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Abstract 
Nanotechnologically fabricated structures out of compound semiconductor materials make 

up the functional parts in LEDs, in semiconductor lasers and in electronics components. The 
small size of the structures evidently leads to requiring the modeling to look at phenomena at 
the quantum level. Especially for optoelectronical devices, one needs to treat the interaction 
between light and semiconductor material. This research adds to the understanding of inter-
pretations of light-matter interaction phenomena and makes it possible to find totally new and 
undiscovered functionalities in semiconductor nanostructures. 

 This thesis presents work on modeling and creates new theoretical foundations for phenom-
ena appearing in semiconductor quantum structures. Of special interest has been to generate 
a theoretical description to such phenomena that have been caused by an optical field and in 
which one sees changes, e.g., in angular momentum or spatial distribution of excited states. 
Basically, two kinds of structures are examined, quantum rings and wells. A quantum ring is a 
toroidal object of which volume is very small, but its diameter can be significant when com-
pared to the wavelength of light. Another class of systems under study is a double quantum well 
structure, where there are two quantum wells on both sides of a tunnel barrier. In this system, 
the type-I and type-II semiconductor band-structure properties become combined in spatial 
coordinates, since the electrons and holes can occupy either the same or the separate quantum 
wells. 

 The two most interesting results are the angle-of-emission dependent photoluminescence 
from the quantum rings and the coherent control of vertical transport of desired quasiparticles 
through material interfaces in the quantum-well system in a selective manner. Since the ob-
tained results on quantum rings are closely connected to the orbital-angular-momentum 
coupling between light and matter, they can prove to be important in different quantum infor-
mation schemes where this angular-momentum aspect of light has been found to be highly 
beneficial. In quantum optics, there already are visible trends towards this direction. The 
predicted coherent control in a double-quantum-well system may mean a large technological 
progress, since by utilizing this effect one can study transport properties between materials 
over an interface, one of the most interesting examples of such phenomena being the transfer 
of quantum correlations through the interface without changing the local densities of electrons. 
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Tiivistelmä 
Puolijohdemateriaaleista valmistetut nanorakenteet ovat funktionaalinen osa ledeissä, puoli-

johdelasereissa ja elektroniikan komponenteissa. Rakenteiden pieni koko johtaa väistämättä 
siihen, että toiminnallisuuden mallintaminen ja ymmärtäminen edellyttää kvanttimaailman 
ilmiöiden tarkastelua. Optoelektronisten laitteiden teoreettisen tutkimuksen kannalta tämä 
tarkoittaa valon ja puolijohdemateriaalin välisen vuorovaikutuksen tutkimista. Tämä tutkimus 
lisää tietämystä siitä kuinka valo ja materia vuorovaikuttavat keskenään sekä mahdollistaa 
täysin uusien toiminnallisuuksien löytämisen. 

 Väitöskirjassa luodaan uutta pohjaa kvanttirakenteissa esiintyvien ilmiöiden selittämiseen. 
Mielenkiinnon kohteena on ollut generoida teoreettinen kuvaus sellaisille optisen kentän ai-
heuttamille ilmiöille, joissa puolijohteiden viritystiloissa nähdään muutoksia esimerkiksi 
liikemäärässä tai spatiaalisessa jakaumassa. Työssä tarkastellaan kahta rakennetyyppiä, kvant-
tirenkaita ja -kaivoja. Kvanttirengas on toroidin muotoinen objekti, joka on tilavuudeltaan 
hyvin pieni. Toinen tarkasteltava systeemi on kaksoiskaivorakenne, jossa tyypillisen kvantti-
kaivon sijasta onkin kaksi kaivoa yhden tunnelointikerroksen eri puolilla. Jälkimmäisessä 
rakenteessa yhdistyvät tyypin I ja tyypin II puolijohdeominaisuudet paikka-avaruudessa, jossa 
elektronit ja aukot voivat olla joko samassa tai vaihtoehtoisesti eri kaivossa. 

 Tärkeimmät tulokset ovat kvanttirenkaiden tapauksessa löydetty valon emissiokulmasta 
riippuva fotoluminesenssi sekä kaksoiskaivorakenteen yhteydessä ennustettu eri kvasi-
hiukkasten paikan koherentti kontrollointi selektiivisesti. Koska tulokset kvanttirenkaiden 
osalta ovat kiinteästi yhteydessä ratakulmaliikemäärän vaihtoon sähkömagneettisen kentän 
ja puolijohteen kvanttitilojen välillä, voivat saavutetut tulokset osoittautua merkittäviksi 
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1. Introduction

1.1 Background

The progress in nanofabrication techniques during the past decades has

opened the possibilities to manufacture wide variety of semiconductor

quantum structures with reduced dimensionality. In general, these struc-

tures can be divided into quantum-well (QW), quantum-wire (QWI) and

quantum-dot (QD) structures that are quasi-two-, one- and zero-dimen-

sional systems, respectively. The oldest and the most studied of these

structures is QW, which history dates back to the 70’s when the first ex-

perimental verifications of these heterostructures where made [1, 2]. The

applications of various quantum structures include several different types

of lasers [3–5], solar cells [6, 7], memories for data storage [8–10] and

single-electron devices [11–13], to name only a few examples.

Theoretical work on the physics of semiconductor nanostructures spans

over several subfields ranging from the band-structure and quantum-

confinement calculations to formulation of suitable many-body theories

[14, 15]. It is highly important to study and develop these theoretical ap-

proaches in order to understand the fundamentals of physical phenomena

occurring in these systems. The obtained knowledge is not only usable to

characterize and enhance the properties of the fabricated structures, but

it can be also applied to design completely novel devices to meet emerg-

ing technological demands. This theoretical research has already opened

new fields of physics, including the semiconductor quantum optics [15],

and proven its importance through several applications, like the quantum

cascade laser [16], that were predicted before any experimental demon-

strations.
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Introduction

To study the fundamental properties of semiconductor optoelectronic

devices, it is essential to understand the details of light–matter interac-

tions in these systems and how the properties of electronic states change

in optical transitions. In semiconductors, the optical transitions cover

the energy range from millielectron volts of intraband transitions up to

electron volts related to interband processes. This thesis is divided into

two branches where the optical transitions that drastically change spa-

tial properties of electrons are studied in two model systems. In the first

system, interband transitions are studied in quantum-ring (QR) struc-

tures with submicrometer diameters. The second system consists of a

double-QW structure with both type-I and type-II characteristics, where

holes, i.e. missing valence band electrons, are confined to one of the wells

whereas conduction band electrons can be in either of the QWs. In this

system, the study is focused on intraband transitions.

Properties of the structures similar to those of the two model systems

have been intensively studied during the last decades, as discussed in

Chapters 3 and 4. However, one common feature between the studied

systems is that they seem to lack systematic microscopic studies on the

so called doublet level [15]. This level of quantum-mechanical theory is

needed, e.g., to accurately study the properties of incoherent excitons and

light fields [15]. These again are required for proper modeling of several

processes related to the inter- and intraband transitions, like photolumi-

nescence (PL) emitted from excited states [15] and transitions between

exciton states [17].

1.2 Objectives and scope

The main aim of this thesis work is the formulation of microscopic theories

for the model systems on the doublet-level accuracy and to use these theo-

ries to find new effects that can be utilized for optoelectronic applications.

Based on the preliminary results obtained from the theoretical models,

two additional primary objectives for this thesis emerged. In the QR

system, this objective is the demonstration of orbital-angular-momentum

(OAM) coupling between the ring and the optical field, even in the case

of plane-wave modes of light. The corresponding aim in the QW system

was found to be the proving of the plausibility of a selective transport of

different excitations through internal interfaces of heterostructures.

2



Introduction

All the relevant research questions are treated in six journal articles.

For the QR system, this thesis includes results starting from the char-

acterization of single-particle (SP) properties of carrier states (electrons

and holes) presented in Publication I. The interband transitions where

a classical plane-wave field induces OAM change of electronic states is

studied in Publication II. In Publication III, the quantized optical field

is introduced to provide the luminescence Elliott formula [15] that can be

applied to arbitrary light modes and semiconductor structures. This for-

mula is used in Publication IV to demonstrate the detectability of light–

matter OAM coupling in QRs via angle-resolved PL. Publication V con-

centrates on the double-QW structures, where also a novel idea of a pure

correlation-transport effect is demonstrated. The topic of Publication VI

considerably differs from the main themes of the thesis. However, the

quantum-mechanical SP problems, considered in this work, and the elec-

trodynamics of the ring-resonator system studied in Publication VI have

many similarities, which naturally connects these works. Throughout this

work, the practical applicability of the results are considered by choos-

ing realizable or existing structures whenever numerical results are com-

puted.

The research methods used in this work are based on the envelop-func-

tion formalism [14] used to find the SP properties of electrons and holes.

The related many-body problems are studied in the second quantization,

where the emerging hierarchy problem is handled with the cluster-ex-

pansion approach [15]. The used methods are summarized in Chapter 2,

which also includes a brief summary of the connection between SP quan-

tum mechanics and the propagation of electromagnetic waves in photonic

integrated circuits. The main results of the thesis are represented in

Chapters 3 and 4 for the QR and QW systems, respectively. The the-

sis is concluded in Chapter 5 with the discussion of possible application

schemes for the found effects and directions for further research.
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2. Theoretical concepts

The optical and electronic properties of semiconductors involves always

a quantum-mechanical many-body problem. It is usually beneficial to

model these properties by introducing quasiparticle states that include

many-body interactions while they otherwise resemble elementary par-

ticles. For example, the excitons, which are important for optical prop-

erties, are quasiparticle states formed by Coulomb-interacting electrons

and holes [18]. Even the charge carriers, which are here considered as SP

states, are not elementary particles but rather quasiparticles that include

features like the electron–ion Coulomb interactions [15].

