
Aalto University
School of Science
Degree Programme of Computer Science and Engineering

Katariina Laakkonen

Contracts in Agile Software Develop-
ment

Master’s Thesis
Espoo, September 10, 2014

Supervisor: Professor Juha Laine
Instructor: Tomi Tuominen M.Sc. (Tech.)

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Katariina Laakkonen

Title:
Contracts in Agile Software Development

Date: September 10, 2014 Pages: 83

Professorship: Software Engineering and Business Code: T-76

Supervisor: Professor Juha Laine

Instructor: Tomi Tuominen M.Sc. (Tech.)

Agile software development is no longer a new innovation: it has been around for
over 10 years and a study shows that it is now used in over half of the software
companies in Finland. Using agile software development methods also means that
contracts need to be defined differently. For example, the traditional approach
where the customer defines requirements at the beginning of the project and
then leaves the supplier to implement them by themselves is not possible in agile
projects.

The interdisciplinary study conducted in this thesis shows the five most critical
aspects that need to be taken into account in agile contracting: agile development
practices, pricing, change management, early termination of the project, and war-
ranties and liabilities. Traditional contracting, agile ideology, general contracting
terms used in Finland, Sweden and Norway, as well as a case contract from a
Finnish agile consulting company are evaluated based on each of these aspects.

Despite the popularity of agile development in Finland, the study shows that
general contracting terms used are not very agile. This thesis shows the main
discrepancies between the Finnish general contracting terms and agile ideology, as
well as the work done with agile general contracting terms in Sweden and Norway.
The clear conclusion is that the Finnish ICT industry needs proper agile general
contracting terms so that each agile company does not have to make up their
own contract from scratch.

Keywords: agile, contracts, IT2010, JIT 2007

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Katariina Laakkonen

Työn nimi:
Sopimukset ketterissä ohjelmistokehitysmenetelmissä

Päiväys: 10. syyskuuta 2014 Sivumäärä: 83

Professuuri: Ohjelmistotuotanto ja -
liiketoiminta

Koodi: T-76

Valvoja: Professori Juha Laine

Ohjaaja: Diplomi-insinööri Tomi Tuominen

Ketterä ohjelmistokehitys ei ole enää uusi keksintö: ketterää kehitystä on tehty
yli 10 vuotta ja tutkimus osoittaa, että yli puolet suomalaisista ohjelmistoyri-
tyksistä käyttää ketteriä menetelmiä. Ketterien menetelmien käyttö tarkoittaa
myös sitä, että sopimukset on määriteltävä eri tavalla. Esimerkiksi perinteinen
tapa, jossa asiakas määrittelee ohjelmiston vaatimukset projektin alussa, minkä
jälkeen toimittaja toteuttaa ohjelmiston itsenäisesti, ei ole mahdollista ketteriä
menetelmiä käytettäessä.

Tässä diplomityössä toteutettu poikkitieteellinen tutkimus osoittaa viisi tärkeintä
asiaa, jotka tulee huomioida kun tehdään sopimuksia ketteriin projekteihin: kette-
rien menetelmien vaatimat käytännöt, hinnoittelu, muutoksenhallinta, projektin
ennenaikainen päättäminen sekä takuu ja vastuut. Näitä näkökulmia käyttäen
työssä arvioidaan perinteistä sopimusoikeutta, ketterää ideologiaa, yleisiä sopi-
musehtoja Suomesta, Ruotsista ja Norjasta sekä esimerkkisopimusta eräältä suo-
malaiselta ketterältä konsulttiyritykseltä.

Vaikka ketterä kehitys on suosittua Suomessa, tutkimus osoittaa, että käytössä
olevat yleiset sopimusehdot eivät ole kovin ketteriä. Tässä diplomityössä
näytetään tärkeimmät eroavaisuudet ketterän ideologian ja suomalaisten yleisten
sopimusehtojen välillä sekä osoitetaan, kuinka ruotsalaiset ja norjalaiset ketterät
sopimusehdot ovat oikeasti kohtuullisen soveltuvia ketteriin projekteihin. Selvä
loppupäätelmä on, että Suomen IT-ala tarvitsee kunnolliset yleiset sopimusehdot
ketterään kehitykseen, jotta jokaisen ketterän yrityksen ei tarvitse kehittää omia
sopimuksia alusta alkaen.

Asiasanat: ketteryys, sopimukset, IT2010, JIT 2007

Kieli: Englanti

3

Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Juha Laine, for
the useful comments, remarks and engagement through the learning process
of this master thesis. Furthermore, I would like to thank my instructor Tomi
Tuominen from Houston Inc. for the instructions and support on the way. I
would also like to thank my family and friends for their understanding and
support throughout the entire process. Finally, I would like to thank all my
colleagues at Houston Inc. for their endless encouragement.

Espoo, September 10, 2014

Katariina Laakkonen

4

Contents

1 Introduction 7
1.1 Agile software development 7
1.2 Agile today . 9
1.3 Case company: Houston Inc. 11
1.4 Research questions and methodology 12
1.5 Content of the thesis . 13

2 Background 15
2.1 Trust and risks in contracting 15
2.2 Different types of agile projects 18
2.3 Proactive contracting . 21
2.4 General contracting terms . 24
2.5 Agile in the case company . 25

3 Development practices in contracts 27
3.1 Traditional development . 27
3.2 Agile principles . 28
3.3 Practices in the general contracting terms 30
3.4 Practices in the case company 31

4 Pricing models 33
4.1 Traditional pricing models . 33

4.1.1 Fixed price . 34
4.1.2 Time and Materials . 36
4.1.3 Target-cost . 37

4.2 Agile pricing . 40
4.2.1 Fixed price agile . 40
4.2.2 Time and materials in agile 41
4.2.3 Target-cost and agile 42
4.2.4 Fixed price per unit of work 42

4.3 Pricing in the general contracting terms 43

5

4.4 Pricing in the case company 45

5 Change management 47
5.1 Traditional change management 47
5.2 Agile change management . 47
5.3 Change in the general contracting terms 49
5.4 Change management in the case company 50

6 Contract termination 52
6.1 Traditional termination conditions 52
6.2 Agile termination principles 54
6.3 Termination in the general contracting terms 55
6.4 Contract termination in the case company 57

7 Warranties and Liability 58
7.1 Warranties in traditional contracting 58
7.2 Agile warranties . 60
7.3 Warranties in the general contracting terms 61
7.4 Warranties in the case company 63

8 Results 64
8.1 Summary of the findings . 64
8.2 How proactive the general terms are? 68
8.3 Improvement suggestions . 70

9 Discussion 72

10 Conclusions 74

11 Evaluation 77

6

Chapter 1

Introduction

Agile software development methods are widely used nowadays and most
ICT-professionals see them preferable over waterfall development – as we
can see from the second section of this chapter. Still, the development of
contractual models and general contracting terms have fallen behind the
trend, and the models used for waterfall software development do not work
well with the agile ideology. Usage of the old-fashioned contracting terms
in an agile project can be difficult, but it can also prevent the project from
efficiently using the agile practices and both customer and supplier may lose
the benefits of agile methodology.

One of the reasons why agile contracting models and contracting terms
are falling behind is because customers are used to waterfall contracts and
they like the certainty a fixed-everything contract seemingly offers: they pay
certain amount of money and get the software they needed. Luckily, also
the customers are waking up to the harsh reality of software development:
customers cannot know what they want before they see it, change to the
requirements is inevitable, and ultimately the customer is the one that suffers
when fixed-price project fails. Agile contracting models are needed to balance
the risks between both parties and give both the incentive to work together
towards the success of the joint project. It is time for cooperative contracts
instead of confrontational ones.

1.1 Agile software development

In 2001, 17 software developers published the Manifesto for Agile Software
Development (Beck et al., 2001) describing a lightweight software develop-
ment method. The Agile Manifesto emphasizes the following values:

7

CHAPTER 1. INTRODUCTION 8

• Individuals and interactions over processes and tools
• Working code over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

Agile development is an umbrella term for several lightweight agile im-
plementations including Scrum, eXtreme programming (XP), and Kanban.
Each has its own terminology and approach to development, but the ba-
sic values described in the agile manifesto apply to them all. There are
six common features that all of the implementations have: collaboration,
code reviews, small teams, short release schedules, time-boxing, and constant
testing (Coram and Bohner, 2005). Instead of heavy long-term planning or
comprehensive feature documentation, requirements are broken into small
tasks, developed iteratively in small, cross-functional teams and integrated
and tested continuously. After each iteration the customer gets high-quality,
working and tested software.

The highest priority in agile development is to satisfy the customer by
delivering valuable software early and continuously, making the working soft-
ware the primary measure of progress. Deliveries of the software should be
frequent, preferably every couple of weeks, and changes to the requirements
in order to gain higher customer value are welcomed in any state of the
development. (Beck et al., 2001) At the end of each release, the customer
gets a working product that can be evaluated, and requirements can then be
changed and prioritized for the following releases. Contrary to traditional de-
velopment, where the set of features are fixed and the delivery date changes,
in agile development the release schedule is fixed but the features can change.
This time-boxing helps to focus the customer and reduces unnecessary gold-
plating. (Coram and Bohner, 2005)

In agile development, rapid response to change is more important than
strictly following a plan. The plan is always only as good as it was when
initially written, and since in software projects things always change, the
plan needs constant updating. Often the changes are so fast that the plan
simply cannot be updated fast enough, thus dogmatically following it does
not make sense. This does not mean that in agile the code is just a pile of
hacks but instead the plan needs to be as lightweight and easily modifiable
as possible. For example, Scrum uses post-it notes on a board for a sprint
”plan”. (Coram and Bohner, 2005)

All agile implementations are highly collaborative, and business repre-
sentatives and developers should work together daily since the most efficient
way of communication is face-to-face conversation (Beck et al., 2001). In-
formal communication is valued over comprehensive documentation when

CHAPTER 1. INTRODUCTION 9

constantly spreading information inside the team as well as to all the other
stakeholders. Customer collaboration is crucial in agile development, and
the customer representative should be ”committed, knowledgeable, collab-
orative, representative, and empowered”. The customer is encouraged to
actively participate in the development process by giving them the product
right from the beginning of the project and the opportunity to change their
mind about it whenever necessary. (Coram and Bohner, 2005)

Takki (2002) describes traditional IT-contracting so that it can be as-
similated with construction work where precise drawings are necessary right
at the beginning of the project, and that the importance of thorough and
comprehensive specifications cannot be overemphasized. It is a common
Finnish saying that ”well planned is already half done”, but according to
Takki (2002), in IT projects well planned is already almost completely done.
He also states that the comprehension and quality of requirements in the
contract annex are inversely proportional to the amount of problems that
will be escalated during the implementation phase. The most common dis-
agreements are related to whether the project outcome is equal to what was
agreed. Another disagreement relates to, in fixed-price contracts, whether
some work is part of the original agreement or additional work that is sepa-
rately charged, and correspondingly in time and materials contract, whether
the work has been taken into account in the cost estimate or not.

Takki (2002) thinks that the idea of finalizing plans during the implemen-
tation phase will expose the project to endless disagreements and problems.
This base for traditional contracting has fundamental discrepancies with ag-
ile ideology which values ”responding to change over following a plan” and
”working software over comprehensive documentation” (Beck et al., 2001).
This discrepancy causes challenges when contracting for agile projects in an
environment used to doing contracts for traditional software development
projects. This thesis will further explain these challenges and introduce pos-
sible solutions based on previous research.

1.2 Agile today

Agile ideology has been around for over 10 years and it is no longer a new or
exceptional way of developing software but it is starting to be a mainstream
development process. Figure 1.1 shows agile adaptation results from For-
rester/Dr. Dobbs Global Developer Technographics Survey conducted in Q3
2009. 35 % of the respondents stated that they are using agile development
processes, making agile more common than traditional waterfall (13 %) and
iterative (21 %) development methods combined.

CHAPTER 1. INTRODUCTION 10

Figure 1.1: Agile adoption 2009 (West et al., 2010)

CHAPTER 1. INTRODUCTION 11

Rodŕıguez et al. (2012) conducted a similar survey in 2011 about agile
and lean development usage in Finland using the membership registry of
The Finnish Information Processing Association (FIPA) and collecting 408
responses from 200 software intensive organizations. 55 % of the responders
reported that they used either only agile or agile and lean methods combined
in their development, where 42 % reported that they use no agile or lean
methods. About half of the companies had been using agile for 2 years or
less, and only 7 % had used agile for more than 5 years. Lean methods were
even newer for the companies: over 70 % had been using them for 2 years or
less. For the organizations not using agile yet, only 16 % had clear plans to
start using agile or lean methods in the near future.

Even more remarkable figures exist, although they are from a company
offering e.g. training on agile methods, thus their results may not be com-
pletely reliable. The seventh annual ”State of Agile Development” -survey
conducted in 2012 and sponsored by VersionOne, including 4048 participants
mainly from North America (60% of the participants) but also from Europe
(27 %), shows that approximately 84% of companies are practicing agile de-
velopment. This means four percentage point increase compared to 80 %
adoption rate in the same survey conducted in 2011. Half of the companies
had been practicing agile development 2 years or less and only 14 % had
been using agile for over 5 years, and half of the companies used agile in at
least half of their projects. The study also shows that agile momentum is up:
83 % of the participants said they are going to use agile in future projects,
which is a huge increase compared to the same study in 2011 when only 59
% of the participants had plans to implement agile. (VersionOne Inc., 2013)

This data shows that agile is already a mainstream development process,
though it is still quite new practice in most of the organizations. Even though
agile emphasizes customer collaboration over contract negotiation, contracts
are still needed when suppliers develop software for external customers with
agile development methods. Still, general contracting terms at least in Fin-
land are falling behind so companies have to make up their own contract
terms for agile projects.

1.3 Case company: Houston Inc.

This thesis uses a Finnish consulting company called Houston Inc. and one
of its contracts as a case sample about contracting in agile software devel-
opment. Houston is a company specialized in agile and lean software de-
velopment and offers its experienced personnel to implement customers’ de-
manding software projects. Houston also offers consulting about agile project

CHAPTER 1. INTRODUCTION 12

management as well as agile coaching (e.g. certified scrum master, product
owner, test-driven development).

Houston Inc. was founded in 2004 and it employs about 50 agile pro-
fessionals mainly in Helsinki area. Houston is specialized in projects related
to financial services (banking and insurance) but the customers vary from
small to large companies in multiple different industries, e.g. telecommu-
nications, journalism and gambling. Many of the projects are implemented
using the latest Java EE technologies, but Houston’s personnel have com-
petence in wide variety of both back- and front-end technologies as well as
mobile development.

For example, Houston has participated in the development of a global
digitized invoice solution used around Europe, combining of the information
systems of two large life insurance companies, and development of a buying
and selling system for stock funds. One larger project included e.g. de-
velopment of financial background systems, an online banking service, and
an interface for mobile applications. One example of a non-financial system
developed by Houston is a used cars section of one of the highest-profile clas-
sified ads services in Finland used by both private users as well as major car
dealers.

The case contract used in this thesis is a quite well working agile contract
between Houston Inc. and one of its longstanding customers. It was used
in 2012 in a successful project where Houston developed a relatively large,
custom, financial service for the customer. The contract tried to follow Hous-
ton’s agile ideology as well as possible, and both client and supplier were very
pleased with it.

1.4 Research questions and methodology

To summarize the content of this thesis, the aim is to answer to following
research questions:

• What special issues should be considered when contracting for agile
software development projects compared to traditional software devel-
opment projects?

• How well the general contracting terms in Finland and other Nordic
countries fit agile projects?

• What could be improved in the agile contracting of the case company
and more generally in Finland?

CHAPTER 1. INTRODUCTION 13

The first question about special characteristics of agile contracting is an-
swered by conducting a literature study. This study uses some of the in-
dustry’s basic literature such as the book ”Lean software development: an
agile toolkit” from Poppendieck and Poppendieck (2003), as well as the most
recent articles published about the specific topics of agile development. Also
some more informal resources are used in order to find out about the state
of the art practices used by agile professionals.

The general contracting terms and conditions for software development
used in Finland (IT2010 and JIT 2007) are evaluated based on how well – or
how bad – they work with the agile ideology and how they address the most
important issues when negotiating contracts for agile projects. For compar-
ison, Swedish and Norwegian terms designed for agile software development
are evaluated based on the same special requirements. The parts irrelevant to
the topic of the thesis, such as recruitment restrictions or confidentiality, are
not covered in the study since the chosen software development methodology
is not relevant when handling those kinds of issues in the contract. The intel-
lectual property rights are covered only briefly: the important factor is that
in agile projects all the rights to the software should belong to the customer.

Because many companies, including the case company used in this thesis,
have found the general contracting terms in Finland insufficient for agile
software development projects, they have been forced to create their own
terms and conditions. In order to answer to the third research question, a
case study is conducted in order to find out how an agile consulting company
has handled contracting for agile projects, how it differs from the general
contracting terms, and what could the company do better.

Because of the case company being a consultancy company delivering
customized software for (mostly) private-sector customers, the analysis is
limited to customized private-sector projects when necessary. For example,
the parts evaluated from IT2010 and JIT 2007 terms are the ones applicable
for delivery of customized software. Also, the complex tendering process
and other bureaucracy needed in projects where the customer is part of the
Finnish public administration are not discussed in this thesis.

