
9HSTFMG*afijig+ 

ISBN 978-952-60-5898-6 
ISBN 978-952-60-5899-3 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Electrical Engineering 
Department of Radio Science and Engineering 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-D

D
 15

5
/2

014 

 

Juhani K
ataja 

R
eliable and E

fficient N
um

erical M
ethods for T

im
e H

arm
onic E

lectrom
agnetic D

esign P
roblem

s 
A

alto
 U

n
ive

rsity 

Department of Radio Science and Engineering 

Reliable and Efficient 
Numerical Methods for 
Time Harmonic 
Electromagnetic Design 
Problems 

Juhani Kataja 

DOCTORAL 
DISSERTATIONS 



Aalto University publication series 
DOCTORAL DISSERTATIONS 155/2014 

Reliable and Efficient Numerical 
Methods for Time Harmonic 
Electromagnetic Design Problems 

Juhani Kataja 

A doctoral dissertation completed for the degree of Doctor of 
Science (Technology) (Doctor of Philosophy) to be defended, with 
the permission of the Aalto University School of Electrical 
Engineering, at a public examination held at the lecture hall S1 of 
the school on 24 October 2014 at 12. 

Aalto University 
School of Electrical Engineering 
Department of Radio Science and Engineering 
Computational electromagnetics 



Supervising professor 
Keijo Nikoskinen 
 
Thesis advisor 
Pasi Ylä-Oijala 
 
Preliminary examiners 
Mats Gustafsson, Lund University, Sweden 
Jussi Rahola, Optenni Oy, Finland 
 

Aalto University publication series 
DOCTORAL DISSERTATIONS 155/2014 
 
© Juhani Kataja 
 
ISBN 978-952-60-5898-6 
ISBN 978-952-60-5899-3 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 (printed) 
ISSN 1799-4942 (pdf) 
http://urn.fi/URN:ISBN:978-952-60-5899-3 
 
Unigrafia Oy 
Helsinki 2014 
 
Finland 



Abstract 
Aalto University, P.O. Box 11000, FI-00076 Aalto  www.aalto.fi 

Author 
Juhani Kataja 
Name of the doctoral dissertation 
Reliable and efficient numerical methods for time harmonic electromagnetic design problems 
Publisher School of Electrical Engineering 
Unit Department of Radio Science and Engineering 

Series Aalto University publication series DOCTORAL DISSERTATIONS 155/2014 

Field of research Electromagnetics 

Manuscript submitted 12 December 2013 Date of the defence 24 October 2014 

Permission to publish granted (date) 28 February 2014 Language English 

Monograph Article dissertation (summary + original articles) 

Abstract 
This dissertation studies numerical methods for solving time-harmonic Maxwell's equations. 
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1. Introduction

Maxwell’s equations [1, 2] provide us with a really good theory explaining

and modelling electromagnetic interactions, which clearly are the most

prevalent physical phenomena in our daily lives. The theory predicts

elegantly how electric charges and currents interact in the presence of

medium.

However elegant the equations may be, they lead to very complicated

mathematical models, even after rather striking idealisations, such as

linearisation, homogenisation of the material or restriction of the compu-

tational domain of interest with boundary conditions. The medium and

the shape of the domain is what makes the equations so complicated and

just that–the need to model general media and domains–calls for computer

aided numerical methods.

Whether or not a specific method is effective to a given problem is de-

termined by efficiency and reliability of the method. That is to ask: Does

the method provide a solution accurate enough within a time frame short

enough? Lately, the number of algorithms, not forgetting the concrete solu-

tion codes, for which the answer is yes has increased dramatically. In fact,

the advance in numerical solution methods together with development of

computers has had a major impact in engineering and design.

In the field of computational electromagnetics there are three funda-

mentally different approaches to solve Maxwell’s equations, each excelling

in their own domain of feasible problems: finite element method, finite-

difference time-domain method and boundary element method. Although

the finite element method is a general procedure to discretize variational

problems, in computational electromagnetics it usually refers to a class

of methods where a variational problem directly derived from Maxwell’s

equations is discretized. In contrast, in the boundary element methods the

problem is first reduced to an integro-differential equation on the boundary

11



Introduction

of the domain before discretization by finite element method or some other

scheme. The finite-difference time-domain method, on the other hand, re-

places all the derivatives appearing in Maxwell’s equations with difference

approximations. This thesis contributes to boundary element methods and

finite element methods in computational electromagnetics.

In boundary element methods, shape optimization techniques are de-

veloped further: A physically reasonable shape parametrization for wire

dipole antennas is developed and applied to optimization of directivity and

input impedance. Also the computation of the shape derivatives appearing

in the discretized electric and magnetic field integral equation is addressed.

In particular, the change of variables method [3] is applied in calculating

a closed-form expression for the derivatives of the system matrices. The

motive for computing the shape derivative comes from the steepest descent

method of non-constrained optimization: at each iteration, the deriva-

tive gives further information in which direction the next iterate should

be. Furthermore, when a designer has arrived to some particular design,

the shape derivative can be used to efficiently calculate its sensitivity to

infinitesimal perturbations of the geometry.

The finite element method is contributed by extending least squares

finite element method and especially first order system LL∗ method [4, 5]

to time-harmonic Maxwell’s equations. Furthermore, a link is drawn

between the first order system LL∗ method and the extended Maxwell’s

equations proposed by Picard in 1985 [6]. The developed finite element

methods exhibits good stability properties at static frequency limit.

The thesis is organized as follows. After the introduction, Maxwell’s

equations, the extended equations proposed by Picard and boundary con-

ditions are presented in order to fix notation. In Chapter 3 boundary

element methods for electromagnetic scattering problems are reviewed.

After that, in Chapter 4, motivational background of shape optimization in

electromagnetics for the Publications I–IV is discussed. Following that, in

Chapter 5 the LL∗ least squares finite element method is reviewed briefly

together with the extended Maxwell’s equations. Finally, a short summary

of each of the publications is presented.
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2. Maxwell’s equations

The macroscopic Maxwell’s equations describe the connection between

scalar charge and vectorial current densities ρ and J, and electric and

magnetic fields and flux densities E, H, D and B, each being a vector field

on R
3 [7]. The equations are

∇×H− ∂

∂t
D = J (2.1)

∇ ·D = ρ (2.2)

∇×E+
∂

∂t
B = 0 (2.3)

∇ ·B = 0 (2.4)

The charge and current must satisfy the conservation equation

∇ · J+ ∂

∂t
ρ = 0, (2.5)

from which actually (2.1) and (2.2) follow by interpreting the charge and

current densities as differential 3-forms in 4-dimensional space-time [8].

The force exerted to a particle having charge q and velocity v is deter-

mined by the Lorentz force equation

F = q(E+ v ×B) (2.6)

On a microscropic level, the electric and magnetic fields E and B are

related to the flux densities D and H by the permittivity and permeability

of vacuum, denoted by ε0 and μ0, respectively. The relation is linear in the

classical electrodynamic theory [7]:⎧⎪⎨
⎪⎩
D = ε0E

B = μ0H,
(2.7)

The values for the permittivity and permeability of vacuum are

ε0 = 8.854 187 8 · · · × 10−12
As

Vm
and (2.8)

μ0 = 4π · 10−7 Vs

Am
. (2.9)
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Maxwell’s equations

On the other hand, the relation between averaged macroscopic fields can

be very complicated, e.g. non-linear, non-isotropic or even hysteritic, such

as in many ferromagnetic materials. Thus, the dependency is often written

in a general form: ⎧⎪⎨
⎪⎩
D = D(E,H)

B = B(E,H).
(2.10)

In isotropic linear non-dispersive medium the fields and flux densities

relate as ⎧⎪⎨
⎪⎩

D = εE and

B = μH,
(2.11)

where ε and μ are scalar quantities. In this dissertation, material relation

given by (2.11) is assumed.

Taking Fourier transform in time from (2.1)–(2.4), (or assuming sinu-

soidal time behaviour) Maxwell’s equations for the time-harmonic fields

are

∇×H+ iωεE = J (2.12)

∇ · εE = ρ (2.13)

∇×E− iωμH = 0 (2.14)

∇ · μH = 0, (2.15)

where i is the imaginary unit and ω is the angular frequency given, in

terms of frequency f , by ω = 2πf .

When the frequency is not zero, the equations (2.13) and (2.15) follow

from (2.12) and (2.14). Thus, it suffices to consider the reduced time-

harmonic system⎛
⎝
⎡
⎣ 0 ∇×
−∇× 0

⎤
⎦+

⎡
⎣iωε 0

0 iωμ

⎤
⎦
⎞
⎠
⎡
⎣E
H

⎤
⎦ =

⎡
⎣ J

M

⎤
⎦ , (2.16)

where M is a fictitious magnetic current. This system is the basis for

boundary integral equations discussed in Section 3.3.

However, the principal part, i.e. the part having highest order derivatives,

of the operator equation appearing in (2.16) has an infinite dimensional

nullspace consisting of conservative fields. Thus one would expect that at

the limit ω → 0 all numerical algorithms based on (2.16) become unstable.

