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1. Introduction

In this thesis we study very small electrical circuits (on the scale of tens

of nanometers) cooled down to very low temperatures (from around 1K

down to 20mK). The smallness of the circuits allows us to restrict our

attention to a few degrees of freedom. As temperature is lowered, these

degrees of freedom are less and less perturbed as thermal fluctuations

are suppressed. Qualitatively new phenomena emerge under these condi-

tions, many of which can only be understood in the framework of quantum

mechanics.

This thesis includes experimental as well as theoretical contributions

that can be classified into three main subjects. The subjects are quite di-

verse, but they fall under a common theme: dissipation. Dissipation in

electrical circuits usually refers to the amount of energy that is “wasted”

during their operation. Dissipation may come about because of nonide-

alities in the circuit, as well as due to intrinsic limitations (think of the

Landauer principle). We also speak of dissipation when considering the

interaction of a quantum mechanical system (in our case, a “quantum cir-

cuit”) with its environment. The dynamics of an isolated quantum system

follows the Schrödinger equation, of which energy eigenstates are station-

ary solutions. However, when we look at a finite system embedded in its

environment, we find that the interaction with the environment induces

“quantum jumps” between states with different energy. These jumps cor-

respond to the emission or absorption of energy quanta that are “dissi-

pated” in the environment.

In Chapter 2 we present our results on the first and “core" subject of this

thesis, Cooper-pair pumping. Cooper-pair pumps are a particular type of

charge pumps, based on superconducting circuits. Charge pumps are de-

vices which actively transfer a precise amount of charge upon application

of a time-dependent protocol. They are an active subject of research as

1
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they may provide a new definition for the Systéme international (SI) unit

of electric current. Among different types of pumps, Cooper-pair pumps

stand out for being macroscopically coherent quantum devices, much in

the same way as other superconducting quantum circuits (quantum bits,

or qubits) used for quantum information and quantum computation pur-

poses. An interesting feature of Cooper-pair pumps is their natural con-

nection with geometric phases in quantum mechanics. Another one is that

the measured pumped charge is determined by an interplay between the

driving protocol and the interaction with the environment, which brings

dissipation into the problem. In Publication II we show how to circum-

vent a potential issue that arises when using a small Josephson junction

as a current threshold detector to monitor the pumped charge. In Pub-

lication IV we demostrate controlled pumping of a single Cooper-pair in

a device free of quasiparticle poisoning and use the pumped charge in

the nonadiabatic regime as a proxy for Landau-Zener transitions in the

device. In Publication III we propose Landau-Zener-Stückelberg interfer-

ometry based on geometric phases and show how to observe this effect in

a Cooper-pair pump. Finally, in Publication V we propose a novel scheme

for Cooper-pair pumping, where Cooper pairs are delocalized throughout

the pumping process.

In Chapter 3 we present our results on thermometry in two-dimensional

electron gases (2DEGs). With their low electronic density and high mo-

bility, 2DEGs provide a unique platform for the study of highly correlated

electron phases. Temperature here is a key factor, as the many phenom-

ena of interest are characterized by very small energy scales. On the other

hand, thermalizing the 2DEG is problematic at low temperatures, as the

electrons get more and more decoupled from the phonons of the host lat-

tice. Dissipation in the 2DEG then becomes a critical issue, as it can

lead to significant overheating. Our efforts have been aimed at assess-

ing the 2DEG temperature while minimizing the amount of dissipation

introduced by the thermometer itself. In Publication I we demonstrate

a variation on the well-known thermometry scheme based on a quantum

dot. In Publication VI we propose to combine quantum dot thermometry

with charge sensing using a quantum point contact and thereby realize a

nongalvanic temperature readout. This scheme is experimentally demon-

strated in Publication VIII.

In Chapter 4 we present our preliminary results towards the realization

of a fast microcalorimeter for single-photon detection in the microwave

2
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range. These results are reported in Publication XI. Our ultimate goal

here is to build an all-electrical set-up to study dissipation in driven open

quantum systems, using a superconducting circuit as the quantum system

and a nanometer-sized resistive island as the environment. Under real-

istic experimental conditions, energy exchanges between the two can be

detected by measuring small temperature changes in the resistive island,

corresponding to absorption and emission of single microwave photons.

In Chapter 5 we present three theoretical studies on the dynamics of pe-

riodically driven quantum systems in the presence of dissipation. These

studies are presented together as they are based on a common formalism,

which combines a quantum-master-equation approach with Floquet the-

ory. The conclusions reached are quite general, but the connection to the

experiments reported in Chapters 2 and 4 is very explicit. In Publication

VII we investigate a regime in which the steady-state dynamics is highly

influenced by the environment and take Cooper-pair pumping as a case

in point. In Publication IX we show that the dressed-state energies of

a strongly driven system can be significantly renormalized by the envi-

ronment. We predict that this Lamb-shift-type renormalization should be

observable in Cooper-pair boxes as well as in Cooper-pair pumps. Finally,

in Publication X we study the distribution of heat exchanges between the

driven system and the environment. Our predictions could be directly

tested using a calorimetric readout of the type discussed in Chapter 5.

In the concluding Chapter 6 we give a brief summary of the experimen-

tal techniques used in this work.

3
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2. Cooper–pair pumping

The outline of this chapter is as follows. In Section 2.1 we give a general

overview of Cooper-pair pumping. In Section 2.2 we present a general

theoretical framework, valid for every Cooper-pair pump. In Section 2.3

we introduce a specific type of pump, the Cooper-pair sluice, which plays

a pivotal role in this thesis. In Sections 2.4, 2.5 and 2.6 we present the

results obtained in Publication IV, Publication III, and Publication V, re-

spectively.

2.1 Historical review and outlook

The first realization of a Cooper-pair pump (CPP) dates back to the hey-

day of single electronics [1] and can be regarded as one of the first pieces

of evidence for the existence of Cooper pairs as localized charge carriers.

Since then, two main types of CPP have been considered in literature. The

first one [1, 2, 3] consists of an array of three Josephson junctions defin-

ing two superconducting islands. The second one, known as “Cooper-pair

sluice” [4, 5, 6, 7], uses SQUIDs as tunable Josephson junctions connect-

ing a single superconducting island to the leads. It plays a major role in

this thesis and will be considered in detail in Section 2.3. A third type

of CPP, operating as a quantum-coherent turnstile, was demonstrated in

Ref. [8].

In theory, CPPs offer a viable alternative to single-electron pumps to-

wards the realization of a metrology standard for current [9]. Advantages

include the dissipationless nature of supercurrent, the vanishing density

of states at energies below the superconducting gap, and the quantum

coherence of the pumping process (as opposed to stochastic electron tun-

neling). The main obstacles on the way to a quantized current have been

identified as (1) Cooper-pair cotunneling, (2) excitations due to Landau-

5
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Zener transitions, and (3) tunneling of quasiparticles. The “sluice" design

introduced in [4] marked a progress with respect to both issues (1), as

it suppresses cotunneling without resorting to large arrays, and (2), as

it pushes the onset of Landau-Zener transitions up in frequency. As for

(3), a step forward was made in Publication IV, where improvements in

filtering and shielding made it possible to observe clean 2e periodicity in

the pumped charge, implying a device free from quasiparticle poisoning.

Despite this progress, however, the state-of-the-art accuracy of Cooper-

pair pumps (about 1%) is still modest, limited by nonidealities in design

and fabrication, such as, dissimilar Josephson junctions in the supercon-

ducting quantum interference device (SQUID) loops, as well as by low-

frequency noise.

In the very last years, the metrological motivation to study CPPs has

been declining, also due to the advance of more promising devices – most

notably, pumps based on hybrid tunnel junctions [10] and semiconductor

quantum dots [11, 12, 13, 14]; see Ref. [15] for a review – and the focus

has shifted towards the investigation of more fundamental properties of

CPPs. If the phase across a Josephson junction is perhaps the most cele-

brated example of a macroscopic degree of freedom that exhibits quantum

behavior [16], a CPP can be regarded as a prototypical example of a driven

quantum system whose dynamics is coupled to a macroscopic observable

– the pumped current. Theoretical and experimental investigations have

revolved around two distinct yet intertwined themes: geometric phases

and dissipation.

Geometric phases naturally arise as the cyclic parametric steering needed

to achieve pumping is equipped with a geometric structure in the space of

parameters. In the adiabatic limit, manipulations in parameter space are

directly mapped to the evolution of the Bloch vector in pseudospin space.

The existence of a quantitative relation directly linking the pumped charge

to the Berry phase, first proved in [17], discussed in detail in [6] and ex-

perimentally verified in [7], is remarkable. It also provides an alternative

route to the Berry phase, different from more conventional interferomet-

ric settings. The work of Ref. [7] is indeed one of the very first observations

of geometric phases in solid-state devices, published shortly after [18].

Beyond the adiabatic limit, the pumped charge generally decreases due

to excitations that manifest themselves as pumping errors. On the other

hand, the dynamics of the pump becomes richer. In the Cooper-pair sluice,

the adiabatic limit breaks down “locally”, due to Landau-Zener transitions

6
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taking place at avoided energy-level crossings. In a quantum-coherent

setting, the sequence of Landau-Zener transitions interspersed by time

lapses of adiabatic evolution produces interference patterns known as

Landau-Zener-Stückelberg interferometry [19]. In Publication III, we pro-

pose to use this type of interferometry to study geometric phases, and

discuss its application to the Cooper-pair sluice. While the theory un-

derlying our proposal is very general, its application to a CPP reveals

unique features: the geometric phase can be directly controlled by the

superconducting phase bias across the pump and the interference pat-

terns can be extracted by measuring the pumped charge (as opposed to,

say, quantum-state tomography). An experimental characterization of

Landau-Zener transitions in the Cooper-pair sluice is provided in Pub-

lication IV. Since our proposal, geometric Landau-Zener-Stückelberg in-

terferometry was observed in two different systems, a superconducting

qubit [20] and a single trapped ion [21], but it has not yet been observed

in a CPP. In Publication IV, the absence of interferometric patterns was

ascribed to strong decoherence. This leads us to the second of the two

themes we mentioned, that is, dissipation.

Dissipation is unavoidable in CPPs. This statement is based on the

fact that CPPs are operated continuously. As a result, interactions with

the environment cannot be neglected, however weak the coupling may be.

In CPPs, random fluctuations of the local electrostatic potential (charge

noise) provide the main source of dissipation. In addition, the pumped

current is typically probed with a very low bandwidth (a few Hz) as com-

pared to the frequency of the pumping cycle (tens to hundreds of MHz in

Publication IV), so that the output signal is averaged over a great (about

106) number of cycles. Altogether, continuous operation and massive av-

eraging – the latter in the absence of a reset protocol between subsequent

realizations – establish a robust link between the pumped charge and the

dissipative dynamics of the pump. As shown in both theory and exper-

iments, a measurement of the pumped charge can be used to extract a

great deal of information regarding nonadiabatic transitions as well as

decoherence. In this respect, the CPP readout is markedly different from

that of otherwise similar devices investigated for quantum information

and quantum computation purposes, in particular, superconducting quan-

tum bits [22]. A closer analogy can perhaps be drawn between CPPs and

quantum heat engines [23].

Theoretical studies of dissipation in CPP started by considering the adi-
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abatic limit and the first nonadiabatic corrections [24, 25, 26, 27]. A gen-

eral result of these works is that ground-state dynamics is not affected

by the presence of a cold environment. Moreover, a cold environment can

help stabilizing the system against nonadiabatic transitions, hence ex-

tending the validity of the adiabatic approximation to higher frequencies.

Further theoretical work in the fully nonadiabatic limit has been based

on Floquet theory, see Ref. [28] and Chapter 5. At high pumping frequen-

cies, transitions are not localized at avoided crossings, and the relevant

energy scale is no longer the instantaneous energy gap, but rather the

dressed gap of the driven system (quasienergy gap). In this limit, the

most notable result, reported in Publication VII, is that the influence of

the environment can be particularly strong close to degeneracies in the

dressed gap, giving rise to a qualitatively different dynamics.

Experimental results on dissipation in the nonadiabatic limit were re-

ported in Publication IV and Ref. [8]. The data of Publication IV, mea-

sured with a Cooper-pair sluice in a voltage-biased configuration, suggest

coherence times no longer than 5 ns. Ref. [8] quotes a 8μs relaxation time

for a similar device, as inferred from coherent oscillations. These figures

are similar to those reported in early measurements of quantum coher-

ence in a Cooper-pair box [29, 30]. Longer coherence times, of the order

of hundreds of ns, were obtained for a Cooper-pair box in the so-called

“quantronium” configuration, when operated close to charge degeneracy

(“sweet spot”) [31, 32]. It should be mentioned that the best coherence

times for superconducting circuits (in the range of a few μs to 1ms) are

nowadays obtained by designs that carefully avoid the single-Cooper-pair

regime, thereby keeping the detrimental effects of charge noise at bay

[33, 34, 35]. Whether such a strategy could be conveniently applied to a

charge pump, is an interesting question that may be addressed in future

research. In this view, the proposal of Publication V may provide some

useful insight. While still relying on a single-Cooper-pair transistor, it en-

visages a pumping scheme where Cooper-pairs are delocalized throughout

the pumping process and coherently transferred as charge-state superpo-

sitions. Such a scheme, which can be realized by modulating magnetic

fluxes instead of gates, has some interesting analogies to open quantum

pumping in disordered conductors [36, 37, 38, 39, 40].

8



Cooper–pair pumping

Vg,i

ϕi
ni

Cg,i

EJ,i

ϕ̄i

CJ,i

EJ,i+1

ϕ̄i+1

CJ,i+1

EC,i

Figure 2.1. Cooper-pair pumps. A generic Cooper-pair pump consists of an array of
superconducting islands connected by Josephson junctions. The two ends of
the device are connected to superconducting leads held either at fixed chemi-
cal potentials (voltage bias), or at fixed phases of the order parameter (phase
bias). Inset: Close-up on a single island and notation used in the main text.

2.2 Theoretical framework

A basic theory of Cooper-pair pumping in the adiabatic limit was devel-

oped in Refs. [41, 42, 17]. The equivalent circuit of a generic CPP is shown

in Fig. 2.1. It consists of an array of N superconducting islands of charging

energy EC,i per Cooper-pair, connected in series and to superconducting

leads by N + 1 Josephson junctions of Josephson energy EJ,k. The gate

voltages Vg,i control the polarization charges �q = {qi} on each island. The

Josephson energies can be made adjustable by replacing them with flux-

controlled dc SQUIDs (see Section 2.3). CPPs are typically operated in

the so-called charging regime, so that EC,i � EJ,k for every i and k. They

can be operated either in the presence of a voltage bias Vb or a phase bias

ϕ. We will develop the theory for the case of a phase bias, for which all

the coherent properties of CPPs are preserved.

The Hilbert space is generated by either the charge occupation numbers

�n = {ni} of each island, or the phase differences {ϕ̄k} across each junction,

the latter constrained by the sum rule
∑N+1

k=1 ϕ̄k = ϕ. It is also possible to

define a phase for each island, as ϕi = ϕ̄i+1−ϕ̄i. The corresponding charge

and phase operators on each island are conjugate variables and satisfy

the usual commutation rule [n̂i, ϕ̂i] = 1. It is also possible to define the
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number of charges that have traversed the k-th junction as n̄k = nk−nk−1,

with n0 and nN+1 now representing the number of Cooper-pairs in the left

and right lead, respectively. Charge and phase across each junction are

also conjugate variables, so that [ˆ̄nk, ˆ̄ϕk] = 1. In the following, we will

“drop the hat” that we used here to emphasize the distinction between

operators and c-numbers.

The total Hamiltonian can be written as

H = HC(�n− �q) +
N+1∑
k=1

EJ,k

2
cos ϕ̄k , (2.1)

where HC(�n−�q) is the energy of the charge configuration �n in the presence

of polarization charges �q, which can be calculated from the capacitance

matrix of the circuit.

The current operator for the k-th junction reads Ik = 2e
�
[H, n̄k], or, equiv-

alently, Ik = 2e
�

∂H
∂ϕ̄k

. It is explicitly given by:

Ik = − e

�
EJ,k sin ϕ̄k . (2.2)

The average current operator across the pump is given by

I =
2e

�

∂H

∂ϕ
. (2.3)

If we consider cyclic evolution over a period τ , then charge conservation

implies
∫ τ
0 Ik =

∫ τ
0 I, for every k.

Adiabatic limit and Berry phase

The adiabatic theorem of quantum mechanics [43] states that for an in-

finitely slow (adiabatic) evolution, each eigenstate of the initial Hamilto-

nian evolves into the eigenstate of the final Hamiltonian, derived from it

by continuity. Let H0(t) be the system Hamiltonian. Let En be its (non-

degenerate) eigenvalues and |En(t)〉 the corresponding eigenvectors. Let

D(t) be the matrix that diagonalizes H(t) at each time with respect to

a fixed basis |n〉. We can write D(t) = |En(t)〉〈n|. In the rotating frame

defined by |Ψ(t)〉 → D(t)|Ψ(t)〉, the effective Hamiltonian reads

H̃(t) = D†(t)H0(t)D(t) + w(t) = H̃0(t) + w(t) , (2.4)

where w(t) = −i�D†Ḋ. From now on, we take � = 1. We introduce the

adiabatic parameter

α =
|w(t)|
εmin(t)

, (2.5)

where || denotes the trace norm and εmin is the minimum energy gap be-

tween two states. The adiabatic limit is attained provided α � 1. Then
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the eigenstates of H̃ are approximate solutions of the Schrödinger equa-

tion up to order α. In order to determine the approximate eigenvalues and

eigenstates, we use standard first-order perturbation theory. The approx-

imate eigenvalues are given by

E′n = En + 〈En|Ėn〉 , (2.6)

where we have used the shorthand notation |Ėn〉 = d
dt |En〉. The approxi-

mate eigenvectors are given by

|E′n〉 = |En〉+
′∑
k

〈Ek|Ėn〉
Ek − En

|Ek〉 . (2.7)

The total phase accumulated by the n-th eigenstate after time t is given

by

Θn =

∫ t

0
En(t)dt+

∫ t

0
〈En|Ėn〉 dt = Θd,n +Θg,n , (2.8)

where we have distinguished a dynamic phase Θd,n and a geometric phase

Θg,n. The adiabatic phase is simply the integral of the instantaneous

energy of the given state. To understand the meaning of the geometric

phases, let us choose a set of parameters {λ} that determine the time

evolution of H0, so that H0(t) = H0[�λ(t)]. Then we can write (2.8) as

Θg,n =

∫
�λ
〈En|∇�λ

En〉 d�λ . (2.9)

Eq. (2.9) shows that Θg is a geometric quantity: it only depends on the

path drawn by the vector �λ in parameter space, and not on the speed at

which the path is traversed.

Charge currents in the adiabatic limit

Let us now calculate the average current in the adiabatic ground state of

the pump. This is given by

I0 = 〈E′0|I|E′0〉 = Id + Ip , (2.10)

where

Id = 〈E0|Ĩ|E0〉 , (2.11)

Ip = 2�e
[ ′∑

k

〈E0|Ĩ|Ek〉 〈Ek|Ė0〉
Ek − E0

]
, (2.12)

and we have neglected terms of the order O(α2). It has become custom-

ary in the literature to refer to Id as dynamic current and to Ip as geo-

metric current or pumped current. The value of Id only depends on the

11
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instantaneous ground state, telling that a current Id would flow through

the pump even in the absence of any drive. By contrast, a nonvanish-

ing Ip is a direct consequence of the time-dependent drive. By recalling

the definition (2.3) and exploiting the identities 〈E0|∂H∂ϕ |E0〉 = ∂E0
∂ϕ and

〈E0|∂H∂ϕ |Ek〉 = 〈E0| ∂∂ϕ |Ek〉 (Ek − E0) we can also write:

Id =
∂E0

∂ϕ
, (2.13)

Ip = −4	m 〈E0|
∂

∂ϕ
|Ė0〉 . (2.14)

The total transferred charge after a full cycle of period τ is given by

Qtot =

∫ τ

0
I0dt = Qd +Qp , (2.15)

where a distinction has been made between a dynamic charge Qd and a

pumped charge Qp.

Relation to the Berry phase

We are now in the position to prove a general relation between the pumped

charge and the Berry phase. This relation was derived in [17, 6] and ex-

perimentally verified in [7]. To do so, we have to compute the derivative

of the Berry phase (2.9) with respect to the overall phase bias ϕ. This is

given by
∂Θg

∂ϕ
=

∫
Λ
dλ

[
2	m 〈E0|

∂

∂ϕ
|∇λE0〉+∇λ 〈

∂E0

∂ϕ
|E0〉

]
. (2.16)

For a closed path, the second term vanishes and one is left with
∂Θg

∂ϕ
= 2	m

∫
Λ
dλ 〈E0|

∂

∂ϕ
|∇λE0〉 . (2.17)

By direct comparison one then finds

Qp = −2e
∂Θg

∂ϕ
, and (2.18)

Qd = −2e∂Θd

∂ϕ
(2.19)

Equations (2.18) and (2.19) relate the dynamic charge and phase, and the

pumped charge and the Berry phase. They were derived assuming the

adiabatic limit and a closed path in parameter space. However, suitable

generalizations are possible which do not rely on these assumptions. The

open-path case can be treated by using the gauge-invariant generaliza-

tion of the Berry phase proposed in Refs. [44, 45]. Finally, regardless of

the speed of the drive, it is meaningful to consider those states which

are periodic (up to a phase) in time, that are, the Floquet states. Then

the transferred charge is well defined and the Berry phase is naturally

replaced by the Aharonov-Anandan phase; see Ref. [28].
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Phase bias and current detection in a closed-loop configuration

The most natural setting for exploring coherent effects in Cooper-pair

pumping involves a phase bias. The question then arises how such a bias

can be realized in practice. The most obvious way is to connect the two

leads so as to form a loop of negligible inductance. The phase bias across

the pump is then determined by the magnetic flux piercing the loop. The

effect of a finite loop inductance is discussed in detail in [46]; using re-

alistic parameters, it is found to be negligible down to the level of 10−5

accuracy, which is far beyond the state of the art. In the closed-loop con-

figuration, the current circulating in the loop could be detected by moni-

toring the current flowing in another, inductively coupled circuit. Another

possibility is to shunt the pump with a Josephson junction of large critical

current. This still ensure a proper phase bias, as long as phase fluctua-

tions across the shunt junction are small. Furthermore, the current flow-

ing through the pump can be detected by sending current pulses to the

device and monitoring its switching to the normal state. In this way, the

shunt junction serves the purpose of a current-threshold detector. This

technique was demonstrated for the so-called “quantronium circuit” [31],

then applied to a CPP [7] and more recently to the detection of phase slips

in Josephson-junction arrays [47].

In using Josephson junctions as current threshold detectors, one should

notice that the resolution typically scales with the critical current. By us-

ing small junctions with critical current of a few tens of nA, current levels

as low as 1 pA can be appreciated [48]. However, such small Josephson

junctions are subject to underdamped phase diffusion [49, 50, 51, 52], a

regime that is potentially harmful as it introduces dissipation in the quan-

tum circuit. In Publication II, we show experimentally that this regime

can be avoided by increasing the junction capacitance. This is done by

adding a large (3 pF) shunt capacitor to the junction. The capacitor is

fabricated by atomic layer deposition (ALD). We compare the switching

distributions of shunted junctions to those of unshunted junctions of oth-

erwise comparable parameters. As the temperature is increased, the ref-

erence junctions enter the phase diffusion regime, as signaled by a de-

crease in the width of the switching distribution [51, 52]. By contrast,

the switching statistics of the shunted junctions agrees with the stan-

dard thermal-activation model up to the highest measured temperature.