The second quantization is the most common method to formulate many-

body theories in semiconductor systems. The benefits of using this method

include the systematic way to handle creation and annihilation of charge

carriers and quasiparticles, resulting from the coupling with electromag-

netic fields. The formulation of second-quantization models involves ma-

trix elements that are related to the solutions of the SP states. Thus,

the many-body problems in semiconductors can be approached by first

solving the properties of electronic states. Furthermore, the dynamics

of a many-body system always introduces the Bogoliubov-Born-Green-

Kirkwood-Yvon (BBGKY) hierarchy problem, which in general cannot be

explicitly solved [15]. In this thesis, the cluster-expansion approach [17] is

used to resolve the BBGKY problem and to provide approximate solutions

for many-body dynamics.

In this Chapter, the theoretical methods used in this thesis to solve

the described issues are summarized. The presentation is started from

the envelope-function approximation for the SP states in quantum struc-

tures. This is followed by the description of the used optical fields and the

second-quantization system Hamiltonians. At the end, a short description

of the cluster-expansion approach is given.
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2.1 Carrier states in nanostructures

In this work, the envelope-function approach is used to model the single-

particle properties. This approach for quantum structures was introduced

by Bastard [19, 20] and more explicitly studied by Burt [21–23] and sev-

eral other authors [24–26]. The simplest form of the envelope-function

approximation is adopted in this thesis by assuming that the wave func-

tions ψλ,i(r) for electronic states are given by

ψλ,i(r) = ξλ,i(r)wλ(r), (2.1)

where ξλ,i(r) is the envelope-function part defined by the quantum num-

ber (λ, i) and wλ(r) is the crystal periodic Bloch function at the Γ-point of

the Brillouin zone [14]. In addition, the two-band approximation is used

where the band index λ can only have values λ = c or λ = v for the ener-

getically lowest conduction and highest valence band, respectively. Also

the band index λ = h is used for the holes that correspond to missing elec-

trons in the band λ = v. The used approximation is valid when the prop-

erties involving the conduction and valence band electrons close enough

the band edges are studied and all the other bands are energetically well

separated from the bands λ = c and λ = v at the Γ-point.

The index i, appearing in Eq. (2.1), is a set of three quantum numbers

in the most general case where all spatial dimensions are considered. If

the movement of carriers is restricted in one or more dimensions, the

corresponding parts of the envelope functions are called as confinement

functions. For example, in QWs where carriers are confined in z direc-

tion, the envelope function is given by ξλ,i(r) = eik‖·r‖ξλ,l(z)/
√S, where

ξλ,l(z) is the confinement function defined by the confinement index l that

can have only discrete values for truly confined states. In here, S is the

quantization area and the remnant part of the index i is given by the

two-dimensional quantum number k‖ that defines the momentum of the

electronic state in the QW plane, in which r‖ defines the spatial location.

The envelope functions are solved from the effective-mass Shrödinger

equation [
− h̄2

2m∗
λ,‖

∇2
‖ −

h̄2

2m∗
λ,⊥

∂2

∂z2
+ Uλ(r)

]
ξλ,i(r) = Eλ,iξλ,i(r), (2.2)

where Eλ,i is the SP energy, Uλ(r) is the confinement potential and m∗
λ,‖

is the effective mass of the band λ in the structure plane that is always

selected to be perpendicular to the z axis. The corresponding mass to

6
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the growth direction is denoted by m∗
λ,⊥ and ∇2

‖ is the two-dimensional

Laplace operator in the x-y plane. When formulating Eq. (2.2), similar

steps are taken as in Ref. [22] for the band that is energetically well sepa-

rated from all other bands. Furthermore, the interface contributions and

the spatial and energetic dependence of the effective mass is omitted. In

addition, Uλ(r) is assumed to be given directly by the band offsets between

the materials used for the structures. These are rather well justified ap-

proximations when considering SP states that are strongly confined inside

the structures and that are energetically near the band edges.

When numerical values for the effective masses and confinement poten-

tials are needed, the following approach is used. The same eight bands as

in the Kane’s k · p method [27] are selected for a more detailed study,

whereas the effects of the other bands are included only through the

Löwdin’s perturbation theory [28]. As the studied structures are always

thinner than the critical thickness, the materials of the structures can

be assumed to be strained [29, 30]. The effects of strain are studied

by following the steps in Ref. [31] where the approach of Pikus and Bir

[32] is applied for zincblende materials. At this stage, also some addi-

tional approximations are included, like the omission of terms causing

non-parabolicity of the bands. As a result, the strain correlated band en-

ergies are found for the Uλ(r) and for the effective masses. In addition, the

approach yields the heavy-hole–light-hole energy splitting at the Γ point,

which can also be caused solely by the confinement effects. This splitting

inflicts the mass-reversal effect where the highest energy hole band has

m∗
h,⊥ close to the bulk heavy-hole mass while m∗

h,‖ can approach the mass

of bulk light-hole band [30, 33–35].

The most beneficial reasons of using the above described method to ob-

tain approximate effective-mass values is based on numerical simplicity

simultaneously as it can be assumed to give more accurate results than by

just using the corresponding bulk values, e.g. it gives the mass reversal

that has also been experimentally detected. Furthermore, in the absence

of experimentally measured band parameters for the systems studied in

here, all the needed parameters for the described approach are quite well

documented for the considered III-V compounds. In this work, the param-

eters from Refs. [36, 37] are used. Since the focus of the thesis is in the

finding of qualitatively new effects that mostly depend on the geometry of

Uλ(r), a more detailed SP studies were omitted.

7



Theoretical concepts

2.2 Connection between the quantum mechanics of electronic
states and the propagation of waves in photonics

The way light propagates in integrated photonic circuits is determined

by the four classical Maxwell equations. By making three following as-

sumptions regarding the studied system, one is able to see the connection

between the wave equation for light modes and the Schrödinger equation

studied in the previous section. The first assumption is related to the

field intensities that are assumed to be small enough, so that the non-

linear optics is not needed. Secondly, the material should be macroscopic

and isotropic in a sense that one can relate the electric and the displace-

ment fields by multiplying with a real valued scalar dielectric function

ε(r), where explicit dependence on field frequency ω is omitted. Finally,

only harmonic modes with time dependence given by e−iωt are considered.

With these assumptions, Maxwell’s equations lead to the wave equation

for modes of the magnetic field, H(r), that is given by [38]

∇×
(

1

ε(r)
∇×H(r)

)
=

(
ω

c0

)2

H(r), (2.3)

where c0 is the vacuum speed of light.

If one compares the above equation to Eq. (2.2), it is found that Eq. (2.3)

is a generalization of the effective mass Scrödinger equation. Both equa-

tions are eigenvalue problems, even though the one is for scalar and the

other one for vector eigenfunctions. In Eq. (2.2), the SP carrier energies,

Eλ,i, are the eigenvalues of the problem while in the equation for H(r) the

corresponding values are the frequencies ω of the harmonic modes. In ad-

dition, carrier states of semiconductor structures are confined to locations

where Uλ(r) has a minimum. A similar effect in Eq. (2.3) is caused by ε(r),

where the light modes are concentrated into regions with high values of a

dielectric constant. A more comprehensive comparison between these two

system, especially in case of spatially periodic potentials and dielectric

constants, is given in Ref. [38].

In this thesis, qualitative solutions of Eq. (2.3) were analytically stud-

ied for the ring-resonator system in Publication VI. To some extent, this

study resembled the work done in Publication I. The obtained results

were used to improve the performance of fully numerical modeling of the

system, which included Eq. (2.3) explicitly. Furthermore, analytical ap-

proaches based on solutions of Eq. (2.3) were used to study the nature

of the equations of transmission characteristics of ring resonators [39].

These equations were then used in Publication VI to interpret experimen-
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tal results and to reduce the time needed to find near-optimal structures

for polarization independent broad-bandwidth ring-resonator systems.

2.3 Treatment of optical field

In this thesis, the E · r picture [15] is used to describe the light–matter in-

teractions by using either classical or quantized electric field E(r, t). The

simplest form of the field, used in Publication V, is the classical tera-

hertz (THz) field given by E(t) = E0 cos(ωt)êz, where the spatial depen-

dency of the field is omitted, E0 is the amplitude of the field and êz is the

unit vector to the z direction. A more general classical field is studied in

Publication II, where the field is given by its Fourier series expansion:

E(r, t) =
∑

qEq(t)e
iq·rê‖. In this equation, q is the wave vector of the

plane-wave component of the field, ê‖ is the polarization vector of the field

that is always assumed to be in the plane of the structure and the time de-

pendence is included in the amplitude term Eq(t). Throughout this work,

the wavelengths connected to the q modes are assumed to be reduced from

their vacuum values by the refractive index of the system.

A quantum description of light is needed when PL emitted from a semi-

conductor quantum structure is studied [15]. In the second quantization,

the optical field can be given by [15]

E(r, t) = i
∑
q

Eq

[
uq(r)Bq − u∗

q(r)B
†
q

]
, (2.4)

where Eq is the vacuum field amplitude and uq(r) is the mode function.

The time dependence of the quantized field is within the dynamics of pho-

ton annihilation, Bq, and creation, B†
q, operators.

Even though any possible mode basis in Coulomb gauge was consid-

ered for Publication III, all numerical results in Publications III-V are

obtained in the plane-wave basis. In this basis, the mode functions are

given by uq(r) = eiq·rêq/
√V, where V is the quantization volume and êq is

the polarization vector of the mode. Furthermore, for all QR results, the

polarization of modes were again selected to fulfill êq = ê‖.

