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PART I: Overview of the dissertation






1. Background of the thesis

The traditional economic theory highlights that all firms operate efficiently.'
For example, the most common behavioural assumption imposed on firms,
profit maximization, implies that with given prices, firms produce the highest
possible output from given inputs and that they do this with the lowest
possible cost (Mas-Colell, Whinston, and Green, 1995). In terms of
production function, this means that the production function applies to a firm
when it is producing the maximum possible output from its inputs, which
implies that its productivity is maximized. Thus, if we interpret the
traditional theory very narrowly, all firms observed in the markets are
technically efficient since inefficient firms are ultimately driven out from the
markets. Obviously this is not the case. We do observe inefficiency and large
productivity differences among firms. For example Syverson (2011) points
out that persistent productivity differences are present virtually in all types of
industries.” Syverson examines the determinants of productivity differences
in detail and roughly categorizes them to intra-firm determinants and external
determinants. The latter are related to the market conditions or, more
generally, to the operation environment of firms. The former, on the other
hand, relate to managerial talent, learning and R&D, among others. Over
these factors firms usually have some control. As the following discussion
will make it evident, this thesis is more concerned about the external
influences of operating environment on productivity.

In order to make some practical judgements about the level of
productivity, the amount by which productivity can be improved should be
quantified. Indeed, it would be very hard for firm managers to make
decisions concerning productivity if they were unaware about the

productivity target that they should obtain. Identifying this target effectively

! For the sake of simplicity, we use the term “firm’ to refer to any entity that engages in
production activities. The discussion and the methods applied in this thesis extend
themselves for example to countries and public service providers which do not directly fall
under the typical interpretation of a firm.

* Syverson uses the terms productivity and efficiency interchangeably. However, to be
exact, (technical) efficiency is just one component of productivity (change), which includes
also technical change and scale components, which account for productivity change due to
change in technology and deficit in production, due to suboptimal scale size. But of course,
lower efficiency means lower productivity.

1



means that the firm's operations should be compared to some ideal
technology which describes the optimal way of production.

However, such theoretical ideals hardly exist, except maybe in
engineering, and the technology has to be estimated from the observed data.
Thus what is actually done is a comparison to the best observed practices of
the industry. The conventional approach is to estimate a production or a cost
function via the usual linear regression methods. Unfortunately, these
methods do not explicitly acknowledge the presence of technical inefficiency
as they are constructed upon the traditional economic theory. Firms are still
assumed to succeed in their optimization of production in terms of technical
efficiency. Although conventional empirical models do allow deviations
from optimal production, these models usually downgrade these deviations
simply as a statistical error without much interest to the analyst. That is, the
resulting residual is seen only as an estimation error, and the interest is in the
parameters of production function itself (see the discussion in Kuosmanen &
Fosgerau, 2009). In cases where the residual is considered interesting, it is
then lumped as a single productivity measure without further considerations
of its content (see e.g. Abramowitz, 1956; Syverson, 2011). The interest of
further research has then mainly been to study the factors that explain
variations in this residual and not so much the magnitude of the residual.

Nevertheless, it is problematic if we do not have a very clear idea about
what the residual itself actually contains. Through conventional modelling, it
is practically impossible to identify the size of the residual part attributed to
technical inefficiency and for example to measurement errors or specification
errors of the model. This is fine if the interest indeed lies only in the
production function parameters. But for managerial decisions, it would be
important to explicitly identify the measure of inefficiency out of that
residual. This has led to the development of methods that allow us to
explicitly model this inefficiency.

Since the end of 1970's, the field of productivity and efficiency analysis
has seen a surge of applications of so-called frontier methods, namely
nonparametric data envelopment analysis (DEA) and parametric stochastic
frontier analysis (SFA). Grounded on the path-breaking work of Farrell
(1957), these methods were developed by Charnes et al. (1978; DEA) and
Aigner et al. (1977; SFA) to estimate the efficient (production) technology of
2



firms under the presence of technical inefficiency. This allowed the analyst
to compare the performance of individual firms against technology that is
efficient and to assess the possible magnitude of inefficiency. Over the years,
the application areas of these methods have ranged from the micro level to
the aggregate macro level. In their survey of the literature, Fried et al. (2008)
identified around 50 different areas in which these methods have been
applied. One especially prominent field of applications, a field relevant also
in this thesis, has been the performance of public services such as utilities
(see e.g. Coelli and Lawrence, 2006). For example, many countries use these
methods to incentivize electricity distribution companies to operate cost-
efficiently. Otherwise, these companies are little incentivized to act so, due to
their natural monopoly status (Bogetoft and Otto, 2011, Chapter 10).

Besides a plethora of empirical applications, there has been a lively,
more theoretical debate over the relative merits and downsides of both of
these methods as for a long time many considered DEA and SFA as
competing alternatives to each other. Although the debate may have got
some more neutral tones in recent times, a huge body of work has been
devoted to pinpoint the pros and cons of each method and to develop
extensions of them to account for their defects (see a summary of these
extensions in Fried et al.,, 2008). Although both methods have greatly
evolved from their original forms, no clear winner of this methodological
race has emerged. If anything, the comprehensive Monte Carlo simulation
comparisons of the methods conducted over the years only identify different
circumstances in which each method works (see e.g. Gong and Sickles, 1992;
Banker et al., 1993; Andor and Hesse, 2013).

One major area of extensions for all frontier methods has been that of
accounting for heterogeneity of operating environment of the firms. For
example, in it is basic form DEA does not make any explicit mention of the
operating environment. Instead, as Dyson et al. (2001) point out, there is an
“unwritten” assumption in basic DEA that the firms should be operating in a
relatively similar environment. Neither does basic SFA explicitly model the
operating environment. Intuitively it is clear that comparison between any
firms is meaningful only if they operate in a relatively similar environment.
Otherwise, some firms may seem inefficient only because of their worse

environment, not because there is some actual inefficiency present. This
3



concern is not new, and already about twenty years before the introduction of
DEA and SFA, Hall and Winsten (1959) saw efficiency comparisons
between firms operating in different environments as questionable.

Consequently, a number of solutions for accounting for the production
environment heterogeneity have appeared in both DEA and SFA literature
(see e.g. Coelli et al, 2005; Fried et al.,, 2008; section 3.6 of this
introduction). One area of heterogeneity, namely riskiness or uncertainty of
production environment, has not however received major attention in the
frontier literature. The study of production risk, that is, the variance of output
due to exogenous shocks, however has a long tradition in agricultural
economics (Just & Pope, 1978; see also Moschini & Hennesy, 2001). The
basic premise is, of course, that the higher variance implies riskier production
environment. > Since production environment arguably affects output, we
expect that the variation in environment has implications also for the
efficiency measurement. For example, consider two farms identical in all
other respects besides the weather conditions in their area. Thus we assume
also that the two farmers concerned are equally efficient in turning their
inputs to output(s). If farmer 1 faces more variable weather conditions, then
arguably the variation in weather also affects the variation of output. As a
consequence, direct efficiency measurement not acknowledging the
difference in the riskiness of the operating environment confounds the
shortfall in farmers’ output due to weather as inefficiency.

From the previous simple example we see that examining performance
without considering the variability or riskiness of that performance may
mislead our analysis. Furthermore, it clearly demonstrates the importance of
exogenous factors in operating environment that are mostly out of firms’
control. Thus it is also important to study how these factors contribute to
performance. Regarding risk, studying the variation of performance directly
gives us information about the riskiness of the environment that the firm
operates in. Moreover, such an analysis would give us information on how

the performance variability can be controlled with the input use, for example.

? The traditional modelling of risk or uncertainty in production is based on typical
production function with a stochastic error (see e.g. section 3.6 below). A more recent line
of research, the so-called state contingent approach, attempts to model production
uncertainty through different uncertain states of nature, which imply state-specific
production (see e.g. Quiggin and Chambers, 2006 and the references therein).

4



Clearly, such information would be valuable for any risk-averse agent, who
prefers a modest return - low risk scenario over a high return - high risk
scenario, as they obviously would like to control the risk they face. In the
next section we discuss in more detail how this thesis approaches the

problem of risk in productivity and efficiency analysis.






2. Objectives of the thesis

Given the above background, the objectives of the thesis are broadly twofold.
The first objective is methodological. It seems obvious that the chosen
method should try to account for operating environment and also avoid some
of the shortcomings of the so-called traditional methods. Thus this thesis
systematically applies a relatively new stochastic semi-nonparametric
envelopment of data (StoNED) framework developed by Kuosmanen and
Kortelainen (2012). To study the effects of operating environment, we apply
the notable extension of the framework by Johnson and Kuosmanen (2011).
Since risk is inherently a stochastic phenomenon, the StoNED method seems
suitable to study risk. As its name suggest, StoNED includes a stochastic
element in its modelling framework. In this thesis, the method is applied to a
wide variety of applications, ranging from aggregate productivity to energy
markets. This shows the wide applicability of the chosen method, and it
demonstrates the fact that heterogeneity is a concern at different levels of
aggregation, be it on the level of industry or economy as a whole. The
original contributions within the thesis will give a complete overview of this
framework and its extensions. The use of the StoNED method and the
traditional methods is also compared in the context of Finnish regulation of
electricity distribution.

The second objective is naturally to examine the role of risk in
productivity and efficiency analysis. Since risk or uncertainty is defined in
terms of variance in this study, we utilize typical econometric tools and
concepts related to heteroscedasticity to examine the issue. Very roughly,
heteroscedasticity means that the variance of a certain random variable is a
function of some other variables. In other words, instead of having the same
variability throughout its distribution, the variance of a random variable
changes due to changes in some other variables. For example, we often
observe that the variance of growth rates is smaller among large firms than
among smaller firms (see e.g. Hall, 1986; Dunne & Hughes, 1994). This
might be because smaller firms are often younger and are yet to be so
stabilized in their operations. In the context of this thesis, we naturally are

interested to model the performance variation as a function of variables
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which describe the operating environment of the firms. Note that in this
thesis we consider production risk that is due to the variation in performance
as a manifestation of risk. Obviously, uncertainty can manifest itself in
production also in other ways, for example as price uncertainties in input or
output prices or risks related to investments.

This thesis argues that the concept of heteroscedasticity is not yet fully
understood in productivity and efficiency analysis utilizing frontier models
(Saastamoinen, 2013). As discussed above, the thesis views
heteroscedasticity in terms of risk. Thus we see it as an issue with economic
meaning besides being purely an econometric problem. The original
contributions of the thesis study this issue from different angles. More
specifically, the connections between heteroscedasticity, inefficiency and risk
are first studied on a conceptual level. A rather superficial gap in the
literature between these topics is identified, the three concepts being closely
related. The empirical applications study the heteroscedasticity issue in two
different contexts. First, the connection between aggregate macro-level
productivity and institutions is studied from the viewpoint of
heteroscedasticity. This study suggests that the confounding relationship
between corruption and aggregate productivity can be explained by the so-
called macro risk effect, that we examine through heteroscedasticity. Second,
heteroscedasticity is studied in the context of electricity distribution in
Finland. Especially we examine how investments in underground cabling
within the electricity distribution industry in Finland affect the riskiness of
operations in terms of interruption costs. This is interesting from the policy
perspective because both, the low general level of interruptions and their
small variability can be viewed as measures of good service quality.

Before we discuss the research articles in more detail, it is necessary to
define the basic concepts that are needed to understand the overall context of
the thesis. Especially we need to understand the concepts of production
technology and heteroscedasticity and familiarize ourselves with the methods

to estimate the production technology.



3. Production technology

As much of the thesis concentrates on the empirical estimation of best
practices in terms of production (output) or costs, it is critical to understand
what these empirical methods estimate. For that we need to lay down the
theoretical foundations of production. That is, we need to define the
production possibilities of the firm and how the estimated production and
cost functions relate to these possibilities. As more detailed presentations of
the material of this section can be found from multiple books, the section is
kept relatively brief (see e.g. Fried et al., 2008; Hackman, 2008; Coelli et
al., 2005; Kumbhakar and Lovell, 2000; Fare and Primont, 1995). The
notation in this section generally follows those presented in Fried et al.
(2008) and Kumbhakar and Lovell (2000).

Since this thesis deals with both production and cost functions, it is
important to note that the same technology which is characterized through
the technical possibilities of production can also be identified through the
cost minimization problem of the firm. This is known as the duality in
economics (Diewert, 1974). Sometimes the other characterization is more
suitable to model the objectives of the firm than the other. Indeed, the dual
characterization allows us to model a richer set of the firms' economic
objectives, not just the primal technical possibilities characterized by inputs
and the corresponding outputs. For example, regulated (e.g. electricity
distribution firms) companies often take their outputs as given and thus
cannot be assumed to maximize production. However, it is reasonable to
assume that they aim to produce their outputs with minimum costs. Thus the
appropriate  behavioural assumption for such companies is cost
minimization as they cannot affect their revenue/profit through output

adjustment (see e.g. Fare and Primont, 1995).

3.1 Firms' production possibilities
In its widest sense, we can define technology as a process where inputs x are
transformed to outputs y (see e.g. Hackman, 2008). However, it is more

informative to speak of production possibility set (PPS) when referring to



technology as this terminology explicitly defines technology as the technical
possibilities of the firm. In other words, PPS consists of all combinations of
inputs x that can produce outputs y. For the moment, we are speaking of
multiple input, multiple output characterizations of technology and thus we
refer to outputs and inputs as vectors y and x. However, when we later move
from the set theoretic representation of technology to the production
function representation, we consider output y as a scalar, which can be an
aggregation of many outputs. It is nevertheless convenient to characterize
the technology first explicitly for multiple outputs, a single output case
being just a special case of it.

More formally, consider that we have m number of inputs and s
number of outputs, which all are assumed to obtain values from the non-
negative segment of the real axis. The production possibility set (PPS) can

be defined as
T ={(x,y) € R"™ | x can produce y} (D)

The definition in Equation (1) includes al// possible input-output
combinations, not only those that are observed in empirical data. Although
obvious, it is often stated explicitly as an elementary assumption on the
technology that all observed input-output combinations belong to the above
theoretical technology. However, there are no further assumptions on this
technology as yet. Nevertheless, in order to guarantee that the technology is
well-behaved, we impose the following axioms listed below on the

technology (see e.g. Kumbhakar and Lovell, 2000).

Al: (x,0)eTand (0,y)eT.

A2: Tis a closed set.

A3: For each input x € R”, T is bounded.

A4:If (x,y) e T then (ax,y)e T for some a 21.
AS5:If (x,y) e T then (x,ay) e T forsome 0<a<l1.
[A6: If (x,y) e T then (X,§) e T V(-X,¥) < (-x,y)]

[A7: T is a convex set.]

The assumption Al implies that inactivity is possible and that output(s)

cannot be produced without any inputs. A2 guarantees that the production
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possibility set includes the technically efficient input-output combinations.
In other words, the set contains its boundary since it is closed. Assumption
A3 states that producing an infinite amount of output from some given
amount of (finite) input is not possible. A2 and A3 together imply that the
maximum amount of output that can be produced from given inputs lies on
the boundary of the set. A4 and AS impose weak disposability on inputs and
outputs. In practice, these two assumptions allow that more inputs can used
to produce the same amount of output or that less output can be produced
with the same amount of inputs. The adjustment of inputs and outputs is in
proportion to the factor « for all inputs or outputs when weak disposability
is assumed. Assuming a more general form of adjustment, which might
concern only a subset of inputs and outputs, strong (free) disposability
should be assumed instead (Assumption A6).* In A6 we have assumed free
disposability on both inputs and outputs. We can also assume that inputs and
outputs have disposability properties that are different from each other. For
efficiency measurement, disposability is essential as inefficient activities are
allowed to exist by assuming disposability. Assumption A7 imposes the
production possibility set to be a convex set. Assuming convex PPS is not
mandatory as non-convex technologies can be assumed, but it is required to
establish duality results as shall be discussed in Section 3.5. Convexity is
also a critical assumption for many estimators which rely on convexity to
estimate the technology.

In addition to the above assumptions, the technology is assumed to
exhibit certain returns-to-scale properties. The most generic assumption is
that the technology has variable returns to scale (VRS), which allows either
decreasing, constant or increasing returns to scale to be present at different
parts of the technology. None of the returns-to-scale assumptions need to be
taken as given, as they can be tested empirically (see e.g. Banker and

Natarajan, 2011). Below we start from the constant returns-to-scale (CRS)

* Note that free disposability implies the technology is monotonic in terms of both inputs
and outputs. In other words, it means that when inputs for example increase, outputs should
stay the same or increase. There are cases where for example inputs cannot be freely
disposed. Weak disposability allows that increments in inputs may lead to a decrease in
output, which is often labelled as input congestion (see e.g. Redseth, 2013). Another
situation where weak disposability is a reasonable assumption is in modelling bad outputs
(e.g. pollution), as a bad output might not be freely disposed to keep the good output as
fixed (Fére et al., 1989).
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assumption and then present the assumptions of decreasing and increasing
returns-to-scales in relation to that.

AS8: Constant returns to scale: For all 4 >0, it holds that T = AT .
The assumption A8 means that if we scale the inputs up or down by any
positive factorl, then outputs are scaled by the same factor. With this
notation, increasing returns to scale means that when scaling inputs upwards

with some scaling factor A_>1 the increase in outputs is more than
proportional, that is ﬂy > A, . Decreasing returns to scale naturally means

the exact opposite, that is /1", <A, forall /1},,1)( >1.

Alternatively, the technology can also be represented by means of input
and output sets, as shown below. Input set and output set are two equivalent
ways of representing technology, and in the next section they allow us
conveniently define efficiency either in terms of output expansion or input

contradiction through distance functions.

Output set: The output set P(x)={y:(x,y) e T}describes all possible

output vectors that can be produced with a given input vector
using technology T.
Input set: The input set L(y)={x:(x,y) e T'}describes all possible input

vectors that can produce a given output vector using technology

T.

Since these sets are defined in terms of the original set 7 given in Equation

(1), the sets P(x)and L(y) inherit its corresponding properties. Thus we do
not reproduce here the listing of the properties of P(x)and L(y)anymore
(see e.g. Coelli et al.,, 2005). Given the sets P(x)and L(y), we could

explicitly define also output and input isoquants and input/output efficient

subsets of P(x)and L(y) (see e.g. Fried et al., 2008). We shall omit their

exact definitions, as for our purposes it suffices to define distance functions

and efficiency directly in terms of P(x)and L(y) only.
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3.2 Distance functions

Following the definition by Koopmans (1951), improving the efficiency of
production in practice means two alternative adjustments to the production
process. Either you expand the level of output(s) towards the maximum
output(s) that can be obtained using a given set of inputs or you contradict
the amount of input(s) towards the minimum level of input(s) required to
produce the given level of output(s). As we see below, distance functions
characterize technology in terms of these adjustments. This implies that the
Debreu-Farrell (Debreu, 1951; Farrell, 1957) measure of technical
efficiency, which seeks maximal radial expansion/reduction in
outputs/inputs, can be directly defined in terms of distance functions.’

Shepard (1953) defines the input distance function as follows:®

D,(x,y)=max{A:(x/ 1) e L(y)} 2)

In other words, the distance function in Equation (2) seeks the maximum
contradiction in inputs so that those inputs still can produce the given output
level y. The output distance function defined by Shepard (1970), as given in
Equation (3), on the other hand seeks the largest expansion in outputs so that

those outputs can still be produced with the given inputs:’

D,(x,y)=min{Ad:(y/A) e P(x)} 3)

Given the above definitions of distance functions, we see that, if either of
the distance functions obtains the value of one, the adjustments of inputs or
outputs are not possible. That can be regarded as efficient in the sense that
no more output can be produced with given inputs or no inputs can be
reduced in order to produce a given output level. It also directly follows, by

construction, thatD,(x,y) =1 and D,(x,y)<1. That is, the input amount

* The definition of Koopmans and the Debreu-Farrell measure do not fully coincide.
Koopmans's definition implies also non-radial adjustments. This is known as a slack-
problem in the Debreu-Farrell measure. Technical efficiency in Koopmans's sense is a
stricter requirement than in Debreu-Farrell's sense. For our discussion. this distinction is
however immaterial.

¢ See Fire and Primont (1995) for a detailed presentation of distance functions.

7 In fact, the exact definitions use infimum and supremum instead of minimum and
maximum (see e.g. Fare and Primont, 1995). For simplicity, many authors however use the
more intuitive minimum and maximum definitions.
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can only be reduced towards the minimum required input level and the
output amount can only be expanded towards the maximum possible output.
Notice that the distance functions inherit the corresponding properties of
input and output sets, which obtained their properties from technology 7.
Now that we have defined the distance functions, we can formally
define the Debreu-Farrell measures of input and output technical

efficiencies (7FE) as follows:

Input (technical) efficiency:

TE,(x,y)=min{f:0x e L(y)} =1/ D,(x,y)

=TE,(x,y)<1 @
Output (technical) efﬁciency:8
TE,(x,y) =[max{g: gy € P(x)}]" =[D,(x,y)]" 5)

=TE,(x,y)=>1

We can see that the measurement of efficiency is intrinsically related to
distance functions. This definition of technology allows us to make explicit
statements about the efficiency of each firm since distance functions measure
the distance of observed production to the optimal technology. In practice,
we must estimate the technology (distance functions) from empirical data.
Before we discuss some estimators that can be utilized in estimation, we will
define technology in terms of characterizations that are more familiar to most

economists, namely in terms of production and cost functions.

3.3 Production function

In the previous section, distance functions allowed us to easily characterize
multi-output multi-input technology. If we can assume that the firms are
producing a scalar output, either one output or some aggregate of many
outputs, then technology can also be defined in terms of production

function. It is soon clear that everything said about distance functions also

8 Here it is assumed that the efficiency is measured as the ratio of optimal to the observed.
Some authors define TE,(X,y) = max{¢: ¢x € P(x)} = D,(x,y) so thatalso TE,(x,y)<1.
But the definitions in (4) and (5) more naturally correspond to reduction/expansion of
inputs/outputs.
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applies to the production function, since production function is a special
case of the above distance function characterization.

The standard definition of production function defines it as the maximal
output that can be produced from given inputs (see e.g. Varian, 1992). More

formally we define production function as given in Equation (6).
J(x)=max{y:(x,y)eT} (6)

Note that only inputs are now denoted by a vector since only one output is
produced. Clearly, we can immediately see that the production function
defines a boundary of the technology defined in Equation (1). Of course, we
have assumed that 7" is known and the production function can be defined as
the boundary of 7. Equally we could start from a known production function
and define technology in terms of the known function as shown in Equation
(7). This latter definition is in fact more relevant for the present purposes, as
it is our aim to estimate the production function and thus recover technology
through that function. Fére and Primont (1995) state that under rather mild
conditions these two approaches characterize the same technology, that is
T=T".
T'={(x,y): f(x)2 y} (7

Given the above definition of production function, we can directly define the
output distance function and output technical efficiency in terms of
production function as given in Equations (8) and (9). As a consequence, we

can also define the production function in terms of a distance function.

Dy(x,y)=y/ f(x)<1

®)
= f(x)=y/Dy(x,y)

TE,(x,y) =[Dy(x, )] = f(x)/ y 21 (€)

The equations above show the direct relation between distance functions
and the production function. Again, as with distance functions, in practice
we should estimate the production function from observable data in order to

recover technology and assess technical efficiency.
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3.4 Cost function and the duality relationship

The previous sections defined technology purely in terms of physical
quantities of inputs and outputs. No assumptions about the economic
behaviour of firms were made. It was only assumed that they utilize their
resources as efficiently as possible. Often the success or a failure of a firm
1S, however, measured in economic terms. Thus it would be desirable to
impose some economic behavioural assumption, such as cost minimization
or revenue or profit maximization, on the firms. This way we could measure
the performance of the firms with respect to these economic criteria. To
achieve this, we need to identify the economic benchmarks; in other words,
we need to estimate cost, revenue and profit functions. This again implies
that we are trying to recover the technology of firms by using economic data
besides the physical quantities of inputs and output. Besides production
functions, we focus on cost functions, as both are dealt with in this thesis.
But with appropriate modifications the issues of the thesis would extend to
revenue and profit functions.

One concern that arises is whether the technology we identify when
utilizing economic objectives differs from that where we use only physical
quantities of inputs and outputs. If so, it would be difficult to say which
technology is the correct one. Luckily, as already briefly stated, the duality
theorem provides the means to connect the physical characterization of a
technology to its economic characterization. It shows that the technology
identified in either way is essentially the same as the physical production
possibilities necessarily precede the economic possibilities of a firm. But
before establishing duality results, we need to formally define a cost
function.

With a cost function we are not restricted to examine a single output
case as costs of producing multiple outputs can simply be aggregated into a
single monetary value. The definitions below, of course, apply in single
output case if we replace the distance functions with corresponding

production function definitions. Formally, cost function can be defined as in
Equation (10). The cost function is a function of input prices W € ERK and
outputsy.

c(y,w):rlljn{w'x:xeL(y)} (10)
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In other words, the cost function defines the minimum cost of producing a
given level of output(s) with given input prices. Thus the choice for the firm
is to choose the cost-minimizing input levels. Note that the definition of the

cost function includes the conditioning x € L(y). This gives us a clue about

the duality relationship as the cost minimizing inputs naturally need to
belong to the input requirement set. This implies that cost minimizing inputs
have to belong to the same technology that we defined in section 3.1.
Obviously, the cost minimizing inputs should be able to produce the
outputs. As before, the input requirement set can be replaced with an input
distance function, as in Equation (11). Thus we have defined the cost
function in terms of the physical characterization of the technology.
Conversely, because of duality, the input distance function can also be

defined in terms of the cost function, as in Equation (12).9

c(y,w)=min{w'x: D,(x,y) > 1} (11)
D,(x,y) =min{w'x:c(y,w) =1} (12)

Now it would be also straightforward to define the cost efficiency measure as
a ratio of minimum costs to observed cost, as given in Equation (13). By

construction, CE(x,y,w) <1.

CE(x,y,w)=c(y,w)/w'x (13)

Equations (11) and (12) show the duality relationship between the cost
representation and the technically-based representation of technology
through distance function.'” Nevertheless, establishing the duality
relationship critically depends from the axioms that we impose on the
technology. Before discussing the role of axioms in establishing duality, it is,
however, helpful to give also an intuitive explanation of duality. Consider a

firm that is seeking to minimize its costs. It is clear that the firm cannot be at

? We could, of course, relate cost function directly to the production function also, as both
the production function and the distance function similarly characterize the technology in
physical terms. Note that we could also relate the revenue function with the output distance
function/output set and the profit function with the overall technology set 7. The latter
implies that all the observed points in the overall technology set have costs equal or greater
than the minimum cost, that is: 7 ={(x,y): W'x > c(y,X)} .
1 See proof in Fire and Primont (1995).
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the cost minimizing point if it could reduce the amount of one input and still
produce the same amount of output. In that sense, the physical measure of
technical efficiency must be related to the cost-based measurement of
efficiency and the technology that they characterize should be the same. Thus
technical efficiency is necessary but not yet sufficient condition for overall
cost efficiency. There is also an allocative efficiency part in overall cost
efficiency. This means that, although the firm is obtaining a maximum output
from given inputs, with the given input prices the firm is using the inputs in
wrong proportions. We, however, shall omit the discussion of allocative

efficiency here.

3.5 Axioms of production and duality
In section 3.1, we presented the axioms that a technology should satisfy in
order to guarantee that the technology is well-behaved and physically
feasible. In this section, we further discuss the practical meaning of these
axioms with the help of some intuitive examples. We especially relate the
convexity axiom to the duality theorem. Moreover, we highlight that the
axioms impose necessary structure on technology so that we are able to
estimate the technology with the methods introduced in the next section.
Free disposability is a relatively intuitive assumption to make. You can
expect that two workers can dig a 10-meter long trench in an hour if one
worker can do it. In this example, the output is kept fixed, but the input is
increased. On the other hand, we could turn the situation around by saying
that if a worker can dig a 10-meter trench in an hour, he can also dig a 5-
meter one in the same time. As already stated, the importance of
disposability lies in the fact that it allows inefficient actions to be present.
Consider next the convexity of input sets, which directly follows from
the convexity of 7. This implies that a convex combination of input vectors
in the input set should also belong to the set. Assume for example that one
piece of machinery (K) can replace two workers (L). If we have two input
vectors (L,K), =[(4,0),;(0,2),] which are both capable of producing a
certain level of output, then we would expect that an input vector (2,1) also

can achieve that. The new input vector corresponds to a convex combination

of the original technologies, where both technologies get the weight of 0.5.
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Convexity thus implicitly assumes that inputs are continuously divisible. If
divisibility is not a reasonable assumption, then some non-convex
estimation technology can be considered (see e.g. Keshvari and Kuosmanen,
2013).

Convexity matters for production functions also. A production function
is often assumed to be (quasi)concave. This follows from the convexity
assumption for the input set L(y). It means that a convex combination of
input vectors that both belong to the PPS restricted above by f(x), belong
to the PPS also. But more importantly, the concavity assumption implies
that the production function exhibits diminishing returns to inputs. This is
one of the most fundamental laws in production economics. Now compare
this to the cost function. Cost function is a convex function of outputs if 7 is
convex. ' This property is directly analogous (or rather, consequence of it)
to the concavity property of production function. Indeed, analogously to
Equation (10), the cost function can be defined in terms of the production

function as c(y,w)=min{w'x:y < f(x)}. The convexity of the cost

function in outputs implies non-decreasing marginal costs for inputs, which
can be considered as the cost equivalent of diminishing returns of inputs on
the production side. What can be seen here is that convexity is crucial in
order to establish duality.

The above discussion shows that axioms do have practical meaning in
terms of basic economic fundamentals. In addition, axioms impose some
structure on production technology, allowing its meaningful estimation. The
set in Equation (1) is too general to be estimated without any further
assumptions about the technology, as it only characterizes the feasible input-
output pairs without giving any guidance about the underlying structure
behind these input-output correspondences. In some methods, we already

impose a lot of structure on the technology by directly assuming some

! With a slight digression, it is good to note at this point that, for natural monopolies, the
cost function needs to be sub-additive in the sense that C(y, + y,) < C(»,)+C(»,) . This
means that the cost of producing outputs y, and y, separately in two firms is higher than
in one firm (Baumol, 1977). Schmalensee (1978) shows that a necessary condition for the
existence of natural monopoly in distribution/transmission type industries is that the cost
function is concave in output. If a function is concave, it is also sub-additive. As will be
discussed later, it is problematic if functional forms which are convex in outputs are used to
estimate costs in cases where the characteristics of production clearly imply natural
monopoly, as is the case in electricity distribution.
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functional form for the production, cost or distance function beforehand.
Such an approach would be commonly referred to as parametric. It is then
afterwards tested whether the estimated parameters of the function
acceptably satisfy the axioms. Unfortunately, some functional forms violate
by construction some of the assumptions. Alternatively, some methods rely
only on the axioms themselves, without assuming any specific functional
form. Such an approach would be nonparametric. In the next section, we
will deal with both of these approaches to estimate the technology in

question.