We have also performed measurements of Cooper-pair pumping using a
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J2(Φ2)
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ϕ
or
Vb

Figure 2.2. The Cooper-pair sluice. Schematic circuit (a) and false-color micrograph
of a representative device after Publication IV (b).

Josephson junction as the detector; they are not included in this thesis,

but will be reported elsewhere [48].

While the phase bias may be regarded as the definitive setting for study-

ing coherent effects in CPPs, such effects have been observed also in the

presence of a voltage bias, both close to the supercurrent branch [Publica-

tion IV] and at finite voltages [8].

2.3 The Cooper-pair sluice

In this section we introduce a specific type of Cooper-pair pump, named

Cooper-pair sluice, that plays a central role in this thesis.

A schematic drawing of the device is shown in Fig. 2.2(a). It is a fully

tunable Cooper-pair transistor, consisting of a small superconducting is-

land connected to leads by two SQUIDs. The SQUIDs, whose loop in-

ductance (geometric + kinetic) is negligible as compared to the Joseph-

son inductance, serve as tunable Josephson junctions of coupling ener-

gies J1, J2. The coupling energies are set by the magnetic fluxes Φl,Φr

threading the SQUID loops, which can be individually addressed by us-

ing suitably designed on-chip coils [53]. A gate electrode capacitively

coupled to the island controls its polarization charge in units of Cooper

pairs ng = CgVg/2e, where Cg is the cross-capacitance between gate and

island and Vg the gate voltage. The device is typically operated in the

charging regime, meaning that EC � J1, J2, where EC = e2/(2CΣ) is the
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Figure 2.3. How the sluice works. (a) Typical pulse sequence used to achieve pumping.
(b) Path drawn by the Bloch vector on the Bloch sphere, as the pulse sequence
in (a) is applied. (c-e) Deconstructing the pumping cycle: tunneling in (c),
coupling switch (d), tunneling out (e). (f-h) The way a boat lock is operated
reminds of the Cooper-pair sluice; after [54].

charging energy of the island and CΣ its total capacitance. In practice,

CΣ ≈ 4CJ + Cg + Cself ≈ 4CJ , where CJ is the capacitance of a single

junction and Cself the self-capacitance of the island. A false-color micro-

graph of a representative device is shown in Fig. 2.2(b), where we can see

the central island, four nominally identical Josephson junctions of area

≈ 70μm× 70μm, the SQUID arms, and the gate.

Pumping is realized by steering the three control parameters J1, J2 and

ng in a periodic fashion, as shown in Fig. 2.3(a). The gate is used as a pis-

ton to change the number of Cooper-pairs on the island, while the SQUIDs

are operated as valves so as to impart a direction to the flow of charge.

Snapshots of the pumping cycle are schematically depicted in Fig. 2.3(c-

e), showing a Cooper pair tunneling into the island from the left lead (c),
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the left SQUID “closing” and the right SQUID “opening” (d), and finally

the Cooper pair tunneling out of the island and into the right lead (e).

This device, first proposed in Ref. [4], was nicknamed “Cooper-pair sluice”

due to the analogy between SQUIDs and sluice gates in water channels.

The arrangement of two gates “in series”, as in the Cooper-pair sluice,

is usually referred to in water transport as a lock. The process of trans-

ferring a boat across a lock is illustrated in Fig. 2.3(f-h), indeed showing

some analogy with the operation of the Cooper-pair sluice. 1 Anyways, the

analogies between Cooper pairs and boats (or marbles, or billiard balls, or

even electrons in a Fermi gas) stop here. Cooper-pair tunneling between

two superconductors is a quantum coherent process carrying a definite

phase. This has important (and observable) implications also in charge-

based devices such as the sluice, where it is natural to speak of “single"

Cooper pairs as the charge number is a good quantum number to describe

the dynamics.

Indeed, the operation of the device can be modeled by restricting the

Hilbert space to the states |0〉 and |1〉 with no and one excess Cooper pair

on the island, respectively. In the {|0〉, |1〉} basis, the sluice Hamiltonian

reads

H =

⎛
⎝ EC(

1
2 + δng)

2 J+ cos ϕ
2 + iJ− sin ϕ

2

J+ cos ϕ
2 − iJ− sin ϕ

2 EC(
1
2 − δng)

2

⎞
⎠ (2.20)

where J± = 1
2 (J1 ± J2), and δng = ng−1

2 the offset between the gate charge

and the degeneracy point. Besides simplifying the treatment, the two-

level approximation makes it possible to map the state of the pump into

that of a 1
2 spin immersed in a time-dependent magnetic field (“pseudo-

spin formalism”). This mapping can be made explicit by writing (2.20) as

H = �σ · �B, where {σi} are the Pauli matrices and the effective magnetic

field �B has components

Bx(t) = J+(t) cos
ϕ

2
, (2.21)

By(t) = J−(t) sin
ϕ

2
, (2.22)

Bz(t) = EC [1/2− ng(t)] , (2.23)

where we put J±(t) = JL(t) ± JR(t). In this formalism, a pumping cycle

is described by a closed path drawn by �B in three-dimensional space. In

1For this reason, it seems that the name “Cooper-pair lock” would have been
more appropriate. However, in the Netherlands the word sluis (or schutsluis) is
also used for “lock” and that is the place where the first such device was reported
to be built, in the fourteenth century.
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the adiabatic limit considered in Section 2.2, the spin continuously follows

the field, drawing a closed path on the Bloch sphere. An example of such

a path is shown in Fig. 2.3(b) for the pumping cycle of Fig. 2.3(a). Some

intuitive understanding can be gained from this picture, as the solid angle

spanned by the path equals the Berry phase, which, in turn, is related to

the pumped charge by (2.18). Furthermore, the projection of the path

on the x̂y plane defines an angle that equals the phase bias ϕ, a unique

feature of the Cooper-pair sluice.

2.4 Single Cooper-pair pumping in the adiabatic limit and beyond

The theoretical understanding gained in the previous sections is based

on an effective-Hamiltonian description, where the dynamics of the pump

is generated by a single, macroscopically-coherent degree of freedom, the

number of Cooper-pairs residing on a superconducting island. In the two-

level approximation, this dynamics is further reduced to that of a single

Cooper-pair hopping on and off the island. This simplified picture is at the

heart of many interesting studies on Cooper-pair pumping. In Publication

IV, we demonstrate that such a picture can indeed hold in an experimen-

tally accessible regime.

Evidence of Cooper-pair pumping was reported already in [1, 5]. Fur-

thermore, the measurement of the Berry phase reported in [7] can be re-

garded as indirect proof of the overall quantum coherence of the pumping

process. However, a satisfactory characterization of Cooper-pair pump-

ing in the single-Cooper-pair regime was still lacking. In particular, the

height of the current steps observed in Ref. [5] when plotting the pumped

current against the amplitude of the gate modulation is ef , and not 2ef ,

as one would expect if the charge were carried by Cooper pairs. The steps

are also spaced by intervals e, and not 2e, in the gate charge, and no de-

pendence on the gate offset was reported. As for Ref. [7], where a CPP was

measured in a phase-biased configuration for the first time, the measure-

ments were performed at large gate amplitudes, corresponding to tens of

Cooper pairs traversing the island in a single cycle. Finally, the break-

down of the adiabatic limit had also been investigated, but not quantita-

tively understood: a decrease in the pumped charge upon increasing the

pumping frequency was observed in Ref. [1, 5, 7], but no comparison to

any theoretical model was drawn.
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Figure 2.4. Single Cooper-pair pumping. (a) Pumped charge Qp versus peak-to-peak
amplitude δng and offset n0

g of the gate drive, normalized in units of Cooper
pairs. The pumping frequency is f = 80MHz. Dashed lines highlight the
“pumping diamonds” discussed in the text. (b) Energy-level diagram illus-
trating the effect of δng and n0

g. (c) Same as (a), for a quasiparticle-poisoned
device.

Getting the quasiparticle poison out

One of the greatest threats to single-Cooper-pair devices is posed by quasi-

particles. At temperatures much below the superconducting gap, the ther-

mal population of quasiparticles is negligible. However, a nonequilibrium

population of quasiparticles is routinely observed in many experiments

[55]. While generally harmful for most superconducting quantum devices,

including those based on flux [56], nonequilibrium quasiparticles are par-

ticularly unforgiving to charge-based devices [57]. Quasiparticle “poison-

ing” manifests itself in uncontrolled jumps of e in the gate charge, due

to incoherent tunneling of quasiparticles on and off the island [58, 59].

The data of Ref. [5] can indeed be explained by considering a quasipar-

ticle tunneling rate intermediate between the pumping frequency (a few

MHz) and the acquisition rate (a few Hz). The origin of nonequilibrium

quasiparticles is not fully understood, but significant evidence has been

gathered, also in our group, that a careful filtering of microwave radiation

is crucial in order to keep this population low. [60, 61].

Figure 2.4(a), taken after Publication IV, demonstrates single Cooper-

pair pumping in a device free from quasiparticle poisoning. The mea-
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sured device is a Cooper-pair sluice as in Fig. 2.2, mounted on the sample

stage of a dilution refrigerator cooled down to 20 mK. Two nested rf-tight

shields enclose the sample stage in order to screen blackbody radiation

from higher-temperature stages. The device is voltage-biased in the su-

percurrent branch at Vb = 0 and the current is read out at room tempera-

ture with a transconductance amplifier. Pumping is achieved by applying

engineered microwave pulses to the gate and flux lines. In Fig. 2.4(a),

the pumped charge is plotted versus the offset n0
g and the peak-to-peak

amplitude Δng of the gate drive, normalized in units of Cooper pairs on

the island. Here the pumping frequency is f = 80MHz and the pulse

parameters are chosen so as to ensure adiabatic operation. The regions

of constant Qp are diamond-shaped in the offset-amplitude plane. This

behavior can remind of the stability diagram a single-electron transistor,

with δng in lieu of the voltage bias; however, we recall that in the present

case no such pattern can be observed without actively driving the device.

The position and extent of the diamonds can be predicted from the energy-

level diagram of Fig. 2.4(b), where the modulation of the SQUIDs is not

shown and it is intended that Cooper-pair tunneling is possible only at

resonance, when the respective Fermi levels cross. Inside a given dia-

mond, Qp is constant and an integer multiple of 2e within 2% accuracy.

Furthermore, Qp is 2e-periodic in the gate charge, that is, the diagonals

of the diamonds measure 1 and 2 along the n0
g and the Δng axis, respec-

tively. For comparison, a similar measurement is shown in Fig. 2.4(c). It

was taken during the same cooldown, before a ground loop was diagnosed

and eliminated. This indicates blackbody radiation is not the only source

of quasiparticle poisoning: bad circuit design works well, too!

Nonadiabatic I – dynamic generation of quasiparticles

While the data of Fig. 2.4(a) are not affected by nonequilibrium quasipar-

ticles, the latter may come into play as a result of nonadiabatic pumping.

One way of making the pumping nonadiabatic is to increase the ampli-

tude of the gate modulation. This increases both the effective speed of the

drive (continuously), and the number of tunneling events involved (dis-

cretely). In Fig. 2.5(a), we plot Qp versus n0
g while increasing δng from 0.1

to 7. The data show a clear crossover between pure Cooper-pair and mixed

Cooper-pair-quasiparticle dynamics. Up to about δng = 3, Qp is 2e-periodic

in n0
g, as in Fig. 2.4(a). The pumping plateaus are also 2e-periodic in δng.

The crossover takes place between about δng = 3 and δng = 5, where the
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Figure 2.5. Crossover between pure Cooper-pair and mixed Cooper-pair-
quasiparticle dynamics. (a) Pumped charge Qp versus gate offset n0

g for
increasing gate amplitudes δng (bottom to top). (b) Same data as in (a),
collapsed over n0

g and plotted against δng (dots). The dashed line is the
adiabatic-limit expectation. The first three pumping plateaus are indicated
by arrows.

pattern is blurred. Finally, for δng � 5 a clear periodicity is restored, but

the period has doubled. These data show that quasiparticle poisoning,

while initially absent, can be induced by nonequilibrium quasiparticles

generated by a nonadiabatic drive. The link between loss of adiabaticity

and quasiparticle poisoning is strengthened by the fact that the crossover

is accompanied by a reduction in Qp with respect to the adiabatic-limit

prediction, as shown in Fig. 2.5(b).

We understand the generation of nonequilibrium quasiparticles as a

multi-step process, consisting of Landau-Zener tunneling to an excited

state, breaking of a Cooper pair, and quasiparticle tunneling. For in-

stance, let us consider the energy-level diagram in Fig. 2.6, where the

energy of the ground state and the first three excited states are plotted

versus time as the gate is swept across three degeneracy points. Far

from the degeneracy points, the Cooper-pair number is well defined for

each energy eigenstate. If we start from the ground state on the far

left and the drive is adiabatic, then we end up in the ground state on

the far right, having loaded three Cooper pairs on the island. By con-

trast, if we make a Landau-Zener transition at the first crossing, then

we end up in the third excited state, having loaded no Cooper pair. At

this point, incoherent tunneling of a single quasiparticle is energetically

favored, as it would lower the energy by an amount ΔE+ = 11EC. The

energy of the state with one quasiparticle added to the island is plotted

as a dashed line. Now, even if the quasiparticle population in the leads
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Figure 2.6. A pathway to dynamic quasiparticle generation. The system starts in
the ground state (left) and is driven into the second excited state (right) by a
Landau-Zener transition. Inelastic relaxation can take place via incoherent
tunneling of two quasiparticles, provided the energy gain for the first tunnel-
ing (7EC in this case) exceeds the energy cost 2Δ to break a Cooper-pair.

is depleted, quasiparticle tunneling into the island is still possible pro-

vided ΔE+ > 2Δ, as in this case an extra quasiparticle (actually, two)

can be made available by breaking a Cooper pair. After the tunneling of

such a quasiparticle, the island is left in a metastable state with an odd

quasiparticle number, which may then further decay by tunneling of a sec-

ond quasiparticle. Overall, this mechanism is similar to the well-known

Josephson-quasiparticle cycle [62], with the gate drive playing the role of

an effective voltage bias in dynamically creating nonequilibrium. In the

general case, the energy gain for adding/removing a single quasiparticle

is ΔE±[n, ng] = 4EC [(n− ng)
2 − (n− ng ∓ 1/2)2], where n is the number of

excess Cooper pairs on the island. For the device measured in Publication

IV, EC = 0.33Δ, so that dynamic quasiparticle generation is only possi-

ble from the second excited state and upwards, provided the drive is fast

enough to induce Landau-Zener transitions. This is in semiquantitative

agreement with the results of Fig. 2.5.

Nonadiabatic II – Probing Landau-Zener transitions

The absence of quasiparticle poisoning in our device, together with the

fact that energy relaxation via generation of quasiparticles is an active

channel only at highly excited states, makes it possible to study nonadi-

abatic transitions in a quasiparticle-free scenario. In order to do so, we

work at small amplitudes of the gate pulse, so that the dynamics of the
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Figure 2.7. Nonadiabatic pumping and Landau-Zener transitions. (a) Normalized
pumped charge Qp/Q0 versus Josephson coupling Jmax, for a set of frequen-
cies in the range of 70 and 120 MHz (squares). The traces are vertically
stacked for clarity. The full lines are best-fits of (2.24) in the main text. (b)
Sketch of the model considered in the text, where Landau-Zener transitions
are always followed by inelastic relaxation. (c) Frequency dependence of the
fit parameter λ, as extracted from three different measurement sets (squares,
circles, and triangles). The full line is a linear fit to the data.
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pump is effectively reduced to that of a two-level system. We henceforth

denote with EC the charging energy of a Cooper-pair, so that EC = 2e2/CΣ

instead of e2/(2CΣ). Transitions from the ground into the excited state

can occur due to Landau-Zener tunneling. For a single avoided energy

crossing, the transition probability PLZ = e−2πδ is governed by the adi-

abatic parameter δ = J2
max/�v, where Jmax is the Josephson coupling of

the active SQUID at the crossing and v = ECdng/dt the rate of change

of the energy difference between the two charge states. The adiabatic

parameter, and hence the transition probability, can be acted upon in sev-

eral independent ways. For instance, we can change Jmax by tuning the

amplitude of the flux pulses, or dng/dt by changing either the rise time

of the gate pulse, or the pumping frequency. In Fig. 2.7(a), we plot Qp

versus Jmax, normalized to its maximum value Jmax,0 , when n0
g = 0 and

δng = 0.45. The traces are taken at different pumping frequencies in the

range of 70 and 120MHz; they have been normalized and vertically offset

for clarity. In order to interpret the results quantitatively, we resort to

the model illustrated in Fig. 2.7(b). The model relies on two rather crude

assumptions, namely, that

(i) each nonadiabatic transition is followed by energy relaxation before

the system reaches the next avoided crossing, and

(ii) on average, the relaxation process entails no net transfer of charge

across the island.

Under (i) and (ii), it is easy to show that the expected pumped charge at

dynamic steady state is given by the expression

Qp/2e = 1− PLZ , (2.24)

providing a transparent link between Landau-Zener transitions and pumped

charge. Armed with this understanding, we fit to each trace the expres-

sion Qp(x) = Q0

[
1− exp

(
−2πλx2

)]
, where x = Jmax/Jmax,0 and λ is a fit

parameter, to be compared with the model prediction λ ∝ J2
max,0/ECΔnghf .

The data and our single-parameter fit are in excellent agreement over the

full frequency range. The dependence of the fitting parameter λ on the in-

verse pumping frequency also follows the linear prediction of the model,

as shown in Fig. 2.7.

Altogether, these results provide evidence that the departure from the

adiabatic limit takes place via Landau-Zener transitions and that our

understanding of decoherence effects, albeit simplified, is essentially cor-
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Figure 2.8. Landau-Zener-Stückelberg interferometry. Time evolution of the in-
stantaneous (adiabatic) ground and excited-state energies. The pumping cy-
cle is as in Fig. 2.3(a). Landau-Zener transitions can occur at times t1 = T/4

and t2 = 3T/4. The green and red arrows outline two possibly interfering
transition paths.

rect. The validity of assumption (i) in the frequency range of the experi-

ment sets an upper bound of about 5 ns on the relaxation time of the is-

land, which is consistent with measurements of Rabi oscillations in charge

qubits [29]. Furthermore, our results indicate that the pumped charge is

indeed a sensitive probe of the dynamics of the pump. In the following

section, we will show how this property could be exploited to realize an

interferometer for geometric phases.

2.5 Geometric Landau-Zener-Stückelberg interferometry

The experimental observations of the previous section are accounted for

by a model where decoherence effects are strong. In this model, subse-

quent Landau-Zener transitions are totally uncorrelated (in both classi-

cal and quantum sense). A different scenario would arise if the coher-

ence time of the pump were greater than the time interval between to

subsequent crossing, that equals half the pumping period. This could

be achieved by operating the pump at a higher frequency (or by improv-

ing the coherence times). In a quantum-coherent scenario, Landau-Zener

transition paths can interfere according to the different phase accumu-

lated by the ground and excited-state wavefunctions between subsequent

crossings. This effect is usually referred to as Landau-Zener-Stückelberg

interferometry; it was first observed in atomic and optical systems and

recently measured also in superconducting qubits – for a review, see [19].

In all these realizations, the system was driven in such a way that the

interference effects have a purely dynamical nature. In general, though,
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a quantum state subject to steered evolution acquires both a dynamic and

a geometric phase. We already know from Sections 2.2 and 2.3 that this

occurs, for example, in the Cooper-pair sluice.

In Publication III, we study Landau-Zener-Stückelberg interference in

the sluice as a possible realization of Landau-Zener-Stückelberg interfer-

ometry based on geometric phases. Our proposal is general and can be

realized in a variety of quantum architectures; still, its application to the

sluice reveals some unique features. In particular, the accumulated ge-

ometric phase is directly linked to the superconducting phase bias and

the interference patterns can be read out at steady-state by measuring

the pumped charge. On the other hand, the short coherence times of the

sluice are a major drawback. As a matter of fact, soon after our proposal

geometric Landau-Zener-Stückelberg interferometry was observed in two

different systems, a single trapped ion [21] and a superconducting phase

qubit [20], while it still awaits to be observed in a Cooper-pair pump.

Dynamics in the adiabatic-impulse model

Figure 2.8 displays the time-dependent energies of the adiabatic ground

and excited state |g〉, |e〉 during a pumping cycle. The avoided level cross-

ings at t = τ/4, 3τ/4 (τ is the pumping period) correspond to the gate

charge passing the degeneracy point. In the limits EC � Jmax and hf �
EC n̄g, nonadiabatic transitions are strongly localized at level crossings.

In the so-called adiabatic-impulse model [63, 19], Landau-Zener tunnel-

ing at an anticrossing is treated as instantaneous. In the adiabatic basis

{|g〉, |e〉}, it is described by a transfer matrix of the form:

NLZ =

⎛
⎝√1− PLZe

iϕ̃S −
√
PLZ

√
PLZ

√
1− PLZe

−iϕ̃S

⎞
⎠ , (2.25)

where ϕ̃S is the phase acquired by the adiabatic states in traversing the

crossing (Stokes phase) [64]. It is a smooth function of δ taking values

between −π/2 (slow passage) and −π/4 (fast passage). By contrast, for

each adiabatic sector j = 1, 2, 3 in Fig. 2.8, the evolution is described by a

diagonal matrix of the form

Uj =

⎛
⎝eiϕj 0

0 e−iϕj

⎞
⎠ , (2.26)

where ϕj is half the difference between the phases acquired by the adia-

batic states in the given sector. In general, ϕj = ξj + γj , where we have
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distinguished a dynamic (ξj) and a geometric (γj) contribution. The dy-

namic phase ξj is obtained by integrating the instantaneous energy gap

across the sector; as such, it is proportional to the shaded areas in Fig. 2.8.

By contrast, the geometric phase γj can be calculated as [44, 45]:

γj =
i

2

∫ tj

tj−1

dt

[〈
g

∣∣∣∣ ddt
∣∣∣∣ g

〉
−
〈
e

∣∣∣∣ ddt
∣∣∣∣ e
〉]

. (2.27)

This phase has a purely geometric origin, as it does not depend on the

speed at which each adiabatic sector is traversed. Putting things together,

the evolution operator U over the full cycle is given by

U = U3NLZU2NLZU1 . (2.28)

Eq. (2.28) can be used to gain analytical insight into the dynamics of

the pump beyond the adiabatic limit. For example, we can calculate the

excitation probability after one cycle, starting from the ground state. This

is given by:

P = 4PLZ(1− PLZ) cos
2 (ϕ̃S + ξ2 + γ2) . (2.29)

For the pumping cycle of the sluice and up to the first order in [Jmax/(EC n̄g)]
2,

one finds

ξ2 ∝ EC n̄g

hf
, (2.30)

γ2 = ϕ/2 . (2.31)

As expected, the dynamic phase ξ2 is inversely proportional to the pump-

ing frequency f . By contrast, the geometric contribution is independent

of f and directly proportional to the superconducting phase bias φ.