Such a low-frequency breakdown phenomenon is indeed a concern in both

boundary integral equations [9, 10] and in finite element methods [11].

14



Maxwell’s equations

The low-frequency breakdown can be circumvented in the operator level

by inspecting the extended Maxwell’s equations [6, 12, 13]. To that end,

the field variables are normalized:

Ê =
√
εE, Ĥ =

√
μH, Ĵ =

√
μJ, and ρ̂ =

1√
ε
ρ. (2.17)

Substituting these in (2.12)–(2.15) yields a system depending only on the

wave-number κ = ω
√
εμ. Moreover, in certain formulations of boundary

integral equations, the normalized fields yield more stable numerical

systems as the (normalized) electric and magnetic are of same scale [10].

The circumflex is omitted from the normalized field variables whenever it

does not cause confusion.

In homogeneous medium and for normalized fields the extended Max-

well’s equations are obtained by augmenting the original time-harmonic

Maxwell’s equations (2.12)–(2.15) with scalar slack fields Φ and Ψ: [14, 10]⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
0 0 ∇· 0

0 0 −∇× ∇
∇ ∇× 0 0

0 ∇· 0 0

⎤
⎥⎥⎥⎥⎥⎦− iκI

⎞
⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎣
Φ

Ê

Ĥ

Ψ

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0

−Ĵ

0

ρ̂

⎤
⎥⎥⎥⎥⎥⎦ . (2.18)

It holds that if Φ = Ψ = 0, then Ê and Ĥ are solutions to Maxwell’s

equations (2.12)–(2.15). On the other hand, the restriction Ê = Ψ = 0

implies that Φ and Ĥ satisfy acoustic time harmonic field equations⎧⎪⎨
⎪⎩
∇ · Ĥ− iκΦ = 0

∇Φ− iκĤ = 0.
(2.19)

Thus, the extended Maxwell’s equations can be viewed as a combination

of electromagnetic and acoustic field equations [13].

The merit of the system (2.18) is that the dimension of the null-space is

equal to the sum of its number of connected components, handles and holes

(i.e., the the number of connected components of its complement minus

one) of the domain in which the equation is posed [13, 12, 6, 15]. For the

domain shown in Figure 2.1 the dimension is thus 4. Specifically in simply

connected bounded domains P is an isomorphism from certain natural

energy spaces, discussed in Chapter 5, to locally square integrable vector

fields.

In this thesis, the system (2.16) is exploited in exterior domains in con-

junction with surface integral equations and the PEC boundary condition

n×E = 0 on ∂Ω (2.20)
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Maxwell’s equations

Figure 2.1. A boundary of a domain Ω in R
3 with 2 handles and 1 hole (dotted line). The

exterior normal of Ω is denoted with n. The position vector is denoted by r

and its length r the radial distance from origin O. The unit radial vector is
ur = r/r.

and the Silver-Müller radiation condition [16, 17]

|
√
εE−√

μH× ur| ≤ O(r−2) as r → ∞, (2.21)

where the unit radial vector ur and the position vector r are displayed in

Figure 2.1, and the radial coordinate r is the length of r.

The extended equation (2.18) is analysed in interior domains satisfying

the generalized versions of PEC and PMC boundary conditions:⎧⎪⎨
⎪⎩
n× Ê = 0, n · Ĥ = 0, Ψ = 0 (PEC)

n× Ĥ = 0, n · Ê = 0, Φ = 0 (PMC)
on ∂Ω. (2.22)
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3. The field problem

The purpose of this chapter is to introduce the prototypical boundary el-

ement methods employed in the CEM. To that end, the energy spaces

encountered in the CEM are reviewed and finite elements are discussed

at large to fix notations. Following that, BEM discretizations of PEC scat-

tering problems are discussed. The scattering problem is transformed to

equivalent electric, magnetic and combined field boundary integral equa-

tions, which discretized with finite elements and the method of moments

lead to linear algebraic equations.

It should be noted that within the CEM community generally any numer-

ical method to solve electromagnetic field problems with integral equations

is often referred to as the "Method of Moments" [18] instead of BEM.

3.1 Energy spaces and their traces

Let Ω ⊂ R
3 be an open Lipschitz domain [19] with a compact closure. Its

exterior is denoted by Ωe = R
3 \ Ω and its boundary by Γ = ∂Ω. A domain

is said to be Lipschitz if it can be described with a graph of a Lipschitz

function locally near boundary as follows [19, 20]. A domain Ω is Lipschitz

if for every x0 ∈ ∂Ω there is a bounded right open circular cylinder C whose

axis N runs through x0 and is orthogonal to a plane H containing x0 so

that for some Lipschitz continuous function φ : H → R

(a) Ω ∩ C = C ∩ {x′ + tN : x′ ∈ H, t > φ(x′)}

(b) Ωe ∩ C = C ∩ {x′ + tN : x ∈ H, t < φ(x′)}

(c) ∂Ω ∩ C = C ∩ {x′ + tN : x′ ∈ H, t = φ(x′)}

Thus Rademacher’s theorem (see e.g. [21]) asserts that one can assign a

normal vector, denoted by n, to a boundary of a Lipschitz domain almost

everywhere.
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The (exterior) normal vector nx0 at x0 ∈ ∂Ω is that unit vector which

points outwards from Ω and is in the null space of the derivative of (x′, t) �→
(x′, φ(x′)). When H is the xy -plane and x0 is the origin the normal vector, in

more familiar terms, is the vector ν = ±∂[x,y,φ(x,y)]
∂x × ∂[x,y,φ(x,y)]

∂y normalized

to have length of 1 and sign chosen so that it points out from Ω. A surface

measure σ on ∂Ω defined as follows: Let E ⊂ ∂Ω be an open set contained

in C ∩ ∂Ω and E = φ(Ê), then

σ(E) =

∫
Ê
‖ν‖dλ, (3.1)

where λ is the Lebesgue measure on H. When it is not clear with respect

to which variable integration is carried on a surface, the measure σ is

subscripted with the variable symbol, e.g.
∫
E f(r, r′)dσr is an expression

with r′ being a free variable.

The notion almost everywhere in this context is defined using the cylinder

C and the plane H: An assertion P (x) holds almost everywhere near

x0 ∈ ∂Ω if the Lebesgue measure of the set C ∩H \ {x′ : P (x′ +Nφ(x′)} is

zero. However, a surface measure of a set on the boundary vanishes, if and

only if the measure of the projection of the set to the corresponding plane

H vanishes also. Thus one can utilize the notion "almost everywhere" on a

surface without resorting to a particular plane and cylinder.

The following Sobolev spaces play an important role in the CEM as they

encode the finite-energy conditions of the electromagnetic fields:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(Ω) := {f ∈ L2(Ω) : ‖∇f‖L2 < ∞}

H(∇×,Ω) := {f ∈ L2(Ω) : ‖∇ × f‖L2 < ∞}

H0(∇×,Ω) := {f ∈ H(∇×,Ω) : n× f = 0 on Γ}

H(∇·,Ω) := {f ∈ L2 : ‖∇ · f‖L2 < ∞}

H0(∇·,Ω) := {f ∈ H(∇·,Ω) : n · f = 0 on Γ}

(3.2)

The symbol Ω is omitted whenever it is clear on which domain the function

space is defined. The zero normal and tangential traces appearing in

H0(∇·) and H0(∇×) are posed in a distributional sense:⎧⎪⎨
⎪⎩
f ∈ H0(∇·; Ω) ⇔

∫
Ω∇ · fφ+ f · ∇φdx = 0 ∀φ ∈ C∞

0 (R
3)

f ∈ H0(∇×; Ω) ⇔
∫
Ω∇× f · φ− f · ∇ × φdx = 0 ∀φ ∈ (C∞

0 (R
3))3.

(3.3)

Other than zero boundary values are usually posed in CEM for electric

or magnetic fields, and thus it makes sense to question exactly what kind

of boundary values are permitted for the boundary value problem to be

solvable.
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To that end, let us consider an electrostatic model problem in unit square

Q = (0, 1)× (0, 1) ⊂ R
2 with Γ1 = {(x, y) ∈ ∂Q

∣∣ x = 1} and Γ2 = ∂Q \ Γ1:⎧⎪⎨
⎪⎩
−Δφ = 0 in Q

φ∣∣Γ1
= 1, φ∣∣Γ2

= 0 on ∂Q.
(3.4)

This problem has a unique formal series solution as a limit M → ∞ of

φM (x, y) = 4

M∑
m=1

sinh(π(2m− 1)x) sin(π(2m− 1)y)

π(2m− 1) sinh(π(2m− 1))
(3.5)

but ‖∇φM‖L2 → ∞ as M → ∞. Thus this problem has no finite energy

solutions. Moreover, the solution of Laplace equation cannot depend con-

tinuously on g ∈ L2(∂Q) in H1(Ω).