1.5 Content of the thesis

The first chapter of this thesis, the introduction, gives a general idea of
agile software development and the ideology behind it. It also shows that,
while agile is still quite new approach in many companies, it has became the
mainstream software development methodology and the agile momentum is
definitely up.

CHAPTER 1. INTRODUCTION 14

The second chapter of the thesis describes the background of agile sub-
contracting and contracting in more general level. First, the importance of
trust and risk sharing in all contracting and the difficulties and opportuni-
ties these two factors offer are addressed. The second part of the chapter
explains the different types of agile subcontracting based on the asset speci-
ficity. Then the chapter introduces an orientation to contracting that has
many agile-like ideas: proactive contracting. Also the general contracting
terms and conditions used in Finland (IT2010 and JIT 2007 for projects
made for public administration) are described, as well as some general agile
contracting terms used in Sweden and Norway. The final section of the chap-
ter introduces the case company of which contracting ideology and a sample
contract are analyzed in this thesis.

The following chapters introduce the problems agile contracting has com-
pared to contracting in traditional development models. Commonly used
pricing models and their suitability for agile development are evaluated, and
also some more extreme models are introduced. Agile also requires e.g. cus-
tomer participation in the project, thus requiring that the contract somehow
covers agile principles. In addition, agile ideology does not match traditional
termination clauses used in contracts, and incremental deliveries provide ad-
ditional challenges for defining warranties for products. For all of these is-
sues, this thesis introduces the traditional perspective, agile viewpoint, how
the general contracting terms handle the specific issue and how the issue is
handled in the case company.

The results chapter collects all the agile contracting issues and compares
the principles the case company uses in contracting with the general contract-
ing terms, as well as with the traditional and agile viewpoints for the issues.
Finally, concrete suggestions are given for how to improve the contracting in
the case company.

Chapter 2

Background

Trust and risk sharing are the two most basic matters in contracting. With-
out any trust between the contracting parties, there is no point of starting
the project in the first place. The amount of trust in the relationship also
influences the distribution of the legal conditions and the ethical principles
in contracting, as well as how the risk is shared between the parties. The
first section of this chapter discusses trust and risks in contracting.

The second section remarks that agile principles can be applied to differ-
ent kinds of projects. The degree of social complexity and how the project
management responsibility is divided in the project divides agile software
development for multiple different subcontracting project types. The third
part of the chapter describes an orientation to contracting that has many
agile-like ideas: proactive contracting.

The final two sections of this chapter introduce the general contracting
terms evaluated in this thesis. The two commonly used general terms in
Finland – IT2010 and JIT 2007 – are selected. As a comparison of how agile
contracting is done in other Scandinavian countries, the thesis also evaluates
the Swedish General regulations for agile projects and the Norwegian Com-
puter Society’s contract standards (PS2000). Finally this chapter introduces
the case company’s ”Houston Way”, i.e. the way the case company sees agile
and project work with customers.

2.1 Trust and risks in contracting

In every transaction where simultaneous exchange is not possible, trust and
risk are involved (Jeffries and Reed, 2000). These risks can be either financial
or social, e.g. fear of losing reputation (Blomqvist et al., 2005), and both sort
and long term risks are important in contracting. Traditionally, customers

15

CHAPTER 2. BACKGROUND 16

think mainly about short-term risks that can be assigned to be the supplier’s
responsibility with fixed-price contracts. Usually these contracts do not take
into account that maintenance of the (usually unsatisfying) system on a time
and materials basis will cost a lot for the customer and, if the project is a
failure, it will also affect the customers business, thus making the customer
undertake the whole long-term risk. Ideally, both short and long term risks
should be shared more equally so that both parties have the incentive to
make the project a success. (Lichtenstein, 2004)

Trust is also often seen as the most important success factor for the busi-
ness (e.g. Glover, 1994). Still, the conceptual definition of trust is difficult,
even though in every-day sense trust is familiar to all. Everyone sees the
meaning and role of trust differently and trust is always related to the con-
text, thus making universal definition of trust impossible. (Blomqvist, 1997;
Blomqvist et al., 2002) Luckily, some studies still exist that try to enlighten
the concept of trust in the business context.

In the business context, an important trust factor is competence, i.e. skills
and technical capabilities, which are the necessary base for the whole profes-
sional relationship. What comes to accepting a certain level of risk, signs of
goodwill, i.e. positive intentions towards the other and moral responsibility,
are also needed. Positive intentions also show as proactive behavior and ef-
fective cooperation in the partnership. (Blomqvist et al., 2002) With these
two factors trust can be defined as ”actor’s expectation of the other party’s
competence and goodwill” (Blomqvist, 1997).

Trust is a difficult concept, but crucial in long-term relationships. All
circumstances cannot be precisely covered in a written contract and short-
term inequities are inevitable, implying that trust towards the other party is
needed in all contracting. This also means that if there is no trust at all, it
is not reasonable to even try contracting: it is very unlikely that contracting
without any trust would lead to a (successful) partnership. On the other
hand, if the negotiating partners do trust each other, they will be able to save
time and effort in negotiating, agreeing and executing contracts. (Blomqvist
et al., 2005) Economists also believe that trust can reduce transaction costs
(e.g. Chiles and McMackin, 1996). Both the negative and the positive factors
therefore enforce the idea that trust is essential in contracting.

Contracts can also have less importance if trust exists. Figure 2.1 from
Gundlach and Murphy (1993) shows the relative significance of contract law
and ethics in different types of contractual situations. The horizontal axis
has the three exchange forms: transactional, contractual and relational. The
vertical axis shows the significance of the guiding principle. The two arrows
– one for ethical and the other for contract law principles – show that when
moving towards relational exchange, the importance of ethics (e.g. trust and

CHAPTER 2. BACKGROUND 17

Figure 2.1: Relative significance of ethical and contract law principles (Gund-
lach and Murphy, 1993)

commitment) increases where, on the other hand, the importance of contract
law (e.g. indefinite contracts) decreases.

On the left side of the exchange forms -axis is transactional exchange
i.e. simultaneous transfer of goods where precise rules guide the transac-
tion. When both parties have accomplished their clearly agreed duties, pre-
requisites for the transaction are met and the exchange can be completed.
(Gundlach and Murphy, 1993) This kind of exchange can be e.g. buying a
ready made software from a store, where ethical principles like trust are less
important.

The other extreme is relational exchange on the right side of the axis, that
involves complex transactions linked together over a longer period of time.
Even though a contract may exist, contract law is not sufficient to handle this
kind of close, long-term relationship. Thus trust and other ethical principles
are mandatory when administering this kind of relationship that can be – in
its most simple form – e.g. a frequent stay program at a hotel. (Gundlach
and Murphy, 1993)

In the middle are the types of contracts that fall somewhere between the
two extremes: contractual exchange where both legal and ethical principles
are very important. Legal conditions of the contract are the base of the
exchange but relying too strictly on the contract may not lead to the best
outcome. The formal contract cannot address all the aspects of these kinds of

CHAPTER 2. BACKGROUND 18

exchanges that have obligations with complex duties, therefore ethical prin-
ciples such as trust are equally important in these relationships. (Gundlach
and Murphy, 1993)

2.2 Different types of agile projects

Agile software development has multiple different subcontracting project
types depending on project management responsibility and the degree of
social complexity. The depth of the relationship and level of dependency the
customer has towards the supplier vary depending who has the most specific
knowledge to give to the project. Different types of subcontracting project
types based on degree of social complexity are introduced in figure 2.2, and
the effect of asset specificity and allocation of management responsibility in
them is described in figure 2.3.

The easiest project types are the two extremities: the customer or the
subcontractor has the whole responsibility. If the customer is solely responsi-
ble for the project management, the subcontractors also follow the customer’s
process and are part of the customer’s social system. They are practically
like rental workers – Pyysiäinen et al. (2003) calls this body shopping. This
type leaves the whole risk of the project to the customer, since the supplier
has no responsibility for the outcome of the project. On the other hand, if
the customer can terminate the contract any time, they also have very little
dependency for the supplier. These types of projects are usually developing
a software that is close to customer’s business and the customer has all the
domain knowledge, leaving the supplier’s asset specificity low and dependent
on the technical skills of the individual members of the development team.
(Laine et al., 2011) If the problem is not technically very demanding or the
supplier does not have any other asset specificity e.g. related to project
management, this leaves little power for the supplier related to pricing.

On the other hand, if the subcontractor has all the responsibility, they
usually also follow their own process and work in a ”black box” from the point
of view of the customer. The supplier is given clear, relatively unchanging
requirements for an independent module that they develop using their own
project management. The customer does not need to monitor the project
continuously, and this type of project resembles more traditional develop-
ment models where collaboration between the customer and the contractor
is not that essential. (Pyysiäinen et al., 2003) This kind of project can be,
for example, customization or integration of the supplier’s or third party’s
product for the customer. The supplier has the special knowledge of the soft-
ware and can take the responsibility of the technical solutions and customer

CHAPTER 2. BACKGROUND 19

Figure 2.2: Classification of project types according to the degree of social
complexity (Pyysiäinen et al., 2003)

Figure 2.3: Project management responsibility in different project types
(Lassenius, 2012)

CHAPTER 2. BACKGROUND 20

is more dependent of the supplier. This also gives the supplier more power
to raise their prices. (Laine et al., 2011)

The most interesting projects are the ones in the middle in figure 2.3 –
independent subcontractor teams and transparent box – where social com-
plexity is high. In socially complex projects collaboration is mandatory,
resource management is a shared responsibility, and common processes need
to be defined. These projects are also the main focus in this thesis since they
offer the most challenges for contracting.

The independent subcontractor project type is a project where the sub-
contractor organizes its own teams and management for them and is given
quite clearly specified, small(ish) tasks during the whole project. Usually,
the development does not involve critical interfaces for other sites, reducing
the need for active communication during the project. Still, it is important
to share sufficient background knowledge about the requirements early in
the project and standardize the clarification of the tasks, as well as make it
easy to ask clarifying questions about the specifications. It is also important
that the customer knows that the subcontractor has understood the require-
ments properly (instead of being reluctant to ask questions) and that the
subcontractor is not left alone with vague specifications. (Pyysiäinen et al.,
2003)

Even though this kind of project does not usually contain critical in-
terfaces for other sites, reliability of deliveries between teams has a major
impact on the satisfaction: inconsistencies can cause a feeling of risk and
uncontrollability, thus reducing the level of trust. The aim in this kind of
subcontracting is to build a long-term relationship, making open evaluation
critical when seeking optimal work practices. The beginning of the project
should contain active communication that lays foundation for the standard-
ized mode of development used during the project, e.g. by introducing dif-
ferent sub-project teams to each other in order to build trust between (at
least) the key communicators. (Pyysiäinen et al., 2003)

In the transparent box project type the subcontractor has more respon-
sibility in the project, is involved right from the specification phase, and has
its own planning responsibility. This kind of subcontracting is used when
requirements are unclear, changes are expected and the customer needs spe-
cific knowledge from the subcontractor. The subcontractor has quite much
power to decide the specific development solutions they use, and they should
be committed to the goals of the whole project. The relationship between
the customer and the subcontractor is close and communication is inten-
sive – standardized development practices are defined only to support active
communication. (Pyysiäinen et al., 2003)

This kind of subcontracting requires openness between the teams in the

CHAPTER 2. BACKGROUND 21

Figure 2.4: Proactive Contracting Levels (Haapio, 2010)

network so that no-one has doubts about others’ competence and all are will-
ing and able to help other teams to solve sudden interface-problems. The
teams cannot become attached to rigid rules but the development has to be
continuously evaluated and continuous negotiations about the dependencies
for other modules are inevitable. The frequent and reliable delivery process
helps build trust between teams, which then helps the teams solve unpre-
dictable events during the development. (Pyysiäinen et al., 2003)

2.3 Proactive contracting

Traditionally, contracts have been seen as simple one-shot transactions, and
contract law has been based on enforcing of binding contracts instead of the
idea of long-term cooperation. The goal has been on making one final, perfect
contract that does not need flexibility, and if legal disagreements happen,
the result is that one party is right (and wins) and the other party loses. In
long-standing relationships this kind of mentality is not productive, instead
both parties should be willing to aim towards win-win situations where both
parties are satisfied – also when conflicts happen. (Pohjonen, 2006a)

Proactive contracting and proactive law are based on preventive law,
which was started in 1950 in the United States by Louis Brown with his
book Preventive Law. He was a pioneer of the field of preventive law: an

CHAPTER 2. BACKGROUND 22

attorney that realized his clients could have prevented most of their prob-
lems with good advice from their layers and better planning. Proactive law
shares the views of preventive law, but – instead of prevention of legal prob-
lems and lawsuits – the focus is on the client, multi-professional teamwork,
and promoting successful business. (Nysten-Haarala, 2006) I.e. proactive
law emphasizes self-reflection and responsibility: the focus is on how one
can create the conditions for achieving goals without unnecessary problems
instead of only reacting to something that is already happened or happening
(Pohjonen, 2006b).

Proactive contracting and law are developed in interdisciplinary cooper-
ation with lawyers and researchers (Pohjonen, 2006b). It is based on the
real-life needs of businesses to start, manage and implement successful re-
lationships and business actions without unnecessary problems. Contracts
are only tools that are used to express and fulfill the will of the parties and
should be linked to the corporate goals and strategy. The contracting should
involve interaction of professionals with different special knowledge (e.g. le-
gal and technical) in order to achieve the real will of each party. (Pohjonen,
2006a)

In proactive contracting, the rules and methods should be planned in a
way that will prevent problems and will lead to successful partnership of the
contracting parties. One of the main ideas is that problems are best to be
solved where they are manifested: different actors such as project managers
and developers should recognize the possible causes of problems and fix the
reasons before conflicts happen. And if conflicts cannot be avoided, they
should be handled in a way that does not need lawyers or court actions, and
will keep the atmosphere for further cooperation as good as possible.

Proactive contracting can be described with a three level pyramid as seen
in figure 2.4 from Haapio (2010). The primary level is the causes: proactive
contracting aims to successful contractual relationships with good communi-
cation and coordination, thus eliminating possible causes for problems. The
contracting process is done in a way that helps recognize, correct and manage
the expectations of each party and form a contract based on these expecta-
tions. This makes it is possible to share responsibilities and balance risks
and rewards in a clear and realistic way in the contract.

The secondary level is the effects, that aims to minimize risks and harmful
consequences when problems do happen. This means that the contract is
formed in a way that it is clear how to function when a risk is realized or
some other problem occurs. Finally, the tertiary level is about consequences
i.e. controlling the conflicts without going to court and minimizing the costs
caused by conflicts. This helps resolve conflicts in a constructive way and
the contractual relationship can last longer. (Haapio, 2010)

CHAPTER 2. BACKGROUND 23

This pyramid can be interpreted so that proactive contracting is not an
isolated function but needs to be part of the client’s business processes such
as corporate governance and project management. Another interpretation
of the figure is that it is not enough for the lawyers to deal with the legal
issues in the secondary and tertiary levels, since actions on those levels only
minimize the harmful effects and the client does not profit from the remedies
or damages. Without success in the primary level and the client’s self-care,
all other effort is wasted. Haapio (2010)

In practice, the aim of proactive contracting is to increase mutual under-
standing and produce better contracting methods (Pohjonen, 2006a). The
best way to achieve this, according to Haapio (2010), is that proactive lawyers
and business managers together ”establish processes, practices, checklists,
and templates that help the entire business team take care of the key issues
in a systematic way”. This way everyone knows what they need to do and
how to do it from the first time. It is also impossible in big organizations for
the lawyers to prepare all the contracts and deals, thus the sales personnel
should have the tools and knowledge to recognize opportunities and prevent
problems on a daily basis. For example, various contract templates, project
models and interactive internet programs exist to show how the contracting
and business process should proceed (Pohjonen, 2006a).

Siedel and Haapio (2010) describe a medical analogy to explain proac-
tive law. The traditional reactive management sees lawyers as an emergency
function, like a patient who seeks doctoral treatment after catching malaria.
The preventive aspect of proactive law tries to prevent legal harm by adding
e.g. risk allocation clauses in the contract, similarly to a person using pills
and a mosquito net to prevent getting malaria. The promotive aspect of
proactive law tries to change the legal concern into business concern or busi-
ness opportunity – so instead of malaria medication and netting, the root
cause i.e. the mosquitoes are eliminated by draining swamps. If the root
cause is eliminated, also the contract negotiations can be moved from the
risk management systems, such as the malaria medication and netting, to
something more constructive.

As an example of proactive contracting in practice, Haapio (2010) gives
Metso Contract Library and Standard Templates for Purchase Contracts.
Metso has business operations in over 50 countries and hundreds of Metso em-
ployees around the world buy services and products for Metso. Metso’s con-
tract templates and conditions cover the most important issues that should
be taken into account in contract negotiations, and they can also be used
by people who seldom participate the contracting. Metso has also included
contracting training as part of their procurement training.