Equation 2.29 describes an interference pattern, the excited-state popu-

lation oscillating between 0 and 4PLZ(1−PLZ) depending on the argument

of the cos term. In particular, if we neglect the weak dependence of ϕ̃S on

δ and hence f , the positions of the maxima and minima move in the ϕ− f

plane as branches of hyperbolae. By choosing f so that ϕ̃S+ξ2 is an integer

multiple of π, the dynamic contribution in (2.29) is washed out, resulting

in purely geometric Landau-Zener-Stückelberg interferometry. Elimina-

tion of the geometric phase can be achieved in a qubit using a spin echo

scheme [18, 21, 20].

A complementary and instructive way to understand the interferomet-

ric patterns is provided by Floquet analysis [65]. In fact, we can explicitly

calculate the quasienergy spectrum by diagonalizing the evolution op-

erator U in (2.28). We find that destructive resonances occur at exact
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Figure 2.9. Nonadiabatic Cooper-pair pumping. (a) Pumped charge Qp for a single
cycle starting from the ground state, versus phase bias ϕ and frequency f .
Same-ground-state-population lines are plotted for the value 0.9. The numer-
ically exact result (full lines) is in good agreement with the adiabatic-impulse
approximation in the fast-passage limit (dotted lines). (b) Ground-state pop-
ulation versus time for a case of destructive (dashed line) and constructive
(solid line) interference.

quasienergy crossings, where tunneling between adiabatic states is dy-

namically frozen. This phenomenon is known as coherent destruction of

tunneling [66]. At the opposite end, constructive interference enhances

nonadiabatic transitions, resulting in Floquet states being the maximal

mix of the adiabatic ones. This is revealed in the quasienergies as the

opening of a gap, similarly to a time-independent system with a coupling

interaction switched on. A Floquet approach to Cooper-pair pumping was

first presented in [28]. It was also the starting point of the theoretical

work of Publication VII.

The readout with the pumped charge

As already remarked, information on the quantum dynamics of a CPP can

be gained by measuring the pumped charge. Indeed, this is also the case

for geometric-phase interferometry. In Fig. 2.9(a), we plot the pumped

charge Qp versus the superconducting phase bias φ and the pumping

frequency f . The lines drawn on top of the image plot correspond to

90% probability of the system being in the ground state at the end of
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Figure 2.10. Nonadiabatic Cooper-pair pumping with decoherence. Pumped
charge per cycle versus time for a case of constructive (squares) and de-
structive interference (circles), without decoherence (a) and with decoher-
ence induced by a zero-temperature environment (b). The dashed lines are
guides for the eye.

the cycle. We have plotted both the predictions of (2.29) (dotted lines)

and the numerically exact result obtained by solving the time-dependent

Schrödinger equation (dashed lines). As expected, we observe a strong

correlation between the ground-state population and the pumped charge.

Furthermore, the accuracy of the approximations made in deriving (2.29)

is confirmed by the good agreement between analytical and numerical

calculations.

In Fig. 2.9(b), we show the time evolution of the ground-state popula-

tion for one case of constructive and one of destructive interference. In

both cases, we witness a population transfer to the excited state after the

first avoided crossing. Yet, while constructive interference (solid line) en-

hances the excitation after the second crossing, destructive interference

(dashed line) brings the system back to the ground state. Destructive in-

terference may be exploited in applications, as it acts as a stabilizer for

pumping even in a strongly nonadiabatic regime.

The role of the environment

The results of Section 2.4 indicate that observed pumped charge, being a

steady-state quantity, critically depends on the dissipation experienced

by the pump. Here, we will argue on the visibility of the patterns in

the presence of dissipation. First of all, we expect the patterns not to

be visible if the coherence time is much shorter than the pumping period,
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as in Publication IV. Given the short coherence time of the sluice, this

suggests increasing the pumping frequency. In Fig. 2.10 (a) we present

the expected pumped charge in the absence of noise over 50 pumping

cycles, for both constructive (squares) and destructive (circles) interfer-

ence. We have considered a charging energy EC/kB = 5 K and a pump-

ing frequency f = 0.5GHz. The results are readily interpreted after

Fig. 2.9 (b): When interference is destructive, the system starts each cycle

in the ground state, so that the pumped charge is constant. Conversely,

constructive interference allows the system to be in different superposi-

tions of the ground and the excited state, and this is reflected in an oscil-

lating pumped charge from cycle to cycle. In Fig. 2.10(b), we include the ef-

fects of a weakly coupled, zero-temperature environment, as predicted by

the master equation of Refs. [24, 25]. The behavior of the pumped charge

in the constructive case changes dramatically, as oscillations are quickly

damped. At the same time, the pumped charge in the destructive case is

only slightly affected by the environment. This is a direct result of the

fact that the system stays mainly in the ground state, whose robustness

against decoherence was discussed in Refs. [24, 25]. Most importantly,

Fig. 2.10(b) predicts a good visibility for the interference patterns in the

presence of weak dissipation.

The behavior of the pumped charge in the presence of a fully nonadi-

abatic drive and/or with stronger dissipation is also worth some atten-

tion. Due to the periodicity of the drive, the dynamics of the pump is

best described in terms of Floquet states, that are, dynamic steady states

of the Schrödinger equation [65]. In the adiabatic limit, Floquet states

reduce to the adiabatic states considered in Section 2.2. The study of

Cooper-pair pumping using Floquet theory was pioneered in Ref. [28]. A

master-equation formalism combining Floquet theory with dissipation is

the starting point of Chapter 5. Applications to the Cooper-pair sluice are

discussed in Sections 5.2 and 5.3. In both cases, the Cooper-pair sluice

emerges as a suitable tool to study the interplay between drive and envi-

ronment in driven open quantum systems.

2.6 Flux pumping

All types of CPPs we have considered so far rely on the use of gates as “pis-

tons” to move Cooper pairs on and off the islands. In Publication V, we

propose a different scheme for Cooper-pair pumping, which we refer to as
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flux pumping (FP). While still based on Coulomb blockade, the FP protocol

entails the adiabatic, coherent transfer of a superposition of charge states

across a superconducting island. In other words, Cooper pairs are delo-

calized throughout the pumping process. As a coherent manipulation, FP

resembles other adiabatic transfer schemes used in quantum information,

in particular, the coherent transfer by adiabatic passage (CTAP) protocol

[67, 68, 69, 70, 71]. As a pumping scheme, FP shares some features with

parametric pumping in open electron systems [36, 37, 40], sometimes re-

ferred to as “quantum pumping”. FP thus provides a way to explore quan-

tum pumping in superconducting circuits.

Flux pumping: the principle

FP uses the same “hardware” as the Cooper-pair sluice; however, it ex-

ploits a different pulse sequence. In order to achieve FP, the flux pulses

must have a finite overlap. A typical pulse sequence for the flux pulses

is shown in Fig. 2.11(a). As for the electrostatic gate, it is kept at a fixed

potential throughout the pumping cycle. In order to maximize the effect,

the gate charge should be close to the degeneracy point, that is, |δng| � 1.

Furthermore, the device should be phase biased. This is particularly im-

portant for FP, as the pumped charge vanishes when averaged over the

phase.

In order to illustrate the principle of FP, we first consider the case ϕ = 0,

which is easier to interpret. At the beginning of the cycle, the island is

decoupled from both leads, hence it is in a definite charge state (|0〉 if

δng < 0, |1〉 if δng > 0), see Fig. 2.11(b). When the left coupling is switched

on (sector I), the ground state evolves into a superposition of charge states,

provided J1 � ECδng [Fig. 2.11(c)]. As a result, charge flows from the left

lead into the island. When the left and right coupling are symmetrically

swapped (sector II), the Hamiltonian (2.20) does not change, implying [see

Eq. (2.14) in Section 2.2] that no charge is transferred between the island

and the leads. However, at the end of sector II, the island is coupled to

the right lead. Hence, when the coupling is turned down in sector III,

the loaded charge is transferred to the right lead. In this scheme, the

fact that the dynamics is coherent plays a crucial role. Also notice that

the transferred charge is a fraction of a Cooper pair, which is allowed

precisely because the leads are phase biased (in contrast to a voltage bias,

which would force the leads into a Cooper-pair-number eigenstate).

Under optimal pumping conditions (adiabatic limit, symmetric pulse se-
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Figure 2.11. Flux pumping. (a) Time modulation of Jl, Jr leading to flux pumping. The
gate position is kept fixed throughout the modulation. (b-d) Illustration of
the pumping mechanism (at ϕ = 0): a fraction of a Cooper pair is attracted
to the otherwise empty state on the island (b) by turning the left coupling
on (c); as the two coupling are simultaneously switched (d), no charge flows
through the island – yet the Cooper-pair fraction now “belongs” to the right
lead. (e) Path drawn by the state vector on the Bloch sphere, as the pulse
sequence in (a) is applied, for different values of ϕ (α is a number � 1).

quence, perfectly tunable SQUIDs), the pumped charge in units of Cooper

pairs is given by

Qp[ϕ = 0] = −1

2
sgn(δng)

(
1− 1√

1 + r2

)
, (2.32)

where we have introduced the ratio

r =
Jmax

2ECδng
. (2.33)

The dependence of Qp on δng exhibits a sawtooth behavior; at δng = 0, Qp

discontinuously changes sign as it reaches its maximum absolute value 1
2 .

From our heuristic description of the pumping cycle, it is easy to see why

the maximum has to be half a Cooper pair. In the most favorable case, the

state of the island goes from a definite charge state at the beginning to an

equal superposition of charge states at the end of sector I (remember that

the gate position is not changed). This corresponds to the limit |r| → ∞
and gives |QP | = 1

2 . When δng → 0, however, also the minimum energy

gap ΔEmin ≡ mint∈[0,T ]ΔE(t) = δngEC tends to zero. This implies that the

adiabatic limit, in which (2.32) was derived, is only attained for infinitely

slow evolution. We will come back to this point in the following.
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Figure 2.12. Flux pumping: pumped charge in the adiabatic limit. (a) Qp versus
offset charge δng for different values of the phase bias ϕ. (b) Qp versus ϕ for
different values of δng.

A peculiar phase dependence

When ϕ �= 0, the transferred charge in sectors I and III is the same as in

the case ϕ = 0. This is only to be expected: as long as the island is only

coupled to a single lead, the phase difference between the leads cannot

play any role. The situation is different for sector II, where the swap

of the Josephson couplings now takes place between two leads held at

different phases. As a result, an adjustment of the superconducting order

parameter on the island is required. This causes an additional current to

flow across the island, in a direction opposite to that of the pumping. This

current also has a geometric origin, as its integral does not depend on the

speed at which the couplings are swapped.

In Fig. 2.12(a), we plot Qp versus δng for different values of ϕ. When ϕ

is in the range of 0 to π/2, Qp simply decreases with respect to the case

ϕ = 0. As ϕ is further increased, however, a new trend emerges: Qp

changes its sign with respect to the unbiased case, except in the vicinity

of the degeneracy point. The magnitude of the counterflowing Qp can well

exceed a Cooper pair. Finally, at ϕ = π the sign of the pumped charge is

opposite to that of the unbiased case for all values of δng. Furthermore,

Qp diverges as 1/δng for δng → 0.
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The full dependence of Qp on ϕ is shown in Fig. 2.12(b) for three selected

values of δng. In general, one can show that 〈Qp〉ϕ = 0, implying that FP

can only be observed in the presence of a well-defined phase bias. These

features are peculiar to FP. For comparison, let us recall that in the “or-

dinary” Cooper-pair sluice, 〈Qp〉ϕ = 1, the phase dependence of Qp only

appears as first-order correction in the small parameter Jmin/Jmax, and

no significant dependence on the charge offset δng is found as long as the

gate modulation crosses the degeneracy point.

For the case ϕ = π, an analytical result for Qp is also available:

Qp[ϕ = π] =
1

2
sgn(δng)

(√
1 + r2 − 1

)
. (2.34)

On comparing (2.32) and (2.34), we see that the pumping direction for ϕ =

π is always opposite to that for ϕ = 0. From (2.34), it is also apparent that

Qp diverges when r → ∞ (or δng → 0). Once again, we recall that (2.34)

was derived in the adiabatic limit. Its range of validity is determined by

the condition α � 1, where α is the adiabatic parameter defined in (2.5).

As r → ∞, it turns out that the pumping period τ should be increased

according to τ ∝ r2 for the adiabatic condition to be satisfied. In other

words, the increase in Qp comes at the cost of an increasingly long τ .

Adiabatic breakdown and optimal pumping frequency

In this section, we investigate the behavior of the pumped charge beyond

the adiabatic limit. We focus on the pumped charge Qst
p at dynamic steady

state, as this is the relevant quantity for the experiments. In order to

brings the system into the steady state, we weakly couple the pump to a

zero-temperature environment [24, 25]. In Fig. 2.13, we plot Qst
p versus

δng for the cases ϕ = 0 (a) and ϕ = π (b). We choose the realistic device

parameters EC = 1K, Jmax = 0.1EC , Jmin = 0.03Jmax and explore different

pumping frequencies (solid lines). The adiabatic-limit, Jmin = 0 predic-

tions (2.32) and (2.34) are also plotted for comparison (dashed lines). In

general, nonadiabatic transitions result in a decrease of Qp. For the case

ϕ = 0 [Fig. 2.13(a)], this results in a smearing of the adiabatic sawtooth.

The effect is even more dramatic when ϕ = π [Fig. 2.13(b)], with higher

frequencies hitting the nonadiabatic onset first. These results indicate

that nonadiabatic effects must be taken into serious consideration in any

practical implementation of FP. A relevant figure of merit for optimiza-

tion is the average geometric current 〈Ip〉 = fQp, as this is the signal to be

detected in a realistic readout scheme. An example of such optimization
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Figure 2.13. Flux pumping: breakdown of adiabaticity. Qp versus δng for ϕ = 0 (a)
and ϕ = π (b), for different pumping frequencies f (solid lines). The results
are obtained by numerical integration of the master equation of Ref. [24]
and a residual Josephson coupling Jmin = 0.03Jmax is considered. The cor-
responding predictions for the adiabatic limit, (2.32) and (2.34), are plotted
for comparison (dashed lines).
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is presented in the Appendix of Publication V.

35



Cooper–pair pumping

36



3. Quantum dot thermometry for
two-dimensional-electron-gas
domains

This chapter is organized as follows. In Section 3.1 we motivate the need

for an accurate, non-invasive thermometer for two-dimensional electron

gases (2DEGs) cooled down to very low temperatures. In Section 3.2 we

give a brief overview of quantum dot (QD) thermometry. In Section 3.3 we

report on the measurements of Publication I, where a QD is used to probe

the temperature of micrometer-sized electronic domain. In Section 3.4

we introduce the nongalvanic (contactless) QD thermometer proposed in

Publication VI and report on its realization in Publication VIII.

3.1 Introduction and motivation

The availability of high-mobility 2DEGs [72], combined with the ability

to cool them down to very low temperatures [73], has led to the discovery

of outstanding physical phenomena, such as the integer and fractional

quantum Hall effect [74, 75]. Achieving even lower temperatures (say,

below 1 mK) would open the way to a range of experiments of funda-

mental relevance for which ultralow temperatures are a sine qua non.

Prominent examples include nuclear-spin and highly-correlated quantum

phases in low-dimensional electron systems [76, 77], multiple-channel

Kondo physics [78, 79, 80], topologically protected quantum computation

with the ν = 5/2 fractional quantum Hall state [81, 82], only to name a

few.

Cooling the 2DEG down to such low temperatures is an extremely chal-

lenging task, as the thermal coupling between the 2DEG and the phonons

of the host lattice is strongly suppressed at low temperatures. As a result,

parasitic heat loads that would be negligible at higher temperatures –

due, for instance, to electrical noise as well as unfiltered blackbody ra-

diation from the hotter environment – can cause significant overheating.
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Given this limitation, it is not surprising that in many experiments on

2DEGs the reported electronic temperatures are significantly higher than

the base temperature of the cryostat (tens of mK and a few mK, respec-

tively).

With a frozen electron-phonon interaction, cooling of the 2DEG primar-

ily takes place via the electrical contacts. Therefore, thermalization of the

contact wires is of paramount importance. For instance, the 4mK elec-

tron temperature achieved in Ref. [73], still one of the lowest to date, is

the result of a brute-force thermalization strategy: sintered silver heat ex-

changers were directly soldered to the indium contacts to the 2DEG and

immersed into a cell filled with 3-He and cooled down to 0.5 mK by a nu-

clear demagnetization stage. A conceptually similar yet distinct scheme,

recently developed and tested in Refs. [83, 84, 85], is based on integrating

a Cu nuclear refrigerator into each individual wire.

A different approach to the challenge of cooling 2DEGs to sub-mK tem-

peratures is provided by electronic refrigeration [86]. While driving an

electrical current through the system, electronic coolers replace high-energy

(“hot”) electrons with lower-energy (“cold”) ones. As a result, they make

the electron energy distribution sharper, which amounts to cooling. One

way to selectively remove hot electrons is to exploit a system or mate-

rial with a gap in the density of states at the Fermi energy. Supercon-

ductors are a prototypical example. Electron coolers based on normal

metal-insulator-superconductor (NIS) tunnel junction have been investi-

gated for more than 20 years; for a review, see Ref. [87]. In 2DEGs, a

similar role can be played by QDs, as theoretically envisaged by Edwards

et al. [88, 89]. A quantum-dot-based electronic refrigerator operating at

250mK was demonstrated in Ref. [90].

As the temperature of the 2DEG can significantly differ from that of the

lattice phonons, the question arises how to accurately measure it. Such

a measurement requires using either a primary thermometer, that is, a

thermometer whose output signal can be directly converted into absolute

temperature, or a secondary thermometer that can be calibrated at higher

temperatures, where electrons are expected to be well thermalized, and

whose behavior can be safely extrapolated down to lower temperatures.

Furthermore, the extremely low thermal budget the 2DEG can afford puts

a bound on the power the thermometer itself can dissipate before it acts

as a source of overheating. This issue is particularly critical for 2DEG

domains of small size (tens of μm2), such as the one considered in Ref. [90].
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In this Chapter, we present the development of noninvasive, primary

thermometry schemes for micrometer-sized 2DEG domains, based on QDs

and quantum point contacts (QPCs). It is well known [91, 92, 93] that the

temperature-dependent conductance of a QD near a Coulomb-blockade

peak can be used for thermometry. Measurements of the temperature of

bulk 2DEGs using transport spectroscopy of QDs have been routinely re-

ported down to very low temperatures [94, 80, 95]. In Publication I, we

employ a variation on this scheme. In our device, the QD is coupled to two

2DEG domains – one fairly small, the other very large – held at different

temperatures. The standard way to probe these two temperatures would

be to apply a finite bias across the dot, thereby aligning the resonant level

of the dot to one lead at a time. By contrast, we demonstrate that if the

temperature gradient across the dot is large, then the two temperatures

can be both extracted from a single zero-bias measurement, due to the

change in the line shape of the Coulomb-blockade peak. In Publication

VI, we analyze a contactless version of the QD thermometer, where the

mean charge state of the dot is read out by a QPC. This technique, orig-

inally proposed in [96], is particularly suited for low temperatures and

small domains, as it dissipates – ideally – no power in the domain. It was

demonstrated independently in Ref. [97], down to 120mK 2DEG temper-

ature, and in Publication VIII, down to 45mK. Recently, the same tech-

nique was used in the set-up of Ref. [84] to measure 2DEG temperatures

as low as 11 mK [85].

3.2 Quantum-dot thermometry

The theory of Coulomb-blockade oscillations in the conductance of a QD

was developed by Beenakker [91]. In this section, we derive a few results

that are useful for thermometry.

The situation we consider is depicted in Fig. 3.1. The QD is coupled

to two leads, indexed by i = 1, 2. The leads are ideal charge reservoirs

held at constant chemical potentials μ1, μ2. The density of states is con-

stant around the Fermi energy and the states are occupied according to

the thermal distributions f1, f2 corresponding to temperatures T1, T2. As

for the QD, both the charging energy EC and the orbital level spacing Δε

are much larger than the thermal energy kB max(T1, T2) in the leads. As a

result, the state occupation of the QD is fixed for all but one single state,

whose energy ε is varied with respect to μ1, μ2 by acting on the gate volt-
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Figure 3.1. Transport across a temperature-biased QD. Energy-level diagram for
transport across a temperature-biased QD in the “quantum” Coulomb block-
ade regime (all quantities are defined in the text).

age. The tunnel coupling between the QD and the leads, described by the

rates Γ1,Γ2, is assumed to be weak. In particular, this implies that (i)

electron tunneling is sequential and higher-order transitions (cotunnel-

ing) can be neglected, and (ii) the energy broadening hΓ of the QD level

due to its finite lifetime is negligible as compared to the thermal linewidth

kB min(T1, T2). Finally, the calculation is slightly different depending on

whether the level is nondegenerate or spin-degenerate. In the following,

we will consider the nondegenerate case for simplicity; similar results for

the spin-degenerate case are briefly discussed in Publication I.

Under this set of assumptions, the occupation probability p1 evolves ac-

cording to the master equation

dp1
dt

= −(Γ1
1→0 + Γ2

1→0)p1 + (Γ1
0→1 + Γ2

0→1)(1− p1) , (3.1)

where we have introduced the transition rates Γi
0→1 and Γi

1→0 for an elec-

tron tunneling on and off, respectively, between the i-th lead and the is-

land. In particular:

Γi
0→1 = Γifi(ε)

Γi
1→0 = Γi[1− fi(ε)]

(3.2)

where

fi(ε) =

[
exp

(
ε− μi

kBTi

)
+ 1

]−1
. (3.3)

For a given occupation, the charge flow between the i-th lead and the dot

is given by

Ii = −e
[
(1− p1)Γ

i
0→1 − p1Γ

i
1→0

]
. (3.4)
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At steady state, we set dp1/dt = 0 and find

p1 =
Γ1f1(ε) + Γ2f2(ε)

Γ1 + Γ2
(3.5)

The steady-state current I is given by (I = I1 = I2)

I = −e Γ1Γ2

Γ1 + Γ2
[f1(ε)− f2(ε)] (3.6)

In the experiments, we often measure the differential conductance G =

∂I/∂Vb, with Vb = (μ2 − μ1)/e. Assuming a symmetric voltage drop across

the two barriers, we obtain

G = e2
Γ1Γ2

Γ1 + Γ2

[
f ′1(ε) + f ′2(ε)

]

= e2
Γ1Γ2

(Γ1 + Γ2)

2∑
i=1

1

4kBTi
cosh−2

(
ε− μi

kBTi

)
.

(3.7)

Equation (3.7) is a central result for transport-based QD thermometry. Its

implications can be summarized as follows: as the gate voltage is swept,

the QD conductance probes the derivative of the distribution functions in

the leads.

