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Preface
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Finnish Graduate School in Engineering Mechanics for funding during 2010–
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along the way, and my supervisor, Prof. Rolf Stenberg for valuable help espe-

cially towards the end of the process. I also thank the preliminary examiners,

Prof. Alessandro Macchelli and Dr. Philippe Moireau for reviewing the thesis
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1. Introduction

Systems theory is a field of mathematics and engineering studying phenomena

that can be controlled and observed through particular external signals. The

underlying physical system is often called a plant. The signal affecting the sys-

tem is called input and the observed signal is called output. This is illustrated

on the left in Figure 1.1. At the end of Section 1.1, we list different types of

problems that are typically addressed in mathematical systems theory. Let us

take here a more historical perspective and present the example that led to the

emergence of mathematical systems theory. In the example, the plant being

controlled is a steam engine with varying load. The input u is the opening

of the valve controlling the steam flow to the engine. The output y is the

rotational speed of the engine. Of course if the valve is not adjusted when the

engine load increases, the engine will slow down. To compensate the variations

in the load, one can design a controller that somehow converts the output to

an input signal in such a manner that reducing the rotational speed makes the

valve open and vice versa. This principle is called feedback control and it is

illustrated on the right in Figure 1.1, with K denoting the controller. James

Watt designed a feedback controller for the steam engine, called a centrifugal

governor. In his design, there are two masses attached to rods which, in turn,

are attached to a central axle by a hinge mechanism. The rotation of the axle

causes a centrifugal force pushing the two masses away from the axle, and the

hinge mechanism converts this movement into a control of the valve.

� �u y
PLANT

�

� �

u

y
PLANT

K

Figure 1.1. Left: A system with input u and output y. Right: The principle of feedback
control.
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Introduction

Watt’s controller was by no means the first feedback control mechanism

ever developed, but its occasional instability prompted James Maxwell to do

research on the matter. In his article [36] from 1868, titled “On governors”, he

noted that the motion of the controlled system consists of a steady motion and

an additive perturbation. He divided these perturbations into four categories:

increasing, diminishing, oscillation with increasing amplitude, and oscillation

with diminishing amplitude. In short, he then derives differential equations

and the corresponding characteristic polynomials for the coupled mechanical

systems and concludes that for the system to be stable, the real parts of the

roots of the characteristic polynomial must be negative. Maxwell’s article is

usually regarded as the starting point of mathematical systems theory.

This example also illuminates the methodology of mathematical systems the-

ory. The first task in control problems is to develop a mathematical model

for the plant. This modeling can be based on physical considerations, as in

Maxwell’s case, or it can be a so-called black box model, which is constructed

by feeding some input signals into the system, and measuring the correspond-

ing output. A model with some pre-defined structure is then fitted to the

data. The mathematical model is then used for solving the problem at hand.

One widely used representation for mathematical models is the state space

representation. It is also used in this thesis and it is introduced in the next

section.

1.1 Linear state space approach

In the state space representation it is assumed that all the essential informa-

tion on the state of the plant can be represented as a vector called the state of

the system. The vector space where the state takes values is called the state

space and it can be either finite or infinite dimensional. The state is assumed

to have some kind of dynamics in discrete or continuous time. These dynamics

equations can be linear or nonlinear. The results of this thesis are exclusively

concerned with linear state space models whose dynamics are formally gov-

erned by differential equations of the form⎧⎪⎨⎪⎩
d
dtx(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t)
(1.1)

or, in the discrete time setting, by difference equations (2.10), see Section 2.2

below. The state of the system is x, and u and y are the input and the output,
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Introduction

respectively. It is assumed that x ∈ X , u ∈ U , and y ∈ Y where X is the state

space, U the input space, and Y the output space and they are all assumed to

be separable Hilbert spaces. Thus the linear system can be represented as a

block operator and the corresponding spaces,

S :=
[
A B
C D

]
: X × U → X × Y. (1.2)

The operator A is called the main operator, B is the input or control operator,

C the output or observation operator, and D the feedthrough operator.

In the case when X and U are finite dimensional, the solution to (1.1) is given

by the matrix exponential and the so-called variation of parameters formula,

x(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s) ds, (1.3)

assuming u ∈ L2(R+;Rm). Even this regularity assumption can be relaxed if

the integral is understood in a more general sense; for example if u is white

noise, then (1.3) has to be replaced by a Wiener integral.

To give a hint of what kind of problems are addressed in classical systems

theory, let us give a non-exhaustive list, together with some classical examples

and both historical and state-of-the-art references.

• Well-posedness: In (1.3) we already provided the solution to (1.1) if our

system is finite dimensional. It is also rather easy to check that this solution

is differentiable one time more than the input signal u. However, when

the system is infinite dimensional then establishing the solvability of the

dynamics equations and the smoothness of solutions can be far from trivial.

These kinds of problems are typically known as well-posedness problems. In

particular, when the system dynamics are governed by partial differential

equations with control action through time-dependent boundary conditions,

the control operator B is unbounded. The well-posedness of these boundary

control systems is the subject of publications I and IV and so a more thorough

introduction is given in Section 2.1.

• Stability and stabilization: The stability of a steam engine controlled by

a governor system was already the topic of Maxwell’s paper [36]. The differ-

ent stability concepts and related results for infinite dimensional systems are

discussed in [40] by Pritchard and Zabczyk and [49, Chapter 8] by Staffans.

To give some intuition, we note that a finite dimensional system is stable if

the eigenvalues of the matrix A have negative real parts. If u = 0 then for

11
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any x0, the solution of (1.1) converges to zero. Also for any u ∈ L2(R+;U),
the solution x(t) remains bounded.

If the feedback controller in Fig. 1.1 is linear, then plugging u(t) = Ky(t)

to (1.1) gives d
dtx(t) = (A +KC)x(t). It is possible that A has eigenvalues

with positive real parts but A + KC does not. Then K is a stabilizing

feedback controller for the system. For example, the case B = C∗ in (1.1)

is called colocated control/observation. Then the feedback u = −κy with

κ > 0 leads to d
dtx(t) = (A − κC∗C)x(t) and further, d

dt

(
1
2 ||x(t)||2X

)
=

〈x(t), Ax(t)〉X −κ ||Cx(t)||2Y . Clearly such feedback has a stabilizing effect on

the system, see [10] by Curtain and Weiss.

• Controllability and observability of systems: A fundamental question

related to a system is whether for any vectors x0 ∈ X and x1 ∈ X there exists

a control signal u so that x(T ) = x1 for some T . This property is called exact

controllability at time T . In particular, in infinite dimensions, it is a rather

strong property, and other, weaker notions exist, see [52, Chapter 11].

With linear systems, the dual concept of controllability is observability.

The observability at time T can be defined so that any initial state can

be distinguished from the corresponding output on time interval [0, T ] (if

u = 0). However, in literature, the characterization

∫ T

0
||CT (t)x0||2Y dt ≥ kT ||x0||2X

is often taken as the definition of exact observability at time T . This is

equivalent to the existence of a bounded operator K ∈ L(L2([0, T ];Y),X ),

such that x0 = Ky, see [52, Remark 6.1.5].

In finite dimensions (dim(X ) = n), the exact controllability is equivalent

to the Kalman rank condition, that is, rank
(
[B|AB|A2B|...|An−1B]

)
= n.

The exact observability is equivalent to rank

([
C
...

CAn−1

])
= n.

For recent results on controllability and observability, see for example [27]

by Li et al. for results on systems governed by partial differential equations,

and [57] by Weiss and Zhao for results on coupled systems.

• Optimal control: One typical control problem is how to choose the control

signal u so that some cost functional is minimized. This field is so wide that

we only mention the classical problem with quadratic cost function

J = 〈x(T ), PTx(T )〉X +

∫ T

0

( 〈x(t), Qx(t)〉X + 〈u(t), Ru(t)〉U
)
dt

12
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where PT , Q ∈ L(X ), and R ∈ L(U) are positive and self-adjoint opera-

tors. It is well known that this is a dual problem to Kalman–Bucy filtering,

discussed in Chapter 3. Under sufficient assumptions, the solution to this

optimal control problem is given by the feedback u(t) = K(t)y(t) where K(t)

corresponds to the Kalman gain in the dual problem (see Section 3.2).

An interesting problem type is optimal control of systems with stochastic

inputs. For recent progress, see [14] by Duncan et al. studying the linear

quadratic control problem with fractional Brownian motion input and [37]

by Muradore and Picci studying control strategies that are robust under

stochastic disturbances.