3.6 Estimation of technology

In previous sections, we have defined technology either in terms of distance,
production or cost functions. Regardless of how we define it, in practice we
need to estimate it from the observed empirical data. In economics, there has
been a long econometric tradition of production function estimation at least
since the work of Cobb and Douglas (1928). The development of production
function estimation was intimately related to the development of productivity
measurement (Griliches, 1996). However, as mentioned in Section 1, the
conventional economic theory and the corresponding econometric approach
have both assumed that technical inefficiency has been resolved (see e.g.
Kumbhakar and Lovell, 2000). The only source of deviation from the
production function is assumed to be purely due to random statistical noise.
When we explicitly introduce inefficiency to the model, the traditional
(econometric) estimators do not apply anymore since we introduce another
source of deviation from the optimum.

In this section, we briefly discuss the three estimation frameworks,
namely the DEA, SFA, and StoNED estimators, that explicitly acknowledge
the presence of technical inefficiency. We keep the discussion of the methods
in this section very brief and concentrate only on their most significant
differences. This is because the detailed accounts of each method are
presented in multiple books and later on in this thesis (see e.g. the first
research article of this thesis; Fried et al., 2008; Coelli et al., 2005, Cooper et
al. 2000, Kumbhakar and Lovell, 2000). Thus repeating that discussion here

1s not worthwhile.
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Our discussion of the estimators is most easily done in the context of a
general production model. This helps us to compare how the estimators differ
with respect to the general model. The model is given in Equation (14),

where y is the observed output, f(x) is the production function which is a
function of inputs x, B is the parameter vector to be estimated and ¢ is an

error term representing the deviation of the observed production from the
estimated one. For the moment, we shall not make any specific assumptions

about the error term.

y=fxp)+e (14)

Few notes are in place. First, to simplify the discussion, we shall consider
only the production function in this section. The discussion would naturally
extend to the estimation of cost and distance functions also. Second, in order
to more closely relate the general production model presented here to the
subsequent contributions of the thesis, we assume that only a single output is
produced within the general model. This is because the basic StoNED

method utilized in the thesis allows only one output to be present.

3.6.1 Stochastic frontier analysis (SFA)

We start with the stochastic frontier analysis (SFA) due to its close
relationship with the traditional estimation framework. SFA was introduced
almost simultaneously by Aigner et al. (1977) and Meeusen and van den
Broeck (1977). As does the traditional econometric estimation of production
functions, also SFA assumes a specific functional form for f(x), for example
Cobb-Douglas, translog, or constant elasticity of substation (CES) form.
However, in contrast to the traditional framework, stochastic frontier
approach assumes that ¢ is composed of two parts, as the equation ¢ = v —u
shows. The vector v is the usual stochastic noise that you would have in any
regression model. This would constitute the only source of deviation in the
traditional framework. The vector u describes the shortfall in output due to
inefficiency. Thus in SFA, firms are inefficient with respect to the stochastic

frontier f(x)+v.
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As usual in regression analysis, it is assumed that v is distributed
symmetrically with zero mean. Normal distribution is practically always
assumed for v. For u, a one-sided distribution is assumed, as inefficiency can
only reduce output. Examples of this are half-normal, exponential and
gamma distribution, from which the first is by far the most typical
assumption. It is also usually assumed that v and u are independent from
each other and from the inputs x. This composed form of error has
significant implications for the estimation, and it is a major departure from
the traditional framework which assumes only symmetrically distributed v to
exist. In SFA, ¢ cannot have a symmetric and zero mean distribution as the
composed error is a convolution of the symmetric and non-symmetric part.
This convolution is problematic as our target of interest, inefficiency, is
convoluted with the often uninteresting part, namely noise (see e.g. Amsler,
Lee, and Schmidt, 2009). Since we want to separate these two, an alternative
estimation method which specifically accounts for this characteristic of the
composed error is needed.'? In this thesis, the noise part is also of a certain
interest to us since we are examining production risk.

In SFA literature, there are two main approaches to estimate the
parameters of the production function subject to the composed error. The
first approach is based on maximum likelihood. Given some distributional
assumptions on both v and u, the log-likelihood function can be formulated

in terms of £. Assuming for example the standard normal — half-normal
assumptions v~ N(0,07) andu~ N'(0,07), the log-likelihood for sample

of i =1,..., N firms is as shown in Equation (15).

InL(y|B,o,4)

Y el 1 & (15)
=constant— NIlno+ » In®| -=Z |- g’
l-z:l: [ 0) 202; l

12 An early related discussion can be found in Aigner and Chu (1968) and in Fersund and
Jansen (1977). These authors set so-called average practice functions against best
practice/frontier functions. In this terminology, the traditional model in Equation (14) with
symmetrically distributed errors with zero mean could equally well describe the average
practice of firms, as the estimated function goes through the middle of the cloud of points.
But again, if we wish the follow the stance of conventional economic theory without
inefficiency, then such model can be considered to describe the best practice of firms
subject only to statistical noise.
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where 0’ =0 +0. and 1=0,/o,. This likelihood function is maximized
in order to find the estimates for the parameters (B,o,1). It is relatively

straightforward to see from Equation (15) that if A=0 (or equivalently

o, =0) the model collapses to the standard maximum likelihood formulation

of the ordinary least squares (OLS) regression problem, assuming normally
distributed errors. With o, =0, there is no inefficiency present, as
0,=0=u=0, and consequently the overall error is £=v. For example,
Kuosmanen and Fosgerau (2009) suggested testing the appropriateness of
stochastic frontier specification from the skewness of residuals &. By
construction, given the distributional assumptions, the overall error ¢ = v —u
should be negatively skewed if inefficiency is present.

An alternative approach is based on OLS estimation. It has been long
known in frontier literature that all parameters of the production frontier,
expect the intercept, can be consistently estimated with OLS (see e.g. Olson,
Schmidt, and Waldman, 1980; Greene, 1980). Thus the estimation can be
broken down into two parts. First, we estimate the other parameters with
OLS and, in the second step, correct the intercept so that the estimated
function corresponds to a frontier. Basically this means that the estimated
function is shifted upwards. This approach is generally referred to as the
method of moments (MoM) or the Modified OLS approach since the second
step correction is based on the moments of the OLS residuals of the first
stage.13 More formally, to estimate the first step with OLS, the original
model needs to be reformulated so that the error has a zero mean. This can be

done in the following fashion. We have taken out the intercept S, from the

parameter vector fto explicitly show the bias in the intercept.

y=[A-EW]+f(x:p)+v-[u-E(w)]

=[B-EW)]+ f(x;p)+¢& (1o

" We shall not digress here to the realm of parametric deterministic methods, namely the
parametric or goal programming approach proposed by Aigner and Chu (1968) and the
corrected OLS (COLS) proposed originally by Winsten (1957). Besides being
deterministic, these methods have their own limitations discussed for example by
Kumbhakar and Lovell (2000) and Florens and Simar (2005).

23



Since v is assumed to have zero mean, the expectation of

g€ =v- [u - E(u)] is also zero as shown below.

E@)=E[v —[u —E)]|=E(v)-E(u )+E(u)=0

Thus the original intercept is biased by the amount of expected inefficiency.
Notice that no specific distributional assumptions about v or u have been
made at this stage as OLS does not explicitly require any such assumptions.
In the second step, after (16) has been estimated with OLS, we make the
usual normal and half-normal distributional assumptions about v and u.
Given these assumptions, the theoretical second and the third central

moments (m, & m,) of the composite error term can be written as in (17)

and (18).

mzz[—}af+af 17

m3:( 3}[1—1};3 (18)
T v

Equating the above theoretical moments with their sample counterparts 7, and

m,, which can be estimated using the residuals &, we can easily solve the
formulas for the variance parameters, as shown in Equations (19) and (20).
Note that the values £ can be used to estimate the variance and the skewness

of the original &€ as both variance and skewness are invariant to a constant

location change in the distribution, which the shift with E£(u) ultimately is.

. n% 2/3 o
o [\/ﬂ(l—wn)] (19

6. =m,~(1-2/7)6; (20)
Since we have assumed that » has a half-normal distribution, it follows that

2 . . .
E(u) =,|—6,and thus the intercept can be estimated as
T

ﬁo; wors = OLS intercept+\/zé'u .
T
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After the frontier has been estimated (either with ML or MOLS), the
estimation of the inefficiency term u often follows. In the normal-half-

normal model, conditional mean E(u, |s;) derived by Jondrow et al. (1982)
is the most typical point estimate of u,. Confidence intervals for the

efficiency estimates can also be obtained (Horrace & Schmidt, 1996). '

Accounting for production environment within SFA models is relatively
straightforward. Most of the typical approaches rely on parameterizing the
parameters (mean and/or variance) of the inefficiency distribution as a
function of operating environment variables, which are commonly referred to
as z-variables in the literature (see the survey by Kumbhakar & Lovell,
2000). It is assumed that the z-variables are not part of the production
technology as such but that they affect the (in)efficiency of producers. For
example, the model by Kumbhakar, Ghosh and McGuckin (1991)
parameterizes the distribution of inefficiency, as given in (21).

u, ~|N(z'v.07) @1)

This model defines the inefficiency as positive truncation of a normal
distribution such that the mean of the un-truncated distribution can differ
between observations. The second research article of the thesis discusses

these types of models in more detail.

3.6.2 Data envelopment analysis (DEA)

In this section, we very briefly cover another widely applied estimation
method to estimate production frontiers subject to inefficiency. We went to
some mathematical details with SFA as some of its features are intrinsically
related to the StoNED framework. The same applies to DEA, but for ease of
exposition, we avoid presenting any mathematical details of DEA. As
opposed to SFA, the basic premise of DEA is that it easily incorporates

multiple outputs into it. This can be achieved also in SFA when the cost

' The performance of maximum likelihood and MoM estimators has been compared for
example by Olson et al. (1980) and Coelli (1995). The performance of each depends on the
sample size and the relative contribution of inefficiency compared to noise. Generally ML
is more efficient but MOLS is somewhat more robust to distributional assumptions, as they
are avoided in the first step.
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function or distance functions are parametrically estimated, but the basic
SFA production frontier models always assume a single output. DEA, of
course, can also be used to estimate cost, revenue, profit, and distance
functions, but again we keep the context of the general production model
out of the discussion.

The motivation for DEA arose from the challenge of measuring
productivity and efficiency in a multi-output multi-input context. Using a
simple index of outputs over inputs is generally challenging as it is not
obvious how to aggregate and weight different outputs and inputs. DEA was
developed as an estimation method to obtain optimal weights for outputs and
inputs. Already Farrell (1957) introduced the basic idea of DEA, the details
of which were further formalized by Afriat (1972). Farrell proposed to
measure the efficiency of firms with respect to a surface that envelopes all
the observations. However, only two decades later this approach was branded
as data envelopment analysis. Charnes, Cooper, and Rhodes (1978;
abbreviated commonly as CCR) operationalised the insights of Farrell and
Afriat as a simple linear programming problem and popularized the
application of DEA for wider audience both within practitioners and
academics.

Purely as a mathematical problem, DEA finds the frontier of observations
such that the efficiency of each firm is maximized and is 100% at the
maximum. In other words, DEA attempts to find the tightest possible
envelopment of the data such that the efficiency of each firm is maximized.
This is called the minimum extrapolation principle within the DEA
literature. The envelopment is piecewise linear, and the shape of this
envelopment is fully dictated by the economic theory and the available data
by assuming the axioms of convexity and free disposability. Note that no

specific functional form assumption is made concerning the function f(x)

in Equation (14). The shape constraints only restrict the estimated function
to follow some regularity conditions, but they do not assume any specific
form for the function. In addition to convexity and free disposability, some
assumption about the returns to scale must be made. The CCR-model
assumes constant returns to scale (CRS), whereas variable returns to scale
(VRS) extension of DEA was suggested by Banker et al. (1984). All of the

assumptions can be relaxed in turn, and for example relaxing the convexity
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assumption leads to a free disposal hull (FDH) estimator proposed by
Deprins et al. (1984). Moreover, given the application, the model is
formulated either in output or input orientation, depending whether we
consider adjustments in outputs or inputs, respectively. In some
applications, firms' outputs are seen fixed, and thus efficiency can only be
improved by adjusting the input use. For example, the previously mentioned
electricity distribution case would fall to this category as energy demand
(energy delivered), the number of customers, and the network size cannot be
adjusted much by the companies.

Besides the functional form, the second major difference between DEA
and SFA is their assumption about the error term ¢ in Equation (14). Since
DEA aims to envelope all data perfectly, it implicitly assumes that all
deviations from the frontier are due to inefficiency, i.e. £ =u. No statistical
noise is allowed in basic DEA. Moreover, the DEA frontier is fully dictated
by the outermost observations, which by construction are 100% efficient.
Indeed, both SFA and DEA estimate relative performance measures. But
conceptually they differ in what they assume about the best performers. In
SFA, a firm is practically never estimated to be exactly 100% efficient
because the continuous distributions assumed for vand u imply that the
probability of a single point being exactly on the frontier is zero.

Lastly, we briefly cover some methods to show how to take operation
environment into account in DEA. Following the categorization by Coelli et
al. (2005), the ways to account for production environment in DEA setting
can be roughly divided at least into three approaches.

The first alternative is to include z-variables as non-discretionary (non-
controllable) variables into the linear programming problem directly. This is
generally referred to as the one-stage approach (see Syrjanen, 2003, for a
detailed discussion and references). This approach basically restricts the
benchmark set for the firms to make them more comparable in terms of
these environmental variables. Often the restriction would be placed so that
a firm cannot be compared to those with a better environment. The main
limitation of this approach is that the direction of the effects of
environmental variables needs to be known beforehand.

Secondly, one might assume that different DEA frontiers should be

estimated for firms operating in different environments. This approach is
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generally referred to as the frontier separation approach (Charnes, et al.,
1981). With this approach, it is possible to compare the best possible
performances in different environments to each other if the different
frontiers are compared with respect to some overall frontier. The problem is
to know beforehand how to divide the firms into their respective subgroups
in order to estimate the separate frontiers. This is not always unambiguous
as there might be many possible ways to divide the sample.

The third option is to obtain the usual DEA efficiency scores at first. In
the second stage, a regression of the obtained efficiencies on environmental
variables can be conducted to study how environmental variables affect the
efficiencies. Then either the efficiency scores or the original outputs/inputs
can be adjusted with these effects and, in the latter case, a DEA model
would be rerun with the adjusted variables (see e.g. Fried et al., 1999, 2002).
The advantage of this approach is that it gives detailed information about
the effects of z-variables in the second step, and we do not need to assume
anything about the effects of z-variables a priori. However, as recognized in
the literature, a direct implementation of a simple regression of efficiency
scores on z-variables is not advisable (see e.g. Simar and Wilson, 2007

Banker and Natarajan, 2008; Johnson and Kuosmanen, 2012).

3.6.3 Stochastic semi-nonparametric envelopment of data (StoNED)

The last estimator we introduce is the StoNED estimator. Since the full
details of StoNED framework are given in the first research article of the
thesis, this section only outlines the relation of StoNED to SFA and DEA in
terms of the general production model given in Equation (14).

In general, the StoNED estimator attempts to combine the best features
of the traditional SFA and DEA estimators. As opposed to DEA, StoNED
incorporates statistical noise into its framework. This is desirable at least for
three reasons. First, the main interest of this thesis, risk, is a phenomenon
that is inherently stochastic. Second, if we do not allow for noise, we
implicitly assume that our data is measured without any error and no
specification error of the model exists. These often are too strong

assumptions to be made. Third, the stochastic noise term gives the estimator
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a more statistical/econometric grounding. This is desirable especially for
statistical inference. In a mathematical programming based approach
without noise, such as DEA, it is not directly obvious how statistical
inference should be conducted."

On the other hand, unlike SFA, StoNED does not make any functional
form assumptions regarding f(x). Similarly to DEA, it bases its estimation
of technology on some general axioms about the technology. This is a
desirable property of both StoNED and DEA as it often is difficult to justify
any specific functional form over another. For example, the Cobb-Douglas
form assumes perfect substitutability between inputs. Another unfortunate
feature of the Cobb-Douglas form is that it does not properly model the
economies of scope since it favours output specialization over joint-
production. This is problematic in modelling for example the cost efficiency
of electricity distribution firms, where the typical outputs of distribution
firms are necessarily jointly produced (Kuosmanen et al., 2013). Some more
flexible functional forms may solve some of these problems, but they often
violate convexity and monotonicity. Since the StoNED method combines
these features of SFA and DEA, it is a more general estimation framework.
In fact, as Kuosmanen and Johnson (2010) show, DEA can be formulated as
a special case of the StoNED framework. The same applies to SFA also.

In practice, the StoNED estimation procedure has many similarities to
the SFA approach presented above. In the MOLS framework, StoNED
replaces the parametric OLS in the first step with a nonparametric
counterpart, namely with Convex Nonparametric Least Squares (CNLS,
Hildreth, 1954; see also Kuosmanen, 2008). Otherwise the procedure is
exactly the same. An alternative to the method of moments is the pseudo-
likelihood approach formulated in terms of CNLS residuals. Both
approaches need some parametric distributional assumptions for
inefficiency and noise in order to separate them. But the first CNLS stage is
fully non-parametric. Thus it is appropriate to call StoNED a semi-
nonparametric method.

Taking account of operating environment is rather straightforward.

Johnson and Kuosmanen (2011) extend the typical StoNED model and

1% Simar and Wilson (2000) suggest a bootstrap-based inference for nonparametric
efficiency measures such as DEA.
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include z-variables into the first-stage CNLS estimation. This one-stage
estimator is preferred over a two-stage estimator where the estimation of z-
effects is left to the second step. Omitting z-variables in the first stage may
cause the two-step estimator to be biased due to the omitted
variable/endogeneity problem (Wang & Schmidt, 2002; Schmidt, 2010)."
We discuss this z-variable extension of StoNED in more detail in the first

research article of the thesis.

1 See also Johnson and Kuosmanen (2012), who compare the performance of two-step and

one-step estimators of z-effects.
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4. Heterogeneity, Heteroscedasticity and Risk

In this section, we briefly introduce the three concepts that are essential to
this thesis. We start by examining why heterogeneity in general is important
in performance measurement. We then introduce one specific kind of
heterogeneity, namely heteroscedasticity. We highlight how some basic
econometric tools dealing with heteroscedasticity directly lend themselves to
the study of production risk. Lastly, we discuss the sufficiency of variance as
a risk measure. The usability of econometric tools of heteroscedasticity to
study risk critically depends on whether we consider variance as an adequate

measure of risk.

4.1 Heterogeneity

In economics, the term heterogeneity is often reserved to mean a deviation
from the representative agent assumption. That is, the acting agents (e.g.
consumers or firms) are not identical in this case. Within this thesis, we
however extend the term to mean also the heterogeneity of operating
environment. These two are often indistinguishable from each other as
economic agents adapt their behaviour according to their environment, which
can, consequently, change due to this behaviour (see e.g. Kirman, 2006).
From the point view of performance evaluation and efficiency measurement,
the critical problem is that often heterogeneity confounds our measures of
performance (Greene, 2004). To further clarify this, let us consider few
examples.

First, in the economics of growth, it is widely acknowledged that
institutions play an important role in economic development (Hall & Jones,
1999). Institutions such as political centralization, property rights, labour
market laws and cultural or societal norms undoubtedly are heterogeneous
among countries. Certainly these factors also contribute to the ability of
countries to utilize their resources efficiently (see. e.g. Moroney and Lovell,
1997; Adkins, Moomaw, and Savvides, 2002 for some early contributions in
frontier literature). Thus a direct assessment of the performance only in terms
of GDP, capital and labour seems inadequate as it neglects the effect of

institutions on the resource utilization capabilities of a nation. It is only after
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we have extracted out the effect of institutions when we can start to compare
nations in their efficiency of transforming labour and capital into gross
domestic product.

Second, consider agricultural production. Arguably the heterogeneity is
present in the analysis of agricultural production as agricultural producers are
faced with great spatial differences for example in soil quality and weather
(see e.g. Just, 2003). Variation in these may again manifest itself as variation
in crops. The challenge is that these variations in the operating environment
may be misinterpreted as efficiency differences (Greene, 2004; O’Donnell et
al., 2010). In some sense, different environments imply slightly different
technologies for each producer. But even if we explicitly exclude the
problem of different technologies, the heterogeneity of operation
environment still poses a challenge. For example, in electricity distribution,
firms' technology can be assumed to be relatively similar due to some
technical norms that the firms need to meet. Nevertheless, two companies
which both distribute electricity through similar cables may operate in highly
different environments in terms weather and forest density, for example.

In light of the above examples, we see that any measurement of
productivity or efficiency without acknowledging heterogeneity is likely to
confound inefficiencies with other sources of variation in productivity.
Setting a common standard seems unacceptable if firms operate under highly
different conditions. Indeed, it is often these factors outside the firms’ control
that are the underlying reason of performance differentials between firms.
This is not to downplay the importance of managerial or technical
inefficiency. But their importance might be overstated if we do not account
for other sources of performance variation also.

One concern is that what aspects of operation environment or producer-
specific heterogeneity are relevant enough to be taken account. Here
probably the only thing that can be done is to rely on the expertise of the
researcher to know what to include into the model. But, for the researcher,
the problem is that not all relevant aspects are necessarily observed. When
introducing frontier methods in Section 3, we indeed assumed that operation
environment can be represented as a function of some observable variables.
If however some relevant aspects of the environment are unobserved, it

probably would be desirable to extend the methods to take this into account.
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While there have been developments on how SFA methods explicitly
account for some unobserved factors, similar developments are still waiting
in the StoNED setting (see e.g. Kopsakangas-Savolainen and Svento, 2011,
for discussion in SFA context). Although this is an obvious target for future
development, we do not extend our examination into the realm of unobserved
heterogeneity. This is because we are especially interested in the sources of
heteroscedasticity in this thesis. This obviously requires us to model
heteroscedasticity as a function of some observable variables. Moreover, let's
recall that StoNED by construction is a flexible method in terms of
technology, and thus it is likely to capture some of the unobserved firm-

specific heterogeneity already in the technology parameters.

4.2 Heteroscedasticity
Next we briefly introduce one specific form of heterogeneity, namely
heteroscedasticity. We do this in the context of the basic linear regression
model. Since heteroscedasticity is routinely dealt in any econometrics
textbook, we keep our examination very brief (for detailed presentations see
e.g. Verbeek, 2008; Greene, 2008).

Consider a general regression model for a sample of N observations
given in Equation (22).

y=Xp+¢ (22)

where

y is the N x1 vector of a dependent variable.

Xis the N x K matrix of K independent variables, including a column of one
for intercept.

Bis the K x1vector of parameters to be estimated.

¢ 1s the N x1vector of error terms.

The ordinary least squares OLS estimator of the parameters p would be

ﬁms =(X'X)"'X'y. The standard Gauss-Markov assumptions for the OLS

estimator assume that the error term is homoscedastic. This means that the

variance of the error term 1is constant across all observations N.
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Mathematically, Var[s\X]=0'2I, where o?is the unknown error variance

and Tis an N x N identity matrix. Thus the diagonal elements of the

variance-covariance matrix are the same for every observation.

Heteroscedasticity is present if Var[s | X] =o'V, where ¥ is some matrix

with elements [l//l’l//zf""l//N] on its diagonal. For simplicity, we assume that

the off-diagonal elements are zero, implying that no autocorrelation of the
errors is present. Under heteroscedasticity, the OLS estimator is still
unbiased and consistent. It is, however, possible to obtain a more efficient
estimator. More importantly, standard statistical inference is not valid under
heteroscedasticity, as the usual t- and F-statistic are invalid. This can be dealt
with by using heteroscedasticity-robust standard errors (White, 1980).
Furthermore, tests to detect heteroscedasticity have been suggested for
example by Breusch and Pagan (1980) and White (1980).

Under heteroscedasticity, generalized least squares (GLS) estimators can
be more efficient than OLS. GLS weights the observations in terms of their
variation so that the observations with highest variance are typically given
the lowest weight. Thus GLS requires that the weighting matrix ¥ is known

beforehand. For the moment, we assume that this matrix is known and that

we have a very general form of heteroscedasticity such that O'l.2 = 0'21//,. . Then

the GLS estimator for g is |§GLS =(X"¥'X)'X"¥y . Effectively our data is
weighted with the weights 1/, since heteroscedasticity is proportional to
the weights v, .

In practice, the matrix ¥ has to be estimated and thus a feasible
generalized least squares (FGLS) estimation procedure must be applied. To
estimate the matrix ¥, a functional form for heteroscedasticity has to be
assumed. Often multiplicative heteroscedasticity, as shown in Equation (23),
is assumed (Harvey, 1976; see also Verbeek, 2008, p. 96). It guarantees that
we obtain positive estimates of variances. Note that the better efficiency
properties of FGLS compared to OLS hinge on knowing the correct weights.
If we assume a wrong form of heteroscedasticity in FGLS, it is not
guaranteed that with small sample sizes FGLS would outperform OLS.

Generally, FGLS is however justified in asymptotic sense at least.
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o’ =0’ exp(z,0) (23)

In Equation (23), z, is usually the vector of the original independent

variables of the model or some subset of them and « is the corresponding
parameter vector which tells the effect of these variables on error variance. In
SFA context, however, z-variables are often assumed to be some other
variables than the original input variables.

In modelling heteroscedasticity, another common strategy is to assume
that the error variance is a linear function of some variables, as in Equation
(24). Using this formulation in FGLS is problematic as the linear form does
not guarantee that the variances are non-negative. The form however suffices
to test heteroscedasticity and to examine the heteroscedasticity effects of z-

variables.

cl=z0 (24)

Regardless of the functional form assumed, the estimation of the parameters
o is usually based on the OLS residuals of the model in Equation (22),
although direct maximum likelihood estimation in a single step is also
possible. Note after the initial estimates of the weights have been obtained,
FGLS can be reapplied and the whole procedure can be iterated a number of
times to further improve the estimates of p (Greene, 2008).
Heteroscedasticity in the SFA context has received some attention as
both the parameters of the production technology and the efficiency
measures can be biased if heteroscedasticity in the inefficiency term is not

accounted for (Caudill and Ford, 1993; Caudill et al., 1995), that is, if we

wrongly assume that O'fu =0, Vi=l,..,N. Heteroscedasticity can also be

in the stochastic noise term v, as noted by Hadri (1999), but its consequences
are less severe (see e.g. Kumbhakar & Lovell, 2000). The SFA models that
attempt to account for heteroscedasticity in the inefficiency term
parameterize the standard deviation or the variance of the inefficiency
distribution as a function of z-variables (see e.g. Alvarez et al., 2006). In the
DEA literature, there has been less concern about heteroscedasticity, partly

because of the nonparametric nature of DEA. We postpone any detailed
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discussion of heteroscedasticity in the StoNED context to the first research
article of the thesis.

Simulation studies do not provide a clear-cut picture of the effects of
heteroscedasticity on the performance of the estimators presented in Section
3.6 (Banker et al. 2004; Kuosmanen & Kortelainen, 2012; Andor and Hesse,
2013). Overall, the magnitude and even the direction of this effect are
affected by the following issues: presence or absence of noise, the relative
importance of inefficiency and noise in the data generating process, whether
we consider heteroscedasticity in inefficiency or noise or in both, whether we
examine the estimation of a frontier or the point estimate of inefficiency, and

sample size.

4.3 Variance and risk measurement
It is quite straightforward to see that the methods outlined in the previous
section easily adapt themselves to the study of production risk and its causes
if we assume that variance is a sufficient measure of risk. Indeed, the
variance of the error €in (22) directly translates to variation in output also.
However, by assuming variance as the appropriate measure of risk, we often
make some implicit assumptions about the nature of risk. Nevertheless, it is
not directly obvious whether these assumptions suit to all risky situations.
Before that discussion, it is however good to make a distinction between
uncertainty and risk as these concepts are often confounded with each other.
Traditionally, a risky situation has been characterized such that the
acting agent is able to assign some probabilities to the possible future events
in such a situation. In the case of uncertainty, this assignment is commonly
not possible (Knight, 1921; Chavas, 2004). As Knight (1921) defines it, risk
is measurable whereas uncertainty is not. Chavas (2004), however, points out
that these definitions depend much on how we define probabilities and their
possible existence. First, the ease of assigning probabilities varies from one
situation to another. It is difficult to assign any probabilities for rare events
such as plane crashes, whereas it is easy to derive the probabilities of a dice
throw. The former case falls under uncertainty, whereas a throw of a dice is
risky. It is also easy to elicit probabilities in a case of repeated events. A

producer for example may have a rather good understanding of the
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probability of a malfunction in a production line, as the producer observes
the functioning of the line over a long period. If the production line operates
under relatively unchangeable and controllable conditions, the frequency of
malfunctions is a good measure of their probability. But production may also
be subject to changeable conditions which are hard to measure. As the
probability is likely to differ under these varying conditions, it is difficult to
form an objective assessment about the probability of an event. The second
issue is that the probabilities in many cases are subjective. Consequently,
there may not be any agreement about the ‘correct’ probabilities. But,
arguably, human beings at least implicitly assign some probabilities on future
events regardless of how uncertain the events are. Following Chavas, as long
as the future outcome of an event is not known beforehand and some
probabilities or likelihoods (subjective or objective) are assigned to the
outcomes, it is only of secondary importance whether we call this situation
risky or uncertain. Furthermore, as it was pointed out already by Arrow
(1951), the unmeasurable Knightian uncertainties often lead us to the same
conclusions as explicit probabilities. Thus we use these terms
interchangeably within this thesis.

The use of variance as a measure of risk is very intuitive. If we are
offered two bets, A and B, which have the same expected value but with the
difference that B has a higher change for higher losses and wins, then
arguably we view the bet B as the riskier one. Often the formal origin for the
use of variance as a risk measure is attributed to the financial portfolio theory
of Markowitz (1952). Basically, the Markowitz’s (1952) mean-variance
model brought the minimization of variance as another objective for the
investor next to the maximization of the expected return. Subsequently,
multiple treatments on the limitations of the mean-variance setup have been
written by Markowitz (1959) and for example by Hanoch & Levy (1969). A
more detailed discussion and a list of references to alternative approaches can
be found for example in Grootveld & Hallerbach (1999) and Antle (2010).

The most typical objections to variance as a risk measure concern the
fact that variance is a symmetric measure and it does not take the skewness
of the distributions properly into account. For example, if we consider the
variability of crop yields in agricultural production only in terms of variance,
we implicitly assume that very low and very high yields are equally likely. In
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some gambles, symmetrically distributed returns/losses may be a reasonable
assumption. But for crop yields it is often argued that observing
extraordinary good crops should be less likely than mean — and less than
mean crops — since extraordinary crops require ideal weather conditions,
which rarely occur (see e.g. Gallagher, 1987). One of the more popular
alternatives has been so-called down-side risk models. These models
emphasize the importance of losses over the possible returns for investor, and
thus they put more weight (or all of it) on the left hand side of the return
distribution.