9
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2.4 System Hamiltonians

The modeling of many-body effects in studied structures is started from

the second-quantization system Hamiltonian H that is given by the equa-

tion [15]

H = H0 +HC +HD. (2.5)

This Hamiltonian includes the contribution from the non-interacting car-

riers and photons

H0 =
∑
λ,i

Eλ,ia
†
λ,iaλ,i +

∑
q

h̄ωq

(
B†

qBq +
1

2

)
, (2.6)

where a†λ,i and aλ,i are the creation and annihilation operators, respec-

tively, for the carrier identified by index (λ, i). For the classical fields, the

contribution
∑

q h̄ωq(B
†
qBq + 1/2) is naturally omitted. The interactions

between the carriers are included in

HC =
1

2

∑
λ,λ′

∑
i1,i2,i3,i4

V λ;λ′
i1,i2;i3,i4

a†λ,i1a
†
λ′,i2aλ′,i3aλ,i4 , (2.7)

which in turn includes the Coulomb matrix element (CME)

V λ;λ′
i1,i2;i3,i4

=
e20
4πε

∫
d3rd3r′

ξ∗λ,i1(r)ξ
∗
λ′,i2(r

′)ξλ′,i3(r
′)ξλ,i4(r)

|r− r′| , (2.8)

where e0 is the elementary charge and ε is the dielectric constant of the

system. The light–matter interaction is given by HD that includes at least

one of the terms HD,class, HD,quant and HD,THz. Terms HD,class and HD,quant

describe the optical field induced interband transitions for the classical

and quantum fields, respectively. The intraband transitions driven by

classical THz field are included by HD,THz. By using the optical fields of

the previous section, the different dipole Hamiltonians are given by

HD,class = −
∑
q,i,i′

Eq(t)
[
dv,cD

q
i,i′a

†
v,iac,i′ + (dv,cD

−q
i,i′ )

∗a†c,i′av,i
]
, (2.9)

HD,quant = −
∑
q,i,i′

i
Eq√V dv,c

[
Dq

i,i′Bq +D−q
i,i′ B

†
q

]
a†v,iac,i′ + H.c. , (2.10)

HD,THz = ETHz(t)
∑
λ,i,i′

Dλ
i,i′a

†
λ,iaλ,i′ , (2.11)

where dv,c is the dipole-matrix element with respect to the crystal periodic

Bloch functions [14]. In here, the vector form of dv,c is assumed to be

parallel to the polarization vectors êq, for simplicity, and H.c. denotes the

Hermitian conjugate of the term preceding it.

The dipole matrix elements (DMEs) appearing in above equations are

calculated by using the method of length scale separation between the
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envelope/confinement functions and the crystal periodic function [14]; the

same method is also used to obtain Eq. (2.8). As a result, the highly im-

portant matrix elements for this work are given by

Dq
i,i′ =

∫
d3rξ∗v,i(r)e

iq·rξc,i′(r), (2.12)

Dλ
i,i′ = |e0|

∫
d3r ξ∗λ,i(r)zξλ,i′(r). (2.13)

The described system Hamiltonian is a rather general one. The only typ-

ically used extensions for this Hamiltonian would be the inclusion of the

effects given by lattice vibrations [15]. These vibrations could be described

by the quantized phonon field, which would lead to similar contributions

as with photons [15]. This, in turn, would lead to additional complications

when numerical calculations are done. However, at low enough tempera-

tures it can be assumed that the effects of lattice vibrations compared to

the whole system are small [15] and thus they are omitted since temper-

atures below a few tens of Kelvins are typically considered.

2.5 Low-density Wannier equation for excitons

After solving the single particle energies and envelope/confinement func-

tions from Eq. (2.2), and Coulomb matrix elements in Eq. (2.8), one can

formulate the low-density approximation for the Wannier equation [17],

which gives the excitonic states of the studied system when charge carrier

densities approach zero. In the general case, this equation is given by the

matrix eigenvalue problem

(Ec,i′ + Eh,i)φ
i,i′
ν −

∑
i1,i2

V c;v
i′,i1;i,i2φ

i1,i2
ν = Eνφi,i′

ν , (2.14)

where φi,i′
ν is the excitonic wave function for a state with energy Eν that

is defined by the exciton index ν. The excitonic energies are given with

respect to the system band gap Eg.

In the case of QW or QWI, where the movement of carriers is not re-

stricted at least in one dimension, the center-of-mass and the relative

movement of electrons and holes combined to the exciton state can be

separated [15]. Consequently, the relative-movement equation is found

to have one-to-one correspondence to the hydrogen problem [15], which

solutions can be divided into two groups. The solutions for the relative

movement that corresponds to energies below Eg are the so called bound

states that are often labeled as the hydrogen states for 1s, 2s, 2p, etc.

11
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This grouping is based on symmetries of the wave functions similarly as

in the atomic problem. The excitonic states where the energy of relative

movement is positive are the ionized solutions of the Wannier equation.

These ionized states constitute a continuous spectrum for excitonic ener-

gies in QW and QWI systems, in contrast to the bound solutions that have

discrete energies.

2.6 Dynamics of observables

In quantum mechanics, the experimentally measurable results for observ-

ables can be predicted by calculating expectation values of the related

operators. In semiconductor quantum optics, all observables can be con-

nected to N -particle operators [15], which expectation values are denoted

by 〈N〉. The one-particle operator corresponds either to one boson opera-

tor or to a pair of a carrier annihilation and creation operator. Thus, all

one-particle expectation values, 〈1〉, in this thesis are given by 〈a†λ,iaλ′,i′〉,
〈Bq〉 and 〈B†

q〉, whereas the N -particle expectation values for pure carrier

operators have always the form 〈a†λ1,i1
· · · a†λN ,iN

a
λ′
N ,i′N

· · · a
λ′
1,i

′
1
〉.

One possible approach to solve the expectation value for a general oper-

ator O is obtained via the Heisenberg equation of motion

ih̄
∂

∂t
〈O〉 = 〈[O, H]−〉. (2.15)

However, resulting from the structure of the system Hamiltonian defined

in Eqs. (2.5)–(2.13), it follows that the dynamics of each expectation value

of N -particle operator is coupled to the dynamics of (N + 1)-particle oper-

ator expectation value. Schematically this can be expressed by

ih̄
∂

∂t
〈N〉 = E[〈N〉] + V [〈N〉+ 1], (2.16)

where the functional E mostly follows from the non-interacting parts of

the system Hamiltonian while V is given by the interactions. As an ex-

ample, the dynamics of one-particle electron occupation f e
i ≡ 〈a†c,iac,i〉 with

respect to the Coulomb Hamiltonian is

ih̄
∂

∂t
f e
i

∣∣∣
HC

=
∑

λ,i1,i2,i3

V c;λ
i,i1;i2,i3

(
〈a†c,ia†λ,i1aλ,i2ac,i3〉 − 〈a†c,i3a

†
λ,i2

aλ,i1ac,i〉
)
,

(2.17)

which shows the coupling of f e
i to the carrier two-particle operators. This

coupling of dynamical equations leads to the BBGKY hierarchy problem,

which introduces a continuously complicating chain of equations that can-

not be closed [15, 17].
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2.7 Cluster-expansion method

Assuming that all SP states as well as relevant interaction matrix ele-

ments can be solved, the hierarchy problem indicated above is basically

behind all the complications in the semiconductor many-body studies, es-

pecially in systems with more than just a few possible states. As the

exact solution is generally infeasible, different approximate approaches

have been developed. These approaches include different methods based

on the Green’s functions approach, Feynman path integrals and density

functional theory, to name a few examples [15]. All of these approaches

have their own advantages and limitations. One of the most successful

approaches in practice, especially with problems involving semiconductor

quantum optics, has been the cluster-expansion method [17]. This method

has been used in Publication II-V, even though in Publication II it has

been adopted in the lowest level that corresponds to a more conventional

Hartree-Fock approximation [14, 15].

In the cluster-expansion method, the many-body quantities are system-

atically grouped into so called clusters, starting from the singlets corre-

sponding to the one-particle expectation values 〈1〉. The second level in

cluster expansion is the inclusion of doublets that consist of expectation

values of creation/annihilation operators of interacting pairs of particles.

This grouping of different clusters with increasing complexity can be con-

tinued to the desired level, which includes the expectation values of a

generic N -particle operator. The described recursive scheme can be ex-

pressed by [17]

〈1〉 =[〈1〉]S
〈2〉 =[〈2〉]S +Δ〈2〉
〈3〉 =[〈3〉]S + 〈1〉Δ〈2〉+Δ〈3〉
〈N〉 =[〈N〉]S + [〈N − 2〉SΔ〈2〉+ 〈N − 4〉SΔ〈2〉Δ〈2〉+ · · · ]D

+ [〈N − 3〉SΔ〈3〉+ 〈N − 5〉SΔ〈3〉Δ〈2〉+ · · · ]T

+

N−1∑
J=4

[〈N〉]J +Δ〈N〉, (2.18)

where the subscripts S, D, T and J denote singlet, doublet, triplet and

higher-order contributions, respectively. The introduced Δ〈N〉 terms in-

clude the purely correlated parts of the N -particle expectation values and

it is obtained by subtracting all lower-order terms from the total expecta-

tion value 〈N〉. In the above equations, the singlet part 〈N〉S for carrier
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operators involves the Hartree-Fock factorization; also the cluster prod-

ucts contain all combinations of factorization [17].

The overall success of the cluster-expansion method relays on the fact

that for many theoretically and experimentally approachable systems one

can restrict the analysis to a certain cluster level. For example, if the

optical properties of the system can be assumed to be characterized by SP

carriers and excitons, one can restrict considerations to the doublet level

that includes the dynamics of desired quasiparticle states explicitly while

the next generation of clusters can be phenomenologically described. This

truncation of the scheme in Eq. (2.18) provides a closed set of dynamical

equations that can be solved at least numerically.

Similarly as with the other approaches to solve the hierarchy problem,

the explicit cluster-expansion faces difficulties in larger systems, espe-

cially when one moves beyond the singlet level. In more detail, the full

singlet-doublet factorization itself includes a vast number of closed equa-

tions [17], which generally make the system unfeasible for numerical so-

lution. However, since one can address different types of cluster contri-

butions to be describe particular kinds of processes, their contribution

to the total system can often be analyzed without solving them explicitly.