In Fig. 3.2, we demonstrate the use of (3.7) in three different cases. First

of all, if T1 = T2 ≡ T , the conductance at zero bias reads

G = e2
Γ1Γ2

(Γ1 + Γ2)

1

2kBT
cosh−2

(
ε

kBT

)
. (3.8)

Sample conductance traces are shown in Fig. 3.2(a) for different values

of the common temperature, in suitably normalized units. The FWHM of

the conductance peak is given by

(Δε)FWHM = kBT log
3 + 2

√
2

3− 2
√
2
. (3.9)

Equation (3.9) shows that the QD thermometer is a primary thermome-

ter, as it directly relates the measured signal to absolute temperature

(via a combination of numerical and physical constants). We must recall,

however, that a measurement of ΔεFWHM requires an accurate estimation

of the “lever arm” of the gate α = ε/(eVg) in order to convert gate volt-

ages into QD energy. This estimation is typically obtained from finite-bias

spectroscopy and is probably the most significant source of error in this

thermometry scheme. Whether the reliance on the lever arm disqualifies

the QD thermometer from being regarded as “primary”, it is sometimes a

subject of debate. Our view is that it does not – even if the measurement

of the lever arm is in essence a calibration, it is not one that requires the

presence of a second thermometer, hence the adjective “primary” seems
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to us appropriate for a device that can tell absolute temperature without

relying on other thermometers.

Equation (3.7) applies just as well when the two temperatures are dif-

ferent, T1 �= T2. In this case, two strategies are possible for thermometry.

The easiest one is to apply a voltage bias eVb = μ2 − μ1 � kB maxT1, T2

so that the distribution functions of the two leads are probed indepen-

dently; see Fig. 3.2(b). The main drawback of this scheme is that it injects

high-energy carriers (≈ eVb above the Fermi energy) into the lead whose

temperature is not being measured. If the two temperatures are signif-

icantly different, max(T1, T2)/min(T1, T2) � 1, then a zero-bias measure-

ment is a viable alternative, as the functional dependence (3.7) allows us

to tell both T1 and T2 from a single conductance peak. This can be quali-

tatively seen in Fig. 3.2(c): the tails of the peak are more sensitive to the

hottest temperature; the “body” of the peak, to the coldest. An experimen-

tal demonstration of this thermometry scheme is provided in Publication

I.

3.3 Zero-bias transport thermometry for temperature gradients

In Publication I, we study the local temperature of a micrometer-sized

2DEG domain as it is heated by a known heating power. In order to mea-

sure this temperature, which can be significantly different from that of

the neighboring 2DEG regions, we use a QD in the quantum Coulomb-

blockade regime [see Section 3.2]. QD thermometry in the presence of

a temperature bias is usually accomplished by imposing a finite voltage

bias across the dot, so that the electronic distributions in the leads are

probed one at a time as the resonant levels of the QD cross the respec-

tive Fermi energies [85]. In Publication I, we take a slightly different ap-

proach and show that a zero-bias measurement is sufficient to probe both

temperatures, provided the two of them are significantly different from

each other. Such a scheme may be useful for a few reasons. First of all,

the QD may be part of a more complex circuit whose behavior is altered

by the presence of a finite bias. Secondly, finite-bias thermometry implies

a significant amount of overheating in the lead whose temperature is not

being probed. This heat load can be undesirable, either because the said

lead must itself be kept as cold as possible, or because part of the heat

can backflow to the other lead, for instance, via a phonon-based energy-

transfer mechanism [98, 99].
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Figure 3.2. Transport-based QD thermometry, as described by (3.7). The QD con-
ductance, plotted against the QD energy, shows the characteristic Coulomb-
blockade peaks. (a) If T1 = T2, a zero-bias measurement tells the common
temperature. (b) If T1 �= T2 and eVb � kB max(T1, T2), the two temperatures
are probed independently. (c) If T1 �= T2 and eVb = 0, the information about
the two temperatures is “buried” in the same conductance peak; nonethe-
less, it can be recovered by considering the functional dependence of (3.7), as
demonstrated in Publication I.
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Our thermometry scheme gives us access to the steady temperature

of the 2DEG in the presence of a given heat load. This temperature is

the result of a balance between the injected power and the heat leakages

through all possible thermal relaxation channels. In our case, two chan-

nels must be considered, namely, electronic heat conductance through the

QPCs defining the domain and inelastic scattering between the electrons

in the domain and the phonons of the lattice. Thanks to the high degree

of tunability of our device, we can control the electronic heat conductance

over a broad range and realize regimes where either one or the other chan-

nel prevails. Strong experimental evidence for this claim is provided by

the different temperature dependence of the two channels. In the regime

where the electronic heat conductance dominates, the heat outflow follows

the Wiedemann-Franz law (Q̇ ∝ T 2) and our data are quantitatively ac-

counted for by a model with no free parameters. In the opposite regime,

our data are consistent with a thermal relaxation model based on the

screened electron-acoustic phonon piezoelectric interaction, which is ex-

pected to dominate below 1K and gives a temperature dependence Q̇ ∝ T 5.

Our estimate for the corresponding coupling constant – measured, to the

best of our knowledge, for the first time in such a small domain – is not

far from other values reported in literature [100].

These results contribute to our understanding of heat flows in 2DEG mi-

crodomains and to our ability to measure them. They can be relevant, for

instance, to the design of the QD refrigerator discussed at the beginning of

this chapter [88, 89, 90]. Finally, our thermometry technique could be ap-

plied to other systems characterized by different electronic and phononic

properties, for instance, InGaAs alloys with high In content [101] or semi-

conductor nanowires [102, 103].

A tunable platform for heat-transport experiments in 2DEGs

Figure 3.3 shows a scanning electron micrograph of the device used in

Publication I. The substrate is a GaAs/AlGaAs heterostructure. The 2DEG,

defined 100nm below the surface, is characterized by a density ns = 2.26× 1011 cm−2

and a mobility μ = 3.31× 106 cm2/Vs. By applying a negative voltage to

the surface gates, we locally deplete the 2DEG. As a result, we can define

a central domain of area AD =16μm2. The domain (red) is connected to

four neighboring 2DEG regions (blue) by one QD and three QPCs (two ad-

ditional gates, defining a second QD, were not used). The four regions are

contacted by low-resistance Ohmic contacts (squares). The gate design,
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Figure 3.3. A platform for heat-transport experiments in 2DEGs. False-color scan-
ning electron micrograph of the device and scheme of the measurement setup.
Schottky gates (light gray) define a 16μm2 sized central electronic domain
connected to outer regions of the 2DEG through a QD (bottom) and three
QPCs (left, right, top). Crossed squares indicate Ohmic contacts to the 2DEG.
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comprising 12 independent gates, was aimed at providing maximum tun-

ability to each quantum feature, including the QPCs and the QD barriers.

Two small, “plunger” gates are used to tune the chemical potential of each

dot. The QD geometry was chosen in order to maximize its charging en-

ergy EC and its single-particle energy spacing δE. In the diamonds with

lowest occupation number we measured EC = 1.5meV and δE ≈ 0.4meV.

The estimated energy-level spacing associated with the lateral confine-

ment of the domain is 400 neV ≈ 5mK/kB, so that the 2DEG domain can

still be regarded as a Fermi gas. Due to the small size, the charging en-

ergy of the domain is significant (we estimate it to be of the order of tens of

μeV [90]). While its impact was negligible on the low-bias, relatively-high-

temperature measurements of Publication I, such a high charging energy

can affect QD thermometry and refrigeration at lower temperatures. One

way to decrease it would be to fabricate a large top gate extending over

the domain, as done in Ref. [104]. Such a gate could also be used to tune

the electron density in the domain.

An architecture similar that of Fig. 3.3 is suitable for a broad range of

experiments on heat management at the nanoscale, besides and beyond

those reported in Publication I. A list of subjects should include electronic

refrigeration [90], thermoelectric effects in QDs and QPCs [105, 106, 107],

asymmetric dissipation in a strongly biased QPC [98] and nonthermal

electron distributions. Finally, an entire class of different effects could

be addressed, also from the point of view of heat manipulation, in the

presence of quantizing magnetic fields.

Two-temperature thermometry at zero bias

The measurements of Publication I were carried out in a 3He cryostat

down to 250mK, in the configuration schematically shown in Fig. 3.3. We

heated the domain by driving a dc current IH through the QPC1-domain-

QPC2 circuit; at the same time, we measured the zero-bias differential

across the QPC3-domain-QD circuit.

Figure 3.4(a) shows the measured zero-bias conductance G versus gate

voltage Vg around a Coulomb-blockade peak, for different values of the

heating current IH . We set the working point of the QPCs so that RQPC1,2,3 �
7.4 kΩ. The full lines are a fit of the model of Section 3.2 to the experimen-

tal points. As we tuned the QD barriers to be symmetric, we can assume

Γ1 = Γ2. We measured the conversion factor between VG and the dot

energy (“level arm”) by finite-bias spectroscopy (Coulomb-blockade “dia-
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Figure 3.4. Two-temperature QD thermometry. (a,b) Conductance G versus gate
voltage VG for increasing values of the heating current IH : 11.6 nA (squares),
20 nA (circles), 28.6 nA (triangles). The theoretical model is fitted to the data
(full lines) and the two temperatures T1, T2 are extracted as fit parameters.
The same data are plotted on both linear (a) and logarithmic scale (b). (c)
Extracted T1 and T2 as a function of IH .

monds”) [93] within 5% accuracy. This allows us to fit the model to the

line shape of the peak with the two temperatures T1 and T2 (T2 > T1) as

the only free parameters. The same data is also plotted in logarithmic

scale, see Fig. 3.4(b), to highlight the sensitivity of the peak tails to the

higher temperature. This sensitivity provides a basis for our thermome-

try scheme. In Fig. 3.4(c), we plot the extracted T1 and T2 as a function

of IH . While both temperatures increase with IH , the increase in the hot-

ter T2 is much more pronounced. We hence assign T2(IH) to the central

domain and T1(IH) to the adjacent 2DEG region. There is a ∼ 150 mK

difference between the cryostat base temperature (250 mK) and the cold-

est T1, which we ascribe to heating of the 2DEG by noise. The additional

increase of T1 with IH may be due to local heating of the phonon lattice.

Heat flows in the 2DEG microdomain

Our thermometry scheme can be used to investigate heat-relaxation mech-

anisms in the 2DEG domain. Indeed, the steady-state T2 is the result of a

thermal balance. Our thermal model, sketched in Fig. 3.5(a), is described

by the equation
3∑

i=1

Q̇QPC,i + Q̇e−ph + P0 = 0 . (3.10)
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Figure 3.5. Heat flows in a 2DEG microdomain. (a) Main contributions to the ther-
mal balance equation (3.10). (b-c) Hot temperature T2 versus injected power
PH for different configurations of the device: RQPC,1,2,3 = 7.4 kΩ (b) and
RQPC,1,2,3 > 1MΩ (c). The full lines are fits of the expressions given in the
text, implying that a different heat-relaxation mechanism prevails in each
case. (d) Joint bi-logarithmic plot of (b) and (c), highlighting the different
power laws obeyed by the two datasets.
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Here, Q̇QPC,i denotes the heat current flowing through the i-th QPC and

into the domain, Q̇e−ph results from inelastic scattering between the elec-

trons in the domain and the lattice phonons (the latter in equilibrium at

base temperature Tb), P0 accounts for a spurious heat power overheating

the domain, and we have neglected the heat flow through the QD due to

its very high impedance. Q̇QPC,i can be written as [108, 109]

Q̇QPC,i = −
1

2
VQPC,iIQPC,i +

L0

2RQPC,i

[
T 2
2 − T 2

1

]
(3.11)

where VQPC,i, IQPC,i are the voltage drop across and the current through

the i-th QPC, respectively, and L0 = π2k2B/3e
2 is the Lorenz number. We

can rewrite the first term in (3.10) as

3∑
i=1

Q̇QPC,i =
1

2
IHVH +

3L0

2RQPC

[
T 2
2 − T 2

1

]
(3.12)

where VH is the voltage drop across the heating circuit and we have used

the fact that all QPCs are tuned to the same impedance RQPC. Let us now

turn to Q̇e−ph. At low temperatures and for III-V semiconductor alloys,

piezoelectric coupling is expected to dominate over deformation-potential

interaction at subkelvin temperatures, resulting in the energy-loss rate

[110]

Q̇e−ph = ΣAD

(
T 5
2 − T 5

b

)
, (3.13)

where we have assumed that the lattice phonons are thermalized at the

bath temperature Tb and Σ is a coupling constant which depends on the

electron density and on the material parameters of the host lattice.

In Fig. 3.5(b), we replot T2 from Fig. 3.4(c) against the injected power

PH = 1
2IHVH . The data are well described by the power law PH = −P0 +

B(T 2
2 − T 2

1 ). From the fit (full line) we extract P0 = (0.15± 0.02) pW and

B = (5.0± 0.1) pWK−2, in excellent agreement with the 4.9 pWK−2 predic-

tion for the heat leakage through three QPCs of equal resistance 7.4 kΩ. In

this regime, heat flow through the QPCs dominates over electron-phonon

heat exchange. By increasing the resistance of the QPCs, one can make

the former contribution negligible. The results of such a measurement are

shown in Fig. 3.5(c), where the impedance of each QPC was tuned to the

MΩ range. The full line is a fit of the power law PH = −P0 +D(T 5
2 − T 5

ph),

demonstrating the transition to a regime where heat relaxation relies on

coupling to the phonon bath. This is manifest in the joint log-log plot of

Fig. 3.5(d), where the two datasets are characterized by different expo-

nents as well as by a different order of magnitude for PH . The best-fit
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values for Fig. 3.5(c) are P0 = (5± 1) fW and D = (170± 20) fWK−5. No-

tice that P0 is strongly suppressed compared to the previous case, thanks

to the high impedance of the QPCs. Assuming for our domain the area

AD = 16μm2, we obtain for the electron-phonon coupling constant the

value Σ = (11± 1) fWμm−2K−5. This is about three times smaller than

the theoretical prediction Σ ≈ 30 fWμm−2K−5 (see Publication I for de-

tails) and about two times smaller than what was previously measured

[100]. We do not know the reasons for this discrepancy. It is worth notic-

ing that our results were obtained for a micrometer-sized, as opposed to

bulk, domain, where the effects of confinement can be important. Among

possible sources of uncertainty, we mention the lever arm of the QD, the

effective area relevant for the electron-phonon interaction, and the aver-

age electron density inside the domain.

3.4 Contactless thermometry based on charge sensing

The thermometry technique described in the previous section may well

be sufficiently unobtrusive for many applications, including temperature

measurements of large domains and/or at temperatures above 100 mK.

However, based on a transport measurement, this technique unavoidably

entails dissipation. Dissipation in the domain is associated to the tunnel-

ing of hot quasiparticles, contributing a heat flow Q̇R = ΓEf(E), where Γ

is the tunneling rate for the resonant level of the dot, E its energy (with

respect to the Fermi energy of the domain), and f the electron distribu-

tion function in the domain (say, a Fermi function at temperature Te). In

order to sample f , we must vary E at least in the range of −3kBTe and

3kBTe. Averaging over such a sweep, we obtain 〈Q̇R〉 ≈ 0.55ΓkBTe. The

admissible values for the tunneling rate Γ – which, we recall, can be ad-

justed over a broad range by acting on the QD barriers – are bounded

from below by the lowest measurable current (typically, eΓ � 1 pA) and

from above by the requirement that the intrinsic (Lorentzian) broadening

of the Coulomb-blockade peak be negligible as compared to the thermal

broadening (hΓ � kBT/e). For temperatures of hundreds down to tens of

mK, a reasonable value is Γ ≈ 100MHz.

In order to determine whether the resulting 〈Q̇R〉 is acceptable, we must

compare it to the cooling power provided by all relevant heat-relaxation

channels. For definiteness, let us consider a GaAs/AlGaAs 2DEG domain

as in Fig. 3.3. In Fig. 3.6, we plot the steady-state Te for 1 and 100μm2-
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Figure 3.6. The “dissipative” QD thermometer. Steady-state electron temperature
Te versus phonon bath temperature Tph, for domains of different areas, in
the presence of a QD thermometer, a QD refrigerator, or both. Parasitic heat
loads on the system are not taken into account (see text).

sized domains, versus the phonon-bath temperature Tph. Te is obtained

by solving a thermal-balance equation similar to (3.10). The straight line

marked Te = Tph is plotted for reference, and stands for the case where

no additional heat load is put on the domain. As soon as the thermome-

ter is introduced, the situation changes dramatically: Te follows Tph only

down to about 100 mK and then saturates, due to the weakening of the

electron-phonon interaction. We also consider the case where an ideal

quantum-dot refrigerator is used to cool the domain. In this case, much

lower temperatures can be obtained (≈ 1mK), regardless of the domain

area. In this case, the competition is between the dissipation induced by

the thermometer and the cooling power of the refrigerator, the phonon

bath playing little or no role. Quite obviously, this analysis should be

taken with a grain of salt, as it neglects parasitic heat sources (one of the

most severe limitations in achieving such low temperatures), nonideali-

ties in the refrigerator and nonequilibrium effects in the 2DEG. However,

it indicates a fundamental limitation of transport-based QD thermometry.

Proposal

In Figure 3.7 we compare two schemes for QD thermometry. In panel

(a) we show the usual, transport-based scheme. In panel (b) we show

a “nongalvanic” or “contactless” variation on this scheme, which we ana-

lyzed in Publication VI. In both schemes, the strongly nonlinear density of

states of a QD is exploited to probe the energy distribution of the domain.

All the difference lies in the way this information is read out: instead of

51



Quantum dot thermometry for two-dimensional-electron-gas domains

Figure 3.7. Galvanic (a) versus nongalvanic (b) QD thermometer. In (a), temper-
ature is determined by the linewidth of Coulomb-blockade peaks, obtained
from a transport measurement. In (b), from the average occupation of the
dot, read out in a nongalvanic fashion by a QPC placed nearby.

performing a transport measurement across the dot, we measure its av-

erage occupation in a nongalvanic fashion with the help of a QPC placed

nearby. This scheme combines two established techniques: QD thermom-

etry, which we have discussed in detail in this Chapter, and charge sens-

ing with a QPC [111, 112, 113]. If the gate sweep is performed adiabat-

ically, then the heat flow into the domain vanishes, making this device

appealing for temperature measurements of ultracold electron domains.

The operation of the nongalvanic thermometer can be quantitatively

modeled as in Fig. 3.8. On the one hand, the mean occupation of the QD

〈nQD〉 changes by one as the energy εd of the relevant energy level in the

dot crosses the Fermi energy μ0 of the domain, the linewidth of this tran-

sition being directly related to the temperature Te of the domain. On the

other hand, a change in the dot occupation affects the potential landscape

of the neighboring QPC, and hence its conductance. Finally, one has to

take into account that a change in the gate voltage Vg affects the chemical

potential of the dot as well as the potential of the QPC, as observed in

the experiments. For a single active channel and in the linear-response

regime, we can write the QPC conductance as

GQPC =
2e2

h
T (εq) , (3.14)

where T (ε) is the transmission function of the channel and εq the differ-

ence in energy between the bottom of the confining potential in the QPC

and the Fermi level in the QPC leads. In the linear response, we can
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Figure 3.8. A model for the nongalvanic QD thermometer. The central panel shows
the capacitively coupled gate, QD and QPC. Left: the occupation of the QD
reflects the electron distribution in the tunnel-coupled domain. Right: the
QPC conductance depend on the occupation of its subbands, each providing a
conductance quantum 2e2/h. The QD state affects the confining potential of
the QPC, hence the subband occupation, hence the QPC conductance.

write:

εq = ε0q − 2βECf(ε
0
d − eαVG)− eγVG , (3.15)

where ε0q and ε0d set the working point of the QPC and the position of the

QD level, respectively, EC is the charging energy of the QD, and α, β and

γ are “lever arms” between different parts of the circuit.
In terms of the cross and total capacitance introduced in Fig. 3.8, the lever

arms can be written as

α =
1

CΣ,qd

(
Cg,qd +

Cg,qpcCqd,qpc

CΣ,qpc

)
,

β =
Cqd,qpc

CΣ,qpc
,

γ =
1

CΣ,qpc

(
Cg,qpc +

Cg,qdCqd,qpc

CΣ,qd

)
.

(3.16)

The predictions of this model are shown in Fig. 3.9(a), where we plot the

QPC current versus Vg for different values of Te. As Vg is made more nega-

tive, I steadily decreases due to the spurious coupling γ between the gate

and the QPC. Yet, as the resonant level crosses the Fermi energy of the

domain from above, 〈ndot〉 sharply decreases by one, leading to a step-like

increase in I. This gives rise to a sawtooth pattern at zero temperature,

which gets progressively smeared as Te is increased.
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Figure 3.9. Temperature responsivity of the nongalvanic QD thermometer. (a)
QPC current IQPC versus gate voltage Vg for different values of the domain
temperature Te; a steeper sawtooth corresponds to a lower Te. (b) Transcon-
ductance Gtr versus VG for the same set of temperatures as in (a); a sharper
peak corresponds to a lower Te.
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Besides the QPC current IQPC, a relevant quantity for thermometry is

the gate-to-QPC transconductance Gtr = dIQPC/dVg, which can be directly

measured, e.g., with a lock-in amplifier [see Publication VIII]. We can

write

Gtr =
2e2

h
eVb

dT
dε

∣∣∣∣
εq

(
γ + αβEC

df

dE
(ε0d − eαVG)

)
. (3.17)

As a function of Vg, a series of dips appear on top of a positive baseline

[see Fig. 3(b)]. The dips are proportional to the derivative of the Fermi

function, and their FWHM ΔVg to the domain temperature Te. In partic-

ular:

Te =
eα

2 log(3 + 2
√
2)kB

ΔVg . (3.18)

The constant relating ΔVg to Te is a simple combination of fundamental

constants and the lever arm α, which can be determined experimentally

from a measurement of the QD charging energy and the cross-capacitance

between the gate and the QD. This clearly shows that the nongalvanic

QDT, just as well as its “galvanic” version, is a primary thermometer.

More details on the performance of the thermometer, as well as on its

limitations, can be found in Publication VI. Here, we just limit ourselves

to observing that in the model we have described, the QPC is influenced

by the QD state – our readout is based on this – but not the other way

around. Strictly speaking, this is inconsistent on both a fundamental and

a practical ground. Fundamental, because in quantum mechanics “there

is no free lunch” (or measurement). Practical, because any kind of noise

in the QPC measurement can easily couple to the QD due to the close

proximity of the two quantum devices. We are thus led to consider the

measurement “backaction” of the QPC on the QD. This backaction is of

(at least) two kinds, as the QD is sensitive to both current fluctuations

through the QPC (that is, shot noise) [114, 115, 116, 117] and charge fluc-

tuations in the QPC [118, 119]. Current fluctuations couple to the QD due

to finite lead resistance and asymmetric capacitive couplings between the

leads and the QD. As a result, they can be minimized by careful circuit

design. By contrast, the backaction due to charge fluctuations is funda-

mentally unavoidable, as it is due to the Heisenberg backaction of the de-

tector (QPC) on the quantum system whose state we are measuring (QD).