However, considering the focus of this thesis, we restrict ourselves to the
traditional variance-based measurement of risk, for two reasons. Firstly, the
concept of heteroscedasticity is the main unifying thread of the thesis. Since
models of heteroscedasticity are models of variance, it is natural to restrict
our attention to this measure of risk. Moreover, the development of frontier
models that deal with production uncertainty is still relatively limited and is
focused on heteroscedasticity.'” For example, O’Donnell et al. (2010) lists
only few papers that explicitly discuss risk in the context of technical
efficiency estimation. Thus it seems warranted to investigate the relatively
underexploited models of heteroscedasticity in more detail before extending
the research agenda to more novel models of risk, with possibly skewed risk
distributions. Secondly, and maybe more importantly, skewness is reserved
to represent the presence of inefficiency in frontier models, not the presence
of production risk. Skewness-based measurement of risk in the frontier
context could be challenging, due to convolution of risk and inefficiency. As
will be discussed in the third research article of the thesis, too similar
distributional assumptions on inefficiency and noise (risk) make it impossible
to distinguish them from the overall error (Amsler, Lee, and Schmidt, 2009).
Thus, we restrict ourselves to the symmetric measures of risk to more clearly

differentiate it from skewed inefficiency.

17 See e.g. Kumbhakar (2002), Wang (2002), and Bera & Sharma (1999).
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5. Summary of the research papers

In this section, we briefly cover the contributions of each research article that
are included in the thesis. The thesis consists of five research articles. All of
them are connected, either through the topic of heteroscedasticity or through
a methodological choice. The logic for the ordering of the articles is the
following. The first two articles concentrate more on introducing the StoNED
method and comparing it with the traditional frontier estimators. As opposed
to Section 3.6 of this introduction, the comparison is done in an empirical
setting, namely within the context of Finnish electricity distribution
regulation. The last three articles then concentrate on the topic of
heteroscedasticity and production risk. Article 3 reviews literature on
production risk and heteroscedastic SFA models. Articles 4 and 5 then deals
with two empirical applications related to heteroscedasticity, still applying

the StoNED method.

5.1 Research article 1

Stochastic nonparametric approach to efficiency analysis: A Unified

Framework

This handbook chapter outlines the StoNED framework in a detailed manner
and acts as methodological review for the thesis. Many of the topics in the
chapter go beyond the topics dealt with in this thesis. However, the chapter
further motivates the reader to see the additional benefits of the StoNED
estimator when compared with the traditional frontier estimators. There is a
particular emphasis on that the traditional approaches can be seen as special
cases of the more general StoNED framework. The chapter also includes a
detailed examination of heteroscedasticity in the StoNED context. This
examination shows that the many well-known approaches dealing with
heteroscedasticity in econometrics are relatively straightforwardly applicable

in the StoNED context also.
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5.2 Research article 2

What is the best practice for benchmark regulation of electricity

distribution? Comparison of DEA, SFA and StoNED methods

This research article is the result of the project that the authors did for the
Finnish electricity market regulator Energiamarkkinavirasto (EMV)."® In
2010, EMV decided to refine the tools that it uses to measure the cost
efficiency of electricity distribution companies. EMV adopted the StoNED
method as their preferred tool for the regulatory period of 2012-2015. In their
selection criteria for the method, EMV emphasized that the method should be
flexible in production technology and account for stochastic noise and
heterogeneity in production environment. Previously, EMV used the average
of DEA and SFA efficiency scores to determine the cost efficiency of
companies. This approach supposedly mitigated the potential problems
arising from using only one method. The paper argues that such an approach
is statistically unsound and proposes StoNED to be used instead. The
performance of the StoNED method was compared to the traditional
estimators with an empirical comparison of efficiency scores and economic
outcomes of the regulation. A simulation study was also conducted to
compare the methods under a fixed data generation setting.

This research article serves as an important illustration about the
practical uses of efficiency estimation methods. The article also continues the
methodological discussion started in the book chapter (see previous section)
about the differences between traditional methods and the StoNED
framework. The issue of heteroscedasticity is not explicitly discussed here
but the importance of production environment heterogeneity is highlighted
throughout the paper as the electricity distribution companies in Finland

operate in highly varying geographical and climatic conditions.
5.3 Research article 3
Heteroscedasticity or Production Risk? A Synthetic View

This review article compares two branches of literature, namely the literature

on production risk and that on heteroscedastic stochastic frontier models. To

18 Kuosmanen et al. (2010).
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our knowledge, no such systematic comparison of the two branches of
literature had been conducted before this article, although the fields have a
number of similarities. The purpose of the article is to establish connections
between the production risk and efficiency literature. Thus, thematically the
article ties together the two main topics of the thesis. The link between the
fields is built by utilizing the concept of heteroscedasticity. It is argued that
although heteroscedastic stochastic frontier models do often neglect risk
considerations, they can be interpreted to model production risk. Lastly,
some of the challenges of simultaneous treatment of risk and efficiency are

also discussed.

5.4 Research article 4

Is Corruption Grease, Grit, or a Gamble? Corruption Increases Variance of

Productivity Across Countries

This research article is the author's first exploration of the topic of
heteroscedasticity and heterogeneity within frontier methods. Subsequently,
it dictated the thematic focus for the rest of the thesis. Initially, the interest
was just to study the effect of corruption on productivity. However, during
the research process, the authors observed that the effects of corruption
seemed to be more related to the variability of productivity than to the level
of productivity. As a way to understand this phenomenon, heteroscedasticity
was considered as an intuitive way to model this relationship.

The general view in the literature has been that corruption hinders
economic development. This argument is generally referred to as “sand in the
wheels” hypothesis. However, some real-life observations have induced
some researchers to suggest that under certain circumstances corruption in
fact might be beneficial for the economic performance of countries, acting as
“grease” in the wheels of economic development. This paper considers a
completely alternative view. It reckons that rather than a direct determinant
of economic performance corruption should be considered as a macro risk. In
other words, we interpret corruption as a gamble, since it seems to increase
the variability of productivity among countries. This hypothesis is considered
to be more general than the traditional views because it allows that, with

relatively high levels of corruption, a country can achieve either high or low
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productivity levels. The empirical examination indeed shows that corruption

has significant effect on the variability of productivity.

5.5 Research article 5

Quality frontier of electricity distribution: Supply security, best

practices, and underground cabling in Finland

This research article is a partial continuation of the paper introduced in
section 5.2. It returns to the same electricity distribution application.
However, instead of focusing on cost efficiency, the article deals with the
quality of service of the distribution companies. This is a topical issue as
there are pressures in Finland to develop the distribution system towards
underground cabling based system.

The article examines the quality of service of electricity distribution in
terms of interruption costs and their variability. The paper considers that,
besides the low level of interruption costs, the low variability of interruption
costs is also a sign of good service quality. Underground cabling is the most
significant investment target to affect interruptions. The article shows that
underground cabling expectedly decreases the level of interruption costs.
However, we also observe that underground cabling does not have significant
decreasing effect on the variability of interruption costs. In some instances
the effect might even be increasing. This effect we explain by the fact that
the costs of interruptions are significantly higher for companies with higher
underground cabling levels. Such companies often operate in areas of high
population density, and, subsequently, the costs of interruption are likely to
be high as a large number of households are affected by the interruption.
Interruption costs of underground cabling are increased also because
underground cables are more costly to install and repair than air cables.

The article also compares two alternative ways to set the quality
targets in quality regulation. The current practice is based on the average of
the companies' own past performance. However, average is a very volatile
measure as it can be greatly affected by single years with a high number of
interruptions. Moreover, usage of average does not incentivize to improve
upon a poor previous performance. The article suggests that the targets

should be set in terms of the best observed operations. For this purpose, we
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estimate an interruption cost frontier with StoNED and refer to it as the
quality frontier. Comparison of the obtained target values shows that the
targets produced by the quality frontier are significantly more stable than the

targets produced by the average of own performance.

43






6. Concluding remarks

Here we briefly summarize the main contribution of the thesis. Clearly,
heteroscedasticity has economic and practical interpretations beyond being
just an econometric problem. In the empirical applications of the thesis, we
have interpreted heteroscedasticity mainly in terms of risk. We have shown
that this risk may realize itself in the aggregate productivity or quality of
service type of contexts. We have also noted that there exist some gaps in
the literature, namely between the traditional models of production risk and
heteroscedastic stochastic frontier models. Methodological choice has been
shown to be important in practical applications of the frontier methods.
Indeed, important regulatory outcomes may crucially depend on the chosen
efficiency estimation method. These contributions correspond to the
objectives of the thesis set in Section 2. Of course, the views presented in
this thesis should not be viewed as definite resolutions to the topic. But if
one is to examine the risk-efficiency nexus in future, the issues covered in

this thesis seem an unavoidable starting point for that research.
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Timo Kuosmanen ', Andrew Johnson™', Antti Saastamoinen

1) School of Business, Aalto University, 00100 Helsinki, Finland.
2) Department of Industrial and Systems Engineering, Texas A&M University,
TX 77840, USA.

1. Introduction

Efficiency analysis is an essential and extensive research area that provides
answers to such important questions as: Who are the best performing firms and
can we learn something from their behavior? ' What are the sources of
efficiency differences across firms? Can efficiency be improved by
government policy or better managerial practices? Are there benefits to
increasing the scale of operations? These are examples of important questions
we hope to resolve with efficiency analyses.

Efficiency analysis is an interdisciplinary field that spans such
disciplines as economics, econometrics,” operations research and management
science,’ and engineering, among others. The methods of efficiency analysis
are utilized in several fields of application including agriculture, banking,
education, environment, health care, energy, manufacturing, transportation, and
utilities, among many others. Efficiency analysis is performed at various
different scales. Micro level applications range from individual persons, teams,
production plants and facilities to company level and industry level efficiency
assessments. Macro level applications range from comparative efficiency
assessments of production systems or industries across countries to efficiency
assessment of national economies. Indeed, efficiency improvement is one of
the key components of productivity growth (e.g., Fére et al., 1994), which in
turn is the primary driver of economic welfare. The benefits to understanding

' We will henceforth use the term “firm” referring to any production unit that transforms inputs
to output, including both non-profit and for-profit organizations. The firm can refer to an
establishment (facility) or sub-division of a company or to an aggregate entity such as an
industry, a region, or a country.

2 Observe that 13 of the 100 most cited articles published in a leading field journal, the Journal
of Econometrics, are efficiency analysis papers, including Simar and Wilson (2007) that has
436 citations, making it the #32 most cited paper in the journal in just 6 years from its
publication (citations data gathered from Scopus, Nov 25, 2013).

* In operations research and management science, Charnes et al. (1978) ranks #1 as most cited
article published in the European Journal of Operational Research (EJOR) and Banker et al.
(1984) is the #1 most cited article in Management Science, two of the leading journals of this
field (the flagship journals of EURO and INFORMS, respectively). In fact, Charnes et al.
article has more than 5 times more citations than the 2nd most cited paper in EJOR (Nov 25,
2013).



the relationship between efficiency and productivity and quantifying efficiency
cannot be overstated. In words of Paul Krugman (1992, p. 9), "Productivity
isn't everything, but in the long run it is almost everything. A country's ability
to improve its standard of living over time depends almost entirely on its ability
to raise its output per worker." Note that macro-level performance of a country
is an aggregate of the individual firms operating within that country. Therefore,
sound micro-foundations of efficiency analysis are critical for the integrity of
productivity and efficiency analysis at macro level.

Unfortunately, there currently is no commonly accepted methodology of
efficiency analysis, but the field is divided between two competing approaches:
Data envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA). *

Data envelopment analysis (DEA, Farrell, 1957; Charnes et al., 1978) is
an axiomatic, mathematical programming approach to efficiency analysis.
DEA’s main advantage compared to econometric, regression-based tools is its
nonparametric treatment of the frontier, building upon axioms of production
theory such as free disposability (monotonicity), convexity (concavity), and
constant returns to scale (homogeneity). DEA does not assume any particular
functional form for the frontier or the distribution of inefficiency. It’s direct,
data-driven approach is helpful for communicating the results of efficiency
analysis to decision-makers. However, the main shortcoming of DEA is that it
attributes all deviations from the frontier to inefficiency. This is often a heroic
assumption.

Stochastic frontier analysis (SFA, Aigner, Lovell, Schmidt, 1977;
Meeusen and Vanden Broeck, 1977) is often, incorrectly, viewed as a direct
competitor of DEA. The key strength of SFA is its probabilistic modeling of
deviations from the frontier, which are decomposed into a non-negative
inefficiency term and an idiosyncratic error term that accounts for omitted
factors such as unobserved heterogeneity of firms and their operating
environments, random errors of measurement and data processing,
specification errors, and other sources of noise. In contrast to DEA, SFA
utilizes parametric regression techniques, which require ex ante specifications
of the functional forms of the frontier and the inefficiency distribution. Since
the economic theory rarely justifies a particular functional form, flexible
functional forms such as translog are frequently used. However flexible
functional forms often violate axioms of production theory, whereas imposing
the axioms will reduce flexibility. In summary, the DEA and SFA methods are
not direct competitors but rather complements: in the tradeoff between DEA
and SFA something is sacrificed for something to be gained. Namely DEA
does not model noise, but is able to impose axiomatic properties and estimate
the frontier non-parametrically, while SFA cannot impose axiomatic properties,
but has the benefit of modeling inefficiency and noise.

* Citation statistics of some of the key papers provide undisputable evidence about the
significant influence of this field. The four most cited papers are Charnes et al. (1978) with
6,152 citations, Banker et al. (1984) with 3,415 citations, Farrell (1957) with 3,296 citations,
and Aigner et al. (1977) with 1,875 citations (Scopus, Nov 25, 2013).
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Bridging the gap between axiomatic DEA and stochastic SFA was for a
long time one of the most vexing problems in the field of efficiency analysis.
The recent works on convex nonparametric least squares (CNLS) by
Kuosmanen (2008), Kuosmanen and Johnson (2010), and Kuosmanen and
Kortelainen (2012) have led to the full integration of DEA and SFA into a
unified framework of productivity analysis, which we refer to as stochastic
nonparametric envelopment of data (StoNED).”

We see the development of StoNED as a paradigm shift for efficiency
analysis. It is no longer necessary to decide if modeling noise is more
important than imposing axioms of production theory: we can do both using
StoNED. The unified framework of StoNED offers deeper insights to the
foundations of DEA and SFA, but it also provides a more general and flexible
platform for efficiency analysis and related themes such as frontier estimation
and production analysis. Further, a number of extensions to the original DEA
and SFA methods have been developed over the past decades. The unified
StoNED framework allows us to combine the existing tools of efficiency
analysis in novel ways across the DEA-SFA spectrum, facilitating new
opportunities for further methodological development.

The main objective of this chapter is to provide an updated and
elaborated presentation of the CNLS and StoNED methods, the most promising
new tools for axiomatic nonparametric frontier estimation and efficiency
analysis under stochastic noise. Our secondary objective is to extend the scope
of the StoNED method in several dimensions. This chapter provides the first
extension of the StoNED method to the general case of multiple inputs and
multiple outputs. We also consider quantile estimation using StoNED, and
present a detailed discussion of how to model heteroscedasticity in the
inefficiency and noise terms.

The rest of this chapter is organized as follows. Section 2 introduces the
unified StoNED framework and its special cases by reviewing alternative sets
of assumptions that motivate different estimation methods applied in
productivity analysis. Our focus is explicitly on the axiomatic DEA-style
approaches. Section 3 presents the CNLS regression as a quadratic
programming problem. Section 4 discusses the intimate connections between
CNLS and DEA, and introduces a step-wise C°NLS estimator. Section 5
further develops the step-wise estimation approach for the StoNED estimator.
Section 6 reviews some important extensions to the StoNED, including the
multiplicative formulation (Section 6.1), observations from multiple time
periods that make up a panel data (Section 6.2), directional distance functions
(DDF) for modeling multiple output variables (Section 6.3), and quantile
regression formulation (Section 6.4). The model of contextual variables that
represent operational conditions or practices is examined in detail in Section 7.

5 The term StoNED was coined by Kuosmanen (2006). By request of referees, Kuosmanen and
Kortelainen (2012) used the term stochastic “non-smooth ” envelopment, as their model
specification involves parametric distributional assumptions. In this chapter we show that the
distributional assumptions can be relaxed: see Sections 5.2.3 and 6.2.



Testing of heteroscedasticity and modeling heteroscedasticity of inefficiency
and noise using a doubly-heteroscedastic model discussed in Section 8. Finally,
Section 9 concludes with discussion of some promising avenues of future
research.

2. Unified frontier model

To maintain direct contact with the SFA literature, we introduce the unified
model of frontier production function in the multiple input, single output case.
Multiple outputs can be modeled using cost functions (see Kortelainen and
Kuosmanen, 2012, Section 4.4; and Kuosmanen, 2012) and distance functions.
A general multi-input multi-output directional distance function model will be
introduced in Section 6.3.

Production technology is represented by a frontier production function
f(x), where x is a m-dimensional input vector. ® Frontier fx) indicates the
maximum output that can be produced with inputs x, and hence the function
fix) characterizes the boundary of the production possibility set. We assume
that function f belongs to the class of continuous, monotonic increasing, and
globally concave functions that can be non-differentiable (we denote this class
as F,). This is equivalent to stating that the production possibility set satisfies

the classic DEA assumptions of free disposability and convexity. In contrast to
SFA, no specific functional form for fis assumed.

The observed output y, of firm i may differ from f£(x,) due to
inefficiency and noise. We follow the SFA literature and introduce a composite
error term &, =v, —u,, which consists of the inefficiency term u, >0 and the

stochastic noise term v,, formally,

vi=f(x)+e, 0
=f(x)—u+v, i=L..,n

Variables u, and v, (i =1,...,n) are random variables that are assumed to be

statistically independent of each other as well as of inputs x,. We assume that

the inefficiency term has a positive mean and a constant finite variance, that is,

E(u,)= >0 and Var(u,) = o, <. We further assume zero mean noise with a
constant finite variance, that is, E(v,)=0 and Var(v,)=0. <. Assuming .
and o, are constant across firms is referred to as homoscedasticity; models

with heteroskedastic inefficiency and noise will be discussed in Section 8. For
the sake of generality and to maintain the fully nonparametric orientation, we
do not introduce any distributional assumptions for u», or v, at this point.

® For clarity, we denote vectors by bold lower case letters (e.g., X) and matrices by bold capital
letters (e.g., Z). All vectors are column vectors, unless otherwise indicated. Note: x" denotes
the transpose of vector x.
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However, some estimation techniques to be introduced below require
additional parametric assumptions.

In model (1), the deterministic part (i.e., production function f) is
defined analogous to the DEA literature, while the stochastic part (i.e.,
composite error term ¢, ) is defined similar to SFA. As a result, model (1)

encompasses the classic models of the SFA and DEA literature as its
constrained special cases. Note that in this chapter we use the term “model” in
the sense of the econometric literature to refer to the description of the data
generating process (DGP). DEA and SFA are alternative estimators or methods
for estimating the production function f, the expected inefficiency g, and the
firm-specific realizations of the random inefficiency term u;. We note that in
the DEA literature it is common to use the term “model” for the linear
programming problem (e.g., LP model) or other mathematical programming
formulations for computing the estimator. To avoid confusion, we will follow
the econometric terminology and refer to equation (1) and the related
assumptions as the model, whereas DEA, SFA, CNLS, and StoNED are
referred to as estimators. In this terminology, “DEA model” or “SFA model”
refer to the specific assumptions regarding the variables of model (1).

The literature of efficiency analysis has conventionally focused on fully
parametric or nonparametric versions of model (1). Parametric models
postulate a priori a specific functional form for f'(e.g., Cobb-Douglas, translog,
etc.) and subsequently estimate its unknown parameters. In contrast, axiomatic
nonparametric models assume that f satisfies certain regularity axioms (e.g.,
monotonicity and concavity), but no particular functional form is assumed. At
this point, we must emphasize that the term nonparametric does not necessarily
imply that there are no restrictive assumptions. It is not true that the
assumptions of a nonparametric model are necessarily less restrictive than
those of a parametric model. For example, the fully nonparametric DEA
estimator of model (1) is based on the assumption of no noise (i.e., v; = 0 for all
firms 7). Assuming away noise does not require any specific parametric
specification, but it is nevertheless a restrictive assumption. In fact, it is less
restrictive to impose parametric structure and assume v; are identically and
independently distributed according to the normal distribution N(0,5”). Note

that this parametric specification contains the fully nonparametric
“deterministic” case of no noise as its restricted special case, obtained by
imposing the parameter restriction o =0.

In addition to the pure parametric and nonparametric alternatives, the
intermediate cases of semiparametric and semi-nonparametric models have
become increasingly popular in recent years. However, the exact meaning of
this terminology is often confused. Chen (2007) provides an intuitive and
useful definition that we find worth quoting;:

“An econometric model is termed “parametric” if all of its parameters

are in finite dimensional parameter spaces; a model is “nonparametric”

if all of its parameters are in infinite-dimensional parameter spaces; a
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model is “semiparametric” if its parameters of interests are in finite-

dimensional spaces but its nuisance parameters are in infinite-

dimensional spaces; a model is “semi-nonparametric” if it contains
both finite-dimensional and infinite-dimensional unknown parameters

of interests”. Chen (2007), p. 5552, footnote 1.

Note that according to the above definition both the semiparametric and semi-
nonparametric model contain a nonparametric part and a parametric part. The
distinction between the terms semiparametric and semi-nonparametric is
subjective, dependent on whether we are interested in the empirical estimates
of the nonparametric part or not. The same model can be either semiparametric,
if our main interest is in the parameter estimates of the parametric part and the
nonparametric part is of no particular interest, or semi-nonparametric, if we are
interested in the results of the nonparametric part.

Model (1) can be interpreted as a neoclassical or frontier model
depending on the interpretation of the disturbance term (cf., Kuosmanen and
Fosgerau, 2009). The neoclassical model assumes that all firms are efficient
and disturbances are random, uncorrelated noise terms. Frontier models
typically assume that all or some part of the deviations from the frontier are
attributed to systematic inefficiency.

Table 1 combines the criteria described above to identify six alternative
estimation methods commonly used for estimating the variants of the unified
model (1), together with some canonical references. On the parametric side,
OLS refers to ordinary least squares, PP means parametric programming,
COLS is corrected ordinary least squares, and SFA is stochastic frontier
analysis (see, e.g., Kumbhakar and Lovell, 2000, for an introduction to the
parametric approach to efficiency analysis). The focus of this chapter is on the
axiomatic nonparametric and semi-nonparametric variants of model (1): CNLS
refers to convex nomparametric least squares (Section 3), DEA is data
envelopment analysis (Section 4.1), C?NLS is corrected convex non-

parametric least squares (Section 4.2), and StoNED is stochastic
nonparametric envelopment of data (Section 5).
Table 1. Classification of methods
Parametric Nonparametric
OLS CNLS (Section 3)
Central tendency Cobb and Douglas (1928) Hildreth (1954)
Hanson and Pledger
(1976)
PP DEA (Section 4.1)
Si traint Aigner and Chu (1968) Farrell (1957)
1gn constralnts Timmer (1971) Charnes et al. (1978)
Deterministic
frontier COLS CNLS (Section 4.2)
2ot timation Winsten (1957) Kuosmanen and Johnson
step estimatio Greene (1980) (2010)
SFA StoNED (Section 5)
. . Aigner et al. (1977) Kuosmanen and
. Meeusen and Vanden Broeck Kortelainen (2012)

(1977)




3. Convex nonparametric least squares

In this section we consider the special case of model (1) where the composite
error term ¢ consists exclusively of noise v, and there is no inefficiency (i.e., we
assume u = (). This special case is relevant for modeling firms that operate in
the competitive market environment, which meets (at least by approximation)
the conditions of perfect competition considered in microeconomic theory. We
will relax this no inefficiency assumption from Section 4 onwards, but the
insights gained in this section will be critical for understanding the
developments in the following sections.

In the case of a symmetric zero-mean error term that satisfies E(g;) = 0
for all 7, the expected value of output conditional on inputs equals the value of
the production function, that is,

E(y, [x)=E(f(x)+E(s)=f(X,).
Therefore, in this setting the production function f can be estimated by
nonparametric regression techniques. Note that the term “regression” refers to
X,).

Hildreth (1954) was the first to consider nonparametric regression

the conditional mean E(y,

subject to monotonicity and concavity constraints in the case of a single input
variable x (see also Hanson and Pledger, 1976). Kuosmanen (2008) extended
Hidreth’s approach to the multivariate setting with a vector-valued x, and
coined the term convex nonparametric least squares (CNLS) for this method.
CNLS builds upon the assumption that the true but unknown production
function f belongs to the set of continuous, monotonic increasing and globally
concave functions, F,, imposing exactly the same production axioms as
standard DEA.

The CNLS estimator of function f'is obtained as the optimal solution to
the infinite dimensional least squares problem

min Y (7~ £ (x))
subject to 2)
JeF,

The functional form of f is not specified beforehand. Rather, the optimal
solution will identify the best-fit function f from the family F,. Note that set

F, includes an infinite number of functions, which makes problem (2)

impossible to solve through brute force trial and error. Further, problem (2)
does not generally have a unique solution for any arbitrary input vector x, but a
unique solution exists for estimating f for the observed data points
(x;,¥,), i =1,...,n. Therefore, we will next discuss the estimation of f for the

observed data points and extrapolation to unobserved points in sub-section 3.2.
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3.1 CNLS estimator for the observed data points
A unique solution to problem (2) for the observed data points
(x,,¥,), i=1,...,n, can be found by solving the following finite dimensional

quadratic programming (QP) problem

n
min z (SI.CNLS )
a.p.e -1

subject to

YVi=o;+ ﬁ;xi + giCNLS Vi 3)

a, +PBx, <a, +B,x;, Vh,i
B,>0Vi

where «, and B, define the intercept and slope parameters of tangent
hyperplanes that characterize the estimated piece-wise linear frontier (note that
BX, = B,%, + X, +...+ f,%, ). Symbol £™° denotes the CNLS residual,
which is an estimator of the true but unobserved &, =v,. Note that in (3) the

Greek letters are variables and the Latin letters are parameters (i.e., (x;, y;) are
observed data).

Kuosmanen (2008) introduced the QP formulation (3), and proved its
equivalence with the infinite dimensional optimization problem (2).
Specifically, if we denote the value of the objective function in the optimal
solution to the infinite dimensional CNLS formulation (2) by SSE,,,; (SSE =

the sum of squares of errors), and that of the finite QP problem (3) by SSE,,,

then the equivalence can be stated as follows.

Theorem 1: SSE,, . = SSE,,, .

Proof. See Kuosmanen (2008), Theorem 2.1.

The equivalence result does not restrict to the objective functions, the
optimal solution to problem (3) also provides us unique estimates of function f
for the observed data points. Once the optimal solution is found, we will add

“hats” on top of &,, B,, and £, and refer to them as estimators.” In other

words, «,, B,, and & are variables of problem (3), whereas estimators &, ,

B,, and £ provide the optimal solution to problem (3). Given &, and f,

from (3), we define

,’(‘-CNLS (x)=4, +ﬁ;X‘ =y —&M, “)

i i i

" In application, when estimators are calculated for a specific data set we will refer to these as
estimated parameters.
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This estimator of function f'satisfies the following properties:

Theorem 2: In the case of the neoclassical model with no inefficiency,

f MS(x,) is a unique, unbiased and consistent estimator of f(X,) for the

observed data points (X,,y,), i=1,...,n.

Proof. Uniqueness is proved by Lim and Glynn (2012), Proposition 1.
Unbiasedness follows from Seijo and Sen (2011), Lemma 2.4. Consistency is
proved under slightly different assumptions in Seijo and Sen (2011), Theorems
3.1 and 3.2, and Lim and Glynn (2012), Theorems 1 and 2.

The constraints of the QP problem (3) have the following compelling
interpretations.® The first constraint of the least squares formulation (3) is a
linear regression equation. However, the CNLS regression does not assume
linear f: note that coefficients «;, and B, are specific to each observation i.
Using the terminology of DEA, ¢, and B, are directly analogous to the
multiplier coefficients of the dual formulation of DEA. The inequality
constraints in (3) can be interpreted as a system of Afriat inequalities (compare
with Afriat, 1967, 1972; and Varian, 1984). As Kuosmanen (2008) emphasizes,
the Afriat inequalities are the key to modeling the concavity axiom in the
general multiple regression setting.

Coefficients ¢, and B, should not be misinterpreted as parameters of the
estimated function f, but rather, as parameters characterizing tangent
hyperplanes to an unknown production function f. These coefficients
characterize a convex piece-wise linear function, to be examined in more detail
the next sub-section. At this point, we must emphasize that we did not assume
or restrict the domain F, to only include piece-wise linear function. In fact, it

turns out that the “optimal” functional form to solving the infinite dimensional
least squares problem (2) is always a convex piece-wise linear function
characterized by coefficients ¢, and B, . However, this optimal solution is

unique only for the observed data points.

3.2 Extrapolating to unobserved points

In many applications we are interested in estimating the frontier not only for
the observed data points, but also for unobserved input vectors x. Although the
CNLS estimator is unique for the observed data points, there is no unique way
of extrapolating the CNLS estimator to unobserved points. In general, the
optimal solution to the infinite dimensional least squares problem (2) is not
unique, but there exists a set of functions f~ € F," that solve the optimization

problem (2). Formally, we denote the set of alternate optima to (2) as

8 Note is formulation is written for ease of interpretation. Other formulations might be
preferred to improve computational performance.



- {f* ‘f* —argmin Y ( —f(x,-)f} -

Kuosmanen (2008) characterizes the minimum and maximum bounds for
the functions f* € F,. It turns out that both bounds are piece-wise linear

functions. However, only the minimum bound satisfies the postulated
monotonicity and concavity properties. To resolve the non-uniqueness issue,
Kuosmanen and Kortelainen (2012) appeal to the minimum extrapolation
principle and propose to use the lower bound

mln

FOS (x) = mlﬂn{a+ﬂx|a+ﬁx > fMS(x ) Vi=1,... } (5)

CNLS
min

Note that the lower bound f is simply the DEA estimator (single output,

variable returns to scale) applied to the observed inputs x; and the fitted outputs

s (x;) obtained from equation (4). The lower bound function satisfies the

postulated properties of monotonicity and concavity. We can make the
following connection between the lower bound (5) and the infinite dimensional
CNLS problem (2).

Theorem 3: Function f CNLS

i Stated in equation (5) is one of the optimal
solutions to the infinite dimensional optimization problem (2). It is the unique
lower bound for the functions that solve problem (2), formally

FOS (x) < f*(x) forall xe R” and " e Fy.

mm

Proof. See Kuosmanen (2008) Theorem 4.1.

