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Productivity analysis is interested in 
comparing how much more productive for 
example a firm is than another. Comparison 
of units can, however, be unfair if the firms 
operate in highly different environments. 
For example, a firm might operate in a highly 
risky environment and thus may look less 
productive, not necessarily because of any 
inefficiency, but because of the 
environment. This dissertation studies what 
implications a risky operating environment 
of firms has for productivity and efficiency  
analysis. The connections between risk and 
inefficiency are explored with a conceptual 
discussion and empirical applications. The 
explicit discussion of these connections is 
the novel feature of the dissertation. The 
empirical applications illustrate how risk 
and operating environment can be 
interpreted and accounted for in the 
analysis of aggregate productivity and 
corruption and the cost-efficiency and 
quality of service assessments of the Finnish 
electricity distribution companies. 
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1. Background of the thesis  

The traditional economic theory highlights that all firms operate efficiently.1

For example, the most common behavioural assumption imposed on firms, 

profit maximization, implies that with given prices, firms produce the highest 

possible output from given inputs and that they do this with the lowest 

possible cost (Mas-Colell, Whinston, and Green, 1995). In terms of 

production function, this means that the production function applies to a firm 

when it is producing the maximum possible output from its inputs, which

implies that its productivity is maximized. Thus, if we interpret the 

traditional theory very narrowly, all firms observed in the markets are 

technically efficient since inefficient firms are ultimately driven out from the 

markets. Obviously this is not the case. We do observe inefficiency and large 

productivity differences among firms. For example Syverson (2011) points 

out that persistent productivity differences are present virtually in all types of 

industries.2 Syverson examines the determinants of productivity differences

in detail and roughly categorizes them to intra-firm determinants and external 

determinants. The latter are related to the market conditions or, more 

generally, to the operation environment of firms. The former, on the other 

hand, relate to managerial talent, learning and R&D, among others. Over 

these factors firms usually have some control. As the following discussion 

will make it evident, this thesis is more concerned about the external 

influences of operating environment on productivity.  

In order to make some practical judgements about the level of 

productivity, the amount by which productivity can be improved should be 

quantified. Indeed, it would be very hard for firm managers to make

decisions concerning productivity if they were unaware about the 

productivity target that they should obtain. Identifying this target effectively 

1 For the sake of simplicity, we use the term ‘firm’ to refer to any entity that engages in 
production activities. The discussion and the methods applied in this thesis extend 
themselves for example to countries and public service providers which do not directly fall 
under the typical interpretation of a firm.
2 Syverson uses the terms productivity and efficiency interchangeably. However, to be 
exact, (technical) efficiency is just one component of productivity (change), which includes 
also technical change and scale components, which account for productivity change due to 
change in technology and deficit in production, due to suboptimal scale size. But of course, 
lower efficiency means lower productivity.  
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means that the firm's operations should be compared to some ideal 

technology which describes the optimal way of production.  

However, such theoretical ideals hardly exist, except maybe in 

engineering, and the technology has to be estimated from the observed data.

Thus what is actually done is a comparison to the best observed practices of 

the industry. The conventional approach is to estimate a production or a cost 

function via the usual linear regression methods. Unfortunately, these 

methods do not explicitly acknowledge the presence of technical inefficiency

as they are constructed upon the traditional economic theory. Firms are still

assumed to succeed in their optimization of production in terms of technical 

efficiency. Although conventional empirical models do allow deviations

from optimal production, these models usually downgrade these deviations 

simply as a statistical error without much interest to the analyst. That is, the 

resulting residual is seen only as an estimation error, and the interest is in the 

parameters of production function itself (see the discussion in Kuosmanen & 

Fosgerau, 2009). In cases where the residual is considered interesting, it is

then lumped as a single productivity measure without further considerations 

of its content (see e.g. Abramowitz, 1956; Syverson, 2011). The interest of 

further research has then mainly been to study the factors that explain 

variations in this residual and not so much the magnitude of the residual.  

Nevertheless, it is problematic if we do not have a very clear idea about 

what the residual itself actually contains. Through conventional modelling, it 

is practically impossible to identify the size of the residual part attributed to 

technical inefficiency and for example to measurement errors or specification 

errors of the model. This is fine if the interest indeed lies only in the 

production function parameters. But for managerial decisions, it would be 

important to explicitly identify the measure of inefficiency out of that 

residual. This has led to the development of methods that allow us to 

explicitly model this inefficiency. 

Since the end of 1970's, the field of productivity and efficiency analysis

has seen a surge of applications of so-called frontier methods, namely

nonparametric data envelopment analysis (DEA) and parametric stochastic 

frontier analysis (SFA). Grounded on the path-breaking work of Farrell 

(1957), these methods were developed by Charnes et al. (1978; DEA) and 

Aigner et al. (1977; SFA) to estimate the efficient (production) technology of
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firms under the presence of technical inefficiency. This allowed the analyst 

to compare the performance of individual firms against technology that is 

efficient and to assess the possible magnitude of inefficiency. Over the years, 

the application areas of these methods have ranged from the micro level to 

the aggregate macro level. In their survey of the literature, Fried et al. (2008) 

identified around 50 different areas in which these methods have been 

applied. One especially prominent field of applications, a field relevant also 

in this thesis, has been the performance of public services such as utilities

(see e.g. Coelli and Lawrence, 2006). For example, many countries use these 

methods to incentivize electricity distribution companies to operate cost-

efficiently. Otherwise, these companies are little incentivized to act so, due to 

their natural monopoly status (Bogetoft and Otto, 2011, Chapter 10).  

Besides a plethora of empirical applications, there has been a lively, 

more theoretical debate over the relative merits and downsides of both of 

these methods as for a long time many considered DEA and SFA as 

competing alternatives to each other. Although the debate may have got 

some more neutral tones in recent times, a huge body of work has been 

devoted to pinpoint the pros and cons of each method and to develop 

extensions of them to account for their defects (see a summary of these 

extensions in Fried et al., 2008). Although both methods have greatly 

evolved from their original forms, no clear winner of this methodological 

race has emerged. If anything, the comprehensive Monte Carlo simulation

comparisons of the methods conducted over the years only identify different 

circumstances in which each method works (see e.g. Gong and Sickles, 1992; 

Banker et al., 1993; Andor and Hesse, 2013).  

One major area of extensions for all frontier methods has been that of

accounting for heterogeneity of operating environment of the firms. For 

example, in it is basic form DEA does not make any explicit mention of the 

operating environment. Instead, as Dyson et al. (2001) point out, there is an 

“unwritten” assumption in basic DEA that the firms should be operating in a 

relatively similar environment. Neither does basic SFA explicitly model the 

operating environment. Intuitively it is clear that comparison between any 

firms is meaningful only if they operate in a relatively similar environment.

Otherwise, some firms may seem inefficient only because of their worse 

environment, not because there is some actual inefficiency present. This 
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concern is not new, and already about twenty years before the introduction of 

DEA and SFA, Hall and Winsten (1959) saw efficiency comparisons 

between firms operating in different environments as questionable.  

Consequently, a number of solutions for accounting for the production 

environment heterogeneity have appeared in both DEA and SFA literature

(see e.g. Coelli et al., 2005; Fried et al., 2008; section 3.6 of this 

introduction). One area of heterogeneity, namely riskiness or uncertainty of 

production environment, has not however received major attention in the 

frontier literature. The study of production risk, that is, the variance of output

due to exogenous shocks, however has a long tradition in agricultural 

economics (Just & Pope, 1978; see also Moschini & Hennesy, 2001). The 

basic premise is, of course, that the higher variance implies riskier production 

environment. 3 Since production environment arguably affects output, we 

expect that the variation in environment has implications also for the 

efficiency measurement. For example, consider two farms identical in all 

other respects besides the weather conditions in their area. Thus we assume

also that the two farmers concerned are equally efficient in turning their 

inputs to output(s). If farmer 1 faces more variable weather conditions, then 

arguably the variation in weather also affects the variation of output. As a 

consequence, direct efficiency measurement not acknowledging the 

difference in the riskiness of the operating environment confounds the 

shortfall in farmers’ output due to weather as inefficiency.  

From the previous simple example we see that examining performance 

without considering the variability or riskiness of that performance may 

mislead our analysis. Furthermore, it clearly demonstrates the importance of 

exogenous factors in operating environment that are mostly out of firms’ 

control. Thus it is also important to study how these factors contribute to

performance. Regarding risk, studying the variation of performance directly 

gives us information about the riskiness of the environment that the firm 

operates in. Moreover, such an analysis would give us information on how 

the performance variability can be controlled with the input use, for example. 

3 The traditional modelling of risk or uncertainty in production is based on typical 
production function with a stochastic error (see e.g. section 3.6 below). A more recent line 
of research, the so-called state contingent approach, attempts to model production 
uncertainty through different uncertain states of nature, which imply state-specific 
production (see e.g. Quiggin and Chambers, 2006 and the references therein). 
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Clearly, such information would be valuable for any risk-averse agent, who 

prefers a modest return - low risk scenario over a high return - high risk

scenario, as they obviously would like to control the risk they face. In the 

next section we discuss in more detail how this thesis approaches the 

problem of risk in productivity and efficiency analysis. 
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2. Objectives of the thesis 

Given the above background, the objectives of the thesis are broadly twofold. 

The first objective is methodological. It seems obvious that the chosen 

method should try to account for operating environment and also avoid some 

of the shortcomings of the so-called traditional methods. Thus this thesis 

systematically applies a relatively new stochastic semi-nonparametric 

envelopment of data (StoNED) framework developed by Kuosmanen and 

Kortelainen (2012). To study the effects of operating environment, we apply 

the notable extension of the framework by Johnson and Kuosmanen (2011). 

Since risk is inherently a stochastic phenomenon, the StoNED method seems

suitable to study risk. As its name suggest, StoNED includes a stochastic 

element in its modelling framework. In this thesis, the method is applied to a 

wide variety of applications, ranging from aggregate productivity to energy 

markets. This shows the wide applicability of the chosen method, and it

demonstrates the fact that heterogeneity is a concern at different levels of 

aggregation, be it on the level of industry or economy as a whole.  The 

original contributions within the thesis will give a complete overview of this 

framework and its extensions.  The use of the StoNED method and the 

traditional methods is also compared in the context of Finnish regulation of 

electricity distribution. 

The second objective is naturally to examine the role of risk in

productivity and efficiency analysis. Since risk or uncertainty is defined in 

terms of variance in this study, we utilize typical econometric tools and 

concepts related to heteroscedasticity to examine the issue. Very roughly, 

heteroscedasticity means that the variance of a certain random variable is a 

function of some other variables. In other words, instead of having the same 

variability throughout its distribution, the variance of a random variable 

changes due to changes in some other variables. For example, we often 

observe that the variance of growth rates is smaller among large firms than 

among smaller firms (see e.g. Hall, 1986; Dunne & Hughes, 1994). This 

might be because smaller firms are often younger and are yet to be so

stabilized in their operations. In the context of this thesis, we naturally are 

interested to model the performance variation as a function of variables 
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which describe the operating environment of the firms. Note that in this 

thesis we consider production risk that is due to the variation in performance 

as a manifestation of risk. Obviously, uncertainty can manifest itself in 

production also in other ways, for example as price uncertainties in input or 

output prices or risks related to investments.  

 This thesis argues that the concept of heteroscedasticity is not yet fully

understood in productivity and efficiency analysis utilizing frontier models 

(Saastamoinen, 2013). As discussed above, the thesis views 

heteroscedasticity in terms of risk. Thus we see it as an issue with economic 

meaning besides being purely an econometric problem. The original 

contributions of the thesis study this issue from different angles. More

specifically, the connections between heteroscedasticity, inefficiency and risk 

are first studied on a conceptual level. A rather superficial gap in the 

literature between these topics is identified, the three concepts being closely 

related. The empirical applications study the heteroscedasticity issue in two 

different contexts. First, the connection between aggregate macro-level 

productivity and institutions is studied from the viewpoint of 

heteroscedasticity. This study suggests that the confounding relationship 

between corruption and aggregate productivity can be explained by the so-

called macro risk effect, that we examine through heteroscedasticity. Second,

heteroscedasticity is studied in the context of electricity distribution in 

Finland. Especially we examine how investments in underground cabling 

within the electricity distribution industry in Finland affect the riskiness of 

operations in terms of interruption costs. This is interesting from the policy 

perspective because both, the low general level of interruptions and their

small variability can be viewed as measures of good service quality. 

Before we discuss the research articles in more detail, it is necessary to 

define the basic concepts that are needed to understand the overall context of 

the thesis. Especially we need to understand the concepts of production 

technology and heteroscedasticity and familiarize ourselves with the methods 

to estimate the production technology. 
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3. Production technology 

As much of the thesis concentrates on the empirical estimation of best 

practices in terms of production (output) or costs, it is critical to understand

what these empirical methods estimate. For that we need to lay down the 

theoretical foundations of production. That is, we need to define the 

production possibilities of the firm and how the estimated production and 

cost functions relate to these possibilities. As more detailed presentations of 

the material of this section can be found from multiple books, the section is 

kept relatively brief (see e.g. Fried et al., 2008; Hackman, 2008; Coelli et 

al., 2005; Kumbhakar and Lovell, 2000; Färe and Primont, 1995). The 

notation in this section generally follows those presented in Fried et al. 

(2008) and Kumbhakar and Lovell (2000).    

Since this thesis deals with both production and cost functions, it is 

important to note that the same technology which is characterized through 

the technical possibilities of production can also be identified through the 

cost minimization problem of the firm. This is known as the duality in 

economics (Diewert, 1974). Sometimes the other characterization is more 

suitable to model the objectives of the firm than the other. Indeed, the dual

characterization allows us to model a richer set of the firms' economic 

objectives, not just the primal technical possibilities characterized by inputs 

and the corresponding outputs. For example, regulated (e.g. electricity 

distribution firms) companies often take their outputs as given and thus

cannot be assumed to maximize production. However, it is reasonable to 

assume that they aim to produce their outputs with minimum costs. Thus the 

appropriate behavioural assumption for such companies is cost 

minimization as they cannot affect their revenue/profit through output 

adjustment (see e.g. Färe and Primont, 1995).  

3.1 Firms' production possibilities 
In its widest sense, we can define technology as a process where inputs x are 

transformed to outputs y (see e.g. Hackman, 2008). However, it is more 

informative to speak of production possibility set (PPS) when referring to 
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technology as this terminology explicitly defines technology as the technical 

possibilities of the firm. In other words, PPS consists of all combinations of 

inputs x that can produce outputs y. For the moment, we are speaking of 

multiple input, multiple output characterizations of technology and thus we 

refer to outputs and inputs as vectors y and x. However, when we later move 

from the set theoretic representation of technology to the production 

function representation, we consider output y as a scalar, which can be an 

aggregation of many outputs. It is nevertheless convenient to characterize 

the technology first explicitly for multiple outputs, a single output case 

being just a special case of it.

More formally, consider that we have m number of inputs and s

number of outputs, which all are assumed to obtain values from the non-

negative segment of the real axis. The production possibility set (PPS) can 

be defined as

{( , ) | can produce }m sT x y x y  (1) 

The definition in Equation (1) includes all possible input-output 

combinations, not only those that are observed in empirical data. Although 

obvious, it is often stated explicitly as an elementary assumption on the 

technology that all observed input-output combinations belong to the above 

theoretical technology. However, there are no further assumptions on this 

technology as yet. Nevertheless, in order to guarantee that the technology is 

well-behaved, we impose the following axioms listed below on the 

technology (see e.g. Kumbhakar and Lovell, 2000).  

A1: ( ,0) Tx and (0, ) Ty .

A2: T is a closed set.

A3: For each input mx , T is bounded. 

A4: If ( , ) Tx y  then ( , ) Tx y for some 1.

A5: If ( , ) Tx y  then ( , ) Tx y for some 0 1 .

[A6: If ( , ) Tx y then ( , ) ( , ) ( , )Tx y x y x y ]   

[A7: T is a convex set.]

The assumption A1 implies that inactivity is possible and that output(s)

cannot be produced without any inputs. A2 guarantees that the production 
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possibility set includes the technically efficient input-output combinations.

In other words, the set contains its boundary since it is closed. Assumption 

A3 states that producing an infinite amount of output from some given 

amount of (finite) input is not possible. A2 and A3 together imply that the 

maximum amount of output that can be produced from given inputs lies on 

the boundary of the set. A4 and A5 impose weak disposability on inputs and 

outputs. In practice, these two assumptions allow that more inputs can used 

to produce the same amount of output or that less output can be produced 

with the same amount of inputs. The adjustment of inputs and outputs is in 

proportion to the factor for all inputs or outputs when weak disposability

is assumed. Assuming a more general form of adjustment, which might 

concern only a subset of inputs and outputs, strong (free) disposability 

should be assumed instead (Assumption A6).4 In A6 we have assumed free 

disposability on both inputs and outputs. We can also assume that inputs and 

outputs have disposability properties that are different from each other.  For 

efficiency measurement, disposability is essential as inefficient activities are 

allowed to exist by assuming disposability. Assumption A7 imposes the 

production possibility set to be a convex set. Assuming convex PPS is not 

mandatory as non-convex technologies can be assumed, but it is required to 

establish duality results as shall be discussed in Section 3.5. Convexity is 

also a critical assumption for many estimators which rely on convexity to 

estimate the technology. 

In addition to the above assumptions, the technology is assumed to 

exhibit certain returns-to-scale properties. The most generic assumption is 

that the technology has variable returns to scale (VRS), which allows either

decreasing, constant or increasing returns to scale to be present at different 

parts of the technology. None of the returns-to-scale assumptions need to be 

taken as given, as they can be tested empirically (see e.g. Banker and 

Natarajan, 2011). Below we start from the constant returns-to-scale (CRS) 

4 Note that free disposability implies the technology is monotonic in terms of both inputs 
and outputs. In other words, it means that when inputs for example increase, outputs should 
stay the same or increase. There are cases where for example inputs cannot be freely 
disposed. Weak disposability allows that increments in inputs may lead to a decrease in 
output, which is often labelled as input congestion (see e.g. Rødseth, 2013). Another 
situation where weak disposability is a reasonable assumption is in modelling bad outputs 
(e.g. pollution), as a bad output might not be freely disposed to keep the good output as 
fixed (Färe et al., 1989). 
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assumption and then present the assumptions of decreasing and increasing 

returns-to-scales in relation to that.

A8: Constant returns to scale: For all 0 , it holds that T T .

The assumption A8 means that if we scale the inputs up or down by any 

positive factor , then outputs are scaled by the same factor. With this 

notation, increasing returns to scale means that when scaling inputs upwards 

with some scaling factor 1x the increase in outputs is more than 

proportional, that is y x . Decreasing returns to scale naturally means 

the exact opposite, that is y x , for all , 1y x .

Alternatively, the technology can also be represented by means of input 

and output sets, as shown below. Input set and output set are two equivalent 

ways of representing technology, and in the next section they allow us 

conveniently define efficiency either in terms of output expansion or input 

contradiction through distance functions.  

Output set: The output set ( ) { : ( , ) }P Tx y x y describes all possible 

output vectors that can be produced with a given input vector

using technology T. 

Input set: The input set ( ) { : ( , ) }L Ty x x y describes all possible input 

vectors that can produce a given output vector using technology 

T.

Since these sets are defined in terms of the original set T given in Equation 

(1), the sets ( )P x and ( )L y inherit its corresponding properties. Thus we do 

not reproduce here the listing of the properties of ( )P x and ( )L y anymore

(see e.g. Coelli et al., 2005). Given the sets ( )P x and ( )L y , we could

explicitly define also output and input isoquants and input/output efficient 

subsets of ( )P x and ( )L y (see e.g. Fried et al., 2008). We shall omit their 

exact definitions, as for our purposes it suffices to define distance functions 

and efficiency directly in terms of ( )P x and ( )L y  only. 
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3.2 Distance functions 
Following the definition by Koopmans (1951), improving the efficiency of 

production in practice means two alternative adjustments to the production 

process. Either you expand the level of output(s) towards the maximum 

output(s) that can be obtained using a given set of inputs or you contradict 

the amount of input(s) towards the minimum level of input(s) required to 

produce the given level of output(s). As we see below, distance functions 

characterize technology in terms of these adjustments. This implies that the 

Debreu-Farrell (Debreu, 1951; Farrell, 1957) measure of technical

efficiency, which seeks maximal radial expansion/reduction in 

outputs/inputs, can be directly defined in terms of distance functions.5

 Shepard (1953) defines the input distance function as follows:6

( , ) max{ : ( / ) ( )}ID Lx y x y (2) 

In other words, the distance function in Equation (2) seeks the maximum 

contradiction in inputs so that those inputs still can produce the given output 

level y. The output distance function defined by Shepard (1970), as given in 

Equation (3), on the other hand seeks the largest expansion in outputs so that 

those outputs can still be produced with the given inputs:7

( , ) min{ : ( / ) ( )}OD Px y y x (3) 

Given the above definitions of distance functions, we see that, if either of 

the distance functions obtains the value of one, the adjustments of inputs or 

outputs are not possible. That can be regarded as efficient in the sense that 

no more output can be produced with given inputs or no inputs can be 

reduced in order to produce a given output level. It also directly follows, by 

construction, that ( , ) 1ID x y  and ( , ) 1OD x y . That is, the input amount 

5 The definition of Koopmans and the Debreu-Farrell measure do not fully coincide. 
Koopmans's definition implies also non-radial adjustments. This is known as a slack-
problem in the Debreu-Farrell measure. Technical efficiency in Koopmans's sense is a 
stricter requirement than in Debreu-Farrell's sense. For our discussion. this distinction is 
however immaterial.  
6 See Färe and Primont (1995) for a detailed presentation of distance functions. 
7 In fact, the exact definitions use infimum and supremum instead of minimum and 
maximum (see e.g. Färe and Primont, 1995). For simplicity, many authors however use the 
more intuitive minimum and maximum definitions. 
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can only be reduced towards the minimum required input level and the 

output amount can only be expanded towards the maximum possible output.

Notice that the distance functions inherit the corresponding properties of 

input and output sets, which obtained their properties from technology T.

Now that we have defined the distance functions, we can formally

define the Debreu-Farrell measures of input and output technical 

efficiencies (TE) as follows: 

Input (technical) efficiency: 

( , ) min{ : ( )} 1 / ( , )
( , ) 1

I I

I

TE L D
TE

x y x y x y
x y

 (4) 

Output (technical) efficiency:8

1 1( , ) [max{ : ( )}] [ ( , )]
( , ) 1

O O

O

TE P D
TE

x y y x x y
x y

(5) 

We can see that the measurement of efficiency is intrinsically related to 

distance functions. This definition of technology allows us to make explicit 

statements about the efficiency of each firm since distance functions measure 

the distance of observed production to the optimal technology. In practice,

we must estimate the technology (distance functions) from empirical data. 

Before we discuss some estimators that can be utilized in estimation, we will

define technology in terms of characterizations that are more familiar to most 

economists, namely in terms of production and cost functions.    

3.3 Production function 
In the previous section, distance functions allowed us to easily characterize

multi-output multi-input technology. If we can assume that the firms are 

producing a scalar output, either one output or some aggregate of many 

outputs, then technology can also be defined in terms of production

function. It is soon clear that everything said about distance functions also 

8 Here it is assumed that the efficiency is measured as the ratio of optimal to the observed. 
Some authors define ( , ) max{ : ( )} ( , )O OTE P Dx y x x x y so that also ( , ) 1OTE x y .
But the definitions in (4) and (5) more naturally correspond to reduction/expansion of 
inputs/outputs.  
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applies to the production function, since production function is a special 

case of the above distance function characterization. 

The standard definition of production function defines it as the maximal 

output that can be produced from given inputs (see e.g. Varian, 1992). More 

formally we define production function as given in Equation (6).  

( ) max{ : ( , ) }f y y Tx x (6) 

Note that only inputs are now denoted by a vector since only one output is 

produced. Clearly, we can immediately see that the production function 

defines a boundary of the technology defined in Equation (1). Of course, we 

have assumed that T is known and the production function can be defined as

the boundary of T. Equally we could start from a known production function 

and define technology in terms of the known function as shown in Equation 

(7). This latter definition is in fact more relevant for the present purposes, as 

it is our aim to estimate the production function and thus recover technology 

through that function. Färe and Primont (1995) state that under rather mild 

conditions these two approaches characterize the same technology, that is 

'T T .

' {( , ) : ( ) }T y f yx x (7) 

Given the above definition of production function, we can directly define the

output distance function and output technical efficiency in terms of 

production function as given in Equations (8) and (9). As a consequence, we 

can also define the production function in terms of a distance function. 

( , ) / ( ) 1
( ) / ( , )

O

O

D y y f
f y D y
x x

x x
(8) 

1( , ) [ ( , )] ( ) / 1O OTE D y f yx y x x  (9) 

The equations above show the direct relation between distance functions 

and the production function. Again, as with distance functions, in practice 

we should estimate the production function from observable data in order to 

recover technology and assess technical efficiency. 
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3.4 Cost function and the duality relationship 
The previous sections defined technology purely in terms of physical 

quantities of inputs and outputs. No assumptions about the economic 

behaviour of firms were made. It was only assumed that they utilize their 

resources as efficiently as possible. Often the success or a failure of a firm 

is, however, measured in economic terms. Thus it would be desirable to 

impose some economic behavioural assumption, such as cost minimization 

or revenue or profit maximization, on the firms. This way we could measure 

the performance of the firms with respect to these economic criteria. To 

achieve this, we need to identify the economic benchmarks; in other words,

we need to estimate cost, revenue and profit functions. This again implies 

that we are trying to recover the technology of firms by using economic data

besides the physical quantities of inputs and output. Besides production 

functions, we focus on cost functions, as both are dealt with in this thesis. 

But with appropriate modifications the issues of the thesis would extend to 

revenue and profit functions. 

One concern that arises is whether the technology we identify when 

utilizing economic objectives differs from that where we use only physical 

quantities of inputs and outputs. If so, it would be difficult to say which 

technology is the correct one. Luckily, as already briefly stated, the duality 

theorem provides the means to connect the physical characterization of a

technology to its economic characterization. It shows that the technology 

identified in either way is essentially the same as the physical production 

possibilities necessarily precede the economic possibilities of a firm. But 

before establishing duality results, we need to formally define a cost 

function. 

With a cost function we are not restricted to examine a single output 

case as costs of producing multiple outputs can simply be aggregated into a

single monetary value. The definitions below, of course, apply in single

output case if we replace the distance functions with corresponding 

production function definitions. Formally, cost function can be defined as in

Equation (10). The cost function is a function of input prices Mw  and 

outputs y .

( , ) min{ ' : ( )}
x

c Ly w w x x y (10) 
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In other words, the cost function defines the minimum cost of producing a 

given level of output(s) with given input prices. Thus the choice for the firm

is to choose the cost-minimizing input levels. Note that the definition of the 

cost function includes the conditioning ( )Lx y . This gives us a clue about 

the duality relationship as the cost minimizing inputs naturally need to 

belong to the input requirement set. This implies that cost minimizing inputs 

have to belong to the same technology that we defined in section 3.1.

Obviously, the cost minimizing inputs should be able to produce the 

outputs. As before, the input requirement set can be replaced with an input 

distance function, as in Equation (11). Thus we have defined the cost 

function in terms of the physical characterization of the technology.

Conversely, because of duality, the input distance function can also be

defined in terms of the cost function, as in Equation (12).9

( , ) min{ ' : ( , ) 1}Ix
c Dy w w x x y (11) 

( , ) min{ ' : ( , ) 1}I w
D cx y w x y w (12) 

Now it would be also straightforward to define the cost efficiency measure as 

a ratio of minimum costs to observed cost, as given in Equation (13). By 

construction, ( , , ) 1CE x y w .

( , , ) ( , ) / 'CE cx y w y w w x (13) 

Equations (11) and (12) show the duality relationship between the cost 

representation and the technically-based representation of technology

through distance function.10 Nevertheless, establishing the duality 

relationship critically depends from the axioms that we impose on the 

technology. Before discussing the role of axioms in establishing duality, it is,

however, helpful to give also an intuitive explanation of duality. Consider a 

firm that is seeking to minimize its costs. It is clear that the firm cannot be at 

9 We could, of course, relate cost function directly to the production function also, as both 
the production function and the distance function similarly characterize the technology in 
physical terms. Note that we could also relate the revenue function with the output distance 
function/output set and the profit function with the overall technology set T. The latter 
implies that all the observed points in the overall technology set have costs equal or greater 
than the minimum cost, that is: {( , ) : ' ( , )}T cx y w x y x .
10 See proof in Färe and Primont (1995).
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the cost minimizing point if it could reduce the amount of one input and still 

produce the same amount of output. In that sense, the physical measure of 

technical efficiency must be related to the cost-based measurement of 

efficiency and the technology that they characterize should be the same. Thus 

technical efficiency is necessary but not yet sufficient condition for overall

cost efficiency. There is also an allocative efficiency part in overall cost 

efficiency. This means that, although the firm is obtaining a maximum output 

from given inputs, with the given input prices the firm is using the inputs in 

wrong proportions. We, however, shall omit the discussion of allocative 

efficiency here.   

3.5 Axioms of production and duality 
In section 3.1, we presented the axioms that a technology should satisfy in 

order to guarantee that the technology is well-behaved and physically 

feasible. In this section, we further discuss the practical meaning of these 

axioms with the help of some intuitive examples. We especially relate the 

convexity axiom to the duality theorem. Moreover, we highlight that the 

axioms impose necessary structure on technology so that we are able to 

estimate the technology with the methods introduced in the next section.  

Free disposability is a relatively intuitive assumption to make. You can 

expect that two workers can dig a 10-meter long trench in an hour if one 

worker can do it. In this example, the output is kept fixed, but the input is 

increased. On the other hand, we could turn the situation around by saying 

that if a worker can dig a 10-meter trench in an hour, he can also dig a 5-

meter one in the same time. As already stated, the importance of 

disposability lies in the fact that it allows inefficient actions to be present. 

Consider next the convexity of input sets, which directly follows from 

the convexity of T. This implies that a convex combination of input vectors

in the input set should also belong to the set. Assume for example that one 

piece of machinery (K) can replace two workers (L). If we have two input 

vectors 1 2( , ) [(4,0) ;(0,2) ]iL K which are both capable of producing a 

certain level of output, then we would expect that an input vector (2,1) also 

can achieve that. The new input vector corresponds to a convex combination 

of the original technologies, where both technologies get the weight of 0.5.
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Convexity thus implicitly assumes that inputs are continuously divisible. If

divisibility is not a reasonable assumption, then some non-convex 

estimation technology can be considered (see e.g. Keshvari and Kuosmanen, 

2013).  