Another example is the UK Treasury Public Private Partnership website

CHAPTER 2. BACKGROUND 24

that has guidance and standard contracts for contracting for the public sector.
The model terms and conditions with related guidance are free to download,
and they have been used by e.g. the defense, health, and education sectors.
The aim is to standardize the Private Finance Initiative (PFI) contracts in
the UK, in order to achieve commercially balanced contracts and help the
public sector to meet their requirements and get the best value for money.
The guidance’s main objectives are to promote common understanding of
the main risks in a PFI project, enforce consistent approach and pricing in
similar projects, and reduce the costs and time needed for negotiating similar
contractual issues over and over again. (Haapio, 2010)

2.4 General contracting terms

In Finland, IT2010 terms and conditions are widely used general terms and
conditions for contracting in traditional information technology projects.
They have been prepared in cooperation between the Central Chamber of
Commerce of Finland, the Finnish Software Entrepreneurs Association, the
Finnish Association of Purchasing and Logistics LOGY, the Federation of
Finnish Technology Industries and the Finnish Information Processing As-
sociation. Still, they can not be found suitable for agile development and are
not commonly used in agile software development projects.

IT2010 terms and conditions are a draft of contract clauses that can be
used in domestic deliveries between suppliers and customers in the field of
information technology. They are prepared to make execution of agreements
easier and to reduce contracting cost. The idea is not to remove the need for
negotiating the content of the contract but to help parties focus on certain,
important issues that should be considered in contracting.

IT2010 YSE general terms and conditions are meant to be the starting
point of any contract dealing with the sale or licensing of information tech-
nology products or suppling information technology services. In addition, a
suitable annex (EAP, EJT, ELH, ELT, EOY, ETP or EVT) of special terms
should be selected. For an agile software development project the suitable
annex would be EJT special terms and conditions for deliveries of data sys-
tems and customized software. If there are discrepancies between the EJT
special terms and YSE general terms, the special terms and conditions are
applied.

The Advisory Committee on Information Management in Public Admin-
istration (JUHTA) is a committee set up at the Ministry of Finance of Fin-
land to plan cooperation in information management, make studies and re-
ports, and give recommendations for the public administration. One of the

CHAPTER 2. BACKGROUND 25

recommendations of JUHTA is that ”the procurement of IT products and
services by central government agencies; by state enterprises; by central gov-
ernment institutions and funds; and by municipalities and municipal federa-
tions” should use Terms and Conditions of Government IT Procurement i.e.
JIT 2007. (JIT 2007, 1.1) In addition to the JIT 2007 General Terms and
Conditions, a suitable annex is used when applicable – within the context
of this thesis it would be Special Terms and Conditions for Procurement of
Customized Applications i.e. JIT 2007 - Applications. The annex always
takes precedence over the general terms if there are discrepancies between
the two. (JIT 2007, 1.2)

This thesis will address the issues IT2010 terms and conditions would
have if applied to agile projects. For comparison, also the similar problems
found from JIT 2007 terms and conditions used in the procurement of IT
products and services for the public administration are introduced. Also,
a more suitable general terms for agile software development from Sweden
and Norway are examined. Swedish General regulations for agile projects
were published by the IT and telecommunication companies in 2012. The
Norwegian Computer Society’s contract standards i.e. PS2000 terms were
developed under the research Project 2000 organized by NTNU (Norwegian
University of Science and Technology) and SINTEF (Norwegian: Stiftelsen
for industriell og teknisk forskning, the largest independent research organi-
zation in Scandinavia).

Both Swedish General regulations for agile projects as well as Norwegian
Computer Society’s contract standards (PS2000) are intended to be used
with projects that have no pre-approved specifications but the project re-
quires quickly response to changing conditions during the implementation.
The planning, implementation and monitoring of the project is guided in co-
operation with the supplier and the customer, and the success of the project
is dependent on how well the parties interact and control the project jointly.

2.5 Agile in the case company

The base for Houston Inc.’s way of doing agile is that we cannot predict:
people writing specifications to the system before the project starts do not
know what the end-user will actually need. We ask about the customer’s
needs but – because of human nature – we only get rational answers that are
not true. For example, Nokia had a touch screen mobile device a century
ago but users told them that they do not want it and Nokia stopped the
development. Another problem is that developers know too much about the
product and make decisions based on that, leading to software doing wrong

CHAPTER 2. BACKGROUND 26

things or right things in a wrong way. Developers really need feedback from
the actual users – the sooner the better. (Teikari, 2012)

Clear concept for the new product is crucial for the project to succeed.
Vague ideas need to be shaped into viable and technically feasible business
concepts that have measurable goals. This is usually not easy to do alone but
external expert can help by asking the questions one does not dare or know
to ask. For this purpose, Houston offers Houston Accelerate -workshops to
brighten the concept before the project. (Teikari, 2012)

Also agile projects need some specifications, which in traditional devel-
opment methods can take months to define. Houston way of doing specifica-
tions is Boot Camp: a two day intensive workshop to specify and plan the
project. During the Boot Camp, the project stakeholders get together and
a trained professional will squeeze the requirements and their priorities out
of them. The end result of the Boot Camp is a prioritized, work-estimated
release plan for the project. This plan can be used as the base for the con-
tract, but agile principles should not be forgotten: this is just the first guess
about the future software and will become more precise and change when
the development starts. (Teikari, 2012)

Chapter 3

Development practices in contracts

Traditionally, software development has had only minimal customer collab-
oration: customers have been needed only at the requirements elicitation
phase at the beginning of the project and during the acceptance testing at
the end of the project. On the contrary, agile development is more customer-
centric. In agile one of the main priorities is to produce maximum amount
of value for the customer as early as possible in a form of a working soft-
ware. This kind of development requires an active customer during the whole
project, including implementation phase, which adds new requirements for
the contracting.

This chapter addresses the requirements for agile contracting by first giv-
ing an insight on how software development have been seen traditionally and
then explaining the agile practices that must be taken into account in con-
tracting. Then the general contracting terms are evaluated in order to find
out whether they address these issues or not. Finally, the agile development
practices the case company uses in contracts are introduced.

3.1 Traditional development

Traditionally, software development has been rationalized and engineering-
based, grounded in the principles of hard systems thinking. The approach
assumes that problems are fully specifiable and for every problem exists a
predictable and optimal solution. The basis for predicting, measuring and
controlling problems during the development is in comprehensive, in advance
planning. (Nerur et al., 2005)

In traditional, process-centric software development the primary focus is
on highly optimized and repeatable processes. By continuously measuring
and refining the processes, sources of variations in the processes can be identi-

27

CHAPTER 3. DEVELOPMENT PRACTICES IN CONTRACTS 28

fied and eliminated. This kind of traditional software development is driven
by control and planning accomplished by a command and control style of
management. Project manager has the authority and a role of a planner and
a controller. (Nerur et al., 2005)

Customers are, of course, important in traditional software development,
but their main role is during the early and late phases of the development
process. They participate specifically in requirements elicitation and analysis,
budget and contract negotiations, and acceptance testing. (Grisham and
Perry, 2005) What comes to other activities during the development phase
the customer participation is minimal: it contains some limited interactions
with the development team during the implementation phase.

The traditional development where emphasis is on comprehensive, in ad-
vance planning and customer involvement during the implementation is not
needed gives the supplier free hands to execute the project using whatever
working methods they prefer. No cooperation methods exceeding regular
reporting of the project’s state to the customer is needed to be stated in the
contract. Also the contract has only minimal requirements for the customer
to e.g. participate in the requirements elicitation before the implementation
starts and perform the acceptance tests after the project has been delivered.

3.2 Agile principles

In agile software development projects active customer engagement is crucial
for the project to succeed (Nerur et al., 2005). In agile projects, the system
is developed iteratively based on what the customer needs, which means the
customer has to dedicate some of their time to the this collaborative develop-
ment. With uninterested, overly busy or otherwise unavailable customer the
supplier cannot deliver a system that actually fulfills the customer’s needs
(and the requirements in the contract), thus agile contracts should issue the
customer engagement to the project.

The customer’s role in any software development is to decide ”what to
build”. In agile, this means that the customer is integrated part of the
development team and works on-site with the team. The customer will write
the user stories and discuss them with the rest of the development team,
is responsible for the business decisions (e.g. prioritizing the user stories),
and regularly tests the software to confirm it works as expected. This means
that the customer must know the domain well enough to be able to do the
necessary decisions. (Martin et al., 2004)

If agile software development, the customers are expected to be ”collab-
orative, representative, authorized, committed, and knowledgeable” (Boehm

CHAPTER 3. DEVELOPMENT PRACTICES IN CONTRACTS 29

and Turner, 2003). In addition, the customer must be able to handle multiple
tasks at the time and have managerial support. This all combined to a one
person means that a suitable on-site customer must be a valuable member
of the customer’s organization, and the organization may not be willing to
donate such an asset to the software development team. The organization
may see that using a valuable employee’s time to a software development
project perceives little business value, and requiring that may have negative
effects on the relationship with the customer. One possible solution to that
can be that a knowledgeable engineer or manager acts as the supplement of
the customer who is available only part-time. (Grisham and Perry, 2005)

In Scrum, the key representative of the customer is called the product
owner and he is responsible for communicating the customer needs to the de-
velopment team and keeping the product backlog in shape during the project.
The contract should require that the customer nominates a product owner
who will develop, prioritize and maintain the product backlog as well as
participate to the required meetings such as sprint plannings or review meet-
ings. Since the product owner is crucial for the project, the contract should
also require that the product owner dedicates a reasonable part of their time
and effort to the project and is available to respond the development team’s
questions in a decent time. (Bird&Bird, 2012)

When using Scrum – or any other agile process model with short iter-
ations – the contract should specify the agreed duration of each iteration
(i.e. sprint). The duration of each sprint should be short (e.g. 2–4 weeks)
and the duration of a individual sprint should not be extended under any
circumstances. If all the agreed items in the sprint cannot be completed, the
unfinished items should be put back to backlog to be implemented in the
future sprints. (Bird&Bird, 2012)

Another key aspect in agile is to deliver working software to the customer
after each iteration and have the software as the primary measure of progress.
But how to determine this when the deliverables are small and missing lots
of the features the final product needs to have? This can be achieved by
defining an agreed ”Definition of Done” – ideally already in the contract –
that can contain e.g. items like: all code is reviewed and tested (acceptance
tests as well as non-functional tests such as performance tests), all code
follows agreed coding standards and have been refactored when needed, and
all necessary documentation has been completed. (Bird&Bird, 2012)

Hoda et al. (2009) also gives a worst case option to use with customers who
cannot be convinced to use agile technologies: do not tell the customer about
the agile process. The supplier is then usually forced to work under a fixed
price contract and the customer is unaware of the internal agile practices
used by the development team. This is probably still better than using

CHAPTER 3. DEVELOPMENT PRACTICES IN CONTRACTS 30

waterfall methodology and the customer is arguably happy to see the project
results during the project. Still, this does not guarantee that the customer
is available during the project.

3.3 Practices in the general contracting terms

IT2010 terms and conditions as such do not state what kind of process should
be used in the project: EJT special terms and conditions say that work re-
lated to the project should be performed using the supplier’s working meth-
ods (IT2010 EJT, 5.7). So the supplier is free to use waterfall process or agile
methodologies or anything they want, just some basic practices are defined
in the terms. One practice is that based on the EJT special terms and condi-
tions, the supplier has to report the progress of the project in writing at least
once per month and, if the pricing is not a fixed price, also about the time
used for the project (IT2010 EJT, 6.1). This kind of written, forced report-
ing does not fit well with agile ideology where active customer collaboration
is enforced.

IT2010 EJT special terms and conditions also state that the project
should have a steering group containing representatives from both parties
which will organize the cooperation between the parties and supervise the
implementation of the project. This group should meet at least after each de-
livery phase and whenever either of the parties requests a meeting. (IT2010
EJT, 5.1) This is actually a sound approach for both traditional and agile
development projects.

Also JIT 2007 terms define a similar steering group for the project that
manages the cooperation of the parties and supervises the project. The
group meets whenever requested and at least after each delivery phase. The
supplier’s project manager is responsible for reporting to the steering group
about the state of the project. In addition to that, both parties should
have named contact person that monitors and supervises the fulfillment of
the contract and communicates information regarding implementation of the
contract to his own organization and to the other party. (JIT 2007, 4)

On the contrary to the two Finnish general terms, the Swedish general
terms are based on iterative, agile development process where software is
developed in consecutive time boxes (or in sprints if Scrum terminology is
used). Parties should jointly agree how the time boxes form releases (e.g.
is a time box equal to a release) in order to archive the goals stated for
the project. Continuous cooperation is crucial in order to plan, implement
and monitor the incremental work. This will take time from the customer,
thus the terms state that the customer must e.g. ensure that decisions are

CHAPTER 3. DEVELOPMENT PRACTICES IN CONTRACTS 31

taken continuously during the implementation. The terms also require the
customer’s representative to be qualified and competent and have necessary
knowledge about the client’s business. (General Terms for Agile Projects, 3)

Before each iteration, content for the time box is agreed and the contents
should not change during the time box. At the end of the time box, the
supplier will deliver the work for the customer, who will then – without a
delay and still inside the time box – verify that the contents correspond to
the plan and agreement in general. This verification is the basis for planning
the next time box: if some items are not accepted (or not implemented),
they are moved to later time boxes. (General Terms for Agile Projects, 4)

Norwegian PS2000 terms are also based on Scrum process where the roles
required by Scrum are combined with the organizational model used in tra-
ditional software development projects. Both parties have project managers,
and project is steered by the steering group containing representatives from
both parties (e.g. the project managers). In addition to the steering group,
the contract should also specify a team-level cooperation between the par-
ties. It is also possible to form specific work groups to evaluate, for example,
specifications, prototypes and test results. (Laine et al., 2011)

An important factor in the PS2000 terms is the reasonable risk sharing
between the customer and the supplier. Thus one of the customer’s respon-
sibilities is to perform a risk analysis as a part of the requirement analysis
performed before the implementation phase. The supplier will then complete
the analysis. The result of the analysis is an uncertainty matrix where each
of the risks is bared by the party more capable of handling the risk factors
and minimizing the damages. (Laine et al., 2011)

3.4 Practices in the case company

Agile development needs more engagement from the customer than tradi-
tional software development. In the case company, Houston Inc., the mini-
mum requirement for the customer is to have full-time product owner for the
project. The product owner has to have the required knowledge about the
business and the customer’s clients, and is e.g. responsible for prioritizing
the requirements and accepting the features. (Teikari, 2012)

To prevent any misunderstandings, the responsibilities of each party should
be clearly stated in the contract. The contract can e.g. have responsibility
matrix that describes the responsibilities of both the customer and the sup-
plier. Simplified example of this kind of responsibility matrix is shown in
figure 3.1. (Teikari, 2012)

The development team and the individual members of it, as well as the

CHAPTER 3. DEVELOPMENT PRACTICES IN CONTRACTS 32

Figure 3.1: Example of a partial responsibility matrix

chemistry between supplier’s and customer’s personnel, are extremely im-
portant in agile development projects where the supplier works within the
customer’s premisses and with the customer’s personnel. Thus a client’s CEO
tells in the book of Teikari (2012) that it is essential for the customer that
the members of the development team can be replaced just by notifying the
supplier.

The case company sees that every software project needs a business steer-
ing group that steers the project with business decisions. The group will
guide the project in long-term so that project will stay in line with the cus-
tomer’s overall business. This group should contain members from both
parties in order to keep the cooperation close and open. (Teikari, 2012)

The sample contract notes the importance of customer engagement and
uses responsibility matrix to ensure the customer takes care of the duties
necessary for the agile process. For example, the customer is responsible for
having a reachable Product Owner, as well as for the business requirements
in the product (and sprint) backlog and prioritization of them. The cus-
tomer also conducts the acceptance tests for each delivery, and is obligated
to nominate a member to the steering group.

The sample contract also notes the importance of good chemistry between
the supplier’s development team and the customer’s personnel. Thus the
sample contract gives the customer the right – with a reasonable cause – to
request replacement of the suppliers resources in the project. The supplier
must then immediately and without additional costs replace the person with
another, equally competent one.

Chapter 4

Pricing models

In some industries, calculating a price for a product is easy: just calculate the
costs (e.g. material and labor costs) and add some margin. Unfortunately,
in software development calculating the costs (and therefore also the price)
beforehand is not that easy. Usually the product requirements are not thor-
oughly known beforehand and they change during the development, which is
also the base and motivator for agile software development.

This chapter introduces three commonly used pricing models: fixed price,
time&materials and target cost pricing. These can all be used in both tra-
ditional and agile software development projects – the second section of this
chapter evaluates how well those models work with agile projects. The sec-
ond chapter also introduces some more innovative pricing models that agile
development enables.

The third section explains the pricing models used in the general con-
tracting terms. IT2010 and JIT 2007 terms rely on using penalties where
the Swedish and Norwegian agile terms both use some kind of shared pain
and gain models. Similarly, the ideology of the case company as well as the
clauses used in the case contract – both introduced in the final section of
the chapter – rely strongly on the persuasion that bonuses work better than
penalties.

