

duration. It can be noticed that these speaker-related causes of variability are

also among the typical recognition targets in paralinguistic analysis (Section

3.4).

4.2 Mismatch

In machine learning applications of audio signal processing, the goal is to infer

“hidden” information based on the observed signal. The signal characteristics

are automatically learned in the training phase from features extracted from

the training signals. The training material depicts only a certain subset of

all possible conditions. In this thesis, condition is used informally to refer

to a certain configuration of additive noise, recording channel characteristics,

speaking style, speaker state and speaker characteristics. If the conditions

between training and actual usage (test phase) of the system are different so

as to have potential influence on the statistics of typical features, mismatch

is said to be present. Mismatch may result in differences between the feature

statistics learned in the training phase and those encountered in the test phase,

which in turn may result in performance degradation of the machine learning

system. To the degree that the system is able to maintain its performance

level despite condition mismatch, it is said to be robust.

If the signal to be analyzed is affected by any kind of degradation or dis-

tortion, such as additive background noise or a degraded convolutive channel,

the expected amount of mismatch increases because it becomes less likely

that this particular type of distortion has been covered by the training ma-

terial. In speech signal processing, mismatch can also arise simply because
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similar information content can be expressed in many different forms due to

speaker-related effects such as voice quality, speaking style, fundamental fre-

quency and vocal effort, as discussed in Section 4.1.3. Vocal effort mismatch,

for example, is found to decrease the performance in speech [140, 141] and

speaker recognition [124, 142]. Multi-condition training, which does try to

account for all different conditions already in the training material, is often

found to improve the results of machine learning systems. In the test phase,

a multi-condition-trained machine learning system may benefit from paralin-

guistic analyses (Section 3.4) to help it choose the correct acoustical models.

However, the problem of multi-condition training lies in the difficulty of ob-

taining sufficient training data to comprehensively cover each possible usage

condition. Therefore, robustness-improving signal processing techniques often

have to be used.

Considering that performance degradation is caused by differences in train-

ing and test feature statistics (which in turn are caused by condition mis-

match), different approaches can be taken to improve the system’s robustness,

i.e., to prevent performance degradation due to mismatch. The choice of the

approach depends primarily on (1) which parts of the process chain of a given

machine learning system it is easiest to work on (Figure 1.1), (2) the type of

variability that is causing the mismatch and (3) the available techniques. In

the preprocessing step before feature extraction (Figure 1.1), speech enhance-

ment operations can be used to reduce the amount of degradation present in

the signal (Section 4.3). In the feature extraction phase, on the short-time

level, robust spectrum analysis methods can be used to focus on information

less affected by signal corruption (Section 4.4.1). Another popular approach

on the short-time feature level is to improve the modeling of auditory percep-

tion in feature extraction, as the human auditory system is known to be fairly

robust (Section 4.4.2). On a longer time scale, spanning many short-time

frames, filtering methods can be applied to feature vector sequences (Section

4.4.3), or the primary features can themselves be long-term functions of the

signal. These long-term processing methods may result in improved modeling

of aspects of neural auditory processing, such as modulation-frequency selec-

tivity (Section 2.1). Finally, many more methods to improve robustness are

available on the level of the classification or regression sub-system (Figure 1.1).

These include discriminative training [107], missing data imputation [26] and

using an informative, typically high-dimensional feature set in combination

with a suitable classification or regression method [60, 119].

The focus of this thesis is on improving robustness on the feature level by
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emphasizing relevant information in different ways. The majority of the stud-

ies, Publications I to VI, are concerned with robust spectrum analysis based

on temporal weighting of the information within a short-time analysis frame

(Section 4.4.1). Publication VII deals with feature post-processing to em-

phasize relevant modulation frequencies (Section 4.4.3), and Publication VIII

studies the automatic selection of long-term features in the high-dimensional

classification approach.

4.3 Speech enhancement

Speech enhancement is a collective name for signal processing operations that

are applied to the digital speech signal in order to improve one or more of the

following aspects:

• Subjective quality (as judged by a human listener)

• Intelligibility (as judged by a human listener)

• Automatic analysis accuracy, e.g., in one of the problems discussed in Section

3

In the context of this thesis, speech enhancement is considered as a robustness-

improving preprocessing step that can optionally be applied to the signal be-

fore the feature extraction phase in order to reduce possible degradations. In

addition, as speech enhancement and robust feature extraction share partially

similar goals and methods–both aim to reduce the effects of signal corruption

in some representation domain–it is of interest to discuss certain prevalent

approaches to speech enhancement.