Convexity matters for production functions also. A production function

is often assumed to be (quasi)concave. This follows from the convexity 

assumption for the input set ( )L y . It means that a convex combination of 

input vectors that both belong to the PPS restricted above by ( )f x , belong 

to the PPS also. But more importantly, the concavity assumption implies 

that the production function exhibits diminishing returns to inputs. This is

one of the most fundamental laws in production economics. Now compare 

this to the cost function. Cost function is a convex function of outputs if T is 

convex. 11 This property is directly analogous (or rather, consequence of it)

to the concavity property of production function. Indeed, analogously to

Equation (10), the cost function can be defined in terms of the production 

function as ( , ) min{ ' : ( )}
x

c y fy w w x x . The convexity of the cost 

function in outputs implies non-decreasing marginal costs for inputs, which 

can be considered as the cost equivalent of diminishing returns of inputs on 

the production side. What can be seen here is that convexity is crucial in 

order to establish duality.  

The above discussion shows that axioms do have practical meaning in 

terms of basic economic fundamentals. In addition, axioms impose some 

structure on production technology, allowing its meaningful estimation. The 

set in Equation (1) is too general to be estimated without any further

assumptions about the technology, as it only characterizes the feasible input-

output pairs without giving any guidance about the underlying structure 

behind these input-output correspondences. In some methods, we already 

impose a lot of structure on the technology by directly assuming some 

11 With a slight digression, it is good to note at this point that, for natural monopolies, the 
cost function needs to be sub-additive in the sense that 1 2 1 2( ) ( ) ( )C y y C y C y . This 
means that the cost of producing outputs 1y and 2y separately in two firms is higher than 
in one firm (Baumol, 1977). Schmalensee (1978) shows that a necessary condition for the 
existence of natural monopoly in distribution/transmission type industries is that the cost 
function is concave in output. If a function is concave, it is also sub-additive. As will be 
discussed later, it is problematic if functional forms which are convex in outputs are used to 
estimate costs in cases where the characteristics of production clearly imply natural 
monopoly, as is the case in electricity distribution. 
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functional form for the production, cost or distance function beforehand.

Such an approach would be commonly referred to as parametric. It is then 

afterwards tested whether the estimated parameters of the function 

acceptably satisfy the axioms. Unfortunately, some functional forms violate

by construction some of the assumptions. Alternatively, some methods rely 

only on the axioms themselves, without assuming any specific functional 

form. Such an approach would be nonparametric. In the next section, we 

will deal with both of these approaches to estimate the technology in 

question. 

3.6 Estimation of technology    
In previous sections, we have defined technology either in terms of distance, 

production or cost functions. Regardless of how we define it, in practice we 

need to estimate it from the observed empirical data. In economics, there has 

been a long econometric tradition of production function estimation at least 

since the work of Cobb and Douglas (1928). The development of production 

function estimation was intimately related to the development of productivity 

measurement (Griliches, 1996). However, as mentioned in Section 1, the 

conventional economic theory and the corresponding econometric approach

have both assumed that technical inefficiency has been resolved (see e.g. 

Kumbhakar and Lovell, 2000). The only source of deviation from the 

production function is assumed to be purely due to random statistical noise.

When we explicitly introduce inefficiency to the model, the traditional 

(econometric) estimators do not apply anymore since we introduce another 

source of deviation from the optimum. 

In this section, we briefly discuss the three estimation frameworks,

namely the DEA, SFA, and StoNED estimators, that explicitly acknowledge 

the presence of technical inefficiency. We keep the discussion of the methods 

in this section very brief and concentrate only on their most significant 

differences. This is because the detailed accounts of each method are

presented in multiple books and later on in this thesis (see e.g. the first 

research article of this thesis; Fried et al., 2008; Coelli et al., 2005, Cooper et 

al. 2000, Kumbhakar and Lovell, 2000). Thus repeating that discussion here 

is not worthwhile.            
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Our discussion of the estimators is most easily done in the context of a 

general production model. This helps us to compare how the estimators differ 

with respect to the general model. The model is given in Equation (14),

where y is the observed output, ( )f x is the production function which is a 

function of inputs x , is the parameter vector to be estimated  and is an 

error term representing the deviation of the observed production from the 

estimated one. For the moment, we shall not make any specific assumptions 

about the error term.    

( ; )y f x     (14) 

Few notes are in place. First, to simplify the discussion, we shall consider 

only the production function in this section. The discussion would naturally 

extend to the estimation of cost and distance functions also. Second, in order 

to more closely relate the general production model presented here to the 

subsequent contributions of the thesis, we assume that only a single output is 

produced within the general model. This is because the basic StoNED 

method utilized in the thesis allows only one output to be present.  

3.6.1 Stochastic frontier analysis (SFA) 
We start with the stochastic frontier analysis (SFA) due to its close 

relationship with the traditional estimation framework. SFA was introduced 

almost simultaneously by Aigner et al. (1977) and Meeusen and van den 

Broeck (1977). As does the traditional econometric estimation of production 

functions, also SFA assumes a specific functional form for ( )f x , for example 

Cobb-Douglas, translog, or constant elasticity of substation (CES) form. 

However, in contrast to the traditional framework, stochastic frontier

approach assumes that is composed of two parts, as the equation

shows. The vector v is the usual stochastic noise that you would have in any 

regression model. This would constitute the only source of deviation in the 

traditional framework. The vector u describes the shortfall in output due to 

inefficiency. Thus in SFA, firms are inefficient with respect to the stochastic 

frontier ( )f x v .
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As usual in regression analysis, it is assumed that v is distributed 

symmetrically with zero mean. Normal distribution is practically always 

assumed for v. For u, a one-sided distribution is assumed, as inefficiency can 

only reduce output. Examples of this are half-normal, exponential and 

gamma distribution, from which the first is by far the most typical 

assumption. It is also usually assumed that v and u are independent from 

each other and from the inputs x . This composed form of error has 

significant implications for the estimation, and it is a major departure from 

the traditional framework which assumes only symmetrically distributed v to 

exist. In SFA, cannot have a symmetric and zero mean distribution as the 

composed error is a convolution of the symmetric and non-symmetric part.

This convolution is problematic as our target of interest, inefficiency, is 

convoluted with the often uninteresting part, namely noise (see e.g. Amsler, 

Lee, and Schmidt, 2009). Since we want to separate these two, an alternative

estimation method which specifically accounts for this characteristic of the 

composed error is needed.12 In this thesis, the noise part is also of a certain 

interest to us since we are examining production risk.  

        In SFA literature, there are two main approaches to estimate the

parameters of the production function subject to the composed error. The 

first approach is based on maximum likelihood. Given some distributional 

assumptions on both v and u, the log-likelihood function can be formulated 

in terms of . Assuming for example the standard normal – half-normal 

assumptions 2~ (0, )vNv and 2~ (0, )uNu , the log-likelihood for sample 

of 1,...,i N firms is as shown in Equation (15). 

2
2

1 1

ln ( | , , )
1constant ln ln

2

N N
i

i
i i

L y

N
 (15) 

12 An early related discussion can be found in Aigner and Chu (1968) and in Førsund and 
Jansen (1977). These authors set so-called average practice functions against best 
practice/frontier functions. In this terminology, the traditional model in Equation (14) with 
symmetrically distributed errors with zero mean could equally well describe the average 
practice of firms, as the estimated function goes through the middle of the cloud of points. 
But again, if we wish the follow the stance of conventional economic theory without 
inefficiency, then such model can be considered to describe the best practice of firms 
subject only to statistical noise.    



23

where 2 2 2
u v  and /u v . This likelihood function is maximized 

in order to find the estimates for the parameters ( , , ) . It is relatively 

straightforward to see from Equation (15) that if  0 (or equivalently 

0u ) the model collapses to the standard maximum likelihood formulation 

of the ordinary least squares (OLS) regression problem, assuming normally 

distributed errors. With 0u , there is no inefficiency present, as

0 0u u , and consequently the overall error is . For example,

Kuosmanen and Fosgerau (2009) suggested testing the appropriateness of 

stochastic frontier specification from the skewness of residuals ˆ . By 

construction, given the distributional assumptions, the overall error 

should be negatively skewed if inefficiency is present.   

An alternative approach is based on OLS estimation. It has been long 

known in frontier literature that all parameters of the production frontier,

expect the intercept, can be consistently estimated with OLS (see e.g. Olson, 

Schmidt, and Waldman, 1980; Greene, 1980). Thus the estimation can be 

broken down into two parts. First, we estimate the other parameters with 

OLS and, in the second step, correct the intercept so that the estimated 

function corresponds to a frontier. Basically this means that the estimated 

function is shifted upwards. This approach is generally referred to as the 

method of moments (MoM) or the Modified OLS approach since the second 

step correction is based on the moments of the OLS residuals of the first 

stage.13 More formally, to estimate the first step with OLS, the original 

model needs to be reformulated so that the error has a zero mean. This can be 

done in the following fashion. We have taken out the intercept 0 from the 

parameter vector to explicitly show the bias in the intercept.

0

*
0

( ) ( ; ) ( )

( ) ( ; )

y E f E

E f

u x

u x
 (16) 

13 We shall not digress here to the realm of parametric deterministic methods, namely the
parametric or goal programming approach proposed by Aigner and Chu (1968) and the
corrected OLS (COLS) proposed originally by Winsten (1957). Besides being 
deterministic, these methods have their own limitations discussed for example by 
Kumbhakar and Lovell (2000) and Florens and Simar (2005).   
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Since v is assumed to have zero mean, the expectation of  
* ( )E is also zero as shown below. 

*( ) ( ) ( ) ( ) ( ) 0E E E E E E

Thus the original intercept is biased by the amount of expected inefficiency. 

Notice that no specific distributional assumptions about v or u have been 

made at this stage as OLS does not explicitly require any such assumptions.

In the second step, after (16) has been estimated with OLS, we make the 

usual normal and half-normal distributional assumptions about v and u.

Given these assumptions, the theoretical second and the third central

moments ( 2m & 3m ) of the composite error term can be written as in (17) 

and (18).  

2 2
2

2
u vm  (17) 

3
3

2 41 um (18) 

Equating the above theoretical moments with their sample counterparts 2m̂ and 

3m̂ , which can be estimated using the residuals *ˆ , we can easily solve the 

formulas for the variance parameters, as shown in Equations (19) and (20). 

Note that the values *ˆ can be used to estimate the variance and the skewness 

of the original ˆ as both variance and skewness are invariant to a constant 

location change in the distribution, which the shift with ( )E u ultimately is.   

2/3
2 3ˆˆ

2 / (1 4 / )u
m    (19) 

2 2
2ˆ ˆ ˆ1 2 /v um    (20) 

Since we have assumed that u has a half-normal distribution, it follows that 

2 ˆ( ) uE u and thus the intercept can be estimated as

0;
2ˆ ˆintercept+MOLS uOLS .
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After the frontier has been estimated (either with ML or MOLS), the 

estimation of the inefficiency term u often follows. In the normal-half-

normal model, conditional mean ( | )i iE u derived by Jondrow et al. (1982)

is the most typical point estimate of iu . Confidence intervals for the 

efficiency estimates can also be obtained (Horrace & Schmidt, 1996). 14

Accounting for production environment within SFA models is relatively 

straightforward. Most of the typical approaches rely on parameterizing the 

parameters (mean and/or variance) of the inefficiency distribution as a

function of operating environment variables, which are commonly referred to 

as z-variables in the literature (see the survey by Kumbhakar & Lovell, 

2000). It is assumed that the z-variables are not part of the production 

technology as such but that they affect the (in)efficiency of producers. For 

example, the model by Kumbhakar, Ghosh and McGuckin (1991) 

parameterizes the distribution of inefficiency, as given in (21).  
2~ ( , )i i uu N z '    

(21) 

This model defines the inefficiency as positive truncation of a normal 

distribution such that the mean of the un-truncated distribution can differ 

between observations.  The second research article of the thesis discusses 

these types of models in more detail.  

3.6.2 Data envelopment analysis (DEA) 
In this section, we very briefly cover another widely applied estimation 

method to estimate production frontiers subject to inefficiency. We went to 

some mathematical details with SFA as some of its features are intrinsically 

related to the StoNED framework. The same applies to DEA, but for ease of 

exposition, we avoid presenting any mathematical details of DEA. As 

opposed to SFA, the basic premise of DEA is that it easily incorporates 

multiple outputs into it. This can be achieved also in SFA when the cost 

14 The performance of maximum likelihood and MoM estimators has been compared for 
example by Olson et al. (1980) and Coelli (1995). The performance of each depends on the 
sample size and the relative contribution of inefficiency compared to noise. Generally ML 
is more efficient but MOLS is somewhat more robust to distributional assumptions, as they 
are avoided in the first step. 
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function or distance functions are parametrically estimated, but the basic 

SFA production frontier models always assume a single output. DEA, of 

course, can also be used to estimate cost, revenue, profit, and distance 

functions, but again we keep the context of the general production model

out of the discussion. 

The motivation for DEA arose from the challenge of measuring 

productivity and efficiency in a multi-output multi-input context. Using a 

simple index of outputs over inputs is generally challenging as it is not 

obvious how to aggregate and weight different outputs and inputs. DEA was 

developed as an estimation method to obtain optimal weights for outputs and 

inputs. Already Farrell (1957) introduced the basic idea of DEA, the details 

of which were further formalized by Afriat (1972). Farrell proposed to 

measure the efficiency of firms with respect to a surface that envelopes all 

the observations. However, only two decades later this approach was branded

as data envelopment analysis. Charnes, Cooper, and Rhodes (1978; 

abbreviated commonly as CCR) operationalised the insights of Farrell and 

Afriat as a simple linear programming problem and popularized the

application of DEA for wider audience both within practitioners and 

academics. 

Purely as a mathematical problem, DEA finds the frontier of observations 

such that the efficiency of each firm is maximized and is 100% at the 

maximum. In other words, DEA attempts to find the tightest possible 

envelopment of the data such that the efficiency of each firm is maximized.

This is called the minimum extrapolation principle within the DEA 

literature. The envelopment is piecewise linear, and the shape of this 

envelopment is fully dictated by the economic theory and the available data

by assuming the axioms of convexity and free disposability. Note that no 

specific functional form assumption is made concerning the function ( )f x

in Equation (14). The shape constraints only restrict the estimated function 

to follow some regularity conditions, but they do not assume any specific 

form for the function. In addition to convexity and free disposability, some 

assumption about the returns to scale must be made. The CCR-model 

assumes constant returns to scale (CRS), whereas variable returns to scale 

(VRS) extension of DEA was suggested by Banker et al. (1984). All of the 

assumptions can be relaxed in turn, and for example relaxing the convexity 
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assumption leads to a free disposal hull (FDH) estimator proposed by 

Deprins et al. (1984). Moreover, given the application, the model is 

formulated either in output or input orientation, depending whether we 

consider adjustments in outputs or inputs, respectively. In some 

applications, firms' outputs are seen fixed, and thus efficiency can only be 

improved by adjusting the input use. For example, the previously mentioned

electricity distribution case would fall to this category as energy demand 

(energy delivered), the number of customers, and the network size cannot be 

adjusted much by the companies.

Besides the functional form, the second major difference between DEA 

and SFA is their assumption about the error term in Equation (14). Since 

DEA aims to envelope all data perfectly, it implicitly assumes that all 

deviations from the frontier are due to inefficiency, i.e. . No statistical 

noise is allowed in basic DEA. Moreover, the DEA frontier is fully dictated

by the outermost observations, which by construction are 100% efficient. 

Indeed, both SFA and DEA estimate relative performance measures. But 

conceptually they differ in what they assume about the best performers. In 

SFA, a firm is practically never estimated to be exactly 100% efficient 

because the continuous distributions assumed for v and u imply that the 

probability of a single point being exactly on the frontier is zero.   

Lastly, we briefly cover some methods to show how to take operation 

environment into account in DEA. Following the categorization by Coelli et 

al. (2005), the ways to account for production environment in DEA setting 

can be roughly divided at least into three approaches. 

The first alternative is to include z-variables as non-discretionary (non-

controllable) variables into the linear programming problem directly. This is 

generally referred to as the one-stage approach (see Syrjänen, 2003, for a 

detailed discussion and references). This approach basically restricts the 

benchmark set for the firms to make them more comparable in terms of 

these environmental variables. Often the restriction would be placed so that 

a firm cannot be compared to those with a better environment. The main 

limitation of this approach is that the direction of the effects of 

environmental variables needs to be known beforehand.  

Secondly, one might assume that different DEA frontiers should be 

estimated for firms operating in different environments. This approach is 
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generally referred to as the frontier separation approach (Charnes, et al.,

1981). With this approach, it is possible to compare the best possible 

performances in different environments to each other if the different 

frontiers are compared with respect to some overall frontier. The problem is 

to know beforehand how to divide the firms into their respective subgroups 

in order to estimate the separate frontiers. This is not always unambiguous 

as there might be many possible ways to divide the sample.   

The third option is to obtain the usual DEA efficiency scores at first. In 

the second stage, a regression of the obtained efficiencies on environmental 

variables can be conducted to study how environmental variables affect the 

efficiencies. Then either the efficiency scores or the original outputs/inputs 

can be adjusted with these effects and, in the latter case, a DEA model 

would be rerun with the adjusted variables (see e.g. Fried et al., 1999, 2002). 

The advantage of this approach is that it gives detailed information about 

the effects of z-variables in the second step, and we do not need to assume 

anything about the effects of z-variables a priori. However, as recognized in 

the literature, a direct implementation of a simple regression of efficiency 

scores on z-variables is not advisable (see e.g.  Simar and Wilson, 2007; 

Banker and Natarajan, 2008; Johnson and Kuosmanen, 2012).   

3.6.3 Stochastic semi-nonparametric envelopment of data (StoNED) 
The last estimator we introduce is the StoNED estimator. Since the full 

details of StoNED framework are given in the first research article of the 

thesis, this section only outlines the relation of StoNED to SFA and DEA in 

terms of the general production model given in Equation (14). 

In general, the StoNED estimator attempts to combine the best features 

of the traditional SFA and DEA estimators. As opposed to DEA, StoNED

incorporates statistical noise into its framework. This is desirable at least for 

three reasons. First, the main interest of this thesis, risk, is a phenomenon 

that is inherently stochastic. Second, if we do not allow for noise, we 

implicitly assume that our data is measured without any error and no 

specification error of the model exists. These often are too strong 

assumptions to be made. Third, the stochastic noise term gives the estimator 
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a more statistical/econometric grounding. This is desirable especially for 

statistical inference. In a mathematical programming based approach 

without noise, such as DEA, it is not directly obvious how statistical 

inference should be conducted.15

On the other hand, unlike SFA, StoNED does not make any functional 

form assumptions regarding ( )f x . Similarly to DEA, it bases its estimation 

of technology on some general axioms about the technology. This is a 

desirable property of both StoNED and DEA as it often is difficult to justify 

any specific functional form over another. For example, the Cobb-Douglas 

form assumes perfect substitutability between inputs. Another unfortunate 

feature of the Cobb-Douglas form is that it does not properly model the 

economies of scope since it favours output specialization over joint-

production. This is problematic in modelling for example the cost efficiency 

of electricity distribution firms, where the typical outputs of distribution

firms are necessarily jointly produced (Kuosmanen et al., 2013). Some more 

flexible functional forms may solve some of these problems, but they often 

violate convexity and monotonicity. Since the StoNED method combines 

these features of SFA and DEA, it is a more general estimation framework. 

In fact, as Kuosmanen and Johnson (2010) show, DEA can be formulated as 

a special case of the StoNED framework. The same applies to SFA also.   

In practice, the StoNED estimation procedure has many similarities to 

the SFA approach presented above. In the MOLS framework, StoNED 

replaces the parametric OLS in the first step with a nonparametric 

counterpart, namely with Convex Nonparametric Least Squares (CNLS, 

Hildreth, 1954; see also Kuosmanen, 2008). Otherwise the procedure is 

exactly the same. An alternative to the method of moments is the pseudo-

likelihood approach formulated in terms of CNLS residuals. Both 

approaches need some parametric distributional assumptions for 

inefficiency and noise in order to separate them. But the first CNLS stage is 

fully non-parametric. Thus it is appropriate to call StoNED a semi-

nonparametric method. 

Taking account of operating environment is rather straightforward. 

Johnson and Kuosmanen (2011) extend the typical StoNED model and 

15 Simar and Wilson (2000) suggest a bootstrap-based inference for nonparametric 
efficiency measures such as DEA.   
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include z-variables into the first-stage CNLS estimation. This one-stage 

estimator is preferred over a two-stage estimator where the estimation of z-

effects is left to the second step. Omitting z-variables in the first stage may 

cause the two-step estimator to be biased due to the omitted 

variable/endogeneity problem (Wang & Schmidt, 2002; Schmidt, 2010).16

We discuss this z-variable extension of StoNED in more detail in the first

research article of the thesis.

16 See also Johnson and Kuosmanen (2012), who compare the performance of two-step and 
one-step estimators of z-effects. 
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4. Heterogeneity, Heteroscedasticity and Risk 

In this section, we briefly introduce the three concepts that are essential to 

this thesis. We start by examining why heterogeneity in general is important 

in performance measurement. We then introduce one specific kind of 

heterogeneity, namely heteroscedasticity. We highlight how some basic 

econometric tools dealing with heteroscedasticity directly lend themselves to

the study of production risk. Lastly, we discuss the sufficiency of variance as 

a risk measure. The usability of econometric tools of heteroscedasticity to 

study risk critically depends on whether we consider variance as an adequate

measure of risk.  

4.1 Heterogeneity  
In economics, the term heterogeneity is often reserved to mean a deviation 

from the representative agent assumption. That is, the acting agents (e.g. 

consumers or firms) are not identical in this case. Within this thesis, we 

however extend the term to mean also the heterogeneity of operating 

environment. These two are often indistinguishable from each other as 

economic agents adapt their behaviour according to their environment, which 

can, consequently, change due to this behaviour (see e.g. Kirman, 2006). 

From the point view of performance evaluation and efficiency measurement, 

the critical problem is that often heterogeneity confounds our measures of 

performance (Greene, 2004). To further clarify this, let us consider few 

examples.

First, in the economics of growth, it is widely acknowledged that 

institutions play an important role in economic development (Hall & Jones, 

1999). Institutions such as political centralization, property rights, labour 

market laws and cultural or societal norms undoubtedly are heterogeneous

among countries. Certainly these factors also contribute to the ability of 

countries to utilize their resources efficiently (see. e.g. Moroney and Lovell, 

1997; Adkins, Moomaw, and Savvides, 2002 for some early contributions in 

frontier literature). Thus a direct assessment of the performance only in terms 

of GDP, capital and labour seems inadequate as it neglects the effect of 

institutions on the resource utilization capabilities of a nation. It is only after 
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we have extracted out the effect of institutions when we can start to compare 

nations in their efficiency of transforming labour and capital into gross 

domestic product.    

Second, consider agricultural production. Arguably the heterogeneity is 

present in the analysis of agricultural production as agricultural producers are 

faced with great spatial differences for example in soil quality and weather

(see e.g. Just, 2003). Variation in these may again manifest itself as variation 

in crops. The challenge is that these variations in the operating environment

may be misinterpreted as efficiency differences (Greene, 2004; O’Donnell et 

al., 2010). In some sense, different environments imply slightly different 

technologies for each producer. But even if we explicitly exclude the 

problem of different technologies, the heterogeneity of operation 

environment still poses a challenge. For example, in electricity distribution, 

firms' technology can be assumed to be relatively similar due to some 

technical norms that the firms need to meet. Nevertheless, two companies 

which both distribute electricity through similar cables may operate in highly 

different environments in terms weather and forest density, for example. 

In light of the above examples, we see that any measurement of 

productivity or efficiency without acknowledging heterogeneity is likely to 

confound inefficiencies with other sources of variation in productivity.

Setting a common standard seems unacceptable if firms operate under highly 

different conditions. Indeed, it is often these factors outside the firms’ control 

that are the underlying reason of performance differentials between firms. 

This is not to downplay the importance of managerial or technical 

inefficiency. But their importance might be overstated if we do not account 

for other sources of performance variation also.  

One concern is that what aspects of operation environment or producer-

specific heterogeneity are relevant enough to be taken account. Here 

probably the only thing that can be done is to rely on the expertise of the 

researcher to know what to include into the model. But, for the researcher, 

the problem is that not all relevant aspects are necessarily observed. When 

introducing frontier methods in Section 3, we indeed assumed that operation 

environment can be represented as a function of some observable variables.

If however some relevant aspects of the environment are unobserved, it

probably would be desirable to extend the methods to take this into account. 
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While there have been developments on how SFA methods explicitly 

account for some unobserved factors, similar developments are still waiting 

in the StoNED setting (see e.g. Kopsakangas-Savolainen and Svento, 2011, 

for discussion in SFA context). Although this is an obvious target for future 

development, we do not extend our examination into the realm of unobserved 

heterogeneity. This is because we are especially interested in the sources of 

heteroscedasticity in this thesis. This obviously requires us to model 

heteroscedasticity as a function of some observable variables. Moreover, let's 

recall that StoNED by construction is a flexible method in terms of 

technology, and thus it is likely to capture some of the unobserved firm-

specific heterogeneity already in the technology parameters. 

4.2 Heteroscedasticity 
Next we briefly introduce one specific form of heterogeneity, namely 

heteroscedasticity. We do this in the context of the basic linear regression 

model. Since heteroscedasticity is routinely dealt in any econometrics 

textbook, we keep our examination very brief (for detailed presentations see 

e.g. Verbeek, 2008; Greene, 2008).  

Consider a general regression model for a sample of N observations 

given in Equation (22). 

y X      (22) 

where

y is the 1N  vector of a dependent variable. 

X is the N K matrix of K independent variables, including a column of one

for intercept.

is the 1K vector of parameters to be estimated.

is the 1N vector of error terms.

The ordinary least squares OLS estimator of the parameters  would be 

1ˆ
OLS . The standard Gauss-Markov assumptions for the OLS

estimator assume that the error term is homoscedastic. This means that the 

variance of the error term is constant across all observations N.
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Mathematically, 2|Var , where 2 is the unknown error variance 

and I is an N N identity matrix. Thus the diagonal elements of the 

variance-covariance matrix are the same for every observation.

Heteroscedasticity is present if 2|Var , where is some matrix 

with elements 1 2, ,..., N on its diagonal. For simplicity, we assume that 

the off-diagonal elements are zero, implying that no autocorrelation of the 

errors is present. Under heteroscedasticity, the OLS estimator is still 

unbiased and consistent. It is, however, possible to obtain a more efficient 

estimator. More importantly, standard statistical inference is not valid under 

heteroscedasticity, as the usual t- and F-statistic are invalid. This can be dealt

with by using heteroscedasticity-robust standard errors (White, 1980). 

Furthermore, tests to detect heteroscedasticity have been suggested for 

example by Breusch and Pagan (1980) and White (1980).

Under heteroscedasticity, generalized least squares (GLS) estimators can 

be more efficient than OLS. GLS weights the observations in terms of their 

variation so that the observations with highest variance are typically given 

the lowest weight. Thus GLS requires that the weighting matrix is known 

beforehand. For the moment, we assume that this matrix is known and that 

we have a very general form of heteroscedasticity such that 2 2
i i . Then 

the GLS estimator for is 1 1ˆ
GLS

-1 . Effectively our data is

weighted with the weights 1/ i since heteroscedasticity is proportional to 

the weights i .

In practice, the matrix has to be estimated and thus a feasible 

generalized least squares (FGLS) estimation procedure must be applied. To 

estimate the matrix , a functional form for heteroscedasticity has to be

assumed. Often multiplicative heteroscedasticity, as shown in Equation (23), 

is assumed (Harvey, 1976; see also Verbeek, 2008, p. 96). It guarantees that 

we obtain positive estimates of variances. Note that the better efficiency 

properties of FGLS compared to OLS hinge on knowing the correct weights. 

If we assume a wrong form of heteroscedasticity in FGLS, it is not 

guaranteed that with small sample sizes FGLS would outperform OLS. 

Generally, FGLS is however justified in asymptotic sense at least. 
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2 2 exp( )i iz      (23) 

In Equation (23), iz is usually the vector of the original independent 

variables of the model or some subset of them and is the corresponding 

parameter vector which tells the effect of these variables on error variance. In 

SFA context, however, z-variables are often assumed to be some other 

variables than the original input variables.

In modelling heteroscedasticity, another common strategy is to assume 

that the error variance is a linear function of some variables, as in Equation 

(24). Using this formulation in FGLS is problematic as the linear form does 

not guarantee that the variances are non-negative. The form however suffices 

to test heteroscedasticity and to examine the heteroscedasticity effects of z-

variables. 
2
i iz       (24) 

Regardless of the functional form assumed, the estimation of the parameters 

is usually based on the OLS residuals of the model in Equation (22), 

although direct maximum likelihood estimation in a single step is also 

possible. Note after the initial estimates of the weights have been obtained,

FGLS can be reapplied and the whole procedure can be iterated a number of 

times to further improve the estimates of (Greene, 2008). 

Heteroscedasticity in the SFA context has received some attention as 

both the parameters of the production technology and the efficiency 

measures can be biased if heteroscedasticity in the inefficiency term is not 

accounted for (Caudill and Ford, 1993; Caudill et al., 1995), that is, if we 

wrongly assume that 2 2
, 1,...,i u u i N . Heteroscedasticity can also be 

in the stochastic noise term v, as noted by Hadri (1999), but its consequences 

are less severe (see e.g. Kumbhakar & Lovell, 2000). The SFA models that 

attempt to account for heteroscedasticity in the inefficiency term 

parameterize the standard deviation or the variance of the inefficiency 

distribution as a function of z-variables (see e.g. Alvarez et al., 2006). In the 

DEA literature, there has been less concern about heteroscedasticity, partly 

because of the nonparametric nature of DEA. We postpone any detailed 
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discussion of heteroscedasticity in the StoNED context to the first research 

article of the thesis.

Simulation studies do not provide a clear-cut picture of the effects of 

heteroscedasticity on the performance of the estimators presented in Section 

3.6 (Banker et al. 2004; Kuosmanen & Kortelainen, 2012; Andor and Hesse, 

2013). Overall, the magnitude and even the direction of this effect are

affected by the following issues: presence or absence of noise, the relative 

importance of inefficiency and noise in the data generating process, whether 

we consider heteroscedasticity in inefficiency or noise or in both, whether we 

examine the estimation of a frontier or the point estimate of inefficiency, and 

sample size. 

4.3 Variance and risk measurement 
It is quite straightforward to see that the methods outlined in the previous 

section easily adapt themselves to the study of production risk and its causes 

if we assume that variance is a sufficient measure of risk. Indeed, the 

variance of the error in (22) directly translates to variation in output also.

However, by assuming variance as the appropriate measure of risk, we often 

make some implicit assumptions about the nature of risk. Nevertheless, it is 

not directly obvious whether these assumptions suit to all risky situations.

Before that discussion, it is however good to make a distinction between 

uncertainty and risk as these concepts are often confounded with each other.   