Note that while /¥ is unbiased and consistent for the observed points

x; (Theorem 3), the use of the piece-wise linear minimum function /S will
cause downward bias in finite samples as we apply the minimum extrapolation
principle to extrapolate to unobserved points x. Within the observed range of
data, the downward bias will diminish as the sample size increases.

It is also worth noting that the optimal solution to the QP problem (3)

does not necessarily produce unique coefficients ¢, and §,. Although fniﬁ’“ is
a unique lower bound, consistent with the minimum extrapolation principle, the
coefficients &, and P, obtained as the optimal solution to (5) need not be

unique either. It is well-known in the DEA literature that these multiplier
coefficients are not unique in the vertices of the piece-wise linear function.

° In addition to the use of DEA to identify the lower bound function, there is a more
fundamental connection between CNLS and DEA, to be explored in Section 4.
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3.4 Computational issues

The CNLS problem (3) has linear constraints and a quadratic objective
function, hence it can be solved by QCP solvers such as CPLEX or MOSEK."°
Standard solvers work well in relatively small sample sizes (50 — 200 firms)
available in the majority of published applications of efficiency analysis.
However, since the number of Afriat inequalities in (3) grows at a quadratic
rate as a function of the number of observations, the computational burden
becomes a significant issue when the sample size increases beyond 300 firms.
Note that adding a new firm to the sample increases the number of unknown
parameters by m+2, and the number of Afriat inequality constraints increases
by 2n. Introducing an additional input variable increases the number of
unknown parameters by #, but there is no impact on the number of constraints.
For these reasons, standard QP algorithms are inadequate for handling large
samples with several hundreds or thousands of observations.

As a first step towards improving computational performance in small
samples and to allow for larger problems to be solved, Lee et al. (2013)
propose to follow the strategy of Dantzig et al. (1954, 1959) to iteratively
identify and add violated constraints. The algorithm developed by Lee et al.
first solves a relaxed CNLS problem containing an initial set of constraints,
those that are likely to be binding, and then iteratively adds a subset of the
violated concavity constraints until a solution that does not violate any
constraint is found. In computational experiments, this algorithm allowed
problems with up to 1,000 firms to be solved. Therefore, this algorithm has
practical value especially in large sample applications and simulation-based
methods such as bootstrapping or Monte Carlo studies. Another recent study by
Hannah and Dunson (2013) implements CNLS in Matlab, reporting promising
results. However, further algorithm development is needed to make the CNLS
problem computable in very large sample sizes containing several thousands or
millions of observations.

4. Deterministic frontiers

In this section we consider another special case of model (1) where the
composite error term & consists exclusively of inefficiency u, and there is no
noise (i.e., v =0). In the SFA literature, this special case is commonly referred
to as the deterministic model. This does not imply, however, that probabilistic
inferences are impossible.

Banker (1993) was the first to show that DEA can be understood as a
maximum likelihood estimator of the deterministic model, with a statistical
(probabilistic) foundation. However, the known statistical properties and
inferences in the DEA literature restrict to the finite sample error that generally
diminishes as the sample size increases. Or stated differently, the model

1% Examples of computational codes for GAMS are available on the StoNED website:
www.nomepre.net/stoned/.
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specification and input and output data in the deterministic model are assumed
to be exact and correct, so the only probabilistic component is the random
sample of observations drawn from the production possibility set. This same
deterministic model and its associated statistical foundation are used for
inference in the bootstrapping methods (e.g., Simar and Wilson, 1998; 2000).
Thus, statistical inference and confidence intervals estimated using
bootstrapping methods only account for uncertainty in sampling and do not
account for other sources of random variation or noise. Thus, bootstrap
confidence intervals of DEA are not directly comparable to confidence
intervals of other models that are genuinely stochastic in their nature (e.g., the
SFA confidence intervals).

It is important to recognize that if the no noise assumption (v = 0) of the
deterministic model does not hold, the statistical foundations of DEA collapse.
The bootstrapping methods to adjust for the small sample are not a remedy
against noise, rather adjusting for the sampling bias can make the DEA
estimator worse if data are perturbed by noise. The stochastic case that includes
both inefficiency and noise simultaneously will be considered in Section 5. The
purpose of this section is to establish some useful connections between the
‘neoclassical’ CNLS and the ‘deterministic’ DEA to develop a unified
framework and pave the way for a stochastic nonparametric StoNED estimator.

4.1 DEA as sign-constrained CNLS
In the single-output case, the variable returns to scale (VRS) DEA estimator of
production function f'can be stated as

f'\DEA(X) =miﬁn{a+ﬁ'x‘0¢+ﬁ’xi >y, Vi=1,...,n}

n n n (6)
= m)ax{z/'ihyh X2> z/lhxh ;z}ih = 1}
. h=1 h=1 h=1

Note the difference between formulations (5) and (6): the former one uses the

CNLS

estimated output values 7; (x;) , whereas in the latter one uses the observed

outputs y;. Otherwise the formulations (5) and (6) are equivalent. The
minimization formulation in (6) can be interpreted as the DEA multiplier
formulation, whereas the maximization formulation of (6) is known as the
DEA envelopment formulation. The duality theory of linear programming
implies that the two formulations are equivalent.

Consider next a version of the CNLS estimator with an additional sign
constraint on the residuals
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. N CNLS—-\2
gg;@, )
subject to
CNLS— \v/l (7)

i

Vvi=a +BX +e
a, +Bx, <a,+PB,x, Vh,i
B,>0 Vi

g™ <0 Vi

Comparing (3) and (7), we see that the only difference is the last constraint of
(7), which is not present in the original CNLS formulation. Due to the sign
constraint, Kuosmanen and Johnson (2010) interpret (7) as an axiomatic,
nonparametric counterpart to the classic parametric programming approach of
Aigner and Chu (1968).

We now establish the formal connection between CNLS and DEA as
follows. Let fﬂ“’(x) denote the piece-wise linear function obtained by

applying equation (5) to the observed inputs x, and the fitted values j, of the

sign-constrained formulation (7).

Theorem 4: The sign-constrained CNLS estimator is equivalent to the DEA
VRS estimator:

> ()= /7 (x)
Proof. Follows directly from Theorem 3.1 in Kuosmanen and Johnson (2010).

Although Theorem 4 was stated in the VRS case, the equivalence of
DEA and sign-constrained CNLS does not restrict to the VRS case. Indeed
parallel results are available for the other standard specifications of returns to
scale by imposing additional constraints on the coefficients ¢, in formulations

(3) or (7) as follows:

Constant returns to scale (CRS): impose ¢, =0 Vi
Non-increasing returns to scale (NIRS): impose ¢, >0 Vi

Non-decreasing returns to scale (NDRS): impose ¢, <0 Vi

Similarly, if the convexity assumption of DEA is relaxed the free disposable
hull (FDH), Afriat (1972), estimator provides the minimum envelopment of
data subject to free disposability. Keshvari and Kuosmanen (2013) show that
the FDH formulation is a sign-constrained special case of isotonic
nonparametric least squares (INLS), which in turn is the concavity relaxed
version of CNLS.
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From a practical point of view, the least squares interpretation of DEA
opens up new avenues for applying tools from econometrics to DEA. For
example, Kuosmanen and Johnson (2010) propose to measure the goodness-of-
fit of DEA estimator by using the standard coefficient of determination from
regression analysis, specifically

®)

Where )7:12 v, is the average output in the sample. The R* statistic

i=1
measures the proportion of output variation that is explained by the DEA
frontier. While this variance decomposition can be applied to any regression
model (including DEA), we note that DEA does not maximize the value of R’
and hence negative R* values are possible for DEA estimators. This variance
decomposition assumes a single output, however, one could compute and
report separate R” statistics for each output.

4.2 Corrected CNLS
DEA builds on the minimum extrapolation principle to estimate the smallest
function that envelops all data points. From the statistical point of view,
insisting on the minimum extrapolation results in a systematic downward bias
(i.e., the small sample error of DEA). For the deterministic model, Kuosmanen
and Johnson (2010) show that a consistent and asymptotically unbiased
estimator is obtained by applying a nonparametric variant of the classic COLS
estimator. The proposed corrected convex nomparametric least squares
(C°NLS) estimator has always better discriminating power than DEA: the
C>NLS frontier envelops the DEA frontier everywhere, and the probability of
finding multiple efficient units in randomly generated data approaches zero.

The C*NLS method combines the nonparametric CNLS regression with
the stepwise COLS approach first suggested by Winsten (1957), and more
formally developed by Gabrielsen (1975) and Greene (1980). In this approach
the most efficient firm in the sample is considered to be fully efficient, and the
remaining inefficiency terms are normalized accordingly relative to the most
efficient firm in the sample. A widely used panel data approach by Schmidt
and Sickles (1984) applies a similar two-step approach (see Section 6.2 for
details).

The essential steps of the C*NLS routine can be described as follows:

Step 1: Apply the CNLS estimator (3) to estimate the conditional mean output
E(y |x,).
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Step 2: Identify the most efficient unit in the sample (i.e.,

~C2NL. ~CNL. . .
4™ = max £ ) as the benchmark. Adjust the CNLS residuals
hE{l ..... n}
according to 4 > = ( r?ax}éfNLS)—éiCNLS.
hell,...,n

Step 3: Apply equation (5) to estimate the minimum function f M5 (x) . Adjust

the minimum function by adding the residual of the benchmark firm to estimate
the frontier using

;pCZNLs (X) _ fONLS (X) + ﬁczNLs

min benchmark

Thus obtained #*™° can be used as measures of inefficiency in the

deterministic setting without noise. The most appealing properties of the
C’NLS estimator can be summarized as follows:

Theorem 5: if o, =0, then the C°NLS estimator is statistically consistent:

plim S (x )= f(x,) foralli=1,...n.

n—»

Proof. Follows from Theorem 4.1 in Kuosmanen and Johnson (2010).

Theorem 6: the C°NLS frontier envelops the DEA frontier, that is,
FENS (x) 2 FPH(x) Vxe R

Proof. Follows from Theorem 4.2 in Kuosmanen and Johnson (2010).

Note that the inefficiency estimates 4 **° are non-negative by construction,

with the value of zero indicating full efficiency. The inefficiency measures can
be converted to Farrell (1957) output efficiency scores (él.cwm €[0,1]) by

using

HCMLS _ _ Yi _ Vi 9
i fCZNLS(Xi) yi_'_uf\iCZNLS . ©

5. Stochastic Nonparametric Envelopment of Data (StoNED)

We are now equipped to consider the general stochastic nonparametric model
that does not restrict to any particular functional form of f and includes both
inefficiency u and stochastic noise v. Before proceeding to estimation, we must
emphasize that the shift from the deterministic case to a stochastic model is
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rather dramatic. For example, measuring the distance from an observed point to
the frontier does not provide a measure of inefficiency if the observed point is
perturbed by noise. While probabilistic inference in the deterministic case only
investigates finite sample error, in the stochastic model the noise term is still
relevant even if the sample size approaches infinity. Clearly, when all data
points are subject to noise enveloping all observations would overestimate the
true frontier production function. The CNLS regression that fits a monotonic
increasing and concave curve through the middle of the cloud of data provides
a natural starting point for the next generation of DEA that can deal with
noise.'' Following Kuosmanen (2006), we refer to this approach as stochastic
nonparametric envelopment of data (StoNED).

Analogous to the parametric COLS and MOLS (modified OLS)
estimators and the nonparametric C*NLS, the StoNED estimator consists of
multiple steps. The main steps can be described as follows (a detailed
description of each step follows below):

Step 1: Apply the CNLS estimator (3) to estimate the conditional mean output
E(y, |x,).

Step 2: Apply parametric methods (e.g., the method of moments or quasi-
likelihood estimation) or nonparametric methods (e.g., kernel deconvolution)

to the CNLS residuals £ to estimate the expected value of inefficiency s .
Step 3: Apply equation (5) to estimate the minimum function g<¥*°(x) . Adjust
the minimum function by adding the expected inefficiency u to estimate the
frontier using

FHN )= g (0) + it

Step 4: Apply parametric methods (see e.g., Jondrow, Lovell, Materov and
Schmidt, 1982, JLMS hereafter) or nonparametric deconvolution (e.g., kernel
smoothing, Horrace and Parmeter, 2011) to estimate firm-specific inefficiency

using the conditional mean E(y, |ngNLS ).

We will next describe each step in detail, noting that each step provides
alternative modeling choices (depending on the assumptions one is willing to
impose), and that it is not necessary to go through all of the steps. We discuss
the information available at the end of each step and the possible motivations
for proceeding to further steps.

! Banker and Maindiratta (1992) consider maximum likelihood estimation of the unified
frontier model subject to monotonicy and concavity constraints. However, their maximum
likelihood problem appears to be computationally prohibitive. We are not aware of any
application of this method. Gstach (1998) presents another early attempt to incorporate noise in
DEA. However, he needs to make a rather restrictive assumption of truncated noise (see Simar
and Wilson, 2011, for sharp critique of this assumption).
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5.1 Step 1: CNLS regression

The CNLS estimator was described in detail in Section 3 under the assumption
of no inefficiency (u = 0). If the observed outputs are subject to asymmetric
inefficiency, as the general frontier model (1) assumes, then the zero-mean
assumption E(g)=0 of regression analysis is violated. Indeed,
E(e)=E(v,—u)=—Eu,)<0 due to the asymmetric non-negative
inefficiency term. Therefore, the CNLS estimator is no longer a consistent
estimator of the frontier production function f.

Recall that CNLS regression estimates the conditional mean. Therefore,
define the conditional mean function g as'

g(X[):E(yi |X;):f(xt)_E(u[)- (10)

If the random inefficiency term u is independent of inputs x, then the CNLS
estimator £“"*(x,) is an unbiased and consistent estimator of function g. The

A~ CNLS

CNLS estimator g~ (Xx,) is obtained by solving the QP problem (3) and
applying equation (4), as already discussed in Section 3, so we do not
reproduce the CNLS formulations again here. Note that function g is simply
the frontier production function f less the expected value of the inefficiency
term u. If the inefficiency term u has a constant variance (i.e., inefficiency term
u is homoscedastic), then the expected value of the inefficiency term u is a
constant, denoted as x . In other words, the CNLS provides a consistent
estimator of the frontier f minus a constant. The constant 4 can be estimated
based on the CNLS residuals £, as discussed in more detail in Section 5.2.
The case of heteroscedastic inefficiency where E(u,) is no longer a constant
will be examined in Section 8.

Even if the data generating process (DGP) involves both inefficiency and
noise, the CNLS estimator may be sufficient in some applications, without a
need to proceed to the further stages. For example, if one is mainly interested
in the relative efficiency rankings, then one could rank the evaluated units in

descending order according to the CNLS residuals £ . Further, if one is

mainly interested in the marginal products of the input factors, the coefficients
B, from (3), which are analogous to the multiplier coefficients (shadow prices)

of DEA, then the CNLS regression provides consistent estimates (Seijo and
Sen, 2011). The following steps described below do not influence the estimates
of marginal products or the relative efficiency ranking of units. If one is
interested in the frontier production function, average (in)efficiency in the
sample, or cardinal firm-specific (in)efficiency estimates, then it is necessary to
proceed further.

12 Note that we use g to denote the conditional mean function when the composite error term
contains inefficiency. This distinction was unnecessary in Section 3 because g(x) = f{x) when
there is no inefficiency present.
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In the first step, one can impose some assumptions about returns to scale
as described in Section 4.1. In addition, alternative modeling possibilities
concern the multiplicative composite error and contextual variables are
discussed as extensions in Section 6 and 7.

5.2 Step 2: Estimation of the expected inefficiency
Given the CNLS residuals £, it is possible to estimate the expected value

of the inefficiency term = E(u,). Note that if the variance of the inefficiency

is constant across firms (the homoscedasticity assumption), then the
expectation is taken unconditional and is constant across firms.

Alternative approaches for estimating x are available. We will next
briefly review the commonly used parametric approaches based on the method
of moments (Aigner et al., 1977), quasi-likelihood estimation (Fan et al.,
1996), and the nonparametric kernel deconvolution (Hall and Simar, 2002).

5.2.1 Method of moments
The method of moments requires some additional parametric distributional
assumptions. The moment conditions are known at least for the commonly
used half-normal and exponential inefficiency distributions, but not for all
distributions considered in the SFA literature (e.g., the gamma distribution). In
the following, we will discuss the commonly assumed case of half-normal
inefficiency and normal noise. Stated formally, we assume

u, ~N*(0,07)
and

v, ~ N(0,07)

The CNLS residuals are known to sum to zero Y &7 =0 (Seijo and

i=l
Sen, 2011). Hence, we can calculate the second and the third central moment of
the residual distribution as

M, =3 G/ (n-1) (11

i=1

M, =3 S (n-1) . (12)

i=1

The second central moment M, is simply the sample variance of the residuals

and the third central moment A, is a component of the skewness measure. The
hats on top of these statistics indicate these statistics are estimators of the true
but unknown values of the central moments. If the parametric assumptions of
half-normal inefficiency and normal noise hold, then the second and the third
central moments are equal to
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MZ:{%_z}of+of (13)

M, —( iJ[l_ﬂg; (14)

Note that the third moment only depends on the standard deviation of the
inefficiency distribution (o, ). Thus, given the estimated M, (which should

be negative), we can estimate o, as

(15)

Subsequently, the standard deviation of the error term o, is estimated based on
(12) as

6, = |M, {}&f . (16)

There has been considerable discussion in the recent literature regarding the
question of how to proceed if M, is positive. Carree (2002), Alminidis et al.
(2009), and Alminidis and Sickles (2012) consider alternative inefficiency
distributions that allow for positive skewness. Simar and Wilson (2010)
maintain the standard distributional assumptions, but suggest instead the use of
bootstrapping method.

5.2.2 Quasi-likelihood estimation
Another way to estimate the standard deviations o, ,o, is to apply the quasi-
likelihood method suggested by Fan et al. (1996) (who refer to it as pseudo-
likelihood). In this approach we apply the standard maximum likelihood (ML)
method to estimate the parameters o,,o,, taking the shape of the CNLS curve
as given (thus the term quasi-likelihood, in contrast to the full information ML
which would also parameterize the coefficients of the frontier).

One of the main contributions of Fan et al. (1996) was to show that the
quasi-likelihood function can be stated as a function of a single parameter (i.e.,

the signal-to-noise ratio 1=0, /o,)" as,

1nL(/1)=—n1nc}+i1nq>[‘gﬂ— Lse, (17)
(e}

i=1

13 The signal-to-noise ratio 4 should not be confused with the intensity weights A, used in the
envelopment formulation of DEA.

19



where

5 =20 —(V226) [ (1+47)]" (18)

12
A 1" ACNLS \2 _ 247
"{( )/ {1 num)}} | >

Symbol ® denotes the cumulative distribution function of the standard normal
distribution N(0,1). We first use (18) and (19) to substitute out &, and & from

(17). We then maximize the quasi-likelihood function (17) by enumerating
over A values, using a simple grid search or more sophisticated search
algorithms. When the quasi-likelihood estimate i that maximizes (17) is
found, we insert A to equations (18) and (19) to obtain estimates of ¢, and o .

Subsequently, we can calculate estimates of &, =64/(1+4) and &, =&/(1+1).

A simple practical trick to conduct quasi-likelihood estimation is to use
ML algorithms available for SFA in standard software packages (e.g., Stata,

ACNLS

Limdep, or R). By specifying the CNLS residuals & as the dependent

variable (i.e., the output) and a constant term as an explanatory variable (input),
we can trick the ML algorithm to perform the quasilikelihood estimation. This
trick can also be used for estimating models involving contextual variables or
heteroscedasticity (to be explored in Sections 7 and 8) by applying standard
ML techniques as a second step.

5.2.3 Nonparametric kernel density estimation for the convoluted residual

While both method of moments and quasilikelihood techniques require
parametric assumptions, a fully nonparametric alternative is available for
estimating the signal-to-noise ratio 4 , as proposed by Hall and Simar (2002).
Their strategy is to search for a discontinuity in the residual density. The logic
is that if an inefficiency term is left truncated, to represent efficient
performance, there must be a discontinuity in distribution. When inefficiency is
convoluted with noise, characterized by a continuous and smooth function, the
discontinuity will still exist in the convoluted variable’s density, the estimated
residuals density. Thus, Hall and Simar suggest estimating the density of the
residual using kernel methods and use these estimates to identify the largest
change in the derivative on the right-side of the distribution (in the case of a
production function and left-side in the case of the cost function). Then under
the assumption of homoscedastic noise and inefficiency, the location of the
largest change in the derivative can be used to estimate the mean inefficiency

in the sample.

More formally, note that residuals £™*° are consistent estimators of

& =¢, +u. Thus, we can apply the kernel density estimator for estimating the
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density function of & . Denote the kernel density estimator by /. Hall and
Simar (2002) show that the first derivative of the density function of the
composite error term ( £, ) is proportional to that of the inefficiency term ( ;)
in the neighborhood of 4. This is due to the assumption that f, has a jump

discontinuity at zero. Therefore, a robust nonparametric estimator of expected
inefficiency y is obtained as

fr=argmax(f".(2)),
where 3 is a closed interval in the right tail of /..

5.3 Step 3: Estimating the frontier production function
In the presence of asymmetric inefficiency, the CNLS estimator estimates the

conditional mean function g(x;)= f(X,;)— . Having estimated the expected
inefficiency g in Step 2, we can easily adjust the CNLS estimator to obtain an

estimator of the frontier . However, recall from Section 3 that the CNLS
estimator of g is unique at the observed points x; (i=1,...,n) but not in
unobserved x. Therefore, Kuosmanen and Kortelainen (2012) recommend
applying the lower bound of g (analogous to equation (5)), defined as

SN (x) = rmgl {a + B'x|a +B'x, > g (x,) Vi=1,..., n} . (20)
We can subsequently add the expected inefficiency u to estimate the frontier
using

i-StoNED (X) — HCNLS

gmin (X) +:[l .

This equation summarizes the relation between the StoNED frontier and the
CNLS estimator as well as the relation between the frontier function f'and the
conditional mean function g. The heteroscedastic case where the shapes of the
frontier f'and the regression E(y,

8 below.

x,) are different will be discussed in Section

5.4 Step 4: Estimating firm-specific inefficiencies

Measuring the distance from an observation to frontier is not enough for
estimating efficiency in the stochastic setting because all observations are
subject to noise. Hence the measured distance to frontier consists of both
inefficiency and noise (plus any error in our frontier estimate).

We must emphasize that even though there exist statistically unbiased
and consistent methods for the estimation of the frontier £, there is no consistent
method for estimating firm-specific efficiencies u in the cross-sectional setting
subject to noise. In a cross-section, estimating firm-specific realizations of a
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random variable u; is impossible because we have only a single observation of
each firm and all observations are perturbed by noise. This is not a fault of the
methods (let alone their developers), it is just impossible to predict a realization
of random variable based on a single observation that is subject to noise.

In the normal — half-normal case, Jondrow, Lovell, Materov and
Schmidt (1982) (JLMS) develop a formula for the conditional distribution of
inefficiency u; given &,. The commonly used JLMS estimator for inefficiency

is the conditional mean E(u,

g ). Given the parameter estimates 6, and &, ,

the conditional expected value of inefficiency can be calculated as'*

¢ io-u
6,6 6,6, +5; é6
E(u;é,) = === — ST . @)
u +O-v Moy Uv\/au +0
l_q) i Zu

where ¢ is the density function of the standard normal distribution N(0,1), ®

is the corresponding cumulative distribution function, and

&= 6 \2/x

is the estimator of the composite error term (compare with (18)). It is worth to
note that there is nothing “stochastic” in the equation (21): the JLMS formula

is a simply a deterministic transformation of the CNLS residuals £** to a new

metric that represents the conditional expected value of the inefficiency term.
Indeed, the rank correlation of the CNLS residuals £ and the JLMS

inefficiency estimates is equal to one (see Ondrich and Ruggiero, 2001). For

the purposes of relative efficiency rankings, the CNLS residuals £ are

sufficient.

Horrace and Parmeter (2011) show that the parametric assumption of the
inefficiency distribution can be relaxed. Their approach still requires the
parametric assumption of normally distributed noise. Rather than assuming a
specific parametric distribution for the inefficiency term, the authors assume
the density of u belongs to the ordinary smooth family of distributions, which
includes exponential, gamma or Laplace (see also Fan, 1991). They apply Hall
and Simar’s (2002) method to estimate the jump discontinuity and thus the
signal to noise ratio. Given the mean inefficiency level the authors are then
able to construct the full density distribution of the inefficiency term using
kernel smoothing and the residuals from a conditional mean estimation.

" Note that equation (21) is slightly different from the formula stated by Kuosmanen and
Kortelainen (2012). Equation (21) is the corrected version stated by Keshvari and Kuosmanen
(2013).
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5.5 Statistical specification tests of the frontier model

As discussed above, the StoNED estimator consists of four steps. If all firms
are efficient and deviations from the frontier are due to noise, the step 1 of
estimating the conditional mean function is sufficient, and there is no reason to
proceed further to step 2 of estimating the mean inefficiency to step 3 shifting
the conditional mean function or step 4 estimating firm specific inefficiencies.
To determine whether one should proceed from step 1 further to step 2, the
efficiency analyst may want to test the data for evidence of inefficiency. If the
results of a statistical specification test indicate that there is significant
inefficiency present, this can be a convincing argument even for skeptics who
believe that markets function efficiently.

ACNLS

The residual ¢ consists of two components, a normally distributed

noise term and a left-truncated inefficiency term. Schmidt and Lin (1984)
propose a test of the skewness of the residuals as a method to investigate if
inefficiency is present. By only looking at the skewness, the method is robust
to the common alternative specifications of the inefficiency term in the
stochastic frontier model. Thus, the null hypothesis is the residuals are
normally distributed and a \/E test calculated as

= @2)

B (m,
Where m, and m, are, the second and third moments of the residuals

respectively. The distribution of the skewness test statistic, \/b_l can be
constructed by a simple Monte Carlo simulation as described in D’Agostino
and Pearson (1973). The authors also provide tables with critical values of the
proposed test statistic for different sample sizes.

Kuosmanen and Fosgerau (2009) consider a fully nonparametric
specification test that relaxes the normality assumption of the noise term. They
show that the same test statistic /b, considered by Schmidt and Lin (1984)
can be used for testing the null hypothesis of a symmetric v against the
alternative hypothesis of skewness. They also recognize the \/b_l can wrongly

reject the null hypothesis if the distribution is symmetric but has fat tails. Thus,

they propose the additional 5, test of the fourth moment
m
b = 4 23
2= ) (23)
Where m, and m, are the second and fourth moments of the residuals

respectively. The null hypothesis is that the distribution is normally distributed.
The alternative hypothesis is that there is non-normal kurtosis. The results of

the /b, and b, tests can be given the following interpretation:
- If the null hypothesis of normality is rejected in the ﬁ test but

maintained in the 5, test, there is strong evidence in favor of a frontier

model.
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- If the null hypothesis of normality is maintained both in the \/E and b,

tests, this supports the hypothesis of a competitive market with no
inefficiency present.

- If the null hypothesis is rejected in the b, test, there may be data
problems or model misspecification. There is no conclusive evidence in
favor or against the frontier model.

It is worth noting that the power of the test depends on how specifically
the null hypothesis and the alternative hypothesis are stated. For example, the
\/I; test of normality is more powerful than the fully nonparametric test of

symmetry. If we are willing to impose some distributional assumptions for the
inefficiency term, then more powerful specification tests are available. For
example, Coelli (1995) proposed a variant of the Wald test to test the null

hypothesis that there is no inefficiency, i.e. o =0, against the alternative
0. >0. While imposing distributional assumptions can increase the power of

the test, it will also increase the risk of misspecification, which would make the
statistical test inconsistent.

6. Extensions

6.1 Multiplicative composite error term
Most SFA studies use Cobb-Douglas or translog functional forms where
inefficiency and noise affect production in a multiplicative fashion. In the
present context, it is worth noting that the assumption of constant returns to
scale (CRS) would also require multiplicative error structure, as will be
discussed in more detail below. Further, a multiplicative error specification
implies a specific model of heteroscedasticity in which the variance of the
composite error term increases with firm size.

Multiplicative composite error structure is obtained by rephrasing model
(1) as

v, =f(x,)-exp(g) = f(x,)-exp(v, —u,) (24)
Applying the log-transformation to equation (23), we obtain
Iny, =In f(x,)+¢,. (25)

Note that the log-transformation cannot be applied directly to inputs x — it must
be applied to the production function f.
In the multiplicative case, the CNLS formulation (3) can be rephrased as
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n
min Z(EiCNLS )2

aphe s

subject to

Iny, =In(¢ +1)+ ™ Vi (26)
¢ +l=a +Px, Vi

o, +Bx, <a,+B,x, Vh,i

B >0 Vi

where ¢ +1 is the CNLS estimator of E(y,

x,). The value of one is added here

to make sure that the computational algorithms do not try to take logarithm of
zero. The first equality can be interpreted as the log transformed regression
equation (using the natural logarithm function In(.)). The second through fifth
constraints are similar to (3) with the exception observed output in (3) is
replaced with ¢ +1. The use of ¢ allows the estimation of a multiplicative

relationship between output and input while assuring convexity of the
production possibility set in original input-output space.'

Note that the log-transformation of a model variable renders the
optimization formulation as a nonlinear programming (NLP) problem. These
constraints are shown separately to illustrate the connection to previous
formulations, but the first equality constraint can be moved to the objective

ACNLS
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function by solving and substituting for . Thus we have a convex solution

space and a nonlinear objective function. This formulation can be solved by
standard nonlinear programming algorithms and solvers. NLP solvers are
available for example in such mathematical programming packages as GAMS,
AIMMS, Matlab, and Lindo, among others.

In the multiplicative case, the CNLS estimator (25) can be applied, or as
the first step of the C*NLS or StoNED estimation routine. The standard method
of moment, quasi-likelihood and kernel deconvolution techniques apply, as

described in Section 5. However, note that in step 3 the frontier production
function is obtained as 7% (x,) = gV (x)-exp(f) , where g5V°(x) is the
minimum function computed using equation (5) and  exp(/) is the estimated
average efficiency. A convenient feature of the multiplicative model is that

exp(u;) can be interpreted as the Farrell output efficiency measure.