• State estimation: In state estimation problems, the task is to estimate

the state variable x(t) when we are given the output (possibly corrupted by

noise). Often also the input u might be partially or wholly unknown to us,

thereby making the state estimation more difficult.

The case with input and output corrupted by additive white noise is some-

what classical. The solution minimizing the estimation error variance is

given by the Kalman filter, derived in 1960 in [23] by Kalman for discrete

time systems and by Kalman and Bucy in 1961 in [24] in the continuous time

setting. The timing of the results was perfect — the space race was booming

and the method’s potential in spaceflight trajectory estimation was quickly

discovered. Even today, the Kalman filter is advocated for this renowned

application, see [17] by Grewal and Andrews for the whole story. The infi-

nite dimensional Kalman filter is the subject of publications II and III and

so it will be presented in more detail in Chapter 3.

Another well-known class of state estimation methods are the H∞-tech-

niques that are — loosely speaking — based on minimizing the “gain” from

noise to estimation error. For an introduction, see [46, Chapter 11] by Simon,

and for a recent study on infinite dimensional systems, see [8] by Chapelle

et al.

In the case the observations are not corrupted by noise, the state estimators

are typically called observers. Perhaps the best-known class of observers are

the Luenberger observers, see [28], that are based on updating the state esti-

mate x̂(t) proportionally to the measurement discrepancy y(t)−Cx̂(t). For

recent development, see [42] by Ramdani et al. studying observers when the

output operator C is not necessarily bounded, and [19] by Haine discussing

observers in case the system is not exactly observable.
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1.2 On the thesis

The results in the articles of this thesis can be divided into two categories — the

well-posedness and passivity of boundary control systems is studied in publica-

tions I and IV and the effect of temporal and spatial discretization to Kalman

filtering is studied in publications II and III, respectively. In publication I,

it is shown that a composition of passive boundary control systems through

Kirchhoff couplings is also a passive boundary control system. The results of

publication IV essentially say that adding either boundary or state dissipation

to a boundary control system preserves the system’s well-posedness. Publica-

tion II treats the discrete time Kalman filter state estimate’s convergence to

the continuous time estimate as the temporal discretization is refined. Spatial

discretization error in Kalman filtering is the subject of publication III. An

optimal one step reduced-order state estimate is derived together with a bound

for the discretization error. The main results of the publications are further

discussed in Chapter 4.

Basic background on infinite dimensional linear systems is presented in Chap-

ter 2, first for continuous time setting in Section 2.1 and then shortly for dis-

crete time setting in Section 2.2. The background for the treatment of bound-

ary control systems is given in Sections 2.1.2 and 2.1.3 — emphasis being on

the well-posedness of systems. The Kalman filter is presented in Chapter 3.

In Section 3.2, we derive the Kalman filter equations when the state space

X is infinite dimensional but the output space Y is finite dimensional. The

required background on Gaussian random variables is given in Section 3.1.

The reader is assumed to have knowledge on elementary functional analysis

and stochastics (including treatment of random variables in Hilbert spaces).

For introductory representations on these subjects, we refer to [25], and [53] or

[11], respectively. For more comprehensive background on infinite dimensional

linear systems, see [49].

Notation

Denote by L(H1,H2) the space of bounded linear operators from normed space

H1 toH2. Also denote L(H) = L(H,H). The domain of an operator is denoted

by D(·), the null space by N (·), and the range by R(·). The resolvent set of A
is denoted by ρ(A) and the resolvent is R(λ,A) = (λ − A)−1. The spectrum

of an operator is denoted by σ(·) and the point spectrum by σp(·).

14



2. Infinite dimensional linear systems

The results of the thesis are all related to infinite dimensional linear sys-

tems, which are introduced in this chapter. The concept of well-posedness

of systems will be discussed and the notion of semigroup will be introduced

in Section 2.1.1. The results of publication II are more or less based on the

semigroup approach and it is also needed in the further development of the

system node concept and finally, boundary control systems. Publications I

and IV treat well-posedness of boundary control systems and so emphasis will

be given do the description of boundary control systems and well-posedness of

infinite dimensional systems. In particular, the results of publications I and

IV rely heavily on the results of [34] by Malinen and Staffans and so those

results are reviewed in Section 2.1.3.

Finally, as discrete time systems are studied in publication III, some back-

ground will be given in Section 2.2. There we also go through some stability

concepts that of course have their continuous time counterparts; but as they

are not needed in the thesis, we only present the discrete time versions.

2.1 Continuous time systems

2.1.1 Semigroups and well-posedness

When the state space is infinite dimensional, the operator A in the formal

equations (1.1) is often not bounded. Typically this is the case if the system

dynamics are governed by partial differential equations when A is some kind

of differential operator. Then, unlike in the finite dimensional setting, even

the simple, homogeneous equation

d

dt
x(t) = Ax(t), x(0) = x0 (2.1)

15



Infinite dimensional linear systems

gives rise to numerous problems, starting from the unique existence and smooth-

ness of the solution. Loosely speaking, these are known as well-posedness

problems.

Firstly, a classical solution is defined as a function satisfying (2.1), such that

x ∈ C1(R+;X ) and x(t) ∈ D(A) for all t ≥ 0. However, it is often desirable to

formally study equation (2.1) when x0 is not necessarily in D(A). To this end,

we define a mild solution of (2.1) to be a function x ∈ C(R+;X ) satisfying

∫ t

0
x(s) ds ∈ D(A) and x(t)− x0 = A

∫ t

0
x(s) ds

for all t ≥ 0 where the integrals are Bochner integrals, see e.g., [1, Section 1.1].

The definition of well-posedness of a system varies depending on what we

are interested in. Typically it is somehow related to the unique existence and

smoothness of solutions. For the homogeneous time evolution problem, we

adopt the following definition, due to [11, Section A.1]:

Definition 2.1.1. The time evolution problem (2.1), also known as Cauchy

problem, is said to be well-posed if:

(i) for any x0 ∈ D(A), there exists a unique strongly differentiable (in X )

function x(t, x0) satisfying (2.1) for all t ≥ 0;

(ii) for {xn} ⊂ D(A) with xn → 0 strongly in X it holds that x(t, xn) → 0

strongly in X for all t ≥ 0.

This definition gives rise to the notion of the semigroup generated by the

operator A.

Definition 2.1.2. If the problem (2.1) is well-posed, define the semigroup

generated by A as the operator-valued function T (t), that satisfies

T (t)x0 := x(t, x0), t ≥ 0

for x0 ∈ D(A) where x(t, x0) is defined in part (i) of Definition 2.1.1.

The fact that T (t) actually defines a linear operator in D(A) is easy to see

by the linearity of differentiation. The semigroup T (t) was defined in D(A)
but by property (ii) in Definition 2.1.1, it can be uniquely extended to a

bounded linear operator in the whole space X . Henceforth T (t) stands for

this extension. This operator-valued function has the following well-known

16



Infinite dimensional linear systems

properties:

• T (0) = I, (2.2)

• T (t+ s) = T (t)T (s) for t, s ≥ 0, (2.3)

• for any x ∈ X , the function T (t)x is strongly continuous in X . (2.4)

Note that strong differentiability in X holds only for x ∈ D(A).
Here we started with the formal equation (2.1) and ended up with a definition

of a semigroup. However, we could also define a C0-semigroup as an L(X )-

valued function satisfying the three conditions (2.2)–(2.4). If we are given such

a function then the infinitesimal generator of the semigroup can be defined as

follows (see [11, (A.7)]):

Definition 2.1.3. Let T (t) be an operator-valued function satisfying condi-

tions (2.2)–(2.4). Define the domain of the infinitesimal generator A of the

semigroup T (t) as

D(A) :=
{
x ∈ X : lim

h→0

T (h)x− x

h
exists (in strong sense) in X

}
and in D(A) define A as the limit, that is,

Ax := lim
h→0

T (h)x− x

h
.

The infinitesimal generator given by the above equation is an extension of the

original A in (2.1) but here we don’t make the distinction between them.

Thus the well-posedness of the problem (2.1), as defined in Definition 2.1.1,

means that the time evolution operator A is the generator of a C0-semigroup.

Perhaps the best-known characterization for C0-semigroup generators is given

by the Hille–Yosida theorem [1, Thm. 3.3.4]:

Theorem 2.1.1. Hille–Yosida. Let A be a closed, densely defined operator

on X . Then it is the generator of a C0-semigroup if and only if there exists

ω ∈ R and M > 0 such that

∣∣∣∣(λI −A)−n
∣∣∣∣
L(X )

≤ M

(λ− ω)n
for all n ∈ N and λ > ω.