Traditionally, a risky situation has been characterized such that the 

acting agent is able to assign some probabilities to the possible future events

in such a situation. In the case of uncertainty, this assignment is commonly 

not possible (Knight, 1921; Chavas, 2004). As Knight (1921) defines it, risk 

is measurable whereas uncertainty is not. Chavas (2004), however, points out

that these definitions depend much on how we define probabilities and their

possible existence. First, the ease of assigning probabilities varies from one 

situation to another. It is difficult to assign any probabilities for rare events 

such as plane crashes, whereas it is easy to derive the probabilities of a dice 

throw. The former case falls under uncertainty, whereas a throw of a dice is 

risky. It is also easy to elicit probabilities in a case of repeated events. A

producer for example may have a rather good understanding of the 
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probability of a malfunction in a production line, as the producer observes 

the functioning of the line over a long period. If the production line operates

under relatively unchangeable and controllable conditions, the frequency of 

malfunctions is a good measure of their probability. But production may also 

be subject to changeable conditions which are hard to measure.  As the 

probability is likely to differ under these varying conditions, it is difficult to 

form an objective assessment about the probability of an event. The second 

issue is that the probabilities in many cases are subjective. Consequently, 

there may not be any agreement about the ‘correct’ probabilities. But, 

arguably, human beings at least implicitly assign some probabilities on future 

events regardless of how uncertain the events are. Following Chavas, as long 

as the future outcome of an event is not known beforehand and some 

probabilities or likelihoods (subjective or objective) are assigned to the 

outcomes, it is only of secondary importance whether we call this situation 

risky or uncertain. Furthermore, as it was pointed out already by Arrow 

(1951), the unmeasurable Knightian uncertainties often lead us to the same 

conclusions as explicit probabilities. Thus we use these terms 

interchangeably within this thesis.

The use of variance as a measure of risk is very intuitive. If we are 

offered two bets, A and B, which have the same expected value but with the 

difference that B has a higher change for higher losses and wins, then 

arguably we view the bet B as the riskier one. Often the formal origin for the 

use of variance as a risk measure is attributed to the financial portfolio theory

of Markowitz (1952). Basically, the Markowitz’s (1952) mean-variance 

model brought the minimization of variance as another objective for the 

investor next to the maximization of the expected return. Subsequently, 

multiple treatments on the limitations of the mean-variance setup have been

written by Markowitz (1959) and for example by Hanoch & Levy (1969). A

more detailed discussion and a list of references to alternative approaches can 

be found for example in Grootveld & Hallerbach (1999) and Antle (2010).  

The most typical objections to variance as a risk measure concern the 

fact that variance is a symmetric measure and it does not take the skewness 

of the distributions properly into account. For example, if we consider the 

variability of crop yields in agricultural production only in terms of variance, 

we implicitly assume that very low and very high yields are equally likely. In
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some gambles, symmetrically distributed returns/losses may be a reasonable 

assumption. But for crop yields it is often argued that observing

extraordinary good crops should be less likely than mean – and less than 

mean crops – since extraordinary crops require ideal weather conditions,

which rarely occur (see e.g. Gallagher, 1987). One of the more popular 

alternatives has been so-called down-side risk models. These models 

emphasize the importance of losses over the possible returns for investor, and 

thus they put more weight (or all of it) on the left hand side of the return 

distribution.  

 However, considering the focus of this thesis, we restrict ourselves to the 

traditional variance-based measurement of risk, for two reasons. Firstly, the 

concept of heteroscedasticity is the main unifying thread of the thesis. Since 

models of heteroscedasticity are models of variance, it is natural to restrict 

our attention to this measure of risk. Moreover, the development of frontier 

models that deal with production uncertainty is still relatively limited and is

focused on heteroscedasticity.17 For example, O’Donnell et al. (2010) lists 

only few papers that explicitly discuss risk in the context of technical 

efficiency estimation. Thus it seems warranted to investigate the relatively 

underexploited models of heteroscedasticity in more detail before extending 

the research agenda to more novel models of risk, with possibly skewed risk 

distributions. Secondly, and maybe more importantly, skewness is reserved 

to represent the presence of inefficiency in frontier models, not the presence 

of production risk. Skewness-based measurement of risk in the frontier 

context could be challenging, due to convolution of risk and inefficiency. As

will be discussed in the third research article of the thesis, too similar 

distributional assumptions on inefficiency and noise (risk) make it impossible 

to distinguish them from the overall error (Amsler, Lee, and Schmidt, 2009).

Thus, we restrict ourselves to the symmetric measures of risk to more clearly 

differentiate it from skewed inefficiency.

17 See e.g. Kumbhakar (2002), Wang (2002), and Bera & Sharma (1999).
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5. Summary of the research papers 

In this section, we briefly cover the contributions of each research article that 

are included in the thesis. The thesis consists of five research articles. All of 

them are connected, either through the topic of heteroscedasticity or through

a methodological choice. The logic for the ordering of the articles is the 

following. The first two articles concentrate more on introducing the StoNED 

method and comparing it with the traditional frontier estimators. As opposed 

to Section 3.6 of this introduction, the comparison is done in an empirical 

setting, namely within the context of Finnish electricity distribution 

regulation. The last three articles then concentrate on the topic of 

heteroscedasticity and production risk. Article 3 reviews literature on 

production risk and heteroscedastic SFA models. Articles 4 and 5 then deals 

with two empirical applications related to heteroscedasticity, still applying 

the StoNED method.      

5.1 Research article 1  Stochastic nonparametric approach to efficiency analysis: A Unified Framework 
This handbook chapter outlines the StoNED framework in a detailed manner

and acts as methodological review for the thesis. Many of the topics in the 

chapter go beyond the topics dealt with in this thesis. However, the chapter 

further motivates the reader to see the additional benefits of the StoNED 

estimator when compared with the traditional frontier estimators. There is a 

particular emphasis on that the traditional approaches can be seen as special 

cases of the more general StoNED framework. The chapter also includes a

detailed examination of heteroscedasticity in the StoNED context. This 

examination shows that the many well-known approaches dealing with 

heteroscedasticity in econometrics are relatively straightforwardly applicable 

in the StoNED context also. 
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5.2 Research article 2 What is the best practice for benchmark regulation of electricity distribution? Comparison of DEA, SFA and StoNED methods 
This research article is the result of the project that the authors did for the 

Finnish electricity market regulator Energiamarkkinavirasto (EMV).18 In 

2010, EMV decided to refine the tools that it uses to measure the cost 

efficiency of electricity distribution companies. EMV adopted the StoNED 

method as their preferred tool for the regulatory period of 2012-2015. In their 

selection criteria for the method, EMV emphasized that the method should be 

flexible in production technology and account for stochastic noise and 

heterogeneity in production environment. Previously, EMV used the average 

of DEA and SFA efficiency scores to determine the cost efficiency of 

companies. This approach supposedly mitigated the potential problems 

arising from using only one method. The paper argues that such an approach 

is statistically unsound and proposes StoNED to be used instead. The 

performance of the StoNED method was compared to the traditional 

estimators with an empirical comparison of efficiency scores and economic 

outcomes of the regulation. A simulation study was also conducted to 

compare the methods under a fixed data generation setting.  

This research article serves as an important illustration about the 

practical uses of efficiency estimation methods. The article also continues the 

methodological discussion started in the book chapter (see previous section) 

about the differences between traditional methods and the StoNED 

framework. The issue of heteroscedasticity is not explicitly discussed here

but the importance of production environment heterogeneity is highlighted 

throughout the paper as the electricity distribution companies in Finland 

operate in highly varying geographical and climatic conditions. 

5.3 Research article 3 Heteroscedasticity or Production Risk? A Synthetic View  
This review article compares two branches of literature, namely the literature 

on production risk and that on heteroscedastic stochastic frontier models. To 

18 Kuosmanen et al. (2010). 
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our knowledge, no such systematic comparison of the two branches of 

literature had been conducted before this article, although the fields have a 

number of similarities. The purpose of the article is to establish connections 

between the production risk and efficiency literature. Thus, thematically the 

article ties together the two main topics of the thesis. The link between the 

fields is built by utilizing the concept of heteroscedasticity. It is argued that 

although heteroscedastic stochastic frontier models do often neglect risk 

considerations, they can be interpreted to model production risk. Lastly, 

some of the challenges of simultaneous treatment of risk and efficiency are 

also discussed. 

5.4 Research article 4 Is Corruption Grease, Grit,  or a Gamble? Corruption Increases Variance of Productivity Across Countries 
This research article is the author's first exploration of the topic of 

heteroscedasticity and heterogeneity within frontier methods. Subsequently, 

it dictated the thematic focus for the rest of the thesis. Initially, the interest 

was just to study the effect of corruption on productivity. However, during 

the research process, the authors observed that the effects of corruption 

seemed to be more related to the variability of productivity than to the level 

of productivity.  As a way to understand this phenomenon, heteroscedasticity 

was considered as an intuitive way to model this relationship. 

The general view in the literature has been that corruption hinders 

economic development. This argument is generally referred to as “sand in the 

wheels” hypothesis. However, some real-life observations have induced 

some researchers to suggest that under certain circumstances corruption in 

fact might be beneficial for the economic performance of countries, acting as 

“grease” in the wheels of economic development. This paper considers a 

completely alternative view. It reckons that rather than a direct determinant 

of economic performance corruption should be considered as a macro risk. In

other words, we interpret corruption as a gamble, since it seems to increase 

the variability of productivity among countries. This hypothesis is considered 

to be more general than the traditional views because it allows that, with 

relatively high levels of corruption, a country can achieve either high or low 
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productivity levels. The empirical examination indeed shows that corruption 

has significant effect on the variability of productivity. 

5.5 Research article 5 Quality frontier of electricity distribution: Supply security,  best practices,  and underground cabling in Finland  
This research article is a partial continuation of the paper introduced in 

section 5.2. It returns to the same electricity distribution application. 

However, instead of focusing on cost efficiency, the article deals with the 

quality of service of the distribution companies. This is a topical issue as 

there are pressures in Finland to develop the distribution system towards 

underground cabling based system.

The article examines the quality of service of electricity distribution in 

terms of interruption costs and their variability. The paper considers that,

besides the low level of interruption costs, the low variability of interruption 

costs is also a sign of good service quality. Underground cabling is the most 

significant investment target to affect interruptions. The article shows that 

underground cabling expectedly decreases the level of interruption costs. 

However, we also observe that underground cabling does not have significant 

decreasing effect on the variability of interruption costs. In some instances 

the effect might even be increasing. This effect we explain by the fact that 

the costs of interruptions are significantly higher for companies with higher

underground cabling levels. Such companies often operate in areas of high 

population density, and, subsequently, the costs of interruption are likely to 

be high as a large number of households are affected by the interruption.

Interruption costs of underground cabling are increased also because 

underground cables are more costly to install and repair than air cables.  

The article also compares two alternative ways to set the quality 

targets in quality regulation. The current practice is based on the average of 

the companies' own past performance. However, average is a very volatile 

measure as it can be greatly affected by single years with a high number of 

interruptions. Moreover, usage of average does not incentivize to improve 

upon a poor previous performance. The article suggests that the targets 

should be set in terms of the best observed operations. For this purpose, we 
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estimate an interruption cost frontier with StoNED and refer to it as the 

quality frontier. Comparison of the obtained target values shows that the 

targets produced by the quality frontier are significantly more stable than the 

targets produced by the average of own performance.
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6. Concluding remarks 

Here we briefly summarize the main contribution of the thesis. Clearly, 

heteroscedasticity has economic and practical interpretations beyond being 

just an econometric problem. In the empirical applications of the thesis, we 

have interpreted heteroscedasticity mainly in terms of risk. We have shown 

that this risk may realize itself in the aggregate productivity or quality of 

service type of contexts. We have also noted that there exist some gaps in 

the literature, namely between the traditional models of production risk and 

heteroscedastic stochastic frontier models. Methodological choice has been 

shown to be important in practical applications of the frontier methods.

Indeed, important regulatory outcomes may crucially depend on the chosen

efficiency estimation method. These contributions correspond to the 

objectives of the thesis set in Section 2. Of course, the views presented in 

this thesis should not be viewed as definite resolutions to the topic. But if 

one is to examine the risk-efficiency nexus in future, the issues covered in 

this thesis seem an unavoidable starting point for that research. 
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6.3 Multiple outputs (DDF formulation)  
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Theorem 7 If the following five assumptions are satisfied  
sequence i i iy x z , i= ,…,n  is a random sample of independent 
observations, 

n
nZ Z is a positive definite matrix, 

noise term v has a truncated distribution: MVv 1 , M
vf V ,

elements of domain Dz are bounded from above or below such that 
δ z has a finite maximum 

zDz
δ z at a point 

zDz
z δ z ,

the joint density f is continuous and satisfies Mf Vx z for
all xDx ,

then the 2-DEA estimators are statistically consistent in the following sense 
M

i i
n

f f Vx x for all i = 1,…,n,

n
δ δ

Z 0 δ 0



f
Mf Vx

VM z

VM

f

fδ ZZ Z X

M

M
n n

E f f V
f

E f f V

x x
X

x x

Z 

X
Z

f X Z



7.2 One-stage DEA 
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7.3 StoNED with z-variables (StoNEZD)
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Theorem 8 
If the following conditions are satisfied 

 sequence i i iy x z , i= ,…,n  is a random sample of independent 

observations,  

n
nZ Z is a positive definite matrix, 

 the inefficiency terms u and the noise terms v are identically and 
independently distributed (i.i.d.) random variables with uVar u I and

vVar v I ,
then the StoNEZD estimator for the coefficients of the contextual variables 

StoNEZDδ is statistically consistent and asymptotically normally distributed 
according to:  
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8. Heteroscedasticity 
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8.1 White test of heteroscedasticity applied to CNLS 
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9. Directions for future research 

Adapting the known econometric and statistical methods for dealing with 
heteroskedasticity, endogeneity, sample selection, and other potential sources 
of bias, to the context of CNLS and StoNED estimators

Extending the proposed approach to a multiple output setting.



Extending the proposed approach to account for relaxed concavity 
assumptions (e.g., quasiconcavity)

Developing more efficient computational algorithms or heuristics for 
solving the CNLS problem

Examining the statistical properties of the CNLS estimator, especially in 
the multivariate case



Investigating the axiomatic foundation of the CNLS and StoNED 
estimators

Implementing alternative distributional assumptions and estimating the 
distribution of the inefficiency term by semi- or nonparametric methods in the 
cross-sectional setting

Distinguishing time-invariant inefficiency from heterogeneity across firms, 
and identifying inter-temporal frontier shifts and catching up in panel data 
models

Extending the proposed approach to the estimation of cost, revenue, and 
profit functions as well as to distance functions



Developing a consistent bootstrap algorithm and/or other statistical 
inference methods

Conducting further Monte Carlo simulations to examine the performance 
of the proposed estimators under a wider range of conditions, and comparing 
the performance with other semi- and nonparametric frontier estimators

f
δ

z x

ui

ui



Applying the proposed method to empirical data, and adapting the method 
to better serve the needs of specific empirical applications
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� We compare DEA, SFA and StoNED methods in the context of regulation of electricity distribution.
� Both empirical comparisons and Monte Carlo simulations are presented.
� Choice of benchmarking method has a significant economic impact on the regulatory outcomes.
� StoNED yields the most precise results in the Monte Carlo simulations.
� Five lessons concerning heterogeneity, noise, frontier, simulations, and implementation.
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a b s t r a c t

Electricity distribution is a natural local monopoly. In many countries, the regulators of this sector apply
frontier methods such as data envelopment analysis (DEA) or stochastic frontier analysis (SFA) to
estimate the efficient cost of operation. In Finland, a new StoNED method was adopted in 2012. This
paper compares DEA, SFA and StoNED in the context of regulating electricity distribution. Using data
from Finland, we compare the impacts of methodological choices on cost efficiency estimates and
acceptable cost. While the efficiency estimates are highly correlated, the cost targets reveal major
differences. In addition, we examine performance of the methods by Monte Carlo simulations.
We calibrate the data generation process (DGP) to closely match the empirical data and the model
specification of the regulator. We find that the StoNED estimator yields a root mean squared error (RMSE)
of 4% with the sample size 100. Precision improves as the sample size increases. The DEA estimator yields
an RMSE of approximately 10%, but performance deteriorates as the sample size increases. The SFA
estimator has an RMSE of 144%. The poor performance of SFA is due to the wrong functional form and
multicollinearity.

& 2013 Published by Elsevier Ltd.

1. Introduction

Electricity distribution firms typically enjoy a natural local
monopoly. This creates a need to regulate the distribution sector.
In the theory of regulation, it is well known that the ‘cost-of-
service’ type of pricing does not provide incentives for the
electricity distribution firms to minimize the cost (Laffont and
Tirole, 1993). To determine a more objective yardstick for the
acceptable cost level, Shleifer (1985) suggested comparing the
observed cost of a firm with that of its competitors. However, as
Pollit (2005) points out, it is often difficult to find exactly identical

or even sufficiently similar competitors that could serve as an
appropriate yardstick. Instead of using a discrete set of benchmark
firms, one could apply frontier estimation methods to estimate
a continuous frontier cost function that represents the best
practice benchmark. Benchmark regulation has been applied as
an integral part of the regulatory framework in many countries
(Jamasb and Pollit, 2001; Jamasb et al., 2003, 2004). According to
the recent study by Bogetoft and Otto (2011, Ch. 10), at least nine
European regulators currently apply the axiomatic DEA (data
envelopment analysis; Charnes et al., 1978; Farrell, 1957) and the
econometric SFA (stochastic frontier analysis; Aigner et al., 1977), or
some combination thereof.

Ever since the DEA and SFA approaches have been introduced
to regulation, there has been lively debate about the suitability of
these methods for the purposes of regulation (Dassler et al., 2006;
Irastorza, 2003). There is large and growing academic literature on
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the application of DEA and SFA in the electricity distribution
industry (Agrell et al., 2005; Cullmann, 2009, 2012; Forsund and
Kittelsen, 1998; Hjalmarsson and Veiderpass, 1992; Iglesias et al.
2010; Jamasb and Pollit, 2003; Kopsakangas-Savolainen and
Svento, 2008; Korhonen and Syrjänen, 2003; Weyman-Jones,
1991). As yet, however, there is no clear conclusion on which
method is superior. The inconclusive results have raised concerns
about the suitability of any single method for the purposes of
benchmark regulation. Thus, many regulators have recently opted
to use a combination of both DEA and SFA (see also Azadeh et al.
(2009)). In Germany, for example, the regulator estimates effi-
ciency of each firm using both DEA and SFA, and then chooses the
larger of the two estimates (Agrell and Bogetoft, 2007). According
to Bogetoft and Otto (2011; Ch. 10), at least four European
regulators apply some combination of both DEA and SFA.

The Finnish Energy Market Authority (Energiamarkkinavirasto,
EMV) is one of the pioneers in the practical implementation of
benchmark regulation. EMV has used frontier methods as an
integral part of the regulatory model since 2005, starting with
DEA (Korhonen and Syrjänen, 2003), adopting SFA in 2008
(Syrjänen et al., 2006). In 2010, EMV commissioned several studies
to address the critique of DEA and SFA presented by the distribu-
tion firms and the energy industry. After a rigorous evaluation
process, EMV considered the report by Kuosmanen et al. (2010, in
Finnish) as the most promising attempt to overcome the pitfalls of
DEA and SFA. Following the recommendation of that report, in
2012 EMV replaced DEA and SFA by the new StoNED method
(stochastic semi-nonparametric envelopment of data) introduced by
Kuosmanen and Kortelainen (2012).

The purpose of this paper is to present a systematic comparison
of the DEA, SFA, and a recently proposed StoNED method in the
context of energy regulation. Focusing on the model specifications
actually employed by EMV during the third regulation period in
2012–2015, we compare the efficiency estimates produced by
these three different methods. We also include the average of
DEA and SFA efficiency scores to our comparison. This approach
was applied by EMV during the second regulation period, 2008–
2011. We label it here as naïve model averaging (NMA). Our focus
is to examine the observed differences between the methods and
discuss the feasibility of the models in regulatory context. More
importantly, we also compare the implications of the methodolo-
gical choices on the monetary cost targets. While the efficiency
scores obtained with different methods are usually highly corre-
lated, the economic implications in terms of the cost targets are
substantial.

The empirical comparisons show that the choice of the bench-
marking method matters in practice. However, empirical compar-
isons do not allow us to conclude that one method is better than
another. Therefore, we also compare the precision of the estima-
tors in the controlled environment of Monte Carlo simulations.
A novel feature of our simulations is that we calibrate the data
generation process of the simulations to match the essential
characteristics of the EMV data as closely as possible to ensure
the relevance of the simulation evidence for the real-world
regulation. The customized data generation process of the simula-
tions enables us to measure performance of the alternative
estimators in the specific context of the EMV's regulatory frame-
work. Our simulation evidence shows that the StoNED method
outperforms the conventional DEA, SFA, and their average at all
sample sizes considered.

The rest of the paper is organized as follows. Section 2 briefly
describes the regulation of Finnish electricity distribution firms
and the empirical data used in this study. Section 3 briefly
introduces the benchmarking methods considered in this study
(more detailed presentation of the methods is available in the
online Supplement), and compares the empirical cost frontiers

that the methods produce using the data and model specifications
of EMV. Section 4 presents an empirical comparison of the
efficiency estimates produced by the alternative methods. In
Section 5 we briefly comment the implementation of the methods
in the EMV regulatory model. Section 6 presents a systematic
comparison of the methods in the controlled environment of
Monte Carlo simulations. Section 7 summarizes the lessons
learned from this study. Additional materials, including a technical
appendix that provides a more detailed description of the meth-
ods considered, and the computer program used in the simula-
tions, are available online as supplementary materials to this
article (see http://www.sciencedirect.com).

2. Benchmark regulation of electricity distribution in Finland

In the regulation of the Finnish electricity distribution firms,
EMV applies a combination of the traditional revenue cap and the
benchmarking regimes. In the EMV model, all distribution firms
are systematically assessed every year. The annual revenue figures
of each firm are compared with the acceptable level of revenue to
calculate the annual surplus or deficit. The acceptable revenue
figure includes the acceptable total costs plus the acceptable rate
of return for the invested capital, which is calculated based on the
capital asset pricing model. As a part of determining the accep-
table total cost, EMV applies the cost frontier model as a bench-
mark, as will be discussed in more detail below. At the end of the
four-year regulation period, EMV calculates the total surplus or
deficit accumulated over the regulation period, which needs to be
balanced during the next 4-year period. A firm can return the
surplus to the customers by charging lower tariffs in the next
regulation period, whereas the deficit allows a firm to increase its
tariffs in the next regulation periods. Kinnunen (2006) provides
a more detailed review of the EMV model from the perspective of
investment incentives. Kuosmanen (2012) discusses the recent
reforms in the benchmark regulation and the incentives for
improving productivity and efficiency. Further information about
the Finnish regulatory model can be found on the EMV website:
http://www.emvi.fi.

In the current regulation period, in years 2012–2015, the
regulation of the acceptable total cost is based on the following
generic cost frontier:

ln x¼ ln Cðy1; y2; y3Þ þ δz þ uþ v ð1Þ
where

x is the observed total cost (TOTEX) (€1000),
C is the frontier cost function,
y1 is the energy transmission (GWh),
y2 is the total length of the network (km),
y3 is the number of customers,
z is the proportion of underground cables,
δ is the coefficient of the z variable,
u is the random variable representing inefficiency, and
v is the random variable representing stochastic noise.

In this study the cost variable x refers to the total expenditure
(TOTEX), which consists of three components: controllable opera-
tional costs (OPEX), capital expenditures (CAPEX) and the external
supply interruption costs for customers (INT).1 The last component

1 Our empirical comparison is based on the original data and the model
specification recommended in Kuosmanen et al. (2010) and Kuosmanen (2012).
EMV has made some subsequent modifications to the model and the data. In the
model implemented by EMV, the observed annual capital expenditures (CAPEX) are
included in the acceptable total cost as such, and the benchmark regulation is only

T. Kuosmanen et al. / Energy Policy 61 (2013) 740–750 741



can also be viewed as a quality component, as the lack of supply
interventions can be interpreted as an indicator of good service.
Since the outputs are almost time-invariant throughout the
period, all variables are defined as the yearly averages over the
period 2005–2008 (see Kuosmanen (2012), for a discussion).
Before averaging, the total costs are deflated to the prices of
2005. In this specification, inefficiency u represents the average
inefficiency over the evaluation period. Averaging of data also
reduces the variance of the noise term v.

The output variables are the weighted amount of energy
transmitted through the network (y1, GWh, of 0.4 kV equivalents),
the total length of the network (y2, km), and the total number of
customers connected to the network (y3, number). In y1, the
transmission of electricity at different voltage levels is weighted
according to the average cost of transmission such that the high-
voltage transmission gets a lower weight than the low-voltage
transmission. Note that y1 depends on the observed demand for
electricity, whereas outputs y2 and y3 capture the potential or
latent demand and are thus defined as outputs in the regulatory
model (see Kuosmanen (2012) for further details). In essence,
outputs y2 and y3 capture the fixed cost of maintaining a sufficient
capacity to provide service for the given network area irrespective
of the actual consumption of electricity.

In addition to the three outputs, the latest EMV specification
introduced a contextual variable z, defined here as the proportion
of underground cables in the total length of the network. The
z-variable is not an input or output as such; it controls the
heterogeneity of the firms and their operating environments. Note
that the contextual variable enters Model (1) in a parametric form,
analogous to the standard regression analysis, while the output
variables can be modeled using either a parametric or nonpara-
metric specification of the cost function C. If nonparametric
specification of C is assumed, it is then appropriate to characterize
Model (1) as a semi-nonparametric, partially linear model of cost
frontier. Modeling contextual variables in this way allows us to
capture the average effect of underground cabling on cost (repre-
sented by the coefficient δ), without increasing the number of
explanatory variables included in the nonparametric part which is
subject to the curse of dimensionality (Simar and Wilson, 2008).

Our data consists of 89 Finnish electricity distribution compa-
nies, whose networks cover practically all regions of Finland.
Table 1 presents the descriptive statistics for total costs, three
outputs, and the underground cabling variable, which describes
the operational conditions of a company (see Section 3.1 for
details). Recall that our data are four year averages of years
2005–2008.

Table 1 reveals that the industry consists of a very hetero-
geneous set of firms. For example, the size of companies measured
by the amount of transmitted energy varies from 15 to 6600 GWh
per year. There are also considerable differences in the operating

environments of the firms. On average, the proportion of under-
ground cabling is 33% but the range is almost from 1% to 100%. The
proportion of underground cabling is highest in the dense urban
areas. Note that the data also includes some industrial network
operators, which transmit a large amount of energy to a small
number of industrial customers.

3. Comparison of empirical cost frontiers

This section introduces the benchmarking methods considered
in this study by comparing the empirical estimates of the cost
frontiers obtained by each method. We believe the empirical
frontier estimates aptly illustrate the information content and
the comparative advantages of the methods considered. Readers
interested in the technical details of the methods can consult the
technical appendix provided as an online Supplement, or the
references provided below. The StoNED method is presented in
detail in Kuosmanen and Kortelainen (2012) and Kuosmanen
(2012). Detailed presentations of the conventional DEA and SFA
are available in numerous articles and books (Fried et al., 2008).

3.1. StoNED frontier

We start the empirical comparison with the StoNED method,
which EMV adopted for the current regulation period in years
2012–2015. The main appeal of StoNED is its ability to accommo-
date the main advantages of both DEA and SFA: it combines the
non-parametric, piece-wise linear DEA-style frontier with the
stochastic SFA-style treatment of inefficiency and noise. This
makes StoNED more robust to both model misspecification and
noise.2 A detailed presentation of the model specification applied
by EMV can be found in Kuosmanen (2012). Therefore, we will
here discuss only some general properties of the method.

StoNED does not require any a priori assumptions about the
functional form of the cost frontier. Similar to DEA, StoNED
imposes general axioms concerning the benchmark technology,
such as monotonicity, convexity, and returns-to scale.3 Throughout
this study we assume constant returns to scale to hold for
distribution companies (see Kuosmanen (2012), for details). On
the other hand, StoNED model incorporates the core aspects of SFA
by including both inefficiency and noise as possible sources of
deviation from a benchmark technology. Kuosmanen and
Kortelainen (2012) operationalize the StoNED model by formulat-
ing it as a convex nonparametric least squares (CNLS) problem.

Table 1
Descriptive statistics of variables.

Variable Mean St. dev. Min. Max.

x¼Total cost (€1000) 8418.91 18,047.78 267.81 117,554.10
y1¼Energy transmission (GWh) 480.39 971.51 14.81 6599.71
y2¼Length of network (km) 4135.27 10,223.27 50.80 67,611.05
y3¼No. of customers 35,448.68 71,870.65 24.25 420,473.00
z¼Proportion of underground cables 0.33 0.26 0.01 1.00

(footnote continued)
applied to the controllable operational expenditures (OPEX) plus a half (i.e., 50%) of
the interruption costs (INT).

2 Previous published applications of the StoNED method are in the areas of
agriculture (Kuosmanen and Kuosmanen, 2009), electricity generation
(Mekaroonreung and Johnson, 2012), electricity distribution (Kuosmanen, 2012),
and banking (Eskelinen and Kuosmanen, in press).

3 The term benchmark technology refers to the frontier used as a point of
reference in productivity and efficiency assessment. The axioms of the benchmark
technology represent our ex ante requirements for efficient performance (e.g.,
monotonicity stems from the definition of technical efficiency by Koopmans, 1951).
The underlying production technology does not necessarily need to satisfy all these
axioms.
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Contextual variables z were introduced by Johnson and
Kuosmanen (2011, 2012). Note that while the frontier itself is
specified in a fully nonparametric fashion, in the second stage the
inefficiency and noise terms are distinguished by means of some
distributional assumption. Thus, it is appropriate to classify the
method as semi-nonparametric.

The piecewise linear of frontier that StoNED produces allows
the marginal costs differ between the firms. In other words, the
reference unit for the firms may be located at different segments
of the frontier. The linear segments that constitute the frontier
have different slopes. This offers more flexibility in terms of
technology and in addition of the z-variable it partly accounts
for the heterogeneity of the firms.

Table 2 presents the firm-specific estimates of the average
marginal costs for 10 groups of firms, grouped according to the
estimated beta coefficients.4 As in DEA, the standard errors for these
coefficient estimates are not readily available. The groups have been
sorted in a descending order according to the marginal cost on
energy transmission. These marginal costs are the most favorable
ones for each company: no company could increase its efficiency by
deviating from the marginal costs implied by StoNED even if the
regulator allowed firms to freely choose their marginal costs.

The average marginal costs are reported in the bottom row of
Table 2. The estimated marginal costs (0.48 c/kWh for electricity
transmission, 930 €/km for network length, and 13 €/user) appear
reasonable based on our experience of this sector (cf., Tables 3 and 4).
Firm-specific coefficients can differ substantially from these average
values. For example, the marginal cost per user is lowest in Group 1,
which consists of firms operating in rural areas, whereas the
marginal cost per user is highest in Group 7, consisting of city firms.
The last column of Table 2 reports the average cost efficiency (CE) of
firms within each group. While there are differences in marginal
costs, the differences in the average cost efficiency levels are
relatively small. This suggests that the method does not system-
atically favor some firms over others due to their operational
environment.