The remedy is to consider the restriction as an boundary trace operator

γ : H1(Q)→ Y (∂Q), where Y (∂Q) is a Banach space. It must be such that

it coincides with the usual boundary restriction to smooth functions, every

function in H1 must have a boundary trace and every function in Y (∂Q)

must be a boundary trace of some function in H1, i.e., it must be surjective.

The last two properties entail that graph of γ is H1(Q)× Y (∂Q) which is

closed and thus γ must be also continuous by closed graph theorem. For

basic theory on functional analysis we refer to [22]

Thus, the trace operator must be continuous and surjective, i.e., onto.

Let us in the following again consider the domain Ω and denote the

boundary data space Y (Γ) by H
1
2 (Γ).

Equipping H
1
2 (Γ) with the Gagliardo norm

‖u‖
H

1
2
=

(∫
Γ
|u(r)|2dσr +

∫
Γ×Γ

|u(r)− u(r′)|2
|r − r′|3 dσr,r′

) 1
2

(3.6)

the boundary trace operator γ : H1(Ω)→ H
1
2 (Γ) is bounded and surjective

[19, 23]. Thus, it is straightforward to define H1
0 as the kernel of γ and n·

by duality as a continuous surjective operator H(∇·,Ω)→ H− 1
2 (Γ), where

H− 1
2 (Γ) is the dual space of H

1
2 (Γ) having L2(Γ) as the pivot space [24].

The above characterisation of γH1(Ω) for Lipschitz domains were known

as early as the late 1950’s due Gagliardo [23]. Girault and Raviart report

in their book [24] the properties of n· : H(∇·,Ω) → H− 1
2 (Γ) with a very

simple proof.

However, useful characterisations of the trace mapping n× on H(∇×,Ω)

attributed to Tartar [25] and further developed by Buffa et al [26, 27]

were only understood in the early 2000’s. Thus it took almost 50 years for

the trace space characterisations to mature for the use of computational
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electromagnetics. In the following, results discovered by Buffa et al in

[26, 27] are reviewed.

If Ω has a piecewise smooth boundary, which is often the case in numeri-

cal simulations, the trace space of n× has the following characterisation:

Define H− 1
2

|| (∇Γ·; Γ) as

H− 1
2

|| (∇Γ·; Γ) =
{
u ∈ H

− 1
2

|| : ∇Γ · u ∈ H− 1
2

}
, (3.7)

where H
− 1

2

|| (Γ) is the dual space of n× n×H1(Ω) = H
1
2

|| with tangential L2

as pivot space. The space H
1
2

|| is defined to be the range of n× n×H
1
2 (Γ)

as a subspace of Lt(Γ) and it is equipped with a norm that makes n× n×
automatically bounded; the norm of v in n× n×H

1
2 (Γ) is

inf
u∈H1

2 (Γ)
v=n×n×u

‖u‖
H

1
2 (Γ)

. (3.8)

It should be noted that the kernel of n× n× : H
1
2 → n× n×H

1
2 is closed

and thus the above formula defines a norm instead of just a seminorm.

For piecewise smooth boundaries, the tangential component trace space

H
1
2

|| has a face-by-face characterisation as a tangential H
1
2 (Γi) for each

smooth face Γi of Γwith certain weak tangential continuity across the edges

of the polyhedron [26]. The surface divergence ∇Γ· : H
− 1

2

|| (Γ) → H− 3
2 (Γ)

is the adjoint-operator of the tangential gradient operator ∇Γ : H
3
2 (Γ)→

H
1
2

|| (Γ) and H
3
2 is the trace space of H2(Ω) [27]. Furthermore, if u = n× f ,

where f ∈ H(∇×;Ω), then ∇Γ · u ∈ H− 1
2 (Γ) by the following reasoning: If

φ ∈ C∞(Ω), then

〈∇Γ · u, φ〉 = 〈u,n× n×∇Γφ〉 = 〈n× f ,n× n×∇Γφ〉

=

∫
Ω
∇× f · ∇φdx =

∫
Ω
∇ · (φ∇× f)dx ≤ ‖φ‖H1‖f‖H(∇×).

(3.9)

thus ∇Γ · u is continuous linear functional of H1 and it depends only on

scalar boundary traces of H1.

It holds that

n× : H(∇×,Ω)→ H− 1
2

|| (∇Γ·; Γ) (3.10)

is continuous and surjective [26].

The trace space of H(∇×) is considerably more involved than that of

H(∇·) because n ·H(∇·) can be characterized as the dual space of H
1
2 using

Green’s formula, whereas for ∇×-operator it yields an antisymmetric

bilinear form on H(∇×) ×H(∇×). Another obstacle in the construction
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of the trace space for a non-smooth domain is that n is only in L∞(Γ);

if the boundary were smooth one could utilize the smooth sections of

tangent bundle of Γ in the construction as multiplication with n× would

be continuous operation in any Sobolev space on Γ.

In order to complete the picture on trace spaces of H(∇×,Ω), we need to

consider the tangential component trace operator π on H(∇×,Ω), defined

for smooth fields F by πF = −n× (n× F ). Characterisation of the target

space of π allows us to make sense of the elementary integration by parts

formula ∫
Ω
∇× u · v − u · ∇ × vdx =

∫
Γ
n× u · πvdσx. (3.11)

The trace space for which π is continuous, surjective and satisfies (3.11)

is, roughly speaking, the rotated version of H− 1
2

|| (∇Γ·; Γ):
The mapping

π : H(∇×,Ω)→ H− 1
2

⊥ (∇Γ×; Γ) (3.12)

is continuous, surjective and it satisfies (3.11) [26]. Furthermore, H− 1
2

|| (∇Γ·; Γ)

and H− 1
2

⊥ (∇Γ×; Γ) are isomorphic and the isomorphism restricted to traces

of smooth fields is just rotation around the normal vector by 90 degrees

[27].

3.2 Finite elements

Finite elements are useful in systematising approximations in Sobolev

spaces. They rest on partitioning the geometry of the domain into non-

overlapping open elementary geometrical domains so that on each domain

the approximation has a closed form expression that is straightforward to

evaluate.

More precisely, a finite element in the sense of Ciarlet [28] is a triple

E = (T, V,Σ), where

(i) T is an open geometric domain,

(ii) V is a finite dimensional function space on T and

(iii) Σ ⊂ V ′, i.e. Σ is a set of linear functionals on T . They are called the

degrees of freedom.

Usually T is a triangle or quadrilateral in two dimensions and a tetra-

hedron or hexahedron in three dimensions, V is a set of polynomials on

T and Σ is a set of point evalations on T . It is useful to choose the func-

tionals Σ so that the element is unisolvent [29]: If v1, . . . , vn span V and
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Σ = (σ1, . . . , σm), then the element E is unisolvent if the matrix Aij = σi(vj)

is square and non-singular.

Let now (T j)Mj=1 be a partition of Ω ⊂ R
2 to M triangles then the elements

(T j , V j ,ΣJ)j provide a finite element space SM by

SM = span
vji∈V j

vji . (3.13)

Such FE spaces are only subspaces of integrable functions because they

are spanned by piecewise polynomial functions. However, imposing con-

straints to the degrees of freedom across elements yield more regular FE

spaces. For example when V j consists of first order polynomials and Σj of

point evaluations at vertices of T j , requiring that σj1
i1
(vj1k ) = σj2

i2
(vj2l ) for all

l, k = 1, 2, 3, if σj1
i1

and σj2
i2

are associated to a same point in Ω, yields the

first order nodal Lagrange finite element space.

If, for arbitrary indices i, j, Ti and Tj can be mapped affinely (or diffeo-

morphically) to each other, it is useful to define single reference element Ê
so that for given Ti in the partition there is an affine (diffeomorphic) map

FTi and a reference domain T̂ s.t. Ti = FTi T̂ . The induced mapping that

takes functions from V̂ to Vi depends on the element, however. For scalar

Lagrange interpolating elements it is just the pullback F ∗
Ti
Vi = V̂ , i.e., for

given λ̂ ∈ V̂ , corresponding λ ∈ Vi is given by F ∗
Ti
λ(x) = λ(FTi(x)) = λ̂(x).

Popular finite elements in CEM are the Nédélec elements [30], Raviart-

Thomas elements [31], rediscovered in the method of moments setting by

Rao, Wilton and Glisson [32], and the nodal Lagrange elements [33, 34].

Let us elucidate the equivalence of the RT and RWG elements in the

following.

Let two triangles K and L share an edge e and denote the vertices of

K and L opposite to e by pK and pL, respectively. The RWG function

associated with e is then given by

u(x) =

⎧⎪⎨
⎪⎩

|e|
2|K| (x− pK) x ∈ K

− |e|
2|L| (x− pL) x ∈ L

(3.14)

where |K| is the area of K (resp. |L|) and |e| is the length of e.

The degrees of freedom are given by n×u(xe) · e|e| , where n is the exterior

normal of K or L and xe is the centre point of e. The factor |e| may be

omitted from (3.14), in which case the restriction u
∣∣
K

can be constructed

with a reference element and the Piola transformation (see e.g. [33]) as

follows.