A C0-semigroup is called contractive if ||T (t)||L(X ) ≤ 1 for all t ≥ 0. Con-

tractivity is related to the stability of the system and so it is a somewhat

fundamental property. It is also a standing assumption in publication II that

the system dynamics are governed by a contractive semigroup. A characteri-

zation for generators of contractive semigroups is given by the Lumer–Phillips
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theorem, originally presented in [31] but it can also be found for example in

[1, Thm. 3.4.5]:

Theorem 2.1.2. Lumer–Phillips. Let A be a closed, densely defined oper-

ator on X . Then it is the generator of a contractive C0-semigroup iff

(i) A is dissipative, meaning that for all λ > 0 and x ∈ D(A),

||(λI −A)x||X ≥ λ ||x||X ; and

(ii) A is maximal in the sense that λ0I −A is surjective for some λ0 > 0.

One widely studied class of systems are such that the main operator A

generates an analytic semigroup, that is, a semigroup that can be extended

to a sector t ∈ {
λ ∈ C : | arg(λ)| ≤ θ

}
for some θ < π/2 in such a way that

conditions (2.2)–(2.4) hold in the whole sector. Analytic semigroups are also

studied in Section 3.4 of publication II and so we give here their definition

following [9, Definition 2.27], and present some of their properties.

Definition 2.1.4. A C0-semigroup T (t) is analytic if

(i) T (t) can be continued analytically to a sector
{
λ ∈ C : | arg(λ)| ≤ θ

}
for

some θ < π/2;

(ii) for all t ∈ {
λ ∈ C : | arg(λ)| ≤ θ

}
, and t 	= 0, it holds that AT (t) ∈ L(X ),

and for any x ∈ X ,
d

dt
T (t)x = AT (t)x;

(iii) ||T (t)||L(X ) is uniformly bounded and ||AT (t)||L(X ) ≤ M
|t| for all t ∈ {

λ ∈
C : | arg(λ)| ≤ θ

}
for some M > 0.

Proposition 2.1.1. Let A be the infinitesimal generator of an analytic semi-

group T (t). Then

(i) the semigroup is given by T (0) = I and

T (t) =
1

2πi

∫
γ
eλt(λ−A)−1dλ, t > 0

18
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where γ(·) is the path defined by parametrization γ(s) =

⎧⎨⎩ −se−iθ for s < 0,

seiθ for s ≥ 0

where θ ∈ (π/2, θ0).

(ii) for any t > 0 and x ∈ X , T (t)x ∈ D(Ak) for all k ∈ N, and for each k

there exists a constant c(k), such that

∣∣∣∣∣∣AkT (t)
∣∣∣∣∣∣
L(X )

≤ c(k)

tk
, for t > 0;

(iii) if, in addition, −A is sectorial (see [1, Section 3.8]) then the above bound

holds also for non-integer k, if Ak is replaced by (−A)k.

For a proof of part (i), see [1, (3.46)]. For parts (ii) and (iii), see [51, Thms.

3.3.1 & 3.3.3].

Let us finish this section by discussing the full system (1.1) under the as-

sumption that A is the generator of a C0-semigroup T (·) : R+ → L(X ). In

the case B ∈ L(U ,X ), nothing is really changed compared to the finite dimen-

sional case, and the solution to (1.1) is given by (1.3) with eAt replaced by

the general semigroup T (t), see, for example [1, Chapter 3]. However, if for

example the system under consideration is governed by a partial differential

equation with control action inflicting through the boundary conditions, then

the input operator B is not bounded. To be able to study such systems, we

proceed to introduce a more general framework of system nodes.

2.1.2 Operator and system nodes

Above we worked with the system’s state space X and the domain of the main

operator, D(A). In this section we define the rigged spaces Xj for j ∈ Z,

following [49, Section 3.6] and present the system node realization following

[49, Section 4.7]. Let us also mention [44] and [45] by Salamon and [56] by

Weiss as historical references on realization theory on Hilbert spaces. For more

references, see the discussion sections 3.15 and 4.11 of [49].

If A is closed — as is usually assumed — then also D(A) can be made

a Hilbert space if it is equipped with the graph norm ||x||2D(A) := ||x||2X +

||Ax||2X or, assuming the resolvent set ρ(A) is nonempty, with norm ||x||D(A) =

||(α−A)x||X with some α ∈ ρ(A). Note that different selection of α gives

an equivalent norm to D(A). Let us denote X1 := D(A) and use there the

latter norm. Then (α − A)−1 maps X isometrically to X1. Following [35,

Proposition 2.1], define also the space X−1 as the completion of X with respect
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to the norm ||x||X−1
:=

∣∣∣∣(α−A)−1x
∣∣∣∣
X . By iteration of this construction, we

can define spaces Xj for any j ∈ Z with Xj ⊂ Xk if j ≤ k with a dense inclusion.

Also it is possible to uniquely extend (or restrict) A and the corresponding

semigroup T (t) to Aj ∈ L(Xj+1,Xj) and Tj(t) ∈ L(Xj), respectively.

After these preparations, we are now ready to extend the block notion (1.2)

to cases where the input and output operators are not necessarily bounded.

Definition 2.1.5. Let X , U , and Y be Hilbert spaces. A block operator

S =
[
A&B
C&D

]
: X × U → X × Y

is called an operator node on (U ,X ,Y) if it has the following structure:

(i) A is a closed, densely defined operator on X with a nonempty resolvent set.

(ii) B ∈ L(U ,X−1).

(iii) D(S) := {[ xu ] ∈ X × U : A−1x+Bu ∈ X} where A−1 is the extension

of A as described above. D(S) is equipped with the graph norm

||[ xu ]||2D(S) := ||A−1x+Bu||2X + ||x||2X + ||u||2U .

(iv) C&D ∈ L(D(S),Y).

If, in addition, A generates a C0-semigroup on X , then S is called a system

node.

If S is a system node on (U ,X ,Y) then for each x0 ∈ X and u ∈ C2(R+;U)
with

[ x0

u(0)

] ∈ D(S) the formal equations (1.1) have a unique solution x ∈
C1(R+;X ) such that [ xu ] ∈ C(R+;D(S)). This result can be found for example

in [33, Lemma 2.2] but for a proof they refer to [49, Lemma 4.7.8].

Many systems satisfy different types of conservation laws that can be utilized

when determining the solvability of a given system. An important conservation

law is energy preservation:

Definition 2.1.6. A system node is scattering passive if for all x0 and u

satisfying the conditions in the paragraph above, and for all t ≥ 0, the solutions

of (1.1) satisfy

||x(t)||2X − ||x0||2X ≤ ||u||2L2((0,t);U) − ||y||2L2((0,t);Y) . (2.5)

A system node is scattering energy preserving if this holds as an equality.
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Many characterizations for energy preserving systems an be found in [35,

Section 3]. It is clear from the definition that the semigroup corresponding to

a scattering passive system node is contractive.

An alternative framework for the presented system node setting is provided

by the so-called port-Hamiltonian systems, that has been a very active field of

research during the last fifteen years. Port-Hamiltonian systems form a unified

approach for treating linear and nonlinear, and finite and infinite dimensional

systems (including boundary control systems). The key idea is to utilize the

systems’ inherent conservation laws and to break the system at hand into com-

ponents representing (Hamiltonian) “energy storages” and power conserving

interconnections (through ports) between these storages. For an introduction,

see the doctoral theses [32] by Macchelli or [54] by Villegas.

2.1.3 Boundary control systems

Boundary control systems are typically systems whose dynamics are governed

by partial differential equations and the control action to them is inflicted

through time-dependent boundary conditions. In principle, the system node

framework allows treatment of such systems but these systems do not naturally

adopt the form (1.1). So let us introduce slightly different looking dynamics

equations: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dtz(t) = Lz(t), t ≥ 0,

Gz(t) = u(t),

y(t) = Kz(t).

(2.6)

That is, the dynamics are not entirely governed by the first equation but an

additional requirement Gz(t) = u(t) has to be imposed for unique solvability.

In a typical example, the operator G is a trace operator, and so this additional

requirement consists of the boundary conditions for a partial differential equa-

tion. In this formalism, the operator L is called the interior operator, G the

input boundary operator, and K the output boundary operator. This theoret-

ical framework originates from [15] by Fattorini and [44] by Salamon. Our

presentation is close to that of Malinen and Staffans in [33] and [34]. Related

to equations of the form (2.6), we make the following definition.