3.2. DEA frontier

EMV applied DEA in the first two regulation periods in 2005–
2007 and 2008–2011 (see Korhonen and Syrjänen (2003), for
further discussion). Similar to StoNED, DEA is an axiomatic,
nonparametric approach to estimate the frontier. In fact,
Kuosmanen and Johnson (2010) have shown that DEA can be

obtained as a restricted special case of CNLS formulation of the
StoNED model. Both the methods are based on the same set of
axioms. The only notable difference between the methods is their
assumption about the deviations from the frontier. Whereas
StoNED assumes the deviations to consist from two elements,
inefficiency and noise, DEA assumes only inefficiency. This is
generally seen as the main shortcoming of DEA. DEA is also
sensitive to outlier observations as it fully envelops the data based
on the outermost observation in each dimension. In other words,
often only few observations determine the frontier.

The marginal costs (shadow prices) of outputs estimated by DEA
are presented in Table 3. Analogous to Table 2, firms have been
classified to 13 groups in a descending order with respect to the
marginal cost on energy transmission. The figures are the average
marginal cost in each of the groups. Note that for many groups the
marginal cost equals zero. In particular, the estimated marginal cost
of energy transmission is zero for five groups (29 firms). This can
partly explain why the average of the DEA estimates for the marginal
cost of energy transmission (0.35 c/kWh) is lower than the corre-
sponding StoNED estimate (0.48 c/kWh).

Recall that the DEA frontier envelops all observations, attribut-
ing all deviations from frontier to inefficiency, whereas the StoNED
frontier takes the noise explicitly into account. Therefore, we can
expect that the DEA estimates of firm-specific marginal costs are
generally lower than the corresponding StoNED estimates since

Table 3
DEA marginal costs by firm groups (CRS).

Group Number
of firms

Energy
transmission
(€ cents/kWh)

Network
length
(€/km)

No. of
customers
(€/customer)

Average
efficiency
(%)

1 2 0.5972 0 54.46 100
2 8 0.5910 489.33 41.28 79
3 23 0.5866 846.33 15.42 77
4 3 0.5857 930.62 0 65
5 12 0.5494 958.45 0 80
6 2 0.3604 494.77 71.72 85
7 7 0.3504 863.33 45.77 84
8 3 0.1491 1142.03 0 80
9 3 0 0 133.71 84
10 2 0 182.59 128.49 85
11 5 0 606.91 111.63 76
12 16 0 820.00 95.85 83
13 3 0 1069.20 34.67 85

Average 0.3526 762.47 46.20 80

Table 4
Marginal costs of outputs estimated by SFA; in Model A the total network length is
used; in Model B the urban network (y2A) and other network (y2B) are treated as
separate outputs.

Model A Model B

y1: Energy trans. (€ cents/kWh) 0.61** 0.60**
(0.000) (0.000)

y2: Network length (€/km) 896.74** –

(0.000)

y2A: Urban network (€/km) – 1115.94**
(0.001)

y2B: Other network (€/km) – 904.06**
(0.000)

y3: No. of customers (€/customer) 25.32 20.12
(0.114) (0.264)

p-Values in parenthesis.
Statistical significance indicated as follows: * refers to 5% significance, ** refers to
1% significance.

Table 2
StoNED marginal costs and average efficiencies by firm groups (CRS).

Group No. of
firms

Energy
transmission
(€ cents/kWh)

Network
length
(€/km)

No. of
customers
(€/customer)

Average
efficiency
(%)

1 11 0.6043 876.74 0.87 92
2 36 0.5597 984.94 1.23 92
3 10 0.4566 1038.81 1.86 93
4 3 0.4434 908.77 22.25 94
5 3 0.4200 970.69 21.00 92
6 4 0.3662 964.71 27.86 95
8 7 0.3493 930.93 33.43 91
9 6 0.3324 983.05 29.61 90
7 3 0.2929 232.21 60.11 92
Others 6 96

Average 0.4773 930.09 12.94 92

4 See Kuosmanen (2012) for a 3-dimensional graphical illustration of the
estimated StoNED frontier.
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DEA envelops all data whereas noise is included in StoNED. The
average DEA shadow price is indeed lower than the StoNED
estimate for the network length (DEA: 762 €/km; StoNED: 930
€/km). As for the marginal cost per user, the DEA estimate is
notably higher than the StoNED estimate (DEA: 46 €/user; StoNED:
13 €/user). This implies that the shapes of the estimated DEA and
StoNED cost frontiers differ considerably, particularly for the
output profile of the urban networks that assign a high shadow
price for the number of customers (Groups 9–12 in Table 3).

The rightmost column of Table 3 reports the average efficiency
of firms projected to each facet of the DEA frontier. We note that
the differences in average efficiencies across facets are notably
larger in DEA than in StoNED (compare with Table 2).

3.3. SFA frontier

EMV applied SFA and DEA in parallel during the second regulation
period in 2008–2011. In practice, EMV applied the unweighted
average of the DEA and SFA efficiency scores to set cost reduction
targets for each firm (referred to as NMA in this paper).

The econometric SFA approach requires some parametric
assumptions concerning the functional form of the cost frontier.
The Cobb–Douglas and translog are the most commonly used
functional forms applied in the SFA literature. The SFA model can
be obtained as a special case of the generic cost frontier Model (1),
obtained by imposing some specific functional form for the cost
function C. In fact, SFA results as a restricted as a special case of
StoNED if the functional form is restricted to be linear and it is
assumed that marginal costs are equal for all firms.5

The main shortcoming of SFA is that the functional form assump-
tions are somewhat arbitrary and difficult to justify. In the present
context, most commonly used functional forms fail to capture the
economies of scope in joint production (Syrjänen et al., 2006). For
example, the standard Cobb–Douglas function is quasi-concave at all
parameter values. This implies the Cobb–Douglas cost function
exhibits economies of specialization rather than economies of scope
which again could give wrong incentives to specialize in provision of
just one output instead of a balanced portfolio of outputs. The
flexible functional forms such as translog are subject to the same
problem, and the larger number of parameters would likely cause
additional problems with multicollinearity. This is why EMV used the
linear functional form for SFA in the previous regulation period.
Linear functional form however assumes that outputs are perfect
substitutes. and thus it tends to favor the “average firm” over the
firms operating with an atypical output profile.

As was apparent from the general regulatory model presented
in Eq. (1), the heterogeneity of the firms must also be taking
account. As a partial adjustment to the heterogeneity of firms and
their operating environments, the total network length y2 was
divided in two parts in the SFA model EMV applied in the previous
regulation period 2008–2011), specifically,

y2 ¼ y2A þ y2B; ð2Þ
where

y2A¼ length of underground cabled urban network (km), and
y2B¼ length of other network (km).

Treating y2A and y2B as separate outputs in the SFA model, the
marginal cost of the underground cabled urban network is allowed
to be higher than that of the other network. This however is
slightly problematic from the point of view EMV averaging

approach as now the components of the average are based on
different model specification (see details in the technical appendix
provided in the Supplement).

The SFA estimates of the marginal costs of outputs are presented
in Table 4. For completeness, we report the estimates for the three-
output model where the total network length (y2, Model A) is used
as an output and for the four-output model where the network
length is separated in two components (y2A and y2B, Model B). The
SFA model is estimated by maximum likelihood assuming CRS (i.e.
the intercept term has been set to zero). In case of SFA, here and in
Section 4, we assume the truncated normal distribution for the
inefficiency distribution, as this is the specification that EMV used
in the previous regulation period, following Syrjänen et al. (2006).

Comparing the results of Table 4 with the marginal costs
reported in Tables 2 and 3, we find that the marginal costs
suggested by SFA differ from the average marginal costs estimated
by DEA or StoNED. For energy transmission, for example, the
marginal cost estimates obtained by SFA are notably larger than
the average of the StoNED estimates (only for Group 1 in Table 2,
the marginal cost is close to the SFA estimates), and almost twice
as large as the average of DEA estimates (Groups 1–4 in Table 3
yield marginal costs nearly as high as the SFA estimates).

In Model B, the estimated marginal cost of underground cabled
urban network is higher than that of the other network, as
expected. Note that the marginal cost of the total network length
in Model A is lower than the marginal cost of the other network in
Model B. Division of the network length on two parts has little
effect on the marginal cost of the energy transmission, but does
have a notable impact on the marginal cost per user. Clearly, taking
the heterogeneity of firms into account influences the marginal
cost estimates. Recall that the nonparametric DEA and StoNED
methods allow for firm-specific marginal costs, which provides
greater flexibility in terms of the heterogeneity of firms and their
operating environments, as discussed at the end of Section 3.1.

The SFA estimate for the marginal cost per user is relatively
small and insignificant at the conventional significance levels. The
StoNED estimates for the marginal cost per user are larger for
some groups (particularly firms operating in large cities), but the
average of StoNED estimates falls below the SFA estimate. The DEA
estimates are notably larger, for three groups the marginal cost
estimate exceeds €100 per user. For firms operating in rural areas,
the number of customers is not the main cost driver; majority of
Finnish distribution networks operate in rural areas. This explains
why the SFA estimate and the averages of DEA and StoNED
estimates of the marginal cost per user are rather low.

The SFA results reported in Table 4 have been estimated using
the heteroskedasticity correction following Syrjänen et al. (2006),
who assume that the variances of the inefficiency and noise terms
are proportional to the amount of transmitted energy (y1). It is
likely that the deviations from the cost frontier are dependent
from the company size. In econometrics, the textbook treatment of
such heteroskedasticity is to normalize all variables by y1. The
assumed form of heteroskedasticity however appears completely
arbitrary: one could equally well assume that heteroskedasticity is
driven by any other output of combination of them. To examine
the effect of heteroskedasticity correction in more detail, we have
estimated the SFA model again using each output variable as the
normalizing criterion, and without any normalization. The SFA
models are estimated with modified OLS (MOLS) and the para-
meter estimates of the models with alternative normalizations are
reported in Table 5, both under CRS (the top part) and variable
returns to scale (VRS, the bottom part).6

5 The random parameters SFA models (Tsionas, 2002; Greene, 2005) allow for
heterogeneity across firms by introducing firm-specific coefficients.

6 The maximum likelihood estimator of the SFA model fails due to wrong
skewness of residuals in six out of the eight specifications considered. Thus, for this
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Table 5 shows that the choice of the normalization has a major
impact on the marginal costs of outputs and some results do not
seem to be very meaningful. Many marginal costs are negative;
only in the VRS model normalized by energy transmission all
coefficients are positive as expected. The normalization also
influences the skewness of the residuals. If no normalization is
applied, or the normalization is based on the number of customers,
then the skewness of the OLS residuals has a wrong sign, and hence
the stochastic frontier reduces to the OLS curve (Kumbhakar and
Lovell, 2000). In Table 5, these cases are indicated by # on the row
“Expected efficiency”. On the other hand, if the normalization is
based on the network length, the skewness is so large that the
estimate of ŝv becomes negative. These cases are indicated by §.
Thus, we find that the normalization by energy transmission is not
only important for heteroskedasticity correction: it is the only
specification in Table 5 that yields meaningful efficiency estimates
as well as positive marginal costs in the VRS case. We suspect the
parameter estimates are sensitive to the choice of normalization
due to multicollinearity of output variables.

4. Comparison of efficiency estimates

The previous section presented some selected empirical evi-
dence of the cost frontier obtained with different methods. In this
section we compare the empirical estimates of cost efficiency
(CE).7 Our focus on the CE scores is motivated by the fact that the
Finnish legislation mandates the use the efficiency improvement
targets as the regulatory instrument of EMV. We also include the
efficiency scores obtained through naïve model averaging (NMA) to
our comparison. These figures are simply the averages of the DEA
and SFA estimates. The practical justification of NMA was to

alleviate the possible modeling misspecification of SFA and DEA
by taking an average of the two efficiency estimates.8

Consider first the correlations between the CE scores estimated
by the four methods. Table 6 reports the correlation matrices of
the Pearson product moment correlation coefficients (the left
side), and the Spearman rank correlation coefficients (the right
side). There is a high positive correlation in every pair of CE
estimates. Based on the correlation analysis alone, one might be
tempted to conclude the choice of the estimation method has little
effect on the efficiency estimates. However, this conclusion proves
wrong in a closer inspection of the levels of CE estimates.

Table 7 reports descriptive statistics of the CE scores obtained
by different methods. There are notable differences in the levels of
efficiency scores. In particular, we find that StoNED yields con-
siderably higher efficiency scores than any other method, both in
terms of the mean and the minimum: recall that StoNED takes the
noise term explicitly into account and captures heterogeneity of
firms and their operating environments through the use of the
contextual variable z, which is omitted in other methods. 9

The summary statistics of Table 7 facilitate the comparisons of
an average or a median firm. To shed further light on efficiency of
individual firms, we have plotted the StoNED efficiency scores
against the NMA estimates in Fig. 1. Points in this diagram
represent the pair of efficiency estimates obtained by the average
of DEA and SFA (NMA, the horizontal axis) and StoNED (the
vertical axis). The broken line in the middle of diagram indicates
the 451 line: for points above this line the StoNED efficiency
estimate is greater than that of NMA.

Fig. 1 illustrates that the StoNED estimator is more favorable for
each individual firm than the average value of DEA and SFA; the
StoNED efficiency scores are higher than the corresponding NMA
values. For some companies the use of NMA value would yield
efficiency improvement targets around 35–50% (efficiency of
50–65%). Improvements of this magnitude seem highly unrealistic.
Note that there are many firms that lie relatively close to the

Table 5
Impact of normalization on SFA (MOLS estimates).

Normalization

None By
energy

By other
network

By
customers

CRS model
Energy (€ cents/kWh) 0.09 1.00nn 0.49nn 0.57nn

Urban network (€/km) −462.17 1464.38nn −2445.20nn 16,340.92nn

Other network (€/km) 1044.65nn 916.59nn 1367.96nn 248.66
Users (€/user) 113.03nn −0.67 56.00nn −62.62
Expected efficiency (%) # 72 § #
R2 0.998 0.876 0.949 0.997

VRS model
Constant (t€) 108.85 111.82nn −183.51nn 713.27nn

Energy (€ cents/kWh) 0.08 0.90nn 0.56nn 0.44nn

Urban network (€/km) −534.79 1067.59nn −994.90 −279.20
Other network (€/km) 1053.56nn 854.50nn 1412.23nn 578.94nn

Users (€/user) 113.82nn 10.50 50.39nn 40.49
Expected efficiency (%) # 81 § #
R2 0.997 0.899 0.961 1.000

Statistical significance indicated as follows: n refers to 5% significance, nn refers to
1% significance.
# Indicates negative skewness (negative ŝu).
§ Indicates too large a skewness (negative ŝv).

Table 6
Correlation analysis of efficiency scores.

Pearson correlation Spearman rank-correlation

StoNED DEA SFA NMA StoNED DEA SFA NMA

StoNED 1 0.9089 0.8956 0.9367 1 0.9338 0.8788 0.9498
DEA 1 0.8568 0.9726 1 0.8456 0.9732
SFA 1 0.9523 1 0.9329
NMA 1 1

Table 7
Descriptive statistic of efficiency scores.

Mean St. Dev. Median Min. Max.

StoNED 0.924 0.069 0.940 0.764 1.000
DEA 0.802 0.119 0.807 0.466 1.000
SFA 0.862 0.092 0.892 0.545 0.981
NMA 0.832 0.102 0.848 0.505 0.990

(footnote continued)
comparison, we report the Modified OLS (Aigner et al., 1977; Olson et al., 1980)
estimates throughout all eight specifications considered in Table 5.

7 For all methods, we follow the model specifications applied by EMV. For
comparability, CRS is imposed throughout all estimation methods considered.

8 Similar practice of combining DEA and SFA estimators has been used or
considered for use in other countries as well, see, e.g., Pollit (2005), Azadeh et al.
(2009), and Bogetoft and Otto (2011, Ch. 10).

9 Note that in StoNED the probability mass at u¼0 is equal to zero, and hence
none of the firms are 100% efficient. Still, the maximum value is rounded to 1.000 at
the accuracy of three decimal digits.
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efficient StoNED frontier. This is in contrast especially with DEA,
where only a few observations define the efficient frontier.

The main objective of the efficiency estimates is to provide cost
targets that EMV imposes to the distribution firms. To examine the
impacts of the methodological choice on the bottom line, we have
converted the firm-specific efficiency estimates to monetary cost
reduction targets, calculated as xið1−CEiÞ, where CEi is the firm-
specific estimate of inefficiency and xi is the observed total cost in
year 2008. For the stochastic SFA and StoNED methods, the CE is
based on the formulation of the conditional expected value of the
inefficiency term u, developed by Jondrow et al. (1982) (hence-
forth referred to as the JLMS method). The total cost reduction
target for the whole industry is reported in the first column of
Table 8 (all figures in €1000 at prices of the year 2008). The
remaining columns provide summary statistics of the firm-specific
cost reduction targets.

Comparison of the cost reduction targets reveals substantial
differences between the methods considered. The calculated total
cost reduction target of the industry based on the StoNED
estimates is somewhat lower than €50 million. The SFA estimate
is approximately €50 million larger than the corresponding
StoNED figure. Further, the DEA estimate is approximately €50
million larger than the SFA estimate. Although the efficiency
scores obtained with the different methods are highly correlated,
the monetary figures presented in Table 8 illustrate that the choice
of the estimation method does have a significant economic impact
within the regulatory framework.

Based on Table 8, one might conclude that StoNED is most
favorable to the regulated firms, whereas DEA is the best method
from the perspective of consumers. However, the practical imple-
mentation of the cost reduction targets in the regulatory frame-
work will also matter. In the previous regulation period, EMV
made several adjustments to the cost reduction targets to make
them more favorable to the regulated industry. In the current
regulation period EMV enforces the StoNED targets more vigor-
ously. While a detailed discussion of the practical implementation

of the EMV model falls beyond the scope of the present paper, in
the next section we do discuss two important insights gained
during the reform of the EMV model.

5. Implementation of efficiency benchmarks in regulation

Estimation of firm specific efficiency scores is often the main
objective of frontier estimation. Consequently, the benchmark
regulation typically starts from the efficiency scores. In Finland,
EMV is required to provide firm specific efficiency scores as the
basis of regulation by the law. In this section we argue that the
frontier cost function provides more appropriate benchmarks for
the acceptable cost level or cost reduction targets.

In the deterministic models such as DEA, the production
technology can be fully characterized by the distance to frontier
(i.e., the distance function). In this case, the efficiency scores can
be harmlessly used for setting cost reduction targets. However, the
situation is different in the stochastic models such as SFA and
StoNED because the distance to frontier is subject to random noise.
Even though SFA is currently used in regulation in some countries,
the impact of noise has not been recognized. Two important
lessons from the recent reform of the Finnish regulatory model
by EMV are worth noting.

First, we emphasize that the estimation of the stochastic cost
frontier function rests on a much sounder statistical foundation
than the estimation of firm specific efficiency scores. Provided that
the model assumptions hold, the cost frontier can be consistently
estimated even in a cross-sectional setting subject to noise. In
contrast, it is well known in SFA literature that the firm specific
inefficiency estimates obtained by using the JLMS method are
inconsistent. The rationale of this argument can be stated as
follows. The frontier cost function is common to all firms, and
hence the noise contained in individual observations can be
averaged out. In contrast, firm specific efficiency estimates are
based on the distance from an individual observation to the
frontier. Even if the sample size increases, the distance is mea-
sured from a single data point to the frontier. The increase in
sample size generally improves the precision of the frontier
estimator, but the efficiency estimator is still based on the distance
of a single data point to the frontier, and hence the noise contained
in the single data point cannot be averaged out.10

Second, the cost reduction targets based on the JLMS method
are dynamically inconsistent, as first noted by Kuosmanen et al.
(2010). The argument can be briefly stated as follows. The JLMS
method transforms the distance to the frontier to conditional
expected value of inefficiency. As a result, it attributes some
proportion of the measured distance to the frontier to the noise
term. The larger the distance to frontier, the larger the assumed
impact of noise. In another context, Wang and Schmidt (2002)
refer to this as the shrinkage effect of the JLMS method. In the
present context, the dynamic inconsistency arises from the fact
that the regulated firm does not necessarily reach the frontier even
if it improves its efficiency by the amount suggested by the JLMS
method. Even if all firms in the regulated industry improve their
efficiency according to the JLMS method, there is no guarantee
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Fig. 1. Comparison of StoNED and NMA efficiency scores.

Table 8
Monetary cost reduction targets (thousand € in prices of 2008).

Industry Mean St. Dev. Min. Max.

StoNED 47,508 534 1326 0.000 11,113
DEA 141,382 1589 3888 0.000 27,654
SFA 93,023 1045 2185 0.024 13,599
NMA 117,205 1317 2947 0.017 20,627

10 In the case of panel data where n firms are observed over T time periods, it is
possible to estimate time invariant inefficiency by averaging out noise over the T
observations of the same firm. To estimate the cost frontier we can average out
noise over the full sample of nT observations, which will likely result as a more
precise estimator. Further, the consistent estimation of the inefficiency term in the
panel data setting requires some additional assumptions, which may be considered
restrictive. For example, one could assume a time invariant inefficiency term or a
specific functional form for the efficiency change over time. For a freely time
varying inefficiency estimator that does not impose any additional assumptions,
consistent estimation is not possible even in the panel data setting.
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that all the firms reach the frontier at the end of the regulation
period.

To address both problems noted above, in the current regula-
tion period EMV defines cost efficiency as the ratio of the frontier
cost function and the observed cost of the firm. Specifically,

CE′¼ Cðy1; y2; y3Þ � expðδzÞ=x ð3Þ
In this measure, the nominator can be consistently estimated,

avoiding the inconsistency of the JLMS estimator. Note that the
denominator x contains both inefficiency and noise. However,
the presence of noise in the denominator is not a problem as
our objective is to specify efficiency improvement targets such that
the firms would reach the efficient cost level Cðy1; y2; y3Þ � expðδzÞ.
Indeed, the acceptable cost level defined using Eq. (3) is dynami-
cally consistent: if a firm reduces its current cost level by factor CE’
during the regulation period, it will reach the efficient cost frontier
at the end of the regulation period.

6. Monte Carlo simulations

The empirical comparison presented in the previous section
shows that the choice of the frontier estimation method does
matter in the regulation. We next examine performance of alter-
native methods in a simulated setting where the true cost frontier
and the firm-specific inefficiencies are known beforehand.
The advantage of the Monte Carlo (MC) comparison is that it
allows us to quantify the performance of each method in terms of
standard criteria such as the bias and root mean squared error (to
be defined below).

A critical step in the MC analysis is the specification of the data
generating process (DGP) that produces the simulated data.
For the empirical relevance of the MC analysis, it is desirable to
specify the DGP to imitate both the characteristics of the regula-
tory model the observed patterns of empirical data. In this study,
we calibrate the DGP to reflect both these aspects.

6.1. Data generating process (DGP)

The generic cost frontier Model (1) forms the basis of our DGP.
To ensure comparability, in the MC comparisons we apply exactly
the same model specification across all methods. Thus, we assume
a three output case and omit the contextual variable z, as its
proper inclusion in DEA would be somewhat more complicated
than in SFA or StoNED.

We first generate random data for the three output variables
using the formulas presented in Table 9. The DGP for output
variables has been specified to mimic the observed data as closely
as possible. The empirical distribution of the logarithms of outputs
is approximately uniformly distributed within the range [3, 11].
First, we generate the data for transmitted energy. The other two
outputs are generated conditional on the first output. A weighted
average of a random draw from uniform distribution and the
previously generated energy output is applied to generate these
variables such that the weights are based on the empirical correla-
tion between the observed variables. For example, the empirical
correlation between the network length and the transmitted energy

is 0.87. Thus, the simulated output data exhibit similar correlations
as the observed output variables in our empirical data.

Given the simulated output data, the next step is to generate
the total cost. This requires a specification of the cost function.
Recall that the commonly used functional forms such as the Cobb–
Douglas and translog are inappropriate in the present context. To
calibrate our DGP to the current regulatory practice of EMV as
closely as possible, we apply the piece-wise linear cost frontier
applied by EMV in the regulation period 2012–2015. Given the
output vector (y1;i; y2;i; y3;i), the value of the cost frontier is
calculated as

Ci ¼max
h

ðβ1hy1i þ β2hy2i þ β3hy3iÞ ð4Þ

where ðβ1h; β2h; β3hÞ, h¼1 ,…, H are the slope coefficients (marginal
costs) of the H different hyperplane segments of the piece-wise
linear cost frontier implemented by EMV (compare with the
shadow prices reported in Table 2 and problem (2) in the technical
appendix provided in the Supplement). Note that the max opera-
tor in Eq. (4) selects the most favorable output prices for each
simulated data point.

Having calculated the values of the frontier cost function
(which represents the efficient cost level) for each simulated
point, the observed total cost are generated using

xi ¼ Ci � expðui þ viÞ; ð5Þ
where the inefficiency u for the noise v are distributed as:
ui � jNð0;0:172Þj and vi �Nð0;0:092Þ. The parameter values of the
standard deviations of the inefficiency and noise terms are
calibrated based on the empirical estimates obtained by applying
the method of moments estimator to the CNLS residuals in the
StoNED procedure.

Before proceeding to the results, it is worth to discuss whether
and to what extent the DGP provides an unfair advantage to any of
the methods considered. First, the DGP does not violate any of the
assumptions of the StoNED method. The piece-wise linear func-
tional form of the true cost function used in the simulations is
compatible with the form of the StoNED frontier, but the same is
true for DEA. The fact that the coefficients ðβ1h; β2h; β3hÞ and the
parameters ðsu; svÞ have been ex ante estimated by the StoNED
method does not give any particular advantage to this or that
method: the purpose of the ex ante estimation is to match the DGP
with the current regulatory practice of EMV. As for DEA, the
presence of the noise term v violates the deterministic nature of
this method. However, empirical data are always subject to some
noise, and some authors explicitly suggest that DEA is robust
enough to tolerate some noise (Gstach, 1998; Banker and
Natarajan, 2008). In fact, the noise term can help to alleviate the
small sample bias of the DEA estimator, as we note below.
Regarding SFA, the piece-wise linear functional form violates the
maintained assumption of the linear cost function. In all other
respects, the SFA estimator is correctly specified: we assume the
half-normal distribution of the inefficiency term (in contrast to the
EMV specification of truncated normal inefficiency used in the
previous sections). For comparability of SFA and StoNED, we apply
the MOLS estimation strategy for SFA and the method of moments
estimator in StoNED.

The DGP used in the present simulations may seem to favor
StoNED, as it is the only method with the assumptions consistent
with those of the DGP. However, the rigid functional form of SFA
and the deterministic orientation of DEA are the well-known
characteristics of these methods. We must also stress that the
NMA approach is supposed to remedy these issues. Hence, we find
it meaningful to compare the performances of the methods using
the DGP described above. For further Monte Carlo comparisons of
DEA, SFA and StoNED under alternative data generation processes
(including smooth frontiers and scenarios without noise), a reader

Table 9
DGP for the output variables.

Output DGP

Energy y1;i ¼ expðUni½3;11�Þ
Network length

y2;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−0:872Þ

q
� expðUni½3;11�Þ þ 0:87� y1;i

Customers
y3;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−0:982Þ

q
� expðUni½3;11�Þ þ 0:98� y1;i
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is referred to Kuosmanen and Kortelainen (2012), Johnson and
Kuosmanen (2012), and Andor and Hesse (in press).

6.2. Performance measures

Recall from Section 3 that the SFA and StoNED estimators of the
cost frontier C are consistent, whereas the JLMS estimator of firm-
specific inefficiency is inconsistent. Since no consistent estimator
of firm-specific inefficiency is available in the stochastic setting
involving noise, we compare performance of the methods in terms
of their precision in estimating the cost frontier C. Given the
simulated values Ci (calculated using Eq. (4)) and the correspond-
ing estimates Ĉi (obtained with StoNED, DEA, SFA, and NMA), the
performance of the method is measured using the root mean
squared error (RMSE) and bias, defined as

RMSE¼ 1
M ∑

M

m ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ∑

n

i ¼ 1

Ĉi−Ci

Ci

 !2
vuut ð6Þ

BIAS¼ 1
M

1
n ∑

M

m ¼ 1
∑
n

i ¼ 1

Ĉi−Ci

Ci
ð7Þ

where M denotes the number of replications in the simulation.
Note that the RMSE is always greater than or equal to zero, with
zero indicating perfect precision. In contrast, the bias can be
positive or negative, the positive values indicating overestimation
and the negative values underestimation of the cost function. For
both performance statistics, values close to zero are desirable. Both
RMSE and bias have been normalized such that the performance
statistics have an interpretation as an average dispersion or bias.
For example, RMSE¼0.05 indicates that the estimates Ĉi deviate
from the true Ci value by 5% on average.

6.3. Simulation results

The MC simulations were conducted using the GAMS software
and the MINOS solver run on a standard desktop PC (the GAMS
code for the simulations is available as online annex). We consider
four different scenarios with sample sizes n¼25, 50, 100, and 200.
The sample sizes are chosen to be relatively small to reflect the
usual number of firms in this kind of sector (in the EMV data,
n¼89). Each scenario has been replicated M¼1000 times. The
results of the MC analysis are reported in Table 10.

Consider first the RMSE statistics reported on the left panel of
Table 10. The StoNED estimator has a lower RMSE than other
methods at all sample sizes. The average dispersion of approxi-
mately 5% from the true value is a very good result in the
stochastic setting involving noise. Note that the precision of the
StoNED estimator improves (RMSE decreases) as the sample size
increases, as expected. The DEA estimator yields a relatively good
precision of RMSE less than 10% at small sample sizes. However,
the RMSE increases together with the sample size. This is due to
the fact that DEA ignores the noise term. In small samples, the
noise term and the small sample bias offset each other, but as the
sample size increases, the bias due to the noise term starts to

dominate. The SFA estimator yields catastrophic results in this
comparison, with average deviations of the magnitude of 50–200%.
Recall that the linear functional form is severely wrongly specified
in these simulations; most reported MC simulations assume the
correct (or almost correct) functional form for SFA. It is not
surprising to find that the linear functional form fails to capture
the piece-wise linear cost function, Eq. (4), used in our simulations.
Further, the high correlation between the output variables makes
SFA vulnerable to multicollinearity. Moreover, note that the RMSE of
SFA increases alarmingly as the sample size increases. Finally, the
MC simulations illustrate the weakness of the NMA approach: the
poor performance of SFA carries over to the NMA estimator. In this
case, the use of DEA alone is clearly superior to NMA.