4.1 Traditional pricing models

The three commonly used pricing models are fixed price, time&materials and
target cost pricing. The first feels like low-risk model for the customer since
the supplier bares the responsibility to finnish the project in time but may
actually cause high long-term costs for the customer. In the second model
the customer bares all the risks and, when applied to waterfall development,

33

CHAPTER 4. PRICING MODELS 34

Figure 4.1: Fixed Price, Fixed Scope (Stevens, 2009)

customer is tied to the supplier who has no incentive to keep the costs down.
The third option is an attempt to share the pain and gain between the parties
and is recommended e.g by Takki (2002).

4.1.1 Fixed price

Customers are used to fixed price, scope and time -contracts that feel simple
and safe: the customer pays a certain amount of money and gets the system
they ordered on an agreed date. Unfortunately, software projects are seldom
that simple, thus fixed price contracts are not popular among the agile prac-
titioners. Also for traditional software development, Takki (2002) suggests
that fixed price should be used only if the requirements are well known before
the project or the requirements are first gathered using hourly rate and fixed
price is agreed only for the implementation phase.

The customers also like fixed price contracts since they can move the
risk to the vendor. Though this might work for the sort-term risks, in long-
term, if the project fails, the customer is the one who will suffer. Instead
of always trying to transfer the risk to the other party of the contract, it
should be evaluated who is the most competent party to handle the risk. For
technically complex but quite stabile problems the supplier is probably in a
good position to manage the risk and should assume it. However, in many
software development projects the problem is uncertain or changing, thus the
customer has a better position to manage the risk and fixed price contracts
should be avoided. (Poppendieck and Poppendieck, 2003)

As can be seen from the figure 4.1, fixed-price contracts involve high risk
for the supplier since they have to estimate the cost of the system before

CHAPTER 4. PRICING MODELS 35

Figure 4.2: Bonus / Penalty Clauses (Stevens, 2009)

any work has been done and without complete understanding of the domain
and the complexity of the problem. An experienced supplier will include this
risk in the bid but less competent vendors are likely to underbid. Since the
supplier bidding the lowest price is usually selected, the customer may end
up selecting the supplier that has the lowest understanding of the complex-
ity of the problem and who has the highest probability to fail the project.
(Poppendieck and Poppendieck, 2003) Also, the requirements for the soft-
ware almost always change during the project, which in fixed-price projects
mean ordering additional work from the supplier. Low bidding in the fixed
price part of the project can then be compensated with high prices for the
extra features, possibly making the project very expensive. (Takki, 2002)

In order to stay within the price and the scope of the project, suppliers can
save effort by reducing the quality of the system e.g. by writing lower quality
code and doing less testing. Though this may help the project finnish in time,
it will also increase the future costs for the customer since the maintenance
of a low quality software with high technical debt is not cheap. (Arbogast
et al., 2010) The supplier may also need to aggressively protect their interests
by delivering as little as possible in order to keep the schedule and budget,
causing the customer to get less than they really want (Poppendieck and
Poppendieck, 2003). Of course, this can also be seen as a business model:
the supplier knowingly delivers a system that does not meet the true needs
of the customer and then takes the profit from changing the unsatisfactory
system to an useful one (Arbogast et al., 2010).

If the customer has real incentive for early completion of the project,
bonus and penalty clauses where the supplier gets a bonus if the project

CHAPTER 4. PRICING MODELS 36

Figure 4.3: Time and Materials (Stevens, 2009)

finishes early and will pay penalty if it is late can be used with almost any of
the pricing models. This combined stick and carrot -model used with fixed
price pricing is shown in the figure 4.2. This bonus can be e.g. 50 % of the
hours that go under the target, and should also be tied to the project schedule
so that the supplier will not get the bonus if the project is finished late with
low amount of hours used (Takki, 2002). When using this kind of pricing, it
should be clear and transparent that the customer will economically benefit
from the early completion of the project, otherwise the customer may misuse
the penalties to get a cheaper product the longer the project takes. (Stevens,
2009)

4.1.2 Time and Materials

Time and materials contract is a contract where the customer pays the sup-
plier for the time used for the project and for other expenses. It has the
lowest risk for the supplier but, on the other hand, it does not take away the
risks but just transfers them to the customer. Time and materials contract
is good for dealing with uncertainty and complex problems but it also offers
less security for the supplier since they cannot be certain how long the con-
tract will last. Still, these contracts are often considered to be good deals
for the supplier as long as they last. (Poppendieck and Poppendieck, 2003)
This supplier incentive for time and materials contract is illustrated in figure
figure 4.3. For the customer, the incentive to use time and materials is that
changes to the project are easy to make (Takki, 2002).

This kind of open ended contract may be hard to sell to the customers

CHAPTER 4. PRICING MODELS 37

and require lot of trust that the supplier will use the charged time prop-
erly. Actually, with time and materials contract the supplier has no reason
to work efficiently since they make more money if the project takes more
time (Poppendieck and Poppendieck, 2003). Eckfeldt et al. (2005) describes
the mindset of many customers with a quote from a IT Manager: ”T&M
is favorable for relatively smaller budget projects or when working with a
consultant in which you have a high degree of confidence. For larger projects
or when working with unknown consultants we typically prefer fixed price,
at least initially, to maintain budget certainty. Once we are confident in the
consultant’s ability to deliver as promised and we have a well-defined set of
requirements we are more willing to shift to T&M.”

Time and materials contract can increase contract transaction costs if the
customer does not have sufficient trust towards the supplier. The customer
may feel the need to have extensive control over the costs and go through
every cost and define wether they are acceptable or not. (Poppendieck and
Poppendieck, 2003) Even when using time and materials pricing in traditional
software development, the contract often has an agreed budget in order to
reduce the risk for the customer. If this budget is clearly exceeded, the
customer can terminate the project, but naturally has to pay for the work
already done. (Takki, 2002)

Time and material contracts can be used with traditional software devel-
opment projects, but they cause a risk to the customer since the customer
is tied to the supplier who has no incentive to keep the costs down. (Pop-
pendieck and Poppendieck, 2003) Even thought the customer might have the
option to terminate the project when the agreed budget is used, in practice
this is not usually possible. If traditional software development project is not
finished, the customer will end up having an incomplete software that they
cannot use before the original supplier (or someone else) will finnish it.

4.1.3 Target-cost

Both fixed price and time and materials contracts reinforce the traditional
thinking that customer-supplier relationship is adversarial. One of the parties
is always protecting themselves as the other is encouraged to self-serving
behavior, which limits the possibility to greater success for both parties.
What is needed is in the middle of the two extremes: the project risk should
be shared and both parties should have a reason to drive towards the joint
success of the project.

The base for a target-cost contract is a situation where both parties rec-
ognize that the project details are uncertain and defining them needs mutual
work, but also meeting a target cost is found very important in the project.

CHAPTER 4. PRICING MODELS 38

Figure 4.4: Target-cost shared pain&gain (Arbogast et al., 2010)
Target
cost

Target
profit

Target
customer
payment

Actual
supplier
cost

Adjustment Actual
customer
payment

Actual
supplier
profit

1,000,000 150,000 1,150,000 1,100,000 +60,000 1,210,000 110,000
1,000,000 150,000 1,150,000 900,000 −60,000 1,090,000 190,000

Adjustment = (ActualCost− TargetCost) ∗ CustomerShare-%

CustomerPayment = TargetCost + TargetProfit + Adjustment
(4.1)

Figure 4.5: Target-cost fixed profit (Stevens, 2009)

CHAPTER 4. PRICING MODELS 39

This requires common effort from both the supplier’s technical personnel as
well as the users of the system, and both parties need to be truly committed
to meet the target cost. To make this happen, in target-cost contracts the
whole cost of the system is a joint responsibility of the customer and the
supplier: if the target cost is exceeded both parties will pay more and, if the
actual cost is less than the target, the benefits are also shared. (Poppendieck
and Poppendieck, 2003)

In order to succeed, the contract must enforce the customer to stay in
line with the the target cost with the feature requests and the supplier must
have an incentive to work under the target cost. This can be achieved in var-
ious ways. Poppendieck and Poppendieck (2003) suggest that the customer
incentive is a clause that if the actual cost is significantly higher than the
target, new cost-sharing negotiations are held.

Poppendieck and Poppendieck (2003) also suggest two models for the
supplier incentive: cost plus fixed fee or profit not to exceed. First means that
the supplier’s profit is a separate fee payed in addition to the costs after the
project is completed, meaning that the supplier gets a higher profit margin
if the project meets (or goes under) the target. Second one, also shown in
the figure 4.5, means that the supplier’s profit is included in the target cost,
and the supplier will reduce their rates and work at cost if the target cost is
exceeded. Takki (2002) suggests this kind of pricing for traditional software
development projects: if the target-cost is exceeded, the supplier will charge
e.g. 50 % of the normal hourly rate which will enforce the supplier to meet
the target but will not bankrupt them.

The figure 4.4 from Arbogast et al. (2010) shows calculations done when
using a model where price is adjusted using an adjustment percentage (which
is agreed so that the customer carries 60% of any cost difference). The
formulaes vary, but this simple example uses as simple formula as 4.1. If the
costs are higher than estimated (firs row), the supplier gets less profit but
the customer also pays more than the target cost. On the other hand, when
the costs are less than estimated (second row), the supplier gets higher profit
and the customer pays less than the original target payment.

Eckfeldt et al. (2005) describe a bit different approach to target-cost con-
tracts. They first estimate the total hours needed with some contingency
percentage (about 10% for existing customers and up to 25% for new cus-
tomers) and then negotiate a daily or hourly rate based on the costs and a
profit percentage of the target-cost. The profit is then set as a fixed amount
for the project and the customer is billed according to the agreed hourly rate.

Increasings in the project scope are divided into three categories: fixes
are changes that need to be done in order to meet the requirements in the
existing stories, clarifications are changes that are found necessary for the

CHAPTER 4. PRICING MODELS 40

system to work correctly, and enhancements are additional feature requests.
For fixes and clarifications the supplier will work at cost but for enhancements
the original estimated hours are increased and the fixed profit is recalculated.
Thus the profit also increases. (Eckfeldt et al., 2005)

4.2 Agile pricing

Pricing is particularly difficult in agile contracts since it is difficult to put a
fixed price tag for a fixed set of features – which is usually what the client
would want to have. Selling the agile ideology is quite easy in in-house
development where the supplier is well trusted and the pricing is not that
important factor. But for a consulting company, more work and knowledge
regarding the pricing is needed in agile contracting.

Fixed price is the ”old-school” pricing method commonly used in tra-
ditional software development, time and materials is probably the simplest
and easiest pricing method for agile development, and time and materials is a
good compromise between the two for agile projects. They are all commonly
used in contracts – both traditional and agile projects – but agile enables
other types of pricing models too.

4.2.1 Fixed price agile

Because of the complex nature of software projects and the inability to pre-
dict beforehand what the customer wants, agile ideology emphasizes response
to change over following a plan. The previous section showed that it is obvi-
ous that fixed price, scope and time -contracts are not ideal for neither the
supplier nor the customer since simply following the plan is not usually pos-
sible. Still many customers – especially government related – require using
all three boundaries.

In agile projects the idea is to develop the software in short iterations im-
plementing always the next most important features in each iteration. After
each iteration the system has the features most important for the customer
and the project can be terminated when the money runs out. However, when
working under a fixed price contract, this approach can be risky for the sup-
plier since it is hard to get the customer to agree that the project is finished
when all the money is used and the project backlog still has unfinished re-
quirements. This forces the supplier to protect themselves with detailed spec-
ifications and strict change control. (Poppendieck and Poppendieck, 2003)
This also means that during the project there will be constant negotiations
about whether some task is part of the contract or billable extra work (Takki,

CHAPTER 4. PRICING MODELS 41

2002). In practice, the customer has to commit to a scope too early in the
project and when they realize their true needs, changes to the project will
be expensive (Eckfeldt et al., 2005).

Franklin (2008) describes how they succeeded in an agile project using
the full fixed price, fixed scope and fixed schedule expectations. They had a
backlog list of items to be developed during a year and for each sprint they
selected a part of those items to be developed, tested and delivered to the
customer for approval. They did not receive any payment for work until the
deliveries were approved by the customer and any errors in the deliverables
were reason for disapproval. The probability of disapproval was high when
the deliverable was a part of a functionality that was supposed to be finished
in the future sprints, and it was highly important to document these cases
carefully so that each sprint was approved by their own merits.

Fixed constraints required additional time and management resources for
contract modification processes. Also all the elements of the done crite-
ria (e.g. data validation, documentation, performance, usability) had to be
taken into account in the schedule and estimates in order to keep the costs
and schedule fixed. The scope included and the customer had to be aware
of the non-tangible deliverables that do not come directly from the prod-
uct backlog but were part of the full contract expectation. These items are,
for example, training, support, reporting, meetings, maintenance, and ad-
ministrative tasks (including the ones related to the contract modifications).
(Franklin, 2008)

Franklin (2008) succeeded in ”completing functionality faster but with
less flexibility” with fixed constraints, which in their opinion can lead to
increased maintenance effort but helped the customer to get the production
software they needed. One of the key success factors they mention was the
first hand collaboration with the users during the contracting phase in order
to ensure good user story awareness to estimate the size of the themes in
scope. Also the expectations had to be documented clearly and managed
with open communication with the product owner. In order minimize scope
creep, the feature complexity had to remain within ”what we need and no
more”, and they also had ”contingency buckets” for both scope and schedule
changes to address the unknowns.

4.2.2 Time and materials in agile

Time and materials is a common pricing model in agile contracts. In time
and materials contracts the customer has the fear that the supplier will not
use the time properly and has no incentive to be efficient. Agile methodology
helps the customer to trust that the supplier is using the money invested in

CHAPTER 4. PRICING MODELS 42

a proper way since after each iteration, the supplier has to deliver value for
the money spent in a form of a working software. The customer evaluates
the results and has the right to terminate the contract if the results are not
what they should be. After the termination, the customer will still get the
value for the investments up to that time. Thus time and material contracts
can well be used with agile software development projects. (Poppendieck and
Poppendieck, 2003)

4.2.3 Target-cost and agile

Agile development is easy to sell to the developers but sometimes hard to sell
to the customers who are used to traditional development models. Customers
usually appreciate the clear benefits of agile – such as getting a new version
of the working software every couple of weeks – but agreeing on time and
materials pricing might be more difficult. On the other hand, fixed price agile
is not what the supplier will want to agree because of all the uncertainty it
causes. Target-cost contracts offer the customer some assurance that the
costs will stay within the budget without causing unfair risks to the supplier.
Shared pain and gain also drive towards the common success of the project.

4.2.4 Fixed price per unit of work

One of the agile principles is that working software is the primary measure
of progress (Beck et al., 2001). This is also the base for agile fixed price per
unit of work (UoW) pricing model, where UoW is related to running, tested
software features. These models go with various names and ways to estimate
a UoW: e.g. price per story point, price per function point, and price per
feature point. (Arbogast et al., 2010)

In theory, this kind of pricing follows closely the agile ideology by being
delivery- and value-oriented: by defining UoW so that it is related to the value
created to the customer the customer pays for the value received. However,
usually e.g. a story point is more of an estimate of the size or effort rather
than a value measure. Therefore, the pricing is not truly based on the value
impact for the customer. (Arbogast et al., 2010)

At least in theory, it is possible to define a UoW in terms of business
value impact: Gilb (2005) suggests a value-impact price model which uses
impact estimation tables. Also function points are closer of being a value
measure: they represent a logical piece of software and measure the amount
of functionality the customer gets – in comparison to the story points that
calculate the effort used. Function points are also more more standardized
than story points: they have a set of rules and guidelines to support the

CHAPTER 4. PRICING MODELS 43

technique. Since function points do not measure effort, the project will have
cheap and expensive function points (from the point of view of the supplier),
which may cause disputes. (Radford and Lawrie, 1996)

Using function points for pricing reduces the risk for the customer since
they know they get certain amount of logical pieces of software for a cer-
tain, fixed price. For the supplier, this offers security against the changing
requirements: changes are automatically priced based on how they affect the
function points. This is also efficient way of change management since the
effect each change has to the budget is directly visible from the function
points. (Forselius, 2013)

Arbogast et al. (2010) suggest two possible ways to determine the fixed
price per point: 1) use average price from several previous projects, or 2)
use customized amount specified just for the certain project. In the latter
case, the customer pays the average point value for a few iterations (or some
other pricing model like time&materials is used) and the costs are tracked
during those iterations. Then, a specific price per point is determined based
on those costs and some profit margin.

When using this kind of pricing in a contract it is essential to specify
a clear and common framework for defining an unit. For example, story
points (i.e. relative effort points) do not have any global meaning and their
meaning need to be defined for the specific project. On the other hand,
function points are relatively unambiguously defined and can be calculated
with certified function-point analysts. Arbogast et al. (2010) Still, they are
not generally well understood by the customers nor the suppliers, and usually
an external, independent consultant is needed to e.g. size the project and
resolve disputes (Radford and Lawrie, 1996).