Definition 2.1.7. A triple of linear mappings (G,L,K) on Hilbert spaces

(U ,X ,Y) with the same domain Z ⊂ X is called a colligation. A colligation is

strong if L is closed with D(L) = Z, and G and K are continuous with respect

to the graph norm of L on Z. The space Z is called the solution space.

A colligation is a boundary node if it has the following structure:
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(i) The block operator
[
G
L
K

]
: X → U × X × Y is closed;

(ii) G is surjective and its null space N (G) is dense in X ;

(iii) The operator A := L|N (G) has a nonempty resolvent set ρ(A);

The boundary node is internally well-posed if in addition, A generates a C0-

semigroup.

Theorems 2.3 and 2.4 of [33] imply that every boundary node induces an

operator node that is“of boundary control type”, meaning thatR(B)∩X = {0}
and vice versa — every operator node that is of boundary control type induces

a boundary node. The boundary node is internally well-posed if and only if

the corresponding operator node is a system node. When this is the case, the

solutions to respective equations (1.1) and (2.6) coincide.

From Definition 2.1.7 it is evident that
[

G
α−L

]
is surjective for α ∈ ρ(A).

Now regard α as fixed. Then there exists a right inverse for G, such that

LG−1right = αG−1right. In fact, by the proof of [33, Thm. 2.3], this inverse is given

by G−1right = (α − A−1)−1B. So the solution space can be decomposed into a

direct sum

Z = X1 ⊕G−1rightU ,

that is, into components X1 = N (G) and another part taking care of the

boundary conditions. We also have a bijective mapping and its inverse between

Z and its decomposition:

[
I−G−1

rightG

G

]
: Z → X1 × U and

[
I G−1right

]
: X1 × U → Z.

The Cauchy problem associated with the boundary control system (2.6) can

now be taken from the space Z to the decomposed space X1 × U . It can be

solved there and the obtained solution can be taken back to Z. This method

is not used in the thesis but here it is presented. The interior operator can be

split according to this decomposition,

Lz = L
(
I −G−1rightG

)
z + LG−1rightGz = A

(
I −G−1rightG

)
z + αG−1rightGz,

and following this splitting, we write the time derivative of the X1-component
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in the space X :

d

dt

(
I −G−1rightG

)
z(t) =

d

dt
z(t)−G−1right

d

dt
u(t) = Lz(t)−G−1rightu̇(t)

= A
(
I −G−1rightG

)
z(t) +G−1right

(
αu(t)− u̇(t)

)
.

Consider now the Cauchy problem in the decomposed space X ×U . Equations
(2.6) can be formulated in the decomposed space⎧⎪⎪⎨⎪⎪⎩

d
dt [

x
u ] (t) =

[
A αG−1

right

0 0

]
[ xu ] (t) +

[
−G−1

right

I

]
u̇(t)

[ xu ] (0) =
[
I−G−1

rightG

G

]
z0.

(2.7)

This formulation resembles (1.1). The new control operator
[
−G−1

right

I

]
is

bounded from U to X × U but that is obtained at the cost of one tempo-

ral derivative in the input signal u.

Theorem 2.1.3. The operator Ã :=
[
A αG−1

right

0 0

]
: X×U → X×U with domain

X1 × U generates a C0-semigroup T̃ (t) on X × U .

Proof. We use the Hille-Yosida theorem 2.1.1. The resolvent of Ã is R(λ, Ã) =[
R(λ,A) α

λ
R(λ,A)G−1

right

0 λ−1

]
. For some ω > 0 we have ||(λ− ω)nR(λ,A)||L(X ) < M

for all λ > ω and n ∈ N and we need to find a similar uniform bound for the

resolvent of Ã. For that we have

(λ− ω)nR(λ, Ã)n =

[
(λ−ω)nR(λ,A)n α

λ

∑n
j=1(

λ−ω
λ )

n−j
(λ−ω)jR(λ,A)jG−1

right

0 (λ−ω
λ )

n

]
.

The only nontrivial element is the one in the upper right corner and for that

we have a uniform bound∣∣∣∣∣∣
∣∣∣∣∣∣αλ

n∑
j=1

(
λ− ω

λ

)n−j
(λ− ω)jR(λ,A)jG−1right

∣∣∣∣∣∣
∣∣∣∣∣∣
L(U ,X )

≤ α

λ
M

∣∣∣∣∣∣G−1right

∣∣∣∣∣∣
L(U ,X )

n∑
j=1

(
λ− ω

λ

)n−j
≤ α

ω
M

∣∣∣∣∣∣G−1right

∣∣∣∣∣∣
L(U ,X )

.

The semigroup generated by Ã is given by T̃ (t) =
[
T (t) α

∫ t
0 T (u)G−1

right du

0 I

]
where the integral is a Bochner integral computed in X but with value in X1

and T (t) is the semigroup generated by A. The solution to (2.6) is then given

by z(t) = Ta(t)z0 +

∫ t

0
Tb(t− s)u̇(s) ds where

Ta(t) = T (t)
(
I −G−1rightG

)
+

(
α

∫ t

0
T (u) du + I

)
G−1rightG
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and Tb(t− s) = (I − T (t− s))G−1right + α

∫ t−s

0
T (u) duG−1right.

We remark that the definition of energy preservation/passivity (Def. 2.1.6)

above did not have any references to the system operators and so the same def-

inition is directly extended to internally well-posed boundary nodes. Related

to energy preservation, let us also define conservativity following [33]:

Definition 2.1.8. The time-flow inverse of a given colligation Ξ = (G,L,K)

on spaces (U ,X ,Y) with domain Z is given by (K,−L,G) on (Y,X ,U) with

the same domain Z.
The boundary node is scattering conservative if both Ξ and its time-flow

inverse are scattering energy preserving.

The reason we have used the term “scattering” when talking about energy

preservation is that the energy inequality (2.5) is not the only naturally arising

alternative. So opposed to scattering type systems, let us introduce impedance

type systems assuming U and Y are a dual pair. In the impedance formulation,

if the system equations have a solution z(t) then, instead of (2.5), the energy

passivity is characterized by the inequality

d

dt

(
1

2
||z(t)||2X

)
≤ 〈y(t), u(t)〉(Y,U) . (2.8)

The expression 1
2 ||z(t)||2X is interpreted as the energy stored in the system

and the right hand side is the instantaneous power inflicted. For example, in

electric circuits the input u might be some control voltage and the output y the

corresponding current — the inflicted power is then their product (recall the

well-known formula P = UI). Other examples are acoustics (see the example

in Section 5 of article I), where the input and output variables in impedance

form would be the pressure and flow, and in mechanical systems, the inflicted

force and velocity.

In article [34], it is noted that impedance type systems are obtained from

scattering type systems by the external Cayley transform. They also define

impedance passivity (and conservativity) through the Cayley transform. How-

ever, a more straightforward definition often serves the purpose better, and so

we adopt the following definition, due to [34, Theorem 3.4]:

Definition 2.1.9. Let Ξ = (G,L,K) be a colligation on Hilbert spaces (U ,X ,Y).

(i) Ξ is impedance passive if the following conditions hold:

(a)
[
βG+K
α−L

]
is surjective for some α, β ∈ C

+;

24



Infinite dimensional linear systems

(b) For all z ∈ D(Ξ) we have the Green–Lagrange inequality

�〈z, Lz〉X ≤ �〈Kz,Gz
〉
(Y,U). (2.9)

(ii) Impedance passive Ξ is impedance conservative if (2.9) holds as an equal-

ity, and (a) holds also for some α, β ∈ C
−.

Note that the concept of impedance passivity does not require internal well-

posedness. If Ξ is internally well-posed, then (2.9) is equivalent to (2.8). It is

evident by (2.8) that the semigroup of an impedance passive boundary con-

trol system is contractive. Impedance passivity and also the Green–Lagrange

inequality alone can be used for confirming the internal well-posedness using

the following results, due to [34, Theorems 4.3 and 4.7]:

Theorem 2.1.4. Let Ξ = (G,L,K) be a strong colligation on spaces (U ,X ,Y)
with domain Z where U and Y are a dual pair.

(i) Assume that (2.9) holds for all z ∈ Z. If
[

G
α−L

]
is surjective for some

α ∈ C with �(α) ≥ 0 then Ξ is an internally well-posed, impedance passive

boundary node.

(ii) Assume Ξ is impedance passive. Then it is internally well-posed if and

only if G is surjective.

2.2 Discrete time systems

The dynamics of a discrete time system are governed by difference equations⎧⎪⎨⎪⎩xk = Axk−1 +Buk

yk = Cxk +Duk.
(2.10)

In some sense the theory of infinite dimensional discrete time systems is not

as rich as that of continuous time systems. The equations are always solvable

and there are no problems caused by unbounded operators.