The bias statistics are reported on the right panel of Table 10.
The bias of the StoNED estimator is small, and decreases as the
sample size increases. In contrast to DEA and SFA, the bias of the
StoNED estimator is positive, which means that StoNED tends to
overestimate the true cost level in this setting. In the context of
regulation, modest overestimation is generally preferred to under-
estimation. The conventional wisdom of DEA suggests that the
DEA estimator is systematically biased towards overestimation of
cost. However, this idea stems from the deterministic setting,
whereas in the present MC simulations the DGP contains noise.
The results of Table 10 aptly illustrate that the DEA estimator is
downward biased under noise. In very small samples, the noise
term can offset the small sample bias, as we noted above.

Finally, we must emphasize that the previous MC comparison
has been calibrated to mimic the regulatory model of EMV and the
empirical data of the Finnish electricity distribution firms as
closely as possible. The purpose of such tailored simulations is to
ensure the relevance of the MC evidence in the specific context of
the Finnish regulatory model. We stress that the results of this
section do not necessarily apply to other sectors or in other
countries. As MC simulations are nowadays relatively inexpensive,
we suggest that investigating the internal consistency the bench-
marking methods through MC simulations calibrated to the
specific regulatory context should be routinely conducted.

7. Conclusions

In this paper we have compared the frontier estimation
techniques applied in the benchmark regulation of electricity
distribution firms. The comparison was conducted both in terms
of the empirical data from Finland and in the controlled environ-
ment of Monte Carlo simulations. Our empirical comparison
demonstrated that the choice of benchmarking method has sig-
nificant economic effects on the regulatory outcomes, even when
the efficiency estimates from different methods are highly corre-
lated. Although the frontier estimation methods are often used for
assessing relative efficiency and ranking of firms, in the context of
regulation, also the level of efficiency matters.

A unique feature of our Monte Carlo simulations concerns the
specification of the data generating process. We calibrated the
simulation model and its parameters to capture as closely as
possible the key characteristics of the distribution sector and the
regulatory system in Finland. This allows us to estimate the
potential bias and dispersion of the frontier estimates obtained
with different frontier estimation methods in the setting that
mimics the empirical reality of this sector.

We have learned at least five important lessons from this
study:

(1) Heterogeneity: a large proportion of the observed dispersion in
cost per kilowatt hours across firms can be explained and
attributed to the heterogeneity of firms and their operating

Table 10
Simulation results.

RMSE BIAS

n¼25 n¼50 n¼100 n¼200 n¼25 n¼50 n¼100 n¼200

StoNED 0.072 0.057 0.044 0.027 0.030 0.022 0.014 0.009
DEA 0.088 0.091 0.107 0.129 −0.025 −0.060 −0.091 −0.118
SFA 0.469 0.886 1.439 1.923 −0.253 −0.666 −1.192 −1.661
NMA 0.254 0.464 0.750 1.003 −0.139 −0.363 −0.641 −0.890
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environments. The benchmarking model should be flexible
enough to take into account the different circumstances of
small firms and large corporations, firms operating in rural
area or in a large city, and firms that supply power to house-
holds or heavy industry. The current regulatory model of EMV
attempts to take the heterogeneity into account through the
application of a non-parametric piece-wise linear cost frontier
that allows the marginal costs of outputs differ across firms,
and by applying the proportion of underground cables as an
additional contextual variable.

(2) Noise: the cost data are subject to random variation from various
sources. For example, the capital expenditures depend on some-
what arbitrary accounting rules and depreciation rates. Random
weather events such as storms cause interruptions, which
influence the operational costs. In these circumstances, stochastic
frontier models that explicitly recognize a random noise term are
preferable to deterministic benchmarks that attribute all devia-
tions from the frontier to inefficiency. The current regulatory
model of EMV takes a random noise term explicitly and system-
atically into account in the frontier estimation.

(3) Frontier as the benchmark: it is important to recognize that the
estimation of the frontier cost function (or production func-
tion) rests on a much sounder statistical foundation than the
estimation of firm-specific efficiency scores. Therefore, it is
generally recommended to set the efficiency improvement
targets based on the frontier cost or production function,
rather than the firm-specific efficiency estimates, as noted in
Section 5. In the current regulatory model of EMV, efficiency is
defined as the ratio of the cost frontier and the observed cost,
which effectively imposes the cost frontier as the target.

(4) Implementation: development of a benchmarking model should
not be viewed as an isolated exercise, but rather as an integral
part of designing the regulatory framework as a whole.
The systematic use of the StoNED cost frontier as a benchmark
has enabled EMV to eliminate some redundant components in
the regulatory model, making the regulation more transparent.
Although the efficiency estimates according to the StoNED
method are on average higher than those of DEA and SFA,
EMV has implemented the efficiency improvement targets
more vigorously than in the previous regulation periods.

(5) Tailored simulations: in this paper we have shown that it is
possible to calibrate the simulation model to mimic the
characteristics of the regulated industry as well as the regula-
tory model. Conducting tailored simulations is an inexpensive
way to compare the performance of alternative benchmarking
tools in the specific context of application. We would recom-
mend the use of calibrated Monte Carlo simulations as a test for
the internal consistency of the chosen benchmarking model.

Appendix A. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.enpol.2013.05.091.
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Technical Appendix 

 

This technical supplement introduces the basic characteristics and discusses the properties of the three 

frontier estimators examined in the abovementioned paper. The purpose of this technical supplement is to 

preserve space for the comparison of estimated empirical frontiers instead of their theoretical properties. 

For simplicity of the presentation, we first state the general cost frontier model and then discuss each 

model in turn. We also deal with the naïve model averaging (NMA) approach here in more detail and 

discuss the problems of this approach on a technical level.  

The general cost frontier model  

Here we briefly state the general cost frontier model. The cost regulation of EMV is based on the 

following generic model of cost frontier (see Kuosmanen, 2012, for a more detailed discussion). 



1 2 3ln ln ( , , )x C y y y z u v    (1) 

where 

x is the observed total cost (TOTEX) (1,000 €)  

C is the frontier cost function  

y1 is the energy transmission (GWh) 

y2 is the total length of the network (km) 

y3 is the number of customers 

z is the proportion of underground cables 

δ is the coefficient of the z variable 

u is the random variable representing inefficiency  

v is the random variable representing stochastic noise 

 

In this study the cost variable x refers to the total expenditure (TOTEX), which consists of three 

components: controllable operational costs (OPEX), capital expenditures (CAPEX) and the external 

supply interruption costs for customers (INT). The last component can also be viewed as a quality 

component, as the lack of supply interventions can be interpreted as an indicator of good service. 

StoNED estimator 

The StoNED estimator is based on some general axioms (or regularity conditions) concerning the 

benchmark technology (see details of the method in Kuosmanen and Kortelainen, 2012). The set of 

axioms imposed in the EMV regulatory model are the following (see Kuosmanen, 2012): 

1) C is monotonic increasing in all outputs  

2) C is globally convex in outputs 

3) C exhibits constant returns to scale (CRS)  

 



The first two conditions are standard properties in DEA. The third axiom defines the nature of returns to 

scale and it could be relaxed.  However, the CRS axiom could not be rejected in the empirical specification 

test reported by Kuosmanen (2012). More importantly, the CRS axiom is preferable from the regulatory 

point of view, as the benchmark technology exhibits the same level of total factor productivity irrespective 

of the firm size. For example, suppose firms enjoy economies of scale in reality. The CRS axiom of the 

regulatory model then provides an incentive for firms to seek productivity improvement through mergers. 

Such an incentive would be lost if the CRS axiom were relaxed and variable returns to scale (VRS) were 

imposed. Indeed, the use of the VRS benchmark may give wrong incentives for firms to split or merge for 

strategic reasons to game the regulator (see e.g. Jamasb et al., 2003, 2004).  

The StoNED estimation proceeds in two stages. First, the cost frontier model (1) is estimated 

with convex nonparametric least squares (CNLS: Johnson and Kuosmanen, 2011, 2012; Kuosmanen, 

2008). Denoting the composite error term by i i iu v , the CNLS problem can be stated as  

2

, , , 1
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n
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subject to      (2)
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The firm specific beta coefficients represent the marginal costs of outputs (shadow prices). Alternatively, 

these coefficients can be interpreted as the slopes of the tangent hyperplanes to the piece-wise linear cost 

frontier. The firm specific coefficients allow for greater heterogeneity of distribution networks than the 

usual parametric approaches (cf., e.g., Cullmann, 2012). The contextual variable z also partly captures 

heterogeneity of firms.  



In the second stage we impose distributional assumptions on inefficiency and noise and follow 

the method of moments approach (see Kuosmanen and Kortelainen, 2012; Kuosmanen, 2012) to estimate 

the firm specific inefficiencies, utilizing the estimated CNLS residuals ˆi . The usual assumptions of the 

SFA literature are that iu has a half-normal distribution such that 0iu , and iv  has a normal distribution 

with zero-mean and a finite constant variance, and these assumptions are assumed here also.  

The optimal i  from problem (2) is a consistent estimator of the total cost xi, conditional on 

outputs 1 2 3( , , )i i iy y y , that is, 

2 3 1 2 31
( , , ) ( , , ) exp( )i i i i i iiE x y y y C y y y ,   (3) 

where is the expected inefficiency estimated with methods of moments, given the distributional 

assumption of inefficiency. This approach is similar to the Modified OLS (MOLS) approach commonly 

applied in SFA literature (Aigner et al., 1977; Olson et al., 1980).1 Indeed, StoNED can be seen as an 

axiomatic, nonparametric variant of the classic MOLS; the conditional expected value 1 2 3( , , )i i i iE x y y y  is 

estimated by CNLS instead of OLS, but otherwise the StoNED estimator follows the standard MOLS 

procedure.       

To estimate the frontier cost function, we must adjust the estimated i  with . Thus, the StoNED 

cost frontier is obtained by adjusting the estimated i  downward according to 

1 2 3
ˆ ˆ( , , ) exp( 2/ )StoNED

i i i i uC y y y .   (4) 

Finally, we can utilize the Jondrow et al. (1982) decomposition to obtain firm-specific inefficiency estimates 

ˆiu . For comparability with the DEA efficiency scores, we convert the inefficiency estimates as cost 

efficiency measures as follows 

ˆ  100% exp( )i iCE u     (5) 

1 Sometimes MOLS is referred to as corrected OLS (COLS) (see, e.g., Azadeh et al., 2009). We prefer to use MOLS for the 
probabilistic estimator that takes into account noise, and reserve the term COLS for the deterministic estimator that envelopes 
all observations. 



In practice, the CNLS problem (2) can be solved by mathematical programming solvers for convex 

problems. In this study we use GAMS (General Algebraic Modeling System) and its MINOS solver as this 

solver is suitable for solving nonlinear programming problems. Problem (2) is nonlinear due the 

logarithmic transformations applied to the observed costs and the estimable frontier costs. Since there is a 

large number of constraints and parameters, problem (2) is computationally more burdensome than for 

example the OLS. With the present hardware and software capacity, however, problem (2) is solvable in 

tolerable time by standard PC, provided that the sample size is not too large (see Lee et al., 2013, for 

discussion).  

 

DEA estimator 

The DEA estimator can be obtained as restricted special case of  Problem (2). If we restrict the residuals ˆi  

to take only positive values and exclude the contextual variable z, the CNLS problem (2) is equivalent to 

the input-oriented DEA under CRS (see Kuosmanen and Johnson, 2010, for details). Thus, DEA 

maintains the same assumptions concerning the shape of the frontier as StoNED. 

If we assume away noise, the DEA estimator is consistent, but biased in the small samples (Banker, 

1993). In the case of the cost frontier, DEA overestimates the true unobserved cost function in the small 

samples but it converges to the true frontier as the sample size tends towards infinity. Statistical inference 

on DEA can be conducted by using the bootstrap methods (e.g., Simar and Wilson, 2008). However, if the 

stochastic noise term is included in the model, the DEA estimator can be biased in both directions. In this 

case the bootstrap inferences are invalid. Indeed, it seems a common misunderstanding to assume that the 

bootstrap method (or robust frontiers) would make DEA more robust to noise. We must emphasize that 

the probabilistic treatment of sampling error does not address stochastic noise at all. 

The EMV specification of the DEA model applied in the previous regulation period 2008 – 2011 

did not include any contextual variables z. The conventional approach to modeling z-variables in DEA is 



to resort to a two-stage approach, where efficiency is first estimated using DEA, and then the DEA 

efficiency scores are regressed on z-variables, using OLS, probit, tobit, or truncated regression. Simar and 

Wilson (2007) present heavy critique of this approach. Recently, Johnson and Kuosmanen (2012) have 

shown that one-stage estimation of z-variables is possible in DEA. However, we follow the EMV 

specification and omit the z-variable from DEA altogether.   

SFA estimator 

Within this context, the SFA estimator of the frontier can be obtained as special case of StoNED estimator 

if cost frontier C is assumed to be linear (as in Syrjänen et al., 2006, specification implemented by EMV in 

2008 – 2011) and we restrict the marginal costs to be same for every firm (i.e.,  , ,ki kh i h k  ). The 

estimation of inefficiency in SFA is analogous to the procedure presented above for StoNED as StoNED 

lends its approach from SFA.   

The Finnish Energy Market Authority attempted to take the heterogeneity of firms into account in 

SFA by dividing the network variable into two separate variables. The use of different sets of output 

variables in the DEA and SFA models is however problematic for the parallel use of both methods as a 

part of the regulatory model. This issue is discussed in next section of this appendix when we deal the 

NMA approach. It is also good to note that this is not the only way to take account heterogeneity in SFA. 

The SFA literature offers abundant number of ways for modeling contextual variables z (e.g., Kumbhakar 

and Lovell, 2000, Ch. 7, and references therein). However, again we restrict ourselves to the EMV 

specification with divided network variable.  

Naïve model averaging (NMA)  

Given the relative strengths and limitations of DEA and SFA, it might be tempting to try to alleviate the 

risk of model misspecification by taking the average of the two estimators. In Finland, EMV applied the 

average of DEA and SFA estimators in the previous regulation period 2008 – 2011. Consequently, we refer 



this simplistic approach as naïve model averaging (NMA). This section provides a brief but critical 

examination of the shortcomings of NMA. 

Let us first consider the statistical properties of NMA based on the known properties of SFA and 

DEA. If the parametric assumptions of the SFA estimator hold, both the MOLS and the maximum 

likelihood estimators of the cost frontier C are unbiased and consistent (Greene, 2008). The firm specific 

inefficiency term ui can be estimated by using the conditional expected value of Jondrow et al. (1982). This 

estimator is unbiased, but inconsistent. In the cross-sectional setting, the inconsistency of the firm-specific 

inefficiency estimator is due to the fact that inefficiency is estimated based on the residuals and there is 

only one observation available for each firm. While an increase in the sample size improves the fit of the 

cost frontier, it does not improve precision of the firm-specific efficiency estimates. Thus, if we are 

interested in firm-specific efficiency scores, then inconsistency of the SFA estimator directly implies the 

NMA estimator is inconsistent even if the assumptions of the SFA model hold.  

To obtain a consistent estimator of firm-specific efficiency, we must assume away noise. In this 

case, the DEA estimator is consistent under the stated axioms. The SFA estimator remains inconsistent 

even if the functional form is correctly specified, so there is little benefit to introduce SFA: the DEA 

estimator is consistent, whereas NMA is not. But by assuming away the noise, we lose the most desirable 

property of SFA.   

As for the estimation of the cost frontier C, the statistical consistency of the NMA estimator 

requires that the assumptions of both DEA and SFA hold simultaneously. That is, the NMA estimator is 

consistent only if the frontier is linear with respect to outputs, inefficiency u has a truncated normal 

distribution, and there is no noise v. In this situation SFA estimator is unbiased and consistent. The DEA 

estimator is consistent but biased. Thus, the NMA estimator is consistent but biased. We conclude that 

under the assumptions required for the statistical consistency of the NMA cost frontier estimator, the SFA 



estimator is both unbiased and more efficient than the NMA estimator: introducing the DEA estimator 

does not provide any real benefit in this situation.  

The problems of NMA are further intensified by the fact that EMV applied different sets of output 

variables in DEA and SFA. In DEA the total network length was used as an output, whereas in SFA the 

network length was divided in two output variables, the urban underground cabled network and other 

network. This creates a profound misspecification problem. If the two models are differently specified with 

respect to the output variables, then one of the models (if not both) has to be misspecified. If one of the 

models is misspecified, then so is the NMA estimator. There is no reason to expect that averaging wrongly 

specified estimators would be beneficial.  
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HETEROSCEDASTICITY OR PRODUCTION RISK?
A SYNTHETIC VIEW

Antti Saastamoinen
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Abstract. Two veins of literature, namely, production risk literature and stochastic frontier analysis,
are examined. Both fields are concerned of output variation; the former due to exogenous shocks,
the latter due inefficiency. By covering the literature from both the fields, this review suggests that
the concept of heteroscedasticity can be utilized to build a synthesis between these mainly separate
branches of literature. However, the synthetic approach brings a challenge how to differentiate between
different sources of output variation. This challenge is identified as the main obstacle to meaningfully
combine the two approaches.

Keywords. Heteroscedasticity; Just and Pope model; Production risk; Stochastic frontier

1. Introduction

In economics, the standard definition of production function defines it as the function that gives maximal
output as a function of the given inputs (e.g. Varian, 1992). This definition implies that a producer
is operating efficiently and is not facing any exogenous shocks to its input–output correspondence.
Obviously, this situation rarely occurs in reality. The standard approach in the econometric estimation
of production function has been to augment the otherwise deterministic input–output relation with a
stochastic random error. Thus, the estimated production function does not need to correspond exactly
to the observed production. Usually the random error is included purely for statistical reasons and the
interest is in estimating the production function itself. However, two strands of production economics,
namely, the production risk field (see, e.g. Moschini and Hennessy, 2001, pp. 110–112) and the frontier
field (see surveys by Murillo-Zamorano, 2004; Fried et al., 2008), have positioned themselves to study
the variation of production in terms of this error.1

The study of production risk has been prevalent in agricultural economics since uncertainty over output
is especially present in agriculture, which is characterized by uncertain production environment due to,
for example, weather, pests and pollution (Just and Pope, 2001, pp. 643–647; Moschini and Hennessy,
2001).2 Such risk/uncertainty is often labelled as production or output risk.3 Obviously, production risks
also occur in other fields of production. However, for example, in manufacturing the consistent factory-like
production environment significantly decreases the occurrence of such risks. In some sense, the production
risk in agriculture resembles the well-known definition of risk in traditional finance literature where risk
can be seen as the volatility (variance) of return associated with a given investment portfolio. In a similar
manner we could assume that a farmer faces a certain degree of risk given the input factor portfolio.

The frontier field however assigns variations in output between producers mainly to the inefficiency
of the producers. Inefficiency is measured against an ideal best-practice frontier. Moreover inefficiency
is generally considered to be due to actions that are under the control of producer. Thus, the view of the
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2 SAASTAMOINEN

Table 1. The Positioning of the Review within the Literature.

Regression Frontier

Heteroscedasticity Harvey (1976) Caudill et al. (1995)
Amemiya (1977) Hadri (1999)

Production risk Just and Pope (1978, 1979) Kumbhakar (1993)
Battese et al. (1997)
Kumbhakar (2002a)

frontier field seems distinctively different to that of the production risk field, which considers exogenous
output shocks. However, varying operating conditions make efficiency measurement challenging as
comparing the efficiency of producers makes sense only if the producers can be assumed to be operating
in a relatively similar environment. Otherwise, it could be the case that some producers are seen as
being more efficient only because they operate in a more favourable environment. This problem has
long been acknowledged within the frontier field and consequently solutions have emerged to account
for production environment. The core idea of more well known solutions has been to assume that
the expected inefficiency or variance of inefficiency is producer- or environment-specific. In terms of
econometric jargon, inefficiency is heteroscedastic in the latter case. The following example illustrates
this point.

Consider producers in regions A and B. In region A, the variability of performance is higher than in
region B. Assume also that the conditions of production environment in region A are more volatile than in
region B. Now consider why the variation of performance might be higher in region A. We can assume that
producers in either region differ in their capabilities to adapt themselves to the changes in their production
environment. Thus, initially significant variation in performance can be present in region B also. But it is
likely that in the long run, the more stable operation conditions lead to similar and predictable responses
in this region. In region A on the other hand, the performance variations can persist simply due to a
more risky environment. In this context, the risks of production manifest themselves as performance or
inefficiency variations. Using again an analogy drawn from finance; both returns and losses are likely to be
higher under high volatility. Evidently the riskiness of environment affects the production performance.
Thus, it is surprising to notice that the concept of production risk is rarely mentioned in the frontier
literature although heteroscedasticity is often discussed. This is despite that the production risk and the
frontier fields share a substantial common ground in empirical applications in agriculture (see surveys by
Battese, 1992; Bravo-Ureta et al., 2007).

Probably due to the profound conceptual differences between the two fields, historically neither field
has been very aware of the other. Thus, a systematic and simultaneous exploration of the two fields would
be warranted to see whether the fields have more in common than what the historical retrospective might
suggests. Unfortunately, to our knowledge no such examination has been conducted. This review aims to
fill this gap. We explore how ideas from both the fields have contributed to a synthesis in knowledge. This
idea of synthesis we base on the concept of heteroscedasticity. Conceptually this review is positioned
as in Table 1. There we have roughly identified four branches of literature. The literature in the upper
left-hand cell refers to the traditional literature on heteroscedasticity in regression analysis. It serves as
reference point for the three other branches that we deal in this review. The synthetic literature, which
seeks to combine ideas from the two fields discussed, is located at the lower right-hand cell.

Our focus is on the empirical literature as the estimation of heteroscedastic econometric models
has been a most fruitful area of convergence between the fields. The review adopts a microminded
approach instead of a meta-analysis. We do not provide a full coverage of the literature in production
risk, frontiers, heteroscedasticity or in agricultural economics – these goals have already been achieved
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elsewhere. Agricultural production is however an integral part of the discussion because of the common
ground of applications. Besides an expositional coverage of the subject, some critical insights regarding
the possible challenges in combining the two fields are presented. This discussion also reaches beyond
the core topic of heteroscedasticity. The synthetic view of the two fields constructed in this review should
benefit the future research in bridging the gap between the fields. The examination in this study proceeds
such that Sections 2 and 3 cover the production risk literature and frontier literature separately. Section 4
examines the studies, which aim to synthesize the ideas from these fields. Section 5 discusses the potential
challenges, such as production dynamics and heterogeneity, of synthesis. Finally Section 6 concludes.

2. A Brief Introduction to Production Risk

Risk is not a new concept in agricultural production economics. However for our purposes, the appropriate
origin of the literature dates back to the 1960s. Then the emphasis was on studying the distributional
characteristics of crop yields by examining the moments of yield distribution. This also provided
information about how input use might affect these moments. In his influential article, Day (1965)
proposed that crop yield distributions ought to be positively skewed instead of being symmetrically
normal. Risky weather conditions should imply less than mean yields as being the most likely. Only under
ideal weather conditions, could extraordinary yields be obtained. For Day, the skewed distribution was a
sign of risk. He also considered how different levels of fertilizer (nitrogen) use would affect the skewness
of a crop yield. Day concluded that generally, a higher level of nitrogen use ‘ . . . places him [farmer] in
a more favorable risk environment’. implying that the risk is reduced by the use of nitrogen. This was
in contrast with Fuller (1965) who found that the variability of yields increased along with nitrogen use
(see also Just and Pope, 1979). Fuller, however, targeted his attention to variance instead of skewness
as a measure of risk (see also Anderson, 1973).4 These early analyses of risk in agriculture were much
grounded on the distributional analysis of crop yields. From the perspective of production economics, the
more production function-minded work of Just and Pope (1978, 1979) is generally considered to be the
starting point of production risk literature in its current form.

Even today, the work of Just and Pope (1978, 1979) is often regarded as one of the hallmark models of
production risk. Just and Pope (1978) criticized the traditional stochastic input–output responses such as
Cobb–Douglas production function, since they impose strict constraints on how inputs affect the observed
output variance, that is, the production risk. All traditional production functions applied held inputs to
have only a risk-increasing effect on the output variance. Instead, Just and Pope suggested formulating
the production function as shown in equation (1):5

y = f (X ) + h(X )ε (1)

The Just–Pope model (JP-model hereafter) in equation (1) combines the deterministic production
function f(.), which is a function of inputs X, with the additive stochastic error term ε with zero mean and
constant variance. However, the term ε is scaled by a risk function h(.). Just and Pope (1978) show that this
formulation does not restrict the sign of the marginal risk effects of inputs on the variance of output. They
also present a consistent and asymptotically efficient maximum likelihood (ML) estimation procedure to
estimate the parameters in functions f(X) and h(X). The follow-up study by Just and Pope (1979) presented
a three-step feasible generalized least squares (FGLS) estimator for obtaining the parameter estimates
of the risk function. This latter estimator has subsequently been the tool mostly applied in empirical
work (see Saha et al., 1997). Both estimation approaches take much from the traditional estimation
of heteroscedastic regression models such as Harvey (1976) and Amemiya (1977) as the JP-model
is in fact a model with heteroscedastic errors due to function h(.). It is also important to note that the
JP-model considers producers operating efficiently. Consequently, it assigns all variation from the optimal
production levels only to exogenous shocks.
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The JP-model framework has been fairly popular in empirical applications (e.g. Traxler et al., 1995;
Kumbhakar and Tveterås 2003). Asche and Tveterås (1999) employ the JP-framework to estimate the risk
effects in the Norwegian salmon farming industry. Departing from the FGLS procedure presented by Just
and Pope, they estimate the production function and the risk function with ordinary least squares (OLS)
in two separate steps, exploiting the fact that production uncertainty can be treated as heteroscedasticity.
The approach by Asche and Tveterås avoids using non-linear least squares needed in FGLS approach
but they lose some of its estimation efficiency. They also discuss the role of heteroscedasticity in risk
considerations. They see heteroscedasticity as a phenomenon with some economic content instead of
purely econometric misspecification problem. This review concurs with this interpretation. Consequently
they propose that typical heteroscedasticity tests can be applied to detect production risk. Of course, these
tests may also pick up misspecification that is not production uncertainty. Another novel application of the
JP-framework by Koundouri and Nauges (2005) augments the JP-model with a Heckman-type selection
model. According to them, the parameters of the risk function can be biased if crop selection is not taken
into account. It is reasonable to expect that risk parameters can be affected by crop selection as selection
is often determined by the same variables (e.g. weather) that constitute the variability in output.

Relatively quickly after its introduction, the JP-model was noted by Antle (1983b) as still rather
restrictive. According to Antle, the JP-model imposed similar restrictions on higher order moments
(above the second moment) than the models criticized by Just and Pope (1978) imposed on the second
moment. Antle showed that the elasticity with respect to input(s) of any higher order moment is directly
proportional to the elasticity of the second moment.6 For Just and Pope, this was not a problem as they
considered only variance as the relevant measure of output risk. Thus, the research line initiated by Antle
revived the discussion seen already between Day and Fuller about the proper measures of risk. Antle also
proposes a flexible moment-based estimation approach where the effects of inputs on each moment are
allowed to differ.

Antle and Goodger (1984) applied Antle’s earlier framework in a milk production application. They
found that after accounting for the third moment, the input use of the risk-averse decision maker may
change when compared to the traditional mean-variance set up. Antle (1983b) and Antle and Goodger
(1984) also contemplated the relevant number of moments. Following Kendall and Stuart (1977), Antle
(1983b) viewed moments up to the fourth moment as being sufficient to describe the yield distribution.
Of course, the number of relevant moments is ultimately an empirical matter. Recently, Antle (2010a)
suggests that partial moments instead of full moments provide a more detailed description of inputs’
effects on moments since inputs are allowed to have different effects on the moments in the different
parts of the output distribution. Further discussion can be found, for example, from Du et al. (2012) who
extend the JP-model to include also skewness.

With a slight digression, we note that we have not yet touched upon the issue of risk preferences
of the producers. For example, Love and Buccola (1991) call for a joint estimation of technology and
risk preferences since technology parameters are inconsistent if these preferences are not accounted
for. Lence (2009) and Just and Just (2011) have, however, pointed out some challenges in estimating
risk preferences from the production data. Preferences are also significant when comparing alternative
technologies. Tveterås (1999) notes that in a deterministic setting, technical efficiency is a sufficient
condition to rank two alternate technologies. But as the setting becomes risky (stochastic), efficiency is
no longer an objective measure, as the ranking of technologies depends on the risk preferences of the
producer. In other words, the ranking of technologies depends on how the producer prefers the expected
output over its variance. Since the review of risk preference literature would practically merit a review
study of its own, we do not diverge further on this topic.7

It seems that production risk literature has been divided between the variance-based and the skewness-
based measurement of risk. The core question is whether the first two moments are an adequate
representation of output distribution and its riskiness.8 Just and Weninger (1999) suggest that crop yields
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can be adequately represented with a normal distribution. Antle (2010b) argues that it is an empirical and
testable question as to whether, for example, any two parameter location-scale distribution is adequate.
He points out that location-scale assumption is at the heart of the JP-model with heteroscedastic errors.
But considering the next section on heteroscedastic frontier models, we view that the relevant comparison
point for these models is the JP-model due to its direct grounding on heteroscedastic regression models.
It is, however, important to be aware of the basic higher order moment-based approaches of estimating
production risk, since skewness of the error term is one of the central issues of the frontier field also (see,
e.g. Kuosmanen and Fosgerau, 2009 and the next section). It is especially interesting that skewness is
given different meanings in these fields; a point that will become evident in our future discussion.

3. Frontier Literature on Heteroscedasticity

We start with a very brief overview of the frontier field for those not familiar of it. The field targets an
estimation of a frontier, which usually defines maximal production. Different from typical production
function estimation, the producers are not assumed to operate efficiently. Inefficiency is then a one-sided
deviation from this frontier. This also suggests a different error structure for estimation than in a typical
production function with random symmetric noise. The general definition of technical efficiency by
Koopmans (1951) states that the firm is technically efficient if any increase in one output would imply
a reduction in at least one other output or increase at least one input, The origins of efficiency measures
are by Debreu (1951) and especially by Farrell (1957), whose definitions of the measures are based on
the radial expansion of outputs or the radial contraction of inputs. The development of current efficiency
estimation methods however dates back to end of 1970s, interestingly coinciding with the development
of the JP-model.