6.2 Panel data

In panel data the sample of firms is observed repeatedly over multiple time
periods. Panel data applications are common in the SFA literature and a
number of alternative SFA models involving time invariant and time varying
inefficiency are available (see, e.g., Greene, 2008, Section 2.7). In contrast,

'S If we apply the log transformation directly to input data, the resulting frontier would be a
piece-wise log-linear frontier, which has been considered in the DEA literature by Charnes et
al. (1982) and Banker and Maindiratta (1986). Unfortunately, the piece-wise log-linear frontier
does not generally satisfy the concavity of 1.
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DEA studies ignore the time dimension of the panel data and either pool the
panel together as a single cross section or treat each time period as an
independent cross section.'®

The regression interpretation of DEA examined in Section 4.1 allows us
to combine DEA-style axiomatic frontier with the modern panel data methods
from econometrics. Kuosmanen and Kortelainen (2012, Section 4.1) were the
first consider a fixed effects approach to estimating a time invariant
inefficiency model. Their fully nonparametric panel data StoNED estimator
can be seen as a nonparametric counterpart to the classic SFA approach by
Schmidt and Sickles (1984). In the following we consider the random effects
approach, building upon Eskelinen and Kuosmanen (2013).

Consider a data set where each firm is observed over time periods
t=1,...,T and define a time invariant frontier model

ve=f(x,)—u,+v, Vi=1,..,nVt=1,.,T, 27

where y, is the observed output of firm i in time period ¢, x,, is a vector of
inputs consumed by firm i in time period ¢, and f is a frontier production
function that is time invariant and common to all firms. As before, u, is a firm
specific inefficiency term that does not change over time, and v, is a random

disturbance term of firm 7 in period ¢. Similar to the cross-sectional model, we
assume that u, and v, are independent of inputs x, and of each other."”

To estimate the model (27), we can adapt the standard CNLS estimator as

T n
mll’l Z Z(S[S'NLS)Z

wpe S
subject to

v, =a, +B.x, +e Vi=1,..,nVt=1,.,T (28)
a,+B.x, <a,+B,x, Vhi=1..,nVst=1.,T

B,=20 Vi=1,..,n Vt=1,..,T

it —

where & is the CNLS residual of firm i in period ¢. Note the parameters «,

and P, that define the tangent hyperplanes of the estimated production

function are specific to each firm in each time period. Thus, a piece-wise linear
frontier is estimated with as many as nT hyperplanes.

'® One notable exception is Ruggiero (2004).

"7 The random effects approach to panel data requires that the time invariant inefficiency is
uncorrelated with inputs. This is a strong assumption. Marschak and Andrews (1944) were
among the first to note that rational firm manager will adjust the inputs to take into account the
technical inefficiency, and hence the observed inputs are correlated with inefficiency. In that
case, the random effects estimator is biased and inconsistent. The fixed effects estimator
considered by Kuosmanen and Kortelainen (2012) does not depend on this assumption.
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Given the optimal solution to (28), we compute the firm-specific effects
as

T
ECNLS _ %ZéCNLS (29)

i it
t=1

Following Schmidt and Sickles (1984) we measure efficiency relative to the
most efficient firm in the sample (analogous to the C*NLS approach considered
in Section 4.2) and define

LzStoNED = ( max ECNLS _ECNLS . 30
i h i
he{l,,,.,n}

To estimate the conditional mean function, we can adapt equation (20) to panel
data as

i

89V (x) = nﬁ'}q{a+|5'x|a+ﬁ'x., > M (x,) Vi=1,..,mVt=1,..T}.

The StoNED frontier estimator is then obtained as

]}StoNED (X) _ é,ﬁﬁ” (X) + (hg}axn} EhCNLS) ]

Both the frontier and inefficiency estimators can be shown to be statistically
consistent under the assumptions stated above.

Note that the panel data StoNED estimator described above is fully
nonparametric in the sense that no parametric functional form or distributional
assumptions are required. Still, the model described in equation (27) relies on
two strong assumptions: i) there is no technical progress, and ii) inefficiency is
constant over time. It is possible to relax these assumptions, but this will
require some additional assumptions (typically imposing some parametric
structure). Note that random effects estimator considered above may still be
useful even if inefficiency changes over time. In that case, the inefficiency
estimator can be interpreted as the average efficiency during the time period
under study. Eskelinen and Kuosmanen (2013) propose to examine the
development  trajectories of the normalized CNLS  residuals

ACNLS
&

it

/( max ™) to gain a better understanding how the firm performance

he{l,.n)
has developed during the study period. While the normalized CNLS residuals
contain random noise, a growth trend (or decline) provides a clear indication
that the performance of the firm has improved (or deteriorated) during the
study period.

Based on the previous discussion, two insights are worth noting:
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1) Panel data is not a panacea: while we recognize that panel data
provides a richer set of information, we must also acknowledge that the
intertemporal setting involves complex dynamics such as technological
progress and changes in efficiency over time. The random effects approach to
panel data considered above would be ideal for modeling experimental data
where the researcher can control the input levels and keep the production
technology the same across repeated experiments. However, most panel data
applications of stochastic frontiers use observational data where both the
production function and the level of efficiency will likely change over time.

2) Resorting to a fully nonparametric approach does not imply freedom
from restrictive assumptions. In fact, avoidance of parametric assumptions
often comes at the cost of very restrictive assumptions of no noise, no technical
progress, or time invariant inefficiency. Indeed, insisting on a fully
nonparametric approach can be more restrictive than resorting to some
parametric assumptions that allow for explicit modeling of noise, technical
progress, or time varying inefficiency.

6.3 Multiple outputs (DDF formulation)
The ability to model multiple inputs and multiple outputs has long been touted
as an advantage of DEA over SFA: several DEA papers erroneously state that
SFA cannot deal with multiple outputs. Lovell et al (1994) and Coelli and
Perelman (1999; 2000) were the first to consider a stochastic distance function
model that characterizes a general multiple inputs and multiple outputs
technology using the radial input and output distance functions. The recent
paper by Kuosmanen, Johnson and Parmeter (2013) (henceforth KJP) examines
the assumptions of the data generation process that need to be satisfied for
econometric identification of the distance function when the data are subject to
random noise. Although the econometric estimation of distance functions is
feasible, the well-established drawbacks of SFA still apply: a functional form
needs to be specified for the distance function and parametric assumptions are
typically made to decompose the residual into inefficiency and noise. Further,
the commonly used parametric functional forms have the wrong curvature in
output space, which is a serious problem for modeling joint production of
multiple outputs.'®

Up to this point, the CNLS/StoNED framework has been presented in
the single output, multiple input setting. In this section we describe the CNLS
estimator within the directional distance function (DDF) framework, Chambers

' The wrong curvature violates some of the most elementary properties of production
technologies. For example, the Cobb-Douglas or translog specifications of the distance
function will violates the basic properties of null jointness and unboundedness (see, e.g., Fére
et al., 2005). Another problem concerns the economies of scope (e.g., Panzar and Willig,
1981). For example, the Cobb-Douglas distance function cannot capture the economies of
scope at any parameter values. Since the economic rationale for joint production is rooted to
economies of scope, it is contradictory to apply a technology that exhibits economies of
specialization for modeling joint production.
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et al. (1996, 1998). The CNLS formulation satisfies the axiomatic properties of
the DDF by construction, models multiple inputs and multiple outputs, and
accounts for stochastic noise explicitly, addressing the key limitations of both
DEA and the parametric approaches. In the following we will briefly describe
the stochastic data generating process (DGP) and the estimation of the DDF by
CNLS. See KJP for a more detailed discussion.

The DDF indicates the distance from a given input-output vector to the

boundary of the production possibility set 7' in some pre-assigned direction

(g".g") e R, formally,

Dr(x.y.g".g") :SZ‘P{H\(X—Hg*,ng}’) e7}. (31

Denote the reference input-output vector of firm 7 in the direction (g*,g”) by
(x;,y;). In this section we do not impose any particular behavioral hypothesis,
but it may be illustrative to interpret (x;,y;) as the optimal solution to firm i’s
profit maximization problem. Regardless of the firm manager’s objective, we
assume (x;,y;) lies on the boundary of the production possibility set 7" and

hence the values of the DDF satisfy
Br(xf,y;’,g",g"’)zo Vi=1,...,n (32)

The observed input-output vectors (X,,y,), i=1,...,n, are perturbed in
direction (g*,g”) € R by random inefficiency u, and noise v;, which form
the composite error term &, =u, +v, (note the positive sign of the inefficiency
term u, ). Specifically, the observed data are perturbed versions of the optimal

input-output vectors as follows
(x,,y,)=(x +&g",y, —&g’) Vi=l,..,n (33)

We assume the inefficiency and noise terms satisfy the assumptions discussed
in Section 2. Note that the elements of the direction vector (g*,g”) represent
the impacts of inefficiency and noise on specific input and output variables. If
an element of (g*,g”) is equal to zero, it means that the corresponding input or
output variable is immune to both inefficiency and noise in the DGP. The
larger the value of an element of (g*,g”) in the DGP, the larger the impact of
inefficiency and noise on the corresponding input or output variable is.

Interestingly, Proposition 3 in KJP shows that in the DGP described above the
value of the DDF equals the composite error term:
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BT(X,->yl~agx’gy) =& Vi.

This result provides implicitly a regression equation for estimating the DDF.
We can resort to a similar stepwise procedure as described in Section 5.
The first step is to estimate the conditional mean distance defined as

d(x,'ay,'vgxagy):B(X[:ypgxagy)_;u (34)

Let A denote the set of functions that satisfy the axioms of free disposability,
convexity, and the translation property.'”” We can adapt the CNLS estimator to
the DDF setting by postulating the following infinite dimensional least squares
problem

: C X V\2
mdm;d(xiayi,g .g")

subject to (3%5)
deA

Formulation (35) is a complex, infinite dimensional optimization problem that
cannot be solved by brute-force numerical methods. The main challenge is to
find a way to parameterize the infinitely large set of functions that satisfy the
stated regularity conditions. Here again we apply insights from Kuosmanen
(2008) and show an equivalent finite dimensional representation in terms of
quadratic programming. Consider the following QP problem

n
min Z(giCNLS)Z

aByels

subject to

Yy, =a,+Bx, - Vi=1,..,n

o, +Bx,—vy<a, +Bx,—v,y, Vhi=1..,n (36)
vig' +Bg =1Vi=1..,n

B,20Vi=1,..,n

v, 20Vi=1,..,n

' The translation property, Chambers et al. (1998), states that if we move from the initial point
(x,y) in the direction (g"*,g”) by factor « , i.e., to the point (x+ag",y —ag”), then the
distance to the frontier decreases by « . This property is crucial for the internal consistency of

the DDF and can be seen as an additive analogue of the linear homogeneity property of the
input distance function.
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Note that the residual &™° here represents the estimated value of d, (i.e.,

B(xi,yi,gx,gy)—i-ul.). We also introduce new firm-specific coefficients vy, that
represent marginal effects of outputs to the DDF. The first constraint defines
the distance to the frontier as a linear function of inputs and outputs. The linear
approximation of the frontier is based on the tangent hyperplanes, analogous to
the original CNLS formulation. The second set of constraints is the system of
Afriat inequalities that impose global concavity. The third constraint is a
normalization constraint that ensures the translation property. The last two
constraints impose monotonicity in all inputs and outputs. It is straightforward
to show that the CNLS estimator of function d satisfies the axioms of free
disposability, convexity, and the translation property (see Theorem 3 in KJP).
After solving the CNLS problem, one can proceed to estimate the
deterministic frontier by Corrected CNLS as described in Section 4.2 or the
stochastic frontier by StoNED as described in Section 5.2. Note that the CNLS
estimator described above does not estimate the DDF directly, but rather

D (x,,y,,€,8" )+ E(u,) . If the inefficiency term is homoscedastic, then the
techniques described in Section 5.2 apply for the estimation of E(u,) =z . The

case of heteroskedastic inefficiency term is discussed in Sections 8.2 and 8.3
below. Subsequently, the estimate of the DDF is obtained by shifting the CNLS

estimate of function d in direction (g*,g”) by the estimated expected

inefficiency.

To connect the multi-output DDF to the single output case, it is worth
noting in the single output case, specifying the direction vector as g’=1 and
g'=0, the CNLS problem (36) reduces to

I;r’lpl,lf.:l;:(giCNLS)Z

subject to

y,=o,+Bx, - Vi=1,.,n 37
a,+PBx, <a,+B,x, Vhi=1,.,n

B.>0Vi=1,..,n

This formulation is equivalent to the CNLS formulation (3) developed in
Kuosmanen (2008), except for the sign of the residual &™° in the first

constraint. Note that the DDF has positive values below the frontier and
negative values above the frontier, which explains the negative sign.

6.4 Convex nonparametric quantile regression and percentile regression
While CNLS estimates the conditional mean E(y, |x,) , quantile regression

aims at estimating the conditional median or other quantiles of the response
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variable (Koenker and Bassett, 1978; Koenker, 2005).?" Denoting the pre-
assigned quantile by parameter ¢ €(0,1), we can modify the CNLS problem
(3) to estimate convex nonparametric quantile regression (CNQR) (Wang et al.,
2014) as follows:*'
rﬁnm qi g +(1- q)i &

wps e o P
subject to
vi=a,+Px, +& —¢ Vi
a, +Bx, <a, +B,x, Vh,i (38)
B,=20Vi
& 20Vi

g 20Vi

The CNQR problem differs from CNLS in that the composite error term is now
broken down to two non-negative components & ,&; >0 . The objective
function minimizes the asymmetric absolute deviations from the frontier
instead of symmetric quadratic deviations. The pre-assigned weight g defines
the quantile to be estimated. For example, by setting ¢ = 0.05, the piece-wise
linear CNQR function will allow at most 5 percent of observations to lie above
the fitted function and envelope at most 95 percent of the observed data points.
As the sample size approaches to infinity, the g-order frontier will envelop
exactly g percent of the observed data points (Wang et al., 2014, Theorem 1).
Two important special cases are worth noting. First, if we set g = 0.5, then
CNQR estimates the conditional median (whereas CNLS estimates the
conditional mean). Secondly, as g approaches to zero, the negative deviations
& get a larger weight, and the CNQR approaches to the DEA frontier.

An appealing feature of the CNQR formulation is that its objective
function and all constraints are linear functions of unknown parameters, and
hence the CNQR problem can be solved by standard linear programming (LP)
algorithms. However, a major drawback compared to CNLS is that the optimal
solution to the CNQR problem is not necessarily unique, not even for the
observed data points (X;,»,), i =1,...,n. In econometrics, non-uniqueness of
quantile regression is usually assumed away by assuming the regressors x are
randomly drawn from a continuous distribution. In practice, however, input
vectors x are not randomly drawn, and there may be two or more firms use
exactly the same amounts of inputs (i.e., X, =x; for firms 7/ and j). In our

experience, non-uniqueness of CNQR seems to be particularly a problem in

% In the DEA literature, the quantile frontiers are commonly referred to as robust order-m and
order-a frontiers (e.g., Aragon et al. 2005; Daouia and Simar, 2007). However, while quantile
frontiers are more robust to outliers than the conventional DEA frontiers, the quantile DEA
approaches typically assume away noise.

*! Similar quantile formulation was first considered by Banker et al. (1991), who refer to it as
”stochastic DEA”.
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samples where inputs x are discrete variables. Wang et al. (2014) recognize
non-uniqueness of the CNQR estimator, illustrating the problem with a
numerical example.

One possible way to resolve the non-uniqueness problem is to apply the
asymmetric least squares criterion suggested by Newey and Powell (1987), and
reformulate the CNQR problem as

min qg(erf (1 q>§(e;>2

subject to

y,=a, +Bx, +& —& Vi

a,+Bx, <a,+B,X, Vh,i (39)
B, >0 Vi

& 20Vi

g =20Vi

To our knowledge, this asymmetric least squares formulation has not been
considered before; we will henceforth refer to it as convex asymmetrically
weighted least squares (CAWLS). The CAWLS problem differs from CNQR
only in terms of the objective function, which now minimizes the asymmetric
squared deviation instead of the absolute deviations. In the case of the linear
regression, Newey and Powell (1987) show that the properties of the
asymmetric least squares estimator are analogous to those of the quantile
regression, but the asymmetric least squares can be more convenient for
statistical inferences. In the present context, we hypothesize that the use of the
quadratic loss function similar to CNLS ensures that the optimal solution to the
CAWLS problem is always unique for the observed data points
(x;,¥,), i=1,..,n. We leave confirming or rejecting this hypothesis as an open

question for future research. Besides the question of uniqueness, the statistical
properties of both CNQR and CAWLS would require further research.

CNQR and CAWLS formulations allow one to estimate the g-quantile or
g-expectile frontiers directly, without a need to impose parametric
distributional assumptions for the inefficiency and noise terms or resort to
stepwise estimation along the lines described in Section 5. This is one of the
attractive properties of CNQR and CAWLS. For the purposes of efficiency
analysis, however, the use of quantiles or asymmetric weighted least squares is
not a panacea. It is important to stress that the distance from the frontier,

ACNOR

measured as &' goAMES

=& -& or & =& —& (note: in both cases the residuals
satisfy &', =0 Vi), should not be interpreted as a measure of inefficiency, as
the distance to frontier also includes noise. To estimate conditional expected
value of inefficiency along the lines of JLMS, we still need to resort to
stepwise estimation. One possibility is to replace CNLS by CNQR or CAWLS
as the first step of the StoNED procedure outlined in Section 5. Of course,

residuals £ or £ can be used as such for relative performance
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rankings, but such performance rankings obviously depend on the chosen
parameter value of g. Wang et al. (2014) examine the specification of g for
frontier estimation, showing that the optimal value of ¢ is a monotonically
decreasing function of the signal to noise ratio A=0,/0,. One may set the
value of ¢ based on subjective judgment, but in real world applications
(consider, e.g., regulation of electricity distribution networks; see Kuosmanen,
2012; Kuosmanen, Saastamoinen and Sipildinen, 2013), some objective criteria
for specifying ¢ would be important.

One appealing feature of the g-quantile and g-expectile frontiers is that
they are robust to heteroscedasticity. Therefore, testing of and dealing with
heteroscedasticity provide one promising application area for the CNQR and
CAWLS techniques. If the composite error term is homoscedastic, then the
quantile and expectile frontiers should have similar shapes at different values
of q. Newey and Powell (1987) apply this idea for testing heteroscedasticity.
We return to this issue in more detail in Section 8.

7. Contextual variables

A firm’s ability to operate efficiently often depends on operational conditions
and practices, such as the production environment and the firm specific
characteristics for example technology selection or managerial practices.
Banker and Natarajan (2008) refer to both wvariables that characterize
operational conditions and practices as contextual variables. Currently two-
stage DEA (2-DEA) is widely applied to investigate the importance of
contextual variables as summarized by the citations included in Simar and
Wilson (2007). However, its statistical foundation has been subject to sharp
debate between Simar and Wilson (2007, 2011) and Banker and Natarajan
(2008) (see also Hoff, 2007; McDonald, 2009). In this section we shed some
new light on this debate following Johnson and Kuosmanen (2011, 2012).

It is important to note that Simar and Wilson (2007, 2011) do not
consider stochastic noise in their DGP. In contrast, Banker and Natarajan
(2008) introduce a noise term that has a doubly-truncated distribution,
following the DEA+ approach by Gstach (1998). In this setting, Johnson and
Kuosmanen (2012) show that the 2-DEA estimator of contextual variables is
consistent under more general assumption that those stated by Banker and
Natarajan (2008) and criticized by Simar and Wilson (2011). Further, Johnson
and Kuosmanen (2012) employ the least squares formulation of DEA to
develop a one-stage DEA method (1-DEA) for estimating the effects of the
contextual variables. Relaxing the peculiar assumption of truncated noise,”

2 We label this assumption as peculiar because it contradicts standard statistical assumptions,
namely, the residual term is often model as normally distributed because a mixture of a large
number of unknown distributions is approximately normal in finite samples and
asymptotically normal. The large number of unknown distributions is a result of measurement
errors, modeling simplifications, and other sources of noise. Thus, the motivation for truncated
normal distribution used in Gstach (1998) and Banker and Natarajan (2008) is lacking and
peculiar as also noted by Simar and Wilson (2011). Johnson and Kuosmanen (2012) argue this
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Johnson and Kuosmanen (2011) develop stochastic (semi-) nonparametric
envelopment of z-variables data (StoNEZD).

Taking the multiplicative model described in Section 6.1 as our starting
point, we introduce the contextual variables, represented by r-dimensional
vectors z, that represent the measured values of operational conditions and

practices, to obtain the following semi-nonparametric, partial log-linear
equation

Iny, =1nf(X,-)+5'Z,»+V,-_”,-- (40)

In this equation, parameter vector § =(5,...5,)" represents the marginal effects

of contextual variables on output. All other variables maintain their previous
definitions.

In the following sub-sections we will present two-stage DEA (2-DEA),
one-stage DEA, and StoNEZD estimators. First, the 2-DEA estimator is
described and the statistical properties of it are discussed. Given the
assumptions necessary for the consistency of two-stage DEA method we then
present the one-stage alternative. The joint estimation avoids the bias in the
DEA frontier being transmitted to the parameter estimates of the coefficients
on the contextual variables; however, the frontier estimated is still the
minimum envelopment of the data and thus does not account for noise in the
production model or input/output data. To account for stochastic noise,
StoNEZD is introduced in 7.3.

7.1 Two-stage DEA

The literature on 2-DEA includes a number of variants. This sub-section
follows the approach by Banker and Natarajan (2008). The two stages of their
2-DEA method are the following. In the first stage, the frontier production
function / is estimated using the nonparametric DEA estimator formally

stated as (5). The DEA output efficiency estimator of firm 7 is stated as

él.D A=y £ (x;) and computed as

(O™ = max {G‘HyiSzzzl/lhyh;xizzzzlﬂhxh; ::I/lhzl} (41)

OcR, AR

In the second stage, the following linear equation is estimated using OLS or
ML

lnél.DEA =a+0'z, +& =10, (42)

i >

truncation may come from an outlier detection procedure that would remove extreme
observations from the analysis. However, in this case 1-DEA (introduced below) would still
be preferred to 2-DEA because the bias introduced in two-stage estimation.
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where the intercept & captures the expected inefficiency and the finite sample

bias of the DEA estimator, and the composite disturbance term &’ ”* captures

the noise term v; and the deviations of u; from the expected inefficiency u. Note
that the dependent variable has the “hat” because the DEA efficiency estimate
is computed beforehand using (41), whereas the parameters on the right hand
side of (42) are estimated using OLS or ML in a second stage.

Johnson and Kuosmanen (2012) state that the 2-DEA estimator is
statistically consistent in the case of truncated noise as shown by Banker and
Natarajan (2008), however, the assumptions required for consistency in Banker
and Natarajan are unnecessarily restrictive.

Let Z denote a nxr matrix of contextual variables. Assume the noise

terms are truncated as |vl.| <V™ and denote v =(1,,...,v,)". Denote the domains
of vectors x and z by D, and D, , respectively. Then the statistical

consistency of the 2-DEA estimator can be established under the relaxed set of
assumptions as follows.

Theorem 7: If the following five assumptions are satisfied

(1) sequence {(y,,X,,Z,), i=1,...,n} is a random sample of independent
observations,
(i1) limZ'Z./ n is a positive definite matrix,

(iii)  noise term v has a truncated distribution: |V| <r"i, .7 >o0,
(iv)  elements of domain D, are bounded from above or below such that
8'z has a finite maximum ¢ =maxd'z at a point z° € argmaxd'z,
zeD, zeD,
W) the joint density f'is continuous and satisfies f(x,z°,0,V*)>0 for
all xe D_,

then the 2-DEA estimators are statistically consistent in the following sense

plim /P2 (x,) = f(x,)-exp(V ™ +¢) foralli = 1,...n,

n—0

plim6>™** =

n—om

Proof. See Johnson and Kuosmanen (2012), Theorem 1.
This theorem by Johnson and Kuosmanen (2012) generalizes the
consistency result by Banker and Natarajan (2008) result by relaxing the

following two assumptions:

1) inputs and contextual variables are statistically independent,
2) the effect of contextual variables is one-sided: Z > 0,6 <0.
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Note that the DEA frontier does not converge to the true frontier 7, it
converges to f(x)-exp(V'" +¢) (i.e., the frontier augmented by the maximum

noise ¥ under the ideal conditions represented by z¢ ) thus estimation of the
frontier requires observing firms that are operating efficiently and are operating
in the best environment and happen to get a noise drawn close to the upper
bound 7",

Consistency is a relatively weak property. In practice a data set will be
finite in size and probably not as large as we would like. However, Johnson
and Kuosmanen (2012) are able to provide the explicit form of the bias in the
2-DEA estimator. Specifically it depends on the bias of the DEA frontier (

f PEAY as follows:

Bias(3™"") = ~(Z'2)"'Z'| Bias(/"* (X)) |, (43)
where

E(In P (x,)) = f(x,)-exp(V'" +¢)
Bias( /™™ (X)) = :

E(In " (x,))~1In f(x,)-exp(V'" +¢)

Thus, the bias of the first-stage DEA estimator carries over to the second-stage
OLS regression. Importantly, the bias of the second-stage OLS estimator is due
to the correlation of Z and bias of the first-stage DEA estimator. In summary
we would like to emphasize two critical points about 2-DEA.

1) correlation of inputs and contextual variables does not influence the
statistical consistency of 2-DEA estimator as long as the columns of X
and Z matrices are not linearly dependent.

2) the bias of the DEA frontier in the first-stage carries over to the
second-stage OLS estimator through the correlation of the DEA frontier
with the contextual variables.

We note that statistical independence of inputs and contextual variables does
not necessarily guarantee that Bias( /"™ (X)) is uncorrelated with Z. Thus, 2-
DEA does not suffer from some of the problems noted by Simar and Wilson
(2011) and in fact requires significantly weaker assumptions than Banker and
Natarajan (2008) suggest. However, the DEA frontier is always biased
downward in a finite sample and thus this bias may be transferred to the
estimation of the effect of the contextual variables. The following two sub-
sections propose alternatives building on the regression interpretation of DEA
which do not suffer from this bias.

37



7.2 One-stage DEA

The fundamental problem of the 2-DEA procedure is that the impact of the
contextual variables Z is not taken into account in the first stage DEA. This
problem has been recognized in the SFA literature, where the standard
approach is to jointly estimate the frontier and the impacts of the contextual
variables (e.g., Wang and Schmidt, 2002). In the similar vein, the least squares
regression interpretation of DEA described in Section 4.1 allows us to estimate
the DEA frontier and the coefficients o jointly. Specifically, we can introduce
the contextual variables to the least squares formulation of DEA, stated as the
QP problem (7), to obtain:

n
min Z (SQ_DEA )

@.B.5.0.5 4

subject to

Iny, =In(g +1)+8'z, + & " Vi

¢ +l=a,+Bx; Vi (44)
o, +PBx, <a,+B,x, Vh,i

B,>0 Vi

g P <M Vi

Notable differences compared to the problem (7) concern the use of the log-
transformation to enforce the multiplicative formulation of the inefficiency

term (compare with Section 6.1) and the truncation of the residual & “* at

point ¥* . Note that by setting V" =0 restricts the noise term to zero, and the
I-DEA formulation reduces to the joint estimation of the effect of the
contextual variables and the classic deterministic DEA frontier where all
input/output data is observed exactly and residuals are non-positive.

Note further that the parameter vector 8 is common to all observations,
and hence it can be harmlessly omitted from the Afriat inequalities that impose
convexity. In fact, the contextual variables can be interpreted as inputs that
have constant marginal products across all firms® (i.e., we can think of matrix
Z as a subset of X for which B, =B, Vi, ;).

The statistical properties of the 1-DEA estimator generally depend on the
specification of the truncation point V" . Performance of the 1-DEA estimator
has been investigated via Monte Carlo simulations in Johnson and Kuosmanen
(2012) where the authors find that 1-DEA performs well even when the
truncation point is misspecified. However, the assumption of truncated noise
(i.e., |v,.|SVM) is non-standard and debatable (see, e.g., Simar and Wilson,

2011). While the consistency of 2-DEA critically depends on this assumption,
the CNLS estimator allows us to harmlessly relax it. The next sub-section

 This interpretation would vary slightly if the 8; is negative. Then the contextual variable
would be an output which would reduce the firm’s ability to produce y.
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discusses the StoNED estimator with z-variables that does not rely on the
truncated noise assumption.

7.3 StoNED with z-variables (StoNEZD)
Relaxing the assumption of truncated noise, we can apply CNLS to jointly
estimate the expected output conditional on inputs and the effects of the
contextual variables. Johnson and Kuosmanen (2011) were the first to explore
this approach, referring to it as StoNED with z-variables (StoNEZD).
StoNEZD incorporates the contextual variables to the stepwise procedure
sescribed in Section 5. In the following, we will focus on the CNLS estimator
applied in the first step: steps 2 — 4 follow as described in Section 5, and are
hence omitted here.

To incorporate the contextual variables in step 1 of the StoNED
estimation routine, we can refine the multiplicative CNLS problem as follows:

n
min Z(giCNLS )2

@ Bo.pe

subject to

Iny, =In(g +1)+8'z, + & Vi 45)
¢ +1l=0a,+Px, Vi

a,+Bx, <a, +B,x, Vh,i

B, >0 Vi

Note that problem (45) is identical to (44), except that the truncation constraint
& <V Vi has been removed. Therefore, the least squares residuals are
unrestricted, and hence problem (45) is a genuine conditional mean regression
estimator.

Denote by 8°"*%? the coefficients of the contextual variables obtained
as the optimal solution to (45). Johnson and Kuosmanen (2011) examine the
statistical properties of this estimator in detail, showing its unbiasedness,
consistency, and asymptotic efficiency.”* Most importantly, the authors show
that the conventional methods of statistical inference from linear regression
analysis (e.g., t-tests, confidence intervals) can be applied for asymptotic
inferences regarding coefficients 8. Their main result can be summarized as
follows:

 Johnson and Kuosmanen (2012) report some Monte Carlo evidence of the finite sample
performance of the StoNEZD estimator.
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Theorem 8
If the following conditions are satisfied

i) sequence {(y,.,xi,zl.), i=1,...,n} is a random sample of independent

observations,
ii) lim Z'Z/ n is a positive definite matrix,

iii) the inefficiency terms w and the noise terms v are identically and
independently distributed (i.i.d.) random variables with Var(u)=c.1 and

Var(v)=oc’l,

then the StoNEZD estimator for the coefficients of the contextual variables (

5S’ONEZD) is statistically conmsistent and asymptotically normally distributed

according to:
6y N@. (02 + 002 T) ).
Proof. See Johnson and Kuosmanen (2011), Theorem 2.

This theorem extends the standard result of asymptotic normality of the
OLS coefficients to the StoNEZD estimator of the contextual variables. In
other words, even though model (40) includes a nonparametric function in
addition to a linear regression function, the presence of the nonparametric
function does not affect the limiting distribution of the parameter estimator in

the linear part. In addition, Johnson and Kuosmanen (2011) show that the

SStoNEZD

estimator converges at the standard parametric rate, despite the

presence of the nonparametric part in the regression equation. Therefore, we
can apply the standard techniques from regression analysis such as #-tests and

confidence intervals for asymptotic inferences.