The solution to the state evolution equation (2.10) is given by

xk = Akx0 +

k−1∑
j=0

AjBuk−j .
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If the input signal u is extended so that uk = 0 for k ≤ 0, the second term

can be written as
∑∞

j=0A
jBuk−j which motivates us to define the input map

B : l2(Z−;U)→ X by {uk}k∈Z− 
→∑∞
j=0A

jBu−j where Z
−= {0,−1,−2, ...}.

Define then the relevant stability concepts.

Definition 2.2.1. The discrete time system composed of the operator quadru-

ple
[
A B
C D

]
and the dynamics equation (2.10) is

(i) exponentially stable if for uk = 0 for all k, it holds that
∑∞

k=1 ||xk||2X <∞
for any initial state x0 ∈ X ;

(ii) asymptotically stable if for uk = 0 for all k, it holds that ||xk||X → 0 as

k →∞ for any initial state x0 ∈ X ;

(iii) output stable if for uk = 0 for all k, it holds that y ∈ l2(Y) for any initial

state x0 ∈ X ;

(iv) input stable if its dual system, composed of
[
A∗ C∗
B∗ D∗

]
, is output stable.

Characterizations for different stability concepts can be found in Opmeer’s

doctoral thesis [38, Chapter 3]. The connection between different stability

concepts and solvability of the Lyapunov equation

S = ASA∗ +W (2.11)

with bounded, self-adjoint load W ∈ L(X ) was studied by Przyluski in his

classic article [41]. Here we present some results on the stability concepts

which are essential considering this thesis, while other results are presented

just to give some insight on the subject.

Theorem 2.2.1. Exponential and asymptotical stability. The following

statements are equivalent:

(i) The discrete time system (2.10) is exponentially stable.

(ii) The spectral radius of A is smaller than one, that is, σ(A) ⊂ D1 where D1

denotes the open unit disc in the complex plane (recall that as A is bounded,

σ(A) is closed).

(iii) The Lyapunov equation (2.11) with load W = I has a nonnegative, self-
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adjoint solution S ∈ L(X ).

In addition, exponential stability implies asymptotical stability and input sta-

bility. Asymptotical stability implies σp(A) ⊂ D1 and σ(A) ⊂ D1.

Theorem 2.2.2. Input stability. The following statements are equivalent:

(i) The discrete time system (2.10) is input stable.

(ii) The input map satisfies B ∈ L(l2(Z−;U),X ).

(iii) The Lyapunov equation (2.11) with load W = BB∗ has a nonnegative,

self-adjoint solution S ∈ L(X ).

In addition, input stability implies that σp(A) ⊂ D(0, 1).

2.2.1 Discretizing continuous time systems

Sometimes the considered real-life system has continuous time dynamics but

for technical reasons we can only observe the output and control the input

with discrete time intervals. Then the system can be transformed to a discrete

time model. Consider the solution (1.3) in the case discussed in the end of

Section 2.1.1, that is, A is the generator of a C0-semigroup T (·) and B ∈
L(U ,X ). Denoting xk := x(kΔt), the solution can be written as

xk = T (Δt)xk−1 +
∫ kΔt

(k−1)Δt
T (t− s)Bu(s) ds.

If we then assume that u(s) is constant uk on the interval s ∈ [(k−1)Δt, kΔt)

then the solution can be written in discrete time form

xk = Adxk−1 +Bduk

where Ad = T (Δt) and Bd =
∫ Δt
0 T (s)B ds. In the general system node setting

with B ∈ L(U ,X−1) it was required that u ∈ C2(R+;U) for the classical solu-

tion to exist. Thus, the piecewise constant u is not smooth enough. However,

the integrated semigroup operator
∫ Δt
0 T (s) ds has a smoothing effect, that is,∫ Δt

0 Tj(s) ds ∈ L(Xj ,Xj+1) where the subindex j refers to the rigged spaces
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discussed in the beginning of Section 2.1.2. In fact, it holds that∣∣∣∣∣∣∣∣∫ Δt

0
Tj(s) ds

∣∣∣∣∣∣∣∣
L(Xj ,Xj+1)

=

∣∣∣∣∣∣∣∣(α−Aj)

∫ Δt

0
Tj(s) ds

∣∣∣∣∣∣∣∣
L(Xj)

≤ |α|Δt sup
s∈[0,Δt]

||Tj(s)||L(Xj)
+ ||Tj(Δt)− I||L(Xj)

.

So even B ∈ L(U ,X−1) yields a bounded discrete time input operator Bd ∈
L(U ,X ) with this so-called “zero-order-hold” discretization. Note that care

must be taken when choosing the output of the discretized system. If also the

output is a boundary observation, then C ∈ L(X1,Y) and then Cxk is not

well defined. However, integrating the state x(s) from (k − 1)Δt to kΔt gives

a vector in X1 and so the discrete output yk can be defined as the average of

y(s) on this interval, that is,

Cdxk−1+Dduk :=
C

Δt

∫ Δt

0

(
T (u)xk−1 +

∫ (k−1)Δt+u

(k−1)Δt
T (t− s)Buk ds

)
du+Duk.

The discretization given above is accurate, given that the input actually

is piecewise constant. However, actually computing T (Δt) might be impos-

sible and one typically needs to rely on approximative schemes. A widely

used method for approximating the discrete operators is given by the Cayley

transform where Ad = (σ + A)(σ − A)−1 and Bd =
√
2σ(σ − A−1)−1B with

σ = 2/Δt. This method is studied in [6] by Besseling and in [20] by Havu and

Malinen from the point of view of mathematical systems theory.
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3. Infinite dimensional Kalman filter

In this chapter we introduce the discrete time Kalman filter, originally derived

in [23] in the finite dimensional setting. The infinite dimensional generalization

can be found, for example in [21] by Horowitz and [18] by Hager and Horowitz.

It is the subject of publications II and III. Even though we also define the

continuous time state estimate in II, an explicit representation is not needed.

The proofs there make use of the discrete time Kalman filter with non-constant

output operator. For the sake of notational simplicity, we here only treat the

case where the operators do not depend on time. The continuous time variant

is known as the Kalman–Bucy filter which was originally derived in [24]. The

infinite dimensional Kalman–Bucy filter is presented, for example, in [3] by

Bensoussan and in [9, Chapter 6] by Curtain and Pritchard.

The Kalman filter was originally developed for discrete time systems with

noisy input and output: ⎧⎪⎨⎪⎩xk = Axk−1 +Buk

yk = Cxk + wk.
(3.1)

where the input uk and the output noise wk are Gaussian random variables

with values in U and Y, respectively. They are assumed to have mean zero

and covariance operators Q and R, respectively. Also the initial state is an

X -valued Gaussian random variable, x0 ∼ N(m,P0). It is assumed that u, w,

and x0 are mutually independent, and also wk and uk are independent of wj

and uj , respectively, when k 	= j.

In this chapter, we first introduce Gaussian random variables in Section 3.1.

In Section 3.2, we derive the Kalman filter equations assuming that the state

space X is a separable Hilbert space and the output space Y is finite dimen-

sional. Finally, in Section 3.3, we present some results on the Kalman filter

and the corresponding Riccati equations that are needed in publication III.
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3.1 Gaussian random variables

Definition 3.1.1. A random variable v taking values in the Hilbert space X
is said to be Gaussian if 〈v, h〉X is normally distributed for all h ∈ X .

Gaussian random variables are extensively used when modeling uncertainty

and external noise in dynamical systems — partly because they truly are

somewhat fundamental (recall the central limit theorem), but also because

they have so many nice properties making them easy to work with.

Proposition 3.1.1. Let [ xz ] be a Gaussian random variable in Hx×Hz where

Hx and Hz are separable Hilbert spaces. Then the following assertions hold:

(i) Fernique theorem. There exists λ > 0 such that E
(
eλ||x||

2
Hx

)
<∞. As a

corollary, note that E
(||x||nHx

)
<∞ for all n ≥ 1.

(ii) Mean and covariance. There exists a vector [mx
mz ] ∈ Hx × Hz and a

symmetric, nonnegative trace class operator P =
[
Pxx Pxz
Pzx Pzz

]
such that

E

(〈
[ xz ] ,

[
hx
hz

]〉)
=

〈
[mx
mz ] ,

[
hx
hz

]〉
for all

[
hx
hz

]
∈ Hx ×Hz and

E

(〈[
hx1
hz1

]
, [ xz ]

〉〈[
hx2
hz2

]
, [ xz ]

〉)
−

〈
[mx
mz ] ,

[
hx1
hz1

]〉〈
[mx
mz ] ,

[
hx2
hz2

]〉
=

〈[
Pxx Pxz
Pzx Pzz

] [
hx1
hz1

]
,
[
hx2
hz2

]〉
for all

[
hx1
hz1

]
,
[
hx2
hz2

]
∈ Hx ×Hz. Here 〈·, ·〉 = 〈·, ·〉Hx×Hz

.