The frontier field has been characterized by two efficiency estimation paradigms. The non-parametric
data envelopment analysis (DEA) concept was originally suggested by Farrell (1957) but popularized by
Charnes et al. (1978). Since, it has been the predominant approach within the operation research and
management science community. DEA has gained its popularity mainly due to its axiomatic approach in
defining the efficient production frontier. This approach relies on a minimal set of regularity conditions
for production technology such as monotonicity, concavity and certain returns-to-scale. Given these
assumptions, the technology is estimated with a mathematical linear programming optimization. The
main limitation of DEA is that it assumes all deviation to the frontier being due to inefficiency. The
inability of DEA to account for statistical noise and measurement errors gave rise to another strand of
frontier estimation with a strong econometric background. Stochastic frontier analysis (SFA) (Aigner
et al., 1977; Meeusen and van den Broeck, 1977) incorporates statistical noise into its estimation
framework. It however imposes a functional form for the production technology. Typically it also requires
assumptions regarding the distribution of inefficiency and noise. Due to the econometric groundings
of SFA, it has achieved a more fruitful treatment of heteroscedasticity. Thus, we limit our interest on
SFA literature and leave an exploration of DEA and other semi- or non-parametric methods under
heteroscedasticity as a topic of further research. Many semi- and non-parametric methods are anyhow
more robust with respect to heteroscedasticity than SFA as they attempt to relax some of the assumptions
of the parametric models (see, e.g. Kumbhakar et al., 2007). These approaches however pay little attention
to model heteroscedasticity as an economic phenomenon.

The original SFA model that Aigner et al. (1977) proposed for the estimation of production function
in the presence of noise and inefficiency is in equation (2):

yi = f (xi ; β) + εi (2)

where εi = vi − ui .
In equation (2), the deterministic part of the production frontier f (xi ; β) specifies the maximum

production given inputs xi for firm i. The parameter vector β represents the parameters of the production
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function. Some parametric functional form (e.g. Cobb–Douglas, translog) is assumed for f(.). The
composed error term, εi represents the overall deviations from the frontier. The term, vi is a typical
two-sided symmetric noise term. Consequently f (xi ; β) + vi forms the stochastic frontier. Aigner et
al. (1977) characterize vi being the result of external events outside the control of a firm such as
luck, weather and topology. Another source for vi is in specification and measurement errors. The
term, ui is the one-sided inefficiency component. For production function, it is always assumed as
positive. The parameters β are typically estimated with ML although OLS-based approaches are also
available. Using ML necessitates some distributional assumptions for the error components. The usual
assumptions are vi ∼ N (0, σ 2

v ) and ui that follows some one-sided distribution such as half-normal,
ui ∼ |N (0, σ 2

u )| or exponential. It is also assumed that ui and vi are independent of each other and of
inputs xi .

One complication in the early stages of SFA literature was that in a cross-sectional case, only industry-
wide average inefficiency could be obtained. Jondrow et al. (1982) derived the point estimator for
firm-specific inefficiency as E(ui |εi ) and this estimator still frequently applied despite being inconsistent
in a cross-sectional case. Since the distribution of inefficiency is one-sided, the composite error εi should
be negatively skewed in the case of a production frontier. Thus, a test on the skewness of ε̂i serves as
a specification test, as to whether the frontier formulation is appropriate in contrast to a neoclassical
production function (Kuosmanen and Fosgerau, 2009).9

It is also reasonable to ask whether distributional assumptions on inefficiency have any major effect
on the SFA estimation. The choice of the distribution for the inefficiency term is relatively arbitrary
as long as the chosen distribution is one-sided. Generally, the choice does not significantly affect the
estimated efficiency scores or their rankings (e.g. Greene, 2008, pp. 180–184). Certain distributional
assumptions however may have some interesting conceptual implications as we later note. Relaxation of
these assumptions is possible by using panel data or generalized method of moments (GMM) estimation
(Schmidt and Sickles, 1984; Kopp and Mullahy, 1990).

Heteroscedasticity is introduced by allowing the variances of the error components to be observation-
specific, that is, σ 2

v,i and/or σ 2
u,i . Within frontier literature, the discussion of heteroscedasticity is necessarily

preceded by a more general discussion of the modelling of exogenous inefficiency effects with so-called z-
variables (see survey in Kumbhakar and Lovell, 2000, Chapter 7). The z-variables are usually considered
to be variables which are not part of the production technology as such but which can still affect the
efficiency of the production process. These variables thus affect the relative location of the frontier but
not the shape of it. These may include variables describing, for example, the operating environment or
producer-specific characteristics. The early and rather intuitive approach to assess the effects of z-variables
was to first obtain a measure of efficiency and then run a regression of the obtained efficiency scores on
z-variables. This approach has since been proven to be unsatisfactory due the complications concerning
the two separate steps of estimation (see, e.g. Schmidt, 2010). Thus, usually the z-variables parametrize
the distribution of inefficiency and the effects of them and the production function are jointly estimated
in a single stage.

Kumbhakar et al. (1991) (KGM hereafter) parametrizes the mean of inefficiency distribution such
that ui ∼ |N (ziγ, σ 2

u )|. The parameter vector γ gives the effects of z-variables on mean inefficiency.
This approach however confounds the effects of z-variables on the expected level of inefficiency and
the variance of inefficiency. Shifting the underlying mean of the untruncated u necessarily shapes the
variance of the truncated u. Extensions of the KGM model are Huang and Liu (1994) and Battese and
Coelli (1995). Huang and Liu’s model (1994) includes the interactions of inputs and z-variables in the
vector z. Thus, the inefficiency effects may vary according the input level. Battese and Coelli (1995)
extend the model to panel data. By parametrizing the expected inefficiency, these models shift the relative
location of the frontier. The location of the frontier can also be shifted by other means. Nothing in our
earlier definition of z-variables prevents them being entered into the model as in equation (3), as suggested
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by Reifschneider and Stevenson (1991):

yi = f (xi ; β) + g(zi; δ) + εi (3)

In equation (3) the z-variables act as direct production function shifters. The practical effects of KGM
(1991) and Reifschneider and Stevenson (1991) specifications are quite similar. As a consequence, it is
difficult to differentiate between these two positioning (see discussion in Fried et al., 2008, pp. 156–157).
Conceptually the interpretations, however, will differ. In the latter case, the production function is shifted
with respect to the observations, whereas in the former case the observations are effectively adjusted by
their environment/characteristics with respect to the frontier.

None of the above studies explicitly model heteroscedasticity with z-variables. Reifschneider and
Stevenson (1991) noted that the standard deviation of inefficiency could be modelled as a non-negative
function of the z-variables but did not implement this approach. With simulation experiments, Caudill and
Ford (1993) and Caudill et al. (1995) (CFG hereafter) showed that unaccounted heteroscedasticity biases
the parameter estimates of frontier function and the obtained efficiencies. To account for heteroscedasticity,
CFG (1995) suggested the parametrization shown in equation (4) for the standard deviation of inefficiency.
In the equation, Z is a vector of variables mainly related to firm size (their definition) and γ is again a
vector of the unknown coefficients to be estimated. The exponential form for parametrization guarantees
that the standard deviation is non-negative:

σui = exp(Ziγ ) (4)

σvi = exp(Wiθ ) (5)

Subsequently, Hadri (1999) proposed an obvious extension to the CFG (1995) model with his doubly
heteroscedastic model, by parametrizing also the standard deviation of the two-side noise component
within the same model. Thus, Hadri’s model encompasses the CFG (1995) model as a special case if the
standard deviation of noise is constant. Notice that parametrizing only the standard deviations or variances
of the distributions does not necessarily offer much more clarity compared to the above models, which
parametrize the mean only. If the underlying variance is parametrized, keeping the pre-truncated mean
constant, then the after truncation mean is again necessarily changed. It also serves to briefly discuss the
variable choice at this point. Hadri viewed the Z-variables in equation (4) to be variables related to firm
management, whereas the W-variables in equation (5), he viewed as size related variables. In the context
of this review, it is however more relevant to ask whether a variable is under or beyond the control of
firm management. It would be tempting to say that Z-variables are more in the control of management
than W-variables as unlike noise, inefficiency should be controllable. However, while noise itself is not
controllable, the effects of it may be, at least considering from a production risk perspective. Thus, is not
directly obvious that all W-variables are uncontrollable as in the spirit of JP-model it could include inputs,
for example.

Concluding this section, the most pressing issue in modelling exogenous efficiency effects is well
characterized by Greene (2008, p. 154) when he asks ‘Where do we put the z’s’? The problem is,
that regardless of the placement of the z-variables their practical effect is often much the same and
thus hard to explicitly identify. For modelling risk, however, the more important issue is whether the
standard deviations given in equations (4) and (5) can be interpreted as production risk or uncertainty. The
discussion in the following section will endeavour to show that indeed they can be given such meaning.

4. Convergence of the Two Fields: The Synthesis

In this section, we examine how the ideas from the production risk and frontier fields have been
synthesized. We begin with a statement from Gallagher (1987): ‘Capacity is defined here as the yield that
would occur with efficient use of the given technology for controllable inputs and ideal weather’. This

Journal of Economic Surveys (2013) Vol. 00, No. 0, pp. 1–20
C© 2013 John Wiley & Sons Ltd



8 SAASTAMOINEN

statement well captures the importance of the operating environment in frontier models. More specifically
it says that the maximum capacity is achieved only under ideal conditions. With capacity Gallagher
referred to a frontier and according to him the deviations from this frontier are due to one-sided random
fluctuations, that is, production risks. Thus, Gallagher does not have any inefficiency considerations in
his study. That is why we do not consider the model by Gallagher as a synthetic approach in the sense
what is meant in this review as it does not discuss inefficiency and production risk together.

Somewhat closer to such synthesis is the work by Antle and Crissman (1990) who derive a measure
of technical efficiency within an expected utility framework. Their efficiency measurement concerns the
differences in efficiency between traditional and modern crop varieties. The relative efficiency between
the producers of these varieties is the ratio between their expected utilities, which again depend upon the
producer surplus. The moments of producer surplus are functions of inputs. Thus, the uncertainty over
output is taken into account in the producer problem by defining the objective as an expected utility of the
producer surplus instead of surplus itself. Since their efficiency comparisons are only pairwise, they do
not estimate any frontiers and thus again their work cannot be considered as synthesis quite in the sense of
this review. Their work, however, raises an important issue of production dynamics and its implications
on efficiency measurement (see Section 5).

Closer to the typical SFA framework, Kumbhakar (1993) stated the need for a joint estimation of
technology, production risk and inefficiency. He views that incorporating risk into to the basic SFA
framework makes SFA model heteroscedastic. Indeed, from equation (6), we see that his model is an
extension of the JP-model. The actual estimation much follows the panel data model of Griffiths and
Anderson (1982). Griffiths and Anderson present a framework for estimating firm-specific effects under
the Just and Pope risk specification without considering these individual effects as inefficiency. Kumbhakar
gives them such an interpretation. Unfortunately, also the main challenges of Kumbhakar’s model relates
to these firm-specific effects. First they are assumed to be fixed over time. It may not be reasonable to
assume this in longer panels. The model nevertheless allows these firm-specific effects on output to vary
along with the input use in Just–Pope fashion, but the underlying inefficiency is fixed. Secondly, as we will
later discuss, the fixed effects component faces problems when we attempt to identify it as inefficiency,
as it easily picks also other heterogeneity that is not related to inefficiency:

ln y = ln f (x ; α) + g(x ; β)[τi + λt + vi t ] (6)

where
τi is the time-invariant firm effect/inefficiency
λt is the time-specific effect,
vi t is the firm- and time-specific random noise and
α, β are the parameters associated with the production and risk functions.

Strictly in SFA context, Battese et al. (1997) (BRW) introduced a cross-sectional stochastic frontier
model with a composed error term and flexible risk properties as shown in equation (7). All terms in
equation (7) are similarly defined as before apart from the non-negative ui which is now distributed as
the truncation of the N (μ, σ 2

u ) distribution. We see that the standard SFA and JP models result as special
cases of the model in equation (7) if we omit the function g(.) or inefficiency correspondingly. In their
application the risk flexible model or the traditional JP-model did not yield noticeably different marginal
products of inputs, compared to the typical SFA model. Moreover, inefficiency effects were tested being
absent in stochastic flexible risk model, suggesting that it does not differ significantly from a typical
JP-model. Finally, the parameter estimates of the risk function did not differ between the JP-model and
the risk flexible SFA specification. The last finding is quite expected as BRW do not identify which error
component is the source of risk since the function g(.) is the same for both v and u:

Yi = f (xi ; α) + g(xi ; β)[vi − ui ] (7)
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The natural extension of the BRW (1997) model was presented by Kumbhakar (2002a). This model
is shown in equation (8). Kumbhakar aims to augment the SFA model with production risk and on the
other hand to account for the possibility of inefficiency in the JP-model. Most importantly, however,
Kumbhakar also includes the estimation of risk preferences in this model. Thus, the model allows
us to elicit information as to how both technical inefficiency and production risk contribute to the input
decisions given the risk preferences. Neither the traditional JP-framework nor the SFA-framework account
for preferences, so preferences are not assumed to affect the input use. In reality a risk-averse producer
could prefer risk-reducing inputs over other inputs.

y = f (x, z) + g(x, z)v − q(x, z)u (8)

Note that, Kumbhakar defines the vector z as quasi-fixed inputs, not as the usual z-variables we
have discussed earlier. It is straightforward to see that the BRW-model results as a special case if
g(x, z) = q(x, z) and the standard JP-form is obtained if no inefficiency is present. Functional form for all
the functions f(.), g(.) and q(.) has to be specified. It is often argued in favour of semi- or non-parametric
frontier models that any pre-determined functional form is hard to justify for the production function.
Just and Weninger (1999) pointed out that functional form misspecification is often a major source of
complication in the estimation of crop yield distributions. Thus, it might be hard to justify any specific
form for the functions g(.) and q(.) also. Kumbhakar and Tsionas (2010) partly relax these parametric
restrictions and consider non-parametric kernel estimation of the production and risk functions. They
however remain within the standard JP-model and do not consider inefficiency to be present. Relaxing
these parametric assumptions further in this context might provide a potential avenue for further research.

Kumbhakar applies his model to data on Norwegian salmon farmers. He finds that for risk-averse
farmers, the output risk impacts more on their input decisions than technical inefficiency. This implies
that the risk-averse producer is more concerned in reducing the output risk at the expense of the efficient
use of inputs. Already Ramaswami (1992) pointed out that the marginal risk premium is negative for
risk averters if and only if the input is risk decreasing. In contrast, a risk-averse producer should be
compensated (positive risk premium) for the use of risk-increasing input. Thus, in sectors where risk
considerations are of concern but where firms are risk neutral, the firms may not have sufficient incentives
to reduce risk. Consider, for example, the regulation of public utilities and their service provision. Often
incentive schemes in regulation emphasize efficiency over quality factors (see, e.g. Giannakis et al.,
2005). Furthermore, the minimization of inefficiency and risk are often contradictory objectives as the
high use of risk-reducing input can appear as technical inefficiency (see Kumbhakar, 2002a). Therefore,
the regulated utilities may be more concerned with being technically efficient, rather than improving the
quality (riskiness) of their services.

The models by Kumbhakar (1993, 2002a) and BRW (1997) are JP-augmentations of the standard SFA
model. Nevertheless, the concept of production uncertainty has been introduced in SFA literature without
any reference to the JP-framework. Instead of the parameters of risk function, Bera and Sharma (1999)
targeted their analysis towards the variability of inefficiency. Following the Jondrow et al. (1982) estimate
of inefficiency E(ui |εi ), they introduce the conditional variance of inefficiency Var(ui |εi ) as a measure
of production uncertainty, where εi is the composed error term from a typical SFA model.

Bera and Sharma show that both E(ui |εi ) and Var(ui |εi ) are monotonically decreasing in εi for
production function. This implies that given a fixed vi, the closer the production is to the frontier, the
less production uncertainty it faces. They also note that the possibility for efficiency improvement is
larger under a high uncertainty. That is, the largest scope for efficiency improvement is where the largest
variability of efficiency occurs. However, we must take some care in interpreting Var(ui |εi ) as a measure
of production uncertainty. If we compare the result of Bera and Sharma to Kumbhakar (2002a), they seem
somewhat contradictory. In Kumbhakar’s approach, the objectives of technical efficiency and production
uncertainty can be in contradiction due to risk aversion. In Bera and Sharma’s approach, these measures
go to the same direction. Bera and Sharma acknowledge that production uncertainty can be due to factors
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other than inefficiency (e.g. environment). There is no need to assume that these factors are less volatile
near the frontier. In fact, the producer may need to be more efficient in order to successfully operate in a
riskier environment. Thus, the most efficient units may face the highest production uncertainty. Finally,
note that, due to conditioning on εi , the noise component is fixed in their approach. Thus, factors in v
cannot be considered to be contributing to production risk. For future research they propose to investigate
the conditional skewness and kurtosis measures (see also Asche and Tveterås, 1999, and the reference
therein).

Wang (2002) also considers the variance of inefficiency as the measure of production uncertainty. For
analytical simplicity, Wang uses the unconditional variance of inefficiency Var(ui ) instead of Var(ui |εi ).
Wang however places more interest on how z-variables affect his measure of production uncertainty.
We have previously discussed some developments of modelling the exogenous efficiency effects in SFA
models. Those models were mainly concerned with parametrizing either the mean or the variance of
inefficiency distribution. Wang (2002) proposes a model where the z-variables affect both the mean
and the variance such that uit ∼ N+(μi t , σ

2
i t ). The detailed parametrizations are shown in equations (9)

and (10).
μi t = zi tδ (9)

σ 2
i t = exp(zi tγ ) (10)

This model seems to be a direct extension of the models by KGM (1991) and CFG (1995). The model
allows the z-variables to have non-monotonic marginal effects on inefficiency within the sample. This
means that the effect of z-variables on E(ui ) and Var(ui ) can differ in magnitude and even in sign with
different values of z-variables. Wang notes that in KGM framework, a certain z-variable is either efficiency
enhancing or efficiency impeding. To illustrate his model, Wang uses farmer’s age as an example. For
younger farmers, ageing affects positively on productivity through gaining more experience. Above a
certain age the effect turns to be negative as older farmers are physically less capable to perform well.
The effects on variance are generally the same. Wang however notes that in his model, the effects on
mean and variance can also differ. Nonetheless, it is not directly observable whether the Wang model
suffers from the same problem of confounding effects as the KGM (1991) model. Moreover, it is not
obvious either from the work of Bera and Sharma or the one by Wang, whether their use of the term
‘production uncertainty’ holds significantly different connotations to what is meant by production risk in
the sense of Just and Pope. But since variations in inefficiency arguably translate to variations in output,
these concepts can be seen to coincide at some level.

In a parallel study to Wang (2002), Wang and Schmidt (2002) propose a model shown in equation
(11) with a so-called scaling property for inefficiency (see also Simar et al., 1994). In equation (11), the
distribution u∗ is independent of z-variables. This so-called base inefficiency is however scaled with a
scaling function h(.) where δ is a parameter vector associated with the z-variables. Following Alvarez
et al. (2006), the scaling property can be interpreted such that the basic distribution of u∗ reflects,
for example, the natural managerial abilities of the manager which are not affected by any contextual
factors:

u(z, δ) = h(z, δ)u∗ (11)

The scaling function, which can be a function of the operating environment, then effectively scales
up or down the mean and the spread of these managerial capabilities. In other words, the extent that the
natural skills of the manager are used effectively depends, for example, on the manager’s schooling and
operating environment. Interestingly, the scaling function could also be interpreted as a risk function.
Since the scaling function determines the scale of the distribution for inefficiency, a larger scale can be
considered as a riskier environment. In the JP-model also the effects of random shocks are in some sense
scaled up or down by the risk function.
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The main contributions for the synthesis between the stochastic frontier models and production risk
models can be considered to be those listed above. However, few other studies warrant a mention. Jaenicke
et al. (2003) compare different SFA models and the JP-model in a cotton cropping system application.
They found that the ordering of different cropping systems with respect to their riskiness was much
affected by the chosen method. However, they do not combine the JP- and SFA-model in the same fashion
that has been done above by BRW (1997), for example. Their final ‘new’ model is in fact a variant of the
Wang (2002) model with the exception that Jaenicke et al. parametrize the variance of noise instead of
the variance of inefficiency. Thus, they interpret the variance of noise to represent production risk. Huang
and Kao (2006) extend the inefficiency/risk estimation to a multi-output setting as according to them any
single output model is unable to identify risk from technical efficiency. They argue that since observable
output is affected by the production risk, these factors become undistinguishable from output inefficiency.
Instead they propose to associate risk to only one of the outputs and regard the other outputs as riskless.
It is uncertain as to what constitutes the rules in determining risky output. In the Huang and Kao (2006)
banking example, their approach may seem plausible, but in agriculture the multi-output farmer is likely
to face risks relating to each of the outputs. Their notion of identification however merits its place.

This section outlines two distinctive approaches to synthesis. The JP-augmentation of SFA models
(Kumbhakar, 1993, 2002a; BRW, 1997) can be considered as the more direct approach, whereas ‘the
variance approach’ (Bera and Sharma, 1999; Wang, 2002; Jaenicke et al., 2003) examines the production
risk indirectly from the variance of inefficiency or noise. The former approach allows us to infer the
effects of input use on production risk with the cost of more complex estimation. The latter approach
could in principle be extended to examine the risk effects of inputs by obtaining a measure of production
risk and regressing that on the inputs. However, this type of approach might yield similar statistical issues
to those known in the two-step approach of z-variable modelling in frontier literature (Schmidt, 2010).
It is often argued that the validity of a two-step approach relies upon z-variables being separable from
the input–output space (see, e.g. Daraio and Simar, 2005). Similarly, it can be argued that risk cannot
be separated from technology estimation, especially if we study inputs’ effects on risk. Thus, it may be
preferable to jointly estimate the technology and risk parameters. This goal is partly achieved with the
JP-augmented SFA-models. However, complications arise, as often such models are unable to adequately
separate between inefficiency, production risk or any other form of heterogeneity.

5. Discussion and Further Extensions

As we have seen, the concept of heteroscedasticity appears to be the linking channel between the
production risk and SFA models. Our treatment so far has largely been expositional. We have tangentially
discussed some of the challenges of a synthetic approach but the implications of these challenges are yet
to be studied in detail. In this section, we deal the challenges of a synthetic approach in a wider context
and extend the discussion also beyond the concept of heteroscedasticity. There are two issues that we
especially examine in this section. First, our previous discussion has not yet identified as to what stage of
production process inefficiency and risk should be considered. But clearly production dynamics affects
our perceptions of inefficiency and risk, as production decisions often are long-term decisions. Secondly,
identification between inefficiency and production risk can be problematic since producer or environment
heterogeneity may perturb our attempts to separate them.

The full exploration of production dynamics falls beyond the scope of this review. Dynamics, however,
has some relatively intuitive implications for risk and inefficiency. So far, a relatively static view of risk
has been presented. Up to this point, we have mainly considered risk to manifest itself in the uncertain
output given the decision on inputs. But of course the riskiness of production may already affect the
input decisions. Already Just (1974) found that past experiences of risk significantly affect the future
decisions of a farmer. Implicitly the later Just and Pope (1978) model also aims to learn something about
this feedback process as it aims to see how risk could be controlled with the input use. Jolly (1983) has
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categorized the risk management of a farm to be compiled from two types of actions, namely, those actions
against risk exposure and those in controlling risk impacts. The producer probably seeks to minimize both
the exposure to risk and the impacts of a realized risk. In practice, the former may be impossible to control
for but the latter seems more controllable through the use of risk-reducing inputs. Regardless of how
controllable exposure and impacts are, the decisions concerning them are anyhow made with incomplete
information. The farmer has only subjective ex ante evaluation regarding risk or uncertainty at hand at the
time of the decision. Therefore, some degree of inefficiency may result from this informational deficiency.
The risk-efficiency hypothesis by Antle (1983a) well summarizes the farmer’s problem: ‘ . . . previously
optimal decisions based on old information become suboptimal with new information. These facts lead
me to hypothesize that risk affects both, productivity (technical efficiency) and optimal resource use
(allocative efficiency) . . . ’. Simply put, previously technically (or allocatively) efficient decisions may
not be efficient when subject to new information. Clearly, efficiency after resolved uncertainty is different
from the efficiency before unresolved uncertainty. The problem for the analyst is that production analysis
is often ex post analysis of the observed behaviour. Pope and Chavas (1994) and Pope and Just (1998)
show that a so called ex post cost function conditioned on the observed output is not compatible with the
expected utility maximization when the output is in fact stochastic. As a consequence, biased parameter
estimates of the cost function are obtained if ex post function is applied instead of ex ante function.

Production dynamics also matter for technology adoption, which inherently is a dynamic process. As
discussed by Antle and Crissman (1990), technology adoption has implications for efficiency measurement
also. Consider that in a certain period, a farmer experiments with new technology to obtain possible future
gains. The farmer may appear relatively more inefficient in this adoption period than in a previous period
as the farmer is yet to fully master the new technology. Is it then correct to interpret this as inefficiency?
Especially if the learning process results in significantly better outcomes in the future, a snapshot view
on efficiency can be severely misleading. Thus, the long-term optimization problem might significantly
differ from the short-term one as noted by Antle and Crissman (1990). Indeed they find that during the
early periods following the introduction of a new technology, the adopters suffered efficiency loss relative
to the users of old technology. This relationship is however reversed due to learning in later periods.
Thus, in the present context we see that technology adoption can imply period-specific heteroscedasticity.
Experimenters have higher variation in their output during experimental periods compared to the non-
experimenters. Ghosh et al. (1994) also examine the role of technical inefficiency and risk attitudes in
the technology adoption process and found that technically more efficient producers were more willing
to adopt the new technology. They view the new technology as risky and as a result, the technically
inefficient risk-averse producers are not willing to adopt the new technology. This is because in principle
they can increase their expected profits with old technology by increasing their efficiency.10 These results
in together may explain why we may observe rather large efficiency variations of a producer between
different periods.

The second complication of the synthetic treatment of risk and inefficiency comes from the identification
between them. Identifying is challenging, as both are deviations from a production frontier. Here, we
consider both deviations to be output reducing. Of course, we could have a positive shock, but in a case
of risk it is maybe more natural to speak of negative shocks. More specifically, the problem is how to
properly decompose the overall residual into these two (or even more) subcomponents. Before that, it is
informative to ask a more general question about how we obtain this residual at first place. The residual
is always a result of unaccounted factors of our model (or misspecification). Thus, the key is how much
conditioning we can and want to do in our model. In practice we are forced to put some limit to our
conditioning. By imposing this limit, something is necessarily left unexplained. From here, it is only a
matter of labelling as to whether we call the remaining residual as inefficiency, production risk or noise.
Abramovitz (1956) famously stated that the residual can be seen ‘as the measure of our ignorance’.
Unfortunately, whether the residuals represent the ignorance of the firm under study or the analyst is
often unclear. We can only hope that the analysts have the competence to include all the relevant factors
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to minimize their ignorance. According to Stigler (1976), observed inefficiency might be a result of the
failure of the model itself. 11 However, even after a correctly specified model it is not certain what does
the obtained residual stand for. As said, this deviation can be manifested as inefficiency, production risk or
noise. Thus, the next step would be to decompose the residual. The problem of decomposing the overall
error to its parts (inefficiency and noise term) is known as the deconvolution problem in frontier literature
(see, e.g. Amsler et al., 2009). The signal (inefficiency) that we are looking to extract is convoluted with
the relatively uninteresting part (noise). Similarly, inefficiency can be convoluted with production risk
(O’Donnell and Griffiths, 2006). Thus, what often is labelled as inefficiency might simply be a realized
output risk. The deconvolution is further complicated as the convolution with production risk in fact
involves three parts: inefficiency, production risk and also noise. O’Donnell and Griffiths (2006) propose
to achieve this type of deconvolution in a Bayesian estimation framework.

If we are interested in both inefficiency and production risk within the standard SFA framework, the
easy way out would be to assume that the noise term is production risk. Nevertheless noise has not
usually been labelled as risk since the motivation to include the noise has been mostly statistical. Of
course placing risk to the noise term raises the problem of how to differentiate risk from measurement
errors and other statistical noise. By no means probably, but following the JP-framework analogy, there is
where the risk component naturally falls. But the way we generally see statistical noise in an econometric
model has an interesting consequence on how we assume risk being distributed if we consider noise
as risk. Since the noise term is usually always assumed to follow a symmetric distribution, we would
consequentially assume that production risk is symmetric. But already in Section 2, we noted that risk
might have a skewed distribution. For example, small- and mediocre-sized risks are often more likely
than high risks, thus leading to a positively skewed risk distribution. This however would complicate
identification, as now both inefficiency and noise would be skewed similarly. Analogously, as Amsler et
al. (2009) point out, nothing in principle rules out ‘nearly normal’ distributions for inefficiency. Again
identification would be practically impossible. It may be because of these challenges that risk has more
often been incorporated to the variance of the inefficiency term in frontier literature and the noise term is
subsequently left without further interest.

Even more general problem is how to untangle inefficiency from producer and environment
heterogeneity. Some authors in the efficiency literature are concerned that the variations in environment
and/or the characteristics of producers are often misinterpreted as observed inefficiency. For example,
O’Donnell et al. (2010) (OCQ hereafter) suggest that efficiency considerations with traditional frontier
models may be misleading due their inability to take into account the uncertain production environment
and the producers’ views about this environment. OCQ suggest that information asymmetry between the
producers can cause productivity differences even without any technical or allocative inefficiency. In other
words, the productivity differences are not due to any inefficient use of resources, as we would normally
understand inefficiency, but only due to differences in perceptions. Obviously the better informed producer
is more capable to adapt himself to the uncertain possibilities of the future. OCQ (2010) illustrate their
point in simulations where the expectations of risk among producers are heterogeneous.12 They assume
that producers are fully rational and optimize their production such that no inefficiency in its traditional
sense is present. This assumption illustrates their main point that even among fully efficient producers,
productivity varies due to the different states of nature. More specifically, they show that the traditional
efficiency estimators, such as SFA and DEA, identify inefficiency being present although all producers
are efficient. Thus, the unaccounted informational asymmetries are portrayed as inefficiency. They also
assume that producers face the same set of possible states of nature. This rarely is the reality but this
assumption highlights that producers differ only in their beliefs of future states, not in their possible states
of nature.

The work by OCQ (2010) recognizes more or less the same message as the study by Greene (2004).
Greene studied the differences in the efficiency of national healthcare systems using a large WHO data
set. He points out that a substantial proportion of the country heterogeneity has been misinterpreted
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as inefficiency in earlier studies on the subject. Greene notes that in typical panel data frontier models
such as Kumbhakar (1993), the time-invariant unit-specific component practically ‘masquerades’ all
heterogeneity as inefficiency. Instead Greene (see also Greene, 2005) suggests more general true fixed
and random effects models, which add a further heterogeneity component to the typical panel data models.
However, the true fixed effects model is often practically infeasible with a large cross-sectional dimension
as the number of estimable parameters increases rapidly.