This gives an opportunity to introduce additional approximations, like the

homogeneity of carrier excitation distribution and the main-sum approxi-

mation [15, 17], which significantly reduce the complexity of the problem

leading to a solvable system.
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3. Quantum rings and the change of
carrier rotational characters

Resulting from the work of Aharonov and Bohm [40], quantum systems

with toroidal topology have gained a lot of interest. In these systems, the

phase of the wave function of electron is dependent on the magnetic flux

penetrating the structure, even when the magnetic field itself does not

overlap with the electronic wave functions [40]. In addition to Aharonov-

Bohm effect, it is possible to detect the related persistent currents [41–43]

in ring like systems.

In late 90’s, a new electronic system with toroidal topology was intro-

duced when the first semiconductor quantum rings where fabricated [44].

These rings were made unintentionally during a QD growth, utilizing the

Stranski-Krastanov self-assembly process. Since then, there has been

several different demonstrations of the suitability of different self-assem-

bly [45–48] and even lithographic [49, 50] methods to fabricate QRs from

various semiconductor materials with different geometries.

The possibilities of using micro- and nanofabrication processes to pro-

duce ring systems with desired properties has been one of the main rea-

sons for the studies on QRs. Similarly as with the semiconductor QDs,

this enables one to study systems with properties similar to the elemen-

tary atoms or molecules, which characters cannot be specifically adjusted.

With quantum rings, tailoring of physical properties led to a consider-

able interest in theoretical and experimental studies of demonstrating

Aharonov-Bohm-like effects. This inspiration has continued until recent

years [49–56].

In addition to the studies directly involving effects observable in mag-

netic fields, there has been also numerous studies based on the solu-

tions of SP states of QRs [57–61]. Furthermore, optical properties [62–

65] including PL [46, 49, 54, 66–69] of QRs have been subject of inter-

est together with effects found under the influence of static electric fields

15



Quantum rings and the change of carrier rotational characters

[58, 70, 71]. One of the most recent field of study involving the ring struc-

tures has been their coupling to the angular momentum properties of

light, especially to the OAM of light [72, 73].

In this chapter, based on the results in Publications I-IV, several prop-

erties of QRs are represented. The single-particle and excitonic states in

QRs are reviewed. The distinction between the coupling of the OAM of

light between QRs and QDs are discussed, with a short summary about

OAM properties of light. In the end, angle-resolved absorption and emis-

sion of QR are demonstrated, which are connected to the change of rota-

tional properties of electrons and to the coupling between QRs and OAM

of light.

3.1 Single-particle states in QRs

One possible definition for a semiconductor quantum ring can be given by

three characteristics. First, the system should be circularly symmetric.

From this it follows that the carrier states in QR are eigenstates of OAM

with respect to the symmetry axis of the ring. The second feature is that

the volume of QR should be small enough to provide a fully quantized

energy spectrum for the carriers, in contrast to typical QWs and QWIs.

Finally, the ring structure should have the toroidal topology.

The symmetry requirement is never exactly fulfilled in real structures

that always show some asymmetry [44, 51, 53]. Hence, it is more im-

portant that the fabricated structures are symmetric enough so that the

qualitative results follows the predictions given by the simplified model.

The effects of asymmetries in contrast to the idealized structure have been

widely studied and it has been shown that the structures can have con-

siderable imperfections and still follow the properties of fully symmetric

rings [53, 55, 58, 74–77].

As the second characteristic of QR is the definition of a quasi-zero-di-

mensional structure, QRs can be seen as a subcategory of QDs. The dis-

tinction between a common QD and a ring follows from the third criteria.

The central hole makes it possible to fabricate QRs with submicrometer

diameters that still show clearly quantized SP spectra. By contrast, the

fully quantized nature of dot systems can be assumed to be drastically

reduced by the increasing volume in QDs with similar diameters. From

the same distinguishing topological feature, it follows that the interac-

tion between the optical fields and QRs or QDs can be qualitatively quite
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Figure 3.1. Quantum ring structure and single-particle properties. (a) The QR geometry
is characterized by the radius R, lateral thickness ΔR and height H. The
system is studied in cylindrical coordinate system (ρ, ϕ, z) where the z and
QR symmetry axes are the same. Propagation direction of the studied light
modes are defined by the wave vector q that forms the angle θ with the sym-
metry axis. The QR-plane and z-directional components of the wave vector
are denoted by q‖ and q⊥, respectively. (b) The single-particle energy spec-
trum shows approximate quadratic dependence on OAM quantum number
m and linear dependence on quantum number n that defines the radial ex-
citations. (c) The effective radial confinement potential for electrons (shaded
area) is almost harmonic. This results in that the effective radial confine-
ment functions for the ground state (black line) and first excited n subband
(red line) equal to the corresponding wave functions of the harmonic oscilla-
tor.

different, as discussed later.

To study the properties of SP states in QRs more explicitly, it is ben-

eficial to use the symmetry of the ring and solve the Schrödinger equa-

tion (2.2) in cylindrical coordinates (ρ, ϕ, z), where the z axis is selected

to equal the symmetry axis of the ring, as depicted in Fig. 3.1(a). In this

figure, also other coordinates are defined together with the geometrical

parameters of the ring. These parameters are the average radius R, the

lateral thickness ΔR and the height H of the QR structure. Furthermore,

Fig. 3.1(a) illustrates the wave vector q that forms an angle θ with the

symmetry axis of the ring. This vector that defines the propagation direc-

tion of light modes is needed in the following sections with its components

q‖ and q⊥.

By utilizing the assumed symmetry of QRs, one can separate the ϕ de-

pendence in Eq. (2.2) to give a three-dimensional confinement function
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ξλ,i(r) = eimϕξλ,n,m(ρ, z)/
√
2π, where the index i is now divided into two

indexes n and m. In here, the highly important OAM quantum num-

ber m emerges, which can have only integer values. It describes how

the carrier states are rotating around the symmetry axis. In addition,

the separation of ϕ dependence gives an approximate energy contribution

h̄2m2/(2m∗
λ,‖R

2) for the single particle states that would be the exact SP

energy if an infinitely thin QR were assumed [78]. This quadratic energy

dependence can be seen in Fig. 3.1(b), where the energy spectrum for a

ring with R = 50 nm, ΔR = 35 nm and H = 3 nm is shown. This particu-

lar ring configuration has been used for all presented numerical results in

this chapter. The more detailed geometry and material properties of the

GaAs model ring can be found from Publication IV, where similar QR has

been considered.

Semiconductor quantum rings are generally flat structures, H � ΔR,

with the height of only a few nanometers. This property can be used for

two results. As only the carrier states near the edges of v and c bands are

considered, one can assume that the system remains always in the ground

state with respect to the z direction and relate the quantum number n

to the ρ-directional excitations only. Another result following from the

flat ρ-z cross-section is an approximate separability of the confinements

with respect to these coordinates, i.e. one can formulate an approximate

solution ξλ,n,m(ρ, z) = fλ,n,m(ρ)gλ,n,m(z)/
√
ρ. This separability assumption

was found to hold for all studied systems in this work. The applicability

of the ansatz is studied in more detail in Publication I, where it is also

shown how one can obtain accurate approximations for functions fλ,n,m(ρ)

and gλ,n,m(z) by fully analytical methods by using only the geometry and

material parameters of the system.

In Publication I, it is shown how the √
ρ-factor in the ansatz for the

function ξλ,n,m(ρ, z) leads to a system where the ρ-z plane problem in

cylindrical coordinates is effectively changed to a problem in common two-

dimensional Cartesian coordinate system. Furthermore, in this article it

is verified that the functions fλ,n,m(ρ) and gλ,n,m(z) can be approximated

with the solutions of a harmonic-oscillator problem, and how these func-

tions are defined by effective confinement potentials. Especially, the ef-

fective ρ-directional potential for the SP ground state, Uλ
‖ (ρ), is typically

found to be very close to the potential of a harmonic oscillator, as shown

by the shaded area in Fig. 3.1(c). This figure also depicts the squares of ef-

fective ρ-directional confinement functions, fn(ρ) ≡ fc,n,0(ρ), for n = 0 and
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n = 1 electrons by the black and red lines, respectively, showing the sim-

ilarity to wave functions of the corresponding oscillator. This similarity

of the problems can also be seen in Fig. 3.1(b), where the SP energies are

almost linearly dependent on the quantum number n. This type of energy

dependence has already been found by several other authors [46, 62], but

the results in Publication I can be used to derive the geometry and ma-

terial dependent correlations to this n dependence of the SP spectrum, as

well as to the approximately quadratic m dependence.

Fully analytical solutions for the two- and three-dimensional QRs have

been studied explicitly in geometries where Eq. (2.2) is fully separable; see

e.g. Refs. [58, 61]. However, the approximate scheme presented in here

has some benefits over these explicit solutions. The approximate solu-

tions can be obtained fully analytically with an accuracy suitable for fur-

ther studies on optical properties of QRs with frequencies in the spectral

vicinity of the system band gap. This was verified for several hundreds

of numerically solved QRs with parabolic cross-section, covering almost

all possible III-V material configurations with reasonable values of R, ΔR

and H. In contrast, the more explicit approaches typically involve tran-

scendental equations that require numerical solutions. In addition, the

found harmonic-oscillator solutions are more suitable for further calcu-

lations, which are needed for the interaction matrix elements, compared

to the more complicated exact solutions. This is partly based on the fact

that the harmonic oscillator is perhaps the most studied quantum system.

Thus, there are a vast number of results that can be applied to QRs after

the approximation for SP states are made. For an example, there are sev-

eral analytical methods to approach integrals involving wave functions of

harmonic oscillators [79, 80].