4.3 Pricing in the general contracting terms

IT2010 EJT special terms and conditions do not state anything about pricing
of the project but it is (loosely) defined in YSE general terms. They state
that, if nothing else is agreed, the price is determined based on the the
supplier’s price list on date of the order (IT2010 YSE, 4.3). This does not
really say much about the pricing and in practice something else – perhaps
agile-compatible – should be agreed. On the other hand, the terms do have
lots of specific regulations e.g. on how possible currency exchange should
be handled using mid-rate quoted by the European Central Bank and how
travel time should be charged if a necessary journey exceeds 60 kilometers
(IT2010 YSE, 4.4, 4.5), which may be details the parties should be able to
agree themselves if needed.

CHAPTER 4. PRICING MODELS 44

Instead of any bonuses or other positive reinforcement methods to keep
the project in schedule, IT2010 EJT special terms define compensations for
delays. If a part of the delivery is late from the agreed schedule, the amount
of compensation for the damage is 0.5 percent of the price of that part for
each beginning week. The maximum amount for the compensation is 7.5
percent of the price of the delayed part of the delivery. (IT2010 EJT, 9.1,
9.2) It is a very traditional way of thinking that penalties will help to keep
the project in schedule. In practice, suppliers can calculate the original price
in a way that takes the penalty into account making the delayed delivery the
”default case” for the supplier.

Also JIT 2007 terms and conditions do not state anything about the
pricing model that should be used but the pricing principles that are in the
terms relate strongly to the supplier’s general price list. For example, if the
prices change so that the list price is lower on the date of delivery than it was
when the tender or order was made, the price valid on the date of delivery
should be used (JIT 2007, 13.2). These kind of pricing principles do not
really seem relevant for modern software development where the customer
orders customized software from the supplier and not a ready made product
from the store.

In a similar fashion than IT2010, also JIT 2007 offers penalties instead
of bonuses in order to keep the project in schedule. If the delivery is delayed
because of the supplier, the supplier will pay a penalty of 0.5 % of the sales
price of the delayed product for each beginning week the deadline is exceeded.
The maximum amount for the compensation is 7.5 percent of the price of
the delayed part of the delivery. (JIT 2007, 18.2) Actually, these delay terms
are quite identical between the two general terms and conditions used in
Finland, even though penalties are often seen an insufficient way of keeping
the project in schedule.

The Swedish general regulations offer only basic pricing model if nothing
else is agreed: the supplier is payed hourly fee based on the supplier’s cur-
rent price list. Also possibility to use fixed price for iteration is mentioned.
(General Terms for Agile Projects, 14.1) Both are quite fine defaults in agile
projects, although something else is probably usually agreed to make the
contract more intriguing for the supplier.

The Swedish general regulations for agile projects also have an annex
for the profits and risk sharing, which offers more interesting aspects to
project’s pricing model. Instead of using simple hourly pricing where the
supplier as though rents workers to work under the customer’s supervision,
more complex model is used to share the risks and gains of the project. The
risk of not meeting the requirements in the defined timeframe (or reaching
the target price before the system is ready) is shared by defining a reduced

CHAPTER 4. PRICING MODELS 45

hourly rate for the time needed to fulfill the requirements. Naturally, this
reduced price does not apply if the supplier can show that the requirements
are not met because of the customer’s actions – or lack of them. (General
Terms for Agile Projects, Risk&profit annex 2.1)

In addition to the ”stick approach” of the reduced price, the profits and
risk sharing annex defines gain compensation model as a carrot for the sup-
plier. The annex defines that if the customer terminates the project early
and all the requirements are met at that point, the supplier is still entitled
to a compensation for the full planned length of the project (or the target
price, if so agreed). (General Terms for Agile Projects, Risk&profit annex
3.1) This can be significantly more effective for achieving success faster than
the traditional model of using sanctions for delayed deliveries.

In the Norwegian PS2000 terms the project pricing is defined using target
cost with lower and upper limits. If those limits are exceeded or undercut,
the costs or savings are shared between the parties. Fixed price is still used
in the final, approval phase. (Laine et al., 2011)

4.4 Pricing in the case company

Typically contracts include plenty of penalty clauses but very rarely any
bonuses for outstanding work. Christ et al. (2012) conducted a study show-
ing that in employment contracts workers responded better to bonuses than
penalties: the employers getting a base pay plus a bonus used more effort
and trusted their supervisor more, leading to increased productivity. On the
other hand, those who were getting penalties had less trust towards their
supervisor and used less effort for their work. In fact, a base pay plus a
bonus indicates that after a certain (base) point, additional effort from the
employee is valuable whereas a base pay minus a penalty indicates that after
a certain point additional effort is not valuable (Luft, 1994).

The basis of pricing in the case company is to use not just penalties
but rather bonuses in order to archive success fast. The idea is simple: the
supplier offers a reduced hourly rate (e.g. -5 %) for the base price but gets
an additional bonus when all the commonly agreed targets are reached. This
approach is backed-up by a client’s ICT purchasing manager who tells in
the book of Teikari (2012) that they have found bonuses more efficient than
penalties in important projects.

Pricing in the sample contract is defined as a hourly rate with additional
bonus per invoiced hour if the supplier meets all the success criteria defined
for the release. This evaluation is done by the steering committee after
each release. They evaluate the success of the release agains the predefined

CHAPTER 4. PRICING MODELS 46

acceptance criteria of the backlog items and the functional scope, and if all
of the criteria are met, the supplier is entitled to the bonus. So instead of
the ”stick approach” of penalties the contract relies on giving the supplier a
positive incentive to finish the agreed items.

Chapter 5

Change management

Practically all software development projects will need changes during the
implementation. Traditionally, these changes have been seen as a bad thing
which is clearly contradictory to the agile ideology. Agile development em-
phasizes rapid change management and welcomes changes to the require-
ments even late in the development.

This chapter introduces the traditional way of handling changes and then
points that even in agile projects some kind of change management proce-
dures are necessary. This chapter also shows that all of the general contract-
ing terms researched as well as the case contract use quite traditional ways
of handling changes in the projects.

5.1 Traditional change management

In traditional contracting, the contract often specifies a steering group con-
taining same amount of representatives from both parties and which is autho-
rized to make changes to the project. The changes must be unanimous and
they must all be documented as contract annexes, and all of them should
contain evaluation of whether they impact the cost or the schedule of the
project. The group may not have authority to make changes that affect the
schedule or the cost of the project but those changes must be done by the
customer’s management. This may help keep the costs under tight control
but also ultimately makes changes to the project more difficult. (Takki, 2002)

5.2 Agile change management

Agile ideology emphasizes ”responding to change over following a plan”,
meaning that changes to the requirements are welcomed even late in the

47

CHAPTER 5. CHANGE MANAGEMENT 48

development (Beck et al., 2001). Rapid response to change is build into the
agile process since the development is done in small iterations and refactoring
is a frequent practice (Eberlein and Leite, 2002). There are several reasons
why using much time for the initial requirements analysis is seen as a waste
in agile development: 1) the requirements are often unstable, 2) the business
domain may be stable, but the technical details are unknown and can affect
requirements (e.g. the high cost of a technically difficult feature may be a
reason to drop the feature); and 3) the customer does not know clearly what
they want before they see it (Ramesh et al., 2010).

In agile development, before the development starts, only high-level re-
quirements analysis is done. During that analysis, the development team ac-
quires high-level understanding of the critical features of the system. These
requirements are not meant to be complete but they are just the base for
planning the initial release cycle for the project. As the project goes on,
more features are added, the existing ones are discussed in more detail and
modified when needed, and some of them are completely removed. All the
requirements are frequently prioritized based on the business value they will
give for the customer. (Ramesh et al., 2010)

While this build-in response to change is definitely important, this does
not mean that agile projects do not need any change management. Central
thing to managing requirements is requirements traceability, meaning that
there must be descriptions of the requirements as well as something to link
the requirement to its source and the implementing code. Using only the code
as the sole documentation of the process is not usually enough. (Eberlein and
Leite, 2002) For example, simple techniques such as user stories can be used
to describe the requirements in high-level, and more formal documentation
is seldom created. Those user stories can then be used as a base for further
discussion about the implementation details. (Ramesh et al., 2010)

In small-scale projects, a great product owner might be able to handle
the agile project independently: first identify the right product (continuously
identify and prioritize the right requirements from all stakeholders involved)
and then governance the project towards maximizing the business value.
But in large projects, even though the product owner is well familiar with
the business domain, he cannot estimate correctly the business value of each
and every feature and handle all the expectations of all the stakeholders.
The product owner will end up being in trouble with prioritizing items in
the backlog, thus needing further help to get better understanding of the
stakeholders’ needs. (Ktata and Lévesque, 2009)

A larger project will require a steering committee that supports the prod-
uct owner by analyzing and prioritizing the needs of the stakeholders, and
offering the product owner visibility on business expectations and sources of

CHAPTER 5. CHANGE MANAGEMENT 49

value. This will help the product owner to understand the reasons behind
the expectations and solve conflicts in them, track the value gained and make
decisions based on the changing business context, reduce problems caused by
miscommunication, and identify and report business opportunities back to
the steering group. Having a steering group will also help sharing the same
vision of the software (and business) between all the teams involved. (Ktata
and Lévesque, 2009)

5.3 Change in the general contracting terms

IT2010 EJT special terms and conditions state that the steering group is
responsible for handling any change requests to the project. The group has
to evaluate the possible effects the changes have on the schedule, price and
other terms and conditions, and agree a common decision about the request.
(IT2010 EJT, 5.9) All the changes and amendments must be documented in
writing (IT2010 YSE, 15.3).

JIT2007 terms do not state any specific change management procedure
but only require that all changes are agreed in writing using a mutually
agreed procedure. Also the possible effects the changes have on the schedule
or price must be documented. If the agreed changes require extra work from
the supplier, the parties must agree beforehand, again in writing, that the
supplier may charge the extra work from the customer. (JIT 2007, 12)

Changing requirements in the Swedish general agile terms are handled
in the profits and risk sharing annex. If the customer wants to change the
requirements, the parties will agree to adjust the requirements so that the
scope does not increase. Another solution is to change the plan so that the
new requirements fit into it or, if the contract uses target price, change the
target price to take the new (or removed) requirements into account. (Gen-
eral Terms for Agile Projects, Risk&profit annex 4.3) The contract should
state who has the authority to do the changes (General Terms for Agile
Projects, 5.3).

In the Norwegian PS2000 terms, small changes that do not affect costs or
schedule can be done without any additional bureaucracy. Bigger changes are
gathered together and the project steering group discusses them in specific,
beforehand agreed, checkpoints. Even though the steering group handles the
changes, the customer has the final decision authority. After the decision, the
decided changes can then be implemented during the next iteration. (Laine
et al., 2011)

CHAPTER 5. CHANGE MANAGEMENT 50

Figure 5.1: Roadmap for a loan system (freely translated from Teikari, 2012)

5.4 Change management in the case company

In the case company changes to the software projects are seen inevitable,
since it is simply impossible to predict what the customer wants. In order
to track the changes, the steering group uses a project roadmap to plan and
steer the project. The roadmap – example shown in the figure 5.1 – is a
strategic tool to see what themes are implemented in each quarter of a year.
A year is a suitable time to be planned in the roadmap – there is no point
to even try to predict the future beyond that especially in software projects.
(Teikari, 2012)

Business management, the project’s product owner and the development
team should go through the roadmap after each sprint to check wether they
are still in track with it. If not, changes to the roadmap need to be done
by the steering group. The roadmap should not change all the time, since a
roadmap that changes after every sprint does not steer the project anymore
nor justify features with business reasons. Themes can, of course, be re-
prioritized to be implemented in different quarters, but adding or removing
them should be an exception. (Teikari, 2012)

More concrete tool for project management is the release plan – example
shown in the figure 5.2 – which is done about every four sprints (2-3 months).
It contains the features needed to implement the themes from the roadmap.
The features are small enough to be easy to move and prioritize e.g. in the
sprint planning meetings, and the product owner should have the authority

CHAPTER 5. CHANGE MANAGEMENT 51

Figure 5.2: Release plan for a loan system (freely translated from Teikari,
2012)

to do the prioritization based on the business needs. The steering group’s
duty is to make sure the product owner knows how the business is evolving.

In the case contract, all the changes to the agreement are handled in
the the steering group according to the change management procedure. The
procedure requires that all the changes are recorded as written attachments
to the contract and their scope as well as impact to the schedule and cost
are evaluated. Minor changes to the product, i.e. changes that do not have
significant effect on the scope, should be done by the supplier without addi-
tional fee upon customer’s written request. Other additions and changes to
the work requested by the customer are discussed in the steering group where
their effect on the scope and schedule are evaluated early enough before the
work is started. The customer can also decide to reduce the scope of the
product, and the possible effects on the schedule and costs are again agreed
in the steering group.

Chapter 6

Contract termination

A huge difference between traditional contracting and agile ideology is how
the contract can be terminated. Traditionally contract termination has been
seen as highly unwanted situation where one of the parties is responsible
for breaching the contract, thus being guilty for the termination. This is
contradictory to the agile ideology where early termination can just mean
early success – or failing fast so that minimum time and effort is wasted on
a project that is bound to fail anyway.

This chapter explains the strict traditional termination conditions that
do not work well with agile projects. Then, the agile idea of an easy, early
termination without a clause – and with or without an additional termination
compensation – is introduced. The general contracting terms follow the two
models in a quite expected way: the two Finnish terms use the traditional
strict termination clauses where the Swedish and Norwegian terms follow
the agile model of easy termination. Finally the chapter introduces the agile
termination clauses used in the case contract.

6.1 Traditional termination conditions

Traditionally contract termination has been seen as the last resort after con-
tract has been breached and when all other means have been used. Contract
can be terminated only if the other party fundamentally breaches the con-
tract, or it is obvious that fundamental breach of the contract will happen
and the other party cannot give acceptable guarantee that the contract will
be fulfilled. Sometimes it is also required that before the contract can be
terminated, the claimant have to give a warning to the breaching party and
contract can be terminated only if the breach continues (or reoccurs) after
the warning. For example, if the delivery is delayed, the claimant may give

52

CHAPTER 6. CONTRACT TERMINATION 53

reasonable extra time when the contract needs to be fulfilled or the contract
will be terminated. Lack of negligence is not sufficient reason to continue the
contract after the breach but, on the other hand, clear negligence can widen
the right to terminate the contract. (Hemmo, 2003)

The Finnish Sale of Goods Act §25.1 and §39.1 define the fundamental
breach of a contract in a way that it is ”of substantial importance to the buyer
and the seller knew or ought to have known this”. This is often connected to
what would have happened if the other party would have known about the
breach when signing the contract. The breach can be seen to be fundamental
if the party would have not signed the contract at all if knowing about the
breach, instead of being satisfied with e.g lower price or other compensation.
(Hemmo, 2003) Hemmo (2003) also notes that this can lead to too wide
termination right since often the mere inconvenience caused by the contract
breach would have been enough for the claimant to abstain from the contract.

Requiring a fundamental breach of the contract is, as such, quite mas-
sive requirement for the contract termination, but in some situations the
threshold for termination is even higher. For example, when the breaching
party has high financial dependency to the claimant (e.g. in franchising) or
is it not possible to return the partial performances already delivered (e.g.
partially build building), the threshold for termination is high. It can also
be seen that after the lowered price, compensation and/or other correction
to the breach (for example fixing the broken product) the claimant does not
have enough reason for terminating the contract. Also, if the overall financial
goals are reached, some individual breaches may not justify termination of
the contract. (Hemmo, 2003)

What happens after the contract is terminated is also extremely impor-
tant in traditional software development where the customer cannot use the
unfinished software, and the customized software has little or no value for
the supplier since it is custom made for the needs of the specific customer.
The contract can be seen in a way that it is either about the work done for
the customer (usually time and materials contract) or about the produced
product (fixed-price contract). The evaluation is based on the contract as
whole – not solely on e.g. the contract heading or pricing model used – and
is affected by the heading, pricing model, factual content, the customer’s in-
fluence to the development process and management. For example, the more
the customer influences the development of the product and the more rights
the customer gets to the produced product, the closer the contract is to ser-
vice contract (the first option). Also, if the customer is already using parts
of the software, it usually leads to service contract -interpretation. (Takki,
2002)

The first contract option usually means that substitutes are not returned

CHAPTER 6. CONTRACT TERMINATION 54

after the termination. The customer will end up having nonworking software,
and the supplier may have to reduce their prices but no big harm is done for
their business. The second option, on the other hand, is an extreme pressure
mean for the customer since the substitutes are returned when the contract
is terminated. This means that customer gets their money back and the
supplier will get nothing valuable in return. (Takki, 2002) Neither is a fair
or a good solution, and fortunately agile projects do not have this problem.
In agile projects the customer gets a working, valuable, high-quality software
regardless of if or when the project is terminated, and can take on another
supplier to finnish the product if they wish so.

Possibility to terminate the contract after any phase of the project is def-
initely the most optimized solution for the customer but not so good for the
supplier since the reallocation of the resources is usually not possible without
any delay. Takki (2002) suggests that the contract should contain a price for
early termination of the project and that termination would not require any
cause. This can be, for example, 50 % of the expected contribution margin
of the remaining project since most of the costs can usually be avoided after
the termination. This will encourage the customer to engage to the contract
and gives the supplier a certain profit even if the contract is terminated early.
Both parties will also avoid unpleasant legal showdown and neither will lose
one’s face or be marked as the guilty one.