Automatic removal of additive noise is a central speech enhancement task

for which many methods have been developed [79]. Since the original spectral

subtraction noise reduction algorithm, proposed by Boll in 1979 [11], many

variants of speech enhancement algorithms have been proposed. Most of these

algorithms utilize a training segment of the noise in order to construct an

enhancement filter to remove the noise in separate short-term analysis frames

and then use the overlap-add method [109] to resynthesize the modified signal.

Two common classes of speech enhancement algorithms are the spectral sub-

traction algorithms, where the noise model is deterministic, and the Wiener

filter algorithms, which can be realized using stochastic noise models.
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Spectral subtraction [11] is a classical enhancement method for removing

additive noise. Taking the z transform of both sides of Eq. 4.1 [91] gives

Y (z) = S(z) + V (z), (4.4)

where Y (z), S(z) and V (z) are the z transforms of the noise-corrupted signal,

the clean signal and the additive noise, respectively. The basic idea of spectral

subtraction is to estimate S(z) (and thereby the clean signal sn itself) so that

the magnitude of the estimator is given by

|Ŝ(z)|c = |Y (z)|c −N(z), (4.5)

where c > 0 is an exponent and N(z) is an averaged spectrum of the noise

power |V (z)|c,

N(z) = E{|V (z)|c}, (4.6)

which is to be estimated from parts of the signal known to contain only back-

ground noise. The phase of the spectral subtraction estimator Ŝ(z) is given

directly by the phase of the noisy input signal Y (z).

If the problem is cast as that of filtering the noise-corrupted signal yn to

obtain ŝn, i.e., as Ŝ(z) = H(z)Y (z), a filter H(z) that realizes the above

specifications is given by

H(z) =
(|Y (z)|c −N(z))1/c

|Y (z)|
, (4.7)

which in [11] is used with c = 1, yielding H(z) = 1 − N(z)
|Y (z)| . The filtering

operation then becomes equivalent to Ŝ(z) = (|Y (z)|c −N(z))1/cY (z)/|Y (z)|,

meaning that the phase spectrum of Y (z) is multiplied by the cth root of

the result of spectral subtraction |Y (z)|c − N(z). There may be frequencies

for which N(z) > |Y (z)|c. Such noisy frequencies are usually assumed to be

unrecoverable. Thus, it is enough to ensure that the subtraction result stays

nonnegative. This can be accomplished by using half-wave rectified filtering

Ŝ(z) = Hr(z)Y (z), where [11]

Hr(z) =
H(z) + |H(z)|

2
. (4.8)

Random residual spikes that remain in non-active temporal and spectral

regions after subtraction give rise to tonal noise (so-called musical noise). In

[11], it is suggested to reduce musical noise by using a filtering operation where

the magnitude of a given DFT frequency bin is replaced by its minimum value
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chosen from the adjacent analysis frames, when the original magnitude falls

below the maximum noise residual calculated during non-speech activity.

The above described basic principles of spectral subtraction follow the orig-

inal work of Boll [11], who used c = 1 (magnitude spectral subtraction). An-

other common alternative is power spectral subtraction with c = 2 [63, 79].

The noise estimate, Eq. 4.6, is obtained during a non-speech segment and

may be updated based on the decision of a voice activity detector in order

to adapt to changes in the noise environment [79]. In Publication II, power

spectral subtraction is used as preprocessing for a speaker verification system

operating in noisy conditions.

Wiener filtering is another popular approach for noise removal. The mean

squared error of the filtered target signal is minimized [54]. In the frequency

domain, the noncausal Wiener filter is obtained based on the power spectra

of both the desired signal and the noise, which must be known. This kind of

filter is given by [63, 79]

H(z) =
|S(z)|2

|S(z)|2 + |V (z)|2
. (4.9)

In practice, this Wiener filter cannot be realized as the power spectra of both

the desired signal sn and the noise vn would have to be known, and at least the

former spectrum is unknown due to the very nature of the noise reduction prob-

lem. In order to work around this problem, iterative solutions which base new

estimates of the Wiener filter on the enhanced signal obtained by the previous

iteration’s Wiener filter estimate can be used as first described by Lim and Op-

penheim [78, 79]. Hansen and Clements [50] proposed a constrained approach

to iterative Wiener filtering which imposes, in each iteration, across-time and

across-iterations constraints affecting the newly estimated Wiener filter. Non-

iterative approaches based on different types of a priori SNR estimation have

also been developed for implementing Wiener filtering [62, 79, 116].