22



The field problem

The reference domain is the unit 2-simplex

K̂ = {ξ, η ∈ R : 0 < ξ, η and ξ + η < 1}, (3.15)

the reference basis functions on K̂ are [ξ, η], [ξ, 1 − η], and [1 − ξ, η] and

the mapping that takes the basis functions from the reference triangle to

K is the Piola transformation: Let û be smooth tangent field of K̂, then

the Piola transformation PF û of û is the unique tangent field of K which

satisfies

(PF û) ◦ F =
1

√
gij

F ′û (3.16)

where F ′ is the the Jacobian of the map F : K̂ → K and √
gij is the square

root of the determinant of the metric tensor on K in (ξ, η)-coordinates.

If K is flat, then √
gij = 2|K| and thus it holds that there is one-to-one

correspondence with RT and RWG functions.

Denoting the nodes of K with p1,p2,p3 the mapping F is given by

F (ξ, η) = (1− ξ − η)p1 + ξp2 + ηp3. (3.17)

The important property of the Piola transform is that it gives us a simple

formula to calculate the surface divergence on K:

(∇K · PF û) ◦ F =
1

√
gij

∇ · û, (3.18)

where ∇K · is the surface divergence on K and ∇· is the usual divergence

in the Euclidean 2-space. Thus, given a smooth tangential surface vector

field if we find a corresponding vector field in Euclidean 2-space through

the Piola transform, the calculation of the surface divergence simplifies to

the calculation of a divergence in the Euclidean space.

3.3 Boundary integral equations

In a homogeneous medium, the reduced time-harmonic system (2.16) en-

dowed with the Silver-Müller radiation condition (2.21) admits a unique

fundamental solution (see e.g. [17]) given by⎧⎪⎨
⎪⎩
E =

(
iωμ− 1

iωε∇∇·
)
SV (J) +∇× SV (M)

H = ∇× SV (J) +
(
−iωε+ 1

iωμ∇∇·
)
SV (M)

(3.19)

where SV is the potential operator

(SV v)(r) = (G ∗ v)(r), (3.20)
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with G(r) = eik|r|
4π|r| being the fundamental solution of the Helmholtz equa-

tion: −(Δ + k2)G = δ. If a distribution v ∈ E ′ is a product of δΓ and some

sufficiently smooth function f , the convolution results in the single layer

potential Sf :

(Sf)(r) =
∫
Γ
G(r − r′)f(r′)dσr′ . (3.21)

The two kinds of integro-differential operators appearing in (3.19) are

defined by ⎧⎪⎨
⎪⎩
TV (v) = (k2 +∇∇·)SV (v),

KV (v) = ∇× SV (v).
(3.22)

Again, if v = δΓF with smooth F the convolutions above result in boundary

integrals ⎧⎪⎨
⎪⎩
T (F) = (k2 +∇∇·)S(F)

K(F) = ∇× S(F).
(3.23)

Let Ω ⊂ R
3 be a bounded domain with sufficiently regular boundary or

an exterior of such a domain. Furthermore, let us suppose that E and H

satisfy the system (2.16) without source terms J and M in an open set

strictly containing Ω. Then the following Stratton-Chu [35] representation

formula holds:

χΩ

⎡
⎣E
H

⎤
⎦ = −

⎡
⎣− 1

iωε T K
K 1

iωμ T

⎤
⎦
⎡
⎣ n×H

−n×E

⎤
⎦ , in R

3 \ (∂Ω ∪R) . (3.24)

Here χΩ is the indicator function of Ω, R is the smallest closed set contain-

ing the sources and n is the exterior normal of Ω.

The tangential traces of the representation formula (3.24) are the basis

for most of the surface integral equations in electromagnetics [17, 32, 36,

18].

To that end, let v be a square-integrable vector field having square-

integrable surface divergence on a Lipschitz surface Γ whose normal com-

ponent vanishes almost everywhere. Then, the following limit formulas

hold a.e. r ∈ Γ [37]:

n×K(v)(r±) = ±1
2
v + n×

(
p.v.∇×

∫
Γ
G(r − r′)v(r′)dr′

)
(3.25)

and

n× T (v)(r±) = n×
(
k2
∫
Γ
G(r − r′)v(r′)dr′

+ p.v.∇Γ

∫
Γ
G(r − r′)∇Γ · v(r′)dr′

)
. (3.26)
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Here r+ and r− denote the exterior and interior normal limits, respectively,

defined by

f(r±) = lim
h↓0

f(r ± hn). (3.27)

The principal value integral p.v. is defined by

p.v.

∫
G(r − r′)f(r′)dr′ = lim

ε↓0

∫
‖r−r′‖>ε

G(r − r′)f(r′)dr′. (3.28)

In fact, the normal limits may be substituted with non-tangential ones,

where the limit is taken, roughly speaking, in an open cone contained in Ω

or Ωe having vertex at r ∈ Γ. However, the construction is highly technical

and therefore omitted, for reference, see [38, 37].

The operators on the right hand side can be extended to bounded oper-

ators from H− 1
2

|| (∇Γ·; Γ) to itself when Γ is a piecewise smooth Lipschitz

polyhedron [26]. These extensions are denoted by

K(v)(r) = n×
(
p.v.∇×

∫
Γ
G(r − r′)v(r′)dr′

)
(3.29)

and

T (v)(r) = n×
(
k2
∫
Γ
G(r − r′)v(r′)dr′

+ p.v.∇Γ

∫
Γ
G(r − r′)∇Γ · v(r′)dr′

)
. (3.30)

These operators give rise to the following representation theorem for the

scattering problem: Suppose that Hs and Es are scattered fields having

fictitious sources in Ω, and Hp and Ep are primary fields whose sources lie

at a positive distance away from Ω. Then it holds that⎡
⎣n×Ep

n×Hp

⎤
⎦ =

⎡
⎣ 1

iωεT
1
2I −K

1
2I −K 1

iωμT

⎤
⎦
⎡
⎣ j

m

⎤
⎦ , (3.31)

where j = n ×H and m = −n × E are the electric and magnetic surface

currents, respectively.

By plugging in the PEC boundary condition n × E = 0 to the above

equation, the EFIE and MFIE [39, 36] given by⎧⎪⎨
⎪⎩
n×Ep = 1

iωεT (j) (EFIE)

n×Hp =
(
1
2I −K

)
(j) (MFIE)

(3.32)

are obtained.

At certain interior resonance frequencies the operators on the right hand

side fail to be injective [40]. However, the following linear combination of
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above equations, known as the CFIE, is injective for all non-zero frequen-

cies [41, 40, 39]:

αn×Ep − (1− α)ηn× n×Hp =
α

iωε
T (j)− (1− α)ηn× (

1

2
−K)(j), (3.33)

where 0 < α < 1 and η =
√
μ/ε is the wave impedance of the medium.

Indeed, this formulation has been successfully applied to very large

scale scattering problems [42, 43], regardless of the summation between

elements in two different spaces, namely H− 1
2

|| (∇Γ·; Γ) and H− 1
2

⊥ (∇Γ×; Γ).
The proper way to discretize and derive the CFIE equations have been,

however, under active research in the recent years. The most promising

approach to discretize the MFIE part, reported in [44], exploits basis

functions described in [45]. These Buffa-Christiansen (BC) basis functions

suit in certain preconditioning schemes of the EFIE [46] and have been

used in CFIE type formulations for impedance boundary conditions where

the primary electric and rotated magnetic field are linearly related through

surface impedance [47]. In [48] the summtion of the CFIE is performed in

the space H− 1
2

|| (∇Γ·; Γ) and the discretization, again, utilizes the BC basis

functions.

The discrete EFIE is obtained in a weak sense with the aid of the bilinear

antisymmetric mapping

〈u,v〉× =

∫
Γ
n× u · vdσ, (3.34)

which extends to an antisymmetric duality pairing on H− 1
2

|| (∇Γ·; Γ) [49].

Thus, the weak form of the EFIE is given by:

Find j ∈ H
− 1

2

|| (∇Γ·; Γ) s.t.

〈v,n×Ep〉× =− iωμ〈v,n× Sj〉×−
1

iωε
〈v,n×∇S∇Γ · j〉×, ∀v ∈ H− 1

2

|| (∇Γ·; Γ).

(3.35)

Discretizing this with the RT basis and trial functions yields the following

system of equations:

Find j ∈ RT (Γ) s.t.∫
Γ
v ·Epdσ = −iωμ

∫
Γ
v · S(j)dσ − 1

iωε

∫
Γ
∇Γ · vS(∇Γ · j)dσ ∀v ∈ RT (Γ).

(3.36)
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In the RT basis, denoted with (ψ1, . . . ,ψN ), this is equivalent with⎡
⎢⎢⎢⎢⎢⎢⎣

a(ψ1,ψ1) a(ψ1,ψ2) . . . a(ψ1,ψN )

a(ψ2,ψ1) a(ψ2,ψ2)
...