8 StoNEZD

A simple trick to compute standard errors for is to run OLS

regression where the contextual variables Z are regressors and the dependent
variable is the difference between the natural log of observed output
subtracting the natual log of the input aggregation plus 1, specifically
Iny, —In(4 +1)=8'z, + £ . This OLS regression will yield the same

SStoNEZD

coefficients that were obtained as the optimal solution to problem

(45), * but also return the standard errors and other standard diagnostic
statistics such as t-ratios, p-values, and confidence intervals.

> Note that this two-stage regression procedure is not subject to the problems of the 2-DEA
procedure because we do control for the effects of the contextual variables in the first stage
CNLS regression. It is just a computational trick to calculate the standard errors, but it can also
serve as a simple diagnostic check that the solution to problem (32) is indeed optimal with
respect to the contextual variables.
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8. Heteroscedasticity

Up to this point we have assumed that the composite error term is
homoscedastic, implying the variance parameters o, and o are constant

across all firms. This is a standard assumption both in regression analysis and
in the parametric literature of frontier estimation (e.g., Aigner et al., 1977).
However, this assumption is not always realistic in applications.

We can relax the assumption of constant o, and o, and allow these

2

parameters to be firm specific (i.e., 0'3’1. and o,;,), and potentially dependent

on inputs x and contextual variables z. We stress that the least squares
approach considered in this paper enables us to apply standard econometric
techniques of testing and modeling heteroscedasticity considered in the SFA
literature (see, e.g., Kumbkahar et al., 1991; Caudill and Ford, 1993; Caudill et
al., 1995; Battese and Coelli, 1995; Hadri, 1999; and Kumbhakar and Lovell,
2000). The purpose of this section is to provide a brief review of how some of
those techniques could be adapted for the purposes of CNLS and StoNED.

The first question to consider is how would heteroscedasticity affect the
CNLS and StoNED estimators if we simply ignore it? Like standard OLS, the
CNLS estimator remains unbiased and consistent despite heteroscedasticity. A
weighted CNLS estimator (to be considered below) might be more efficient,
provided that the heteroscedastic variance parameters can be estimated with a
sufficient precision. However, heteroscedasticity is not a major problem for
CNLS, and trying to improve its performance through explicit modeling and
estimation of heteroscedasticity may not be worth the effort. Further research
would be needed to investigate this issue.

The stepwise StoNED procedure is more sensitive to heteroscedasticity,
as discussed by Kuosmanen and Kortelainen (2012). At this point, we need to
distinguish  between 1) heteroscedastic inefficiency term and ii)
heteroscedasticity noise term. Ignoring type ii) heteroscedasticity is less
harmful in the StoNED estimation because the skewness of the CNLS residuals
is still driven by the homoscedastic inefficiency term, the expected value of
inefficiency is constant, and hence the shape of the regression function (i.e., the

conditional mean E(y[|xl,)) is identical to that of the frontier production

function f. Type i) heteroscedasticity will cause bigger problems, as
Kuosmanen and Kortelainen (2012) recognize. If the inefficiency term is
heteroscedastic, then the expected value of inefficiency is no longer constant,
and the shapes of the regression function and the frontier production function
will diverge. To take both types of heteroscedasticity explicitly into account, in
Section 8.2 we will consider a doubly-heteroscedastic model where both
inefficiency and noise terms are heteroscedastic. But before proceeding to the
explicit modeling of heteroscedasticity, we describe a diagnostic test of the
homoscedasticity assumption.
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8.1 White test of heteroscedasticity applied to CNLS
Although the heteroscedastic inefficiency term would bias the StoNED
estimator, it is important to emphasize that we do not need to take the
homoscedasticity assumption by faith. Standard econometric tests of
heteroscedasticity such as the White or the Breusch-Pagan tests are directly
applicable to CNLS residuals. In this sub-section we briefly describe how the
White (1980) test can be applied following Kuosmanen (2012).

The null hypothesis of the White test is that composite error term is
homoscedastic, that is, Ho: o,, =0, ; Vi, j. The alternative hypothesis states

there is heteroscedasticity, that is, Hi: o,, # o, ; for some i,j. Note that the

alternative hypothesis does not assume any particular model of
heteroscedasticity, which makes the White test compatible with the
nonparametric approach. Postulating a more specific alternative hypothesis can
increase the power of the test. However, the White test provides a useful
starting point for more explicit modeling of heteroscedasticity.

The White test can be built upon the OLS regression of the following

equation: *°

. m l m_J
(8iCNLS)2 —a +ZIB]‘X0‘ +5227fxyxi11 +¢&;. (46)
Jj=

Jj=1 h=1

In words, we explain the squared CNLS residual by a constant, all m input
variables, and their squared values and cross-products using a flexible
quadratic functional form as an approximation of the true but unknown
heteroscedasticity effects. The test statistic is

W =nR?,

where R* is the coefficient of determination of the OLS regression of equation
(46). Under the null hypothesis of homoscedasticity, the test statistic W follows

the »*(J) distribution with J degrees of freedom, where J=1+m+m(m+1)/2
is the number of «, 8,y parameters on the right hand side of equation (46). If
the value of test statistic W falls below the critical value of y°(J) at the given

level of significance (note: the usual significance levels considered are 5% and
1%), then the null hypothesis of homoscedasticity is maintained. In that case,
the test result provides some additional reassurance that the original model is
well specified. On the other hand, if the value of test statistic W exceeds the

critical value of y°(J) at the given level of significance, then the null

26 In econometrics, heteroscedasticity is usually modeled as a function of explanatory variables
(i.e., inputs x). In contrast, the SFA literature usually models heteroscedasticity as a function of
z-variables that may contain some (or all) of the inputs x. For clarity, in this section we follow
the econometric convention and focus on heteroscedasticity with respect to inputs x and
discuss the additional z-variables below.
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hypothesis is rejected, and hence explicit modeling of heteroscedasticity is
needed.

The White test is usually presented in terms of the regressors of the
original regression model (i.e., in terms of inputs x in the present context).
Note that we are mainly concerned about possible heteroscedasticity with
respect to inputs, which would cause bias in StoNED estimation. If we are
interested in heteroscedasticity with respect to contextual variables z, we can
also introduce the z-variables to the regression equation (46). We only need to
adjust the degrees of freedom J to include the number of additional parameters
for the z-variables, otherwise the test procedure is conducted as described
above.

If significant heteroscedasticity is found, the White test does not indicate
whether heteroscedasticity is in the inefficiency term or the noise term, or
possibly both. To our knowledge, general diagnostic testing of whether
heteroscedasticity is in the inefficiency or noise term has attracted little
attention in the SFA literature. The doubly-heteroscedastic model (following
Hadri, 1999; and Wang, 2002), to be examined in detail in the next sub-section,
does allow us model heteroscedasticity in both inefficiency and noise terms,
and also test for significance of the parameter estimates. However, such
specification tests are conditional on the assumed model of heteroscedasticity,
including the parametric distributional assumptions regarding inefficiency and
noise. An appealing feature of the White test is it does not assume any specific
model of heteroscedasticity and it does not depend on the distributional
assumptions. Further, the parameter estimates of the auxiliary regression (46)
and the associated diagnostic tools can provide some insights on which specific
inputs (or contextual variables) are most likely causes of heteroscedasticity,
and whether heteroscedasticity effect appears to be linear or non-linear, and
whether the interaction terms (cross-products) are significant. These insights
can be useful for specifying parametric models of heteroscedasticity, to be
considered in the next sub-section.

Before proceeding, note that quantile estimation (see Section 6.4) could
provide a promising nonparametric route for testing heteroscedasticity. If the
composite error term is homoscedastic, then the g-quantiles should have
approximately same shape for different values of parameter ¢. Provided that
the number of input (and output) variables is sufficiently small, plotting the
estimated g-quantiles at different values of ¢ allow one to visually inspect
whether homoscedasticity holds by a reasonable approximation. If
homoscedasticity is violated, the g-quantile plots can help one to identify in
which part of the frontier heteroscedasticity occurs, and which inputs are likely
sources of heteroscedasticity. In the context of linear quantile regression,
Koenker and Bassett (1982) propose formal tests of heteroscedasticity based on
the comparison of the estimated g-quantiles at different values of ¢g. Newey and
Powell (1987) apply a similar idea for the g-expectiles, noting that the g¢-
expectiles could also be used for testing symmetry of the composite error term
(i.e., whether the asymmetric inefficiency term u is significant; compare with
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Section 5.5). Adapting these tests to the nonparametric CNQR method for
estimating g-quantiles and the CAWLS method for estimating g-expectiles
introduced in Section 6.4 provides an interesting challenge for future research
further discussed in section 9.

8.2 Doubly-heteroscedastic model
If the White test indicates significant heteroscedasticity, it is difficult to tell a
priori whether heteroscedasticity is due to the inefficiency term, the noise term,
or possibly both. Therefore, we will consider the general doubly-
heteroscedastic model where both the inefficiency and noise term can be
heteroscedastic. The doubly-heteroscedastic model was first considered by
Hadri (1999). Our formulation below is mainly based on Wang (2002) and
Kumbhakar and Sun (2013).

Consider the unified model described in Section 2. In this section we
assume the inefficiency term has a truncated normal distribution and the noise
term is normally distributed according to

u,~N"(p,,0,,)
v, ~N(0,02))

The pre-truncation mean of the inefficiency term is assumed to be a linear
function of inputs:

M=, +B'x;.

The pre-truncation standard deviation of the inefficiency term and the standard
deviation of the noise term are specified as

0.~ exp(a, + 'Y'X,')

o, =exp(a, +p'x,)

Note that the exponent functions are commonly used in this context to
guarantee that the standard deviations are positive at all input levels. While the
specific parametric assumption may appear arbitrary, this model is one of the
most flexible and general parametric specifications of heteroscedasticity. Note
that the truncated normal distribution where both the pre-truncation mean and
variance depend on the input level allows that the location (mean) and the
shape (variance)of the inefficiency distribution can change as a function of
inputs.

This formulation of heteroscedastic inefficiency term implies that the
expected value of inefficiency can be stated as (see Wang, 2002; Kumbhakar
and Sun, 2013)
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E(u, |ui >0)=0,; [A, +M] 47)

and ¢ and @ are the density function and the cumulative distribution function
of the standard normal N(0,1) distribution, respectively. The expected
inefficiency is no longer a constant, but its dependence on inputs x has a well-
defined functional form conditional on the parametric assumptions stated
above. This allows us to both estimate the heteroscedasticity effects
empirically, and take heteroscedasticity explicitly into account in the StoNED
procedure.

8.3 Stepwise StoNED estimation under heteroscedasticity

To estimate the doubly-heteroskedastic model, we can adjust the stepwise
StoNED routine presented in Section 5 as follows (a more detailed elaboration
of each step follows below):

Step 1: Apply the CNLS estimator (3) to estimate the conditional mean output
g (x)=EW, [x).
CNLS

Step 2: Apply quasi-likelihood estimation to the CNLS residuals ¢ to

estimate the parameters of u,, o,

u,i?

and o, .

Step 3: Adjust the conditional mean function by adding the expected

X, 150,

u,i

inefficiency E(y,

) to estimate the frontier for the observed data points

using
7StoNED ~ CNLS ~ooA
£ x)=g (Xi)+E(ui|Xi’/ui’O-u,i)’

Then apply equation (5) to estimate the frontier )}ni"fNED(X) for unobserved

points.
Step 4: Apply JLMS method to estimate firm-specific inefficiency using the

g"CNLS ) .

i

conditional mean E(u,

In step 1, we estimate the conditional mean function g(x). The CNLS
estimator remains unbiased and consistent estimator of the conditional mean g,
despite heteroscedastic composite error term (similar to OLS). However, note
that in the case of the doubly-heteroscedastic model

g(X;):E(yi |Xi) :f(xi)_E(ui|xi)~
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Note that the shape of function g can differ from that of frontier f because
E(u,

x,) is a function of inputs x. We will take this into account in step 3 where
we shift function g upward, not by a constant 4, but rather, by the estimated

E(u,|x,) 2"t is also worth noting that function g is not necessarily monotonic

increasing and concave even if the production function f satisfies these axioms

because —E(y,|x,) can be a non-monotonic and non-concave function of inputs

(note: there does exist parameter values for which -E(y,

x,) is indeed
monotonic and concave in the domain of non-negative x). To apply CNLS in
step 1, we need to assume that the curvature of the production function f
dominates and that function g is monotonic increasing and concave (at least by
approximation). Even if one assumes that f'exhibits CRS, it is recommended to
apply the VRS specification in step 1 to allow for the nonlinear effects of
E(u,

x,), and impose CRS later in step 3.

Having estimated the parameters of the inefficiency and noise terms, it is
possible to test if monotonicity and concavity assumptions of g hold. If g does
not satisfy monotonicity and concavity, we can substitute CNLS by techniques
depending on which axiom does not hold. Specifically, if the concavity
assumption is violated, it is possible to apply isotonic nonparametric least
squares (INLS) suggested by Keshvari and Kuosmanen (2013). Another
possibility is to estimate order-g quantile frontier using either CNQR or
CAWLS techniques introduced in Section 6.4. Specifying the correct value for
q will ensure that the quantile frontier inherits the monotonicity and concavity
properties of frontier f even if the heteroscedastic inefficiency term is a non-
monotonic or non-convex function of inputs. Indeed, we do not insist on
estimating the conditional mean in step 1, the conditional quantile is equally
suitable.

In step 2 it is natural to resort to the pseudolikelihood method since we
utilize a rather heavily parametrized model of heteroscedasticity. As already
noted in Section 5, a simple practical trick to conduct quasi-likelihood
estimation is to use the standard ML algorithms available for SFA in standard
software packages (e.g., Stata, Limdep, or R). In this case we specify the
CNLS residuals £ as the dependent variable (i.e., the output) and a constant

term as an explanatory variable (input), and the ML algorithm performs the
quasilikelihood estimation. For example, the frontier modeling tools of Stata
allows one to include “explanatory variables for technical inefficiency variance
function (uhet)” and “explanatory variables for idiosyncratic error variance
function (vhet)” if the distribution of inefficiency term is specified as half-

" In the context of SFA, Kumbhakar and Lovell (2000) state strongly that the stepwise MOLS
procedure cannot be used in the case of heteroscedastic inefficiency. They correctly note that
the OLS estimator used in the first step yields biased estimates of not only the intercept but
also the slope coefficients of the frontier. However, Kumbhakar and Lovell seem to overlook
the possibility of eliminating the bias by shifting function g upward by a conditional
expectation of inefficiency that depends on inputs x.
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normal or exponential. It is also possible to include covariates to the truncated
normal specification of the inefficiency term, but in this specification the noise
term is assumed to be homoscedastic. Hung-Jen Wang has developed a Stata
package for the model described in Wang (2002), which can be used for
estimating the model estimating the heteroscedasticity model described
above.”®

Having estimated the underlying parameters of u,o,;,0 it is

recommended to apply standard specification tests available for ML (i.e.,
likelihood-ratio, Lagrange multiplier, or Wald test) to test restrictions =0,

v=0, and p=0. For example, if the null hypothesis of p=0 is not rejected,

then the assumption of homoscedastic noise term can be maintained. Similarly,
if o, =0, p=0, and y =0, then the model of heteroscedastic truncated normal

inefficiency term reduces to a homoscedastic half-normal inefficiency term. If
the specification tests provide evidence that some of the heteroscedasticity
effects are not significant, we would recommend excluding those effects from
the heteroscedasticity model and estimating step 2 again.

One additional issue is in the context of linear regressionthat efficiency
of the least squares estimator can be improved by applying weighted least
squares or generalized least squares. Having estimated the firm specific o

, it is possible to return back to step 1 and apply a weighted version of the
CNLS estimator. Defining &;,=6;, +6.,

2., we can modify the objective
function of the CNLS problem as
(SF'AVLS )2

5,

n
min z
i=1

maintaining the original constraints of (3). Interpreting the given 1/67, as

firm-specific weights, this weighted least squares formulation of CNLS is
directly analogous to the generalized least squares (GLS) estimator of the
linear regression model.”” However, as yet there is no evidence that the use of
weighted least squares can improve efficiency of the CNLS estimator.
Intuitively, the direct analogue with GLS would suggest that weighted least
squares can be more efficient than the unweighted CNLS under
heteroscedasticity. On the other hand, recall that CNLS approximates the
underlying function g by a piece-wise linear curve. Since the hyperplane
segments of the unweighted CNLS formulation provide local approximation,
assigning larger or smaller weights to certain regions of the frontier may not
have much effect on the piece-wise linear approximation. In our limited
experience, introducing the weights 1/62, does not necessarily have any

3 The Stata package is available from Wang’s homepage:
http://homepage.ntu.edu.tw/~wangh/.

¥ Note that in the CNLS context we prefer to introduce weights to the objective function
instead of applying variable transformations (as in GLS) because the monotonicity and
concavity constraints must hold for the original input variables x.
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notable impact on the results. Further, we need to be able to estimate o, with

a sufficient precision. Overall, we are somewhat skeptical whether the possible
benefit in terms of improved efficiency of the CNLS estimator can outweigh
the cost of additional effort of conducting the weighted least squares
estimation. This forms an interesting open question for future research.

In step 3 we adjust the conditional mean function g estimated in step 1
(or alternatively, the conditional g-quantile) for the estimated expected
inefficiency to estimate the frontier f. Note that the conditional mean E(y,

is no longer a constant, but a function that depends on inputs x. Using equation
(47), we can write the estimated expected inefficiency as the function of inputs
and parameter estimates as

E(u |Xl’/ul’ uz) :Ll; Ll,t—"
= (@ +Bx) +expl@ +7x)| g G PN ) fg datBX
exp(e; +7'X;) exp(e; +7'X;)

This expression reveals that in the doubly-heteroscedastic model the expected
value of inefficiency has a linear part originating from the mean &, =, +B'X,,

and a nonlinear part driven by 0, ; =exp(¢ +7'X;) . Having estimated the

parameters of the inefficiency term, it is useful to evaluate whether —E (i,

is monotonically increasing and concave within the observed range of inputs

(e.g., plot the values of —E(i

possible violations of monotonicity and concavity). To ensure that the
estimated frontier function satisfies the postulated axioms despite minor
violations of monotonicity and concavity (which may be just artifacts of the
arbitrary parametric specification of the heteroscedasticity model), we apply
the minimum extrapolation principle and utilize the DEA method stated in

equation (5) to obtain the convex monotonic hull of the fitted values

fSNEP(x ) of observations i=1,...,n, which yields the frontier estimator

S NED
T ().

In step 4, we can compute firm specific inefficiency estimates using the

JLMS conditional mean E(u, | sOMSy using the firm specific parameter

estimates /,G,,,6,, . Note that the expected inefficiency E(y,

u,i’

X, 44,,6,;)
applied for shifting the conditional mean function g to estimate frontier 1 does
not depend on the heteroscedasticity of the noise term. However, the JLMS
efficiency does also depend on the heteroscedasticity of the noise term &, ;.

Kumbhakar and Sun (2013) discuss this issue in more detail, showing that the
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marginal effect of inputs on the conditional JLMS efficiency also depend on
the heteroscedasticity of the noise term.

9. Directions for future research

This chapter has provided an updated and elaborated presentation of the CNLS
and StoNED methods. Bridging the gap between the established DEA and SFA
paradigms, these methods represent a major paradigm shift towards a unified
and integrated methodology of frontier estimation and efficiency analysis that
has a considerably broader scope than the conventional DEA and SFA tools.
This chapter did not only review previously published method developments
and their extensions, but also presented some new innovations, including the
first extension of the StoNED method to the general case of multiple inputs and
multiple outputs, and the first detailed examination of how heteroscedastic
inefficiency and noise terms can be modeled within the CNLS and StoNED
estimation frameworks.

We see CNLS and StoNED not only as the state of the art in axiomatic
nonparametric frontier estimation and efficiency analysis under stochastic
noise, but also a promising way forward. Kuosmanen and Kortelainen (2012)
stated explicitly 12 promising avenues of future research on the StoNED
methodology. In the following we will provide an updated version of a 12 point
research program, indicating the work that has already been done as well as
work that remains to be done.

1. Adapting the known econometric and statistical methods for dealing with
heteroskedasticity, endogeneity, sample selection, and other potential sources
of bias, to the context of CNLS and StoNED estimators.”

In this chapter we presented the first detailed examination about the modeling
of heteroscedasticity in the inefficiency and noise terms. Kuosmanen, Johnson
and Parmeter (2013) examine the endogeneity problem from a novel
perspective employing directional distance functions. Obviously, a lot of
further work is needed in this area. Alternative models of heteroscedasticity as
well as estimation techniques deserve careful attention. The convex
nonparametric quantile regression and the convex asymmetrically weighted
least squares methods discussed in Section 6.4 and the generalized least
squares estimator discussed in Section 8.3 provide potential methods for
modeling and testing heteroskedasticity. The use of instrumental variables in
CNLS for modeling measurement errors, sample selection, and other types of
endogeneity bias should be investigated.

“2. Extending the proposed approach to a multiple output setting.”

In this chapter we also presented the first extension of the StoNED method to
the general case of multiple inputs and multiple outputs using the directional
distance function (see also Kuosmanen, Johnson and Parmeter, 2013). Further
work is also needed in this area. Alternative representations of the joint
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production technology, including the radial input and output distance functions,
should be investigated. The main challenge in modeling joint production is not
the formulation of the mathematical programming problem for the CNLS
estimator (the usual DEA problem) or deconvoluting the composite error term
(the usual SFA problem). The main challenge is the probabilistic modeling of
the data generating process in the case of joint production, involving multiple
endogenous inputs and outputs. Kuosmanen, Johnson and Parmeter (2013)
provides a useful starting point in this respect.

“3. Extending the proposed approach to account for relaxed concavity
assumptions (e.g., quasiconcavity).”

Keshvari and Kuosmanen (2013) presented the first extension in this direction,
applying isotonic regression that relaxes the concavity assumption of CNLS.
This approach estimates a step function analogous to free disposable hull
(FDH) in the middle of the data cloud. The insights of Keshvari and
Kuosmanen could be useful for examining the intermediate cases between the
non-convex step function and the fully convex CNLS, allowing one to
postulate quasiconcavity or quasiconvexity in terms of some variables (e.g.,
inputs, or input prices in the estimation of the cost function). Many
opportunities for future research exist in this direction.

“4. Developing more efficient computational algorithms or heuristics for
solving the CNLS problem.”

Lee et al. (2013) is the first contribution in this direction. The algorithm
developed in that paper first solves a relaxed CNLS problem containing an
initial set of constraints, those that are likely to be binding, and then iteratively
adds a subset of the violated concavity constraints until a solution that does not
violate any constraint is found. We believe the computational efficiency can be
improved considerably by clever algorithms and heuristics (see, e.g., Hannah
and Dunson, 2013). This is an important avenue for future research in the era
of “big data”.

“S. Examining the statistical properties of the CNLS estimator, especially in
the multivariate case.”

Seijo and Sen (2011) and Lim and Glynn (2012) were the first to address this
challenge, proving statistical consistency of the CNLS estimator in the general
multivariate case under slightly different assumptions about the data generating
process. Further research on both the finite sample properties (e.g.,
unbiasedness or bias, efficiency, mean squared error) and the asymptotic
properties (e.g., rates of convergence, limiting distributions) under different
assumption of the data generating process would be needed. In this respect,
Groeneboom et al. (2001a,b) provide an excellent starting point. The statistical
properties of the convex nonparametric quantile regression (CNQR) and the
convex asymmetrically weighted least squares (CAWLS) methods introduced
in Section 6.4 also deserve further research.
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“6. Investigating the axiomatic foundation of the CNLS and StoNED
estimators.”

CNLS regression builds upon the same axioms as DEA, and StoNED
estimation applies the minimum extrapolation principle to obtain a unique
frontier function that satisfies the postulated axioms. However, it would be
compelling if the technology characterized by CNLS and/or StoNED could be
stated rigorously from the axiomatic point of view as the intersection of all sets
that satisfy the stated axioms and satisfy axiom X. It remains unknown whether
axiom X exists, and how it could be formulated explicitly.

“7. Implementing alternative distributional assumptions and estimating the
distribution of the inefficiency term by semi- or nonparametric methods in the
cross-sectional setting.”

In this chapter (Section 5.2) we have provided an extensive review of
possibilities, including parametric and semi-parametric alternatives. In
principle, the quasilikelihood method is applicable to any parametric
specification of inefficiency distribution. The most promising way forward
seems to be the nonparametric kernel deconvolution of the CNLS residuals,
following the works by Hall and Simar (2002) and Horrace and Parmeter
(2011). One challenge that remains is to adapt the JLMS conditional mean
inefficiency to the semi-parametric setting where no parametric distribution is
specified for the inefficiency term.

“8. Distinguishing time-invariant inefficiency from heterogeneity across firms,
and identifying inter-temporal frontier shifts and catching up in panel data
models.”

Kuosmanen and Kortelainen (2012) present a simple fixed effects approach to
modeling panel data, assuming time-invariant inefficiency. In this chapter we
considered the parallel random effects approach, following Eskelinen and
Kuosmanen (2013). Ample opportunities for extending these basic techniques
to more sophisticated semi-parametric models allowing for technical progress
and time-varying inefficiency are available. Indeed, panel data models have
been extensively studied both in general econometrics and in the SFA
literature. Both the insights and practical solutions from panel data
econometrics can be imported to the CNLS and StoNED framework.

“9. Extending the proposed approach to the estimation of cost, revenue, and
profit functions as well as to distance functions.”

Kuosmanen and Kortelainen (2012) consider the estimation of cost function in
the single output case under CRS. They made these restrictive assumptions
because the cost function must be a concave function of input prices. However,
if the standard convexity axiom of the production possibility set holds, then the
cost function is a convex function of outputs. A challenge that remains is to
formulate the CNLS problem such that we can estimate a function that is
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convex in one subset of variables (i.e., outputs), but concave in another subset
of variables (i.e., input prices). Kuosmanen (2012) estimates a multi-output
cost function using StoNED, but the input prices were excluded by assuming
that all firms take the same input prices as given.

“10. Developing a consistent bootstrap algorithm and/or other statistical
inference methods.”

An earlier version of Kuosmanen and Kortelainen (2012) proposed to adapt the
parametric bootstrap method proposed by Simar and Wilson (2010) for
drawing statistical inferences in the StoNED setting. However, the anonymous
reviewers were not convinced that the proposed boostrap method is necessarily
consistent when applied to the CNLS residuals. Indeed, one should be wary of
naive bootstrap and resampling approaches that produce invalid and misleading
results. Since Kuosmanen and Kortelainen were not able to prove consistency
of Simar and Wilson’s bootstrap procedure in the CNLS case, the suggestion
was excluded from the published version. We stress that adapting one of the
known variants of the bootstrap method to the context of CNLS and StoNED
would be straightforward. The challenge is to prove that the chosen version of
bootstrap method is consistent under the stated assumptions about the data
generating process. Another promising approach is to test if CNLS estimates
differ significantly from the corresponding estimates obtained using parametric
methods (see Sen and Meyer, 2013). As for the contextual variables, Johnson
and Kuosmanen (2012) prove that conventional inference techniques from
linear regression analysis (e.g., t-tests, p-values, confidence intervals) can be
applied for the parametric part (i.e., the coefficients of the contextual
variables).

“11. Conducting further Monte Carlo simulations to examine the performance
of the proposed estimators under a wider range of conditions, and comparing
the performance with other semi- and nonparametric frontier estimators.”

Several published studies provide Monte Carlo evidence on the finite sample
performance of CNLS and StoNED estimators. Kuosmanen (2008) and
Kuosmanen and Kortelainen (2012) provide the first simulation results for
CNLS and StoNED, respectively, focusing on the precision in estimating the
frontier production function f. Johnson and Kuosmanen (2011) present MC
simulations regarding the estimation of the parametric J representing the effect
of a single contextual variable z that may be correlated with input x. Andor and
Hesse (in press) provide an extensive comparison of the performances of DEA,
SFA, and StoNED, mainly focusing on the estimation of the firm specific
inefficiency u;. However, note that all estimators considered are inconsistent in
the noisy setting considered because u; is just a single realization of a random
variable. Kuosmanen, Saastamoinen and Sipildinen (2013) compare
performances of DEA, SFA and StoNED in terms of estimating a frontier cost
function. They calibrate their simulations to match the empirical characteristics
of the Finnish electricity distribution firms. Their simulations demonstrate that
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if the premises stated by the Finnish energy regulator hold, then the StoNED
estimator has superior performance compared to its restricted special cases,
DEA and SFA. As for further research, it would be interesting to compare
performance of CNLS and StoNED with those of other semi- and
nonparametric frontier estimation techniques such as kernel regression and
local maximum likelihood.

“12. Applying the proposed method to empirical data, and adapting the method
to better serve the needs of specific empirical applications.”

The first published application of the StoNED method was Kuosmanen and
Kuosmanen (2009), who estimated the production function from the data of
332 Finnish dairy farms in order to assess sustainability performance of farms.
Subsequently, there have been several applications in the energy sector, both in
production and distribution of electricity. Mekaroonreung and Johnson (2012)
applied StoNED to estimate the shadow prices of SO2 and NOx from the data
of U.S. coal-fired power plants. Thus far, the most significant real-world
application of StoNED has been the study by Kuosmanen (2012) [see also
Kuosmanen, Saastamoinen and Sipildinen (2013) and Dai and Kuosmanen
(2014)]. Based on the results of this study, the Finnish energy market regulator
adopted the StoNED method in systematic use in the regulation of the Finnish
electricity distribution industry, with the total annual turnover of more than €2
Billion. Another real-world application of StoNED is Eskelinen and
Kuosmanen (2013), who assessed inter-temporal performance of sales teams
using monthly data of Helsinki OP-Pohjola Bank, in close collaboration with
the central management of the bank. The results and insights gained in this
study were communicated to the team managers and were utilized for setting
performance targets for sales teams. These empirical applications illustrate the
flexibility and adaptability of the StoNED methodology to suit the specific
needs of the application. The applications also provide motivation for
developing further methodological extensions to meet the requirements of
future applications.

In conclusion, we hope the 12-point program discussed above might
inspire future methodological research along the lines described or along new
avenues that have escaped our attention. We also hope that the methodological
tools currently available would find inroads to empirical applications. In our
experience from both Monte Carlo simulations and real empirical applications,
CNLS and StoNED has proved dependable, reliable and robust, with an ability
to produce results and insights that could not be found using the conventional
methods.
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1. Introduction or even sufficiently similar competitors that could serve as an

appropriate yardstick. Instead of using a discrete set of benchmark

Electricity distribution firms typically enjoy a natural local
monopoly. This creates a need to regulate the distribution sector.
In the theory of regulation, it is well known that the ‘cost-of-
service’ type of pricing does not provide incentives for the
electricity distribution firms to minimize the cost (Laffont and
Tirole, 1993). To determine a more objective yardstick for the
acceptable cost level, Shleifer (1985) suggested comparing the
observed cost of a firm with that of its competitors. However, as
Pollit (2005) points out, it is often difficult to find exactly identical
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firms, one could apply frontier estimation methods to estimate
a continuous frontier cost function that represents the best
practice benchmark. Benchmark regulation has been applied as
an integral part of the regulatory framework in many countries
(Jamasb and Pollit, 2001; Jamasb et al., 2003, 2004). According to
the recent study by Bogetoft and Otto (2011, Ch. 10), at least nine
European regulators currently apply the axiomatic DEA (data
envelopment analysis; Charnes et al., 1978; Farrell, 1957) and the
econometric SFA (stochastic frontier analysis; Aigner et al., 1977), or
some combination thereof.