The minimum mean square error (MMSE) [38] and log-MMSE estimators

[39], proposed by Ephraim and Malah in 1984 and 1985, respectively, are

also efficient speech enhancement methods, whose performance still remains

among the best of the published methods [94]. In the form that these methods

were introduced, they involve the decision-directed estimation approach [38],

which bases the spectral estimate of each frame partially on the estimates from

previous frames via the a priori SNR estimate updated by using a memory

coefficient. This can be viewed as one way of utilizing long-term information

for speech enhancement. It has been argued that the absence of musical noise

observed with the Ephraim and Malah noise suppression methods is primarily
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due to the decision-directed approach [23, 116]. Scalart and Filho [116] ap-

plied the decision-directed estimation of a priori SNR also to implementing

other methods, such as power spectral subtraction and Wiener filtering, and

observed reduced musical noise. More recently, long-term modulation domains

have been increasingly utilized in speech enhancement [73, 94, 96, 117]. Re-

cently, spectral subtraction [96] and the decision-directed MMSE [94] methods

have been applied in the spectral modulation domain, i.e., separately for each

short-time frequency component across frames, and the latter method has been

found to better handle speech nonstationarity by being able to utilize shorter

long-term analysis windows to arrive in the spectral modulation domain.

4.4 Robust feature extraction

Some feature extraction approaches place particular emphasis on robustness.

That is, the performance of a speech processing system using these methods is

expected to degrade less in the presence of distortions and/or mismatch than

when using a standard feature set.

On the short-time frame level, two main approaches to robust feature extrac-

tion can be distinguished. The “signal processing approach” relies on signal

processing methods without additional perceptual considerations. For exam-

ple, standard DFT spectrum analysis can be replaced with another spectrum

analysis method that exhibits better robustness performance in the applica-

tion domain. These non-perceptual methods may involve implicit assumptions

that improve their performance with certain types of signals. The spectrum

analysis methods studied in Publications I to VI fall into this category. Their

common background is reviewed in Section 4.4.1.

An alternative approach to improving robustness is by means of improved

perceptual modeling. The “perceptual approach” is justified by the notion that

it is difficult to go very wrong in terms of robustness by modeling the human

auditory perception, which is known to be quite robust [57]. However, high-

level neural processing plays an important role in perception and, due to a lack

of knowledge, it is more difficult to model than peripheral processing. This lack

of psychoacoustical knowledge places practical boundaries on robustness gains

obtainable by using perceptual models, which are largely confined to modeling

the peripheral processing. While the popular MFCC feature extraction is

already perceptually motivated–it employs spectrum analysis on a nonuniform

frequency scale, similarly to the basilar membrane, as well as a compressed

(logarithmic) dynamic range–it is not a complete model of peripheral auditory
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processing. Different ways to model peripheral functions are employed in order

to include additional aspects of auditory perception.

After initial computation of short-time features, the robustness of the feature

vector sequence can be increased by certain post-processing operations which

typically consider longer time intervals and many frames. Such an approach

can easily boost certain modulation frequencies. Modulation frequency selec-

tivity is another, high-level (neural) perceptual function whose accurate mod-

eling may improve system performance. Finally, some perceptual approaches

aim to integrate short- and long- or medium-term processing.

4.4.1 Robust spectrum analysis

The basic method of spectrum analysis, which makes minimal assumptions

about the signal, is the periodogram, which is implemented by dividing the

squared magnitude of the DFT by the number of points in the DFT (Eq. 2.8).

It works well with a sufficient amount of clean observations of the data, but

runs into problems with short analysis frames containing noisy observations

[53]. In one study, simply differentiating the power spectrum with respect to

frequency in a MFCC-like framework improved the noise robustness in speech

recognition experiments [24]. Other non-parametric spectrum estimation tech-

niques [53], such as the Thomson [128] and multitaper methods have led to

improved noise robustness in speaker verification [72]. Replacing the MFCC

filterbank with another speech-signal-based triangular filterbank, optimized on

large speech corpora so that filter bandwidth is inversely proportional to area

in the logarithmic average short-time speech spectrum, has also shown promise

[95].

A parametric alternative to DFT is to assume that the signal follows an au-

toregressive (AR) model and to use LP to generate an estimate of the spectrum

envelope (Section 2.2.2). In different studies, automatic speech and speaker

recognition performance has been found to improve in mismatched noisy con-

ditions simply by substituting LP for DFT as the spectrum analysis method,

e.g. [28, 101]. Time-weighted variants of LP, such as weighted linear predic-

tion (WLP), have been observed to lead to further potential performance gains

[101, 103]. Because of the promise shown by time-weighted linear predictive

methods in feature extraction for machine learning applications, this thesis

focuses on the time-weighted, parametric approach in the context of robust

spectrum analysis.