... . . . ...

a(ψN ,ψ1) . . . . . . a(ψN ,ψN )

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

α1

α2
...

αN

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∫
Γψ1 ·Epdσ∫
Γψ2 ·Epdσ

...∫
ΓψN ·Epdσ

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(3.37)

where

a(ψm,ψn) = −iωμ

∫
Γ
ψm · S(ψn)dσ − 1

iωε

∫
Γ
∇Γ ·ψmS(∇Γ ·ψn)dσ (3.38)

and j =
∑N

n=1 αnψn. In the language of the MoM the coefficients αn are

called moments. This discretization is analysed in [50].

3.4 Fast computation of application of system matrix in boundary
integral equations

A major drawback of the BEM is that the arising linear system of equations

is dense, making the memory consumption of the method scale quadrat-

ically with respect to degrees of freedom, i.e., dimension of the finite

element space, denoted by N . Such problems can be solved approxima-

tively with Krylov subspace methods if the matrix-vector product can be

calculated sufficiently fast. Such dense products appearing in BEM that

involve Helmholtz fundamental solutions, whose direct implementations

are of complexity O(N2), admit however accelerations based on the fast

multipole method making the Krylov subspace methods feasible.

The idea in the FMM acceleration is in partitioning the system matrix

A into far and near interactions, Afar and Anear, respectively, so that the

number of non-zero entries of Anear is O(N) and Afar can be multiplied

with a vector faster than in O(N2) time. This section is devoted to a brief

qualitative review of fast multipole methods discussed in, e.g., [51, 52, 53,

54, 55] which significantly accelerate the application of Afar. To that end,

let us denote the partition of (1, . . . , N)2 to near and far interactions by

Inear and Ifar, respectively, so that Anear
ij = Aij whenever (i, j) ∈ Inear and

0 otherwise, Afar = A − Anear and (i, j) ∈ Ifar if and only if (i, j) /∈ Inear.

Furthermore, for some D < ∞ the index set Inear must satisfy that (i, j) /∈
Inear if dist(sptψi, sptψj) > D. Thus the number of non-zero entries in

Anear is O(N).

The high frequency fast multipole methods are based on the Rokhlin’s
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translation function [51, 52]:

TL( �D, k̂) =
ik

4π

L∑
n=0

in(2n+ 1) h(1)n (k| �D|)Pn

(
�D

| �D|
· k̂
)

(3.39)

It elicits the following approximation of the Green’s function:

eik| �D+ �Q|

4π| �D + �Q|
= lim

L→∞

∫
S2

eik
�Q·k̂TL( �D, k̂)dσk̂ (3.40)

The Rokhlin’s translation function arises from the Gegenbauer series of

the spherical Hankel function h
(1)
0 (x) = eix

ix [56] and the plane-wave expan-

sions of the spherical Bessel functions and the Legendre polynomials [51].

The Gegenbauer series converges uniformly and absolutely when | �D| > | �Q|
[55, 57] and the truncation error of the limit (3.40) can be controlled by

choosing L according to the following empirical excess bandwidth formula

[53]

L ≥ k| �Q|+ 1.8d
2
3
0 (k| �Q|) 13 , (3.41)

where d0 is the number of significant digits requested from the approx-

imation. In [57] the truncation error is analysed more carefully and in

[58] exact values of L are tabulated in a certain configurations of �Q and �D

appearing in realistic calculations.

Now if P1+ �p and P2+ �q are in cubes Q1 and Q2 so that r− r′ = �D+ �p− �q

where �D = P2 −P1, as displayed in Figure 3.1, it holds that

eik|r−r′|

4π|r − r′| ≈
∫
S2

eik�p·k̂e−ik�q·k̂TL( �D, k̂)dσk̂. (3.42)

This seems an overly complicated way to evaluate Helmholtz’s fundamen-

tal solution, but its efficiency results in collecting interactions of basis

functions contained in larger groups to interactions between the groups

themselves. Usually the groups are associated with cubes in R
3 or squares

in R
2.

Let us denote the index sets I and J , I × J ⊂ Ifar, of basis functions

(ψm)m∈I and (ψn)n∈J associated with cubes Q1 and Q2, respectively. Thus

∑
m∈I

a(ψn,ψm)xm = yn n ∈ J, (3.43)

where the bilinear form a is that of EFIE defined in (3.38), is well approxi-

mated with

yn =
∑
m∈I

∫
S2

∫
Γ
ei�p·k̂ ψn(r)dσr

∫
Γ
P(ikk̂)e−ik�q·r′ψm(r′)dσr′TL( �D, k̂)dσk̂

(3.44)
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Q1

Q2

�q

�p

•
P1

•
P2

•r′

•r

r − r′

�D

Figure 3.1. The fast multipole picture. Field interactions of the elements in the cube
Q1 and the cube Q2 can be sparsified with Rokhlin’s translation formula to
interactions between the cubes.

where P is a matrix valued polynomial P(x) = 1
iωε(k

2 − xx·) which for

EFIE is chosen such a way that

P(∇) = 1

iωε
(k2 −∇∇·). (3.45)

Thus

a(ψi,ψj) =

∫
Γ
ψi(r) · P(∇)(Sψj)(r)dσr, (3.46)

and by (3.42) it holds that

P(∇r)G(r − r′) ≈
∫
S2

P(ikk̂)eik(�p−�q)·k̂TL( �D, k̂)dσk̂ (3.47)

The approximation (3.42) of the Green’s function must be numerically

integrated over the unit sphere S2. These two approximations are the

source of the error in the fast multipole methods.

In the FMM the surface Γ is covered with cubes (Qk)k and the partition

Ifar is such that (i, j) ∈ Ifar if the cubes to which ψi and ψj are associated

do not touch. Thus there are O(M2) cube to cube interactions instead of

O(N2) basis function to basis function interactions and, moreover, the size

of the cubes can be optimized so that the FMM accelerated matrix-vector

product scales as O(N
3
2 ) [53].

The asymptotic computational load of the FMM can be improved by

enclosing Γ inside a single cube which is recursively divided in to eight

sub-cubes until the smallest cubes are of suitable size. Those cubes in the

resulting octree structure that do not meet Γ are discarded.

The far field pattern integrals

F∞
Ql

k
(k̂,α) =

∑
ψm∈Ql

k

∫
Γ
P(ikk̂)eik(r′−Pl

k)·k̂αmψm(r′)dσr′ , (3.48)

where α =
[
α1 . . . αN

]
∈ C

N , are calculated only on the lowest level

and to bigger cubes far field pattern from a lower level is aggregated by
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•

Q1
•

Q2

•

Q1
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•

Q2
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•

Q3
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•

Q4
1

�D

v1
1v2

1

v3
1 v4

1

Figure 3.2. In the MLFMA translations are done between larger cubes thus resulting in
O(M) translations, where M is the number of cubes. The outgoing field of Q1

is aggregated from outgoing fields of Qi
1 by interpolation.

multiplying it with an exponential function eikv
l
k·k̂ where vl

k, displayed in

Figure 3.1, is a vector from the center Pl
k of lth sub-cube Ql

k to the center

Pk of Qk. Thus the far field pattern of Qk is given by

F∞
Qk
(k̂,α) =

8∑
l=1

eikv
l
k·k̂F∞

Ql
k
(k̂,α). (3.49)

Finally, the translations between cubes are organized such a way that

they are made between maximally large cubes of same size whose closures

do not meet. Methods utilizing such multiple levels of cubes are called

multilevel fast multipole algorithms (MLFMA) or multilevel fast multipole

methods (MLFMM).

The far field patterns F∞
Q (k̂,α) must be sampled at discrete points on

S2 so that the final integral (3.44) is approximated at prescribed accuracy.

Furthermore, the aggregation (3.49) must be carried out sufficiently fast

and accurately for the algorithm to be efficient because the far field pat-

terns become increasingly oscillatory. The sampling must be the minimal

one that yields the requested accuracy at each level. Thus on bigger cubes

the sampling becomes denser and the far field patterns from smaller cubes

needs to be interpolated to larger cubes. This interpolation is an additional

potential source of approximation error of the MLFMA.

The numerical aggregation scheme dictates efficiency of the final MLFMA.

In [53] a method based on local interpolators is introduced which makes

the MLFMA an O(N logN) algorithm, where N is the number of degrees
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of freedom. A multilevel algorithm based on the FFT reported in [54,

55] achieves O(N log2N) complexity. However, in some cases the local

interpolators result in much bigger sample sizes to achieve the same

accuracy [54] and, furthermore, both interpolation schemes can be used in a

single MLFMA implementation [59]. The development of the interpolators

is still an ongoing research topic.
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4. Shape optimization and
electromagnetics

Ever since there has been efficient algorithms to tackle the electromagnetic

scattering problem, there has been interest in the domain problem: find a

domain that yields the desired scattering properties. In fact, the domain

problem is, at least for an engineer, the reason to solve the field problem

in the first place; we wish to design apparatuses that result in desired

electromagnetic behaviour. It should be noted that depending on a speaker,

this problem could be called an inverse problem, a shape optimization

problem or a design problem.