In addition to termination of the project, traditional contracts often in-
clude contractual penalty which is a certain rule that justifies the customer
to get compensation without having to show any damages caused by the
breach. For example, if the delivery is delayed, the compensation can be
some percentage of the total project cost for each day or week limited to
some maximum percentage. This can be seen as incentive for the supplier to
finnish the project in time but, on the other hand, it sets an upper limit for
the responsibility and when the maximum compensation is reach, the sup-
plier has no incentive to try to finnish as fast as possible. The supplier might
also deliver poor quality product in order to avoid the contractual penalty
since fixing the faults later may be cheaper. (Hemmo, 2005) This kind of
clauses can also be used in agile contracts, but using a better pricing model
that drives both parties to success early is more preferable way.

6.2 Agile termination principles

Agile ideology emphasizes change to the point where terminating the project
early, at the the end of any iteration, should be possible. Since in agile
projects the customer has a working system after each iteration, early ter-

CHAPTER 6. CONTRACT TERMINATION 55

mination does not necessarily mean the project has failed: it may have just
reached success faster than initially estimated. At least from the customer’s
point of view this is indubitably a positive event. (Arbogast et al., 2010)

In agile projects, the customer’s financial risks are reduced since the
project can be cancelled quickly if it is noticed that the project is not what
the customer wants or will not meet the budget (Maurer and Hellmann, 2013;
Hoda et al., 2009). This is quite the opposite to traditional contracting where
termination of the contract is extremely difficult and, if the termination is
found groundless, it may turn the situation around and the terminating party
has to pay damages to the other party (Hemmo, 2003). This is also a trust
issue: the agile ease of early termination reduces the trust the customer has
to have towards the supplier since they are not strictly tied together by the
fear of costly contract violations. When starting a new project this is espe-
cially intriguing: in the worst case the customer loses one sprint and realizes
that the project cannot be implemented at all, or has the opportunity to
change the supplier if the initial choice turns out to be a wrong one.

For the customer the ideal termination model in an agile contract is nat-
urally to allow the customer to stop the project at the end of any iteration
without any penalties. For the supplier, on the other hand, this can be unap-
pealing if they have dedicated people to work for the project for he next two
years and the project is unexpectedly terminated much earlier. Because of
the risk for the supplier, the termination clauses can contain early termina-
tion penalty for the customer. This penalty will reduce over each iteration.
(Arbogast et al., 2010)

The key to negotiating termination clauses in agile contracts is the fact
that after each iteration the customer will have a working system and both
parties have constantly a clear vision of the state of the project. (Arbogast
et al., 2010) This makes it possible for the supplier to offer the customer
a contract with an early termination without any penalties, which can also
be used when selling the agile ideology to a customer accustomed to more
traditional project models. Possibility to terminate early easily is in fact a
huge benefit compared to traditional models where early termination can be
very difficult and expensive.

6.3 Termination in the general contracting
terms

In IT2010 terms the termination of the project is handled in the YSE general
terms. The terms state that early termination is possible only if the other

CHAPTER 6. CONTRACT TERMINATION 56

party breaches – or it is clear that the other party will breach – the terms
of the agreement in a matter that has substantial importance. However,
cancellation is only valid if the other party has not remedied the happened
breach within a reasonable time-period (at least 30 days) or provided an
acceptable guarantee of the fulfillment of the agreement. (IT2010 YSE, 11.4,
11.5) This approach follows quite closely the traditional contracting model
and makes terminating projects early practically impossible. It is also clearly
in discrepancy with agile ideology where it is desirable that the customer can
terminate the project after any iteration, and often early termination means
only that project has succeeded faster than initially estimated.

Another factor in IT2010 terms makes early termination of the project
difficult: the intellectual property rights. IT2010 EJT special terms for cus-
tomized software say that, unless otherwise agreed in writing, the intellectual
property rights to the system will belong to the supplier and the customer
will have a license to use the system. The customer does have the right to
do changes to the system – or order them from a third party – by using the
possibly developed open application programming interface (open API) or
to any open source software or customized software included in the system.
Still, the supplier gets a non-exclusive, paid-up and royalty-free license to use
any of these changes made. (IT2010 EJT, 10) The supplier will deliver the
source code of the customized software as well as API interface description
when the project is delivered (IT2010 EJT, 7) but, because of the traditional
waterfall development model used as the base of IT2010 terms, the customer
does not have anything delivered when the early termination occurs.

Also JIT 2007 terms have strict, non-agile cancellation policies: termi-
nation of the project is possible only if fulfillment of the contract is delayed
more than 4 months due to force majeure, usage of the software infringes the
intellectual property rights of a third party, or one of the parties has mate-
rially breached his contractual obligations. In the last case, if the breach is
reparable, the contract can only be terminated if the breach has not been
corrected in a reasonable time after notification of the breach. Things that
always constitute a material breach are e.g. that the software is so faulty
that it is unusable for at least 30 days during the warranty period, delivery
of the software is delayed because of the supplier for at least one third of the
agreed time (or at least 14 days for short projects or 4 months for projects
lasting over a year), or the customer’s payment is delayed by more than 45
days. (JIT 2007, 22)

Also in JIT 2007 terms the intellectual property rights to the system will
belong to the supplier. When the project is ended, the customer has the right
to do changes (or order them from a third party) to the customized software,
get control and user rights of the machine-language version and source code

CHAPTER 6. CONTRACT TERMINATION 57

of the customized application. (JIT 2007, Customized Applications 7) But,
when the contract is terminated premature, the JIT 2007 terms say that both
parties will return the substitutes they have already got during the project
(JIT 2007, 22), meaning that customer gets its money back and supplier will
get the probably useless software back in return.

On the other hand, the Swedish general regulations give the customer the
right to terminate the contract after any iteration, before the next iteration
begins, without a cause. (General Terms for Agile Projects, 7.1, 19.1) This
is highly beneficial to the customer and truly follows the agile principles
but may cause harm to the supplier who have reserved resources to the
project. Thus, the general regulations also state that the supplier has the
right for compensation for the resources reserved for the next iteration if
they cannot be reallocated to other work. The customer can then decide
whether these compensated resources should work for the project for the
next iteration or not. (General Terms for Agile Projects, 7.2) Regardless of
the early termination, if their payment obligations are fulfilled, the customer
has the right to use the results the same way they would have been if the
project had been fully completed. (General Terms for Agile Projects, 19.5)

Also in the Norwegian PS2000 the customer is entitled to terminate the
contract after each iteration. When the project is terminated, the supplier
gets compensation for the work done for the project as well as compensation
for the direct costs the termination causes for the supplier. In addition to
that, an additional compensation for the termination can be set. Based on
the application guidelines of PS2000, this compensation is on average 4-6 %
of the total value of the project. (Laine et al., 2011)

6.4 Contract termination in the case com-
pany

The case company’s ideology as well as the sample contract follows closely
the agile ideology what comes to termination of the project: the customer
can terminate the project after any delivery phase without a cause. The
customer is not liable to any sanctions relating to the termination. When
the contract is terminated, the supplier is entitled to compensation for the
work done before the termination but no additional compensations are payed.
In return, the supplier will deliver all the material related to the product,
e.g. source code and documentation, to the customer. The customer has the
right to use the material however they want.

Chapter 7

Warranties and Liability

Agile ideology emphasizes ”working software over comprehensive documen-
tation” (Beck et al., 2001). This can be misinterpreted so that in agile
development no documentation outside the source code is needed. Having
no documentation than the source code will cause serious problems at least
when defining warranties for the system, thus some kind of lightweight doc-
umentation is needed also in agile software development projects.

This chapter takes a look to the warranties and liabilities in traditional
Finnish contracting law and practice. Next section points out what additional
difficulties iterative development, where features can be accepted in separate
phases, can cause to defining warranties. Then the warranties and liability
clauses in general contracting terms are investigated, and finally the case
contract’s warranty terms are explained.

7.1 Warranties in traditional contracting

Based on the Finnish Sale of Goods Act §32, the reclamation period starts
when the buyer should have noticed the fault in the product. It is also
possible to define in the contract that the supplier will guarantee that the
product will have certain features, which decreases the need to notice the
faults, or define a period when the customer needs to complain about the
found faults (Hemmo, 2005).

In practice, in traditional software development, the finished software is
delivered to the customer who then tests it during the acceptance phase.
During the acceptance tests the customer will report all bugs found from the
system, usually refusing to accept the delivery before the program is perfect.
This can make the project last forever, thus the contracts often include a
term that ”good enough” (e.g. ready for production use) software has to be

58

CHAPTER 7. WARRANTIES AND LIABILITY 59

accepted and found faults are then fixed without additional cost during the
warranty period. (Takki, 2002)

After the complaint the supplier has per se the right to correct the faults
on their own expense if it does not cause significant harm to the customer.
If the corrections have to be ordered from someone else, the costs can be
charged from the supplier, and if the faults are significant and cannot be
fixed, the customer has the right to terminate the contract. (Hemmo, 2003)
Because of the nature of software programs, the contract can also include a
clause that the supplier will do their best during the warranty period to fix
all the bugs found during the acceptance tests as well as on the warranty
period, but will not guarantee that the program will be completely bug-free.
(Takki, 2002)

If there are major faults in the program after the warranty period, the
customer can claim a rebate. The customer can also withhold part of the
payment, e.g. 15 % of the price of the product, to be payed only after the er-
rors are fixed during the warranty period. This will work as supplier incentive
to fix the errors in order to get the customer to pay the last consideration.
That is not usually mandatory since if the supplier acts like a scoundrel what
comes to fixing the errors in the software, it will probably not stay in the
business for long. (Takki, 2002)

The contractual division between the work done for the customer and
the produced product that Takki (2002) discusses also affects the liabili-
ties. Commitment to the result (produced product) requires that the exact,
concrete outcome is accomplished, where the commitment to the work done
requires that the work is performed in properly and carefully but the outcome
is not thoroughly defined. If the supplier does not accomplish the outcome
when the contract is about the produced product, the customer has the right
to claim for a new accomplishment, fixing the error(s) or reduced price. On
the other hand, if the contract is about the work done, previously listed con-
sequences are only possible if the supplier has not been performing properly.
(Hemmo, 2003)

Traditionally, the negligence (or lack of it) is not a factor when evaluating
the insufficient fulfillment of the profit responsibility: it is not possible to
avoid the responsibility by pleading to the fact that one has tried to fulfill
their responsibilities. Instead, supervisory responsibility is used, meaning
that the supplier can be released from the responsibility only if the contract
breach is caused by an obstacle that they cannot impact or bypass and which
they could not have known on the moment of contracting. (Hemmo, 2003)

In traditional software development projects the warranty for the system
is usually defined so that the finished product matches the functional specifi-
cation. The fact that the warranty does not mention the actual expectations

CHAPTER 7. WARRANTIES AND LIABILITY 60

of the customer is meant to rule out the Sale of Goods Act §17 responsibility
that the product must be suitable for the purpose those kind of products are
usually used as well as the customer’s special use of which the supplier has
been aware. For example, the warranty period may exclude the right for dis-
count. Using the warranty as limitation to liability is not legal in consumer
business but usual in contracting between companies: in about 99 % of the
cases the customer would be entitled to larger compensations without the
warranty clauses. (Takki, 2002)

7.2 Agile warranties

Singe in agile projects comprehensive functional specification is not usually
developed, this makes defining warranties trickier in agile projects. To help
defining the scope of warranties in agile projects, each delivery should contain
summarized user stories of the features included in the delivery. Together
these stories will describe the overall functionality of the system and effec-
tively work as a functional specification of the system. (Opelt et al., 2013)
This document should, naturally, be developed in cooperation with the cus-
tomer so that both parties will have the same understanding of the user
stories and how they fulfill the product vision. In addition to being useful,
low-effort overview of the product, this product description can also be used
as a basis of the supplier warranty.

Iterative development also means that features are finished in different
times which adds an extra challenge for defining the start of the warranty
period. There is a possibility to start the warranty period of each deliverable
after the iteration when the feature is accepted, use single starting point for
the whole system’s warranty or use combination of the two methods. De-
spite the chosen warranty specification, it should be certain that the supplier
accepts the responsibility for the whole project. (Opelt et al., 2013) Takki
(2002) notes that if not otherwise specified, no partial acceptance will relieve
the supplier from the responsibility that the outcome of the project must
correspond to what was originally agreed.

If combination of the two warranty styles is used, at the end of each
iteration warranty is tied to the the incremental working deliverable. In
addition, there is an overall warranty to the whole product, which starts
after the final acceptance. (Arbogast et al., 2010) However, this can lead
to complex situations if, for example, sprints 1-8 are accepted (and their
warranty period has started), sprint 9 is rejected (thus no warranty) and
then sprint 10 is again accepted. This would mean that warranty periods
run for parts of the current system but not for the whole system. (Opelt

CHAPTER 7. WARRANTIES AND LIABILITY 61

et al., 2013)
The simplest way of defining warranty in agile projects is, in fact, to

define it similarly to traditional project models: a single start date of the
warranty is right after the final acceptance of the project. This acceptance is
separate from the acceptance of the final iteration and is performed against
the product description which is developed during the iterations. (Opelt
et al., 2013)

7.3 Warranties in the general contracting terms

In IT2010 general terms the warranty of the software is defined in the EJT
special terms. After the supplier has tested the software and delivered it to
the customer, the customer has 30 days to perform acceptance tests for it
and notify the supplier about all errors found. If the system has an error that
prevents the testing, the tests can be suspended until the error is corrected
and the testing time is extended by the length of the delay caused by the
corrections. (IT2010 EJT, 8.3) Errors that are not severe (i.e. the system
can be taken or is taken into production use) will not prevent the acceptance
of the system but the supplier does have to correct the errors without delay
(IT2010 EJT, 8.4). The supplier will then correct all the reported errors at no
cost during the warranty period, which lasts 6 months from the acceptance
of the delivery (IT2010 EJT, 11.1). If the system is delivered in phases,
the limitations above do not apply to the acceptance of a partial delivery
if it has an error that could not have reasonably been noticed before to the
acceptance tests of a later partial delivery (IT2010 EJT, 8.5).

JIT 2007 has a similar acceptance phase than IT2010. After the software
is delivered to the customer, they have 30 days to perform an acceptance
inspection to it and report all found errors in the software. If the software is
delivered in phases, the customer will inspect each delivery separately within
7 days of the delivery, and the next phase cannot be started before the pre-
vious one is accepted. In an agile project, this would mean unbearable break
between each short iteration. The acceptance of interim phases do not dis-
charge the supplier from liability for errors found later in the development
or in the final acceptance tests. Minor errors should not prevent the accep-
tance of the software but the supplier is required to fix those errors at their
own cost and without unreasonable delay. Also, if the customer starts the
production use of the software, the product is seen as accepted. (JIT 2007,
10)

JIT 2007 states that the ”product and end result of the service must be
free of errors”. All the errors have to be fixed by the supplier at his own

CHAPTER 7. WARRANTIES AND LIABILITY 62

expense without a delay, and the supplier has to pay a contractual penalty
for the time used for removing the errors after the agreed delivery time.
However, this penalty does not apply to situation where the error is a minor
one or if the supplier repairs it immediately. If the error prevents the usage
of the product, the customer can also withhold the payment of the part of
the product that is affected by the error until the supplier fixes the problem.
(JIT 2007, 16)

The warranty period of the software in JIT 2007 terms is defined sep-
arately in the Applications annex. It is 12 months from the date of the
customer’s acceptance of the application, and if the application is accepted
in phases, the warranty of each part will not expire until 6 months have
elapsed from the acceptance of the whole application. (JIT 2007, Applica-
tions 6.1) If the product is unusable during this period due to an error, the
warranty period is exceeded by that period of time (but not beyond twice
the original warranty period). If the supplier does not correct the errors in a
reasonable time, the customer can order the repairs from a third party and
charge the expenses from the supplier. (JIT 2007, 17)

The customer is entitled to compensation for direct damages (and not
for indirect damages) caused by delay or other breach of the contract to the
extent by which the damage exceeds the contractual penalty. If the breach is
not due to negligence, the compensation should not be more than 7.5 % of the
price of the product, but if the damage is due to negligence, the maximum
compensation is as high as the total price of the product. Limitations on
liability do not apply if the damage is caused deliberately or through gross
negligence. (JIT 2007, 21)

Warranty for the system is defined in the Swedish general terms so that
if the software has errors caused by the supplier not being skilled enough
in their work, the supplier should, at his own expense, correct the errors.
These errors should be highlighted by the customer no later than six months
after the termination of the project (of three months after the error should
have been discovered if it have been discoverable earlier). If the supplier is
unable to fix the errors in a reasonable time, customer is entitled to com-
pensation. (General Terms for Agile Projects, 9.1) Unless presence of intent
or gross negligence, the amount of compensation is limited to 20 % of the
total amount paid for the project, if not otherwise agreed (General Terms
for Agile Projects, 10.2).