The above true fixed/random effect models do not consider heterogeneity in production function
parameters. Greene (2005) actually shows that the above true random effects model is a special case
of a more general random parameter model where variation in technology parameters accounts for
heterogeneity (see, e.g. Kalirajan and Obwona, 1994; Tsionas, 2002; Huang, 2004). Often these random
parameter models are formulated within the Bayesian framework with certain prior distributions for the
parameters. Greene also discusses so-called latent class models or alternatively named ‘finite mixture
models’ (see, e.g. Beard et al., 1991; Gropper et al., 1999; Caudill, 2003). These models assume that
producers belong to different groups/classes for which different production functions with different
technology parameters are estimated. Often the probability of class membership parametrized as a function
of some firm-/environment-specific variables. Greene aptly points out that these latent class models can
be seen as discrete versions of the random parameter models above. The main limitation of these models
is that the number of classes has to be known beforehand. On the DEA side, group-specific frontiers are
estimated in frontier separation (Charnes et al., 1981) and meta-frontier approaches (Battese et al., 2004;
O’Donnell et al., 2008). These models however require that we beforehand know to which group each
producer belongs. In the latent class models, the class membership is unknown a priori.

Instead of estimating separate technologies based on some categorization on environment or producer
characteristics, we can consider that production technology differs at different levels of efficiency. It
might be reasonable to expect that technology closer to the frontier differs from technology far from it.
Quantile regression has been utilized for this purpose (Bernini et al., 2004; Liu et al., 2008; for a general
treatment of quantile regression see Koenker and Hallock, 2001). Different quantiles are estimated
such that one of the upper quantiles represents the efficient frontier. The problem is that the choice of
appropriate quantile to represent the frontier is relatively arbitrary. Finally, the approach by Li et al. (2002)
models technology heterogeneity by defining the production function parameters as functions of some
environmental variables. This is yet another placement possibility for the z-variables.

In general, the aim of including technology heterogeneity in a stochastic frontier context can be
summarized by the statement of Tsionas (2002): ‘ . . . free the frontier model from the restrictive assumption
that all firms must share exactly the same technological possibilities’. This would leave us to study the
‘true’ inefficiency that is remaining after accounting for technological differences. Moreover, since
technological differences are arguably mainly due to differences in operating environment, it seems that
the random parameter models could provide information on how technological choices respond to the
changes in environment. However, if the aim is only to allow flexibility in the production function, we
may want to resort to DEA style non-parametric methods, which inherently are very flexible in terms of
the production technology.

The issue of heterogeneity is of course not new. Already Hall and Winsten (1959) considered possible
problems in efficiency estimation when producers operating in different environments were compared.
According to them, difficulties arise since each environment sets a different range of choices for managers.
Interestingly, the current definition of z-variables can be dated back to their paper as they point out the
difference between production and environment variables as: ‘The lines between different classes of
comparisons are drawn by those changes which do not count as changes of technique, but which do
influence output’. They also suggest that some ‘allowances’ should be made according to how difficult
a certain task is to achieve in certain operating environment. This is basically the core reason why z-
variables are used. For example, in comparing the cost efficiency of electricity distribution firms, it is
important to take into account the operating environment. Companies in urban areas have to utilize more
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expensive underground cabling instead of cheaper overhead cabling that can be used in more rural areas.
Direct comparison of cost efficiency could then be unfair if the operating environment is left unaccounted.
For example Kuosmanen (2012) and Kuosmanen et al. (2013) use the proportion of underground cabling
from total cabling as a variable characterizing the operation environment.

The discussion above characterizes the multitude of ways by which we may account for the
heterogeneity of producers or their environment. Many of them reach far beyond the concept of
heteroscedasticity. However, whether heterogeneity is due to producer characteristics or environment
characteristics can be seen only as secondary in importance. The crucial issue is to acknowledge that
some form of heterogeneity is almost always present and neglecting it will be likely to lead to haphazard
results and interpretations. Of course in practice, we need to specify what type of heterogeneity we are
looking for, since from an estimation point of view it seems almost impossible or at least impractical to
include all types of heterogeneity. Thus, it is worth emphasizing that none of the above ways to include
heterogeneity is more correct than any other. The application at hand dictates what type of heterogeneity
we ought to model and how to model it. Considering the modelling of risk, models of heteroscedasticity
seem the most obvious choice.

6. Conclusions

This paper has examined two predominantly separate fields of research. Production risk literature has
attempted to understand the distribution of output and its related risk considerations. Specifically, the field
has contributed much effort to model how output variation could be better controlled through input use.
Frontier literature has concentrated on estimating maximum obtainable outputs and identifying departures
from this output due to inefficiency. At first these aims seem rather distinctive. However, with a systemic
coverage of the relevant literature, this review has built a more coherent picture of the connections between
these fields. The concept of heteroscedasticity has been utilized to bring these two veins of literature on par
with each other. Many of the empirical methods in these fields can be connected via heteroscedasticity.
Estimation methods that attempt to jointly estimate inefficiency and production risk have also been
covered. In many instances, this joint estimation seems necessary as it is likely that neglecting the other
factor might bias our estimation of the other. Unfortunately, conceptually it is difficult to identify between
production risk, inefficiency and general producer heterogeneity. Empirically two alternatives exist. We
can increase model complexity and try to estimate everything at once. Especially adding general producer
heterogeneity and risk preferences may inhibit us from using simple models. Alternatively, we can take
some traditional models and interpret their results in terms of risk and inefficiency. Many heteroscedastic
SFA models covered in this review would fall in this category. Both approaches however aim for synthesis,
either through novelty in estimation or in interpretation.

Although giving exact methodological prescriptions for future research is not the task of this review,
one general suggestion is made. Considering heteroscedasticity, it is necessary to define whether
we consider it only as an econometric problem or a concept with some economic meaning. In the
former case, a correction of it or models robust to it are appropriate ways to proceed. However, if
we aim to model the economic meaning of heteroscedasticity in a production economics context,
we should probably look towards models of risk. On the other hand, if we are examining risk, it
is the models of heteroscedasticity that we should first look towards. Furthermore, the analysis of
risk in a frontier context could be extended with the concepts such as heteroskewness (Antle, 1983b;
Bera and Sharma, 1999) and heterokurtosis since both skewness and kurtosis seem relevant for risk
considerations.

In summary, this review reveals a clear connection between the production risk literature and the
frontier literature. The fact that this connection mainly rests upon a single concept at the moment
is something that we view as a potential for future development. Establishing further connections
through methodological advances beyond the ones presented here is still a research agenda that could
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be extended. Since these issues still seem unsettled, it is sufficient to end this review with the still
relevant question that Anderson (1974) presented: ‘Can proper account of risk be taken in research and
extension’?

Notes

1. The term frontier field is used in this study to refer to a branch of productivity and efficiency literature,
which is interested in estimating production frontiers and deviations from this frontier.

2. Some may differentiate between risk and uncertainty (Knight 1921), but others may not (Chavas
2004). In our discussion we use the terms interchangeably.

3. More generally, production risk can be defined as uncertainty over output or its price. We restrict
ourselves to output uncertainty and do not consider output price uncertainty. See, for example,
Kumbhakar (2002b) references therein for an output price uncertainty case.

4. The difference in these results may also be explained by the fact that Day mainly focused on cotton
crops whereas Fuller investigated corn crop. For example, Pannell (1991) has pointed that the effects
of pesticide use does not always need to be risk reducing if multiple sources of output/income
uncertainty are considered. It is possible that nitrogen use interacts with the multiple sources of risk
differently in the respective cases of cotton and corn.

5. We have mainly presented the formulas as they appear in the original articles and have altered the
notation only when possible confusion may occur.

6. Antle also noted that many other stochastic production models, namely stochastic frontier models with
a two-component error term, impose restrictions such that all elasticities (w.r.t. inputs) of moments
beyond the first moment are directly proportional to the elasticity of the first moment.

7. See, for example, Pannell (1991) and more recently Just and Pope (2003) for a discussion about the
role of risk preferences in explaining risk responses in agriculture.

8. More generally, Hanoch and Levy (1969) notice that the mean-variance criterion is a sufficient
condition for the comparison of efficiency of two risky prospects if both prospects follow a two-
parameter distribution. Efficiency in their terminology refers to the dominance of one certain
distribution over another. However, mean-variance criterion is not a necessary condition for efficiency.
See also Anderson (1974) who considers stochastic dominance concepts in comparing technologies
in an agricultural context.

9. Dominguez-Molina et al. (2003) state the stochastic frontier model in terms of a skew-normal
distribution of the composed error term.

10. Tveterås (1999) found that technical change has contributed positively to the output risk in
the Norwegian salmon farming industry. This is somewhat surprising but from the point of
technology adoption, it is a plausible result as technology adoption might (temporarily) increase
variability. Tveterås shows that the effect on mean production has dominated the variance effect,
thus, implying an improved technical efficiency over all other producers, regardless of risk
preferences.

11. Of course, any model is only an approximation of the production process, as Jolly (1983) points
out: ‘Generally speaking no matter how many stochastic or dynamic bells and whistles are added
to the optimization problem, it will likely remain a stylized and incomplete representation of the
management process’. However, we could argue that, if indeed, such a complete representation of the
management process accounting for every manager and operating environment-specific factor could
be constructed, econometrically no producer would seem inefficient.

12. Inputs and, thus, outputs are state-allocable in their model. The period 0 output is non-stochastic and
the period 1 output is stochastic. The task for a producer is to allocate his production in an optimal
way given the probabilities of the states of nature.
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Electricity distribution is a prime example of local monopoly. In most countries, the costs of electricity distribu-
tion operators are regulated by the government. However, the cost regulation may create adverse incentives to
compromise the quality of service. To avoid this, cost regulation is often amended with quality incentives. This
study applies theory and methods of productivity analysis to model the frontier of service quality. A semi-
nonparametric estimation method is developed, which does not assume any particular functional form for the
quality frontier, but can accommodate stochastic noise and heteroscedasticity. The empirical part of our paper
examines how underground cabling and location affect the interruption costs. As expected, higher proportion
of underground cabling decreases the level of interruption costs. The effects of cabling and location on the
variance of performance are also considered. Especially the location is found to be a significant source of
heteroscedasticity in the interruption costs. Finally, the proposed quality frontier benchmark is compared to
the current practice of Finnish regulation system. The proposed quality frontier is found to provide more mean-
ingful and stable basis for setting quality targets than the average practice benchmarks currently in use.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The last two decades have witnessed a widespread implementation
of incentive regulation in the European electricity distribution sector
(see, e.g., Jamasb and Pollit, 2001; Haney and Pollitt, 2009, 2011). In
this sector the firms are natural monopolies, and their pricing policies
are usually regulated by some government agency. The traditional
cost-of-service or rate-of-return regulation is known to provide insuffi-
cient incentives for distribution system operators (DSOs hereafter) for
cost efficiency. A number of European regulators have introduced
benchmarking approaches such as data envelopment analysis (DEA)
or stochastic frontier analysis (SFA) in order to create incentives for
cost efficient operation (see e.g. Jamasb and Pollit, 2007; Kopsakangas-
Savolainen and Svento, 2008; Bogetoft and Otto, 2011). The emphasis
on cost efficiency has however created adverse incentives for DSOs to
decrease the quality of their services (Joskow, 2008). Recently consider-
able interest has been placed on studying how incentive regulation
affects the quality related investments and the quality of service in
network industries (e.g., Ai et al., 2004; Cambini and Rondi, 2010;
Reichl et al., 2008). Empirical evidence suggests that incentive regula-
tion focusing only on operational costs can reduce the quality of service
unless regulation is amended with some quality incentives also

(Hafner et al., 2010; Ter-martirosyan and Kwoka, 2010). Thus it seems
clear that the regulatory models must be complemented with quality
regulation in order to maintain an acceptable level of supply security
(see e.g. Jamasb and Pollit, 2008).
The quality of service is seen an important objective by the cus-

tomers, industry and the regulator alike. Poor service quality such as
supply interruptions often leads to losses for industry and households
in terms of lost production or the lost utility that customers can obtain
from the energy services (de Nooij et al., 2007). As the task of the gov-
ernment (regulator) is to guarantee stable conditions to operate for
industry and households, the service quality is a concern for the regula-
tor also.1 Consequently it needs to be examined how firms can improve
their quality of service. Investments on network are one of the more
direct ways to affect security of supply as older equipment is replaced
with newer one. The most pronounced investment type on how
firms can affect their quality of service is underground cabling. For
example Fenrick and Getachew (2012) identify underground cabling
as a highly important factor in reducing interruptions. Less emphasis
however has been placed on how underground cabling affects the
variability of interruptions. Since customers (and regulator) can be
viewed to be risk averse, they view not only the small level but also
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1 Customers' valuation of the interruptions of course partly depends from the customer
type. See for example Sullivan et al. (1996) for an early discussion and de Nooij et al.
(2007) for more recent study.
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the low variability of interruptions as a sign of good quality. Given a cer-
tain expected level of interruptions, the scenario with less variability
would be favored bymost customers over a scenario with high fluctua-
tions in the duration and the frequency of interruptions as the former
scenariowould guarantee amore stable planning horizon. Risk aversion
could be argued to be especially high in countries with highly variable
weather conditions, such as Finland. Thus quality regulation should
aim to reduce also the risk of interruptions in order to meet the
customers' expectations of low variability. However, as Fenrick and
Getachew (2012) state, the decision to invest on underground cabling
is not straightforward as these investments incur extra costs compared
to over-headlines. These costs include for example higher installment
costs, costs due to longer repair times, and higher material costs (Hall,
2013). Thus the managers have to weigh the benefits of underground
cabling against its extra costs. If the managers perceive the cost to be
greater than the benefit, the level of quality may not be at the socially
optimal level as managers probably do not consider the consumers'
valuation of supply security when making investment decisions. There
is large body of literature that discusses about the optimal level of qual-
ity in electricity distribution sector (Ajodhia and Hakvoort, 2005;
Jamasb et al., 2012; Sappington, 2005). The variability of quality is how-
ever often neglected from these discussions. This study aims to shed
light on how this variability can be affected by underground cabling
investments. Our results suggest that underground cabling does not
have a significant decreasing effect on the variability of interruption
costs. In fact, the effect may be even risk increasing. From policy per-
spective this implies that firms may need to be given further incentives
to undertake underground cabling investments.
Another issue is the practical implementation of quality regulation.

Setting the target quality level is one important part of the implementa-
tion. In general regulation is challenging as firms usually have an infor-
mational advantage over the regulator about their true costs (see Holt,
2005; Kopsakangas-Savolainen and Svento, 2010; Sappington, 2005).
Similarly to Shleifer's (1985) classic yardstick model of regulation,
already Alexander (1996) discussed using the performance of compara-
ble firms as a way to set the targets. However it may be difficult to find
such comparable firms (Pollitt, 2005). Benchmarking methods are con-
sidered to overcome the problem of asymmetric information and find-
ing an objective comparison point (see e.g. Ajodhia and Hakvoort,
2005). These methods however have not been used in the regulation
of service quality as extensively as in the regulation of costs. For exam-
ple in Finland the quality targets are set by averaging the own previous
performance of the companies. Thus, if a DSO currently operates at a low
quality level, it only needs tomaintain its current lowquality level with-
out any need to improve its performance over time.
In this study we suggest that the best practice benchmarking

methods could be utilized in setting the quality targets. We argue that
the best practice is preferred to the average level, as the latter approach
can create undesired incentives (see Ajodhia and Hakvoort, 2005). The
industry wide performance is also likely to be improved more by
using the best practices. We introduce a best practice method to be
used in setting the quality target and compare it to the current practice
of Finnish regulator. Our results indicate that the targets produced by
the proposed method are more stable for DSOs of similar sizes than
the targets obtained with the current approach of Finnish regulator.
These findings seem to be in line with the DSO hopes of developing
the foreseeability and stability of the regulatory model and improving
the incentives for better performance found by Tahvanainen et al.
(2012) in their survey (see also Kinnunen, 2006).
Methodologically both of the above aims, the examination of under-

ground cabling effects and setting the quality targets, can bemet by uti-
lizing a recently developed StoNED method for frontier estimation
(Johnson and Kuosmanen, 2011; Kuosmanen, 2012; Kuosmanen and
Kortelainen, 2012). This estimation method non-parametrically esti-
mates a frontier of quality performancewhatwe call as a quality frontier.
It also readily incorporates the effects of operational environment of

DSOs into its estimation framework. It is generally well acknowledged
that the operational environment of DSOs should be taken account in
a typical benchmarking process. Network operators are subject to
different weather conditions, geographical conditions, and consumer
densities which affect their costs and service quality (see e.g. Growitsch
et al., 2009, 2012; Simab and Haghifam, 2012; Yu et al., 2009a). In
this work we consider the amount of underground cabling as measuring
these operational conditions (see e.g. Kuosmanen et al., 2013;
Kuosmanen, 2012). DSOs operating in a dense city areas have different
underground cabling levels than DSOs in the rural areas. Thus the qual-
ity frontier presented in this study accounts for these differences in
determining the proper quality targets.2

This paper is organized as follows. Section 2 briefly discusses the
measurement of service quality and describes the theoretical quality
frontier model framework and the empirical estimation method
associated with it. Section 3 summarizes the data. In Section 4 we
examine the effects of underground cabling on the level and the var-
iance of interruption costs. Section 5 moves to examine the practical
implications of using the estimated quality frontier instead of the
current Finnish practice in quality target setting. This section also
briefly describes the overall Finnish regulatory system. Section 6 then
concludes.

2. Quality frontier model

This section introduces the quality frontier model and the necessary
terminology and notation. The purpose of this section is also to address
the questions of why a frontier model of quality is interesting and what
type of information it can provide for the regulators.We also briefly dis-
cuss about the measurement of quality at this junction.

2.1. The measurement of quality

In this study, we use the costs of interruptions as the quality indica-
tor (see e.g. Ajodhia, 2010; Growitsch et al., 2010). In Finland the inter-
ruption costs are calculated by the Finnish Energy Market Authority
(Energiamarkkinavirasto (EMV)). The calculation takes into account
the duration and number of interruptions. Thus in this study we are
only concerned about the continuity of supply aspect of quality. Conse-
quentlywedo not consider for example commercial or technical aspects
of service quality, such as the quality of billing services and voltage var-
iations. The estimates of customers' willingness-to-pay (WTP) to avoid
interruptions or the valuation of lost energy are then used to transform
the technical measures into costs (see e.g. Reichl et al., 2013; McNair
et al., 2011; Growitsch et al., 2010; Yu et al., 2009b; de Nooij et al.,
2007).3 In Finland the customer valuation is based on the survey made
by Silvast et al. (2005). The formula on how interruption costs are calcu-
lated by the Finnish regulator can be found from EMV (Finnish Energy
Market Authority) (2011a) and from Appendix A of this study.
Alternative approach would be just to use technical measures com-

mon in the literature such as frequency and duration of outages, cus-
tomer minutes lost or the loss of energy delivered (see e.g. Fernandes
et al., 2012; Simab and Haghifam, 2012). Such technical measures can

2 In Norway, a large set of environmental and operational condition variables are used
in a traditional regression model to estimate an expected level of interruption cost which
is then used as a reference value (see Langset et al., 2001). Kopsakangas-Savolainen and
Svento (2011) consider load factor variable as a variable describing the operational
environment.
3 Alternative to WTP is willingness-to-accept (WTA), that is, how much customer

should be compensated in order to accept an interruption of a certain size. Generally there
is large disparity between WTP and WTA measures as the latter is often measured to be
much larger than the former. WTA is heavily driven up by the loss aversion of the cus-
tomers (see e.g. Beenstock et al., 1998). WTP on the other can be subject to underestima-
tion (see e.g. Linares and Rey, 2013).
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be directly incorporated for example to a DEAmodel as one of the input
variables (Giannakis et al., 2005; Yu et al., 2009a, 2009b). The likely
problem of such approaches is that the firms may specialize to a certain
type of quality or specialize either on quality or operational costs (see
e.g. Ajodhia, 2006). That is, firms may seem efficient by only focusing
either on cost reductions or quality improvement, but not necessarily
on both. Some recent studies propose to combine multiple quality
dimensions to a single quality indicator using DEA (Ferrier and
Trivitt, 2012 (health sector); Simab and Haghifam, 2012 (electrici-
ty); Façanha and Resende, 2004 (telecommunications)). By forming
a single quality index these studies attempt to take account the
multi-dimensional nature of quality (see e.g. Fumagalli and Lo Schiavo,
2009). Such indices however might hide some specific aspects of
quality and it could be challenging to distinguish from these indices
that in what way quality should be improved. An economic measure
of quality, such as interruption costs used in this study, accounts for
both the technical aspects of and the customer valuation in forming
the measure. In terms of social welfare, the economic approach
makes it more straightforward to analyze whether the quality provi-
sion is at the socially optimal level. Of course, if the interest is to
examine on which specific (technical) aspects of the quality the im-
provements should be targeted, then we should use a disaggregated
analysiswhere each (relevant) quality component is separately included
into themodel. But since our aim here is to estimate the reference level
within the Finnish system, we remain using the interruption costs as
our measure of quality.

2.2. Theoretical quality frontier model

The conceptual framework of the quality frontier model is given
Eq. (1). The total external supply interruption costs are given by the
variable x. We assume that interruption costs depend on the outputs y
and contextual variables z that characterize operational conditions
and practices of distribution networks. For the sake of generality, we
abstract from the definition of the output vector y and the contextual
variables z and leave it for the regulators. Using these notations, the
general model of quality frontier can be represented as

x ¼ Q yð Þ � u zð Þ � v zð Þ ð1Þ

where

x is the interruption cost
Q is the quality frontier function
y is the vector of outputs
z is the vector of contextual variables
u is a random variable representing inefficiency
v is a random variable representing stochastic noise.

The quality frontier function Q is directly analogous to the frontier
cost function: it represents the minimum interruption cost at the
given output level.We assume that the quality frontierQ is amonotonic
increasing and convex function of outputs and that Q exhibits constant
returns to scale (see, e.g., Kuosmanen, 2012, for further discussion of the
axioms in the context of energy regulation). However, we do not im-
pose any particular functional form for the quality frontier. For example
the often used Cobb–Douglas form implies economies of specialization,
which is problematicwhenmodeling joint production. Electricity distri-
bution companies are usually modeled as multi-output producers as
often variables such as number of customers and network length are
considered their outputs alongside the distributed electricity. On the
other hand, usingmore flexible functional forms often violate for exam-
ple monotonicity.
An important point to note in model (1) is that we assume the

random inefficiency term u and the noise term v depend on the contex-
tual variables z. More specifically, we assume that the asymmetric

inefficiency term u has the half-normal distribution that depends on
the contextual variables z according to

u zð Þ � Nþ 0;σu zð Þð Þ; ð2Þ

σu zð Þ ¼ exp z0θ
� �

: ð3Þ

Note that the expected value of inefficiency depends on z according
to

E u zð Þð Þ ¼ μ zð Þ ¼ exp z0θ
� � ffiffiffiffiffiffiffiffi

2=π
p

: ð4Þ

Similarly, we assume that the variance of the noise term depends on
contextual variables

v zð Þ � N 0;σv zð Þð Þ; ð5Þ

σv zð Þ ¼ exp z0γ
� �

: ð6Þ

In the terminology of econometrics, we assume that both the ineffi-
ciency and noise term are heteroscedastic. The stochastic part of the
quality frontier model can be interpreted as doubly heteroscedastic
model introduced by Hadri (1999, 2003) (see also the recent survey of
heteroscedastic SFA models by Alvarez et al., 2006).4 Why should one
care about heteroscedasticity in the present context? There are at least
two good reasons why the regulators and the regulated firms should
care.
Firstly, as already stated in Section 1, the operational conditions and

practices can affect the risk of interruptions, commonly measured by
the variance. For example, the use of underground cables instead of
overhead cables can make the network less vulnerable to storms and
other extremeweather events. Note that customers of electricity distri-
bution networks are typically more risk averse than the firms providing
the service. Risk neutral firms may be willing to tolerate higher risks
than their risk averse customers, leading to a suboptimal investment
to underground cabling if the risk effect is ignored. If the elements of
vector z are controlled by firms, then the quality frontier model can
help the regulators to create better incentives for improving the quality
of service through the z-variables.
Secondly, even if one is only interested in the expected value of in-

terruption cost (e.g., all relevant parties are risk neutral) and even if
some (or all) elements of z are considered uncontrollable, it is important
to take the variance into account from the econometric point of view.
This is because the shape of the quality frontier Q will generally differ
from that of the conditional mean function E(x|y,z) if the inefficiency
is heteroscedastic. Therefore, the usual methods of regression analysis
provide biased estimates if the heteroscedasticity effect is ignored (see
Florens and Simar, 2005, for further discussion).
The following simulated example illustrates the second point. In this

example we assume the true quality frontier as Q(y) = y2. We assume
uniformly distributed y, and a single contextual variable that is uniform-
ly distributed with Cov(z,y) = 0.9. The standard deviation of the half-
normally distributed inefficiency term u is 0.4z and that of the normally
distributed noise term v is 0.2z. We draw a random sample (n= 200),
and add inefficiency andnoise to the quality frontierQ(y). The true fron-
tier Q (the black curve) and the scatter of the simulated data points
are presented in Fig. 1. The OLS estimate of the quadratic function is
presented in the figure by a gray broken curve (the estimated equation
is x= 1.26y2 + 0.35y − 0.23; R2 = 0.93). The figure aptly illustrates

4 The model byWang (2002) parameterizes both the mean and the variance of the in-
efficiency distribution with z-variables. His model accommodates non-monotonic effi-
ciency effects i.e. z-variables can have different effects at the different levels.
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that the shape of theOLS curve differs notably from that of the true qual-
ity frontier Q.

2.3. Semi-nonparametric estimation5

To estimate the quality frontier model (1) in a semi-nonparametric
fashion without making additional assumptions to those stated in the
previous section, we resort to the StoNED approach (Kuosmanen,
2012; Kuosmanen and Kortelainen, 2012). As a starting point, we take
the logarithms of both sides of Eq. (1) and rewrite it as the partially lin-
ear model

lnx ¼ lnQ yð Þ þ z0δþ ε zð Þ; ð7Þ

where z′δ= E(ln u(z)) and the composite error term

ε zð Þ ¼ lnu zð Þ þ lnv zð Þ−z0δ ð8Þ

has zero mean. Therefore, the quality frontier Q and the effects of
z-variables on the expected value of x can be consistently estimated
by the semi-parametric CNLS estimator (Johnson and Kuosmanen,
2011, 2012). Note that the coefficients δ can be interpreted as the
post-truncation effects of the z-variables on the expected inefficiency,
whereas coefficients θ introduced in Eq. (3) represent the pre-
truncation effects. In other words, δ and θ are just alternative param-
eterizations of the same effects.
In stage 1, we solve the following nonlinear programming problem

shown in Eq. (9):

min
ϕ;β;δ;ε

Xn
i¼1

ε2i ð9Þ

s.t.

lnxi ¼ lnϕi þ
X

k
zikδk þ εi ∀i

ϕi ¼ β1iy1i þ β2iy2i þ β3iy3i ∀i

ϕi≥β1hy1i þ β2hy2i þ β3hy3i ∀h; i

βki≥0∀k ¼ 1;2;3;∀i:

In the set of Eq. (9), all the variables are defined as earlier. The
parameter ϕi is the frontier interruption cost for firm i. Note that we

include time dummies into the set of contextual variables. The first
constraint defines the regression equation. The second set of constraints
specifies that the tangent hyperplanes of the frontier are linear. These
constraints do not however restrict the form of the frontier in any
way. The third and the fourth sets of constraints define the cost function
to be convex and monotonically increasing in outputs. The resulting
frontier is piece-wise linear and it is very flexible in terms of technology
as the marginal costs of outputs (βi) are firm specific.
Given the CNLS residuals ε̂i from the problem in Eq. (9), we can apply

the quasi-likelihood approach by Fan et al. (1996) to estimate the dou-
bly heteroscedastic inefficiency model by Hadri (1999). In stage 2, we
solve the quasi-likelihood problem, for which, following Hadri (1999),
the log-likelihood in terms of the CNLS residuals can be written as in
Eq. (10). It is assumed here that inefficiency and noise are distributed
according to Eqs. (2) and (5).

logL β; δ;γð Þ ¼
X

log f i ε̂ið Þð Þ ð10Þ

where

f i ε̂ið Þ ¼ 2=σ ið Þ f � ε̂i=σ ið ÞF � λiε̂i=σ ið Þ

σ i ¼ σvi þ σui
λi ¼ σui=σvi

where f* and F* are the standard normal density and distribution
functions. This problem can be computed with any standard software
packages (for example, Stata), which allows the parameterization of
both standard deviations (variances) separately in a frontier model. In
practice, we can estimate the parameters of the second stage ineffi-
ciency model by regressing the equation

lnxi− ln ϕ̂i ¼ α þ
X

k
zikeδk þ eεi ð11Þ

applying standard computational tools for SFA models. Note that
values ϕ̂i on the left-hand side of Eq. (11) are obtained from the
optimal solution to Eq. (9), and hence the left-hand side of Eq. (11)
is given beforehand. The parametric inefficiency model in the second
stage serves to identify the effects on different variance components,
as it is computationally prohibitive to incorporate the variance
effects in the mathematical programming problem (Eq. (9)). Fur-
thermore the second stage provides us with the typical standard
errors to access the statistical significance of the effects. These are
not readily available in the first nonparametric stage. Notice that if
your interest is only on the significance of the level effects (parame-
terseδk), we could estimate Eq. (11) by OLS and adjusting the standard
errors for possible heteroscedasticity. As a consequence we estimate
the level effects in both ways as this serves as an internal consistency
check of our results. The estimates of eδk parameters from Eq. (11)
should be relatively the same regardless of whether linear regression
or the parametric inefficiency model is applied in the second stage.
They will not be exactly the same as the inefficiency model includes
a further parameterization of the variances.
Lastly, we stress that the estimation framework followed here is not

a typical two-step method that has been heavily criticized in the litera-
ture (see, e.g., Wang and Schmidt, 2002). The critique concerns such
two-stage methods where the z-variables are neglected altogether in
the first stage estimation, creating a possible omitted variable problem.
Note that in our approach the effects of the z-variables on the condition-
al mean of the dependent variable are duly taken into account in the
first stage estimation. Moreover, the benefit of our methods is that we
estimate the effect of operational conditions and the quality frontier at
once. The standard two-stage methods are suitable for estimating the
effects of z-variables. However, some further stages would be required

5 See Kuosmanen et al. (2014) for a detailed treatment of the estimation framework.
They also deal on some ways to model heteroscedasticity within the framework.
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Fig. 1. Illustration of the heteroscedasticity effect. Solid black curve is the true frontier
Q = y2 used in the simulation. The gray broken curve is the OLS estimate. The shapes of
the two curves differ due to heteroscedasticity.
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in order to take these effects into account in estimating the quality tar-
gets via frontier (see e.g. Fried et al., 1999, 2002). Suchmulti-stage pro-
cedure may not be desirable in terms of transparency of the regulation.
Further, the first stage estimator remains unbiased and consistent even
if there is heteroscedasticitywith respect to the z-variables. Therefore, it
is perfectly valid to reduce the heavy computational burden of the first
stage nonparametric estimator by leaving the variance effects to the
second stage regression.