It holds that E
(
||x−mx||2Hx

)
= tr(Pxx). Also, the properties of a Gaussian

random variable are completely comprised in its mean and covariance. Thus,

it is meaningful to write [ xz ] ∼ N ([mx
mz ] , P ) meaning that [ xz ] is a Gaussian

random variable with mean [mx
mz ] and covariance P .

(iii) Independence. x and z are independent if and only if Pxz = 0. Also if

x̃ and z̃ are independent Gaussian random variables then
[
x̃
z̃

]
is a Gaussian

random variable.

(iv) Conditional expectation. Assume dim(Hz) < ∞. The conditional

expectation of x, given z, is given by

E(x|z) = mx + PxzP
−1
zz (z −mz). (3.2)
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If Pzz is not invertible then P−1zz is replaced by pseudoinverse. The error

covariance is

Cov [x− E(x|z) , x− E(x|z)] = Pxx − PxzP
−1
zz Pzx. (3.3)

The conditional expectation minimizes E

(
||x−mx −K(z −mz))||2Hx

)
over

K ∈ L(Hz,Hx).

(v) Linear combinations. If A ∈ L(Hx,H) and B ∈ L(Hz,H) then

Ax+Bz ∼ N(Amx +Bmz, APxxA
∗ +APxzB

∗ +BPzxA
∗ +BPzzB

∗).

(vi) Estimation. The best linear estimate is the best global estimate, that is,

(3.2) minimizes E
(
||x− f(z)||2Hx

)
over all measurable functions f : Hz → Hx.

For proofs, for part (i), see [11, Theorem 2.6] (also a more general formulation

is presented there). For part (ii), see Lemma 2.14 and Proposition 2.15 in

[11] and the discussion related to those results. Part (iii) follows by studying

the characteristic function of [ xz ]. A proof for the first claim can be found in

[53, Proposition 4.10]. The second claim follows by writing the characteris-

tic function for
[
x̃
z̃

]
and by independence noting that it corresponds to the

characteristic function of a Gaussian random variable with mean
[
E(x̃)
E(z̃)

]
and

covariance
[
Cov[x̃,x̃] 0

0 Cov[z̃,z̃]

]
. Part (v) is easy to see directly from part (ii),

Definition 3.1.1, and properties of Bochner integral (E(·) can be defined as a

Bochner integral in the probability space, see [11, Section 1.1]). Part (vi) is

proved in [9, Lemma 5.13]. Note that the condition (5.12) there is equivalent

to N (Pzz) ⊂ N (Pxz) which is easy to confirm if [ xz ] is Gaussian.

A simple proof for (iv) (in the desired case when Hx is not necessarily finite

dimensional) seems to be hard to find in the literature, so let us present steps

leading to the proof. Firstly, E(x|z) is the unique element that is measurable

with respect to the sigma algebra generated by z, for which x−E(x|z) and z are

independent. Clearly mx +PxzP
−1
zz (z−mz) is measurable with respect to the

sigma algebra generated by z. Now
[
x−(mx+PxzP

−1
zz (z−mz))

z

]
is also Gaussian

so that independence of z and mx + PxzP
−1
zz (z −mz) can be verified by (iii):

Cov
[
x− (mx + PxzP

−1
zz (z −mz)), z

]
= Cov [x, z]− Cov

[
PxzP

−1
zz z, z

]
= 0.

In case Pzz is not invertible and pseudoinverse is used, the last term above

becomes PxzP
+
zzPzz where P+

zzPzz is an orthogonal projection to the range
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of Pzz. As R(Pzz)
⊥ ⊂ N (Pxz), the above covariance is still zero.

The minimization property in (iv) can be checked by directly solving the

minimization problem which leads to expression (3.2), as in the proof of [9,

Lemma 5.12].

It is noteworthy that by (3.2), Cov [E(x|z) ,E(x|z)] = PxzP
−1
zz Pzx so that

from (3.3) we see that

Cov [x− E(x|z) , x− E(x|z)] = Cov [x, x]− Cov [E(x|z) ,E(x|z)] .

By computing the trace of both sides, we get the sort of Pythagorean identity

E

(
||x−mx||2X

)
= E

(
||E(x|z)−mx||2X

)
+ E

(
||x− E(x|z)||2X

)
.

Also it holds that Cov [x, x] ≥ Cov [E(x|z) ,E(x|z)] meaning that Cov [x, x] −
Cov [E(x|z) ,E(x|z)] is positive (semi)definite. These simple facts are used in

publication III.

From linearity of the dynamics equations (3.1) and parts (iii) and (v) of

Proposition 3.1.1, it follows that the state xk is an X -valued Gaussian ran-

dom variable for all k ≥ 0. The mean is E(xk) = Akm and covariance

Cov [xk, xk] =: Sk is given by the recursive equation

Sk = ASk−1A∗ +BQB∗, S0 = P0. (3.4)

Further, [x0, ..., xk, y1, ..., yk] is a Gaussian random variable in X k+1 × Yk for

all k ≥ 0. Let us conclude the section with the following result.

Theorem 3.1.1. Let xk be given by (3.1) with P0 = 0 and assume that the

system is input stable. Then the covariance Sk = Cov [xk, xk] given by (3.4)

converges strongly to S ∈ L(X ) which is the solution of the Lyapunov equation

S = ASA∗ +BQB∗. If, in addition, the system is asymptotically stable, then

Sk converges strongly to S starting from any symmetric S0 = P0.

Note that the limit S is not a trace class operator in general. If the system

is even exponentially stable then the limit is a trace class operator and the

convergence is in operator norm.

Proof. Recall that input stability is equivalent to Ŝ = AŜA∗ +BB∗ having a

nonnegative solution. Consider first the case S0 = 0. Clearly the solution to

the covariance equation (3.4) is Sk =
∑k−1

j=0 A
jBQB∗(A∗)j , from which it is

easy to see that Sk+1 ≥ Sk. Assuming Sk−1 ≤ ||Q||L(U) Ŝ for some k, then

Sk = ASk−1A∗ +BQB∗ ≤ ||Q||L(U)AŜA∗ + ||Q||L(U)BB∗ = ||Q||L(U) Ŝ.
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So Sk is increasing and uniformly bounded implying strong convergence to

some operator by [43, p. 249]. Letting k →∞ in (3.4) yields that the limit is S.

Then assume asymptotical stability and consider S0 	= 0. Then Sk =

AkS0(A
∗)k+

∑k−1
j=0 A

jBQB∗(A∗)j . Asymptotical stability means that Ak → 0

strongly and so also AkS0(A
∗)k → 0 strongly.

3.2 Kalman filter derivation

Assume now that dim(Y) < ∞. Define Yk := [y1, ..., yk]
T and consider

E(xk|Yk). Also [xk, Yk] is a Gaussian random variable in X × Yk and so the

conditional expectation is given by (3.2):

x̂k := E(xk|Yk) = E(xk) + Cov [xk, Yk] Cov [Yk, Yk]
−1 (Yk − E(Yk)). (3.5)

Note that Cov [Yk, Yk] is invertible because it is the sum of a positive definite

block diagonal matrix (with R:s on the diagonal), and a positive semidefinite

matrix.

Now decompose Yk =
[
Yk−1
yk

]
in (3.5), and write the covariances in corre-

sponding block form. Firstly,

Cov [xk, Yk] = Cov
[
Axk−1 +Buk,

[
Yk−1
yk

]]
= ACov

[
xk−1,

[
Yk−1

0

]]
+ACov

[
xk−1,

[
0

CAxk−1

]]
+BCov

[
uk,

[
0

CBuk

]] (3.6)

where in the second equality we have used yk = CAxk−1 + CBuk + wk and

the independence of uk, wk, and xk−1. Then recall the block matrix inversion

formula for symmetric matrices

⎡⎣ F G

GT H

⎤⎦−1=
⎡⎣F−1+ F−1G(H−GTF−1G)−1GTF−1 −F−1G(H−GTF−1G)−1

−(H −GTF−1G)−1GTF−1 (H −GTF−1G)−1

⎤⎦
and apply that to

Cov [Yk, Yk] =

⎡⎣Cov [Yk−1, Yk−1] Cov [Yk−1, yk]

Cov [yk, Yk−1] Cov [yk, yk]

⎤⎦ .