WLP was originally introduced by Ma et al. in [81] and applied in the context

of formant analysis. It is a generalization of LP in which the error energy to
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be minimized,

EWLP =
∑
n

(
sn −

p∑
k=1

aksn−k

)2

Wn, (4.10)

involves a temporal weighting of the squared prediction error by the weighting

function Wn. While Ma et al. investigated both discrete- and continuous-

valued weighting, in subsequent applications, this weighting function has typ-

ically been chosen as the short-time energy (STE) of the p samples prior to

the predicted sample (the p samples on which linear prediction with order p

is based):

Wn =

p∑
i=1

s2n−i. (4.11)

This weighting places emphasis on high-energy regions, as they can be assumed

to be less affected by stationary additive noise; insofar as the SPL of the noise

stays the same, larger values of the STE must reflect higher SPLs of the source

signal (speech) and, therefore, higher local SNRs. Naturally, the STE will also

be affected by transients and non-stationarity of the noise. With sufficiently

low overall SNR, the within-frame dynamic variation of non-stationary noise

will overwhelm that of speech and render STE weighting ineffective.

Similarly to conventional LP (Section 2.2.2), setting the partial derivatives

of Eq. 4.10 with respect to each ak to zero yields the normal equations

p∑
k=1

ak
∑
n

Wnsn−ksn−i =
∑
n

Wnsnsn−i, 1 ≤ i ≤ p, (4.12)

whose solution gives the WLP model. When Wn is a nonzero constant, it

cancels out from both sides of the equations, and WLP reduces to conventional

LP. With the notation sn = (sn−1 . . . sn−p)
′ and a = (a1 . . . ap)

′, the normal

equations can be expressed in matrix form as

(∑
n

Wnsns
′
n

)
a =

∑
n

Wnsnsn. (4.13)

Both sides of Eq. 4.13 involve weighted sums of autocorrelation “snapshots”;

instantaneous matrices sns
′
n and vectors snsn are summed on the left-hand

side and the right-hand side, respectively. Incidentally, the commonly used

STE weighting function Wn =
∑p

i=1 s
2
n−i is the squared Euclidean norm of

vector sn and the Frobenius norm (as well as the trace) of matrix sns
′
n.

Publications I, II and IV to VI of this thesis specifically investigate time-

weighted linear predictive methods, all of which are relatives of the basic
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WLP method described above. In general, they use more elaborate weighting

schemes than the straightforward scheme given by Eqs. 4.10 and 4.11.

Several other parametric spectrum analysis methods have been published

with a stated aim of robustness with respect to some effect, e.g., [37, 76, 88].

Minimum variance spectrum estimation, originally proposed by Capon in

1969 [22, 53] and applied to speech processing by Murthi and Rao [88] in the

constrained variant ofminimum variance distortionless response (MVDR), has

found application in robust feature extraction for ASR [31, 32, 134, 138]. In

general, MVDR produces an all-pole model which has a particularly smooth

envelope spectrum. In the first ASR studies [31, 32, 134], it was applied as

a replacement of the FFT spectrum estimate in MFCC computation in order

to improve additive-noise robustness. Publication I compares MVDR in this

kind of framework against another spectrally smooth all-pole method which

is a descendant of WLP.

The linear-predictive approach proposed by Lee [76] and the discrete all-pole

modeling proposed by El-Jaroudi and Makhoul [37] have been used as robust

formant estimation methods. In Publication V, they are among the methods

evaluated in F0-robust formant analysis together with variants of WLP.

4.4.2 Improved perceptual models

The human auditory system can be considered robust in terms of dealing with

degraded auditory input, at least in comparison to basic recognition techniques

such as feature extraction with MFCCs and delta coefficients. These basic

techniques do already take into account some perceptual knowledge in the

feature representation. Nevertheless, many methods have achieved increased

robustness, especially in the field of ASR, using more careful emulation of the

functionality of the auditory system [57].