As said, in the Swedish contract terms, the liability for defects is related to
the supplier’s workmanship in performing their work. If the supplier’s work
is professional and skilled, errors found during the iterative development are
handled similarly than any other requirements: they continuously change
and are prioritized accordingly. In addition to that, the supplier is liable for

CHAPTER 7. WARRANTIES AND LIABILITY 63

errors caused by regression i.e. errors that are caused by the new features not
working together with the old ones. The fact that supplier is liable only for
damages occurred due to their negligence in performing their work (General
Terms for Agile Projects, 10.1) is a difference to traditional contracting where
the lack of negligence does not redeem the supplier from the compensations,
but in practice it might be hard for the supplier to prove that their work has
been professional and skilled.

The Norwegian PS2000 terms take a more traditional approach to war-
ranties: the supplier is responsible for the work done just like in traditional
contracting. The terms are similar to the ones in IT2010 and JIT 2007 terms.
After the supplier delivers the product, the customer will perform acceptance
tests for it, and the project is ended in a common evaluation meeting where
both parties can present their possible financial claims towards the other.
(Laine et al., 2011)

7.4 Warranties in the case company

The case contract defines warranty period to be 6 months after the go live
of the system, and it assures that the work done corresponds to what has
been defined. Even though the software is developed and delivered in short
iterations, the acceptance of the partial deliveries do not affect the supplier’s
overall responsibility of the product. The whole product is accepted after
the whole system has been delivered and acceptance tests for it have been
performed.

During the warranty period, the supplier will fix all the errors found from
the system at their own cost. After the warranty period, the supplier is
still obligated to fix at their own cost all critical errors found; critical error
meaning a error that prevents using the software or parts of it or makes the
usability of the software significantly worse. If the supplier does not correct
the errors in a reasonable time or if similar errors are continuous despite the
supplier’s actions, the customer can order the repairs from a third party and
charge the expenses from the supplier.

The customer is also entitled to compensation for direct damages (and
not for indirect damages) caused by delay or other breach of the contract
to the extent by which the damage exceeds the contractual penalty. If the
breach is not due to negligence, the compensation should not be more than
7.5 % of the price of the product, but if the damage is due to negligence,
the maximum compensation is as high as the total price of the product.
Limitations on liability do not apply if the damage is caused deliberately or
through gross negligence.

Chapter 8

Results

This chapter wraps up the results from previous chapters by first summariz-
ing the most important findings in a comparison table. This clearly shows
how agile-compatible the general terms actually are and what are the weak
points when applying these terms to agile projects. The second part of
this chapter evaluates how well do the general terms follow the ideology of
proactive contracting, where the main point is to form successful business
relationships without confrontation. Finally, the last section gives some con-
crete improvement suggestions that the case company should consider when
contracting for new agile projects.

8.1 Summary of the findings

Chapters 3–7 addressed five different aspects important to take into account
when contracting for agile projects: development practices, pricing, change
management, (early) termination of the project, and warranties and liabili-
ties. For all of those it was researched how the issue is handled in traditional
contracting, what is the agile way to deal with it, and how each of the general
contracting terms as well as the case contract handle it. These results are
summarized in the table 8.1.

64

CHAPTER 8. RESULTS 65

Table 8.1: Comparison of the general contracting terms

Pricing Practices Change Termination Warranties

Tradi-
tional

Fixed-price,
time&
materials,
target-cost

Minimal
customer
collaboration

Strict
change
management
procedures

Difficult,
last resort

For the
whole
product

Agile

Any
(preferably
not fixed-
price)

Customer
collaboration
neccessary

Rapid
respond to
change, still
steering
needed

Easy at any
point of the
development,
may include
compensation
for supplier

For the
whole
product,
based on
summarized
user stories

IT2010
Supplier’s
general price
list

Supplier’s
methods,
no need
for active
customer

Handled by
steering
group,
documented
in writing

Only when
contract has
been breached

6 mo after
acceptance
tests

JIT
2007

Supplier’s
general price
list

No need
for active
customer

Must be
documented
in writing

Only when
contract has
been breached

12 mo after
acceptance
tests, or at
least 6 mo
after final
acceptance
if accepted
in phases

PS2000

Target-cost
with upper
and lower
limits, fixed
price for
approval
phase

Based on
Scrum

Small
changes:
just do it,
larger ones
agreed in
the steering
group

After any
iteration,
compensation
for 4-6 % of
the total value
can be set

Traditional
approach

Swedish
general
terms

Bonus/loss
(reduced
hourly rate/
compensa-
tion for full
project)

Development
timeboxes,
active
customer
needed

Adjust other
requirements
(no scope
change)
or change
the plan/
target-price

After any
iteration,
supplier gets
compensation
for the next
iteration

6 mo after
termination,
supplier only
liable for
errors
caused by
negligence

Case
Contract

Bonus
(increased
hourly rate
when success
criteria is
met for a
release)

Agile
methods,
active
customer,
responsibility
matrix

Handled by
steering
group,
documented
in writing

After any
iteration, no
compensations

6 mo after
the go-live

CHAPTER 8. RESULTS 66

Traditionally software development has been like building a house: first
gather the requirements from the customer, then plan the structure and fea-
tures, build and finally inspect. This kind of development needs minimal
customer collaboration and only at the requirements elicitation phase and
during the acceptance testing at the end of the project. Changes to the
project are hard (but possible) to make, and the contract is strictly not
meant to be terminated under any circumstances (unless one of the parties
breaches it). Pricing models can vary but fixed-price is probably the cus-
tomers’ favorite: they pay a fixed amount and get a fixed set of features
at the agreed date. Defining warranties is trivial: the end product has to
contain the features agreed in the contract.

Unfortunately software development is seldom that straightforward, thus
agile software development was invented. In agile development responding to
change as well as producing maximum amount of value for the customer as
early as possible in a form of a working software are the main priorities. This
kind of customer-centric development requires an active customer during the
whole project, including the implementation phase. This also enables lighter
change management procedures, and termination of the project is possible
at any stage of the development since all the work already done is in a
working, tested software. Almost any kind of pricing model can be used –
with the exception that fixed-price contracts are not preferable since they
do not react well to rapidly changing requirements. Warranties need to be
carefully defined: even though the agile ideology sees code as the primary
documentation of the system some kind of other feature documentation is
needed in order to base the warranties on something concrete.

The Finnish IT2010 general terms and conditions say that the project is
executed using the supplier’s working methods but, since no activity from
customer (e.g. an active product owner) is not required, using agile methods
without additional terms that define the responsibilities of each party would
be difficult. Also the pricing of the project would need to be defined in the
contract in a way that would drive both parties towards the joint success of
the project. Having a steering group that decides the important changes is
a solid approach for agile projects too, but the separately defined responsi-
bilities would have to contain the right for the product owner to do small
changes e.g. changing priority of the features. Still, probably the biggest is-
sue with IT2010 terms is the termination: the terms only allow termination
if one of the parties have breached or will breach the contract.

The IT2010 are clearly meant for traditional software development and
not for agile projects. Same goes with the JIT2007 terms used by the pub-
lic administration: early termination is practically impossible, no customer
collaboration is required during the implementation and the pricing uses

CHAPTER 8. RESULTS 67

only penalties for late deliveries and no incentives for the supplier to finnish
early. The companies building software for the public administration might
be forced to use the JIT 2007 terms, but it is apparent why the agile soft-
ware companies working for the private sector do not want to use the IT2010
terms.

The Norwegian PS2000 terms are clearly more agile than the two terms
used in Finland. They are based on the agile Scrum development model
and use target-cost pricing with upper and lower limits so that the costs or
savings are fairly shared between the parties. For the final, approval phase
the terms still use fixed price. Changes to the project are easy to made:
small changes can just be done without any additional process and bigger
ones are agreed in the steering group. Termination of the project is also easy
and can be done after any iteration, but it may contain compensation for 4-6
% of the total value of the project for the supplier.

Clearly the most agile of all the general terms are the Swedish terms
developed for agile software development. They present an iterative devel-
opment model where development is done in time boxes similar to Scrum
sprints. Project uses bonus/loss pricing model where the supplier will work
under reduced hourly rate if the target is not reached and gets a compensa-
tion for the whole project if the project is finished early. When some of the
requirements change, the others are adjusted so that the total scope of the
project does not change or, if that is not possible, the plan or target-cost is
adjusted accordingly. The contract should state who has the authority to do
the changes to the project.

In the Swedish general terms the termination of the project is easy and
can be done after any iteration. In order to this to be fair for the supplier,
the customer will pay compensation for the next iteration for the resources
the supplier cannot immediately reallocate. A difference between Swedish
agile terms and all the other general contracting terms is that in the Swedish
terms the supplier’s liability for errors is related to his workmanship in the
project. Other general terms use the traditional approach where the liability
is related to the produced product instead of the work done for the customer
like in the Swedish terms.

The case contract is also made for agile software development thus it
requires active customer collaboration and states the responsibilities of each
party in a responsibility matrix. The pricing is also bonus/loss in a way
that the supplier uses lower hourly rate than normally and after each release
the steering group checks if the supplier has reached all the defined success
criteria for the release and thus deserves a bonus. Change management is
done in the steering group but the product owner has the authority to re-
prioritize features. Project can be terminated after any iteration and there

CHAPTER 8. RESULTS 68

Figure 8.1: Proactive Contracting Levels

are no compensations for the supplier.

8.2 How proactive the general terms are?

Proactive contracting, introduced in the chapter 2, is a fine, agile-like ideology
aiming towards win-win situations where both parties are satisfied. Still, it
is lacking concreteness and concrete examples of how to actually follow the
proactive ideology in contracting. The figure 8.1 tries to illustrate how the
proactive ideas are implemented in the general contracting terms analyzed
in this thesis.

The tertiary level of proactive contracting (consequences) is generally
well handled in Finland. Hemmo (2005) describes that also in traditional
contracting going to court to settle disputes is an unwanted situation that
usually destroys the business relationship. On the other hand, when the
stakes are high the parties are afraid to settle to a certain compensation or
waive their rights to higher rebate without a legal process. The negotiations
can be made easier by using an external arbitrator or specialist, and usage
of some kind of negotiation process before a lawsuit can be required in the
contract.

CHAPTER 8. RESULTS 69

Also all the general contracting terms are proactive what comes to the
tertiary level. In the Swedish general terms as well as in the IT2010 terms the
disputes are settled by arbitration or in the district court if the dispute is only
about monetary charges (IT2010 YSE; General Terms for Agile Projects). In
the JIT 2007 terms the disputes should primary be handled through negoti-
ation, and, if that fails, in a local court of law or by arbitration (JIT 2007).
Also in the case case contract disputes are settled by arbitration.

The secondary level of proactive contracting (effects) is about minimizing
harmful consequences when problems do occur. All the general terms as well
as the case contract require that the supplier will inform the customer about
the status of the project regularly, and both parties have the duty to inform
the other party immediately about any matters related to the implementation
of the agreement (IT2010 EJT; JIT 2007; General Terms for Agile Projects).
This way the problems can be handled immediately and not only at the end
of the project. In the Swedish agile terms and in the case contract that both
use sprints, this means also reporting immediately if the sprint cannot be
fully completed.

So all the general contracting terms are quite proactive what comes to the
tertiary and secondary levels. The differences appear on the primary level
of the proactive contracting (causes) that aims towards eliminating possi-
ble causes for problems before they happen. For example, in the Norwegian
PS2000 terms the customer will perform a risk analysis and produce an un-
certainty matrix (completed by the supplier). Each of the risks is bared
by the party more capable of handling the risk factors and minimizing the
damages. (Laine et al., 2011) The case contract has a similar approach:
the contract has responsibility matrix that clearly states who is responsible
of what. Also the Swedish terms state carefully the responsibilities of each
of the parties (General Terms for Agile Projects). On the other hand, the
Finnish general contracting terms (IT2010 and JIT 2007) have no similar
risk sharing procedures.

Another aspect in the primary level of proactive contracting is the ag-
ile easy early termination of a project: possibility to terminate the project
easily reduces the trust needed towards the supplier and reduces customer’s
financial risks. This is not something that would traditionally be possible
in contracting – instead termination of the project is extremely difficult and
requires a fundamental breach of the contract. Also the Finnish general con-
tracting terms make early termination practically impossible, making them
quite non-proactive what comes to the primary level of proactive contract-
ing. On the other hand, both Swedish and Norwegian general contracting
terms as well as the case contract are proactive also in this aspect making
early termination easy by requiring no cause for it and defining at most small

CHAPTER 8. RESULTS 70

compensations for the supplier.

8.3 Improvement suggestions

As a result of the research done in this thesis, the following suggestions
should be taken into account in the case company when preparing contracts
for future agile projects:

• Lighter change management for small changes

• Easy early termination but small penalty to lower the supplier’s risk
(e.g. the cost of one sprint)

• Extreme idea: warranties and liabilities related to the work done for
the customer instead of the produced product

One of the main ideas in agile is the rapid change management. Still,
even agile projects cannot afford to not to have any change management
procedures, and larger agile projects do need a steering committee to handle
the business requirements as well as larger changes to the project. It should
always be stated in the contract who has the authority to do changes in the
project, but for small changes (that do not affect cost or schedule) this could
be someone else than the steering committee, e.g. the product owner. For
example, in the Norwegian terms and conditions, this kind of small changes
do not need to be handled by the steering group.

In the case company, customers can terminate the project without a cause
and without any penalties after any iteration. This is definitely a good
practice in agile projects as easy termination of projects is important in
the agile ideology. This can also be used when selling agile to customers
more accustomed to traditional development methods: they can easily try
it out and terminate the project the minute they feel uncomfortable with
it. Still, this is a risk for a supplier who ties resources to a project and
those resources usually cannot be reallocated immediately after a project is
suddenly terminated. Thus, the company should consider using a similar
penalty than the Swedish terms use: the supplier gets compensation for the
next iteration for the resources that cannot be immediately reallocated.

Most of the general contracting terms as well as the case contract fol-
low the model where warranties and liabilities are related to the produced
product. The Swedish general terms and conditions are the exception: they
define liabilities in a way that they are related to the work performed for
the customer. The supplier is only liable for errors if the work is not done

CHAPTER 8. RESULTS 71

properly and professionally. Because of the nature of software products, a
completely bug free software is an unicorn even when the supplier is skilled
and works professionally. This kind of idea of liabilities being related to
supplier’s workmanship might be hard to sell for the customer but would be
really fair for the supplier who performs their work properly.

Chapter 9

Discussion

As can be clearly seen from the results chapter in this thesis, the Finnish
general contracting terms (IT2010 and JIT 2007 terms) are definitely old-
fashioned and meant primarily for traditional software development projects.
Both of the terms fit poorly for the agile ideology, making them difficult or
impossible to be used in agile development projects. On the other hand, in
other Nordic countries (at least in Sweden and Norway) the usage of special
terms and conditions for agile software development is already customary.

Since increasing number of companies in Finland (55 % in 2011) are us-
ing agile methods in their software development, this also means that more
and more companies are forced to define their own agile contracting terms.
This takes time and effort from the company having to prepare the terms
(probably with a lawyer), as well as makes the actual contracting process
slower. Having a commonly agreed terms and conditions for the whole in-
dustry would significantly help the contracting process since both parties
would already know the terms. The general terms would also be evaluated
to be fair for both of the parties – a factor that the parties now have to
carefully evaluate themselves.

In a way it is understandable that the Finnish general contracting terms
are old-fashioned: they are both quite old. For a rapidly developing ICT
industry, it is too slow and non-agile to have general contracting terms that
are update once every 10 years: the predecessor of IT2010 terms were IT2000
terms published in 1999 and the predecessor of JIT 2007 terms were General
terms and conditions of government procurement of information technology
published in 1998 (VYSE 1998). On the contrary, for example in Norway,
the PS2000 general terms and conditions were published in 2000, after which
The Norwegian Computer Society has been actively maintaining and further
developing the terms.

Unexpectedly, the public administration is waking up to follow the agile

72

CHAPTER 9. DISCUSSION 73

movement faster than the private sector: The Advisory Committee on Infor-
mation Management in Public Administration (JUHTA) is going to publish
new JIT 2014 terms that contain special terms for agile development projects.
Those terms are based on iterative development conducted in the customer’s
premisses. The customer is responsible for participating actively in the de-
velopment, the constant prioritizing of requirements and the acceptance of
each iterative delivery. Minor changes (e.g. prioritization or schedule changes
within the overall project schedule) can be done without change management
procedures, larger changes should use the mutually agreed procedure. (JIT
2014)

Even though the draft of the JIT 2014 terms are much more agile than
the previous JIT 2007 terms, they are not quite as agile as one would hope
so. For example, the early termination of the project is still extremely diffi-
cult, practically impossible. Likewise the intellectual property rights for the
system will still belong to the supplier, making it hard for the customer to
switch the supplier in the middle of the project. Also compelling and mo-
tivating pricing models are not included in the general terms but the terms
continue to rely more on giving penalties for delayed deliveries. (JIT 2014)

The many non-agile aspects in the JIT 2014 agile terms might partly
exists because of the strict Act on Public Contracts in Finland. The stiff and
formal public sector may also be a reason not to update the general terms
constantly. On the other hand, the parties preparing those terms for the
private sector, e.g. the Federation of Finnish Technology Industries and the
Finnish Information Processing Association, have no excuse. Hopefully, they
will soon follow the lead and prepare a proper general contracting terms to
be used in agile development projects. Those terms should also be updated
frequently – once every 10 years is definitely not often enough for the ICT
industry.