Then we collect terms of (3.5). First, from (3.6) the term multiplying the

first row of Cov [Yk, Yk]
−1 is ACov [xk−1, Yk−1]. By picking only the term

F−1 = Cov [Yk−1, Yk−1]−1 from the upper left corner of the inverse formula,
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and E(xk) = AE(xk−1) +BE(uk) = AE(xk−1) from (3.5), we get

E(xk) +ACov [xk−1, Yk−1] Cov [Yk−1, Yk−1]−1 (Yk−1 − E(Yk−1)) = Ax̂k−1.

Then observe that the remaining terms in the inverse formula can be factorized

so that (3.5) becomes

x̂k −Ax̂k−1

= Cov [xk, Yk]
[−F−1G

I

]
(H −GTF−1G)−1

[−GTF−1 I
][ Yk−1−E(Yk−1)

yk−E(yk)
]
. (3.7)

Now −GTF−1 = −Cov [yk, Yk−1] Cov [Yk−1, Yk−1]−1 so the last product is

[−GTF−1 I
] [ Yk−1−E(Yk−1)

yk−E(yk)
]

= −Cov [yk, Yk−1] Cov [Yk−1, Yk−1]−1 (Yk−1 − E(Yk−1)) + yk − E(yk)

= yk − E(yk|Yk−1)

where the second equality holds by (3.2). Now it holds that E(yk|Yk−1) =

E(CAxk−1 + CBuk + wk|Yk−1) = CAx̂k−1 because uk and wk are independent

of Yk−1, and E(uk) = E(wk) = 0. Further, the inverse in (3.7) is

H −GTF−1G

= Cov [yk, yk]− Cov [yk, Yk−1] Cov [Yk−1, Yk−1]−1Cov [Yk−1, yk]

= Cov [yk − E(yk|Yk−1) , yk − E(yk|Yk−1)]
= Cov [CAxk−1 + CBuk + wk − CAx̂k−1, CAxk−1 + CBuk + wk − CAx̂k−1]

= CACov [xk−1 − x̂k−1, xk−1 − x̂k−1]A∗C∗ + CBQB∗C∗ +R

where the second equality holds by (3.3) and the last because uk and wk are

independent of xk−1 and x̂k−1. Finally, using (3.6) for Cov [xk, Yk−1], and

−F−1G = −Cov [Yk−1, Yk−1]−1Cov [Yk−1, yk], the first product in (3.7) is

Cov [xk, Yk]
[−F−1G

I

]
= −ACov [xk−1, Yk−1] Cov [Yk−1, Yk−1]−1Cov [Yk−1, yk]

+ACov [xk−1, CAxk−1] +BCov [uk, CBuk]

= A
(
Cov [xk−1, xk−1]− Cov [xk−1, Yk−1] Cov [Yk−1, Yk−1]−1Cov [Yk−1, xk−1]

)
A∗C∗

+BQB∗C∗

= ACov [xk−1 − x̂k−1, xk−1 − x̂k−1]A∗C∗ +BQB∗C∗.

In the second equality, Cov [Yk−1, yk] was treated as above, and the last equal-
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ity follows from (3.3). Now we have all of the terms in (3.7) for computing

x̂k. Performing the same decomposition and term gathering for the estima-

tion error covariance Pk := Cov [xk − x̂k, xk − x̂k] given by (3.3) leads to the

recursive Kalman filter equations that are typically written in the following

form, known as Riccati difference equations,⎧⎪⎨⎪⎩P̃k = APk−1A∗ +BQB∗,

Pk = P̃k − P̃kC
∗(CP̃kC

∗ +R)−1CP̃k

(3.8)

with P0 being the initial state covariance, and

x̂k = Ax̂k−1 +Kk(yk − CAx̂k−1) (3.9)

where Kk := P̃kC
∗(CP̃kC

∗ +R)−1 is known as the Kalman gain.

3.3 Discussion and auxiliary results

One of the reasons why Kalman filter has been very popular in practical ap-

plications is its computational lightness. The error covariances given by (3.8)

and the Kalman gains Kk do not depend on observations and thus they can

be computed offline beforehand, leaving only (3.9) to be solved online.

It is easy to show that for any quadratically integrable random variable [ xz ] ∈
Hx × Hz, that is, E

(
||x||2Hx

+ ||z||2Hz

)
< ∞, the solution to the minimization

problem

min
K∈L(Hz ,Hx)

E

(
||x−mx −K(z −mz)||2Hx

)
(3.10)

is given by (3.2) and the error covariance by (3.3). Recall that our derivation of

the Kalman filter was based solely on these equations. Thus the Kalman filter

provides the optimal (in terms of error measure (3.10)) linear filter for systems

of the form (3.1), even when the noise processes u and w and initial state x0

are uncorrelated and quadratically integrable, but not necessarily Gaussian.

Of course, better nonlinear filters might exist in this case.

Let us end the chapter by presenting some results on Kalman filter and the

corresponding Riccati difference equations. Some of these results are used in

publication III while others are just “nice-to-know”.

Theorem 3.3.1. Let Pk and P
(j)
k for j = 1, 2 be the solutions of equations

(3.8) with the load term BQB∗ replaced by self-adjoint, positive trace class

operators W and W (j), j = 1, 2, respectively. The following assertions hold.
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(i) If W (2) ≥W (1) and P
(2)
0 ≥ P

(1)
0 then P

(2)
k ≥ P

(1)
k for all k.

(ii) If Pk ≥ Pk−1 for some k then Pk+1 ≥ Pk.

(iii) If 2Pk ≥ Pk−1 + Pk+1 for some k then 2Pk+1 ≥ Pk + Pk+2.

The first assertion follows from [12, Lemma 3.1]. The proof is presented in

the finite dimensional case, but it holds also for infinite dimensional systems

assuming dim(Y) <∞. It is also presented in Lemma 3.2 of III with a simple

proof. The other two assertions are not needed in the thesis, but here they

are given just to illuminate the properties of Riccati difference equations and

the state estimation problem. Part (ii) follows directly from (i). Part (iii) is

proven in [12, Lemma 3.2].

Theorem 3.3.2. Let Pk be the solution of (3.8). The following assertions hold.

(i) If the underlying system is input stable and P0 = 0 then Pk converges

strongly to P as k → ∞ where P is a solution of the discrete algebraic

Riccati equation (DARE)⎧⎪⎨⎪⎩P̃ = APA∗ +BQB∗,

P = P̃ − P̃C∗(CP̃C∗ +R)−1CP̃ .
(3.11)

(ii) If the asymptotic filter is exponentially stable, that is, r(A − KCA) < 1

where K = P̃C∗(CP̃C∗ + R)−1 then Pk converges to P , starting from any

self-adjoint trace class operator P0 ∈ L(X ). Also, P is the unique nonnega-

tive solution of (3.11).

The proofs of (i) and (ii) can be found in [18, Theorem 1] and [18, Theorem 3],

respectively. The first proof is based on showing that Pk is an increasing

sequence (see part (ii) of Theorem 3.3.1). It is also bounded by S which is

the limit of (3.4), see Theorem 3.1.1. The proof of (ii) is rather similar. The

sufficient stability assumption for part (ii) is actually uniform asymptotical

stability at large which is implied by exponential stability. In publication III

the exponential stability of the Kalman filter is needed elsewhere and therefore

it is taken as an assumption here as well.
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4. Summaries of the articles

I: Compositions of passive boundary control systems

Recall the formulation of impedance type boundary control systems in Sec-

tion 2.1.3, and in particular, the energy inequality (2.8). Consider then an

electric circuit. The well-known Kirchhoff laws say that in any vertex of the

circuit, the voltage is the same for all leads connected in the vertex and the

electrical currents must sum up to zero. These coupling conditions are natural

also for the other mentioned example cases.

In publication I, the coupling conditions are formulated in terms of the input

and output operators of the subsystems, whose dynamics are governed by col-

ligations (G(j), L(j),K(j)) on Hilbert spaces (U (j),X (j),Y(j))) where the index

j refers to the subsystem. Assume that the input and output spaces can be

split into two parts, that is, U (j) = U (j)
1 ⊕ U (j)

2 and Y(j) = Y(j)
1 ⊕ Y(j)

2 , each

representing a part of the boundary where the control action takes place —

consider, for example, the two ends of a transmission line. Then, for exam-

ple, the Kirchhoff coupling conditions for three systems (j = 1, 2, 3) coupled

through the first parts of the input and output are⎧⎪⎨⎪⎩G
(1)
1 z1(t) = G

(2)
1 z2(t) = G

(3)
1 z3(t),

K
(1)
1 z1(t) +K

(2)
1 z2(t) +K

(3)
1 z3(t) = 0,

(4.1)

assuming that the corresponding spaces are compatible, that is, U (1)
1 = U (2)

1 =

U (3)
1 and Y(1)

1 = Y(2)
1 = Y(3)

1 . This is a slightly simplified example. In publica-

tion I, the spaces U (j) and Y(j) can be split into more than two parts.