3.2 Coulomb interactions and excitonic states in quantum rings

The explicit equation for the Coulomb matrix element in Eq. (2.8) for QRs

cannot be reduced further than a five dimensional integral. Even though

the numerical solution for a single CME is a straightforward problem, the

number of needed integrals in a QR system grows to the fourth power of

included single-particle states. As a result, the explicit computation of all

CMEs in a large size QR becomes a challenging numerical problem. With

the help of the analytical confinement functions, given in previous sec-

tion, the dimensionality of CME integrals can be reduced by one, which
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typically leads to the reduction of the computational time by two orders

of magnitude. However, this possibility has not been utilized in this the-

sis, but rather the analytical confinement functions have been used to

study the validity of an approximate selection rule of CMEs, which leads

to much greater saving in time used for numerical calculations. In detail,

the selection rule is the omission of electron and hole n subband changing

CMEs. Similar selection rule holds also for QWs and QWIs [17].

In addition to the described approximate selection rule, there is also a

highly important explicit rule, which says that the Coulomb interaction

does not change the total OAM of the interacting particles. From this se-

lection rule, it follows that when the excitonic states are solved from the

Wannier equation (2.14), the excitonic solutions are eigenstates of OAM.

Thus, the resulting wave functions with components φle,lh
M,ν can be charac-

terized by the exciton indexes M and ν, where h̄M is now the center-of-

mass OAM of the excitonic state and ν defines the exact state inside each

M channel. In here, M = me + mh, where me and mh are OAM quan-

tum numbers for electrons and holes contributing to the excitonic state,

respectively. For simplicity, it is assumed that only n = 0 subband is rele-

vant in here and thus it is suppressed from explicit notations.

It was found that in QRs of a sufficiently large radii, the Wannier equa-

tion is approximately separable between the center-of-mass OAM and rel-

ative OAM, h̄mrel, between electrons and holes, where this relative OAM

is defined by mrel ≡ (m∗
h,‖me−m∗

e,‖mh)/(m
∗
e,‖+m∗

h,‖). This is a similar sep-

aration as discussed in Section 2.5 for QWs and QWIs, where the distinc-

tion between center-of-mass and relative movement can be done explicitly.

As a result, also in studied QRs the excitonic solutions can be divided into

two groups: to bound excitons and to ionized solutions. Furthermore, the

index ν can be used to define 1s, 2s, 2p, etc. bound solutions also in QRs.

Figure 3.2(a) shows numerically solved exciton wave functions of the

model QR for M = 0 (black dots) and M = 3 (red dots) 1s excitons as

a function of mrel. It can be found that these bound state solutions are

highly similar. Consequently the oscillatory strengths, FM,ν ≡ ∑
le,lh

φle,lh
M,ν ,

for the ν = 1s states are approximately independent on M . It is also ev-

ident that the heavily Coulomb influenced 1s wave functions are spread

over multiple electron–hole-pair combinations, in contrast to the ionized

states, of which one is depicted in Fig. 3.2(a) by gray bars. This indicates

that the oscillatory strength of the 1s states is much higher than the cor-

responding value of the ionized states. This can be clearly seen in the
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Figure 3.2. Properties of QR excitons. (a) Exciton states as a function of relative OAM
mrel for bound 1s solutions with center-of-mass OAM M = 0 (black dots) and
M = 3 (red dots). For clarity, only every second m contribution is shown;
the unshown points follow the black line. Gray bars show one of the ionized
solutions for M = 0. (b) Bound exciton energies respect the band-gap are
shown as a function of M for the 1s (blue dots), 2s (red dots) and 2p (black
dots) states. Following from the fully quantized QR system, only the dots
show actual results whereas the lines are for helping the illustration in both
figures (a) and (b).

absorption results summarized in Section 3.4.

Another result that follows from the separability of the center-of-mass

and relative OAM in studied QRs is that the energy differences between

different bound state solutions are given by the center-of-mass OAM en-

ergies h̄2M2/[2(me,‖ + mh,‖)R2]. This dependence is shown in Fig. 3.2(b),

where 1s (blue dots), 2s (red dots) and 2p (black dots) energies are illus-

trated with respect to the band gap of the system. As the coefficient of this

OAM energy is inversely proportional to the square of the radius and as

large radius QRs are studied in this thesis, it follows that the different M

channels for optically bright bound excitons are hard to separate in opti-

cal spectra. A similar restriction does not hold for ionized states that can

have quite large energy spacings between different M values. These en-

ergy based considerations are also discussed in more detail in the section

that describes absorption results.
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3.3 QRs and OAM changing transitions

To study the effects caused by optical-field-induced interband transitions

in semiconductor quantum structures, it is of primary importance to cal-

culate the dipole matrix elements in Eq. (2.12). While these results de-

pend on the light mode under consideration, also the spatial extent of

envelope/confinement functions is important. There is one type of nanos-

tructure category where the values of Eq. (2.12) always have the same

form. These are the QDs, especially the small ones, but also in larger sys-

tems the confinement functions are typically confined to the central region

of the dot with a confinement function spreading much smaller than typ-

ical wavelengths of optical fields. In this case, the values of Eq. (2.12)

are independent on the light modes and solely given by the overlapping

integrals between electron and hole states. As a result, at this level of

approximations, the plane waves cannot cause transitions where OAM is

changed. Similar approach can be applied for QWs and QWIs with respect

to their confinement functions, and also for QRs that have a diameter that

is considerably smaller than the wavelength of the optical field.

In this thesis, the focus is in QRs with diameters larger than 70 nm. Si-

multaneously, the effective wavelengths of interest, reduced from their

vacuum value by the background refractive index, can be as short as

150 nm. In this case, one cannot apply the similar approach as with QDs,

especially when the modes are not propagating parallel to the QR sym-

metry axis; i.e. when the angle θ, defined in Fig. 3.1(a), is not equal to

zero. Thus, each DME in Eq. (2.12) has to be carefully calculated for suffi-

ciently large QRs. The results following from going beyond the QD dipole

approximation for QR is behind the main results in Publications II-IV.

In Publication II, it was found that the explicit computation of DMEs in

quantum-ring systems results in notable effects that need interband tran-

sitions where the OAM of electronic states is changed even in the case of a

plane-wave field. It is a well known fact that a circularly polarized plane-

wave field carries intrinsic spin angular momentum of ±h̄ with respect to

the propagation direction, and that a plane-wave field in average does not

carry any additional angular momentum [81]. Thus, linearly polarized

light which is a superposition of the circulating modes, can produce tran-

sitions between heavy holes and electrons, where the angular momentum

is changed by the quantity ±h̄. But where does the additional angular

momentum emerge needed for the interband transitions that change the
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Figure 3.3. Schematic representation of the decomposition of the plane wave to the OAM
eigenmodes of light. In here, only the m-modes carrying 0, h̄ and 2h̄ of OAM
are shown from the infinite number of OAM modes included in the plane
wave. The intensity profiles (blue, read and gray objects) depend on the an-
gle between the light propagation direction and the OAM measurement axis
z (that is also the symmetry axis of the QR). The overlapping of the inten-
sity profile and QR defines directly the magnitude of effects related to the
particular m mode.

OAM of carrier states in QRs, as predicted in Publication II?

In general, light modes carrying OAM of h̄m respect to the z axis of

the coordinate system should have a eimϕ azimuth-angle dependence, as

verified in multiple research articles [81–87]. The question above can be

answered by using the Jacobi-Anger expansion for a plane-wave:

eiq·r = eiqzz
∞∑

m=−∞
imJm(q‖ρ)eim(ϕ−ϕq), (3.1)

where Jm is the Bessel function of the first kind of the order of m, ϕq de-

fines the azimuth angle of the propagation direction and q‖ (q⊥) is the QR-

plane (z-directional) component of the wave vector shown in Fig. 3.1(a).

Here the needed eilϕ phase dependence is found. This expansion shows

that a plane wave is actually a superposition of infinitely many OAM

eigenmodes of light whenever OAM with respect to some other axis than

the propagation direction is considered. If OAM is considered with respect

to the propagation direction of a plane wave, it is the m = 0 eigenmode

that cannot induce OAM changing transitions as also shown in Publica-

tion II.

The decomposition of a plane wave to the OAM modes with respect to

the symmetry axis of QR is schematically shown in Fig. 3.3. One impor-

tant feature with the decomposition is the shown squared spatial inten-

sity variations of the OAM modes originating mathematically from the

Bessel functions. By changing the angle θ, one can change this spatial
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dependence as formulated in Eq. (3.1). The interaction strength of each

mode with respect to the carrier states of QR is directly defined by overlap-

ping of the particular m light-mode intensity profile and QR structure. For

thin enough structures where the radial confinement of SP states is con-

siderably smaller than the wavelength of the field, the spatial overlapping

between the Bessel modes and QR can be approximated by Jm(qR sin θ).

In sufficiently large QRs, one should be able to match the minimum re-

gions of the intensity profiles depicted in Fig. 3.3 by changing the angle

θ, and consequently suppress the interaction of the desired mode and QR;

or similarly maximize the effects of wanted OAM changing transitions. It

has to be noted, that based on the properties of the Bessel functions, one

cannot separate effects between transitions with equal |m| in the stud-

ied systems. Furthermore, to get pronounced effects for OAM changing

transitions, qR should be large enough, as discussed in Publication II and

IV.