In addition to MFCCs, perceptual linear prediction (PLP) [56] is another

popular auditory spectral feature extraction technique. The technique first

weights the auditory filterbank outputs with an equal loudness curve. Then

the intensity-loudness compression is simulated by taking an approximate cu-

bic root (power 0.33) of the weighted filter outputs. The resulting auditory

power spectrum is transformed into an autocorrelation sequence by determin-

ing the IDFT and, finally, an LP model is estimated using the conventional

autocorrelation method. The LP-to-cepstrum conversion formulas (Eqs. 2.18-

2.19) can be used to convert the PLP filter to a cepstrum. Because of the

auditory frequency warping, fewer coefficients are necessary to represent the

spectrum while still containing roughly the same information in a perceptual
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sense. This is analogous to the mel-frequency cepstrum, which requires fewer

coefficients than an ordinary cepstrum because the auditory frequency warping

focuses more efficiently on the relevant information in many applications.

Perceptual MVDR-based cepstral coefficients and Perceptual MVDR [32, 138]

are feature extraction methods that rely on combining MVDR spectrum esti-

mation with perceptual considerations. They have shown improved robustness

in automatic speech recognition.

Power-normalized cepstral coefficients [70, 71] are a newer, successful tech-

nique for improving feature extraction robustness through direct auditory cep-

stral analysis. In this method, feature extraction is based on a gammatone

filterbank (a physiologically motivated auditory model of cochlear processing),

temporal masking and noise suppression are modeled on the medium-term

time scale of 50 to 120 ms and an auditorily motivated power-law nonlinearity

(instead of the logarithmic compression used in, e.g., the MFCCs) is applied

before the discrete cosine transform that leads to cepstral coefficients [71].

In comparison to these models, the approach chosen for feature extraction

in Publications I to IV and Publication VI is to focus on robust spectrum

analysis methods that do not explicitly model peripheral auditory processing.

In these studies, peripheral processing is separately modeled by the conven-

tional MFCC framework. However, the robust spectrum analysis methods

under study may also be applicable in combination with some of the above

mentioned perceptual feature extraction processes.

4.4.3 Feature post-processing

Popular approaches to speech feature postprocessing in order to improve the

robustness of a machine learning system include short-time, frame-level meth-

ods such as vocal tract length normalization (VTLN) [35] and long-term meth-

ods (modulation filtering and cepstral normalization).

RASTA modulation filtering is part of the RASTA-PLP speech analysis

technique proposed by Hermansky and Morgan [58]. In its original form, an

IIR temporal filter with the transfer function

H(z) = 0.1z4
2 + z−1 − z−3 − 2z−4

1− 0.98z−1
(4.14)

is applied to bandpass filter the time evolution (across frames) of each critical-

band bin of the logarithmic auditory spectrum. With typical frame-shift in-

tervals of about 10 ms, corresponding to frame rates of about 100 Hz, the

RASTA filter focuses on the modulation frequency range that is important
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both in terms of the sensitivity of hearing [7] and in terms of the modulation

frequency content in speech [49]. In later studies on machine learning applica-

tions, e.g. [21], RASTA filtering has been applied as a filter which emphasizes

the focus on the important, speech-specific modulation frequencies.

Let us assume that {Sk} and {Hk} in Eq. 2.17 are the source signal spectrum

and the spectrum of a transmission channel, respectively. Furthermore, we

assume that {Hk} may change from session to session or slowly even during

the same session, causing unpredictable mismatch. Then, it would be useful

to subtract its effect from the composite cepstrum {Cj} so that we would only

be left with the cepstrum of the source signal. If the change of the cepstrum

component IDFT ({log |Hk|}) from frame to frame is very slow, the composite

cepstrum {Cj} can be averaged over a suitable number of frames so that

the contribution of the source signal is averaged out but the slowly changing

component remains. Subtraction of such a medium-term average cepstrum

from {Cj} leaves IDFT ({log |Sk|}), an estimate of the instantaneous cepstrum

of the source signal. This operation is called cepstral mean subtraction (CMS).

To reiterate, a medium-term average cepstrum is subtracted from the cepstral

feature vectors [5, 63] as

ĉn = cn −
1

N

N∑
i=1

cn−o−i, (4.15)

where cn = (Cn,1, . . . , Cn,d)
′ denotes the cepstrum vector of the nth frame

and o is an offset in number of frames. This has the effect of making the

resulting feature vectors invariant to changes in the medium-term average

that is subtracted. Thus, it serves to increase robustness against stationary

or slowly changing background noise.