The main result of this article is that if internally well-posed, impedance pas-

sive (or conservative) boundary control systems (see Definitions 2.1.7 and 2.1.9)

are interconnected through Kirchhoff type coupling conditions (4.1), then also
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the resulting composed system (called a transmission graph, see Definitions 3.1

and 3.2 in I) is an internally well-posed, impedance passive (or conservative)

boundary control system.

Compositions of port-Hamiltonian systems (see the end of Section 2.1.2) are

studied in [7] by Cervera et al. and in [26] by Kurula et al. The presented

formalism does not allow connecting finite dimensional subsystems to bound-

ary control systems. To do that, one would need to work with the system

node setting. This would require some further investigation. Such ideas can

be found for example in [57] by Weiss and Zhao.

II: Convergence of discrete time Kalman filter estimate to

continuous time estimate

In publication II we study systems of the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dtz(t) = Az(t),

z(0) = x ∼ N(m,P0),

y(t) =
∫ t
0 Cz(s) ds+ w(t)

where w is Brownian motion with incremental covariance R. We define the

discrete and continuous time state estimates as

x̂T,n := E

(
x
∣∣∣ {y ( iTn )}n

i=1

)
and x̂(T ) := E

(
x
∣∣{y(s), s ≤ T

})
respectively. These estimates are given by the Kalman(–Bucy) filter — given

that the continuous time Kalman–Bucy filter equations are solvable. By the

Martingale convergence theorem, when the temporal discretization is refined

then the discrete time estimate converges to the continuous time estimate.

The purpose of publication II is to establish convergence speed estimates for

E

(
||x̂T,n − x̂(T )||2X

)
in various cases under different assumptions. First the

result is established assuming C ∈ L(X ,Y) and either P0 ∈ L(X ,D(A)) or

x ∈ D(A) almost surely. The latter covers the case dim(X ) < ∞. Then the

case C ∈ L(D(A),Y) is treated assuming x ∈ D(A) almost surely and that A

is diagonalizable and its point spectrum satisfies the asymptotic condition (ii)

in Theorem 3.5 and C satisfies the regularity assumption (iii) in Theorem 3.5,

or that the system is scattering passive. Then an estimate is shown when

A generates an analytic semigroup. The proofs are based on applying the

discrete time Kalman filter starting from x̂T,n and taking into account more

38



Summaries of the articles

and more measurements from a dense, numerable set in [0, T ].

To the author’s knowledge, such results have not been published before.

The articles [2] by Axelsson and Gustafsson and [55] by Wahlström et al.

study the effect of using different numerical schemes for approximating the

matrix exponential eAΔt on the solution of the Lyapunov equation and the

Kalman filtering problem. Further effort would be required to obtain similar

convergence results when for example the Cayley transformation (introduced

in Section 2.2.1) would be used for obtaining the discretized system.

III: Spatial discretization error in Kalman filtering for discrete-time

infinite dimensional systems

Publication III deals with state estimation problem for infinite dimensional

discrete time systems. A practical implementation of the Kalman filter cannot

be done in infinite dimensions. The system dynamics can be approximated by

projecting equations (3.1) by an orthogonal projection Πs : X → X . The finite

dimensional subspace ΠsX can be for example a finite element space (see the

example in Section 5 of III) or a truncated eigenspace, see [48]. If the Kalman

filter is directly implemented to the discretized system, the result is biased and

hence not optimal. In Section 2 of III, an optimal one-step state estimate is

derived that takes values in the finite dimensional subspace. One-step estimate

means here that the kth state estimate depends only on the previous estimate

and the kth measurement — recall the remarkable property of the Kalman

filter, E(xk|Yk) = E(xk|x̂k−1, yk). In Section 3, a Riccati difference equation is

derived for the estimation error. The main results of the article are presented in

Section 4, namely estimates for the discrepancy between the full state Kalman

filter estimate x̂k and the presented reduced-order estimate x̃k. It is shown that

if supk E
(
||xk||2X1

)
<∞, the system is input stable, and the full state Kalman

filter is exponentially stable, then as ||I −Π∗Π||L(X1,X ) becomes small, then

lim sup
k→∞

E

(
||Qkx̃k − x̂k||2X

)
= O

(
||I −Π∗Π||2L(X1,X )

)
where Qk is a certain post-processing operator that is obtained when com-

puting the Kalman gains for the reduced-order method. The proof is based

on applying perturbation theory for algebraic Riccati equations, developed by

Sun in [50], to the corresponding DAREs.

Another state estimator that takes the discretization error into account is

developed by Pikkarainen in [39] and implemented numerically by Huttunen
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and Pikkarainen in [22]. Their method is based on keeping track of the dis-

cretization error and then ignoring the correlation of the discretization error

for different time steps in order to obtain a one step estimate. The direct

implementation of the finite dimensional Kalman filter to the discretized sys-

tem is studied by Bensoussan in [3, Chapter 9] and by Germani et al. in

[16]. The latter includes a convergence result for the finite dimensional state

estimate and the corresponding error covariance. In a very recent manuscript

[13], Dihlmann and Haasdonk propose a reduced-basis Kalman filter for PDEs

with possibly non-constant (in time) parameters.

Our approach is closely related to the reduced-order filtering methods. Let

us mention articles [4] and [5] by Bernstein and Hyland and [47] by Simon

because they had some influence on the results of this article — even though

their results are not explicitly used.

IV: Acoustic wave guides as infinite-dimensional dynamical systems

This publication is a part of a trilogy containing also articles [29] and [30]

by Lukkari and Malinen. The author’s contribution is restricted to Section 3,

titled “Conservative majorants”, and so only that part is discussed here.

A passive boundary control system described by a colligation (G,L,K) on

U ×X ×Y with domain Z (see Definitions 2.1.8 and 2.1.9) can often be “split”

into a sum of a conservative part and a dissipative perturbation (see (12) in

the example in Section 5 of I). Alternatively, at some part of the boundary of

an otherwise energy preserving system, there is a resistive boundary condition

(see the second and third boundary conditions in (14) in I). These cases can

be formulated as follows:

Definition. Let
([

G1
G2

]
, L,

[
K1
K2

])
on Hilbert spaces (U1×U2,X ,Y1×Y2) with

domain Z be a scattering passive (or conservative) boundary node. It is called

a passive (or conservative) majorant of colligations of the form (G1, L+H,K1)

on Hilbert spaces (U1,X ,Y1) with domain Z∩N (G2) where Z∩N (G2) ⊂ D(H)

and 〈z,Hz〉X ≤ 0 for all z ∈ Z ∩ N (G2) and H is dominated by L, meaning

that it satisfies one (or both) of the conditions (i) or (ii) of Theorem 3.2 in IV.

The results of Section 3 of IV then say that if a colligation has a passive

majorant, then also the system itself is a scattering passive boundary node.

For example the internal well-posedness in the example in Section 5 of I is

shown using such argument in the simple special case H ∈ L(X ). For similar

ideas in the port-Hamiltonian context, see [54, Chapter 6] by Villegas.
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Birkhäuser-Verlag, Basel, Switzerland, 2009.

[53] J. van Neerven. Stochastic Evolution Equations. ISEM Lecture Notes, Delft

University of Technology, 2007/2008.

[54] J. Villegas. A Port-Hamiltonian Approach to Distributed Parameter Systems.

Ph.D. thesis, University of Twente, 2007.

[55] N. Wahlström, P. Axelsson, and F. Gustafsson. Discretizing stochastic dynamical

systems using Lyapunov equations. arXiv:1402.1358, February 2014.

[56] G. Weiss. Admissibility of unbounded control operators. SIAM Journal on

Control and Optimization, 27(3):527–545, 1989.

[57] G. Weiss and X. Zhao. Well-posedness and controllability of a class of coupled

linear systems. SIAM Journal on Control and Optimization, 48:2719–2750, 2009.

44



Errata

Publication I

On page 4, the right hand side of (6) should be Re 〈Kz,Gz〉U .
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