3.4 Absorption of orbital angular momentum

To demonstrate effects that can be caused by the previously described

OAM changing interband transitions, angle-of-incidence-dependent ab-

sorption for a QR system was solved in Publication II. This was done

in the low-density regime of carriers by solving the semiconductor Bloch

equation for microscopic polarization [14]. The obtained polarization equa-

tion was used to formulate absorption α(θ, ω) for a plane-wave light field

at ω frequency propagating at angle θ with respect to the axis of QR. The

found Elliott formula for absorption can be given by

α(θ, ω) = |dc,v|2γ
∑
M,ν

|FM,ν |2J2
M (Rqω sin θ)

(EM,ν − h̄ω)2 + γ2
, (3.2)

where qω is the length of vector q related to the frequency ω. In the given

equation, the approximation of an infinitely thin QR structure has been

used for DMEs, which is justified whenever the wavelength of the light

field is much longer than the spreading of ρ-z plane confinement func-

tions. The dephasing factor γ includes the contribution of otherwise omit-

ted doublets that will lead to the exciton induced dephasing of interband

polarization [17]. The broadening of the resonances caused by γ can be

also used to describe different scattering processes in the system, size

distribution of QRs, if an ensemble of QRs is measured, and even asym-

metries in QR structures [17, 53].
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Figure 3.4. Angle-of-incidence θ dependent absorption in a QR system. (a) The absorp-
tion spectra obtained with a plane wave propagating either parallel (blue
area) or perpendicular (black line) to the QR symmetry axis show pronounced
differences. The regions of interest shown in (b) and (c) are indicated by the
shaded areas. (b) For the 1s resonances the angular dependence is not so pro-
nounced as within the quasicontinuum region (c) where energy separations
between resonances are much larger.

Figure 3.4 shows the absorption resulting from Eq. (3.2) with γ = 60 μeV

for the model QR system near the band gap. In Fig. 3.4(a), the overall

features of absorption are shown for the two angles θ = 0◦ (blue area) and

θ = 90◦ (black line) with pronounced differences. With the angle θ = 0◦

no OAM changing transitions occur; as a result all the resonances can

be connected to the M = 0 excitonic states. However, when the angle

is changed to 90◦ the M = 0 resonances are weakened and new peaks

emerge, as most clearly seen in the quasicontinuum region where h̄ω >

Eg. The new peaks are resulting from the absorption given by the M �= 0

excitonic states.

In addition to illustrating that the absorption is dependent on the angle

θ, Fig. 3.4 also depicts many results based on the properties of excitonic

states already discussed in Section 3.2. For example, the difference of

the oscillatory strengths between 1s excitons (near h̄ω − Eg = −15 meV)

and ionized solutions (h̄ω > Eg) results in one order of magnitude stronger

resonances for the 1s states. Also the difficulty of separating 1s states with

different M values from the resonances of the spectrum is illustrated.

Only minor variations related to different energies of (M, 1s) excitons are
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found near the ground-state resonance in absorption spectrum for θ =

90◦. This region of interest is also plotted in Fig. 3.4(b), where the minor

change of the strongest resonance location from h̄ω − Eg = −14.6 meV to

h̄ω − Eg = −14.5 meV is found when the angle of incidence is increased

from 0◦ to 90◦. This variation in the peak position is related to the shift of

the strongest 1s resonance from M = 0 to M = ±1.

Even these small variations in spectra near the ground-state resonance

would vanish if the used dephasing factor would be only slightly larger

than the used γ = 60 μeV, which already gives the linewidth that is near

the smallest ones measured in single QR photoluminescence experiments

[68]. In the region of large γ values, one interesting additional result

arises. In this region where (EM,1s− h̄ω)2 � γ2, the frequency dependence

near bright 1s resonances can be removed from Eq. (3.2). Since the re-

lated oscillatory strengths for 1s states are M independent, as described

in Sec. 3.2, the absorption becomes approximately dependent only on the

sum of Bessel functions,
∑

M J2
M (Rq sin θ). Because this sum fulfils the

identity
∞∑

M=−∞
J2
M (x) = 1 (3.3)

for any argument value x, it follows that the absorption of 1s states be-

comes approximately θ independent, for sufficiently large γ.

Similar spectral resolution restrictions do not hold for the quasicontin-

uum region of ionized solutions where the excitonic energies are mostly

dependent on SP properties. In Fig. 3.4(c), typical energy separations of

millielectronvolt magnitude can be found between M = 0 and M = ±1 res-

onances. These energy separations are increased when one moves toward

higher energy values. In a realizable QR system with suitable materials

and geometry, energy separations between bright M = 0 and M = ±1

ionized excitonic solutions can be expected to approach even the range of

10 meV.

It should be noted that these resonances cannot be taken as an evidence

for the existence of exciton populations as no carrier populations are in-

volved. Even though there would be carriers present, the absorption in

Eq. (3.2) can be used to test where the light induced electronic transitions

are most pronounced [17]. However, from the behavior of excitonic reso-

nances one can deduce that the related excitons can be created at corre-

sponding frequency by selecting the correct angle of incidence. This holds

also for the 1s states, where one usually loses the frequency dependence,
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while the angle dependent features are still present. As a result, it should

be possible to excite excitons with different OAM values in a controlled

manner even with a plane-wave field by changing the angle of incidence.

How the obtained OAM dependent distribution of excitons could be de-

tected is discussed in the next section. Since the angular momentum of

the whole system is a conserved quantity, the presented results suggest

that by altering the angle of incidence and by producing rotating carrier

excitations to the ring, one is able to "harvest" OAM components from the

plane waves with QRs.

3.5 Emission from rotating excitons

In addition to solving the angle-of-incidence-dependent absorption, the

influence of the OAM changing transitions to the PL from QRs were also

studied. To model the spontaneous emission from a QR structure, one

needs to study the properties of the quantized light field in Eq. (2.4) in-

stead of the classical approach used in the previous section [15]. In more

detail, the dynamics of photon correlation Δ〈B†
q‖Bq‖〉, which is equal to the

expectation value of photon-number operator 〈B†
q‖Bq‖〉 in the incoherent

regime [15], is solved in Publication III. In this article, the semiconduc-

tor luminescence equations [17] were formulated for arbitrary quantum

structures and for arbitrary light modes. These luminescence equations

were used in Publication IV to give the steady-state Elliott luminescence

formula [15] for QRs

IPL(θ, ω) = 2|dc,v|2γE
2
ω

Vh̄
∑
M,ν

|FM,ν |2J2
M (Rqω sin θ)(ΔNM,ν +NS

M,ν)

(EM,ν − h̄ω)2 + γ2
, (3.4)

which gives the PL intensity IPL(θ, ω) for a plane-wave mode with fre-

quency ω and that propagates at an angle θ with respect to the axis of

QR. In Eq. (3.4), the dephasing factor γ has many connections to the de-

phasing factor in the Elliott formula (3.2) for absorption, even though its

explicit origin emerges from the phenomenological description of other-

wise omitted triplet terms [15].

Equation (3.4) has basically the same form as Eg. (3.2), but in here the

important terms ΔNM,ν and NS
M,ν appear, which are the exciton density

and the corresponding plasma contribution to PL, respectively [15]. In

general, these terms can prevent the use of the Bessel function identity in

Eq. (3.3) regardless of the magnitude of γ. Thus, it should be possible to

obtain different PL results for different θ angles even with considerably
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large γ. Especially, if contributions ΔNM,ν and NS
M,ν are different enough

for different M channels.

In the low-density regime of carriers, studied in Publication IV, PL given

by Eq. (3.4) is highly sensitive to exciton densities and only minor con-

tribution follows from the NS
M,ν part [15]. Furthermore, if one focuses

on the PL given by the 1s-like excitons, the related plasma parts, NS
M,1s,

can be proven to be approximately equal for different M values. This is

based on the similarity of the 1s wave functions of different M channels

and the resulting carrier occupations for exciton densities ΔNM,1s, which

can be calculated consistently by following the conservation rules given

in Ref. [88]. As a result, the Bessel function identity in Eq. (3.3) can be

applied for the plasma contribution of PL when γ is large enough. Conse-

quently, the plasma PL does not show θ dependence for systems with high

enough dephasing. Similar results can be expected if the exciton densities

for different M channels are approximately the same. This kind of situ-

ation can be obtained, for example, with thermal distribution of excitons,

in a large enough QRs where the energy separation between 1s excitons

are small compared to the temperature of the exciton distribution.

In Fig. 3.5, the main results of Publication IV are represented. Fig-

ure 3.5(a) illustrates PL from the thermal distribution of excitons with

small γ = 60 μeV for two different angles θ = 0◦ (shaded area) and θ = 90◦

(black line). The found PL spectra near 1s resonances have almost ex-

actly the same characters as the absorption in the same energy range.

With angle θ = 0◦ the resonance can be directly connected to the M = 0

ground-state exciton of the thermal distribution, whereas with θ = 90◦

its strength has reduced while the M = ±1 bound 1s states provide the

strongest peak, and also the resonance from M = ±2 is clearly visible

near h̄ω − Eg = −14.2.

To study how strong the angle-of-emission dependence for different ex-

citation conditions are, one can calculate the relative emissions between

some angle θ and PL given parallel to the symmetry axis of the ring:

ΔPL(θ, ω, γ) =
IPL(θ, ω, γ)− IPL(0

◦, ω, γ)
IPL(θ, ω, γ) + IPL(0◦, ω, γ)

, (3.5)

where the γ dependency of PL is now denoted explicitly. In Fig. 3.5(b),

the relative PL is shown for four different excitation conditions for a rela-

tively large γ = 1 meV with frequency ω that corresponds to the energy of

the ground-states exciton. As discussed earlier, it is found that the ther-

mal contribution at 30 K temperature (dashed grey line) does not show

basically any angular dependence. However, the excitations where only
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Figure 3.5. Angle-of-emission dependent QR luminescence. (a) With high enough tem-
peratures and small enough γ, the PL resonances connected to different M

channels can be separated from spectra, as illustrated for the angles θ = 0◦

(shaded area) and θ = 90◦ (black line). (b) When broadening of resonances
is larger than the frequency-domain separability of 1s states, the thermal
distribution (dashed gray line) does not show angle dependence, whereas the
excitations including only M = 0 (black line), M = 1 (blue line) or M = 2 (red
line) 1s excitons show pronounced dependence on angle-of-emission θ. (c) The
angular dependence is not dependent on the magnitude of dephasing factor
γ for distributions that have only M = 0 (black line) or M = 1 (blue line)
1s excitons. For small γ values, the thermal distribution (dashed gray line)
shows γ dependence that is related to the frequency-domain separability of
exciton resonances shown in (a). (d) The added M = 0 (black line) or M = 1

(blue line) excitons can be detected from the thermal background distribution
even with small fractions of added M states respect to the total number of
excitons in the system. Clearly observable effect for additional M = 2 (red
line) excitons needs much higher fractions.

one type of 1s excitons is present: M = 0 (black line), M = 1 (blue line)

or M = 2 (red line), a pronounced θ dependence can be found. This sug-

gests that the distribution of different M excitons could be determined by

measuring the angle dependent PL.