Ever since the DEA and SFA approaches have been introduced
to regulation, there has been lively debate about the suitability of
these methods for the purposes of regulation (Dassler et al., 2006;
Irastorza, 2003). There is large and growing academic literature on
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the application of DEA and SFA in the electricity distribution
industry (Agrell et al., 2005; Cullmann, 2009, 2012; Forsund and
Kittelsen, 1998; Hjalmarsson and Veiderpass, 1992; Iglesias et al.
2010; Jamasb and Pollit, 2003; Kopsakangas-Savolainen and
Svento, 2008; Korhonen and Syrjinen, 2003; Weyman-Jones,
1991). As yet, however, there is no clear conclusion on which
method is superior. The inconclusive results have raised concerns
about the suitability of any single method for the purposes of
benchmark regulation. Thus, many regulators have recently opted
to use a combination of both DEA and SFA (see also Azadeh et al.
(2009)). In Germany, for example, the regulator estimates effi-
ciency of each firm using both DEA and SFA, and then chooses the
larger of the two estimates (Agrell and Bogetoft, 2007). According
to Bogetoft and Otto (2011; Ch. 10), at least four European
regulators apply some combination of both DEA and SFA.

The Finnish Energy Market Authority (Energiamarkkinavirasto,
EMV) is one of the pioneers in the practical implementation of
benchmark regulation. EMV has used frontier methods as an
integral part of the regulatory model since 2005, starting with
DEA (Korhonen and Syrjanen, 2003), adopting SFA in 2008
(Syrjdnen et al., 2006). In 2010, EMV commissioned several studies
to address the critique of DEA and SFA presented by the distribu-
tion firms and the energy industry. After a rigorous evaluation
process, EMV considered the report by Kuosmanen et al. (2010, in
Finnish) as the most promising attempt to overcome the pitfalls of
DEA and SFA. Following the recommendation of that report, in
2012 EMV replaced DEA and SFA by the new StoNED method
(stochastic semi-nonparametric envelopment of data) introduced by
Kuosmanen and Kortelainen (2012).

The purpose of this paper is to present a systematic comparison
of the DEA, SFA, and a recently proposed StoNED method in the
context of energy regulation. Focusing on the model specifications
actually employed by EMV during the third regulation period in
2012-2015, we compare the efficiency estimates produced by
these three different methods. We also include the average of
DEA and SFA efficiency scores to our comparison. This approach
was applied by EMV during the second regulation period, 2008-
2011. We label it here as naive model averaging (NMA). Our focus
is to examine the observed differences between the methods and
discuss the feasibility of the models in regulatory context. More
importantly, we also compare the implications of the methodolo-
gical choices on the monetary cost targets. While the efficiency
scores obtained with different methods are usually highly corre-
lated, the economic implications in terms of the cost targets are
substantial.

The empirical comparisons show that the choice of the bench-
marking method matters in practice. However, empirical compar-
isons do not allow us to conclude that one method is better than
another. Therefore, we also compare the precision of the estima-
tors in the controlled environment of Monte Carlo simulations.
A novel feature of our simulations is that we calibrate the data
generation process of the simulations to match the essential
characteristics of the EMV data as closely as possible to ensure
the relevance of the simulation evidence for the real-world
regulation. The customized data generation process of the simula-
tions enables us to measure performance of the alternative
estimators in the specific context of the EMV's regulatory frame-
work. Our simulation evidence shows that the StoNED method
outperforms the conventional DEA, SFA, and their average at all
sample sizes considered.

The rest of the paper is organized as follows. Section 2 briefly
describes the regulation of Finnish electricity distribution firms
and the empirical data used in this study. Section 3 briefly
introduces the benchmarking methods considered in this study
(more detailed presentation of the methods is available in the
online Supplement), and compares the empirical cost frontiers

that the methods produce using the data and model specifications
of EMV. Section 4 presents an empirical comparison of the
efficiency estimates produced by the alternative methods. In
Section 5 we briefly comment the implementation of the methods
in the EMV regulatory model. Section 6 presents a systematic
comparison of the methods in the controlled environment of
Monte Carlo simulations. Section 7 summarizes the lessons
learned from this study. Additional materials, including a technical
appendix that provides a more detailed description of the meth-
ods considered, and the computer program used in the simula-
tions, are available online as supplementary materials to this
article (see http://www.sciencedirect.com).

2. Benchmark regulation of electricity distribution in Finland

In the regulation of the Finnish electricity distribution firms,
EMV applies a combination of the traditional revenue cap and the
benchmarking regimes. In the EMV model, all distribution firms
are systematically assessed every year. The annual revenue figures
of each firm are compared with the acceptable level of revenue to
calculate the annual surplus or deficit. The acceptable revenue
figure includes the acceptable total costs plus the acceptable rate
of return for the invested capital, which is calculated based on the
capital asset pricing model. As a part of determining the accep-
table total cost, EMV applies the cost frontier model as a bench-
mark, as will be discussed in more detail below. At the end of the
four-year regulation period, EMV calculates the total surplus or
deficit accumulated over the regulation period, which needs to be
balanced during the next 4-year period. A firm can return the
surplus to the customers by charging lower tariffs in the next
regulation period, whereas the deficit allows a firm to increase its
tariffs in the next regulation periods. Kinnunen (2006) provides
a more detailed review of the EMV model from the perspective of
investment incentives. Kuosmanen (2012) discusses the recent
reforms in the benchmark regulation and the incentives for
improving productivity and efficiency. Further information about
the Finnish regulatory model can be found on the EMV website:
http://www.emvi.fi.

In the current regulation period, in years 2012-2015, the
regulation of the acceptable total cost is based on the following
generic cost frontier:

Inx=1InC(y,y,,y3) +6z+u+v @)

where

x is the observed total cost (TOTEX) (€1000),

C is the frontier cost function,

y1 is the energy transmission (GWh),

y» is the total length of the network (km),

y3 is the number of customers,

z is the proportion of underground cables,

& is the coefficient of the z variable,

u is the random variable representing inefficiency, and
v is the random variable representing stochastic noise.

In this study the cost variable x refers to the total expenditure
(TOTEX), which consists of three components: controllable opera-
tional costs (OPEX), capital expenditures (CAPEX) and the external
supply interruption costs for customers (INT).! The last component

! Our empirical comparison is based on the original data and the model
specification recommended in Kuosmanen et al. (2010) and Kuosmanen (2012).
EMV has made some subsequent modifications to the model and the data. In the
model implemented by EMV, the observed annual capital expenditures (CAPEX) are
included in the acceptable total cost as such, and the benchmark regulation is only
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Table 1
Descriptive statistics of variables.

Variable Mean St. dev. Min. Max.

x=Total cost (€1000) 8418.91 18,047.78 267.81 117,554.10
y1=Energy transmission (GWh) 480.39 971.51 14.81 6599.71
y>=Length of network (km) 4135.27 10,223.27 50.80 67,611.05
y3=No. of customers 35,448.68 71,870.65 24.25 420,473.00
z=Proportion of underground cables 033 0.26 0.01 1.00

can also be viewed as a quality component, as the lack of supply
interventions can be interpreted as an indicator of good service.
Since the outputs are almost time-invariant throughout the
period, all variables are defined as the yearly averages over the
period 2005-2008 (see Kuosmanen (2012), for a discussion).
Before averaging, the total costs are deflated to the prices of
2005. In this specification, inefficiency u represents the average
inefficiency over the evaluation period. Averaging of data also
reduces the variance of the noise term v.

The output variables are the weighted amount of energy
transmitted through the network (y;, GWh, of 0.4 kV equivalents),
the total length of the network (y,, km), and the total number of
customers connected to the network (ys;, number). In y;, the
transmission of electricity at different voltage levels is weighted
according to the average cost of transmission such that the high-
voltage transmission gets a lower weight than the low-voltage
transmission. Note that y, depends on the observed demand for
electricity, whereas outputs y, and y; capture the potential or
latent demand and are thus defined as outputs in the regulatory
model (see Kuosmanen (2012) for further details). In essence,
outputs y, and ys capture the fixed cost of maintaining a sufficient
capacity to provide service for the given network area irrespective
of the actual consumption of electricity.

In addition to the three outputs, the latest EMV specification
introduced a contextual variable z, defined here as the proportion
of underground cables in the total length of the network. The
z-variable is not an input or output as such; it controls the
heterogeneity of the firms and their operating environments. Note
that the contextual variable enters Model (1) in a parametric form,
analogous to the standard regression analysis, while the output
variables can be modeled using either a parametric or nonpara-
metric specification of the cost function C. If nonparametric
specification of C is assumed, it is then appropriate to characterize
Model (1) as a semi-nonparametric, partially linear model of cost
frontier. Modeling contextual variables in this way allows us to
capture the average effect of underground cabling on cost (repre-
sented by the coefficient §), without increasing the number of
explanatory variables included in the nonparametric part which is
subject to the curse of dimensionality (Simar and Wilson, 2008).

Our data consists of 89 Finnish electricity distribution compa-
nies, whose networks cover practically all regions of Finland.
Table 1 presents the descriptive statistics for total costs, three
outputs, and the underground cabling variable, which describes
the operational conditions of a company (see Section 3.1 for
details). Recall that our data are four year averages of years
2005-2008.

Table 1 reveals that the industry consists of a very hetero-
geneous set of firms. For example, the size of companies measured
by the amount of transmitted energy varies from 15 to 6600 GWh
per year. There are also considerable differences in the operating

(footnote continued)
applied to the controllable operational expenditures (OPEX) plus a half (i.e., 50%) of
the interruption costs (INT).

environments of the firms. On average, the proportion of under-
ground cabling is 33% but the range is almost from 1% to 100%. The
proportion of underground cabling is highest in the dense urban
areas. Note that the data also includes some industrial network
operators, which transmit a large amount of energy to a small
number of industrial customers.

3. Comparison of empirical cost frontiers

This section introduces the benchmarking methods considered
in this study by comparing the empirical estimates of the cost
frontiers obtained by each method. We believe the empirical
frontier estimates aptly illustrate the information content and
the comparative advantages of the methods considered. Readers
interested in the technical details of the methods can consult the
technical appendix provided as an online Supplement, or the
references provided below. The StoNED method is presented in
detail in Kuosmanen and Kortelainen (2012) and Kuosmanen
(2012). Detailed presentations of the conventional DEA and SFA
are available in numerous articles and books (Fried et al., 2008).

3.1. StoNED frontier

We start the empirical comparison with the StoNED method,
which EMV adopted for the current regulation period in years
2012-2015. The main appeal of StoNED is its ability to accommo-
date the main advantages of both DEA and SFA: it combines the
non-parametric, piece-wise linear DEA-style frontier with the
stochastic SFA-style treatment of inefficiency and noise. This
makes StoNED more robust to both model misspecification and
noise.” A detailed presentation of the model specification applied
by EMV can be found in Kuosmanen (2012). Therefore, we will
here discuss only some general properties of the method.

StoNED does not require any a priori assumptions about the
functional form of the cost frontier. Similar to DEA, StoNED
imposes general axioms concerning the benchmark technology,
such as monotonicity, convexity, and returns-to scale.> Throughout
this study we assume constant returns to scale to hold for
distribution companies (see Kuosmanen (2012), for details). On
the other hand, StoNED model incorporates the core aspects of SFA
by including both inefficiency and noise as possible sources of
deviation from a benchmark technology. Kuosmanen and
Kortelainen (2012) operationalize the StoNED model by formulat-
ing it as a convex nonparametric least squares (CNLS) problem.

2 Previous published applications of the StoNED method are in the areas of
agriculture  (Kuosmanen and Kuosmanen, 2009), electricity generation
(Mekaroonreung and Johnson, 2012), electricity distribution (Kuosmanen, 2012),
and banking (Eskelinen and Kuosmanen, in press).

3 The term benchmark technology refers to the frontier used as a point of
reference in productivity and efficiency assessment. The axioms of the benchmark
technology represent our ex ante requirements for efficient performance (e.g.,
monotonicity stems from the definition of technical efficiency by Koopmans, 1951).
The underlying production technology does not necessarily need to satisfy all these
axioms.
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Table 2
StoNED marginal costs and average efficiencies by firm groups (CRS).

Table 3
DEA marginal costs by firm groups (CRS).

Group No. of Energy Network No. of Average Group Number Energy Network No. of Average
firms transmission length customers efficiency of firms transmission length customers efficiency
(€ cents/kWh) (€/km) (€/customer) (%) (€ cents/kWh) (€/km) (€/customer) (%)
1 11 0.6043 876.74 0.87 92 1 2 0.5972 0 54.46 100
2 36 0.5597 984.94 1.23 92 2 8 0.5910 489.33 41.28 79
3 10 0.4566 1038.81 1.86 93 3 23 0.5866 846.33 15.42 77
4 3 0.4434 908.77 2225 94 4 3 0.5857 930.62 0 65
5 3 0.4200 970.69 21.00 92 5 12 0.5494 958.45 0 80
6 4 0.3662 964.71 27.86 95 6 2 0.3604 494.77 71.72 85
8 7 0.3493 930.93 3343 91 7 7 0.3504 863.33 45.77 84
9 6 0.3324 983.05 29.61 90 8 3 0.1491 1142.03 0 80
7 3 0.2929 232.21 60.11 92 9 3 0 0 133.71 84
Others 6 96 10 2 0 182.59 128.49 85
1 5 0 606.91 111.63 76
Average 0.4773 930.09 12.94 92 12 16 0 820.00 95.85 83
13 3 0 1069.20 34.67 85
Average 0.3526 762.47 46.20 80
Contextual variables z were introduced by Johnson and
Kuosmanen (2011, 2012). Note that while the frontier itself is
specified in a fully nonparametric fashion, in the second stage the Table 4

inefficiency and noise terms are distinguished by means of some
distributional assumption. Thus, it is appropriate to classify the
method as semi-nonparametric.

The piecewise linear of frontier that StoNED produces allows
the marginal costs differ between the firms. In other words, the
reference unit for the firms may be located at different segments
of the frontier. The linear segments that constitute the frontier
have different slopes. This offers more flexibility in terms of
technology and in addition of the z-variable it partly accounts
for the heterogeneity of the firms.

Table 2 presents the firm-specific estimates of the average
marginal costs for 10 groups of firms, grouped according to the
estimated beta coefficients.* As in DEA, the standard errors for these
coefficient estimates are not readily available. The groups have been
sorted in a descending order according to the marginal cost on
energy transmission. These marginal costs are the most favorable
ones for each company: no company could increase its efficiency by
deviating from the marginal costs implied by StoNED even if the
regulator allowed firms to freely choose their marginal costs.

The average marginal costs are reported in the bottom row of
Table 2. The estimated marginal costs (0.48 c/kWh for electricity
transmission, 930 €/km for network length, and 13 €/user) appear
reasonable based on our experience of this sector (cf., Tables 3 and 4).
Firm-specific coefficients can differ substantially from these average
values. For example, the marginal cost per user is lowest in Group 1,
which consists of firms operating in rural areas, whereas the
marginal cost per user is highest in Group 7, consisting of city firms.
The last column of Table 2 reports the average cost efficiency (CE) of
firms within each group. While there are differences in marginal
costs, the differences in the average cost efficiency levels are
relatively small. This suggests that the method does not system-
atically favor some firms over others due to their operational
environment.

3.2. DEA frontier

EMV applied DEA in the first two regulation periods in 2005-
2007 and 2008-2011 (see Korhonen and Syrjinen (2003), for
further discussion). Similar to StoNED, DEA is an axiomatic,
nonparametric approach to estimate the frontier. In fact,
Kuosmanen and Johnson (2010) have shown that DEA can be

4 See Kuosmanen (2012) for a 3-dimensional graphical illustration of the
estimated StoNED frontier.

Marginal costs of outputs estimated by SFA; in Model A the total network length is
used; in Model B the urban network (y»4) and other network (y,g) are treated as
separate outputs.

Model A Model B
yi1: Energy trans. (€ cents/kWh) 0.61** 0.60™*
(0.000) (0.000)
y2: Network length (€/km) 896.74** -
(0.000)
y2a: Urban network (€/km) - 1115.94**
(0.001)
y2p: Other network (€/km) - 904.06**
(0.000)
y3: No. of customers (€/customer) 25.32 20.12
(0.114) (0.264)

p-Values in parenthesis.
Statistical significance indicated as follows: * refers to 5% significance, ** refers to
1% significance.

obtained as a restricted special case of CNLS formulation of the
StoNED model. Both the methods are based on the same set of
axioms. The only notable difference between the methods is their
assumption about the deviations from the frontier. Whereas
StoNED assumes the deviations to consist from two elements,
inefficiency and noise, DEA assumes only inefficiency. This is
generally seen as the main shortcoming of DEA. DEA is also
sensitive to outlier observations as it fully envelops the data based
on the outermost observation in each dimension. In other words,
often only few observations determine the frontier.

The marginal costs (shadow prices) of outputs estimated by DEA
are presented in Table 3. Analogous to Table 2, firms have been
classified to 13 groups in a descending order with respect to the
marginal cost on energy transmission. The figures are the average
marginal cost in each of the groups. Note that for many groups the
marginal cost equals zero. In particular, the estimated marginal cost
of energy transmission is zero for five groups (29 firms). This can
partly explain why the average of the DEA estimates for the marginal
cost of energy transmission (0.35 c/kWh) is lower than the corre-
sponding StoNED estimate (0.48 c/kWh).

Recall that the DEA frontier envelops all observations, attribut-
ing all deviations from frontier to inefficiency, whereas the StoNED
frontier takes the noise explicitly into account. Therefore, we can
expect that the DEA estimates of firm-specific marginal costs are
generally lower than the corresponding StoNED estimates since
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DEA envelops all data whereas noise is included in StoNED. The
average DEA shadow price is indeed lower than the StoNED
estimate for the network length (DEA: 762 €/km; StoNED: 930
€/km). As for the marginal cost per user, the DEA estimate is
notably higher than the StoNED estimate (DEA: 46 €/user; StoNED:
13 €/user). This implies that the shapes of the estimated DEA and
StoNED cost frontiers differ considerably, particularly for the
output profile of the urban networks that assign a high shadow
price for the number of customers (Groups 9-12 in Table 3).

The rightmost column of Table 3 reports the average efficiency
of firms projected to each facet of the DEA frontier. We note that
the differences in average efficiencies across facets are notably
larger in DEA than in StoNED (compare with Table 2).

3.3. SFA frontier

EMV applied SFA and DEA in parallel during the second regulation
period in 2008-2011. In practice, EMV applied the unweighted
average of the DEA and SFA efficiency scores to set cost reduction
targets for each firm (referred to as NMA in this paper).

The econometric SFA approach requires some parametric
assumptions concerning the functional form of the cost frontier.
The Cobb-Douglas and translog are the most commonly used
functional forms applied in the SFA literature. The SFA model can
be obtained as a special case of the generic cost frontier Model (1),
obtained by imposing some specific functional form for the cost
function C. In fact, SFA results as a restricted as a special case of
StoNED if the functional form is restricted to be linear and it is
assumed that marginal costs are equal for all firms.”

The main shortcoming of SFA is that the functional form assump-
tions are somewhat arbitrary and difficult to justify. In the present
context, most commonly used functional forms fail to capture the
economies of scope in joint production (Syrjdnen et al., 2006). For
example, the standard Cobb-Douglas function is quasi-concave at all
parameter values. This implies the Cobb-Douglas cost function
exhibits economies of specialization rather than economies of scope
which again could give wrong incentives to specialize in provision of
just one output instead of a balanced portfolio of outputs. The
flexible functional forms such as translog are subject to the same
problem, and the larger number of parameters would likely cause
additional problems with multicollinearity. This is why EMV used the
linear functional form for SFA in the previous regulation period.
Linear functional form however assumes that outputs are perfect
substitutes. and thus it tends to favor the “average firm” over the
firms operating with an atypical output profile.

As was apparent from the general regulatory model presented
in Eq. (1), the heterogeneity of the firms must also be taking
account. As a partial adjustment to the heterogeneity of firms and
their operating environments, the total network length y, was
divided in two parts in the SFA model EMV applied in the previous
regulation period 2008-2011), specifically,

Y2 =Yan +Y28: )

where

yoa=length of underground cabled urban network (km), and
yap=length of other network (km).

Treating y2a and y,p as separate outputs in the SFA model, the
marginal cost of the underground cabled urban network is allowed
to be higher than that of the other network. This however is
slightly problematic from the point of view EMV averaging

5 The random parameters SFA models (Tsionas, 2002; Greene, 2005) allow for
heterogeneity across firms by introducing firm-specific coefficients.

approach as now the components of the average are based on
different model specification (see details in the technical appendix
provided in the Supplement).

The SFA estimates of the marginal costs of outputs are presented
in Table 4. For completeness, we report the estimates for the three-
output model where the total network length (y,, Model A) is used
as an output and for the four-output model where the network
length is separated in two components (y,4 and y,g, Model B). The
SFA model is estimated by maximum likelihood assuming CRS (i.e.
the intercept term has been set to zero). In case of SFA, here and in
Section 4, we assume the truncated normal distribution for the
inefficiency distribution, as this is the specification that EMV used
in the previous regulation period, following Syrjdnen et al. (2006).

Comparing the results of Table 4 with the marginal costs
reported in Tables 2 and 3, we find that the marginal costs
suggested by SFA differ from the average marginal costs estimated
by DEA or StoNED. For energy transmission, for example, the
marginal cost estimates obtained by SFA are notably larger than
the average of the StoNED estimates (only for Group 1 in Table 2,
the marginal cost is close to the SFA estimates), and almost twice
as large as the average of DEA estimates (Groups 1-4 in Table 3
yield marginal costs nearly as high as the SFA estimates).

In Model B, the estimated marginal cost of underground cabled
urban network is higher than that of the other network, as
expected. Note that the marginal cost of the total network length
in Model A is lower than the marginal cost of the other network in
Model B. Division of the network length on two parts has little
effect on the marginal cost of the energy transmission, but does
have a notable impact on the marginal cost per user. Clearly, taking
the heterogeneity of firms into account influences the marginal
cost estimates. Recall that the nonparametric DEA and StoNED
methods allow for firm-specific marginal costs, which provides
greater flexibility in terms of the heterogeneity of firms and their
operating environments, as discussed at the end of Section 3.1.

The SFA estimate for the marginal cost per user is relatively
small and insignificant at the conventional significance levels. The
StoNED estimates for the marginal cost per user are larger for
some groups (particularly firms operating in large cities), but the
average of StoNED estimates falls below the SFA estimate. The DEA
estimates are notably larger, for three groups the marginal cost
estimate exceeds €100 per user. For firms operating in rural areas,
the number of customers is not the main cost driver; majority of
Finnish distribution networks operate in rural areas. This explains
why the SFA estimate and the averages of DEA and StoNED
estimates of the marginal cost per user are rather low.

The SFA results reported in Table 4 have been estimated using
the heteroskedasticity correction following Syrjdnen et al. (2006),
who assume that the variances of the inefficiency and noise terms
are proportional to the amount of transmitted energy (y;). It is
likely that the deviations from the cost frontier are dependent
from the company size. In econometrics, the textbook treatment of
such heteroskedasticity is to normalize all variables by y;. The
assumed form of heteroskedasticity however appears completely
arbitrary: one could equally well assume that heteroskedasticity is
driven by any other output of combination of them. To examine
the effect of heteroskedasticity correction in more detail, we have
estimated the SFA model again using each output variable as the
normalizing criterion, and without any normalization. The SFA
models are estimated with modified OLS (MOLS) and the para-
meter estimates of the models with alternative normalizations are
reported in Table 5, both under CRS (the top part) and variable
returns to scale (VRS, the bottom part).®

6 The maximum likelihood estimator of the SFA model fails due to wrong
skewness of residuals in six out of the eight specifications considered. Thus, for this
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Table 5
Impact of normalization on SFA (MOLS estimates).

Table 6
Correlation analysis of efficiency scores.

Normalization

None By By other By
energy network customers

CRS model
Energy (€ cents/kWh) 0.09 1.00%* 0.49** 0.57*
Urban network (€/km) -462.17  1464.38™ -2445.20™** 16,340.92**
Other network (€/km) 1044.65** 916.59** 1367.96** 248.66
Users (€/user) 113.03**  -0.67 56.00%* -62.62
Expected efficiency (%) # 72 § #
R? 0998 0876 0949 0997
VRS model
Constant (t€) 108.85 111.82%%  -183.51%* 713.27*%*
Energy (€ cents/kWh) 0.08 0.90%* 0.56** 0.44%*
Urban network (€/km) -534.79  1067.59** -994.90 -279.20
Other network (€/km) 1053.56™* 854.50** 1412.23** 578.94**
Users (€/user) 113.82**  10.50 50.39™* 40.49
Expected efficiency (%) # 81 8 #
R? 0.997 0.899 0.961 1.000

Statistical significance indicated as follows: * refers to 5% significance, ** refers to
1% significance.

# Indicates negative skewness (negative 6,).

§ Indicates too large a skewness (negative 4 ).

Table 5 shows that the choice of the normalization has a major
impact on the marginal costs of outputs and some results do not
seem to be very meaningful. Many marginal costs are negative;
only in the VRS model normalized by energy transmission all
coefficients are positive as expected. The normalization also
influences the skewness of the residuals. If no normalization is
applied, or the normalization is based on the number of customers,
then the skewness of the OLS residuals has a wrong sign, and hence
the stochastic frontier reduces to the OLS curve (Kumbhakar and
Lovell, 2000). In Table 5, these cases are indicated by # on the row
“Expected efficiency”. On the other hand, if the normalization is
based on the network length, the skewness is so large that the
estimate of 6, becomes negative. These cases are indicated by §.
Thus, we find that the normalization by energy transmission is not
only important for heteroskedasticity correction: it is the only
specification in Table 5 that yields meaningful efficiency estimates
as well as positive marginal costs in the VRS case. We suspect the
parameter estimates are sensitive to the choice of normalization
due to multicollinearity of output variables.

4. Comparison of efficiency estimates

The previous section presented some selected empirical evi-
dence of the cost frontier obtained with different methods. In this
section we compare the empirical estimates of cost efficiency
(CE).” Our focus on the CE scores is motivated by the fact that the
Finnish legislation mandates the use the efficiency improvement
targets as the regulatory instrument of EMV. We also include the
efficiency scores obtained through naive model averaging (NMA) to
our comparison. These figures are simply the averages of the DEA
and SFA estimates. The practical justification of NMA was to

(footnote continued)
comparison, we report the Modified OLS (Aigner et al., 1977; Olson et al., 1980)
estimates throughout all eight specifications considered in Table 5.

7 For all methods, we follow the model specifications applied by EMV. For
comparability, CRS is imposed throughout all estimation methods considered.

Pearson correlation Spearman rank-correlation

StoNED DEA SFA NMA  StoNED DEA SFA NMA

StoNED 1 0.9089 0.8956 0.9367 1 0.9338 0.8788 0.9498
DEA 1 0.8568 0.9726 1 0.8456 0.9732
SFA 1 0.9523 1 0.9329
NMA 1 1
Table 7
Descriptive statistic of efficiency scores.
Mean St. Dev. Median Min. Max.
StoNED 0.924 0.069 0.940 0.764 1.000
DEA 0.802 0.119 0.807 0.466 1.000
SFA 0.862 0.092 0.892 0.545 0.981
NMA 0.832 0.102 0.848 0.505 0.990

alleviate the possible modeling misspecification of SFA and DEA
by taking an average of the two efficiency estimates.®

Consider first the correlations between the CE scores estimated
by the four methods. Table 6 reports the correlation matrices of
the Pearson product moment correlation coefficients (the left
side), and the Spearman rank correlation coefficients (the right
side). There is a high positive correlation in every pair of CE
estimates. Based on the correlation analysis alone, one might be
tempted to conclude the choice of the estimation method has little
effect on the efficiency estimates. However, this conclusion proves
wrong in a closer inspection of the levels of CE estimates.

Table 7 reports descriptive statistics of the CE scores obtained
by different methods. There are notable differences in the levels of
efficiency scores. In particular, we find that StoNED yields con-
siderably higher efficiency scores than any other method, both in
terms of the mean and the minimum: recall that StoNED takes the
noise term explicitly into account and captures heterogeneity of
firms and their operating environments through the use of the
contextual variable z, which is omitted in other methods. °

The summary statistics of Table 7 facilitate the comparisons of
an average or a median firm. To shed further light on efficiency of
individual firms, we have plotted the StoNED efficiency scores
against the NMA estimates in Fig. 1. Points in this diagram
represent the pair of efficiency estimates obtained by the average
of DEA and SFA (NMA, the horizontal axis) and StoNED (the
vertical axis). The broken line in the middle of diagram indicates
the 45° line: for points above this line the StoNED efficiency
estimate is greater than that of NMA.

Fig. 1 illustrates that the StoNED estimator is more favorable for
each individual firm than the average value of DEA and SFA; the
StoNED efficiency scores are higher than the corresponding NMA
values. For some companies the use of NMA value would yield
efficiency improvement targets around 35-50% (efficiency of
50-65%). Improvements of this magnitude seem highly unrealistic.
Note that there are many firms that lie relatively close to the

8 Similar practice of combining DEA and SFA estimators has been used or
considered for use in other countries as well, see, e.g., Pollit (2005), Azadeh et al.
(2009), and Bogetoft and Otto (2011, Ch. 10).

9 Note that in StoNED the probability mass at u=0 is equal to zero, and hence
none of the firms are 100% efficient. Still, the maximum value is rounded to 1.000 at
the accuracy of three decimal digits.
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Fig. 1. Comparison of StoNED and NMA efficiency scores.

Table 8
Monetary cost reduction targets (thousand € in prices of 2008).
Industry Mean St. Dev. Min. Max.
StoNED 47,508 534 1326 0.000 11,113
DEA 141,382 1589 3888 0.000 27,654
SFA 93,023 1045 2185 0.024 13,599
NMA 117,205 1317 2947 0.017 20,627

efficient StoNED frontier. This is in contrast especially with DEA,
where only a few observations define the efficient frontier.