In addition to subtracting the medium-term cepstral mean, cepstral mean

and variance normalization (CMVN) also normalizes the variance of each cep-

stral coefficient to unity within the normalization and averaging window [63].
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5. Summary of the publications

Publication I: Stabilised weighted linear prediction

WLP, using the STE weighting function, is modified in a way that guarantees

the resulting all-pole synthesis filters to be stable. Besides being applicable

to synthesis applications, SWLP is observed to generally result in smooth

spectrum models, which is often indicative of robustness. For instance, MVDR

is an earlier method that also produces smooth spectrum models and has been

used in order to improve robustness in recognition applications.

SWLP is evaluated both in spectrum analysis and in feature extraction for

isolated word recognition in terms of robustness against increasing additive

noise corruption. In comparison to the conventional spectrum estimation

methods FFT and LP as well as MVDR, SWLP shows the best overall ro-

bustness performance.

Publication II: Temporally weighted linear prediction features for

tackling additive noise in speaker verification

In this study, WLP and SWLP are applied as spectrum analysis methods in

feature extraction for text-independent speaker verification.

It is found that the weighted all-pole methodsWLP and especially SWLP im-

prove upon conventional FFT and LP spectrum analyses in terms of additive-

noise robustness when each of these methods in turn is used as the initial

spectrum analysis method in MFCC feature extraction. WLP and SWLP

also show minor improvement over FFT in the clean condition, which may

be indicative of robustness with respect to speaker or telephone channel ef-

fects. Speech enhancement by spectral subtraction as a preprocessing step is

found to lead to large performance improvement in the noise-corrupted cases.
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However, the performance gain of SWLP, in particular, over the conventional

methods is preserved also in the cases with speech enhancement preprocessing.

Publication III: Detection of shouted speech in noise: human and

machine

A system is developed for detecting shouted speech events in the presence

of ambient acoustic noise by focusing on robust short-time spectral feature

extraction. The detection performance of the system is evaluated against that

of human listeners.

Two things in particular are found to improve additive-noise robustness: (1)

replacing conventional FFT spectrum analysis in MFCC feature extraction by

a method which multiplies a linear predictive envelope with a cepstrally sepa-

rated spectral fine structure that represents the vocal tract excitation and (2)

using a longer-than-normal MFCC feature vector without delta coefficients.

Furthermore, in the spectral multiplication in (1), adaptive weighting of the

excitation spectrum based on the spectral flatness of the envelope, as a mea-

sure of the noisiness of the frame, is used. Figure 5.1 illustrates the spectral

multiplication. The automatic detection system outperforms human listeners

at moderate SNRs of multitalker noise and matches human performance at

low SNRs.

Publication IV: Extended weighted linear prediction using the

autocorrelation snapshot - a robust speech analysis method and its

application to recognition of vocal emotions

The thus far most general formulation of time-weighted linear prediction,

whose focus on the information contained within the analysis frames can be

adjusted with few constraints, is presented. Implementations of the method

are applied to improving the additive-noise robustness of spectrum models in

feature extraction for speech emotion recognition.

It is found that two new information weighting schemes, made possible by the

new general formulation, both improve the robustness of the emotion recog-

nition system in cases with additive-noise mismatch. Figure 5.2 shows spec-

tra over one utterance obtained with conventional LP, WLP and extended

weighted linear prediction using a partial-weight approach (XLP-P) and the

two new weighting schemes (XLP-S1 and XLP-S2).

70



Summary of the publications

FFT(D) LP(A) Excitation(C)

S
N

R
 0

 d
B

CRLP(A×Cαμ)

A
m

pl
itu

de

S
N

R
 −

10
 d

B

8 kHz 8 kHz 8 kHz
Frequency

8 kHz

S
N

R
 −

20
 d

B

Figure 5.1. Example spectra based on a shouted vowel frame by a male speaker. The rows

correspond, from top to bottom, to SNR levels 0 dB, −10 dB, and −20 dB with

factory noise corruption. The columns correspond to different types of spectra.

Publication V: Formant frequency estimation of high-pitched

vowels using weighted linear prediction

A weighting function for WLP is designed to down-weight the contribution of

voiced speech excitation in the vicinity of glottal closure instants (GCIs). In

this study, the GCIs are obtained in the manner of an “oracle”, both by using

synthetic speech material, where the GCI locations are well known, and by

using natural speech material recorded simultaneously with an electroglottog-

raphy signal.