For a discussion, see Ref. [119]. In Publication VI, we give quantitative

estimates for each mechanism. Our conclusion is that none of them limits

the operation of the thermometer down to very low temperatures, pro-

vided the relevant parameters (biasing point, lead resistance, capacitive
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Figure 3.10. Implementation of a nongalvanic thermometer. (a) Micrograph of the
device and scheme of the measurement set-up. The lead marked as (1) is
voltage-biased while leads (2) and (3) are either left floating or connected to
transconductance amplifiers. A varying voltage is applied to the plunger
gate, while all other gates are kept fixed at their working-point values.
Small ac voltages δVsd and δVg can be applied on top of the dc voltages Vsd

and Vg to perform lock-in measurements. (b) QPC (red) and QD conductance
(black) versus gate voltage Vg.

coupling) are optimized. Phonon-mediated backaction, not considered in

Publication VI, may also play a role; see, e.g., Refs. [120, 98, 99, 121].

Experimental demonstration down to 45mK

In Publication VIII, we experimentally demonstrate nongalvanic ther-

mometry in a bulk 2DEG by directly comparing it against transport-based

thermometry, in the temperature range of 800mK down to 45mK. Simi-

lar measurements were carried out down to 120mK in Ref. [97] and more

recently down to 12mK in Ref. [85].

In Fig. 3.10, we show a micrograph of the active region of the sample

along with a scheme of the measurement set-up. Schottky gates are used

to define QD and a QPC. A bias voltage Vsd is applied to lead no. 1, which

is shared by both the QD and the QPC. The drain currents IQD and IQPC,

to leads no. 2 and 3, respectively, are measured by grounded transconduc-

tance amplifiers. Differential conductance measurements are performed

by low-frequency lock-in detection by applying a small ac excitation δVsd

on top of Vsd. Measurements of the gate-to-QPC transconductance Gtr are

similarly performed by applying an ac excitation δVg to the plunger gate
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Figure 3.11. Nongalvanic thermometry with “open barriers”. The gate is operated
at the working point “WP1” (see Fig. 3.10). Electronic temperature Te ver-
sus bath temperature Tb, as extracted from both a transport measurement
(black squares) and a charge-detection measurement (red dots). Top Left:
finite-bias spectroscopy of the QD around WP1. Bottom Right: comparison
between transport (GQD versus Vg, green) and charge-detection measure-
ments (Gtr versus Vg, red) at base temperature Tb = 260 mK. The black line
is fit of the model expression (3.19).

of the QD. The QPC conductance exhibits the quantized plateaus typi-

cal of one-dimensional ballistic transport. Its value is tuned to be half

a conductance quantum in order to maximize sensitivity [see Publication

VI]. From finite-bias spectroscopy of the QD, we extract a charging energy

EC ∼ 1meV and a level spacing Δε of a few hundred μeV.

In Fig. 3.10(b), we present simultaneous measurements of the QD and

QPC conductance (GQD and GQPC, respectively) as a function of the gate

voltage Vg, showing a clear correspondence between Coulomb-blockade

peaks in GQD and sharp changes in GQPC on top of a smooth background.

Some of the features in these plots are due to the common source contact

between the QPC and the QD, including the fact that the QPC response

depends on the height of the Coulomb blockade peak, or that a finite slope

is observed in the off-resonant QD conductance. In the following, GQD and

GQPC are independently measured one after the other, with the unused

lead left floating. Notice that even in the range where the GQD signal

is not sensitive [left of Fig. 3.10], the QPC still functions as a detector,

signaling changes in the occupation number of the QD.

We demonstrate the equivalence between the two types of thermome-
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Figure 3.12. Nongalvanic thermometry with “closed barriers”. The gate is oper-
ated at the working point “WP2” (see Fig. 3.10). Electronic temperature Te

versus bath temperature Tb. Top Left: gate-to-QPC transconductance Gtr

versus gate voltage Vg for three different configurations of the QD barriers.
Bottom Right: color plot of Gtr versus Vg and dc bias Vsd, used to estimate
the lever arm at WP2.

try in Fig. 3.11. As we sweep the bath temperature Tb in the range of

250 to 800mK, the results of transport-based thermometry (black) and

charge-detection-based thermometry (red) are in good agreement. Fur-

thermore, the so-determined electronic temperature Te closely follows the

bath temperature Tb, plotted for reference (dashed line). The data were

taken around the working point labeled as WP1 in Fig. 3.10(b), where

both GQPC and GQD are sensitive to the dot occupation. Te was estimated

from the Coulomb-blockade peak (transport measurement) and from the

corresponding QPC-to-gate transconductance dip (charge detection mea-

surement). Around the peak position V 0
g , these two features share the

functional dependence

y(x) = ȳ cosh−2
(
Vg − V 0

g

w

)
(3.19)

where w = 2kBTe/α. This correspondence is demonstrated in Fig. 3.11,

Right Inset, where the two signals GQD and Gtr, measured at the same

temperature and suitably normalized, perfectly overlap (the Vg axis has

not been rescaled). In order to measure Te, we first determine w by fitting

each trace to (3.19). The conversion from w into Te is determined by the

lever arm α, which we independently measure by finite-bias spectroscopy

around WP1.
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Figure 3.13. Nongalvanic thermometry down to 45mK. Comparison of charge-
detection (red crosses, right axis) and transport thermometry (black open
circles, left axis) at 8 mK base temperature. From the model fits (full lines),
we extract Te = 42±3.5 mK (charge detection) and Te = 46±4.5 (transport).
Inset: Te versus bath temperature Tb, measured with transport thermome-
try.

After establishing the validity of the nongalvanic technique, in Fig. 3.12,

we demonstrate its applicability in the regime of very weak QD tunneling

rates, where a transport measurement would be challenging due to the

small currents involved (at the fA level). This is done by moving to the Vg

range labeled as WP2 in Fig. 3.10. The measured electronic temperatures

(squares) are, again, in good agreement with the cryostat temperature

down to 250mK. A technical detail – yet a critical one – concerns how to

estimate the lever arm and tune the QD barriers, without relying on a

transport measurement. As a matter of fact, the lever arm depends on

the confining potential of the QD, which, in turn, depends on the value of

Vg. For this reason, the lever arm must be estimated in a configuration as

close as possible to the one in which the actual measurement is performed.

The data of Fig. 3.10, Insets indicate one way to go. At finite bias voltage,

the QPC transconductance exhibits two dips as the chemical potential of

the dot is aligned with either lead (Left Inset). The relative strength of the

two dips reflects the ratio between the tunneling rates to the two leads,

allowing the fine-tuning of the QD barriers. The lever arm can be es-

timated, even in a very-asymmetric-barrier configuration, by measuring

Gtr versus Vb and Vg, in a similar way as in the conventional finite-bias

spectroscopy (Right Inset).

In order to test our nongalvanic thermometer at lower temperatures, we

cooled down the same device in a dilution refrigerator. Figure 3.13 shows

measurements taken at Tb = 8mK. The nongalvanic measurement (red)
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was performed at low tunneling rates and with asymmetric barriers, the

transport mesurements (black) in a more conductive regime. The temper-

ature estimates are Te = 42±3.5 mK and Te = 46±4.5 mK, respectively, in

good agreement but significantly higher than Tb. A full Te versus Tb plot

is shown in Fig. 3.13 for the transport measurement, indicating that the

saturation of Te starts at Tb ≈ 50mK.
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4. Fast thermometry for calorimetric
energy detection

This chapter describes our preliminary steps towards a fast microcalorime-

ter for single-photon detection in the microwave range. In Section 4.1

we motivate our goal from the perspective of quantum thermodynam-

ics and quantum statistical mechanics. In Section 4.2 we provide some

background on the transport properties of the normal metal-insulator-

superconductor tunnel junction, which we use as a thermometer, and on

impedance matching using a lumped-element RLC resonator. In Sec-

tion 4.3 we discuss a generic thermal model for our calorimeter, which

is a nanometer-sized metallic island contacted to superconducting leads.

Finally, in Section 4.4 we report on the preliminary experimental results

of Publication XI.

4.1 Motivation

The thermodynamics of quantum systems is not as well understood as its

classical counterpart. Even in the classical realm, fluctuations of ther-

modynamic quantities become important for small systems, calling for a

suitable extension of the notions of work, heat and entropy production

to individual trajectories and nonequilibrium ensembles. Stochastic ther-

modynamics [122] provides a convenient framework to study these fluc-

tuations. Its predictions, most notably the Jarzynski equality [123] and

the Tasaki-Crooks fluctuation relations [124], have been experimentally

verified in a variety of physical settings, including single-electron devices

[125, 126, 127].

In the last years, much effort has been put into carrying the concepts

of stochastic thermodynamics over to the quantum domain; for a review,

see Refs. [128, 129]. Despite progress, however, the definition of a key

quantity, work, is still under debate [130]. At the heart of this difficulty
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Figure 4.1. Calorimetric measurement of quantum work. A gate-driven Cooper-
pair box is capacitively coupled to a resistor acting as the environment. The
electronic temperature of the resistor is constantly monitored with a fast
thermometer. “Quantum jumps” in the Cooper-pair box are detected as tem-
perature spikes in the resistor.

is the pivotal role of measurement in quantum mechanics. While work

is not an “observable” in quantum-mechanical sense [131], its definition

in terms of a double projective measurement, which prevails in litera-

ture [129], “forces” the system to start in a defined energy eigenstate. An

interferometric measurement of the work distribution using an ancilla

was proposed in [132, 133]. Finally, it has also been proposed to mea-

sure the environment, rather than the system, to keep track of the energy

exchanges between the two [15]. This proposal has spurred further theo-

retical investigations [134, 135]; see also Publication X.

Let us consider the circuit of Fig. 4.1, which describes a minimal, all-

electrical set-up for a calorimetric measurement of work [15]. The circuit

consists of a gate-driven Cooper-pair box, which is also capacitively cou-

pled to a resistor. The Cooper-pair box acts as the quantum system and

the resistor as a broadband environment. Voltage fluctuations across the

resistors are coupled to the potential of the island, so that photons can

be exchanged between the Cooper-pair box and the resistor. In order to

detect photon-exchange events, the temperature Te of the electron gas in

the resistor is constantly monitored. Absorption of a single photon of en-

ergy EC causes Te to rise by an amount ΔTe = EC/C, where C is the heat

capacity of the electron gas. This temperature “spike” decays with a char-

acteristic time constant τ = C/Gth, where Gth is the thermal conductance

between the resistor and its thermalization bath. A temperature trace

such as the one shown in Fig. 4.1 thus makes it possible to determine

the distribution of photon exchanges, as well as their energies (provided

G is known from an independent measurement) [15]. Continuous photon

exchanges between two resistors coupled by superconducting lines have
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Figure 4.2. The NIS junction. (a) Energy-level diagram of a voltage-biased NIS junc-
tion. (b) Current-voltage characteristics of the NIS junction at different
normal-metal temperatures. The relevant quantities have been normalized
according to v = eV/Δ, i = eRT

Δ
I, and t = kBT/Δ ≈ 0.57T/Tc.

been measured using normal metal-insulator-superconductor junction as

thermometers [136, 137]. However, in order to resolve single photons in

real time, a fast and accurate thermometer is needed. The bandwidth

should be much larger than 1/τ and the sensitivity should exceed ΔTe
√
τ .

For a micrometer-sized Cu island of volume ≈ 1× 10−20m3 at 100mK, the

expected temperature rise for a photon of energy EC/kB = 1K is about

1mK. The expected thermal relaxation time is of the order of 10μs, re-

quiring a bandwidth in the MHz range and a sensitivity of a few μK/
√
Hz.

Our first steps towards the realization of such a thermometer, reported in

Publication XI, are the main focus of this Chapter.

4.2 The rf-NIS thermometer

The NIS junction

Tunnel junctions between a normal metal and a superconductor (NIS

junctions) have been used for electron thermometry [138, 139] and re-

frigeration [140] since a long time; for a review, see Refs. [86, 87].

An energy-level diagram for the voltage-biased NIS junction is shown in

Fig. 4.2. The density of states in the normal metal is constant around the

Fermi energy, while that of the superconductor is given by the Bardeen-
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Cooper-Schrieffer expression [141] 1

NS(E) =
∣∣∣�e(E/

√
E2 −Δ2

)∣∣∣ (4.2)

Electron states are populated according to the Fermi distributions fN,S(E) =

{1 + exp[E/(kBTN,S)]}−1 at temperatures TS,N , where the subscript N (S)

stands for the normal metal (the superconductor). Fig. 4.2 already illus-

trates the basic principle of NIS thermometry: at temperatures TN �
Δ/kB and bias voltages Vb � Δ/e, the sharp density of states in the super-

conductor can be exploited to probe the (local) electron energy distribu-

tion in the normal metal. In the so-called quasiequilibrium regime [86],

this distribution is in one-to-one correspondence with temperature. More

generally, however, the NIS junction can be used to characterize out-of-

equilibrium distributions; see, for instance, Ref. [144].

In describing the transport properties of the NIS junctions, we will limit

ourselves to sequential electron tunneling, thus neglecting higher-order

processes such as elastic cotunneling and Andreev reflection [145, 146].

While not relevant for the present work, such higher-order processes have

been extensively studied elsewhere [147]. The current can be written as

[86]

INIS =
1

2eRT

∫
dENS(E) [fN (E − eVb)− fN (E + eVb)] , (4.3)

where RT is the tunneling resistance of the junction. Equation (4.3) high-

lights an important feature of the NIS junction as a thermometer: the cur-

rent is insensitive to the occupation fS in the superconductor, and hence

to TS . This insensitivity holds as long as the superconducting energy gap

in (4.2) can be assumed to be constant, which is practically true up to

T/Tc ≈ 0.4, where Tc is the critical temperature of the superconductor.

The current-voltage characteristic of the NIS junction is shown in Fig. 4.2(b)

for a few different temperatures. At low temperatures, the thermometer

is only sensitive at voltages close to the gap, with the most sensitive points

1

The finite-lifetime-broadened expression

NS(E) =

∣∣∣∣∣� E/Δ+ iγ√
(E/Δ+ iγ)2 − 1

∣∣∣∣∣ (4.1)

is often found in good agreement with the experiments, where γ � 1 is known as
the Dynes parameter [142]. The broadening can have different origins, including
defects in the junction as well as environment-assisted tunneling [143]. A finite
Dynes parameter limits the operation range of the NIS thermometers to temper-
atures T � γΔ

kB
. Typical values obtained in our laboratory are γ ≈ 10× 10−4. By

using additional on-chip filtering (ground plane), the record bound γ < 1.6× 10−7

was obtained in Ref. [61].
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Figure 4.3. The NIS thermometer: differential readout. (a) Conductance-voltage
characteristics of the NIS junction. The conductance is normalized as g =

RTG. Inset: conductance versus temperature for a set of voltages in the
range of 0.72Δ/e and 0.96Δ/e. (b) Responsivity R = ∂G/∂T of conductance
to temperature, normalized as r = RTΔ

kB
R.

shifting towards zero bias as temperature is increased. In principle, tem-

perature can be extracted from either a voltage-biased or a current-biased

measurement. In the experiments, the current-biased configuration is

typically preferred for a few practical reasons (for instance, in the SINIS

configuration, the thermometer can be read out with a floating circuit).

In any case, the temperature response is always monotonic and has the

same sign at subgap voltages: a higher temperature corresponds to ei-

ther a lower voltage (in the current bias mode), or a higher current (in

the voltage-bias mode). A third possibility is to perform a differential

readout, which probes the differential conductance GNIS = ∂INIS/∂Vb at

a fixed bias point. This possibility naturally arises in the radiofrequency

measurement.

Upon differentiating (4.3), we obtain

GNIS =
1

RTkBT

∫
dENS(E)fN (E − eVb) [1− fN (E − eVb)] . (4.4)

Conductance-voltage characteristics are plotted in Fig. 4.3(a) for differ-

ent temperatures. The differential conductance of the junction can far

exceed its normal-state value GNIS = 1/RT at the onset of conduction, cor-

responding to the “knee” features of the I-Vs in Fig. 4.2(b). In contrast

to the dc case, the conductance response is not, in general, monotonic.

This can be seen from Fig. 4.3(a), Inset, where we plot GNIS versus TN for

different values of Vb. At voltages close to the gap, some values of G are

clearly associated to two different temperatures. An interesting figure for

the optimization of the thermometer is the temperature responsivity of
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Figure 4.4. Resonator model (a) Lumped-element resonator with transmission read-
out. (b) Norton equivalent circuit used for estimating the resonant frequency
and the quality factor.

the conductance, defined as R(V, T ) = ∂G
∂T and given by

R(Vb, T ) = −
GNIS

T
+

1

RTk2BT
3

∫
dENS(E+eVb)EfN (E) [1− fN (E)] [1− 2fN (E)] .

(4.5)

In Fig. 4.3(b), we plot R versus Vb at different temperatures. In the sub-

gap region, the bias point that maximizes the responsivity moves towards

zero bias as temperature is increased. Notice that the high responsivities

obtained at voltages above the gap are of very limited usefulness, as they

are accompanied by strong dissipation in both the normal-metal and the

superconducting electrode.

The resonator

In order to enable a fast readout, we embed the NIS junction into a lumped-

element microwave resonator [148]. Similar techniques are routinely used

for the fast readout of high-impedance nanodevices, including single-electron

transistors [149] and quantum point contacts [150, 151].

A lumped-element model for the resonator is illustrated in Fig. 4.4(a).

The resonator consists of an inductor L of internal resistance rL and a

capacitor C. It is connected to input and output ports via the capacitors

C1 and C2, respectively. The NIS junction is embedded in the resonator,

introducing a parallel dissipative element of impedance Rs. At low input

powers, Rs is given by the differential impedance of the junction at the

voltage bias point set by the dc circuit (not shown). The transmission-line

impedance of the readout circuit is Z0 = 50Ω.
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In order to compute the resonator properties close to its resonant fre-

quency ω0, it is useful to turn the circuit of Fig. 4.4(a) into the equiva-

lent circuit of Fig. 4.4(b). 2 We will also assume that Rs � Z0 and that

L/(C + C1 + C2) � Z0. In the circuit of Fig. 4.4(b), internal losses are

described by the parallel resistance r∗L =
L2ω2

0
rL

. Losses due to the coupling

to the input and output ports are accounted for by the resistances

R∗i =
1 + C2

i Z
2
0ω

2
0

C2
i Z0ω2

0

≈ 1

C2
i Z0ω2

0

, (4.6)

while the coupling capacitors contribute to the total capacitance CΣ =

C + C∗1 + C∗2 as

C∗i =
Ci

1 + C2
i Z

2
0ω

2
0

≈ Ci . (4.7)

The resonant frequency of the circuit is given by

ω0 =
1√
LCΣ

. (4.8)

If Rs � r∗L, then the internal quality factor is dominated by the NIS junc-

tion and reads

Qint =
Rs

ω0L
. (4.9)

The external quality factor is determined by

Rext =
R∗1R∗2

R∗1 +R∗2
=

1

(C2
1 + C2

2 )Z0ω2
(4.10)

as

Qext =
Rext

ω0L
. (4.11)

The scattering matrix can be calculated from the circuit in Fig. 4.4 with

standard methods [154]. In Fig. 4.5(a), we plot the transmittance |s21|2

versus frequency for different NIS impedance Rs, namely, in the overcou-

pled (Rs � Rext), critically coupled (Rs = Rext) and slightly undercoupled

(Rs = 1
2Rext) regimes. As the NIS junction acts as a dissipative element,

it modifies the transmission at resonance as well as the quality factor, but

it does not shift the resonant frequency. After a few simplifications, the

transmittance at resonance can be written as

s21 = −
2C1C2RsZ0

LCΣ +
(
C2
1 + C2

2

)
RsZ0

= − αRs/Rext

1 +Rs/Rext
, (4.12)

where α = 2C1C2

C2
1+C2

2
is related to the symmetry of the coupling capacitors. Of

particular interest is the responsivity of the power transmittance |s21|2 to

changes in Rs
∂

∂Rs
|s21|2 =

2α2RextRs

(R+Rext)3
(4.13)

2A similar calculation was carried out in Ref. [152] for a different type of res-
onator. The resonator of Fig. 4.4(a) was considered in Ref. [153].
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Figure 4.5. Calculated resonator response. (a) Transmittance |s21|2 versus frequency
for different values of the junction impedance Rs. (b) Resonator responsivity
at resonance, versus Rs, for different values of the coupling capacitors C1 and
C2, with C1 = C2.

The responsivity is maximum when Rs = 1
2Rext, where it takes the value

8α2

27Rext
. In Fig. 4.5(b), we plot the responsivity versus R for different values

of the coupling capacitors, with α = 1. While the optimal responsivity

point can be tuned by changing the capacitors, the general trend is that

the responsivity decreases as the Rs turns away from the line impedance

Z0.

4.3 Thermal model of the NIS calorimeter

In this Section, we introduce a thermal model for the experiment of Publi-

cation XI. Let us consider the circuit of Fig. 4.6(a), consisting of a normal-

metal (Cu) island of line resistance rI connected to superconducting (Al)

leads by two clean contacts (left, right) and one tunnel barrier (top). Volt-

age biases Vb and VH are applied to the top and left lead, respectively,

while the right lead is grounded. This circuit realizes a microcalorimeter,

comprising a thermometer (the NIS junction) and a Joule heater (the left

NS contact, together with the island resistance).

We will assume that the so-called quasiequilibrium regime holds for the

electron gas in the island [86]. This regime requires that the electron-

electron relaxation time τe−e be much faster than the quasiparticle injec-

tion rate and implies that the electron gas is described by a Fermi-Dirac

distribution with a well-defined temperature Te. The latter, in general,

can be different from the temperature Tb of the surrounding environment.
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Figure 4.6. Thermal model of the NIS calorimeter. (a) Electrical circuit. (b) Corre-
sponding heat flows; see the text.

Electron-electron relaxation is much faster in metals than in semiconduc-

tors [compare Chapter 3], due to the higher electron density. As a result,

the quasiequilibrium regime is the most typical setting down to 100mK

and in the presence of low to moderate injection rates. Deviations from

quasiequilibrium were reported in [155], where low-resistance (100Ω –

2 kΩ) NIS junctions were used as electronic coolers.

A sketch of the thermal model is shown in Fig. 4.6(b). The electron gas

of the island is thermally connected to the local phonon bath at temper-

ature Tph. The local phonon bath, in turn, is thermally connected to the

substrate phonons, which are assumed to be thermalized at the bath tem-

perature Tb. The time-dependent electronic temperature Te is governed

by the heat equation:

C(Te)
dTe

dt
= Q̇H(VH) + Q̇e−ph(Te, Tph) + Q̇NIS(Vb, Te) + Q̇0 , (4.14)

where C(Te) is the heat capacity of the electron gas and a brief description

of each contribution on the right-hand side of (4.14) follows. The heating

voltage VH causes the Joule power

Q̇H(VH) =
V 2
H

rI
(4.15)

to be dissipated in the island, where rI is the end-to-end resistance of the

island. The heat flow from electrons into phonons is typically given by the

standard expression [156, 157]

Q̇e−ph(Te, Tph) = ΣV(T 5
e − T 5

ph) , (4.16)
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where Σ is a material-dependent constant 3. Electron tunneling through

the NIS junction contributes a heat flow

Q̇NIS = − 1

e2RT

∫
dE(E − eVb)NS(E)fN (E − eVb) , (4.17)

where RT is the tunneling resistance of the junction and we have assumed

that the temperature of the superconducting lead satisfies TS < 0.3Δ/kB.