In this chapter different techniques to deal with the shape optimization

problem in CEM are outlined. We start with an example design utiliz-

ing black-box thinking and then highlight how viewing the problem as a

PDE restricted optimization problem results in an efficient gradient opti-

mization method known as the adjoint variable method. Finally, details

concerning Publications II and III are presented.

4.1 Yagi-Uda antenna array

Let us consider the Yagi-Uda antenna array [60] design problem where one

tries to find optimal directivity in the main direction and input impedance

close to some prescribed value. This problem, particularly the directivity

part, and its variants have been studied extensively in the literature

(c.f. [61, 62, 63, 64, 65, 66], to name a few). Thus it serves as a perfect

model problem for shape optimization in CEM.

A Yagi-Uda array consists of a feed dipole, parasitic "Wave reflector"

dipole and one to eight "Wave director" dipoles, as phrased by Yagi and

Uda [60], parasitic as well. An array with one director dipole is shown in

Figure 4.1. The design parameters for Yagi-Uda antennas are spacings

d1, . . . , dn and lengths w1, . . . , wn of the elements.
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Figure 4.1. Yagi-Uda array optimization problem

Successful strategies to solve this problem in the past include measuring

or simulating the antenna gain and impedance for selected spacings and

lengths chosen in a smart manner and interpolating the intermediate

values resulting in an empirical design formula [66, 63].

A rather simplistic but functional approach to solve this problem is

to let a computer program calculate the value of some cost function J
depending on the design variables d1, . . . , dn, w1, . . . , wn and apply a non-

linear optimization algorithm to J . If the optimization algorithm requires

derivatives of J , they need to be calculated with finite differences.

Using the BFGS (see e.g. [67]) algorithm the values d1 = 0.35λ, d2 = 0.23λ,

[w1, w2, w3] = [0.452λ, 0.468λ, 0.4832λ] are obtained. These parameters yield

an antenna with 8.6 dB directivity and input impedance of 44.1 − 0.8i Ω

when the equivalent radius of the wire, a concept discussed in the Publica-

tion I and [68], is λ/2000.

However, by bending the wire dipoles, considerably higher directivities

can be achieved as demonstrated by Landstorfer [69]. Thus, the complete

optimization problem would include the shapes of the feed and the parasitic

elements as well.

In the Publication I the shapes of the wire dipoles are parametrized

such a way computing J is reliable and the space of possible shapes for

the elements is restricted by physical limitations. Thus, the wire dipole

shaping process set forth by Landstorfer in [69] is taken to its extreme in

a sense that widening the parameter space further would yield antennas

that are not wire dipoles.

The black box mindset for computing the value of the cost function works

well when the evaluation of J is relatively cheap so that it is feasible

to approximate its gradient with a difference formula. However, an FD

approximation of ∇J leads to k + 1 evaluations of J . This not permissible

when the model and the parameter space grows large.

Furthermore, in order for the FD approximation to make sense, the
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interior of the parameter space should have some normed vector space

structure and it should be equipped with such a topology that reflects

the true geometric design: small changes in the parameter space must

translate to small changes in the geometry.

Usually, however, the J is not a black box. instead, in a typical shape

optimization scenario J can be viewed as a function of shape parameters

and the solution of state equation [70, 3], e.g. surface current of the antenna

with given shape parameters.

Antenna optimization problems can be solved using global optimization

methods as well. For example genetic algorithms [71, 72] and simulated

annealing [73] have been successfully applied in antenna optimization. In

[74] one finds a more comprehensive treatment on geometric optimization

applied in electromagnetics.

In contrast to gradient based local methods, global optimization methods

don’t terminate at local optima but they often require considerably more

function evaluations. Moreover, if an optimization method does not employ

gradient information, such as is the case with the above genetic algorithms

or simulated annealing, the solutions it provides are not necessarily critical

points, i.e., points where gradient of the objective function vanishes.

However, it is difficult to say if some local method utilizing gradient

information, such as the BFGS method, is the best algorithm for antenna

shape optimization not only because global optimization is very active

field of research1 but also because the local optimum, which although can

be achieved quickly, can be a very bad candidate solution to the design

problem.

4.2 PDE restricted shape optimization

Let us briefly formulate an abstract shape optimization problem restricted

by a PDE, a subject treated in greater detail in e.g. [70, 3]. To that end, let

us denote the space of admissible shapes by O which consists of subsets

of R3 satisfying some geometric a-priori regularity assumption that the

design must conform. For each Ω ∈ O, let us assign function spaces U(Ω)

and V (Ω) such a way that the state equation

AΩuΩ = fΩ, uΩ ∈ U(Ω) and fΩ ∈ V (Ω), (4.1)

describes the physics of the model given geometry Ω.
1See "Journal of Global Optimization", Springer.
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For each Ω ∈ O we attach a cost functional JΩ : U(Ω) → R. If the state

equation has a unique solution uΩ for each Ω ∈ O we may consider the cost

functional to be parametrized by Ω: Ĵ (Ω) = JΩ(uΩ).
The abstract shape optimization problem is now given by:

Find Ω ∈ O s.t.

ĴΩ(uΩ) ≤ ĴΩ̃(uΩ̃), ∀Ω̃ ∈ O.
(4.2)

In this thesis, the standpoint of Murat and Simon [75, 76] was taken

implicitly and local variations of the reference domain Ω0 as perturbations

of identity are considered:

Ωθ = θΩ0, ‖θ − I‖ < ε, (4.3)

where θ is in some Banach space of functions on R
3 equipped with norm

‖ · ‖.

Suppose that there are pullbacks, i.e. operators arising from a function

composition, ⎧⎪⎨
⎪⎩
θ∗ : U(Ωθ) −→ U(Ω0)

θ∗ : V (Ωθ) −→ V (Ω0)
(4.4)

induced by θ and that they are isomorphisms. Thus, we may consider a

cost functional J depending explicitly on θ and u ∈ U(Ω0) such a way that

if θ−∗uθ (denoting θ−∗ = (θ∗)−1)) solves (4.1), then

J (θ, uθ) = ĴΩθ
(θ−∗uθ). (4.5)

Furthermore, we are in a position to pose the PDE restricted shape opti-

mization problem as
minimize

‖θ‖<ε

uθ∈U(Ω)

J(θ, uθ)

subject to Aθuθ = fθ,

(4.6)

where Aθ = θ∗AΩθ
◦ θ−∗ and fθ = θ∗fΩθ

.

Now we can differentiate J with respect to u and θ separately and use

the chain rule:
d

dθ
J =

∂J
∂θ

+
∂J
∂u

∂u

∂θ
. (4.7)

A particularly attractive approach to compute d
dθJ (θ, uθ) is the adjoint

sensitivity method (see e.g. [77, 78, 70, 79, 80]). It can be derived from

the constrained optimization problem with purely algebraic (and abstract)

manipulations as follows.

Observing that the state equation Aθuθ = fθ must hold for all θ, it holds

that

0 =
d

dθ
(Aθuθ − fθ) =

∂A

∂θ
u+A

∂u

∂θ
− ∂f

∂θ
(4.8)
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and
∂u

∂θ
= A−1∂A

∂θ
u−A−1∂f

∂θ
. (4.9)

Plugging this into (4.7) one obtains

d

dθ
J =

∂J
∂θ

+
∂J
∂u

A−1
(
∂A

∂θ
u− ∂f

∂θ

)
. (4.10)

The operators ∂J
∂u and A−1 do not depend on θ, and denoting A′γ = ∂J

∂u

′,

where A′ is the adjoint of A, one finally obtains

d

dθ
J =

∂J
∂θ

+ γ′
(
∂A

∂θ
u− ∂f

∂θ

)
. (4.11)

Thus, the derivative ∂A
∂θ needs to be evaluated.

In the next Section, the discrete EFIE system is fitted in to the framework

above.

4.3 Application to discretized EFIE

Let us identify now Ω with the surface Γ, U(Γ) = H− 1
2

|| (∇Γ·; Γ), V (Γ) =(
H− 1

2

|| (∇Γ·; Γ)
)′

and Aθ with the operator representation [33] of EFIE

bilinear form.2 Then, (4.6) can be written in the form

minimize
‖θ‖<ε

j∈H
− 1

2
|| (∇Γ·;Γ)

J (θ, j)

subject to a(θ−∗v, θ−∗j; Γθ) = 〈θ−∗′Ep,v〉×, ∀v ∈ H− 1
2

|| (∇Γ·; Γ),
(4.12)

where the bilinear form a(·, ·; Γθ) is the one appearing in the RHS of EFIE

(3.36)

a(u,v; Γθ) =− iωμ

∫
Γθ×Γθ

v(r) · u(r′)G(r − r′)dσr,r′−

1

iωε

∫
Γθ×Γθ

∇Γθ
· v(r)∇Γθ

· u(r′)G(r − r′)dσr,r′ , (4.13)

and θ−∗′ is the adjoint of θ−∗ with respect to the anti-linear pairing 〈·, ·〉×.