The results indicate that the formant bias, which particularly affects linear

predictive models when the fundamental frequency F0 is high, is greatly re-

duced by down-weighting the GCIs. With the help of the oracle knowledge,

the proposed approach shows clear improvement not only upon conventional

LP, but also upon previous linear predictive methods proposed for robust for-

mant estimation. The results thus support the use of the WLP approach for

F0-robust formant estimation. In Publication VI, the same method is used to

improve glottal inverse filtering with GCI locations determined automatically

from the speech signal [1].
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Figure 5.2. Example spectra of LP, XLP-P and XLP-S1 over one utterance of the anger

emotion category. Upper panels: clean speech. Lower panels: the same utter-

ance with noise corruption by factory noise at SNR 0 dB.

Publication VI: Mixture linear prediction in speaker verification

under vocal effort mismatch

A stochastic approach to weighted linear predictive spectrum modeling of a

signal frame, based on a mixture autoregressive model whose one state (com-

ponent) is considered as the target, is presented. The method has the ability to

focus on different aspects of the signal according to initialization of the spectral

and amplitude characteristics of target and non-target states prior to iterative

parameter estimation using the EM algorithm. It is shown that the proposed

method can be viewed as a form of WLP weighted using state posterior prob-

abilities of the mixture model. Motivated by the results of Publication V, a

special case of the proposed general method is developed to tackle the issue

of formant bias due to the fundamental frequency F0 by avoiding GCIs in the

temporal domain. In speech, changes in F0 can be induced, e.g., by changes

in vocal effort (e.g., alternating between normal and shouted voice). The ap-

plication under study is text-independent speaker verification with mismatch

induced by variation of vocal effort, and the proposed method is applied in

order to improve the robustness.

The proposed method is found in the experiments to improve the vocal-

effort robustness of two speaker verification systems by avoiding the GCIs in
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Figure 5.3. Left: A Hamming-windowed speech frame (vowel from a female speaker sam-

pled at 16 kHz) with different weighting functions. STE is the weighting scheme

generally used with WLP. GMLP weights, which tend to avoid GCIs, result

from iterative EM re-estimation based on the initial autoregression templates.

Right: The corresponding spectra of FFT, LP, WLP, and GMLP (p = 20),

including the initial spectra of the GMLP states.

probabilistic weighting of the signal information. Figure 5.3 illustrates the

evolution of the spectra associated with two mixture components, and the

corresponding probabilistic weighting function, during the course of iterative

EM model parameter estimation.

Publication VII: Multi-scale modulation filtering in automatic

detection of emotions in telephone speech

Autoregressive filters on several time scales are used to predict short-time

acoustic features of speech. Such prediction is used as filtering to emphasize

modulation frequencies specific to a target emotion class in detecting activation

and valence in telephone speech.

The results on the Berlin database with simulated far-end noise corruption

and narrowband telephone channel show that detection robustness is improved

by the proposed filtering method. When combined with automatic training

data selection, also based on the filtering method, valence detection is also

improved in the clean test condition, suggesting that the method can also

tackle speaker-related mismatch. Figure 5.4 shows the effect of the filtering

on auditory spectra transformed back from mel-frequency cepstral coefficients.
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Figure 5.4. Top panel: mel-scale spectrogram, with 40 bins, transformed back from MFCCs

for a neutral telephone utterance (original label 03a01Nc) corrupted by car

interior noise (SNR 0 dB). Lower panels: mel-scale spectrograms for the same

utterance after filtering the original MFCCs with multi-scale autoregressive

predictors for classes “anger”, “neutral” and “happiness”.

Publication VIII: Feature selection methods and their combinations

in high-dimensional classification of speaker likability, intelligibility

and personality traits

A feature-intensive approach to paralinguistic speech classification is investi-

gated from the point of view of feature selection. Several new feature selection

methods are evaluated individually and in different combinations in classifica-

tion problems in which a large and comprehensive set of long-term (utterance-

level) features is available, but the amount of training data is very small for

the feature space dimensionality.

The newly proposed supervised feature selection methods–random subset

feature selection (RSFS), feature selection as a set-covering problem of su-

pervised classifications (SSCP) and statistical-dependency feature selection

(SD)–each provide positive results in terms of (1) similar or improved classi-

fication accuracy (using a kNN classifier) as compared to the full feature set;

(2) similar or improved classification accuracy in comparison to established

feature selection methods, sequential forward selection (SFS) and minimum-

redundancy-maximum-relevance (MRMR); and (3) clearly reduced computa-

tional load with respect to MRMR and SFS. In addition to the supervised

methods, completely or partially unsupervised methods are found to be able

to improve feature selection results when included in various combinations of

feature selection methods.
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6. Conclusions

This thesis consists of studies on robust speech processing methods. They

tackle spectral feature extraction using all-pole models (Publications I to VI),

modulation filtering that emphasizes class-specific long-term dynamics of fea-

ture vector sequences (Publication VII) and feature selection for long-term

(utterance-level) features (Publication VIII). A common theme in all studies

was to find ways to better emphasize and uncover information that may benefit

analysis and machine learning systems in speech processing. The applications

under study fall into the broad categories of ASR (Publication I), speaker

recognition (Publications II and VI), speech event detection (Publication III),

speech paralinguistics (Publications IV, VII and VIII) and formant analysis

(Publication V).