In Fig. 3.5(c), the γ dependence of ΔPL(90◦, ω, γ) is depicted, now with

respect to ω that corresponds to the peak frequency at angle θ = 90◦. The

thermal distribution of excitons (dashed grey line) shows γ dependence

for small enough dephasing factor values, resulting from the frequency-

domain separability of resonances illustrated in Fig. 3.5(a). However,

when the line broadening, given by γ, exceeds the separability of M = 0

and M = ±1 resonances near γ = 0.3 meV, the angular dependence of

thermal distribution is lost. In contrast, the angular dependence of exci-
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tations with only one type of M excitons show no γ dependence, as illus-

trated for M = 0 (black line) and M = 1 (blue line) excitations.

In a realistic situation, it cannot be assumed that one could have an exci-

tation where only one type of M excitons would appear. It can be expected

that the different scattering processes, e.g. ones related to phonons or

structure asymmetries, will distribute excitons to different M channels.

To study how well different explicit M excitons could be detected from

such distributions, the relative PL from a mixture of thermal distribution

(at 30 K) and an additional M exciton were calculated. Figure 3.5(d) shows

these results as a function of a fraction of additional ΔNM,1s with respect

to the total density of excitons. The figure illustrates that the additional

M = 0 (black line) and M = 1 distributions lead to pronounced angle-

dependence even with quite small fractions of added excitons, whereas

the M = 2 (red line) contribution is not so easily detectable. In Publica-

tion IV, it was also shown that if a larger radius QR is used, it is possible

to detect 1s states with much higher M numbers from the thermal back-

ground. In general, the angle-resolved PL results presented here suggest

that PL is a suitable way to detect different M channels of excitons. This,

in turn, would lead to the possibility of studying fundamental properties

of light–matter OAM coupling in the microscopic level, when also the ex-

citation of these excitons via absorption is considered.
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4. Coherent control of spatial
distribution of excitations in
quantum-well structures

Controlling the movement of carriers in semiconductor systems is highly

important field of study. Basically, the operational principles of most

semiconductor devices are more or less based on the transfer properties

of electrons and holes [89, 90]. In this field, one important branch of

study is the research on vertical transport through material interfaces. A

high number of important applications including quantum cascade lasers

[16, 91, 92], tunnel-junction devices [13] and solar cells [6, 7] directly in-

volve transport of carriers or other excitations through semiconductor in-

terfaces.

To study the vertical transport through interfaces, it would be benefi-

cial to have coherent-control schemes where one could be able to control

the transport of different types of excitations with varying characteristics.

Consequently, one should be able to use this transfer scheme to reveal

fundamental properties of the vertical excitation transport. One possible

set-up for studying the transport effects could include a semiconductor

structure of planar heterojunctions, i.e. a multi-QW structure. Within

these systems, different types of excitation conditions can be initialized

with a controllable manner by optical fields [17]. With optical fields, one

can excite different types of semiconductor quasiparticles like electron–

hole plasma, excitons, biexcitons, and even massive quasiparticles like

dropletons [93] into QWs. Simultaneously as transporting different quasi-

particles, one is able to transport also related quantum mechanical quan-

tities like spins or correlations, which for different types of particles can

have considerably different physical behavior. As the transition energies

between quasiparticles in a same group are typically in the range of a

few meV [15], the electrical THz fields should be a suitable tool to achieve

desired transitions.

31



Coherent control of spatial distribution of excitations in quantum-well structures

In this thesis, a double QW with real-space type-I and type-II properties

of semiconductor system [14] is taken as a model structure for studying

THz coherent-control schemes of quasiparticle transport. In this struc-

ture, the holes are confined to one of the wells while electrons can be

transported through an interface separating the QW regions. Similar

structures have been realized with multiple different material combina-

tions, applied for practical applications, like W-lasers, and even used to

demonstrate possibilities for observing Bose-Einstein condensates of ex-

citons [94–97]. Even though the detailed knowledge on the physical prop-

erties of these structures, especially on truly microscopic level, is not so

well understood as in more conventional QWs, there are still numerous

theoretical studies in this field [98–101].

In this chapter, an idea of coherent-control scheme of transporting quasi-

particles through semiconductor interfaces with THz pulses is presented.

The plausibility of the idea is studied in the model structure where it is

shown that a highly efficient and selective transport of either free or exci-

ton bound electrons is achievable in a realizable system. At the end, based

on the high selectivity of found electron- and exciton-transport protocols, a

novel transport scheme where only excitonic correlations are transported

is presented.

4.1 The idea of THz coherent control of vertical quasiparticle
transport

As already discussed, the typical transition frequencies between excita-

tions inside different semiconductor quasiparticle groups are in the THz

range. As a result, it should be possible to induce transitions between

similar quasiparticles by applying suitable THz pulses. This has been

experimentally demonstrated between excitons in the same QW by in-

troducing transitions between 1s and 2p excitons [102]. Similarly, THz

induced transitions between confinement levels of electrons inside a QW

have been observed [103].

By generalizing these results for multi-QW structures, it should be pos-

sible to induce transitions between quasiparticle states in different QWs

with a similar approach as used in Ref. [103] by applying a THz field,

which is polarized so that its electric field has a component parallel to the

structure growth direction. As in this case, the confinement functions of

electrons in different subbands can be predominantly located in different
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(a) (b)

(c) (d)

Figure 4.1. Idea of coherent control of vertical transport of quasiparticles. (a) When
the frequency of field inducing transports is tuned to match the difference
of electron or hole transition energies, electrons (red spheres) or holes (blue
spheres) can be transported between materials (yellow and blue areas). (b)
Exciton transport is obtained by using the field frequency corresponding to
exciton transition energy. (c) If the different transport protocols for electrons,
holes and excitons are selective enough, they can be applied simultaneously
to transport SP states and correlated pairs to opposite direction. As no net
transport of carriers is obtained in this case, the transport only transfers
exciton correlations as summarized in (d).

spatial regions of the structures, quasiparticle transitions will also lead

to spatial transport of particles. Furthermore, if the transition frequen-

cies for different quasiparticles are distinct enough, this should also intro-

duce a coherent-control scheme where one is able to selectively transport

only wanted excitations. This idea is illustrated in Fig. 4.1 for a system

where only electrons (red spheres), holes (blue spheres) and exciton cor-

relations (yellow ellipses) are considered. In this figure, the initial states

before transport are depicted by dashed-line objects while the transport

phenomena themselves are shown by arrows.

In the first case illustrated in Fig. 4.1(a), the THz field is tuned to cor-

respond to the transition frequency of electrons or holes between the dif-

ferent material regions (yellow and blue areas). In this case, only uncor-

related carriers are moved. In the next case depicted in Fig. 4.1(b), the

THz frequency matches exciton transition, which causes the transport of

a correlated electron–hole pair. If these singlet- and doublet-transport

protocols in Figs. 4.1(a) and (b), respectively, are selective enough, one

can simultaneously transport electrons and holes as well as excitons to
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desired direction, as shown in Fig. 4.1(c). The possibility of this type of

control is directly related to the difference of transition energies that need

to be large enough compared to the broadening of the transfer resonances,

which is eventually related to the scattering and dephasing processes in

the system [17]. If high enough selectivity for the different transports

is achieved, it is possible to obtain transport processes where the single

particle densities remain constant as schematically shown in Fig. 4.1(d),

which summarizes the net effect of transport phenomena in Fig. 4.1(c). In

this case, one effectively transports only quantum mechanical properties

related to quasiparticles, like correlations, instead of transporting actual

carriers.

4.2 Properties of electron–hole pairs in model double-QW structure

The plausibility of the ideas introduced in the previous section is studied

in Publication V. In this article, a double-QW structure, where the hole is

always in one well while the electrons can be transported, is selected as a

model system. This provides a simpler scheme than the one illustrated in

Fig. 4.1, as one needs only to consider transport of electrons or the elec-

tronic part of excitons. Furthermore, in this system the thicknesses of the

quantum wells are chosen to be so thin that it is sufficient to study two

energetically lowest confinement levels of electrons and the confinement

ground level of holes, to model electron and exciton transports. The sys-

tem is GaAs based where the left QW potential, corresponding to type-I

configuration, is produced by InGaAsN compound. The QW providing the

type-II spatial configuration for electrons and holes is fabricated from a

GaAsN while the barrier and buffer material is GaAs. The schematics of

band edges giving the confinement potentials are shown in Fig. 4.2 and

details of the structure are given in the supplemental material of Publi-

cation V.

The modeling of the double-QW system is started from the SP level,

where the electronic wave functions in the envelope-function approxima-

tion are solved from Eq. (2.2). As a result, the energy separation be-

tween the considered electron confinement subbands, shown in Fig. 4.2

by red shapes, is found to be given by the transition energy of 20 meV.