In the Publication III the Piola transform discussed in section 3.2 was

taken as the basis for the construction of the pullback θ∗ for the EFIE

discretized with the RT basis functions. The following change of variables

formula was utilized to compute the ∂Aθ
∂θ type quantity:

2Recall that ′ denotes duality.
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If v, j ∈ RT (Γ), then it holds that

a(Pθv,Pθj; Γθ) =

−
∫
Γ×Γ

(
iωμJθv(r) · Jθj(r′) +

1

iωε
∇Γ · v(r)∇Γ · j(r′)

)
G
(
θ(r)− θ(r′)

)
dσr,r′ ,

(4.14)

where Jθ is the Jacobian of θ.

The derivative of (4.14) has usually been evaluated with finite difference

methods [77, 78] and recently with automatic differentiation [79, 80]. How-

ever, the finite difference and automatic differentiation do not compute

the derivative of (4.14), instead it computes the derivative of numerical

algorithm evaluating a(v,u; Γθ). From a more abstract point of view, the

difference is obvious:

Let fs : x �→ fs(x) be a function and let An
1 , n = 1, 2, · · · , be a sequence of

numerical algorithms such that

An
1 (fs, x) −→n→∞ fs(x). (4.15)

In exact arithmetic, applying finite difference formula to the above and

taking limits results in

lim
s→0

1

s
(An

1 (fs, x)−An
1 (f0, x)) =

∂

∂s
An
1 (fs, x)

∣∣
s=0

. (4.16)

Now, even though An
1 (fs, x) might be a good approximation of fs(x), gener-

ally

An
2

(
∂fs
∂s

∣∣
s=0

, x

)
�= ∂

∂s
An
1 (fs, x)

∣∣
s=0

, (4.17)

where An
2 is another sequence of algorithms tailored to numerically evalu-

ate the derivative:

An
2

(
∂fs
∂s

∣∣
s=0

, x

)
−→
n→∞

∂fs(x)

∂s

∣∣
s=0

. (4.18)

In Publication III an analytical integral formula for Gâteaux derivative of

(4.14) was computed, and its numerical computation was addressed, when

θ is such that it varies one vertex of the triangulation of Γ. It was pointed

out that the expression of the differentiated system matrix contains the

gradient of the Green’s function, that can, and should, be transformed

to an edge integral by integration by parts for reliable evaluation of the

integral [81, 82]. Without such an analytical expression for the shape

derivative integral at hand there is no formula to manipulate for a more

reliable numerical evaluation.
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5. First order system LL∗ and extended
Maxwell’s equations

In this chapter discretization of the extended Maxwell’s equations by the

first order system LL∗ method is discussed.

The FOSLL∗ method is a rather young technique developed to treat non-

smooth material parameters in the least squares finite element method

[83, 5]. Furthermore, as we shall see in Section 5.2, such a formulation

allows one to drop the requirement that RHS of the operator equation

must be in L2.

However, let us first illustrate (5.1) the low-frequency breakdown, usually

plaguing the numerical methods derived from the reduced time-harmonic

equations, with the curl curl equation.

5.1 Curl-curl equation and low-frequency breakdown

Let us consider the following popular ([29] and references therein) vari-

ational formulation for the reduced time-harmonic equations (2.16) with

n×E = 0 on ∂Ω, M = 0, Ω being simply connected and constant ε, μ:

Find E ∈ H0(∇×,Ω) s.t.

(∇× φ,∇×E)− κ2(φ,E) = (φ,F), ∀φ ∈ H0(∇×,Ω),
(5.1)

where (·, ·) is the L2 inner product.

Let us denote aκ(u,v) = (∇×u,∇× v)− κ2(u,v) and the discrete lowest

order Nédélec space [30] and its basis by

span(ϕn)
N
n=1 = Xh ⊂ H0(∇×,Ω). (5.2)

Furthermore, let us define a discrete norm on Xh by

|||uh|||2 =
∑
n

|un
h|2, (5.3)

where un
h are the coefficients of uh in the basis (ϕn)n.
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The norms ‖ · ‖L2 and ||| · ||| are equivalent on Xh since Xh is a finite

dimensional space. Thus, when considering the Rayleigh quotients

aκ(uh,uh)

|||uh|||2
, (5.4)

it suffices to inspect the ones given by the L2-norm

aκ(uh,uh)

‖uh‖2
. (5.5)

When κ → 0, the smallest Rayleigh quotient of aκ tends to zero and, on

the other hand, there are quotients that behave as O(1):

If there is a constant C > 0 s.t.

C ≥ |aκ(u,u)|
‖u‖2 (5.6)

for all u ∈ Vh, then C ≤ |κ|2. This can be seen by taking u ∈ ∇H1 ∩ Xh.

Note that the intersection is not empty because the gradients of first

order nodal Lagrange functions whose support do not meet the edge of the

computational domain are contained in Xh.

On the other hand, the space H0(∇×) supports a Helmholtz decomposi-

tion H0(∇×) = (∇H1
0 )

⊥ ⊕∇H1
0 as subspaces of L2, where ∇H1

0 is a closed

subspace of H0(∇×) [29]. Thus, taking u ∈ Xh ∩ (∇H1
0 )

⊥ it holds that

∇ · u = 0 and using the Maxwell inequality (i.e. Friedrichs inequality

[84, 85]) we get that there is a constant c > 0 not depending on u s.t.

‖∇ × u‖2 = ‖∇ × u‖2 + ‖∇ · u‖2︸ ︷︷ ︸
=0

≥ c‖u‖2L2
. (5.7)

Thus |aκ(u,u)| ≥ (c− κ2)‖u‖2.
This translates, in terms of the Rayleigh quotient of aκ, to

c ≤ |aκ(u,u)|
‖u‖2 . (5.8)

Thus the condition number of aκ behaves as O(|κ|−2) near zero wave num-

ber.

This phenomenon is called the low-frequency breakdown. In [86], Costa-

bel introduces a penalty term (∇ · u,∇ · v) in the bilinear form, which

eliminates the instability by making the bilinear form H1-coercive. An-

other, purely numerical solution to the problem was proposed by Zhu et al

in [11].

In this dissertation the low-frequency breakdown in finite element method

is circumvented using the extended Maxwell’s equations which then are

discretized with a least squares finite element method [4]. More specifically,
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the first order system LL∗ [83, 5] is employed where the solution is sought

as a minimizer of a certain problem dependent least-squares functional.

In the following, we review the FOSLL∗ method and outline how the

extended Maxwell’s equations are discretized.

5.2 First order system LL∗

Let H be a Hilbert space and L : D(L) ⊂ H → H an unbounded self-adjoint

operator, with domain D(L). Consider the following equation in H:

LU = F, U ∈ D(L). (5.9)

Instead of solving this directly, one considers the least squares problem for

the adjoint of L∗ as

min
u∈D(L∗)

‖L∗u− U‖2H, (5.10)

where U is the solution of (5.9).

Applying the variational argument to (5.10) results in an equivalent

formulation:

Find u ∈ D(L∗) s.t.

(L∗u, L∗v) = (U,L∗v) ∀v ∈ D(L).
(5.11)

It looks as if the original unknown U was needed to compute the right

hand side of (5.11). However, because L∗ is the adjoint of L, it holds that

(U,L∗v) = (LU, v) = (F, v). (5.12)

In matrix computations this corresponds with the system

AAHy = b. (5.13)

If the sesquilinear form (L∗u, L∗v) is elliptic and bounded, the problem

(5.11) has a unique solution by Lax-Milgram theorem. However, because

L and L∗ are a-priori unbounded operators, the boundedness needs to be

considered in new a energy norm on D(L).
To that end, let us turn to the extended Maxwell’s equations for nor-

malized fields and state their properties discussed in greater detail in

[13, 84].

Let H = (L2)
8 and

L = P − iκI,
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where I is the identity operator, κ = ω
√
εμ and

P =

⎡
⎢⎢⎢⎢⎢⎣
0 0 ∇· 0

0 0 −∇× ∇
∇ ∇× 0 0

0 ∇· 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (5.14)

For extended Maxwell’s equations the F on the RHS of the Equation (5.9)

consists of charge and current densities:

F =
[
0

√
μJ 0 ρ√

ε

]ᵀ
(5.15)

Packing the fields in to the variable U as

U =
[
Φ E H Ψ

]ᵀ
, (5.16)

where Φ and Ψ are slack variables needed to square Maxwell’s equations

and E and H are the normalized fields (2.17), we find that the operator

equation

LU = F (5.17)

is just a rewording of the extended Maxwell’s equations.

If D(L) is given by

DE(Ω) = H1
(
Ω)/C×H

D
◦
C
(Ω)×H ◦

DC
(Ω)×H1

0 (Ω) or (5.18)

DM (Ω) = H1
0 (Ω)×H ◦

DC
(Ω)×H

D
◦
C
(Ω)×H1(Ω)

/
C, (5.19)

where ⎧⎪⎨
⎪⎩
H ◦

DC
= H0(∇·) ∩H(∇×) and

H
D

◦
C
= H(∇·) ∩H0(∇×),

then it holds that D(L) = D(L∗) and, furthermore, L∗ = −L if κ ∈ R.