Equation predicts cooling for Vb � Δ/e and heating when Vb > Δ/e. In

principle, then, the NIS thermometer does not cause significant overheat-

ing to the island – it tends to cool it, instead. However, we must remember

that the total amount of power INISVb is dissipated at the junction, imply-

ing a heat flow INISVb−Q̇NIS into the superconducting lead. This heat flow

is carried by hot quasiparticles that tend to accumulate close to the junc-

tion. Excess quasiparticles can either recombine or diffuse away from the

junction, but both these processes are very slow at low temperatures. As

a result, the local effective temperature of the superconducting lead can

rise as much as needed for these two equilibration channels to become

effective. This degrades heat transport figures in NIS coolers as well as

thermometers. However, the situation is much more severe for coolers as

they are operated at much higher powers. Engineering the lead geometry

and putting quasiparticle traps close to the junction have lead to a signifi-

cantly improved performance [160, 161]. As for thermometers, increasing

the tunneling resistance of the junction is sufficient for most applications.

By the way, a poor performance of the NIS junction as a cooler may even

be desirable for thermometry, as it makes the thermometer less invasive.

Finally, a constant term Q̇0 > 0 is added to (4.14) in order to account for a

spurious heating power which can arise, e.g., due to imperfect filtering of

noise and blackbody radiation from higher-temperature stages.

It is worth spending a word on those heat flows which are not considered

in (4.14). Thermal conductivity through the clean NS contacts can be

neglected in the conditions of Publication XI, as (a) Andreev reflection

blocks the heat flow within the gap, (b) the residual heat conduction due to

quasiparticle excitations is effectively frozen out below 200mK, and (c) our

superconducting lines are much longer than the coherence length, so that

the inverse proximity effect is suppressed [162]. Finally, photonic heat

conductance [136] is also negligible for our sample at these temperatures,

due to the mismatch of the relevant impedances [137].

3For Cu, Σ = 2× 109 Wm−3K−5 [157]. Other power laws in Te have also been
reported [158, 159].
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4.4 Experimental realization

In Publication XI, we demonstrate rf-NIS thermometry on a micrometer-

sized Cu island below 100 mK. While based on an established technique,

our work stands out from previous implementations [148, 163, 164] in

many respects.

First of all, the volume of the island (V = 0.05μm3) is smaller and the

measured electronic temperatures are considerably lower than previously

reported. As a result, the electron gas in the island has smaller heat ca-

pacity (C = γVTe) and much smaller heat conductance to its thermal bath

(Gth = 5ΣVT 4
e , see the following). Pushing down these two numbers, while

ensuring a reliable temperature readout, can turn the island into a fast

and sensitive calorimeter of great practical value, with applications such

as single-photon detection. With the current, admittedly not-optimized

set-up, we estimate we can detect temperature spikes of 10-mK height in

a single-shot measurement. This figure is about one order of magnitude

higher than the temperature rise expected for a single-photon absorption

event.

Further points of novelty are related to the biasing point and the esti-

mate of temperature. In Refs. [148, 163], the devices were operated at

zero bias. As the electronic temperature is lowered, however, the sensi-

tivity of the NIS thermometer is (exponentially) suppressed at zero bias

[see Section 4.2]. In Publication XI, we perform rf-NIS thermometry at

different bias points. At low input powers, the rf readout allows us to

faithfully sample the local differential conductance of the NIS junction.

In turn, this makes it possible to directly convert the transmitted power

into absolute temperature, using a minimal set of assumptions. Our tem-

perature estimates are found in quantitative agreement with a theoretical

model which takes the relevant heat flows into account. This confirms the

validity of our technique.

Finally, we carry out a systematic characterization of thermal relax-

ation times at low temperatures. To our knowledge, these are the first

such measurements in this temperature range. The measured relaxation

times are compatible with previous measurements performed at higher

temperatures [158, 163, 164], if one assumes the usual power law for the

electron-phonon interaction. However, they are significantly longer than

one would expect from the nominal heat capacity and heat conductance of

the island. This suggests that the heat capacity of the Cu island may be
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larger than the nominal value, due, for instance, to the presence of mag-

netic impurities in the Cu film [165, 166]. In fact, the thermal conduc-

tance of the island can be measured at steady state with dc techniques

and is typically found in agreement with theory, possibly with a larger

prefactor. On the other hand, measuring the heat capacity requires a dy-

namic measurement on a time scale faster than the thermal relaxation

time. Such a measurement should be feasible with the present technique

and is currently underway. We should also mention that the Kapitza con-

tact resistance between different phonon baths, considered in a recent ex-

perimental work [167], as well as phonon transport in general, may also

affect the relaxation times. Altogether, these considerations only high-

light the key role time-resolved thermometry can play in deepening our

understanding of thermal transport at the nanoscale.

Continuous-wave characterization

The sample measured in Publication XI consists of a 25 nm thick, 100

nm wide and 20 μm long Cu island connected to Al leads via two clean

normal metal-superconductor contacts and a NIS junction with normal-

state resistance RT = 22 kΩ. A schematic of our measurement set-up is

shown in Fig. 4.7(a) and a close-up, false-color micrograph of the device

is shown in Fig. 4.7(b). The NIS probe is embedded in a lumped-element

LC resonator with resonant frequency f0 = 625MHz. A bias tee allows

a dc voltage bias Vb to be applied to the NIS junction without interfering

with the resonator readout. Of the two NS contacts, one is grounded at

the sample stage, while the other is used to feed a heating current to the

island. The total resistance of the island is rI = 360Ω, of which less than

10% lies between the NIS probe and the grounding NS contact.

We probe the resonator, coupled to input and output ports via the ca-

pacitors CC1 and CC2, by measuring the transmittance |s21|2 = Pout/Pin.

Figure 1(c) shows how the resonance peak responds to changes in Vb. The

transmittance at resonance is well approximated by (4.12), with Rext =

45.5 kΩ. For each curve in Fig. 4.7(c), we note the corresponding differ-

ential impedance Rs, emphasizing the high sensitivity of the readout at

impedances of the order of Rext (critical coupling, see Section 4.2). At criti-

cal coupling, the bandwidth is 10MHz and the loaded quality factor is 62.5.

In the following, we always probe the resonator at the resonant frequency

f0.

In Fig. 4.7(d), we plot |s21|2 as a function of Vb for a set of bath tem-
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Figure 4.7. The rf-NIS thermometer. (a) Schematic of the measurement circuit. (b)
False-color micrograph of a representative device (red: Cu, blue: Al), clos-
ing up on the NIS junction used as a thermometer. (c) Small-signal trans-
mittance |s21|2 versus frequency for three selected values of the voltage bias
Vb; the corresponding differential impedance G−1 of the NIS junction varies
between 7 kΩ and 100MΩ. (d) Transmittance-voltage characteristics: |s21|2
versus Vb for a set of bath temperatures Tbath in the range of 20 to 323 mK.
Inset: Electronic temperature Te vs Vb for different values of Tbath. The ex-
perimental points (triangles) are obtained from the data of the main panel
using Eqs. (4.12) and (4.4). The predictions of a thermal model taking into
account electron-phonon and tunneling heat conductance [see Section 4.3]
are shown for comparison (full lines).
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peratures Tbath in the range of 20 to 325 mK. For each temperature, the

transmittance at zero bias is taken as the 0 dB reference. The curves of

Fig. 4.7 contain the same information as the conventional current-voltage

characteristics of a NIS junction. In particular, they make it possible to

infer the bias-dependent electronic temperature Te in the Cu island. To

extract Te from |s21|2, we first convert |s21|2 into G using (4.12) and then

G into Te by numerically inverting (4.4). In Fig. 4.7(d), Inset, we plot

the obtained Te versus Vb, as extracted from the traces in the main panel

(triangles). We have excluded points around Vb ≈ 0.98Δ/e, where the first-

order responsivity (4.5) vanishes. At base temperature Tbath = 20mK, we

find that Te ≈ 85mK. This saturated Te corresponds to a spurious injected

power Q̇0 ≈ 400 aW, which we ascribe to imperfect shielding of blackbody

radiation as well as low-frequency noise in the dc lines and in the ground

potential. The dependence of Te on Vb, most pronounced for the lowest-

temperature traces, is due to heat transport across the NIS junction, as

described by (4.3). Conversely, at high temperatures, Te closely follows

Tbath, as the electron-phonon heat conductance provides a strong thermal

anchoring to the electrons in the Cu island. Our data are quantitatively

accounted for by the thermal model of Section 4.3. The calculated Te (full

lines) agrees well with the measured ones, except in the vicinity of the op-

timal cooling point, where only a modest cooling is observed if compared

to the theoretical prediction. This behavior can be ascribed to local over-

heating of the superconductor, as discussed in Section 4.3. Altogether,

these results establish the validity of our rf-NIS thermometry technique.

Time-resolved measurements: thermal relaxation times

We demonstrate the real-time capability of our thermometer by measur-

ing the thermal relaxation of the electron gas in the Cu island in response

to a Joule heating pulse. The output signal is demodulated at the carrier

frequency and recorded with a fast digitizer. The heating waveform is an

amplitude-modulated sinusoid of frequency fH = 1MHz and peak-to-peak

amplitude V pp
H , see Fig. 4.8(a), which is fed to a large bias resistor RH

and then to the heating line. As fH is much faster than the measured

thermal relaxation rates (see the following), the island reacts to the time-

averaged heating power Q̇H = 1
2(V

pp
H )2rI/R

2
H when the heating is on. The

time-domain response of the thermometer to the heating pulse is shown in

Fig. 4.8(b) at base temperature, for a fixed Vb and different values of V pp
H .

The left axis indicates the instantaneous power recorded by the digitizer.
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Figure 4.8. Time-resolved thermometry. (a) Amplitude-modulated sinusoid used to
drive the heating pulse (the frequency is not to scale) and (b) real-time re-
sponse of the thermometer, obtained by recording the transmitted power P

versus time for different values of the heating-pulse amplitude V pp
H . The con-

version from P into absolute electronic temperature Te is displayed on the
right axis. Inset: Te at the end of the heating pulse (t = 520μs) versus V pp

H

(triangles). The prediction of the thermal model is shown for comparison
(full line). All the traces are taken at base temperature and the voltage bias
is Vb = 0.17mV.

This power is converted into temperature using a similar procedure as in

Fig. 4.7(d), Inset, and the corresponding scale is noted on the right axis.

The temperature reached by the island at the end of the heating pulse is

plotted in Fig. 4.8(b), Inset as a function of V pp
H (triangles), in good agree-

ment with the prediction of the thermal model (full line). From Fig. 4.8,

we see that the thermal response of the island is not instantaneous; in-

stead, a finite-time relaxation is observed after the rising and falling edge

of the pulse.

With constant heat input and when Te is not far from its steady-state

value Te,0, the heat equation (4.14) can be studied in the linear-response

limit. Written in terms of the temperature deviation δT = Te − Te,0, the

linearized (4.14) reads

C dδT
dt

= −GthδT , (4.18)

where C is the electronic heat capacity of the island, Gth is the total ther-

mal conductance to its environment, and both C and Gth are evaluated at

Te,0. Equation (4.18) tells that Te relaxes to Te,0 exponentially with the

relaxation time τ0 = C/Gth. Even after a large change in the heating

power [beyond the linear-response regime described by (4.18)], the final

approach to the new Te,0 obeys this exponential law.

In Fig. 4.9(a-d), we present relaxation tails obtained from measurements
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similar to those of Fig. 4.8. The tails are obtained from the raw data by

subtracting the steady-state-temperature baseline from each trace. They

have been normalized, horizontally offset for clarity, and plotted in a

semilogarithmic scale in order to highlight the exponential decay. The

full lines are fits of an exponential function to the tails.

The tails in panels (a,b) refer to relaxation after the rising (a) and falling

edge (b) of heating pulses of different amplitude V pp
H . As V pp

H is increased,

relaxation after the rising edge gets faster as Te,0 increases; on the other

hand, no change is observed in the tails after the falling edge, as Te,0

stays the same. In panel (c), we vary the bath temperature Tbath and see

that the relaxation gets faster as Tbath is increased. In panel (d), we vary

the bias voltage Vb. The observed time constant stays approximately the

same, regardless of the fact that G changes by over two orders of magni-

tude across the given Vb range. Finally, in panels (e,f), we plot the values

of τ as obtained from the fits. In panel (e), we show the dependence on Vb

for two different values of Tbath. The measured τ at base temperature is

of the order of 100μs and it increases by some 20% as Vb approaches Δ/e.

This increase may well be due to a decrease in Gth,ep due to cooling of the

island [compare Fig. 4.7(d), Inset]. In panel (f), we show the temperature

dependence of τ , obtained in two different ways: we measured tails af-

ter the falling edge while varying Tbath (circles) and tails after the rising

edge while varying V pp
H (triangles). In the latter case, τ is plotted against

Te,0 at the end of the pulse, estimated as in Fig. 4.8(b). The agreement be-

tween the two series is remarkable. The saturation of τ at low Tbath is also

consistent with the saturated Te observed in Fig. 4.7(d), Inset. At higher

temperatures, τ is predicted to scale as T−3e,0 provided Gth ≈ Gth,ep and

both C and Gth,ep follow the theory predictions. The data presented here

are not conclusive in this respect, due to the saturation of Te,0 at low Tbath

and to the narrow temperature range considered. Due to a transient that

we observe after terminating the heat pulse, we refrain from presenting

data points with τ � 20μs. An improved set-up to avoid this transient is

being made available in our laboratory.

Sensitivity and noise

We have performed systematic noise measurements of our thermometer

in the frequency range of 1 Hz to 1 MHz, at different voltage biases,

bath temperatures and input powers, and using different noise-equivalent

bandwidths when digitizing the signal.
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Figure 4.9. Time-resolved thermal relaxation. (a–d) Thermal relaxation traces (cir-
cles, squares, triangles). The traces are shifted by their baseline after relax-
ation, scaled and plotted on a logarithmic scale. They are also horizontally
offset by 150μs for clarity. The full lines are exponential fits of the form
A exp(−t/τ)+B to the data. The data in panels (a,b) correspond to the rising
(a) and falling edges (b) of selected traces in Fig. 4.8. Panels (c,d) present
similar traces obtained for different values of the voltage bias Vb (c), and at
different bath temperatures Tbath (d). (e) Thermal relaxation time τ versus
Vb for two different values of Tbath. (f) Temperature dependence of τ , obtained
from traces as in panel (c) (circles, the x axis is Tbath) and as in panel (a) (tri-
angles, the x axis is the temperature Te,0 at the end of the pulse). The error
bars in (e,f) are obtained from the fits.
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Our data indicate a noise temperature (NT) of about 8 K for our am-

plification chain, largely set by our HEMT amplifier, whose nominal NT,

measured at 20 K and 550 MHz, is 6.5 K. The corner frequency for the

1/f noise is of the order of a few Hz.

Our experiments were performed at low input power, corresponding

to a voltage modulation across the NIS junction of amplitude � 1μV.

This allows a faithful sampling of the transmittance-voltage character-

istics reported in Fig. 4.7; furthermore, the responsivity of the thermome-

ter approaches its theoretical value R = Pin(∂|s21|2/∂G)(∂G/∂Te). Un-

der these conditions, we obtain a noise-equivalent temperature (NET)

of 100μK/
√
Hz at 80 mK and 220μK/

√
Hz at 150 mK. This figure, to-

gether with the measured τ , makes it possible to detect a single energy-

absorption event producing a 10 mK temperature spike. This figure can

be improved by one to two orders of magnitude by proper optimization. In

particular, the device can be operated at higher input powers, exploiting

the fact that the NIS junction does not introduce dissipation at voltages

below Δ/e; in fact, it can behave as a cooler, as discussed in Section 4.3

and confirmed by our data as well as by many previous experiments. The

responsivity of the resonator can be improved by reducing the stray ca-

pacitance. Finally, the NT of the readout chain can be lowered by using

an amplifier with a lower NT as the first stage; a Josephson parametric

amplifier [168] is one such choice.

78



5. Dissipation in driven quantum
systems

In this chapter we present three studies on the dynamics of periodically

driven quantum systems in the presence of dissipation. These studies are

presented in a separate chapter as they are based on a common theoret-

ical formalism. However, their motivation is well grounded in the exper-

iments of Chapters 2 and 4. In the introductory Section 5.1 we present

the Born-Markov master equation for a periodically driven quantum sys-

tem. In Section 5.2 we discuss a specific limit of this equation, considered

in Publication VII, where the dynamic steady state is strongly influenced

by the presence of the environment. This limit can be encountered when

operating a Cooper-pair pump in the fully nonadiabatic limit [see also Sec-

tion 2.5]. In Section 5.3 we show that vacuum fluctuations of a broadband

environment (Lamb shift) can have an enhanced influence in a driven sys-

tem as compared to the static case (Publication IX). Cooper-pair pumps, as

well as Cooper-pair boxes, are candidate systems for observing this effect.

Finally, in Section 5.4 we study the statistic of heat exchanges between a

driven system and its environment (Publication X). The predictions of our

model could be tested using a calorimetric readout of the type discussed

in Chapter 4.

5.1 Floquet-Born-Markov master equation for periodically driven
quantum systems

Quantum master equation in the Born-Markov approximation

We consider a driven quantum system, described by the time-dependent

Hamiltonian H(t). Its coupling to the environment is described by the

total Hamiltonian

HT (t) = H(t) +HB + V (5.1)
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where HB is the environment Hamiltonian and V = S ⊗ B is a bilinear

coupling operator, S and B being operators acting in the Hilbert spaces

of the system and the environment, respectively. It is useful to introduce

the interaction picture with respect to H0(t) = H(t) +HR. Then a generic

operator O is transformed according to O → Õ = U †0(t; 0)OU0(t; 0), where

U0(t; 0) = Texp

(
− i

�

∫ t

0
H0(t

′)dt′
)

. (5.2)

The evolution of the total density matrix ρT in the interaction picture is

given by the Liouville equation

i�
d

dt
ρ̃T (t) =

[
Ṽ (t), ρ̃T (t)

]
. (5.3)

Starting from (5.3), the derivation of a master equation for the reduced

system density matrix ρ = TrB[ρT ] follows standard steps [169]. Under

the hypotheses of (i) weak coupling, (ii) factorized system-environment

initial condition, and (iii) fast autocorrelation time of the environment as

compared to the relaxation time of the system, it is justified to use the

Born-Markov approximation. We can write the result as:

∂

∂t
ρ̃(t) = −

∫ ∞

0
dτ

[
g(τ)S̃(t)S̃(t− τ)ρ̃(t)− g(τ)S̃(t− τ)ρ̃(t)S̃(t)

−g(−τ)S̃(t)ρ̃(t)S̃(t− τ) + g(−τ)ρ̃(t)S̃(t− τ)S̃(t)
]
,

(5.4)

where we have introduced the environment correlation function

g(τ) = Tr
B

[
B̃(t′)ρ̃BB̃(t′′)

]
. (5.5)

Equation (5.4) is the master equation in the Born-Markov approximation,

written in the most general form for a time-dependent system Hamilto-

nian and a stationary environment. In the following, we will restrict our-

selves to time-periodic Hamiltonians and make further simplifications.

But let us first take a moment to discuss the correlation function of the

environment.

Bosonic bath and correlation functions

A typical assumption [170] is that the environment is composed of free

bosons, HB =
∑

ν �ων

(
1
2 + b†νbν

)
and the coupling operator is the sum of

displacement operators B =
∑

ν λν(bν + b†ν) , where bν and b†ν are creation

and annihilation operators of a boson of energy �ων , λν is the strength of

the coupling and the sum runs over all the environmental modes. After
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introducing the spectral density

J(ω) =
∑
ν

λ2
ν

2
δ(ω − ων) , (5.6)

the correlation function of the environment can be written as

g(τ) =

∫ ∞

0
dωJ(ω)

[
eiωτfB(ω) + e−iωτ (fB(ω) + 1)

]
=

∫ ∞

0
dωJ(ω) [cos(ωτ) coth(βω/2)− i sin(ωτ)]

(5.7)

where fB(ω) = [exp(βω) − 1]−1 is the Bose distribution function and β =

(kBT )
−1 the inverse temperature. Typical spectral densities have the form

J(ω) = η2
ωs

ωs−1
c

· ω2
c

ω2 + ω2
c

(5.8)

where η2 � 1 is a dimensionless coupling strength, s is a characteristic

exponent and we have introduced a Lorentzian cutoff with frequency ωc.

Environments with s = 1, s < 1, and s > 1 are referred to as ohmic,

subohmic and superohmic, respectively, due to the fact that the spectral

density of voltage fluctuations across a resistor is described by (5.8) with

s = 1.

The environment correlation function g enters the master equation (5.4)

in an integral form. After a spectral decomposition of the noise operator

S, one is left to consider integrals of the form:

I±(z) =
∫ ∞

0
dτg(±τ)e−izτ (5.9)

Remembering the identity
∫∞
0 eiωtdt = πδ(ω)+P

(
i
ω

)
, where P denotes the

Cauchy principal value, we can write

I±(z) = πs(±z) + iG±(z) , (5.10)

where

s(z) = θ(z)J(z)fB(z) + θ(−z)J(−z) [fB(−z) + 1] , (5.11)

G±(z) = −P
∫ ∞

0
dωJ(ω)

[
fB(ω)

z ∓ ω
+

fB(ω) + 1

z ± ω

]
. (5.12)

The imaginary term in (5.10) is responsible for a renormalization of the

system energies, due to the presence of the environment (Lamb shift). 1

When considering undriven and weakly systems, it is typically neglected.

However, its influence in strongly driven system can be considerable, as

we show in Publication IX.
1Notice the property G±(−z) = −G∓(z).
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Floquet-Born-Markov master equation

In the following, we consider a periodically driven system, so that HS(t+

τ) = HS(t), where τ is the drive period and Ω = 2π/τ the corresponding

angular frequency. The periodicity of the drive allows for a formal simpli-

fication of (5.4), using Floquet states [65].

According to Floquet theorem, the Schrödinger equation admits solu-

tions (Floquet states) of the form |Ψα(t)〉 = e−iεαt/�|ϕα(t)〉 , where the Flo-

quet mode |ϕα(t)〉 satisfies |ϕα(t+ τ)〉 = |ϕα(t)〉 and εα is its corresponding

quasienergy. Quasienergies and their associated modes are defined up to

the translation εα → εα + �Ω, where Ω = 2π/τ . As such, all quasienergies

can be mapped into the first Brillouin zone [−1
2�Ω,

1
2�Ω].

Using Floquet states, the evolution operator U0(t; 0) in (5.2) can be writ-

ten as

U0(t; 0) =
∑
α

|Ψα(t)〉〈Ψα(0)| ⊗ e−iHBt (5.13)

and the coupling operators S̃ as

S̃(t) =
∑
α,β,k

Sαβ,ke
iΔαβ,kt |Ψα(0)〉〈Ψβ(0)| (5.14)

with

Sαβ,k =
1

T

∫ T

0
dt 〈φα|S|φβ〉 e−ikΩt (5.15)

Δαβ,k = εα − εβ + kΩ (5.16)

By substituting (5.15) into (5.4) and evaluating the integrals, we get

˙̃ραβ(t) = −
∑

γ,δ,k,k′
I+(Δγδ,k′)Sαγ,kSγδ,k′e

iΔαγ,kt+iΔγδ,k′ tρ̃δβ(t)

−I+(Δαγ,k)Sαγ,kSδβ,k′e
iΔαγ,kt+iΔδβ,k′ tρ̃γδ(t)

−I−(Δδβ,k′)Sαγ,kSδβ,k′e
iΔαγ,kt+iΔδβ,k′ tρ̃γδ(t)

+I−(Δγδ,k)Sγδ,kSδβ,k′e
iΔγδ,kt+iΔδβ,k′ tρ̃αγ(t)

(5.17)

Equation 5.17 is a literature result [65] that still applies to any periodi-

cally driven system. To proceed further, different approximations can be

made, corresponding to different regimes.