Chapter 10

Conclusions

”Customer collaboration over contract negotiation” does not mean that agile
software development projects do not need contracts. Contracts are vitally
important also in agile projects but the whole view to contracting is different,
more proactive. Agile practitioners see that collaboration, rather than con-
frontation, produces better products and more successful, win-win business
relationships. This also adds new challenges to contracting and makes us-
age of the old general contracting terms developed for waterfall development
difficult.

The literature study conducted in this thesis showed that the main issues
to take into account in agile contracting are agile development practices, pric-
ing, change management, early termination of the project, and warranties
and liabilities. Unlike in traditional development where customer collabora-
tion is minimal, agile development needs a contract that clearly states the
activities needed from the customer. The customer’s representative should
have the authority to do at least small changes to the project, such as prior-
itizing, and the responsibility to be available for the development team.

In agile projects, the customer may find the product to be ready even
if not all of the originally planned features are implemented, thus early ter-
mination can be a positive event. The contract should allow that, possibly
introducing a small compensation for the supplier when the project is ended
prematurely. Also the used pricing model should drive the parties towards the
joint success, sharing both the pain and the gain – something that fixed-price
pricing does not do very well. The warranties should be carefully defined in
a way that takes into account the partial deliveries: a newly added feature
may reveal bugs in the previously accepted releases.

These aspects also show the visible problems the Finnish general con-
tracting terms (IT2010 and JIT 2007) have when used in agile development.
They are clearly not meant for agile projects, thus both are lacking all the

74

CHAPTER 10. CONCLUSIONS 75

practices necessary for agile development such as active customer collabo-
ration and iterative development. Since e.g. the product owner role is not
defined, all the changes must go through the steering group. Also early ter-
mination of the project is practically impossible, and neither of the terms
offer any intriguing pricing models that would aim towards the joint success.
The new JIT 2014 terms (yet to be published) are a step towards more agile
contracting in the public sector but they are still lacking some of the main
aspects of agile development such as easy early termination.

On the other hand, the Swedish and Norwegian agile terms are well suit-
able for agile development. Both are based on iterative development and
require an active customer representative who has the authority to do nec-
essary changes to the project (at least prioritization). Termination of the
project is easy, containing only reasonable compensations for the supplier,
and pricing models share the risks fairly between both of the parties. The
Swedish terms define warranties a bit differently than the others: unlike
in the other terms researched, they define warranties to be related to the
supplier’s workmanship instead of the produced product. The Finnish as-
sociations developing the general contracting terms have a lot to learn from
the Swedish and Norwegian agile terms.

The case company is already doing quite well with the agile contract-
ing: the pricing model (bonus paid when release meets its success criteria)
offers reasonable incentive to the supplier, responsibilities of each party are
defined in the responsibility matrix and the project can be easily terminated
after any iteration. The case company should consider introducing a small
compensation when the project is terminated early, e.g. for the next sprint
for the resources that cannot be immediately reallocated, like in the Swedish
general terms. Also the change management could be a bit lighter for the
small changes; now everything but prioritization needs to be handled by the
steering group. Additionally, the Swedish way of defining warranties based on
the work done for the customer should be considered, although the customers
may not be too keen on taking that practice into use.

In the future, when the new JIT 2014 terms are published, they should
be more carefully evaluated against the agile principles. If they are still
lacking some of the basic agile aspects – like the form they currently are –
it would be interesting to know what are the reasons to conduct only almost
agile terms for agile development. Meanwhile, it would be interesting to
study how the current agile projects made for public administration have
overcome the inadequacies the JIT2007 terms have when used with agile
projects. Since the public administration usually requires the usage of JIT
terms, there should definitely be agile projects done using JIT2007 terms.

It would also be beneficial to conduct a larger study in order to research

CHAPTER 10. CONCLUSIONS 76

how other Finnish agile companies have solved the agile contracting problems
and is any of them trying to use the IT2010 general contracting terms. This
could also include the viewpoint of the customer: how do they see the general
contracting terms and agile contracting. Also a study about the usage of
different pricing models in the Finnish agile consulting business would be
interesting. For example, all the agile practitioners say they hate fixed-price
contracts, but how often they are still used in agile projects?

Chapter 11

Evaluation

The aim for this thesis was to find out the special characteristics in agile
contracting compared to traditional contracting, research how well the gen-
eral contracting terms used in Finland and other Nordic countries fit to agile
development, and give concrete improvement suggestions about agile con-
tracting primary for the case company but also generally for the Finnish
ICT industry. Generally, the thesis succeed to fill its purpose well. The main
aspects about agile development that affect contracting were investigated
and compared to traditional contracting in Finland. They were also used to
evaluate how well Finnish IT2010 and JIT 2007 terms, Swedish agile con-
tracting terms and Norwegian PS2000 terms fit agile for agile development
projects. The case company was given three concrete improvement sugges-
tions based on the literature study and the contracting terms used in Sweden
and Norway.

The main contribution of this thesis was the interdisciplinary approach
to contracting for agile software development projects. There are plenty of
studies about agile software development as well as contracting in general
but not so many large-scale studies about agile contracting. There are some
papers written about it (especially about the pricing in agile contracts) and
plenty of power-point presentations on the topic, but this is probably the
largest multidisciplinary study about agile contracting that also contains the
evaluation of general contracting terms.

Despite the fact that this a quite comprehensive study about the topic,
the literature study conducted did not follow any systematic literature study
process thus it may not handle all the aspects completely. For the purpose
of this thesis, using only the newest possible research as well as some prin-
cipal books was found sufficient enough to demonstrate the problems agile
development can cause to contracting. Furthermore, this kind of interdis-
ciplinary study would have required several separate systematic literature

77

CHAPTER 11. EVALUATION 78

studies which was out of the scope of this thesis. Still, there may also be
other agile aspects that have an effect to contracting missing from the eval-
uation since this thesis focused on the most important and effective ones.

The main focus in this thesis was on Finnish agile contracting and from
Finland both of the general contracting terms used are fully evaluated. At
the same time, this thesis is lacking a complete view for the whole Nordic
ICT industry’s way of handling agile in their general contracting terms. The
two samples found are from Sweden and Norway, and the Norwegian terms
had to be evaluated based on second-hand research because the terms are
unfortunately not available for academic work. Still, as a result, the thesis
shows clearly the problems the Finnish general contracting terms have when
applied to agile projects and gives some examples from Sweden and Norway
on how to make the contracting terms more agile.

The case study in this thesis covered only one company, which does not
show full image of the industry-wide conventions. On the other hand, the
general contracting terms used in Finland should represent the common con-
sensus in the field: the terms are agreed together and they should demon-
strate what the industry sees as reasonable in contracting. Still, a single
contract studied is enough to clearly show that the general contracting terms
cannot be (and are not being) used in agile contracting. The general con-
tracting terms are evidently outdated.

Bibliography

Tom Arbogast, Craig Larman, and Bas Vodde. Practices for scaling lean &
agile development: large, multisite, and offshore product development with
large-scale scrum. Pearson Education, 2010.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cun-
ningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,
Ron Jeffries, et al. The agile manifesto. The agile alliance, 200(1), 2001.

Bird&Bird. Contracting for agile software development projects, 2012.

Kirsimarja Blomqvist. The many faces of trust. Scandinavian journal of
management, 13(3):271–286, 1997.

Kirsimarja Blomqvist, Pia Hurmelinna, and Risto Seppänen. Playing the
collaboration game right?balancing trust and contracting. Technovation,
25(5):497–504, 2005.

Kirsimarja Blomqvist et al. Partnering in the dynamic environment: The role
of trust in asymmetric technology partnership formation. Lappeenranta
University of Technology, 2002.

Barry Boehm and Richard Turner. Balancing agility and discipline: A guide
for the perplexed. Addison-Wesley Professional, 2003.

Todd H Chiles and John F McMackin. Integrating variable risk preferences,
trust, and transaction cost economics. Academy of Management Review,
21(1):73–99, 1996.

Margaret H Christ, Karen L Sedatole, and Kristy L Towry. Sticks and car-
rots: The effect of contract frame on effort in incomplete contracts. The
Accounting Review, 87(6):1913–1938, 2012.

Michael Coram and Shawn Bohner. The impact of agile methods on soft-
ware project management. In Engineering of Computer-Based Systems,

79

BIBLIOGRAPHY 80

2005. ECBS’05. 12th IEEE International Conference and Workshops on
the, pages 363–370. IEEE, 2005.

Armin Eberlein and JCSP Leite. Agile requirements definition: A view from
requirements engineering. In Proceedings of the International Workshop
on Time-Constrained Requirements Engineering (TCRE?02), pages 4–8,
2002.

Bruce Eckfeldt, Rex Madden, and John Horowitz. Selling agile: target-cost
contracts. In Agile Conference, 2005. Proceedings, pages 160–166. IEEE,
2005.

Pekka Forselius. Onnistunut tietojärjestelmän hankinta. Talentum, 2013.

Teresa Franklin. Adventures in agile contracting: evolving from time and
materials to fixed price, fixed scope contracts. In Agile, 2008. AGILE’08.
Conference, pages 269–273. IEEE, 2008.

General Terms for Agile Projects. It & telecom companies in sweden.

Tom Gilb. Competitive engineering: a handbook for systems engineer-
ing, requirements engineering, and software engineering using Planguage.
Butterworth-Heinemann, 2005.

J Glover. Profiting through trust. International Management, pages 38–40,
1994.

Paul S Grisham and Dewayne E Perry. Customer relationships and extreme
programming. In ACM SIGSOFT Software Engineering Notes, volume 30,
pages 1–6. ACM, 2005.

Gregory T Gundlach and Patrick E Murphy. Ethical and legal foundations
of relational marketing exchanges. The Journal of Marketing, pages 35–46,
1993.

Helena Haapio. Business success and problem prevention through proactive
contracting. Stockholm Institute for Scandinavian Law, 1999, 2010.

Mika Hemmo. Sopimusoikeus 2. Talentum, Helsinki, 2003.

Mika Hemmo. Sopimusoikeus 3. Talentum, Helsinki, 2005.

Rashina Hoda, James Noble, and Stuart Marshall. Negotiating contracts
for agile projects: A practical perspective. In Agile Processes in Software
Engineering and Extreme Programming, pages 186–191. Springer, 2009.

BIBLIOGRAPHY 81

IT2010 EJT. Special terms and conditions for deliveries of data systems and
customized software.

IT2010 YSE. General terms and conditions.

Frank L Jeffries and Richard Reed. Trust and adaptation in relational con-
tracting. Academy of Management Review, 25(4):873–882, 2000.

JIT 2007. Terms and conditions of government it procurement.

JIT 2014. Terms and conditions of government it procurement,
draft. http://www.jhs-suositukset.fi/web/guest/jhs/projects/

palautepyynto-jhs166, fetched 20.4.2014.

Oualid Ktata and Ghislain Lévesque. Agile development: Issues and av-
enues requiring a substantial enhancement of the business perspective in
large projects. In proceedings of the 2nd Canadian conference on computer
science and software engineering, pages 59–66. ACM, 2009.

Juha Laine, Erika Leinonen, and Mikko Parkkola. Ketterien tie-
tojärjestelmäprojektien sopimuksellinen hallinta. Edilex, 17, 2011.

Casper Lassenius. Bespoke it system acquisition: A software engineering
perspective -lecture, 2012.

Yossi Lichtenstein. Puzzles in software development contracting. Commun.
ACM, 47(2):61–65, February 2004. ISSN 0001-0782. doi: 10.1145/966389.
966391. URL http://doi.acm.org/10.1145/966389.966391.

Joan Luft. Bonus and penalty incentives contract choice by employees. Jour-
nal of Accounting and Economics, 18(2):181–206, 1994.

Angela Martin, Robert Biddle, and James Noble. The xp customer role in
practice: Three studies. In Agile Development Conference, 2004, pages
42–54. IEEE, 2004.

Frank Maurer and Theodore D Hellmann. People-centered software develop-
ment: An overview of agile methodologies. In Software Engineering, pages
185–215. Springer, 2013.

Sridhar Nerur, RadhaKanta Mahapatra, and George Mangalaraj. Challenges
of migrating to agile methodologies. Communications of the ACM, 48(5):
72–78, 2005.

http://www.jhs-suositukset.fi/web/guest/jhs/projects/palautepyynto-jhs166
http://www.jhs-suositukset.fi/web/guest/jhs/projects/palautepyynto-jhs166
http://doi.acm.org/10.1145/966389.966391

BIBLIOGRAPHY 82

Soili Nysten-Haarala. Contract law and everyday contracting. A Proactive
Approach. Stockholm Institute for Scandinavian Law, Scandinavian Studies
in Law, 49:263–283, 2006.

Andreas Opelt, Boris Gloger, Wolfgang Pfarl, and Ralf Mittermayr. Agile
Contracts: Creating and Managing Successful Projects with Scrum. Wiley.
com, 2013.

Soile Pohjonen. Proactive contracting: In contracts between businesses. Ius
Gentium, 12:147–194, 2006a.

Soile Pohjonen. Proactive law in the field of law. A Proactive Approach.
Scandinavian Studies in Law, Stockholm Institute for Scandinavian Law,
49:53–70, 2006b.

Mary Poppendieck and Tom Poppendieck. Lean software development: an
agile toolkit. Addison-Wesley Professional, 2003.

J. Pyysiäinen, Maria Paasivaara, and Casper Lassenius. Coping with social
complexity in distributed software development projects. In Proceedings
of the 10th International Product Development Management Conference,
Bryssels, Belgium, 2003. Helsinki University of Technology.

Paul Radford and Robyn Lawrie. The role of function points in software de-
velopment contracts. In Australian Conference on Software Measurement,
1996.

Balasubramaniam Ramesh, Lan Cao, and Richard Baskerville. Agile require-
ments engineering practices and challenges: an empirical study. Informa-
tion Systems Journal, 20(5):449–480, 2010.

Pilar Rodŕıguez, Jouni Markkula, Markku Oivo, and Kimmo Turula. Survey
on agile and lean usage in finnish software industry. In Proceedings of the
ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM ’12, pages 139–148, New York, NY, USA, 2012.
ACM.

Sale of Goods Act. 27.3.1987/355. http://www.finlex.fi/fi/laki/

ajantasa/1987/19870355, fetched 15.2.2014.

George J Siedel and Helena Haapio. Using proactive law for competitive
advantage. American Business Law Journal, 47(4):641–686, 2010.

http://www.finlex.fi/fi/laki/ajantasa/1987/19870355
http://www.finlex.fi/fi/laki/ajantasa/1987/19870355

BIBLIOGRAPHY 83

Peter Stevens. 10 contracts for your next agile software project,
April 2009. http://agilesoftwaredevelopment.com/blog/peterstev/

10-agile-contracts, fetched 15.2.2014.

Pekka Takki. IT-sopimukset: käytännön käsikirja. Talentum, 2002.

Vesa Teikari. Ketterän kehityksen ostajan opas. 2012.

VersionOne Inc. State of agile development. 2013.

Dave West, Tom Grant, M Gerush, and D D’Silva. Agile development: Main-
stream adoption has changed agility. Forrester Research, 2010.

http://agilesoftwaredevelopment.com/blog/peterstev/10-agile-contracts
http://agilesoftwaredevelopment.com/blog/peterstev/10-agile-contracts

	Cover page
	Contents
	1 Introduction
	1.1 Agile software development
	1.2 Agile today
	1.3 Case company: Houston Inc.
	1.4 Research questions and methodology
	1.5 Content of the thesis

	2 Background
	2.1 Trust and risks in contracting
	2.2 Different types of agile projects
	2.3 Proactive contracting
	2.4 General contracting terms
	2.5 Agile in the case company

	3 Development practices in contracts
	3.1 Traditional development
	3.2 Agile principles
	3.3 Practices in the general contracting terms
	3.4 Practices in the case company

	4 Pricing models
	4.1 Traditional pricing models
	4.1.1 Fixed price
	4.1.2 Time and Materials
	4.1.3 Target-cost

	4.2 Agile pricing
	4.2.1 Fixed price agile
	4.2.2 Time and materials in agile
	4.2.3 Target-cost and agile
	4.2.4 Fixed price per unit of work

	4.3 Pricing in the general contracting terms
	4.4 Pricing in the case company

	5 Change management
	5.1 Traditional change management
	5.2 Agile change management
	5.3 Change in the general contracting terms
	5.4 Change management in the case company

	6 Contract termination
	6.1 Traditional termination conditions
	6.2 Agile termination principles
	6.3 Termination in the general contracting terms
	6.4 Contract termination in the case company

	7 Warranties and Liability
	7.1 Warranties in traditional contracting
	7.2 Agile warranties
	7.3 Warranties in the general contracting terms
	7.4 Warranties in the case company

	8 Results
	8.1 Summary of the findings
	8.2 How proactive the general terms are?
	8.3 Improvement suggestions

	9 Discussion
	10 Conclusions
	11 Evaluation