The modeling of human auditory perception has often been found benefi-

cial in improving the robustness of speech analysis systems subject to variable

operating conditions, such as additive noise, channel variation and speaker-

related variation in speaking style. The eight studies in this thesis can be

divided into those that concern short-term (Publications I to VI) and long-

term (Publications VII and VIII) modeling of the acoustic properties of speech.

In the physiological sense, short-term and long-term modeling can be roughly

associated with the auditory periphery and the neural auditory pathway, re-

spectively. In the perceptual or psychoacoustical sense, short-term methods

model timbre, pitch and loudness, while long-term methods model subjective

duration or rhythm.

In general, the relative importance of short-term and long-term modeling is

determined by the application at hand. In paralinguistic analysis, for exam-

ple, long-term modeling is typically important in order to distinguish between

different types of speech which may have similar short-term characteristics but

differ in the long-term modulation frequency content. This is demonstrated by

the results of Publications VII and VIII. These studies used different methods
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of emphasizing long-term information in order to achieve improved recognition

accuracy. In Publication VII, autoregressive modulation filtering of short-term

features on multiple time scales improved the detection of affective dimensions

over the baseline, which used only timbral features. Improvement was obtained

both with clean speech (speaker-related mismatch only) and in the presence

of additive-noise mismatch. This filtering approach, which emphasizes the

modulation dynamics of its trained target class, is generic and modular and

thus potentially applicable in various problems as a feature postprocessing

step. In Publication VIII, starting from a large and comprehensive set of

different long-term features that parametrized different acoustic effects over

utterances, combinations of novel feature selection methods were able to find

feature subsets that better focused on the target classes despite speaker-related

variability. A combination of different kinds of supervised and unsupervised

feature selection criteria was found to be a promising approach. The proposed

feature selection methods achieved or exceeded the performance level of the

earlier feature selection approaches evaluated, but with a reduced computa-

tional cost. Analysis of the types of long-term features uncovered by several

different feature selection criteria showed that different features performed

best in the seven different speaker trait recognition tasks.

On the short term, robust spectrum analysis methods were studied. A stabi-

lized version of WLP (Publication I) improved the robustness of isolated word

recognition (Publication I) and text-independent speaker verification (Publica-

tion II) with respect to additive noise corruption. A generalized formulation

of time-weighted linear prediction was presented and applied to improving

the additive-noise robustness of speech emotion recognition (Publication IV).

In Publication III, the spectrum envelope obtained using a linear predictive

method and the spectral fine structure obtained using cepstral analysis were

combined by multiplication in order to improve the robustness of a shout-event

detection system in the presence of ambient noise. Publication V applied “or-

acle” weighting functions in WLP in order to exclude the contribution of the

voiced excitation of speech and to reduce the biasing of formant estimates.

Publication VI presented a stochastic mixture decomposition approach to lin-

ear predictive modeling and applied it to robust feature extraction in speaker

verification under vocal effort mismatch.

Many problems of automatic speech analysis are complex and subject to

large variability in terms of conditions such as noise, channel and speaking

style. A large number of features is typically needed to represent all of the

short-term and long-term acoustic effects that can possibly be relevant for a
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given analysis problem. This easily leads to problems of insufficient training

data brought about by high dimensionality. Instead of tackling this issue with

more complex and/or specialized pattern recognition and machine learning

models, this thesis set out to develop feature extraction methods that can be

customized according to the analysis problem to better focus on important as-

pects while limiting the influence of misleading or irrelevant information. The

results of Publications I to VIII indicate that the robustness of speech pat-

tern recognition and speech analysis can indeed be significantly improved by

the approach of making feature extraction more specific to the analysis prob-

lem at hand–an idea that is complementary to the currently prevalent black-

box/brute-force trend in the sense that it may be able to further improve the

performance of those systems. Considering that the methods proposed are, by

their nature, nevertheless rather generic and mostly well customizable, they

are believed to have potential for future applicability in various feature extrac-

tion and analysis problems in speech, audio and signal processing applications.
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