Time scales and rotating-wave approximations

The master equation (5.17) consists of a sum of constant terms, each mul-

tiplied by an oscillating factor of the form ei(Δα,β,k−Δγ,δ,k′ )t. If some of this

factors oscillate fast with respect to the characteristic time scale of the

82



Dissipation in driven quantum systems

Figure 5.1. Time scales of the master equation and validity of different approxima-
tions. (a) Adiabatic limit, see Ref. [27]. (b) Fast drive, far from degenera-
cies in the quasienergy spectrum, see [171]. (c) Fast drive, quasi degenerate
quasienergy spectrum, see Publication VII.

master equation, the dynamics is well described by an approximate mas-

ter equation obtained by neglecting the corresponding terms. This proce-

dure, which to some extent amounts to a time-coarse-graining, is gener-

ally known as secular (or rotating-wave) approximation.

Which class of terms can be neglected, depends on the collocation of the

time scales of the problem. Three relevant cases are illustrated in Fig. 5.1.

Let us first consider an adiabatic drive, for which the Floquet states are

well approximated by the adiabatic states introduced in Section 2.2. In

that case, �Ω � Ē, where Ē is some average energy gap between the

adiabatic states. On the other hand, the assumption of weak coupling im-

plies hγ � Ē. It is thus legitimate to neglect the fast oscillations due to

the dynamic phase ≈ Ēt, while it would be inappropriate to coarse-grain

the dynamics over a drive period. A Born-Markov master equation writ-

ten in terms of the adiabatic states, but not explicitly relying on Floquet

analysis, was derived in Refs. [24, 25]. A derivation using Floquet theory

was presented in Ref. [27]. The strategy adopted therein was to assign the

fast-oscillating phases to the quasienergies while removing them from the

Floquet modes, so that the quasienergy gap satisfies Δε � hγ � �Ω. As

a result, terms oscillating as fast as ei(εα−εβ)t, with α �= β, can be dropped,
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while terms oscillating as eikΩt, with k �= 0, must be retained. The situa-

tion is depicted in Fig. 5.1(a).

The opposite strategy is best suited for a fast drive, �Ω ≈ Ē. In par-

ticular, the quasienergies can be chosen to lie in the first Brillouin zone,

so that −1
2�Ω < εα ≤ 1

2�Ω. Weak coupling now implies γ � Ω, so that

all terms oscillating as eikΩt, with k �= 0, can be neglected. As for the

terms of the form ei(εα−εβ)t, α �= β, their relevance to the dynamics must

be assessed case by case.

If γ � E , as it typically happens for sufficiently weak coupling and/or

far from degeneracies in the quasienergy spectrum, then all oscillating

terms can be neglected; see Fig. 5.1(b). We refer to this approximation

as full secular approximation (FSA). It was first derived in Ref. [171] and

since then extensively used [65]. In the FSA, the master equation (5.17)

becomes time-independent. Furthermore, the dynamics of populations

and coherences is decoupled in the Floquet basis. After defining

aαβ,k = s(Δαβ,k)|Sαβ,k|2 ,

Aαβ =
∑
k

aαβ,k ,
(5.18)

we have

˙̃ραα =
∑
ν

(Aαν ρ̃νν −Aναρ̃αα) , (5.19)

˙̃ραβ = −1

2

∑
ν

(Aνα +Aνβ)ρ̃αβ , with α �= β . (5.20)

While the coherences undergo exponential decay as dictated by 5.20, the

populations approach the steady-state value prescribed by 5.19. A key re-

sult of the FSA is that the steady-state density matrix is time-independent

and diagonal in the Floquet basis. This establishes a strong analogy be-

tween Floquet states in a driven system and energy eigenstates in an

undriven system.

In the vicinity of degeneracies in the quasienergy spectrum, the FSA

breaks down, as first observed in [172, 173]. This is due to the emergence

of a slow time scale, 1/Δε, that can be comparable to or even slower than

the decoherence time 1/γ; see Fig. 5.1(c). In this case, one is allowed to

neglect all terms with k �= k′ but must keep those with k = k′ also when

εα �= εβ. This approximation, which we call partial secular approximation

(PSA), is used in both Publication VII and Publication IX. As found in

Publication VII, the residual time dependence due to terms oscillating

like ei(εα−εβ)t cancels out when moving back from the interaction to the
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Schrödinger picture. The resulting master equation can be written as

ρ̇αβ = −i(εα − εβ)ραβ +
∑
γ,δ,k

[I+(Δγδ,−k)Sαγ,kSγδ,−kρδβ − I+(Δαγ,k)Sαγ,kSδβ,−kργδ

−I−(Δδβ,−k)Sαγ,kSδβ,−kργδ + I−(Δγδ,k)Sγδ,kSδβ,−kραγ ] .

(5.21)

As for the FSA, (5.21) implies that the steady-state density matrix is

time-independent in the Floquet basis. However, the dynamics of pop-

ulations and coherences is coupled and the steady-state coherences do

not vanish. Differently from the FSA, the Floquet basis is no longer the

“pointer basis” for decoherence. The new pointer basis reflects a compara-

tively stronger interaction with the environment, whose presence “mixes”

the Floquet states. The resulting regime is the subject of the next section,

as well as of Publication VII.

5.2 Environment-governed dynamics

Let us consider a driven two-level system in the PSA. The equation for

the coherences can be written as

˙̃ρ12 = −Γρ̃12 +Πe−iEt , (5.22)

where Γ is the coherence decay rate, Π is a rate that depends on the pop-

ulations and E = ε1 − ε2 is the quasienergy gap. 2 In the Schrödinger

picture, the same equation reads

ρ̇12 = iEρ12 − Γρ12 +Π , (5.23)

whose steady-state solution is

ρst12 =
Π

Γ− iE . (5.24)

If E � Γ,Π, then ρ12 → 0 at steady state, in according to the result of the

FSA. In general, however, this needs not to be true, even for a weakly cou-

pled system. While the exact behavior of Γ and Π depends on the specific

system considered, their scaling is proportional to η2kmaxΩ ≈ η2Ω, where

η2 � 1 is the dimensionless coupling strength and kmax is the harmonic

number that gives the largest contribution to the rates. This analysis

leads to the definition of the parameter

ξ =
g2Ω

E . (5.25)

2Explicitly, Γ = 1
2

∑2
α,β=1

∑
k |Sαβ,k|2s(Δαβ,k) and Π = Π+ + Π−(ρ22 − ρ11) ,

where Π+ =
∑

k S11,kS12,−k[s(Δ21,k)+s(Δ12,−k)] and Π− =
∑

k S11,kS12,−k[s(kΩ)−
s(−kΩ) + s(Δ21,k)− s(Δ12,−k)] .
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If ξ � 1, then the coherences undergo exponential decay, as predicted

by the FSA. By contrast, if ξ � 1, then the steady-state density matrix

is, in general, not diagonal in the Floquet basis. This can happen as the

quasienergy gap E can be made arbitrarily small without significantly

affecting the rates Γ and Π. This feature is unique to driven systems. In

fact, for an undriven system, a vanishing energy gap implies vanishing

decoherence rates, at least for spectral densities of the form of (5.8).

The regime ξ � 1 was explored in Publication VII. We found that the

“pointer basis” – that is, the preferred basis where decoherence takes

place – depends both on the coupling strength η and on the form of the

operator S that couples the system to the environment. Finally, in the

limit ξ � 1 (but still in the weak-coupling limit η2 � 1), the pointer ba-

sis is, again, independent of η, as for the case ξ � 1. We labeled this

regime as “environment-governed dynamics” (ξ � 1, EGD), as opposed to

“system-governed dynamics” (ξ � 1, SGD).

In the following, we will illustrate the transition from SGD to EGD with

two examples.

Example I – The Rabi Hamiltonian

As a first example, we consider the Rabi Hamiltonian

H(t) =
E

2
σz + g[cos(Ωt)σx + sin(Ωt)σy] , (5.26)

which is analytically solvable. In particular, we can calculate Floquet

states and quasienergies. The quasienergy spectrum is shown in Fig. 5.2.

In particular, the quasienergy gap equals the Rabi frequency: E =
√
Δ2 + 4g2,

where Δ = ε− ω is the detuning. The corresponding Floquet modes are:

|φ+(t)〉 = cos θ|0〉 − e−iΩt sin θ|1〉 , (5.27)

|φ−(t)〉 = sin θ|0〉+ e−iΩt cos θ|1〉 , (5.28)

where {|0〉, |1〉} is the eigenbasis of the undriven systems and tan 2θ = 2g
Δ .

Far from resonance, θ ≈ 0 and the Floquet states are the same as the

undriven eigenstates. At resonance, θ = π
4 and the Floquet modes are

equal superpositions of |0〉 and |1〉.
We couple the system to a zero-temperature environment and consider

the probability P = 〈1|ρ|1〉 of finding the system in the excited state. For

simplicity, let us first consider a resonant drive, Δ = 0. If the coupling is

infinitely weak, then we expect P = 1/2 as the system undergoes many

Rabi oscillations before it interacts with the environment. By contrast, if
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Figure 5.2. SGD to EGD transition in the Rabi model. (a) Quasienergy spectrum as
a function of the normalized detuning Δ/g. (b,c) Parallel component 〈nz〉 (b)
and orthogonal component 〈n⊥〉 (c) of the steady state with respect to the Flo-
quet basis {|φ+〉, |φ−〉}. (d) Corresponding excited-state probability 〈1|ρ|1〉.
In (b-d), E � g, S = σx and different values of the coupling parameter η are
used.
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the coupling is “very strong", it will tend to keep the system in the ground

state, so that we expect P ≈ 0. What does “very strong” mean? Intuitively,

it means that the relaxation rate must be faster than the frequency of the

Rabi oscillations. Now, the relaxation rate is proportional to g2Ω for a

transverse coupling operator (S = σx) and the Rabi frequency equals the

quasienergy gap. Putting things together, our “strong coupling” condition

directly translates into ξ � 1, that is, the EGD limit.

In Fig. 5.2(b,c) we plot the parallel component nz = Tr[σzρ] (b) and the

orthogonal component n⊥ = [Tr2(σxρ) +Tr2(σyρ)]
1/2 (c) of the steady-state

density matrix in the Floquet basis versus the detuning Δ and for differ-

ent values of the coupling strength η. Upon increasing η, the pointer basis

becomes essentially orthogonal to the Floquet basis in a neighborhood of

the resonant frequency. In Fig. 5.2(d), we plot the corresponding popula-

tion in the excited state of the fixed basis. In the EGD limit, the system is

kept in the ground state, in agreement with the heuristic argument given

above.

This simple example, which admits a clear physical interpretation, tells

a nontrivial truth on the general validity of a certain master equation. No-

tice that if the steady-state basis were the Floquet basis (as predicted by

the FSA), then one would have P = 1
2 regardless of the coupling strength.

Example II – The Cooper-pair sluice

As a second example, we consider the Cooper-pair sluice, with the Hamil-

tonian and driving cycle given in Section 2.3. When the sluice is driven

fast, the repeated sequence of Landau-Zener crossings gives rise to Landau-

Zener-Stückelberg interference patterns, as we discussed in Section 2.5.

The geometric phase accumulated during the sectors of adiabatic evolu-

tion is controlled by the superconducting phase bias ϕ, giving access to

purely geometric interferometry. Due to the periodicity of the pumping

cycle, the dynamics of the sluice and the resulting pumped charge lend

themselves to a Floquet-based approach. A first, significant step in this

direction was taken in Ref. [28]. In particular, it was there found that the

total charge Qtr
α transferred by the α-th Floquet state is given by

Qtr
α /2e =

τ

�

∂εα(ϕ)

∂ϕ
. (5.29)

Equation (5.29) generalizes (2.18) and (2.19) to the nonadiabatic case.

Furthermore, it establishes a direct link between the quasienergy spec-
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Figure 5.3. SGD to EGD transition in the Cooper-pair sluice: quasienergy spec-
trum and pumped charge. (a) Quasienergy spectrum of the fast-driven
sluice, as a function of the superconducting phase bias ϕ. (b) Steady-state
pumped charge versus ϕ in the vicinity of the quasienergy anticrossing, for
different values of the system-environment coupling coefficient η.

trum and the pumped charge 3.

In Fig. 5.3(a), we plot the numerically exact quasienergy spectrum of the

sluice versus ϕ for a representative choice of parameters. It was obtained

by solving the equation i�∂tU(t) = H(t)U(t) over a period and diagonal-

izing U(τ). Keeping (5.29) in mind, it is natural to correlate constructive

interference [see Fig. 2.9(b)] with the smooth plateaux around ϕ = 2.88,

where the pumped charge vanishes for both Floquet states. Less intu-

itive is the interpretation of the weakly avoided quasienergy crossing at

ϕ = −0.26, for at that point the adiabatic-impulse model [see Section 2.5]

would predict destructive interference, corresponding to a maximum in

the pumped charge. As it turns out, destructive interference is not robust

against nonadiabatic corrections in the supposedly adiabatic sectors, re-

sulting in the opening of a small gap in the quasienergy spectrum [174].

This small gap is also associated to a vanishing pumped charge for each

3Strictly speaking, the transferred charge is the sum of two terms, associated
with the leakage supercurrent (or the dynamic phase) and the pumped current
(or the geometric phase); compare Section 2.2. In the following and for simplic-
ity, we assume that the supercurrent term does not contribute (this amounts to
assuming ideal SQUIDs).
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Figure 5.4. SGD-to-EGD transition in the Cooper-pair sluice: pointer basis.
Steady-state projections 〈nz〉 (full lines) and 〈n⊥〉 (dashed lines) versus ϕ in
a neighborhood of the weakly avoided energy crossing (a), versus η2 (b), and
versus α (c). EGD is attained is the highlighted regions.

Floquet state.

In Fig. 5.3(b), we plot the steady-state pumped charge Qst
p versus ϕ in a

neighborhood of the avoided quasienergy crossing. The sluice is coupled to

a zero-temperature, ohmic environment by the coupling operator S = σz.

For very weak coupling η, a dip is indeed observed in Qst
p . However, as

η is increased, the dip recedes and eventually disappears: the presence

of the environment has stabilized the dynamics against the nonadiabatic

perturbation. This result must be regarded as direct evidence of EGD,

as it implies that the steady-state coherences are not vanishing in the

Floquet basis. A closer look at the steady-state density matrix confirms

this picture. In Fig. 5.4, we plot the parallel and orthogonal components

of the Bloch vector with respect to the Floquet basis. In panel (a), we

show that for a moderate coupling to the environment (η2 = 0.01), EGD

is indeed attained close to the quasienergy anticrossing. In panel (b),
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we show that for a fixed value of ϕ, the transition from SGD to EGD,

signaled by a nonvanishing n⊥, is determined by the coupling parameter

η. Finally, we introduce a family of coupling operators S = ασx+(1−α)σz,

parametrized by α ∈ [0, 1]. In panel (c), we show that in the EGD limit the

pointer basis critically depends on the coupling operator, a characteristic

feature of EGD.

5.3 Lamb shift of a driven quantum system

When evaluating the integrals of the correlation function appearing in the

master equation, the principal-value integrals (5.12) are often neglected.

In an undriven system, they lead to a small (� 1%) renormalization of

the unperturbed energy levels, induced by the system-environment cou-

pling [169]. For this reason, they are referred to as “Lamb shift”, in close

analogy with the shift observed in atomic spectra due to the interaction

between bound electrons and the microwave field [175, 176].

Let us consider the Floquet-Born-Markov master equation in the PSA,

Eq. (5.21). This can be regarded as a Bloch-Redfield-type master equation,

with quasienergies playing the role of energies and “exotic" rates which

do not obey detailed balance. In this spirit, let us write (5.21) as

ρ̇αβ = −i(εα − εβ)ραβ +
∑
γ,δ

[
Rαβγδ + iR̃αβγδ

]
ργδ , (5.30)

where R is the Redfield tensor and R̃ the correction due to the principal-

value integrals (5.12). In the undriven case [169], the correction amounts

to a renormalization of the bare energies: R̃αβγδ = δγαδδβ(ε̃α − ε̃β). In the

driven case, R̃ includes other terms, too. However, there is a good reason

to focus on the terms of the form R̃αβαβ , with α �= β. This class of terms

provides a renormalization of quasienergies, which, albeit small, can be

extremely significant close to degeneracies in the Floquet spectrum.

In Publication IX, we explicitly calculate the environment-induced renor-

malization of the quasienergies, that can be regarded as the Lamb shift of

a strongly driven quantum system. We also show that, in relative terms,

the renormalization can be much larger than what is typically observed

in an undriven system. As an analytically tractable example, we again

consider the semiclassical Rabi model. Finally, we discuss its implemen-

tation in superconducting circuits, in particular, the Cooper-pair box and

the Cooper-pair sluice.
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The correction Ẽαβ to the quasienergy gap Eαβ = εα − εβ is given by

Ẽαβ =
1

π�

∑
μ,k

[
G+(Δμα,k)|Sμα,k|2 + G−(Δβμ,k)|Sβμ,k|2

]
(5.31)

For an Ohmic spectral density of the form (5.8) with s = 1 and at zero tem-

perature, the integrals (5.12) can be reduced to the exponential integral

Ei(x) = −
∫∞
x

e−t

t dt. For a two-level system, the correction reads

Ẽ12 =
η2

π

∑
k

ωc g(Δ21,k)|S21,k|2 (5.32)

where g(x) = x [Ei(x) e−x + Ei(−x) ex]. If ωc is much larger than all char-

acteristic energy scales of the driven system, then we can approximate

g(x) ≈ 2x ln(|x|) and

Ẽ12 =
η2

π

∑
k

[
Δ21,k|S21,k|2 ln

|Δ21,k|
ωc

]
. (5.33)

Equation (5.33) can be readily applied to the Rabi model in the case of

transverse coupling (S = σx) and longitudinal coupling (S = σz). The

behavior of the quasienergy gap in each case is analyzed in Fig. 5.5 for

representative parameter values. The left panels refer to S = σx and

the right panels to S = σz. In panels (a,b), we compare the renormal-

ized quasienergy gap E12 + Ẽ12 (solid lines) to the bare quasienergy gap

E12 (dashed lines). In particular, for transverse coupling, we find a pro-

nounced asymmetry with respect to negative and positive detuning. In

panels (c,d), we plot the ratio Ẽ12/E12. In both cases, the ratio is much

larger than the few-percent value observed, e.g., in [177]. Even if we de-

rived this result for an ohmic environment, similarly high ratios can be

found for a quasi-single-mode reservoir; see Publication IX, Supplemental

Material. Finally, in panel (e,f), we plot E12+Ẽ12 and E12 versus the driving

amplitude g for a slightly blue-detuned drive (Δ/E = 0.005). Interestingly,

the dependence of the renormalized gap on g is nonmonotonic for the case

S = σx, a clear-cut prediction to be tested against an experiment.

Strongly driven superconducting circuits, in particular Cooper-pair boxes,

are natural candidates for studying these effects. Due to their large dipole

moment, Cooper-pair boxes are coupled to their environment over a broad

range of frequencies. Feasible experimental conditions for observing the

quasienergy renormalization are discussed in more detail in Publication

IX. As a matter of fact, many recent experiments on Cooper-pair boxes

[178, 179, 180, 181] can be interpreted in terms of probe spectroscopy of

quasienergy states [182]. We believe these set-ups would provide a conve-

nient testbed for our approach.
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Figure 5.5. Lamb shift of a driven quantum system. Quasienergy renormalization
(Lamb shift) in the Rabi model with transverse coupling (S = σx, left) and
longitudinal coupling (S = σz, right). The environment is an Ohmic bath
with cutoff frequency ωc = 60E and coupling coefficient η2 = 0.1. (a,b) Renor-
malized quasienergy gap E12 + Ẽ12 (solid lines) and bare quasienergy gap
E12 (dashed lines) versus normalized detuning Δ/E, for two different driving
amplitudes. (c,d) Corresponding relative strength Ẽ12/E12 of the Lamb-shift
correction. (e,f) Renormalized (solid) and bare (dashed) quasienergy gap ver-
sus the normalized driving amplitude g/Δ for a slightly blue-detuned drive
(Δ/E = 0.005).
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5.4 Heat-exchange statistics in driven quantum systems

In the previous sections, we analyzed the influence of the environment

on the dynamics of a periodically driven system. This scenario can also be

considered from a thermodynamical perspective: the system is acted upon

by an external force that does work on it while exchanging energy with a

heat bath. In Publication X, we take the “side” of the environment as

we study the statistics of energy exchanges between a periodically driven

quantum system and a heat bath. By combining a generalized master

equation formalism [128] with Floquet theory [65], we formally derive the

characteristic generating function of the distribution, from which all the

cumulants of the energy distribution can be derived. Furthermore, in the

long time limit, we explicitly write down the full probability distribution

in a general form. By highlighting the contribution of each individual en-

ergy exchange, the full distribution provides us with a deeper insight into

the thermalization process. We illustrate these concepts by applying them

to the semiclassical Rabi problem and find that different coupling opera-

tors S result in very different energy-exchange processes. Our formalism

can be straightforwardly generalized to consider multi-level systems and

multiple heat baths; as such, it could be used to study the performance of

quantum heat engines [23].

Generalized master equation and energy-exchange distribution

We consider the same setting as in Section 5.1, defined by the Hamilto-

nian (5.1). Our quantity of interest is the probability density distribution

P (Q, t) for the environment to exchange the amount of energy Q between

times 0 and t. This is given by

P (Q, t) =
∑
e1,e2

δ(e2 − e1 −Q)p[e2; e1]p[e1] , (5.34)

where p[e2; e1] is the conditional probability that a measurement of HB

gives e2 at time t when it gave e1 at time t0 and p[e1] is the probability to

measure e1 at time t0. Introducing the projector Pej on the j-th state of

the reservoir of energy ej and using the property P 2
ej = Pej , we have

p[e2, e1]p[e1] = Tr[Pe2U(t)Pe1ρT (0)Pe1U
†(t)Pe2 ]

= Tr[U †(t)Pe2U(t)Pe1ρT (0)Pe1 ].
(5.35)

where /rhoT is the total (system+environment) density matrix and U(t) is

the evolution operator generated by HT (t). It is convenient to introduce
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the characteristic generating function

G(λ, t) ≡
∫ ∞

−∞
dQP (Q, t)eiQλ =

∑
e1,e2

p[e2; e1]p[e1]e
iλ(e2−e1) , (5.36)

so that the moments of Q are given by

〈Qn(t)〉 = (−i)n dnG(λ, t)

dλn

∣∣∣∣
λ=0

. (5.37)

If we assume the initial total density matrix to be factorized as ρT (0) =

ρ(0)⊗ρB(0) (as we did in Section 5.1), then all projectors Pej commute with

ρT (0), so that the initial measurement of HB does not change the sub-

sequent dynamics. After noticing that
∑

ej
Peje

±iλej = e±iλHR , we write

(5.36) as

G(λ, t) = Tr[U †(t)eiλHRU(t)e−iλHRρT (0)] (5.38)

and finally as

G(λ, t) = Tr[ρλT (t)] , (5.39)

where

ρλT (t) = Uλ/2(t)ρT (0)U
†
−λ/2(t) (5.40)

and

Uλ(t) = eiλHRU(t)e−iλHR (5.41)

satisfies the equation of motion

idUλ(t)/dt = Hλ(t)Uλ(t) , (5.42)

with Hλ(t) = eiλHRHT (t)e
−iλHR .