This energy corresponds to the frequency νe = 4.8 THz. To characterize

the properties of excitons, the Coulomb matrix elements for the structure

are calculated from Eq. (2.8) and the corresponding low-density Wannier
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νe

ETHz

Growth direction

ETHEE

νX

Figure 4.2. Schematics of the model double-QW system. The conduction- and valence-
band profile (grey structure) confines electrons (red spheres) to two relevant
confinement levels (red areas) located in the different wells, and holes (blue
sphere) only to the left QW. In this system, THz field (red wave symbol with
black arrow) can induce transport of electrons from well to well, by trans-
porting either plasma electrons with frequency νe or electrons confined to
excitons (yellow ellipses) with frequency νX .

equation (2.14) is solved. Following from the spatial separation between

electrons and holes located in different QWs compared to the electrons in

the same well as the holes, the CMEs between the holes and indirect elec-

trons are much smaller than the corresponding matrix elements for the

direct electrons. As a straightforward consequence, the binding energy of

4.73 meV for indirect 1s exciton is found to be considerably smaller than

the binding energy of 9.83 meV of the direct 1s state. As a result, the tran-

sition energy between direct and indirect 1s state is not directly given by

the electronic confinement energies and is found to equal 14.90 meV that

corresponds to the transition frequency νX = 3.6 THz. Both characteristic

transition frequencies, the electronic νe and excitonic νX, are schemati-

cally illustrated in Fig. 4.2.

As the transition energies between uncorrelated and exciton correlated

electrons are substantially different, it can be assumed that in the studied

system, selective transport of electrons or excitons can be achieved. This

can be done if the transport resonances are not too wide so that they would

drastically overlap. In the studied system where the energetic separation

between electron and exciton transport is 5.1 meV, this could be roughly

obtained if the dephasing times of intersubband correlations involved in

the transitions will be longer than 500 fs, which approximately correspond

to 3 meV homogeneous broadening of transport resonances. This limit is

achievable in high quality QWs that resemble the model structure, as
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dephasing times up to 7 ps have been reported in these systems [104].

4.3 Correlation transport

In order to more explicitly study how well the selective transport protocols

of electrons and excitons can be utilized in the model system, one needs to

solve the dynamics for the electron and exciton densities. A closed set of

singlet-doublet equations is formulated between electron and hole occu-

pation numbers as well as for the excitonic correlations and intersubband

polarizations. This is done by applying the cluster-expansion approach

together with the main-sum approximation, which is valid in the studied

low-density regime of carrier densities [15, 17].

The THz field that is inducing transitions, was selected to propagate

in the structure plane with electrical field polarized to the growth direc-

tion, as Fig. 4.2 illustrates with the black arrow and the red wave symbol.

The used field polarization was selected to ensure the strongest possible

transport effect and to conserve the symmetry of initial excitons, which

are assumed to be produced by optical excitation leading dominantly to s-

like states [17]. As a result, the relevant dipole elements for the electron-

electron intersubband transitions are given by Eq. (2.13). Furthermore,

the used THz pulses were assumed to have Gaussian envelope with dura-

tion in the picosecond scale.

By utilizing different dephasing times between relevant quasiparticles

and coherences [17], a diffusive dephasing model was introduced. In this

model, the total quasiparticle densities for electrons, holes and excitons

were taken to be constant during the picosecond time scale under inter-

est while all other quantities were dephased. These quantities involve

intersubband polarizations and correlated exciton transition amplitudes

[17]. For both of these intersubband coherences a dephasing time of 1.3 ps

was selected. All interband coherences were assumed to be vanished after

initial optical excitation.

After formulating the explicit dynamical equations, calculations were

made to verify the selectivity and efficiency of electron and exciton trans-

ports. This was done for two initial states where all electrons were ei-

ther as plasma or bound to 1s excitons. In both cases, all electrons were

initially in the indirect (right) QW. The maximum fraction of transported

electrons from right to left was studied as a function of THz frequency and

intensity of the pulse. As predicted, a clear maximum for plasma trans-
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fer was obtained when the frequency of THz pulse matched νe = 4.8 THz.

Similarly, in the exciton bound case, the electrons were transported most

efficiently with νX = 3.6 THz. Furthermore, the obtained results could

be used to define the efficiency and selectivity of the electron- (νe) and

exciton-transport (νX ) protocols. The efficiency of 80% was found for both

protocols, which defines the maximal fraction of transported electrons in

plasma or exciton bound cases. The selectivity of 95% was found to be

equal for both protocols. In here, the selectivity describes how large frac-

tion of transported electrons are either free or correlated with respect

to desired results; i.e. electron-transport protocol transfer twenty times

more free electrons than correlated ones. The reduction of both, efficiency

and selectivity, from their ideal values of 100% is mostly caused by the

used dephasing model.

Figure 4.3(a) illustrates the electron- and exciton-transport protocols, in

a case where all initial electrons are in the right (R) QW. In here, fractions

of 65% of plasma electrons and 35% of indirect 1s bound electrons are se-

lected. Two sequential pulses are applied to the system as depicted in

Figure 4.3(a-i). The first pulse is the electron-transport pulse at frequency

νe. As seen from Figure 4.3(a-ii), it transports roughly half of the electron

density to the left (L) QW while the correlations in Figure 4.3(a-iii) re-

main almost intact. This demonstrates the high selectivity of the plasma

protocol. During the second pulse at frequency νe, the remaining electrons

in the right QW are transported to the left, as seen from Figure 4.3(a-ii).

This time also correlations are transferred as illustrated by Fig. 4.3(a-iii).

As a result, one can conclude that excitons were transported.

As the studied electron- and exciton-transport protocols were found to be

highly efficient and selective, even in the presence of the realistic contri-

bution of dephasing, one can also study if the coherent control of exciton-

correlation transport, as illustrated in Fig. 4.1(d) for a more general sys-

tem, is also achievable in the model structure. The results obtained in

Publication V are presented in Fig. 4.3(b), where the same initial state

of the system is assumed as in the previous case. The applied pulses are

shown in Fig. 4.3(b-i), where the first pulse is again the electron-transport

protocol that separates the correlated and uncorrelated electrons to differ-

ent QWs. This time, the second pulse is a two-color, super-position pulse

that includes both frequency components, νe and νX . The transport re-

sults obtained during the second pulse drastically differ from the exciton-

transport protocol studied previously. Also this time the correlations are
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Figure 4.3. Demonstration of coherent control of electron, exciton and correlation trans-
port. (a) Two sequential pulses with frequencies νe and νX are applied
to the system. The first pulse transports uncorrelated electrons while the
second one moves correlated ones, as depicted by (a-ii) and (a-iii). (b) The
correlation-transport protocol is achieved via the second pulse that includes
both frequency components νe and νX . As seen form (b-ii) and (b-iii), dur-
ing this pulse correlations are moved while electron densities remain almost
constant.

transported from right to left, as Fig. 4.3(b-iii) depicts, but now the elec-

tron densities in Fig. 4.3(b-ii) remain essentially constant. Consequently,

only the quantum correlations have been transported and the possibil-

ity to obtain a new method to coherently control the transport of purely

quantum-mechanical properties is demonstrated. This effect has many

similarities with the coherently controlled spin currents, where continu-

ous flow of spin is achieved instead of transporting correlations [105, 106].
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5. Conclusions and outlook

In this thesis, theoretical microscopic models describing single-particle

states and many-body physics of semiconductor quantum-ring structures

is formulated. These models have been used to characterize the proper-

ties of electron, hole and exciton states in QRs. The light–matter coupling

in the submicron ring structures is studied for classical and quantum op-

tical fields. Based on the microscopic many-body models, the results are

presented for absorption and emission of light for the QR system. Both of

these results indicate a strong angular dependence on the angle between

the QR symmetry axis and the propagation direction of light. The angular

dependence has a profound connection to the coupling of orbital angular

momentum between light and quasiparticles. It was found that the plane

waves can excite excitons with various OAM quantum numbers, and it is

proposed that the distribution of OAM between excitons can be measured

and used to verify the light–matter OAM coupling via PL.

The second main theme of the thesis is the coherent control in the THz

range of vertical quasiparticle transport through internal interface of a

semiconductor heterojunction. In here, it was verified by microscopical

modeling that such a transport scheme exists in a realizable double-QW

structure. In the model structure, highly selective electron-, exciton- and

correlation-transport protocols have been devised. This kind of coherent

control scheme is a novel idea. Especially, the correlation-transport effect

is something that has not been previously reported and provides a new

method to create currents with quantum mechanical properties.

One combining feature between the two study branches is that the ob-

tained results are not just restricted to the numerically modeled cases,

but they predict new fundamental physical effects that are not depen-

dent on exact geometry and material parameters. As a consequence, the

most important step for further studies involving the presented results
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should be the verification of introduced effects in experimental measure-

ments. There are naturally also additional theoretical aspects related to

this work that should be further studied. For example, the inclusion of

phonons to the QR should be done to give time scales and fundamental

understanding on the coherence times of OAM excitons in QR systems.

Similar studies are also important for the double-QW structure, where

the phonon induced relaxation processes between the wells are impor-

tant. Also the inclusion of multiple electron and hole confinement levels

to the THz coherent-control scheme would be beneficial for modeling more

complicated designs.

In addition, the found-quantum mechanical effects are not only of aca-

demic interest. It has been shown that both the orbital angular momen-

tum of light and THz fields, are highly efficient in information technolo-

gies. By utilizing these characters of optical fields, records for the data-

transport rates have been reached [107, 108]. Furthermore, OAM of light

has been proven to be one of the most promising approaches in quan-

tum information technology [81, 109, 110]. The coupling between OAM

of light and matter in a microscopic level has gained considerable inter-

est, based on the opportunities it could provide for quantum technologies

[81, 110]. So far, single-atom experiments with OAM of light have not

been published while the OAM interaction between light and ensembles

of atoms have been observed [111–115]. In this field, the presented results

of the coupling between single excitonic states of QRs can lead to new ap-

proaches in the future. Even the obtained result for correlation transport,

presented in this thesis, can provide to be important in quantum technol-

ogy, as the correlations are tightly related to the non-locality of quantum

mechanics and to such phenomena as entanglement. However, the most

prominent field to apply the obtained results for multi-QW structures is

the characterization of fundamental properties of transport effects. This

could be used to optimize and improve the performance of already exist-

ing devices, and of course to develop novel systems where the coherent

control of semiconductor quasiparticle transport can be utilized.
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