3. Description of the application and data used

The data have been obtained from thewebsite of the Finnish regula-
tor (EMV).6 The data is a balanced panel consisting observations of 86
DSOs over the period 2005–2010, making it total of 516 observations.
We have data on interruption costs, underground cabling and three
outputs, namely energy transmission, network length, and number of
customers. These outputs are commonly considered as the primary cost
drivers for DSOs (see e.g. Korhonen and Syrjänen, 2003; Giannakis
et al., 2005; Thakur et al., 2006). We consider the same outputs to be
the drivers of interruption costs also. In other words we argue that the
scale and scope of operations should dictate the reference level of inter-
ruption costs. The summary statistics of the variables are given in
Table 1.
The energy transmission output is a weighted sum of transmitted

energy at every voltage level. The weights are defined as the average
cost of energy transmission and the transmission at the lower voltage
level gets a higher weight such that the transmission is measured in
GWhof 0.4 kV equivalents. That is, the 0.4 kV transmission gets aweight
of one and higher voltage levels weigh below one. Underground cabling
is the proportion of underground cabling in 1–70 kV network. This var-
iable is used by EMV as a contextual variable to describe the operational
conditions of DSOs. In addition to the variables in Table 1 we have the
geographical location of DSO as an additional z-variable. This has been
approximated with the coordinates of DSOs' head office.7 The informa-
tion is obtained from EMV as DSOs are required to report their contact
details. This proxy is rather rough approximation of the location as
some DSOs operate on very large areas or even on multiple areas
which are geographically separate. Typically operators however have
their offices within the same area that they operate in. For the majority
of companies in our data, this proxy of their location is straightforward
to define. There are two companies which have two (or more) distinc-
tively separate geographical operation areas. For these two companies
the location has designated so that if the undergrounding level of the
company is low, the company has been designated a more rural coordi-
nates and vice versa. Of course, it would be a concern if the data would
include many such companies with operating areas separated by long
distances. In this case, identifying the effect of locationwith coordinates
would be difficult. Below we however will see that our assumptions
about the locations of the abovementioned two companies are rather
unimportant (see footnote 7). Alternatively we could have used some
arbitrary division of the country for example into four regions in terms
of cardinal points. But such division would assign many companies the

same location even though the area might include for example coastal
companies and inland companies.
Table 1 illustrates the structure of electricity distribution industry in

Finland. Few larger companies with significantly larger outputs
cause the output distributions to be heavily skewed to the right
(skewness statistic not shown, but it was positive for all variables).
For example, for 75% of observations energy transmitted is less or
equal to 446.65 GWh. The largest company has transmitted approxi-
mately 7300 GWh per year. The interruption costs vary from minimal
€714 to almost €4.5 million within the period 2005–2010. The yearly
summary statistics in online Appendix A show that 2010 was a stormy
year with high interruption costs.8 Importantly, the high interruption
costs observed in 2010 will inflate the EMV reference values as average
is sensitive to outliers. This leads to more lenient targets. If the year for
which the target is calculated is also stormy, such target would be ade-
quate. But if interruptions revert back to their “normal” level after 2010,
the target would be overstated. Lastly note that our data includes few
industrial networks. They have rather low number of customers and
short network length but relatively large energy transmission.
Since the relationship between interruption costs and underground

cabling is our main target of interest, we illustrate their connection in
our data with Fig. 2. The observed interruption costs for each year
(2005–2010) have been plotted against the underground cabling levels.
As expected, the largest variability in interruption costs is at the low
cabling level. These are the companies with large overhead networks.
There is a slight downward trend in interruptions as the cabling level
increases, implying that the level of interruptions decreases along
with underground cabling. Nevertheless there are relatively large varia-
tions in the observed interruption costs at the higher levels of cabling
also. For example at the level 50% of underground cabling, the log of
interruption costs might vary from 10 to 15 (from €22,000 to almost
€3.3 million in actual monetary terms). We also see some observable
variation at the very high levels of cabling. The major part of the varia-
tion at these high levels is due to observations with 100% cabling.
These six observations belong to one of the abovementioned industrial
network which has 100% cabling proportion.We also conduct a robust-
ness check of our results when we exclude this (and one other) indus-
trial network from the sample (see online Appendix C).9 The analysis
in the next section includes these two firms.

4. Estimated effects of underground cabling

Wefirst study howunderground cabling affects the level of interrup-
tion costs in Table 2. We present the results for two different model
specifications. Model 1 includes the underground cabling and the year
dummies as z-variables. Model 2 includes the coordinates of DSOs'
head office (i.e., latitude, longitude) in addition to the underground
cabling and year dummies. The alternative model specification tests
the robustness of the results and whether there is any other location
specific effects that underground cabling does not identify.
We present the direct estimates of the level effects from the StoNED

model and the estimates of the second stage parametric inefficiency

6 The webpage of EMV is: http://www.emvi.fi/.
7 Coordinates have been obtained from Google Maps based on the city/town that the

company has the head office.

Table 1
Summary statistics of the variables used (period 2005–2010; n = 516).

Variable Mean Std. dev. 1st quartile Median 3rd quartile Min Max

Energy (GWh) 503.33 1021.01 73.99 173.47 446.7 14.54 7297.84
Network (km) 4297.62 10425.78 720.05 1055.00 3431.1 26.30 70096.90
Number of users (1000 s) 37.08 73.62 4.98 12.12 27.61 0.02 441.49
Underground cabling (%) 22.56 27.58 2.70 7.95 38.5 0.01 100.00
Interruption cost (mill. €) 1.46 4.34 0.11 0.30 0.82 0.0007 44.90

8 See also EMV (Finnish Energy Market Authority) (2011b).
9 The network operators that have been removed from the results of online Appendix C

are an operator that provides services only for an airport and onewhich serves only an in-
dustrial park.
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model (Eq. (11)) (see discussion in Section 2). The standard errors in
StoNED results are adjusted for heteroscedasticity sincewe expect inter-
ruption costs to be heteroscedastic with respect to underground cabling.
In the second stage parametric inefficiency model heteroscedasticity is
explicitly taken into account by parameterizing the error component
variances.
Overall the results are rather stable over all specifications. Under-

ground cabling significantly decreases the level of interruption costs in
all models. Except the longitude variable in the StoNED Model 2 the co-
ordinate variables are mainly insignificant in explaining the level of
interruption costs. Underground cabling is already likely to capture
the most characteristics of the operating environment. Moreover, part
of the heterogeneity is modeled through variances of the error compo-
nents in the second stage inefficiency model.
The longitude variable in StoNED,Model 2, has the expected sign. The

Eastern Finland is likely to have higher interruption costs as it has more
forests and overhead cables. Subsequently it ismore likely to observe in-
terruptions by trees falling on cables.10 Notice that when we take the
variance effect into account as in Model 2 of the 2nd stage inefficiency
model, this effect becomes insignificant. The yearly dummies indicate
a technical progress in the industry as their coefficients are negative.
In fact the industry level underground cabling proportion has slightly
increased over the period. Hence it is expected that the interruption
costs have declined. The coefficient for the year 2010 is surprising.
Knowing that 2010 was an exceptional storm year we would expect a
positive sign and probably a highly significant effect. We suspect that
the yearly dummies capturemore the overall trend than any exceptional
events. Partly the exceptional storms of 2010 aremanifested in the coef-
ficient as it is not large compared to the other yearly dummies.We inter-
pret that the insignificance of this coefficient implies that the effect of
improved technology has been insignificant because of the extreme
weather conditions in 2010.
Next we examine the variance effects. For the sake of completeness

and as an internal consistency check we also examine the variance
effects with the linear regression. In that case we are restricted to
study the effects on the estimates of the overall error obtained from
solving problem (9). That is we do not yet separate the effects between

noise and inefficiency variances. To examine the overall effects we in
practice regress the squared estimates of the overall error on the
contextual variables. This is the standard practice in econometrics to
study heteroscedasticity (see e.g. White, 1980; Greene, 2008). The
results of this analysis are presented in Table 3. In Table 4 on the other
hand we explicitly differentiate the variance effects between ineffi-
ciency and noise in the second stage parametric inefficiency model
and examine the parameter estimates of functions (3) and (6). Notice
that the year dummies have been excluded from these models.11 We
stress that the parameter estimates in Tables 3 and 4 are not directly
comparable because of the differences in the variance parameterization.
Table 3 reveals that the variance of interruption costs increases as

the level of underground cabling increases. We would expect lower
variability with higher proportion of underground cabling. But the com-
panieswhich have a high proportion of underground cabling also have a
large customer base and large energy transmission. Thus when these
companies face an interruption, their costs are likely to be much higher
than their usual levels since a great number of customers are affected by
the interruption. Consequently the variance of interruption costs can be
high for these companies aswe only observe small and some high inter-
ruption costs. In addition the higher initial installment costs and the
repair costs of underground cablingmay be translated into interruption
costs. Themaintenance costs of underground cables are generally lower
than the corresponding costs of overhead lines.
In Table 4 the variance of interruption cost has now been

decomposed into two parts. Underground cabling has remarkably
different effects on the variability of inefficiency and noise. Whereas
cabling (insignificantly) decreases the variability of inefficiency, it sig-
nificantly increases the variation in noise. Beforehand there is no reason
to assume any specific sign on the first effect. The negative sign indi-
cates that variation of (in)efficiencies among high underground cabling
companies is smaller. We could argue that the companies using mainly
overhead lines experience higher variations in their daily operations
and consequently they might have higher variations in their efficiency.
The positive effect of underground cabling on noise on the other hand10 Notice that the effect of coordinate variables could be partially driven by our assump-

tions of the locations of two companies with rather high interruption costs. Thus we con-
ducted an OLS analysis, where we regressed interruption costs on underground cabling
and the coordinates. We varied the values of coordinates in terms of different locations
of these companies in order to examine whether this had any major effect on the coeffi-
cients of the coordinate variables. None of the estimates experienced major changes in
sign or significance. Thus we conclude that these location assumptions do not affect the
overall results stated above. The results of these estimations can be obtained from the au-
thors by request.

11 This reduces the number of estimable parameters in maximum likelihood. In fact, in
the StoNED models, if we include year dummies in the models of Table 3, the coefficient
for 2010 dummy was positive and significant. This is expected as 2010 was a storm year
and the variability of interruption costs was expected to be high.
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Fig. 2. Scatterplot, ln(x) vs. underground cabling (x= observed interruption costs).

Table 2
Level effects on the level of interruption costs.

StoNED 2nd stage inefficiency

z-Variable Model 1 Model 2 Model 1 Model 2

U. cabling −0.025⁎⁎⁎ −0.026⁎⁎⁎ −0.019⁎⁎⁎ −0.022⁎⁎⁎
(0.002) (0.002) (0.003) (0.003)

Latitude −0.029 0.040
(0.015) (0.023)

Longitude 0.086⁎⁎⁎ 0.018
(0.015) (0.024)

2006 −0.207⁎⁎ −0.209⁎⁎ −0.159 −0.201
(0.096) (0.094) (0.132) (0.118)

2007 −0.323⁎⁎⁎ −0.324⁎⁎⁎ −0.319⁎⁎⁎ −0.347⁎⁎⁎
(0.102) (0.100) (0.119) (0.112)

2008 −0.260⁎⁎ −0.259⁎⁎ −0.275⁎⁎ −0.310⁎⁎⁎
(0.107) (0.105) (0.115) (0.110)

2009 −0.537⁎⁎⁎ −0.534⁎⁎⁎ −0.591⁎⁎⁎ −0.611⁎⁎⁎
(0.107) (0.104) (0.115) (0.109)

2010 −0.133 −0.137 −0.196 −0.172
(0.121) (0.117) (0.107) (0.103)

Intercept 0.623⁎⁎⁎ 0.416 0.013 −2.557
(0.074) (0.969) (0.117) (1.373)

Standard errors in parenthesis.
⁎⁎⁎ 1% significance.
⁎⁎ 5% significance.
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implies higher variability of interruption costs due to random phenom-
ena such as weather. Therefore the effect of weather on variability
seems to increase along with cabling. For example Growitsch et al.
(2012) found that the higher amount of energy delivered strengthens
the cost increasing effect of poor weather. Recall that the companies
with a higher underground cabling proportion often deliver more ener-
gy than the companies with overhead lines. Comparing Tables 3 and 4
we notice that the effect on noise variability drives the effects on the
overall error since only noise effect is significant in Table 4. This finding
confirms the internal consistency of our estimation framework as the
effect on overall error is positive. The results after removing two indus-
trial networks considered as outliers from the data are given in online
appendix. These results can be briefly summarized here. The level ef-
fectswere very robust and they stayednegative and significant. The var-
iance effects turned to be insignificant. Notably howeverwe did not find
any significant negative effect either. That is, in our data, the effects of
underground cabling on the variance of interruption costs seem to be
either positive or negligible, but not negative as we would expect
beforehand.
From the practical policy perspective the results above show that it

is worthwhile to promote underground cabling to further increase the
security of electricity supply. Clearly the level of interruption costs can
be decreased with investments on better cabling. Nevertheless regula-
tor should also acknowledge that DSOs are likely to resists some of the
demands to invest in underground cabling due to its costliness. More
specifically, if the investments on underground cabling are in some
sense at the saturated level already, the DSOs may consider further
investments not worthwhile as they do not significantly improve their
performance in terms of variability. Indeed our results suggest that
underground cabling does not necessarily decrease the variability of
interruption costs although the level is clearly negatively affected.

5. Finnish regulatory framework and reference value comparison

In this section we compare the reference values/quality targets
obtained from the proposed quality frontier to the target values which
are obtained using the current practice of Finland. We first briefly out-
line the Finnish regulatory framework and its quality incentive compo-
nent. This illustrates the positioning of the quality targets within the
system. The comparison of the target values is conductedwith summary
statistics and graphical illustrations.

5.1. Finnish regulatory model

We keep the description of the regulatory model relatively brief as
detailed description of the system can be found for example from the
document of EMV (Finnish Energy Market Authority) (2011a) and
also from Tahvanainen et al. (2012).

The regulation of Finnish electricity DSOs is based on the rate of
return regulation. In practice EMV determines the allowable returns
for companies. The allowable returns are compared to the actual real-
ized returns of the companies by taking the difference between them.
If excess returns (positive difference) are observed, the DSO is expected
to compensate the excess return by cutting the distribution prices in the
next regulatory period. In contrast, if the actual returns are smaller than
the allowable returns, the DSO has room for price increases. The cost
efficiency and quality incentives adjust the observed return of DSOs.
They are constructed such that it is beneficial for firms to meet (or
pass) the targets set by these incentives. In the quality incentive compo-
nent this means that it is beneficial for the company that the difference
between the target value and the observed interruption cost is positive.
In this way their difference is subtracted from the overall observed
return. This again increases the likelihood that the observed return is
lower than the regulated return. The same mechanism applies to the
cost efficiency incentive. The simplified illustration of the system is
given in Fig. 3.
Few comments areworth noting about the overall regulation frame-

work. First, in the current regulatory period (2012–2015), the efficient
cost frontier in the cost efficiency incentive is estimatedwith the similar
StoNEDmodel that this study proposes to be used also within the qual-
ity incentive. Secondly the interruption costs are divided between the
cost efficiency and quality incentives. Inclusion of interruption costs
into other cost (such as operational costs) is called the social total cost
(SOTEX) approach in the literature (see e.g. Growitsch et al., 2010). It
is aimed to mitigate the specialization problem discussed already in
Section 2.1 as firms cannot neglect the quality considerations in the
cost efficiency incentive component. One might also be concerned
whether the overall cost level should be accounted for in determining
the target interruption cost level. Obviously, in reality interruptions
and their costs are dependent from the operational and capital costs of
the companies. Indeed, it would be technically possible to consider a
multi input multi output model where each cost type is separately
included as an input. Alternatively other cost types could be accounted
for by using the SOTEX approach outlined above. The main reason why
we follow the suggested approach is to keep our approach as close as
possible to the current regulatory model of Finland which includes an
independent quality incentive component, which is our interest here.
Note that the scale and scope of firms' operations are accounted for by
the fact that interruption costs are determined as a function of outputs.
Thus in this respect not accounting for other costs is not crucial for our
approach.
The formula on how EMV currently calculates of the reference value

is shown in Eq. (12). It is an energy transmission weighted average of
past interruption costs. In the current period, the target for certain
years is based on the values of 2005–2010. Notice also that the reference
value as such does not yet represent the actual size of the whole incen-
tive component. Before implementation the overall incentive compo-
nent is subject to some further modifications, such as capping the
maximum size of the penalty. The reference level however indicates
how strict the quality regulation is when different reference levels are
implemented. The higher the reference level is, the greater interruption
costs are allowed.

ICref ;k ¼

X2010
t¼2005

ICt;k �
Wk

Wt

� �
6

; ð12Þ

where

ICref,k is the reference level for year k
ICt,k is the IC for year t in the monetary value of year k
Wk is the transmitted energy in year k
Wt is the transmitted energy in year t.

Table 3
The variance effects; overall error.

z-Variable Model 1 Model 2

U. cabling 0.007⁎⁎⁎ 0.007⁎⁎⁎

(0.002) (0.002)
Latitude 0.018

(0.024)
Longitude 0.053⁎⁎

(0.025)
Intercept 0.401⁎⁎⁎ −2.083

(0.071) (1.521)

Standard errors in parenthesis.
⁎⁎⁎ 1% significance.
⁎⁎ 5% significance.
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5.2. Comparison of quality targets

We start the comparison with summary statistics of the reference
values in Table 5. The estimated reference values from the quality
frontier for two different model specifications are identified as Est. IC
ref (1) / (2). Note that the estimator discussed in Section 2 estimates a
target value for each observation. Therefore in the analysis of this sec-
tion we choose to use the targets for the observations that correspond
to the year 2010. That is, we pick only one reference value for each
firm. As a consequence we have 86 observations from where the sum-
mary statistics below are calculated.
On average the EMVmethod producesmore lenient targets for com-

panies. Like we already suggested in Section 3, some large interruption
costs on 2010 for some companies have inflated EMV reference levels
on average. The EMVmethod is more volatile as the standard deviation
of EMV reference levels is substantially higher than the corresponding
standard deviation of the quality frontier estimates. The estimated
reference levels from Model 1 and Model 2 follow rather similar distri-
butions. In the following analysis we only examine the values from
Model 1 as results stay the same with Model 2.
Next we examine the stability of reference levels over the firms.

Within regulation it can be argued that the reference level for com-
panies of similar size should also be similar. In Fig. 4 we have plotted
the log-transformed EMV reference values and the log-transformed

reference values from the quality frontier. The observations have
been ordered according to log-transformed average transmitted en-
ergy (2005–2010) in increasing order. Clearly the reference levels
from the quality frontier are more stable between companies of similar
size than the EMV reference levels. In log-terms the EMV reference
values may vary from 10 to over 14 in small range of company sizes.
In real monetary terms such differences mean a range of targets from
€22,000 up to €1.2 million.
One can argue that the reference levels of two similar sized compa-

nies should differ as theymight operate in a very different environment.
Or vice versa, the reference level of similar sized companies operating in
a similar environment should be relatively close to each other. In Fig. 5
we compare the reference levels separately at different levels of under-
ground cabling. Thefirms have been grouped into four groups according
to the average underground cabling proportion over 2005–2010 (online
Appendix B describes how the groups have been formed). Once again
the firms have been ordered according to their size in terms of trans-
mitted energy.
Fig. 5 shows a clear difference in the variation of reference levels. The

EMV reference values vary substantially more than the quality frontier
levels even among companies of similar size and underground cabling
level. Notably the quality frontier estimates of the reference levels
for the high underground cabling group are substantially higher. We
would except that these companies should have a rather strict reference

Fig. 3. The Finnish regulatory model.

Table 4
Decomposition of variance effects in the second stage parametric inefficiency model.

Model 1 Model 2

z-Variable θ inefficiency effects γ noise effects θ inefficiency effects γ noise effects

U. cabling −0.031 0.017⁎⁎⁎ −0.046 0.018⁎⁎⁎

(0.025) (0.002) (0.038) (0.003)
Latitude −0.787⁎⁎ 0.133⁎⁎

(0.347) (0.054)
Longitude 0.471⁎⁎⁎ 0.001

(0.163) (0.058)
Intercept −0.427⁎⁎ −1.425⁎⁎⁎ 35.690 −9.738⁎⁎⁎

(0.207) (0.153) (19.097) (2.885)

Standard errors in parenthesis.
⁎⁎⁎ 1% significance.
⁎⁎ 5% significance.
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levels since their usual level of interruptions is low. However since the
typical level of interruptions is low for these companies, the EMV
averaging approach might produce too strict targets for a year with
exceptionally high interruptions. When a company with the high
underground cabling level is actually hit by interruptions, the interrup-
tions generally are large scale and hard to fix. This leads to substantial
interruption costs.12 This result illustrates that the proposed semi-
nonparametric estimation of quality frontier better reflects the large
scale and scope of operations of these companies in its determination
of the target value. Finally, when we did your robustness check of the
results, we found similar pattern of reference values between EMV
values and the quality frontier values. The level of reference values
was affected by the removal of the two industrial networks, but quality
frontier still produced more stable targets than the EMV approach.

6. Conclusions

We have applied insights from productivity analysis to develop a
frontier model of service quality. To estimate the quality frontier from
interruption cost data, we proposed a new semi-nonparametric
method, which does not require any functional form assumptions
for the quality frontier. The method takes into account stochastic
noise and heteroscedasticity effects both in the inefficiency and noise
term. The proposed quality frontier was argued to provide more mean-
ingful and stable basis for setting quality targets and incentives than the
average practice benchmarks currently in use.
The empirical objectives of this study were twofold. Our first empir-

ical aim was to study how the level of underground cabling and opera-
tional conditions affect the level and variance of interruption costs. As
expected, underground cabling significantly explains the level of inter-
ruption costs. Interruption costs decrease with higher underground
cabling levels. The effects on the variance of interruption costs are either
positive or insignificantly different from zero. This implies that under-
ground cabling does not significantly decrease the variability of inter-
ruption costs. This is because of the higher costs associated with the
interruptions in underground networks. Even after robustness check
we do not find a significant negative (risk decreasing) effect of under-
ground cabling to the variability of interruption costs. Thus further
investments in underground cablingmight be perceived as unnecessary
by DSOs after a desired level of interruption costs it attained. We also
find that the variability of inefficiency is related to the geographical
location of DSOs. This suggests that the performance differentials
between DSOs are location specific. From the regulatory perspective
this gives information for the regulator to characterize areas of relatively
similar performance and areas of high variance of performance.
From the practical policy perspective, the variability of interruptions

could play more significant role in the regulatory model in future.
Similarly to the quality incentives based on the level of quality, we
could amend the incentive system so that the low variability companies
are rewarded whereas the high variability companies are penalized.
This would be relevant especially in Finland, where high supply security

requirements in future anyhow bring the overall level of interruptions
down andmore emphasis could be placed on the variability of interrup-
tions as a regulatory channel.
Our second empirical objective was to compare the two alternative

ways to set the quality improvement targets in the context of Finnish
electricity distribution regulation regime. The current Finnish approach
is based on averaging the previous performance of a DSO itself. This can
be problematic for setting long term regulatory goals as poor previous
performance might be translated to inadequate targets. Averaging is
also susceptible of too high variation due to the influence of single
years of high interruptions. Instead we suggest that target quality level
should be set using a best practice benchmarkingmethod.We estimate
a quality frontier that can be interpreted to give theminimum interrup-
tion cost at the given output level. The estimated frontier producesmore
stable quality targets for similar sized companies than the current
approach of Finnish Energy Market Authority. The quality frontier also
explicitly accounts for the operating environment of companies.
For practical regulation in Finland, the use of quality frontier would

make the quality regulation coherent with the cost efficiency regulation
which is based on best practices. More importantly using quality
frontier would make regulation more stable and equal. The overall
best performance is likely to change less over time than the individual
performance of a single company and thus the planning of supply
performance would be easier. Since quality frontier produces similar
targets for similar companies, the regulation can be considered to be
more equal also.
As always, some limitations apply. First, we have used a rather lim-

ited set of contextual variables in our study. We have for example
excluded customer density and weather variables from the study.
Thus, no explicit conclusions about the effects of these factors should
bemade from our study. However, underground cabling and coordinate
variables in practice already characterize these aspects of the operating
environment. Underground cabling is likely to correlate strongly with
population density. We considered only underground cabling variable
as the regulatory model in Finland includes only this variable.

12 Recall however that the effects of such severe conditions have been mitigated in the
regulatory model by capping the maximum size of penalty from quality incentive
component.
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Fig. 4. The EMV reference levels against the quality frontier reference levels.

Table 5
Summary statistics of reference levels (n = 86), mill. €.

Reference value Mean Std. dev. Skewness 1st quartile Median 3rd quartile Min Max

Est. IC ref (1) 1.07 2.12 4.12 0.16 0.38 0.81 0.03 13.60
Est. IC ref (2) 0.97 1.92 4.18 0.15 0.34 0.76 0.03 12.50
EMV IC ref 1.47 4.04 4.86 0.14 0.28 1.01 0.02 25.80
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Second, we model the effects of z-variables as linear functions of
underground cabling and the coordinates. Some nonlinear alterna-
tives and interactions between the variables should be considered
in future research in order to examine whether the effect of under-
ground cabling differ between regions. Here we assume the effect
being the same everywhere.
The present study also provides many fruitful avenues for future

research. In particular, the following four issues are highly relevant
from the Finnish perspective. First, the panel aspect of the available
data could be further utilized. For example, Eskelinen and Kuosmanen
(2013) apply StoNED method in studying the inter-temporal variation
of performance of bank branches. Similar type of an analysis could be
informative in the present context to reveal patterns of interruption
costs over time and how these patterns are related to the investments
on underground cabling. Such information could be helpful for charac-
terizing long term performance targets. Second, it would be interesting
to study the whole incentive mechanism itself in more detail. Here we
studied only how the reference level for quality should be set. As
noted in our description of the Finnish regulatory system, setting the
reference level is only one part of the regulation. How the reference
level is actually implemented as an incentive mechanism in the regula-
tion is another question, which clearly warrants further investigation.
Thirdly, the cost efficiency incentive and the quality incentive are
currently modeled as two independent components of the Finnish
regulatory model. Clearly, cost efficiency and service quality are inti-
mately related, and it might be preferable to model them jointly. A sim-
ple approach is to regulate the total cost that includes the operational
costs, capital costs, and interruption costs. The main challenge in this
approach is to accommodate the costs of fixed inputs and other

nondiscretionary factors that cannot be adjusted by the firm manage-
ment in the short run. It may be preferable to model the costs of fixed
inputs and variable inputs as two separate input factors, imposing the
performance targets to the variable inputs only. This requires a model
of joint production with multiple inputs and multiple outputs. Dealing
with stochastic noise in nonparametric models of joint production
remains a methodological challenge. Fourth, as consequence of the
previous, the comparison of different ways to measure quality and
their consequences on the regulation would warrant a study of its
own. Indeed, it would be important to study if the results of regulation
change remarkably whether quality and other costs are examined sep-
arately as here in this study, jointly within the same model but as sepa-
rate inputs/outputs, or as an aggregate measure such as SOTEX.
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Fig. 5. The reference level comparison according the underground cabling level.
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ICt,k Actual imputed disadvantage caused by electricity supply outages to the DSO's customers in year t in the value of money in year k, euros
KAunexp,t Customer's average annual outage time weighted by annual energies, caused by unexpected outages in the 1–70 kV network in the year t, hours
hE,unexp Price of disadvantage caused by unexpected outages to the customer in the 2005 value of money, euros/kilowatt-hour
KMunexp,t Customer's average annual number of outages weighted by annual energies, caused by unexpected outages in the 1–70 kV network in year t, numbers
hW,unexp Price of disadvantage caused by unexpected outages to the customer in the 2005 value of money, euros/kilowatt
KAplann,t Customer's average annual outage time weighted by annual energies, caused by planned outages in the 1–70 kV network in year t, hours
hE,plann Price of disadvantage caused by planned outages to the customer in the 2005 value of money, euros/kilowatt-hour
KMplann,t Customer's average annual number of outages weighted by annual energies, caused by planned outages in the 1–70 kV network in year t, numbers
hW,plann Price of disadvantage caused by planned outages to the customer in the 2005 value of money, euros/kilowatt
AJKt Customer's average annual outage number weighted by annual energies, caused by time-delayed autoreclosers in the 1–70 kV network in year t, numbers
hAJK Price of disadvantage caused by time-delayed autoreclosers to the customer in the 2005 value of money, euros/kilowatt
PJKt Customer's average annual outage number weighted by annual energies, caused by high-speed autoreclosers in the 1–70 kV network in year t, numbers
hPJK Price of disadvantage caused by high-speed autoreclosers to the customer in the 2005 value of money, euros/kilowatt
Wt The amount of energy transmitted to customers from the DSO's electricity network at voltage levels 0.4 kV and 1–70 kV in year t, kilowatt-hours
Tt number of hours in year t
CPIk − 1 consumer price index in year k − 1
CPI2004 consumer price index in year 2004

Appendix A. The calculation of the observable interruption costs (EMV, Finnish Energy Market Authority, 2011a)

All prices are in prices of 2005 and they are based on the survey by Silvast et al. (2005). Note that the Finnish EMA uses only the interruptions in
middle voltage (1–70 kW) network as the basis for their calculations. Note that the formula accounts both, the unexpected and planned interrup-
tions.Moreover the formula includes both, the duration and number of outages. For duration, the energy based prices are used (subscript E), whereas
the pricing of number of outages is power based (subscriptW). Below the term KA is similar to the well-known SAIDI (System Average Interruption
Duration Index) measure and the term KM to the SAIFI (System Average Interruption Frequency Index) measure. Notice that the report by Silvast
et al. (2005) determined the weight of outage time to be significantly larger than the weight for the number of outages. Thus the interruption
costs reflect more the costs of long outages than costs of multiple (short) outages. This is desirable as companies are not obligated to compensate
very short term interruptions and most of the costs are due to long outages.

ICt;k ¼
KAunexp;t � hE;unexp þ KMunexp;t � hW;unexpþ
KAplann;t � hE;plann þ KMplann;t � hW;plannþ
AJKt � hAJK þ PJKt � hPJK

0@ 1A� Wt

T t

� �
� CPIk−1

CPI2004

� �

Appendix B. Online supplementary material

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.eneco.2014.04.016.
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ONLINE APPENDIX  

Appendix A: Yearly summary statistics for observed interruption costs (in million €)  

Year Mean Std.
Dev. Min Max Total



Appendix B: Formation of the underground cabling groups 

Table B: Summary statistic of average underground cabling proportion by firms.  

Mean Std. 

dev.

Skewness 1st

quartile

Median 3rd

quartile

Min Max



Appendix C: Estimation results excluding 2 industrial networks 

Table C1: Summary statistic of the reference values (n=84), millions of €

Variable Mean Std. 
Dev. Min Max



Figure C: The EMV reference levels against the quality frontier reference levels  

Table C2: Level effects on the level of interruption costs  
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Table C3: Variance effects on the overall error 



Table C4: Decomposed variance effects  

uθ vγ uθ vγ
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