Starting from (5.40), we derive a generalized master equation for ρλ =

TrB[ρ
λ
T ]. Mutatis mutandis, the derivation follows that presented in Sec-

tion 5.1. Notice that Uλ is not a unitary operator, so that (5.3) must be

replaced by

i�
d

dt
ρ̃λT (t) = −i

[
Ṽλ(t)ρ̃

λ
T (t)− ρ̃λT (t)Ṽλ(t)

]
. (5.43)

The general result in the Born-Markov approximation, to be compared to

(5.4), is

∂

∂t
ρ̃λ(t) = −

∫ ∞

0
dτ

[
g(τ)S̃(t)S̃(t− τ)ρ̃λ(t)− g(−λ+ τ)S̃(t− τ)ρ̃λ(t)S̃(t)

−g(−λ− τ)S̃(t)ρ̃λ(t)S̃(t− τ) + g(−τ)ρ̃λ(t)S̃(t− τ)S̃(t)
]

(5.44)

As expected, (5.4) is recovered from (5.44) in the limit λ→ 0.
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Application of the Floquet theory is also straightforward. We will present

the result for a two level system and in the FSA. In the FSA, the popu-

lations ρλαα = 〈Ψα|ρλ|Ψα〉 are decoupled from the coherences and satisfy a

vector equation of the form

�̇ρλ = A�ρλ , (5.45)

where �ρλ = {ρλ11, ρλ22}. After recalling the definitions (5.18) and defining

Aλ
αβ =

∑
k

e−iλΔαβ,kaαβ,k , (5.46)

we can write the matrix A as

A =

⎛
⎝Aλ

11 −A11 −A21 Aλ
12

Aλ
21 Aλ

22 −A22 −A12

⎞
⎠ . (5.47)

Equations (5.45) and (5.47) are the starting point of the analysis of Publi-

cation X.

General results

Even before solving (5.45), the knowledge of ρ̇λ can be used to evaluate

the mean heat power 〈Q̇〉 = d 〈Q〉 /dt transferred to the reservoir at any

time:

〈Q̇〉 = −
∑
α,β,k

Δαβ,k aαβ,k ρββ . (5.48)

In particular, at dynamic steady state, one has

〈Q̇〉 = −1

2

∑
k

(kΩ) (a11,k + a22,k)−
1

A12 +A21

∑
h,k

(kΩ+ hΩ) a12,ka21,h .

(5.49)

Equation (5.49) can be used to classify open driven quantum systems into

two categories: those that exchange heat at steady-state, and those that

do not. In general and in contrast to the undriven case, a driven sys-

tem will keep exchanging energy with the environment unless its dressed

(Floquet) states are decoupled (for instance, by symmetry) from the noise.

This result was also obtained in Refs. [183, 184] by using a standard mas-

ter equation approach and associating the relaxation processes to the dis-

sipated heat.

By solving (5.45), we get a formal expression for the characteristic gen-

erating function:

G(λ, t) = cλ−e
ξ−(λ)t + cλ+e

ξ+(λ)t , (5.50)

where ξ±(λ) are the eigenvalues of A and cλ± the projection of the initial

density matrix ρ(0) onto the corresponding eigenvectors vλ±, normalized so
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that Tr vλ± = 1. Many properties of the heat distribution can be obtained

from (5.50); for a detailed analysis, see Publication X. In particular, the

first few moments of the distribution can be straightforwardly calculated.

Furthermore, the explicit knowledge of G(λ, t) allows us to retrieve the

full P (Q, t) at any given time. This requires inverting the Fourier trans-

form, a task which in general must be performed numerically. However,

some analytical insight can be gained in the long-time limit. We first

notice that �e ξ−(λ) is always negative, while �e ξ+(λ) is negative every-

where except at λn = nτ , n ∈ Z, where it vanishes. In the long-time limit,

G(λ, t) thus localizes at a countable number of values. By expanding ξ+(λ)

up to the second order in λ− λn (Gaussian approximation), we can invert

the Fourier transform analytically and find that

P (Q, t) = w(Q, t)Ω
∑
k

[
p↓δ(Q+ ε1 − ε2 + kΩ) + p↑δ(Q+ ε2 − ε1 + kΩ)

+ (1− p↑ − p↓)δ(Q+ kΩ)
]
,

(5.51)

where p↑ = A21/(A21 +A12)ρ11(0), p↓ = A12/(A21 +A12)ρ22(0) and

w(Q, t) =
1√
2π

1√
2btΩ

exp

[
−(Q− atΩ)2

4btΩ2

]
, (5.52)

with real coefficients a = −iξ(1)+ (0) ≥ 0 and b = −1/2ξ(2)+ (0) ≥ 0. Eqs. (5.51)

and (5.52) suggest an insightful interpretation of the energy-exchange

process. The delta functions account for the fact that the exchanges take

place only in multiples of Δαβ,k. This results from energy being available

in photons of energy Ω, the drive frequency, and ε2 − ε1, the dressed en-

ergy gap of the driven system. Furthermore, they tell that the system is

either found in the same Floquet state or has undergone a transition up-

wards (downwards), with probability 1 − p↑ − p↓ and p↑ (p↓), respectively.

On the other hand, the total probability that a certain amount of energy

has been exchanged is dictated by the weight function w(Q, t). An ap-

pealing feature of (5.51) is that it clearly shows how the heat-exchange

distribution “builds up” on individual exchanges of well-defined energy.

One should keep in mind, however, that it was derived under the assump-

tion that G(λ, t) is localized at the nodes λ = nτ . This assumption holds

true only in the limit where many energy quanta have been exchanged.

For very long times, t� 1/b, one can neglect the discretization due to the

Dirac combs in (5.51) and find that P (Q, t) ≈ w(Q, t).
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Figure 5.6. Rabi model: dissipated energy for transverse coupling. (a) PDD at
t/τ = 80 (purple) and t/τ = 700 (blue). Inset: triplets at frequencies kΩ,
and kΩ±E . (b) Effect of temperature and detuning on w(Q, t).a Temperature
is changed from kBT = 0.1ω to kBT = 3ω. The detuning is changed from
Δ = 0.02ω to Δ = 0.3ω. (c) Mean value Q̄ (blue), variance σ2 (purple) and
skewness κ (yellow) of the PDD as a function of the detuning Δ. For all
panels, the initial state is the DSS, t/τ = 700, g = 0.1ω, Δ = 0.02ω, ϕ = 0,
kBT = 0.1ω and η = 0.01.
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Example – the Rabi model

Let us consider, once more, the Rabi model with the coupling operators

S = σx and S = σz. When S = σx, (5.48) tells that the heat current is,

in general, nonvanishing. In physical terms, the system is continuously

“pumped” by the drive and emits photons to the environment, resulting

in a net heat flow to the environment. The full probability distribution

is shown in Fig. 5.6(a) at two different times, starting from the dynamic

steady state. It was obtained from the analytical solution (5.50) by nu-

merically inverting the Fourier transform. The structure of the PDD is

the same as in (5.51): a series of Dirac combs modulated by an envelope

which moves in time. As best seen in the Inset, the spectrum of possible

energies is composed by symmetric triplets centered at integer multiples

of Ω and spaced by an amount ΩR. This can be regarded as a calorimetric

characterization of the well-known Mollow triplet observed in quantum-

optics experiments [185, 186, 187]. Notice that the envelope function of

the PDD is manifestly non-Gaussian at early times.

In Fig. 5.6 (b,c), we show how the long-time-limit distribution is affected

by changes in the drive frequency and the temperature of the environ-

ment. In panel (b), we plot the Gaussian envelope function w(Q, t) for

three representative cases. In passing from low to high temperature,

the mean value of the distribution is barely affected, while the variance

strongly increases. The fact that temperature has little influence on the

average dissipated heat is related to the fact that – differently from an

undriven system – the transition rates Aαβ do not satisfy the detailed

balance. In contrast, the variance of the distribution depends on the tem-

perature, due to the fact that a higher-temperature environment leads to

stronger noise effects. In passing from a resonant to a red-detuned drive,

the PDD shows reduced average and variance because of the reduction

of the energy injected in the system that can then be dissipated. This

is confirmed by the behavior of the central moments as a function of the

detuning Δ, shown in panel (c).

Finally, let us consider the noise operator S = σz. In this case, (5.49)

tells that the mean heat power vanishes at dynamic steady state. This is

due to the symmetry of the problem, which forbids transitions with en-

ergy exchange nΩ, thereby causing the drive and the environment to be

effectively decoupled. This is confirmed by the full solution of the master

equation, which is formally equivalent to that of an undriven system. As
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Figure 5.7. Rabi model: dissipated energy for longitudinal coupling. PDD at dif-
ferent times for longitudinal coupling (S = σz).

a result, the amount of dissipated heat is much smaller (a single transi-

tion is allowed) and depends critically on the initial state. In this sense,

the distribution can be regarded as a calorimetric fingerprint of decoher-

ence, which carries information on the initial state. A sample distribution

is shown in Fig. 5.7, at different times and with |0〉 as the initial state.

More details can be found in Publication X, where we also show that the

distribution can be sensitive to the phase of the drive and that its mean

value can be negative, meaning that the system is more likely to absorb

energy and the environment is more likely to release it.

Outlook

Before turning to experimental implementations, we list some possible

extensions of this work. First of all, the FSA could be replaced by a PSA, at

the only expense of more complicated analytical expressions. This would

make it possible to address the EGD regime described in Section 5.2 from

the point of view of energy exchanges. Furthermore, several techniques

developed in the context of the full-counting statistics may be adapted to

the present formalism, also thanks to the fact that the Floquet picture

turns a time-dependent problem into a time-independent one (at least,

in the limits described in Section 5.1). Finally, it would be interesting

to extend this formalism to nonmarkovian environments, perhaps in the
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spirit of Refs. [188, 189].

Our predictions could be tested in a variety of physical systems, for ex-

ample, superconducting quantum bits embedded in a resistive environ-

ment [130, 15] and/or integrated in a circuit-quantum-electrodynamics

architecture [190]. In any case, the availability of a fast microcalorimeter

of the type discussed in Chapter 4 is indispensable. For example, let us

take the proposal of Ref. [15], discussed in Section 4.1. Voltage fluctua-

tions across the resistor induce fluctuations in the potential on the island

(charge noise), so that the coupling operator is S = σz. The correspond-

ing spectral density can be evaluated by taking into account the circuit of

Fig. 4.1. The result is an ohmic spectral density with Lorentzian cutoff, as

described by (5.8) with s = 1. The coupling strength is η2 = Reff/RQ and

the cutoff frequency is ωc = 1/(ReffCeff), where we have introduced the

quantities Reff = (Cg/CΣ)R, Ceff = CJCΣ/Cg, and RK = �/e2. Realistic

experimental parameters are R = 200Ω, Cg = 500 aW, CJ = 1 fF, EC =

e2/(2CΣ) = kB · 1K. Then the maximum energy of the emitted photons is

4EC = h · 80GHz, well below the cutoff frequency ωc/(2π) = 1.6THz. The

coupling parameter is η2 = 5× 10−4, well in the weak coupling regime.

The characteristic relaxation rate due to the presence of the resistor is

of the order of 1/(η2EC) = 100 ns. This time must be compared with the

intrinsic relaxation time of the Cooper-pair box (typically, a few hundred

ns), to determine which fraction of the emitted photons are collected by

the resistor. Ideally, one would like this fraction to approach unity, im-

plying that decoherence in the Cooper-pair box is essentially due to the

presence of the resistor.

The possibility to control the Cooper-pair box on much faster time scales

(tens of ns) than the thermal relaxation time of the resistor (tens of μs)

[191] suggests that energy distributions such as the one shown in Fig. 5.6

could be measured by driving the system over many periods within the

thermal relaxation time, thereby allowing the energy of many photons to

“pile up” in the resistor. However, resolving the energy peaks of Fig. 5.6

still requires good single-shot fidelity for photons of energy �Ω, which, in

turn, calls for a substantial improvement from Publication XI.
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6. Experimental techniques

In this chapter we give a brief summary of the most important experimen-

tal techniques used in this work.

6.1 Device fabrication

The samples measured in this thesis were fabricated using standard mi-

cro and nanofabrication processes, including optical and electron-beam

lithography, thermal and electron-beam metal evaporation, thermal an-

nealing, wet etching, in-situ oxidation, and liftoff. The devices described

in Chapter 3 were fabricated in the cleanroom of the NEST laboratories,

Pisa. Those described in Chapters 2 and 4 were fabricated in the Mi-

cronova Nanofabrication Center, Espoo, a research facility shared by VTT

and Aalto University.

Quantum dots and quantum point contacts in 2DEGs

We start from a two-inch wafer of Si-doped GaAs/AlGaAs heterostructure,

grown by molecular-beam epitaxy (MBE) in the TASC National Labora-

tory, Trieste. The 2DEG is defined 100 nm below the surface. The carrier

density and mobility, measured in an etched Hall bar with the Van der

Pauw method and by Shubnikov-de Haas oscillations, typically exceeded

1× 1011 cm−2 and 1× 106 cm2V−1s−1, respectively.

We first cleave the wafer into 2mm× 2mm chips, each chip accommo-

dating four samples. As the first step, we define the “mesa”, which de-

limits the 2DEG regions to be contacted. We draw the mesa pattern,

together with alignment markers, using either optical lithography or e-

beam lithography. In the latter case, it is convenient to use a negative

resist to reduce exposure time. After exposure and development, we soak

the chip in a H2O2 : H3PO4 : H2O solution for 60 s, followed by a stop in
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deionized (DI) water. The solution etches the exposed area at an average

speed of 100 nm/min.

As the next step, we produce Ohmic contacts to the 2DEG. We define

the contact area by optical-beam lithography. We then deposit 10 nm Ni,

200 nm AuGe, 10 nm Ni and 100 nm Au, by thermal evaporation. We then

perform thermal annealing at 460 ◦C for 90 s in a vacuum chamber with

constant N2 flow.

As the final fabrication step, we pattern the gate electrodes that are

used for lateral confinement of the 2DEG; in particular, these electrodes

are used to define QDs and QPCs. This step comprises e-beam lithography

followed by thermal evaporation and liftoff. We use standard poly(methyl

methacrylate) (PMMA) as the e-beam resist, spun and baked so as to ob-

tain a thickness of 80 to 100 nm. At 30 kV extraction voltage, a typical dose

required for patterning a 100 nm wide feature is around 250μCcm−2. As

for the deposited material, we achieve good result using either 30 nm Al or

5 nm Ti followed by 25 nm Au. A quick plasma ashing process (“descum”)

can be performed after development and prior to metal deposition to clean

the surface from resist remnants and other organic contaminants.

After preparation, the samples are accommodated in a dual-in-line pack-

age and wedge-bonded to the contact pins using Al wire.

Superconducting and hybrid tunnel junctions

We realize tunnel junctions using the standard shadow evaporation (or

“Dolan bridge”) technique and in-situ oxidation of Al in between subse-

quent evaporation steps. The key steps are summarized in Fig. 6.1. We

start our process from a commercial four-inch silicon wafer. We use P-type

doped wafers with 5 to 10Ωcm sheet resistance. The wafers are single-side

polished and 300 nm thermal oxide has been grown on the surface.

Most of the tunnel-junction devices measured in this thesis can be fabri-

cated with a single lithographic step. In order for the shadow evaporation

technique to succeed, it is important to achieve a good undercut; that is,

the profile of the developed resist should look like in Fig. 6.1(c). For this

reason, we employ a multi-layer spin-coating technique. We first spin-coat

the highly sensitive copolymer poly(methylmetacrylate-methacrylic acid)

[P(MMA-MAA)]. The spinning/baking process can also be repeated two or

three times to achieve the desired thickness, which can vary from a few

hundred nm to a couple μm. As the last layer, we deposit a 100 nm thick

layer of PMMA. In typical conditions and with extraction voltages up to
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Figure 6.1. The shadow evaporation technique. After [192].

30 kV, the multi-layer technique alone guarantees a good result for depo-

sition angles up to 10◦. This cannot be taken as a general rule, however,

as the results strongly depend on the geometry of the pattern. Further-

more, the exposure of the copolymer is strongly reduced at higher extrac-

tion voltages (100 kV), due to reduced electron backscattering. For high

extraction voltages, we obtain good results by adding an exposure step

for the area surrounding the small features to be patterned, using 10 to

20% of the standard dose. We also obtain acceptable results by using a

selective remover for the copolymer (methyl-glycol diluted in methanol).

The evaporation and oxidation steps are performed in an e-beam evap-

orator where the following materials are in use: Ag, Al, Au, AuPd, Cu,

and Ti. An Ar plasma gun is available in the evaporator chamber. We

use it for in-situ ashing before depositing the material. This additional

step improves reproducibility and significantly eases the liftoff. A typical

pressure in the evaporator during material deposition is 1× 10−7mbar.

We use oxidation pressures ranging from 0.2 up to 20mbar, with an oxi-

dation times of a few minutes. In general, higher oxidation pressures are

required if the Ar plasma is used. Using 1mbar oxidation pressure for

2 minutes, we obtain for our Al/AlOx/Cu junctions a resistance per unit

area around 500Ωμm2. The liftoff is typically done by leaving the sample

in lukewarm (30 ◦C) acetone for 1 h.

After preparation, the samples are wedge-bonded to a sample stage us-

ing Al wire.
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6.2 Measurement set-up

All measurements performed in this thesis are low-temperature electronic

measurements. The samples were cooled down in He-3 cryostats (Oxford),

down to 250mK; in plastic dilution refrigerators that we build and main-

tain in-house, down to 50mK; and in commercial dilution refrigerators

(Bluefors, Oxford), with 20mK measured and 8mK nominal base temper-

ature. We will not discuss cryogenic techniques here; for a review, see

[165]. Instead, we will briefly describe the electrical set-ups for each type

of experiment.

Quantum dot thermometry

In quantum-dot thermometry experiments, the measurements are per-

formed at low frequency. Battery-powered digital-to-analog converters

(DACs) are used as clean voltage sources for the gates. Two-probe trans-

port measurements are performed by applying a source-drain voltage be-

tween one probe and the common ground and reading out the current with

a transconductance amplifier (or “current-to-voltage converter”). Differ-

ential conductance measurements are performed by phase-sensitive de-

tection using a lock-in amplifier (Stanford Research SR830), using an ex-

citation frequency of a few Hz and excitation amplitude in the linear re-

sponse regime. In the set-up of Publication VIII, the measurement wiring

consisted of constantan twisted pairs all the way down to the 3He pot. The

lines were filtered by π filters at room temperature and RC filters at the
3He pot. In the final measurement in the dilution fridge, copper-powder

filters were also used at the mixing chamber. A similar measurement set-

up for transport experiments in quantum dots and quantum point con-

tacts is described in more detail in several PhD theses from Delft Univer-

sity; see, for instance, [193].

Cooper-pair pumping

The measurements of Publication IV required three custom-shaped pulses

to be sent to the sample at frequencies in the range of 10 to 100MHz. One

“gate pulse” was sent to the island gate and two “flux pulses” to one end of

the on-chip coils used to control the two SQUIDs (see Fig. 2.2). The other

end of the on-chip coils was grounded at the sample stage. The pulses

were generated using arbitrary waveform generators (AWGs) with 1Gs/s
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(Tektronix AFG3252) and 12Gs/s sampling rate (Tektronix AWG7122).

Bias tees were used so as to decouple the dc and the rf components of

the pulses. In this way, it was possible to isolate the noisy generators by

using in-and-out dc blocks while using battery-powered sources for pro-

viding the dc voltages. Transport measurements across the pump were

performed in the standard, two-probe setting.

The wiring was done differently for the dc and rf lines. For the dc lines,

we used manganin twisted pairs down to the 2 K stage, followed by at

least 2m lossy coaxial line (Thermocoax) and 100Ω surface-mount resis-

tors. The lossy coaxial line provides a strong attenuation at frequencies

above 1GHz. It also provides around 0.5 nF distributed capacitance and

200Ω resistance, thereby realizing an RC filter with cutoff frequency of a

few MHz. The rf lines were attenuated at different temperature stages

and filtered with a commercial multi-stage LC filter at the mixing cham-

ber. The voltages applied to the gate were of the order of a few mV and

the currents flowing in the coils of the order of 200μA.

Fast thermometry

The measurements of Publication XI also required a combination of dc

and rf signals to be sent to the sample. In addition, they required a fast

readout line to probe the resonator. Our current set-up for fast thermom-

etry measurements is depicted in Fig. 6.2. A resonant tone is sent via

the input line and the transmittance is probed at the output line. The

bias point of the NIS junction can be tuned by applying a dc voltage over

the bias line. Finally, custom-shaped heating pulses can be sent through

the heating line. The rf input/output signals are handled by suitable PCI

extensions for instrumentation (PXI) modules from Aeroflex, including a

local oscillator, a signal generator and a wideband rf digitizer. The dc volt-

age bias is applied by a battery-powered DAC. Finally, the heating pulse

is generated by an AWG. All the rf instrumentation is isolated from the

ground of the fridge by using in-and-out dc blocks (not shown).

As the four lines serve different purposes, different choices have been

made for each of them. The dc line consists of a 2m long Thermocoax wire

going directly from room temperature down to the mixing chamber. Heat

sinking is achieved by clamping the wire at different temperature stages

using copper clamps. At the mixing chamber, the wire is connected via

a MCX-type connector to another 25 cm long Thermocoax wire, whose in-

ner and outer conductor are directly soldered to the sample stage and to
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the printed circuit board of the sample stage, respectively. The sample

stage is an indium-sealed, rf-tight copper box. As for the rf lines, different

types of coaxial cables are used at different temperature. The choice of

the material is a tradeoff between low thermal conductance and low at-

tenuation, which is particularly important for the output line. We have

installed Be-Cu coaxial wires down to 2 K and superconducting Nb wires

from 2 K down to the mixing chamber. When connecting parts of the

circuit at the same temperature, we use standard Cu cables. Our noise-

reduction strategy for the heating and input lines relies mostly on heavy

attenuation and partly on a commercial high-rejection LC filter mounted

at the mixing chamber. 1 By contrast, in the output line we use two

circulators in series to isolate the output port of the resonator from the

higher-temperature stages. Each circulator provides around 20 dB isola-

tion. We have also installed a low-temperature amplifier (Quinstar) at the

2K plate. It has a gain of at least 40 dB between 550 and 650MHz and a

nominal noise temperature of 6.5K.

1Copper-powder or Eccosorb filters would be a valuable addition to our set-up.
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Figure 6.2. Experimental set-up for fast thermometry measurements. See the text
for details.
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