Considering DR (R = E,M ) as a Sobolev space equipped with a norm

given by ∥∥∥[Φ E H Ψ
]∥∥∥

D
=
(∥∥∥[Φ E H Ψ

]∥∥∥
H

+ ‖∇ ·H‖2L2
+ ‖∇ ·E‖2L2

+ ‖∇ ×H‖2L2
+ ‖∇ ×E‖2L2

+ ‖∇Ψ‖2L2
+ ‖∇Φ‖2L2

) 1
2 (5.20)

it holds that there are constants C, c > 0 not depending on u ∈ DR s.t.

c‖u‖D ≤ ‖Lu‖ ≤ C‖U‖D. (5.21)

Thus, the bilinear form (L∗u, L∗v) DR-elliptic.
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The abstract least squares variational formulation (5.11) takes the fol-

lowing form:

Find u ∈ DR s.t.

((P∗ + iκI)u, (P∗ + iκI)v) = (U, (P∗ + iκI)v), ∀v ∈ DR.
(5.22)

Defining matrix P (n) by

P (n) =

⎡
⎢⎢⎢⎢⎢⎣
0 0 n· 0

0 0 −n× n

n n× 0 0

0 n· 0 0

⎤
⎥⎥⎥⎥⎥⎦ , (5.23)

the following formal integration by parts formula holds

(PU, V ) + (U,PV ) =

∫
∂Ω

P (n)U · V dσ. (5.24)

Thus, the right hand side of (5.22) is given by

(U,L∗v) =
∫
∂Ω

P (n)U · vdσ + (LU, v)

=

∫
∂Ω

P (n)U · vdσ + (F, v) (5.25)

Moreover, if v ∈ DR(Ω) then, denoting v =
[
f ε χ p

]ᵀ
, the surface

integral above results in

∫
∂Ω

P (n) · vdσ =

⎧⎪⎪⎨
⎪⎪⎩
∫
∂Ω

fn ·H+Ψn · ε+ χ · n×Edσ v ∈ DE ,∫
∂Ω
Φn · χ+ pn ·E− ε · n×Hdσ v ∈ DM .

(5.26)

Supposing that there is a family approximating discrete subspaces Xh
R

of DR, then the discrete form of (5.22) is

Find u ∈ Xh
R s.t.

(L∗u, L∗v) = (F, v) +

∫
∂Ω

P (n)U · vdσ, ∀v ∈ Xh
R.

(5.27)

If u is the solution of the problem (5.22), then the original electromagnetic

field U is given by U = (P∗ + iκ)u. Thus, u could be called dual-potential of

U . Indeed, denoting u =
[
ϕ e h ψ

]
and v =

[
f ε χ p

]
, when κ = 0

the bilinear form in (5.22) reduces to

(∇ · h,∇ · χ) + (∇× h,∇× χ) + (∇ψ,∇p)+

(∇ · e,∇ · ε) + (∇× e,∇× ε) + (∇ϕ,∇f) = (−J, ε) + (ρ, p). (5.28)

Thus, e is the vector potential of H and ψ is the scalar potential of E arising

from impressed the current J and charge ρ.
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θ > π
Ω

Figure 5.1. A domain Ω with a re-entrant corner in which Gaffney’s inequality does not
hold.

It should be noted that even though the solution to the original opera-

tor equation was sought from DR, the minimization of the least squares

functional for the adjoint operator allows the solution U to be in L2: The

Lax-Milgram lemma guarantees that the variational problem (5.11) has a

unique solution if v �→ (v, L∗U) is a continuous linear functional on DR.

The drawback, or virtue, of the present approach is that one is required

to use H1 conforming discretization owing to the presence of the div-curl

Sobolev spaces H ◦
DC

and H
D

◦
C

. Although such a discretization is easy to

implement at relatively high orders, the downside is that the computational

domain must exhibit enough regularity for the Gaffney’s (or Friedrich’s)

inequality [87, 88]

c‖u‖H1 ≤ ‖u‖+ ‖∇ · u‖+ ‖∇ × u‖ (5.29)

to hold.

The inequality holds if Ω is smooth or convex, but if it has a re-entrant

corner, such as depicted in Fig. 5.1, H ◦
DC

(Ω) ∩ (H1(Ω))n, n ∈ {2, 3}, is a

closed proper subspace of H ◦
DC

(Ω) [86, 24], i.e. there can be no continuous

embedding H ◦
DC

(Ω) ↪→ (H1(Ω))n. In such domains there are functions that

belong to H ◦
DC

(Ω), that cannot be approximated with (H1(Ω))n functions in

(H1(Ω))n norm, the standard a priori approximation results (see [33]) of H1

elements are not available and, moreover, it has been observed numerically

that the convergence deteriorates [89].

Another challenge in H1 conforming finite element bases is that in some

cases vanishing normal (or tangential) component implies vanishing tan-

gential component also. Thus, boundary conditions such as n · F = 0 need

to be relaxed. For example, in a polyhedral domain approximating a circu-

lar disc, if a first order Lagrange nodal vectorial basis function has zero

normal trace, then it vanishes on the boundary. Instead, if the normal

trace for ψ ∈ (Sh,1)
2 is imposed in a weak sense by requiring that∫
Ω
∇ ·ψφ−ψ · ∇φdx = 0 ∀φ ∈ Sh,1 (5.30)
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Figure 5.2. A non-conformal vector field satisfying vanishing discrete weak normal trace
(left). A closeup on the field near boundary (right).

holds, one ends up with a non-conformal discretization that can represent

functions such as shown in Figure 5.2.
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6. Summary of the publications

Publication I The Publication I was devoted to construction of a good

parametrization for the shapes of planar wire dipoles and its demon-

stration in directivity and input impedance optimization. The work is

continuation of the author’s M.Sc. thesis in which the Landstorfer’s shaped

dipole antenna [69] was re-optimized with modern full-wave methods.

The parametrization was based on interpreting a point on S1 as a tan-

gent vector of a curve and integrating the vector resulting in an arc-length

parametrized curve. The regularity of the curve was deducted from physi-

cal properties that bent metallic wires must possess: no self-intersections,

finite length and lower bound for the radius of curvature.

Publication II In the second publication the shape derivatives of the dis-

crete MFIE system were derived and evaluated against finite difference

formula. It also provides a non-trivial example where existing singular-

ity subtraction technique cannot be used. Instead, fully numerical high

precision singularity cancellation rules [90] were used.

Publication III In this publication, the shape derivative formulas for the

system matrix of the EFIE were derived for the first time and they were

compared against automatic differentiation method and finite differences.

It was shown that if the shape derivative integrals are integrated in a

particular manner , the relative difference with AD and FD methods are

optimal, i.e., up to floating point precision for AD and half of the float-

ing point precision for FD. However, because the resulting differentiated

integrals are more singular they should be integrated using techniques

described in [91, 81]. Utilizing those integration methods described in the

relative difference of a system matrix arising from a real world example

turns out to be of order 10−3 instead of the expected 10−8.

Work closest to the Publication III is the paper by Ureel and De Zutter

[92] where they solved the problem of finding shape derivative of surface
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current in case of planar microstrip structures with mixed potential in-

tegral equation (see e.g. [93, 94]). Their approach is based on Reynolds

parallel transport theorem, i.e. differentiation under the integral sign, and

it is limited to planar perturbations of the edges of the metallization.

Other important pieces of work include Potthast’s paper [95] where the

Fréchet differentiability of the scattered field from a PEC obstacle with

respect to small variations of the boundary is addressed in the framework

of Hölder spaces. Furthermore, the first derivative of the scattered field is

characterised as a solution of a new boundary value problem. In papers [96,

97] Le Louër and Costabel extend Potthast’s work to dielectric transmission

problem in Sobolev spaces. These pieces of work are, however, rather

theoretical from the point of view of computational electromagnetics and,

more importantly, they do not address the adjoint variable method.

Publication IV In the Publication IV techniques discussed in the Publica-

tions II and III were utilized in a sensitivity analysis and optimization of

electrically large structures. The shape sensitivity computation was based

on calculation of the derivatives of the MLFMA process and was imple-

mented by rewriting parts of an existing MLFMA code. In this publication

also two validating optimization examples were presented.

Publication V In this publication the FOSLL∗ method applied to electro-

magnetics was examined in three dimensional domains. In it the effect of

interior resonances of the domain was presented and it was shown how

the formulation can be used as a hybrid method. The weakly tangential or

normal discrete FE spaces were implemented using orthogonal projections

that take the finite element functions to the right subspaces. More specif-

ically, at each Krylov iteration the new generated vector was projected

to the FE subspace satisfying the discrete weak boundary condition and

the projections were generated using the SVD. It was also shown that

the discrete variational form is elliptic in the space where discrete weak

boundary conditions hold when the mesh is fine enough.
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