The main objective of the efficiency estimates is to provide cost
targets that EMV imposes to the distribution firms. To examine the
impacts of the methodological choice on the bottom line, we have
converted the firm-specific efficiency estimates to monetary cost
reduction targets, calculated as x;(1-CE;), where CE; is the firm-
specific estimate of inefficiency and x; is the observed total cost in
year 2008. For the stochastic SFA and StoNED methods, the CE is
based on the formulation of the conditional expected value of the
inefficiency term u, developed by Jondrow et al. (1982) (hence-
forth referred to as the JLMS method). The total cost reduction
target for the whole industry is reported in the first column of
Table 8 (all figures in €1000 at prices of the year 2008). The
remaining columns provide summary statistics of the firm-specific
cost reduction targets.

Comparison of the cost reduction targets reveals substantial
differences between the methods considered. The calculated total
cost reduction target of the industry based on the StoNED
estimates is somewhat lower than €50 million. The SFA estimate
is approximately €50 million larger than the corresponding
StoNED figure. Further, the DEA estimate is approximately €50
million larger than the SFA estimate. Although the efficiency
scores obtained with the different methods are highly correlated,
the monetary figures presented in Table 8 illustrate that the choice
of the estimation method does have a significant economic impact
within the regulatory framework.

Based on Table 8, one might conclude that StoNED is most
favorable to the regulated firms, whereas DEA is the best method
from the perspective of consumers. However, the practical imple-
mentation of the cost reduction targets in the regulatory frame-
work will also matter. In the previous regulation period, EMV
made several adjustments to the cost reduction targets to make
them more favorable to the regulated industry. In the current
regulation period EMV enforces the StoNED targets more vigor-
ously. While a detailed discussion of the practical implementation

of the EMV model falls beyond the scope of the present paper, in
the next section we do discuss two important insights gained
during the reform of the EMV model.

5. Implementation of efficiency benchmarks in regulation

Estimation of firm specific efficiency scores is often the main
objective of frontier estimation. Consequently, the benchmark
regulation typically starts from the efficiency scores. In Finland,
EMV is required to provide firm specific efficiency scores as the
basis of regulation by the law. In this section we argue that the
frontier cost function provides more appropriate benchmarks for
the acceptable cost level or cost reduction targets.

In the deterministic models such as DEA, the production
technology can be fully characterized by the distance to frontier
(i.e., the distance function). In this case, the efficiency scores can
be harmlessly used for setting cost reduction targets. However, the
situation is different in the stochastic models such as SFA and
StoNED because the distance to frontier is subject to random noise.
Even though SFA is currently used in regulation in some countries,
the impact of noise has not been recognized. Two important
lessons from the recent reform of the Finnish regulatory model
by EMV are worth noting.

First, we emphasize that the estimation of the stochastic cost
frontier function rests on a much sounder statistical foundation
than the estimation of firm specific efficiency scores. Provided that
the model assumptions hold, the cost frontier can be consistently
estimated even in a cross-sectional setting subject to noise. In
contrast, it is well known in SFA literature that the firm specific
inefficiency estimates obtained by using the JLMS method are
inconsistent. The rationale of this argument can be stated as
follows. The frontier cost function is common to all firms, and
hence the noise contained in individual observations can be
averaged out. In contrast, firm specific efficiency estimates are
based on the distance from an individual observation to the
frontier. Even if the sample size increases, the distance is mea-
sured from a single data point to the frontier. The increase in
sample size generally improves the precision of the frontier
estimator, but the efficiency estimator is still based on the distance
of a single data point to the frontier, and hence the noise contained
in the single data point cannot be averaged out.'°

Second, the cost reduction targets based on the JLMS method
are dynamically inconsistent, as first noted by Kuosmanen et al.
(2010). The argument can be briefly stated as follows. The JLMS
method transforms the distance to the frontier to conditional
expected value of inefficiency. As a result, it attributes some
proportion of the measured distance to the frontier to the noise
term. The larger the distance to frontier, the larger the assumed
impact of noise. In another context, Wang and Schmidt (2002)
refer to this as the shrinkage effect of the JLMS method. In the
present context, the dynamic inconsistency arises from the fact
that the regulated firm does not necessarily reach the frontier even
if it improves its efficiency by the amount suggested by the JLMS
method. Even if all firms in the regulated industry improve their
efficiency according to the JLMS method, there is no guarantee

19 In the case of panel data where n firms are observed over T time periods, it is
possible to estimate time invariant inefficiency by averaging out noise over the T
observations of the same firm. To estimate the cost frontier we can average out
noise over the full sample of nT observations, which will likely result as a more
precise estimator. Further, the consistent estimation of the inefficiency term in the
panel data setting requires some additional assumptions, which may be considered
restrictive. For example, one could assume a time invariant inefficiency term or a
specific functional form for the efficiency change over time. For a freely time
varying inefficiency estimator that does not impose any additional assumptions,
consistent estimation is not possible even in the panel data setting.
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that all the firms reach the frontier at the end of the regulation
period.

To address both problems noted above, in the current regula-
tion period EMV defines cost efficiency as the ratio of the frontier
cost function and the observed cost of the firm. Specifically,

CE' = C(y1,Y2.Y3) x exp(62)/x 3)

In this measure, the nominator can be consistently estimated,
avoiding the inconsistency of the JLMS estimator. Note that the
denominator x contains both inefficiency and noise. However,
the presence of noise in the denominator is not a problem as
our objective is to specify efficiency improvement targets such that
the firms would reach the efficient cost level C(y;,¥,,¥3) x exp(5z).
Indeed, the acceptable cost level defined using Eq. (3) is dynami-
cally consistent: if a firm reduces its current cost level by factor CE’
during the regulation period, it will reach the efficient cost frontier
at the end of the regulation period.

6. Monte Carlo simulations

The empirical comparison presented in the previous section
shows that the choice of the frontier estimation method does
matter in the regulation. We next examine performance of alter-
native methods in a simulated setting where the true cost frontier
and the firm-specific inefficiencies are known beforehand.
The advantage of the Monte Carlo (MC) comparison is that it
allows us to quantify the performance of each method in terms of
standard criteria such as the bias and root mean squared error (to
be defined below).

A critical step in the MC analysis is the specification of the data
generating process (DGP) that produces the simulated data.
For the empirical relevance of the MC analysis, it is desirable to
specify the DGP to imitate both the characteristics of the regula-
tory model the observed patterns of empirical data. In this study,
we calibrate the DGP to reflect both these aspects.

6.1. Data generating process (DGP)

The generic cost frontier Model (1) forms the basis of our DGP.
To ensure comparability, in the MC comparisons we apply exactly
the same model specification across all methods. Thus, we assume
a three output case and omit the contextual variable z, as its
proper inclusion in DEA would be somewhat more complicated
than in SFA or StoNED.

We first generate random data for the three output variables
using the formulas presented in Table 9. The DGP for output
variables has been specified to mimic the observed data as closely
as possible. The empirical distribution of the logarithms of outputs
is approximately uniformly distributed within the range [3, 11].
First, we generate the data for transmitted energy. The other two
outputs are generated conditional on the first output. A weighted
average of a random draw from uniform distribution and the
previously generated energy output is applied to generate these
variables such that the weights are based on the empirical correla-
tion between the observed variables. For example, the empirical
correlation between the network length and the transmitted energy

Table 9
DGP for the output variables.
Output DGP
Energy Y1 =exp(Uni[3,11])

Network length

Vai=1/(1-0.87%) x exp(Uni[3, 11]) + 0.87 x y,;
Y35 =1/(1-0.98%) x exp(Uni[3, 11]) + 0.98 x y,;

Customers

is 0.87. Thus, the simulated output data exhibit similar correlations
as the observed output variables in our empirical data.

Given the simulated output data, the next step is to generate
the total cost. This requires a specification of the cost function.
Recall that the commonly used functional forms such as the Cobb-
Douglas and translog are inappropriate in the present context. To
calibrate our DGP to the current regulatory practice of EMV as
closely as possible, we apply the piece-wise linear cost frontier
applied by EMV in the regulation period 2012-2015. Given the
output vector (y;;,¥,;.y3;), the value of the cost frontier is
calculated as

Ci=max(BinY1i + Panyai + P3nY3i) “4)

where (11, fan. Ban), h=1,..., H are the slope coefficients (marginal
costs) of the H different hyperplane segments of the piece-wise
linear cost frontier implemented by EMV (compare with the
shadow prices reported in Table 2 and problem (2) in the technical
appendix provided in the Supplement). Note that the max opera-
tor in Eq. (4) selects the most favorable output prices for each
simulated data point.

Having calculated the values of the frontier cost function
(which represents the efficient cost level) for each simulated
point, the observed total cost are generated using

Xx; = Cj x exp(u; + vy), 5)

where the inefficiency u for the noise v are distributed as:
u; ~ [N(0,0.17%)| and v; ~ N(0,0.09%). The parameter values of the
standard deviations of the inefficiency and noise terms are
calibrated based on the empirical estimates obtained by applying
the method of moments estimator to the CNLS residuals in the
StoNED procedure.

Before proceeding to the results, it is worth to discuss whether
and to what extent the DGP provides an unfair advantage to any of
the methods considered. First, the DGP does not violate any of the
assumptions of the StoNED method. The piece-wise linear func-
tional form of the true cost function used in the simulations is
compatible with the form of the StoNED frontier, but the same is
true for DEA. The fact that the coefficients (81, f21,83,) and the
parameters (oy,0,) have been ex ante estimated by the StoNED
method does not give any particular advantage to this or that
method: the purpose of the ex ante estimation is to match the DGP
with the current regulatory practice of EMV. As for DEA, the
presence of the noise term v violates the deterministic nature of
this method. However, empirical data are always subject to some
noise, and some authors explicitly suggest that DEA is robust
enough to tolerate some noise (Gstach, 1998; Banker and
Natarajan, 2008). In fact, the noise term can help to alleviate the
small sample bias of the DEA estimator, as we note below.
Regarding SFA, the piece-wise linear functional form violates the
maintained assumption of the linear cost function. In all other
respects, the SFA estimator is correctly specified: we assume the
half-normal distribution of the inefficiency term (in contrast to the
EMV specification of truncated normal inefficiency used in the
previous sections). For comparability of SFA and StoNED, we apply
the MOLS estimation strategy for SFA and the method of moments
estimator in StoNED.

The DGP used in the present simulations may seem to favor
StoNED, as it is the only method with the assumptions consistent
with those of the DGP. However, the rigid functional form of SFA
and the deterministic orientation of DEA are the well-known
characteristics of these methods. We must also stress that the
NMA approach is supposed to remedy these issues. Hence, we find
it meaningful to compare the performances of the methods using
the DGP described above. For further Monte Carlo comparisons of
DEA, SFA and StoNED under alternative data generation processes
(including smooth frontiers and scenarios without noise), a reader
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is referred to Kuosmanen and Kortelainen (2012), Johnson and
Kuosmanen (2012), and Andor and Hesse (in press).

6.2. Performance measures

Recall from Section 3 that the SFA and StoNED estimators of the
cost frontier C are consistent, whereas the JLMS estimator of firm-
specific inefficiency is inconsistent. Since no consistent estimator
of firm-specific inefficiency is available in the stochastic setting
involving noise, we compare performance of the methods in terms
of their precision in estimating the cost frontier C. Given the
simulated values C; (calculated using Eq. (4)) and the correspond-
ing estimates C; (obtained with StoNED, DEA, SFA, and NMA), the
performance of the method is measured using the root mean
squared error (RMSE) and bias, defined as

(6)

(7

BlAS=11

T M
where M denotes the number of replications in the simulation.
Note that the RMSE is always greater than or equal to zero, with
zero indicating perfect precision. In contrast, the bias can be
positive or negative, the positive values indicating overestimation
and the negative values underestimation of the cost function. For
both performance statistics, values close to zero are desirable. Both
RMSE and bias have been normalized such that the performance
statistics have an interpretation as an average dispersion or bias.
For example, RMSE=0.05 indicates that the estimates C; deviate
from the true C; value by 5% on average.

6.3. Simulation results

The MC simulations were conducted using the GAMS software
and the MINOS solver run on a standard desktop PC (the GAMS
code for the simulations is available as online annex). We consider
four different scenarios with sample sizes n=25, 50, 100, and 200.
The sample sizes are chosen to be relatively small to reflect the
usual number of firms in this kind of sector (in the EMV data,
n=89). Each scenario has been replicated M=1000 times. The
results of the MC analysis are reported in Table 10.

Consider first the RMSE statistics reported on the left panel of
Table 10. The StoNED estimator has a lower RMSE than other
methods at all sample sizes. The average dispersion of approxi-
mately 5% from the true value is a very good result in the
stochastic setting involving noise. Note that the precision of the
StoNED estimator improves (RMSE decreases) as the sample size
increases, as expected. The DEA estimator yields a relatively good
precision of RMSE less than 10% at small sample sizes. However,
the RMSE increases together with the sample size. This is due to
the fact that DEA ignores the noise term. In small samples, the
noise term and the small sample bias offset each other, but as the
sample size increases, the bias due to the noise term starts to

Table 10
Simulation results.

RMSE BIAS

n=25 n=50 n=100 n=200 n=25 n=50 n=100 n=200

StoNED 0.072 0.057 0.044 0.027 0.030 0.022 0.014 0.009

DEA 0.088 0.091 0107 0129 -0.025 -0.060 -0.091 -0.118
SFA 0469 0886 1439 1923 -0.253 -0.666 -1.192 -1.661
NMA 0254 0464 0750 1.003 -0139 -0.363 -0.641 -0.890

dominate. The SFA estimator yields catastrophic results in this
comparison, with average deviations of the magnitude of 50-200%.
Recall that the linear functional form is severely wrongly specified
in these simulations; most reported MC simulations assume the
correct (or almost correct) functional form for SFA. It is not
surprising to find that the linear functional form fails to capture
the piece-wise linear cost function, Eq. (4), used in our simulations.
Further, the high correlation between the output variables makes
SFA vulnerable to multicollinearity. Moreover, note that the RMSE of
SFA increases alarmingly as the sample size increases. Finally, the
MC simulations illustrate the weakness of the NMA approach: the
poor performance of SFA carries over to the NMA estimator. In this
case, the use of DEA alone is clearly superior to NMA.

The bias statistics are reported on the right panel of Table 10.
The bias of the StoNED estimator is small, and decreases as the
sample size increases. In contrast to DEA and SFA, the bias of the
StoNED estimator is positive, which means that StoNED tends to
overestimate the true cost level in this setting. In the context of
regulation, modest overestimation is generally preferred to under-
estimation. The conventional wisdom of DEA suggests that the
DEA estimator is systematically biased towards overestimation of
cost. However, this idea stems from the deterministic setting,
whereas in the present MC simulations the DGP contains noise.
The results of Table 10 aptly illustrate that the DEA estimator is
downward biased under noise. In very small samples, the noise
term can offset the small sample bias, as we noted above.

Finally, we must emphasize that the previous MC comparison
has been calibrated to mimic the regulatory model of EMV and the
empirical data of the Finnish electricity distribution firms as
closely as possible. The purpose of such tailored simulations is to
ensure the relevance of the MC evidence in the specific context of
the Finnish regulatory model. We stress that the results of this
section do not necessarily apply to other sectors or in other
countries. As MC simulations are nowadays relatively inexpensive,
we suggest that investigating the internal consistency the bench-
marking methods through MC simulations calibrated to the
specific regulatory context should be routinely conducted.

7. Conclusions

In this paper we have compared the frontier estimation
techniques applied in the benchmark regulation of electricity
distribution firms. The comparison was conducted both in terms
of the empirical data from Finland and in the controlled environ-
ment of Monte Carlo simulations. Our empirical comparison
demonstrated that the choice of benchmarking method has sig-
nificant economic effects on the regulatory outcomes, even when
the efficiency estimates from different methods are highly corre-
lated. Although the frontier estimation methods are often used for
assessing relative efficiency and ranking of firms, in the context of
regulation, also the level of efficiency matters.

A unique feature of our Monte Carlo simulations concerns the
specification of the data generating process. We calibrated the
simulation model and its parameters to capture as closely as
possible the key characteristics of the distribution sector and the
regulatory system in Finland. This allows us to estimate the
potential bias and dispersion of the frontier estimates obtained
with different frontier estimation methods in the setting that
mimics the empirical reality of this sector.

We have learned at least five important lessons from this
study:

(1) Heterogeneity: a large proportion of the observed dispersion in
cost per kilowatt hours across firms can be explained and
attributed to the heterogeneity of firms and their operating
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environments. The benchmarking model should be flexible
enough to take into account the different circumstances of
small firms and large corporations, firms operating in rural
area or in a large city, and firms that supply power to house-
holds or heavy industry. The current regulatory model of EMV
attempts to take the heterogeneity into account through the
application of a non-parametric piece-wise linear cost frontier
that allows the marginal costs of outputs differ across firms,
and by applying the proportion of underground cables as an
additional contextual variable.

(2) Noise: the cost data are subject to random variation from various
sources. For example, the capital expenditures depend on some-
what arbitrary accounting rules and depreciation rates. Random
weather events such as storms cause interruptions, which
influence the operational costs. In these circumstances, stochastic
frontier models that explicitly recognize a random noise term are
preferable to deterministic benchmarks that attribute all devia-
tions from the frontier to inefficiency. The current regulatory
model of EMV takes a random noise term explicitly and system-
atically into account in the frontier estimation.

(3) Frontier as the benchmark: it is important to recognize that the
estimation of the frontier cost function (or production func-
tion) rests on a much sounder statistical foundation than the
estimation of firm-specific efficiency scores. Therefore, it is
generally recommended to set the efficiency improvement
targets based on the frontier cost or production function,
rather than the firm-specific efficiency estimates, as noted in
Section 5. In the current regulatory model of EMV, efficiency is
defined as the ratio of the cost frontier and the observed cost,
which effectively imposes the cost frontier as the target.

(4) Implementation: development of a benchmarking model should
not be viewed as an isolated exercise, but rather as an integral
part of designing the regulatory framework as a whole.
The systematic use of the StoNED cost frontier as a benchmark
has enabled EMV to eliminate some redundant components in
the regulatory model, making the regulation more transparent.
Although the efficiency estimates according to the StoNED
method are on average higher than those of DEA and SFA,
EMV has implemented the efficiency improvement targets
more vigorously than in the previous regulation periods.
Tailored simulations: in this paper we have shown that it is
possible to calibrate the simulation model to mimic the
characteristics of the regulated industry as well as the regula-
tory model. Conducting tailored simulations is an inexpensive
way to compare the performance of alternative benchmarking
tools in the specific context of application. We would recom-
mend the use of calibrated Monte Carlo simulations as a test for
the internal consistency of the chosen benchmarking model.

(5

=

Appendix A. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.enpol.2013.05.091.
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Technical Appendix

This technical supplement introduces the basic characteristics and discusses the properties of the three
frontier estimators examined in the abovementioned paper. The purpose of this technical supplement is to
preserve space for the comparison of estimated empirical frontiers instead of their theoretical properties.
For simplicity of the presentation, we first state the general cost frontier model and then discuss each
model in turn. We also deal with the naive model averaging (NMA) approach here in more detail and

discuss the problems of this approach on a technical level.

The general cost frontier model

Here we briefly state the general cost frontier model. The cost regulation of EMV is based on the

following generic model of cost frontier (see Kuosmanen, 2012, for a more detailed discussion).



Inx=1InC(y,,9,,y,) +0z+u+v 0

where

x is the observed total cost (TOTEX) (1,000 €)
C'is the frontier cost function

), is the energy transmission (GWh)

7, is the total length of the network (km)

5 is the number of customers

% 1s the proportion of underground cables

0 is the coefficient of the g vatiable

u is the random variable representing inefficiency

v is the random variable representing stochastic noise

In this study the cost variable x refers to the total expenditure (TOTEX), which consists of three
components: controllable operational costs (OPEX), capital expenditures (CAPEX) and the external
supply interruption costs for customers (INT). The last component can also be viewed as a quality

component, as the lack of supply interventions can be interpreted as an indicator of good service.

StoNED estimator

The StoNED estimator is based on some general axioms (or regularity conditions) concerning the
benchmark technology (see details of the method in Kuosmanen and Kortelainen, 2012). The set of
axioms imposed in the EMV regulatory model are the following (see Kuosmanen, 2012):

1) C is monotonic increasing in all outputs

2) C'is globally convex in outputs

3) C exhibits constant returns to scale (CRS)



The first two conditions are standard properties in DEA. The third axiom defines the nature of returns to
scale and it could be relaxed. However, the CRS axiom could not be rejected in the empirical specification
test reported by Kuosmanen (2012). More importantly, the CRS axiom is preferable from the regulatory
point of view, as the benchmark technology exhibits the same level of total factor productivity irrespective
of the firm size. For example, suppose firms enjoy economies of scale in reality. The CRS axiom of the
regulatory model then provides an incentive for firms to seek productivity improvement through mergers.
Such an incentive would be lost if the CRS axiom were relaxed and variable returns to scale (VRS) were
imposed. Indeed, the use of the VRS benchmark may give wrong incentives for firms to split or merge for
strategic reasons to game the regulator (see e.g. Jamasb et al., 2003, 2004).

The StoNED estimation proceeds in two stages. First, the cost frontier model (1) is estimated
with convex nonparametric least squares (CNLS: Johnson and Kuosmanen, 2011, 2012; Kuosmanen,

2008). Denoting the composite error term by &, = #, +», , the CNLS problem can be stated as
n
. 2
min ) &
¢,ﬂ,5,g; !
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The firm specific beta coefficients represent the marginal costs of outputs (shadow prices). Alternatively,
these coefficients can be interpreted as the slopes of the tangent hyperplanes to the piece-wise linear cost
frontier. The firm specific coefficients allow for greater heterogeneity of distribution networks than the

usual parametric approaches (cf., e.g., Cullmann, 2012). The contextual variable g also partly captures

heterogeneity of firms.



In the second stage we impose distributional assumptions on inefficiency and noise and follow
the method of moments approach (see Kuosmanen and Kortelainen, 2012; Kuosmanen, 2012) to estimate
the firm specific inefficiencies, utilizing the estimated CNLS residuals ¢ . The usual assumptions of the
SFA literature are that «, has a half-normal distribution such that #, >0, and », has a normal distribution
with zero-mean and a finite constant variance, and these assumptions are assumed here also.

The optimal ¢, from problem (2) is a consistent estimator of the total cost x;, conditional on
outputs (y,;, ¥, 0s,) > that s,

B0y, 0205 930 = €0 Do 23) %P4 ©)
where pis the expected inefficiency estimated with methods of moments, given the distributional
assumption of inefficiency. This approach is similar to the Modified OLS (MOLS) approach commonly
applied in SFA literature (Aigner et al., 1977; Olson et al., 1980)." Indeed, StoNED can be seen as an
axiomatic, nonparametric variant of the classic MOLS; the conditional expected value E(x;, | Vs Vais Vi) 18
estimated by CNLS instead of OLS, but otherwise the StoNED estimator follows the standard MOLS

procedure.

To estimate the frontier cost function, we must adjust the estimated ¢, with g . Thus, the StoNED
cost frontier is obtained by adjusting the estimated ¢, downward according to

P (D> o> J5) =@, xexp(—=G,\2/ 7). 4
Finally, we can utilize the Jondrow et al. (1982) decomposition to obtain firm-specific inefficiency estimates

#,. For comparability with the DEA efficiency scores, we convert the inefficiency estimates as cost

efficiency measures as follows

CE,= 100%x exp(—4,) (5)

! Sometimes MOLS is referred to as cotrected OLS (COLS) (see, e.g., Azadeh et al., 2009). We prefer to use MOLS for the
probabilistic estimator that takes into account noise, and reserve the term COLS for the deterministic estimator that envelopes
all observations.



In practice, the CNLS problem (2) can be solved by mathematical programming solvers for convex
problems. In this study we use GAMS (General Algebraic Modeling Systems) and its MINOS solver as this
solver is suitable for solving nonlinear programming problems. Problem (2) is nonlinear due the
logarithmic transformations applied to the observed costs and the estimable frontier costs. Since there is a
large number of constraints and parameters, problem (2) is computationally more burdensome than for
example the OLS. With the present hardware and software capacity, however, problem (2) is solvable in
tolerable time by standard PC, provided that the sample size is not too large (see Lee et al., 2013, for

discussion).

DEA estimator

The DEA estimator can be obtained as restricted special case of Problem (2). If we restrict the residuals &,

to take only positive values and exclude the contextual variable z, the CNLS problem (2) is equivalent to
the input-oriented DEA under CRS (see Kuosmanen and Johnson, 2010, for details). Thus, DEA
maintains the same assumptions concerning the shape of the frontier as StoNED.

If we assume away noise, the DEA estimator is consistent, but biased in the small samples (Banker,
1993). In the case of the cost frontier, DEA overestimates the true unobserved cost function in the small
samples but it converges to the true frontier as the sample size tends towards infinity. Statistical inference
on DEA can be conducted by using the bootstrap methods (e.g., Simar and Wilson, 2008). However, if the
stochastic noise term is included in the model, the DEA estimator can be biased in both directions. In this
case the bootstrap inferences are invalid. Indeed, it seems a common misunderstanding to assume that the
bootstrap method (or robust frontiers) would make DEA more robust to noise. We must emphasize that
the probabilistic treatment of sampling error does not address stochastic noise at all.

The EMV specification of the DEA model applied in the previous regulation period 2008 — 2011

did not include any contextual variables z. The conventional approach to modeling z-variables in DEA is



to resort to a two-stage approach, where efficiency is first estimated using DEA, and then the DEA
efficiency scores are regressed on z-variables, using OLS, probit, tobit, or truncated regression. Simar and
Wilson (2007) present heavy critique of this approach. Recently, Johnson and Kuosmanen (2012) have
shown that one-stage estimation of z-variables is possible in DEA. However, we follow the EMV

specification and omit the z-variable from DEA altogether.

SFA estimator

Within this context, the SFA estimator of the frontier can be obtained as special case of StoNED estimator
if cost frontier C is assumed to be linear (as in Syrjinen et al., 20006, specification implemented by EMV in

2008 — 2011) and we restrict the marginal costs to be same for every firm (ie., S, =p, Vi,h,k ). The

estimation of inefficiency in SFA is analogous to the procedure presented above for StoNED as StoNED
lends its approach from SFA.

The Finnish Energy Market Authority attempted to take the heterogeneity of firms into account in
SFA by dividing the network variable into two separate variables. The use of different sets of output
variables in the DEA and SFA models is however problematic for the parallel use of both methods as a
part of the regulatory model. This issue is discussed in next section of this appendix when we deal the
NMA approach. It is also good to note that this is not the only way to take account heterogeneity in SFA.
The SFA literature offers abundant number of ways for modeling contextual variables z (e.g., Kumbhakar
and Lovell, 2000, Ch. 7, and references therein). However, again we restrict ourselves to the EMV

specification with divided network variable.

Naive model averaging (NMA)

Given the relative strengths and limitations of DEA and SFA, it might be tempting to try to alleviate the
risk of model misspecification by taking the average of the two estimators. In Finland, EMV applied the

average of DEA and SFA estimators in the previous regulation period 2008 — 2011. Consequently, we refer



this simplistic approach as naive model averaging (NMA). This section provides a brief but critical
examination of the shortcomings of NMA.

Let us first consider the statistical properties of NMA based on the known properties of SFA and
DEA. If the parametric assumptions of the SFA estimator hold, both the MOLS and the maximum
likelihood estimators of the cost frontier C are unbiased and consistent (Greene, 2008). The firm specific
inefficiency term #, can be estimated by using the conditional expected value of Jondrow et al. (1982). This
estimator is unbiased, but inconsistent. In the cross-sectional setting, the inconsistency of the firm-specific
inefficiency estimator is due to the fact that inefficiency is estimated based on the residuals and there is
only one observation available for each firm. While an increase in the sample size improves the fit of the
cost frontier, it does not improve precision of the firm-specific efficiency estimates. Thus, if we are
interested in firm-specific efficiency scores, then inconsistency of the SFA estimator directly implies the
NMA estimator is inconsistent even if the assumptions of the SFA model hold.

To obtain a consistent estimator of firm-specific efficiency, we must assume away noise. In this
case, the DEA estimator is consistent under the stated axioms. The SFA estimator remains inconsistent
even if the functional form is correctly specified, so there is little benefit to introduce SFA: the DEA
estimator is consistent, whereas NMA is not. But by assuming away the noise, we lose the most desirable
property of SFA.

As for the estimation of the cost frontier C, the statistical consistency of the NMA estimator
requires that the assumptions of both DEA and SFA hold simultaneously. That is, the NMA estimator is
consistent only if the frontier is linear with respect to outputs, inefficiency # has a truncated normal
distribution, and there is no noise ». In this situation SFA estimator is unbiased and consistent. The DEA
estimator is consistent but biased. Thus, the NMA estimator is consistent but biased. We conclude that

under the assumptions required for the statistical consistency of the NMA cost frontier estimator, the SFA



estimator is both unbiased and more efficient than the NMA estimator: introducing the DEA estimator
does not provide any real benefit in this situation.

The problems of NMA are further intensified by the fact that EMV applied different sets of output
variables in DEA and SFA. In DEA the total network length was used as an output, whereas in SFA the
network length was divided in two output variables, the urban underground cabled network and other
network. This creates a profound misspecification problem. If the two models are differently specified with
respect to the output variables, then one of the models (if not both) has to be misspecified. If one of the
models is misspecified, then so is the NMA estimator. There is no reason to expect that averaging wrongly

specified estimators would be beneficial.
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HETEROSCEDASTICITY OR PRODUCTION RISK?
A SYNTHETIC VIEW
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Abstract. Two veins of literature, namely, production risk literature and stochastic frontier analysis,
are examined. Both fields are concerned of output variation; the former due to exogenous shocks,
the latter due inefficiency. By covering the literature from both the fields, this review suggests that
the concept of heteroscedasticity can be utilized to build a synthesis between these mainly separate
branches of literature. However, the synthetic approach brings a challenge how to differentiate between
different sources of output variation. This challenge is identified as the main obstacle to meaningfully
combine the two approaches.

Keywords. Heteroscedasticity; Just and Pope model; Production risk; Stochastic frontier

1. Introduction

In economics, the standard definition of production function defines it as the function that gives maximal
output as a function of the given inputs (e.g. Varian, 1992). This definition implies that a producer
is operating efficiently and is not facing any exogenous shocks to its input—output correspondence.
Obviously, this situation rarely occurs in reality. The standard approach in the econometric estimation
of production function has been to augment the otherwise deterministic input—output relation with a
stochastic random error. Thus, the estimated production function does not need to correspond exactly
to the observed production. Usually the random error is included purely for statistical reasons and the
interest is in estimating the production function itself. However, two strands of production economics,
namely, the production risk field (see, e.g. Moschini and Hennessy, 2001, pp. 110-112) and the frontier
field (see surveys by Murillo-Zamorano, 2004; Fried et al., 2008), have positioned themselves to study
the variation of production in terms of this error.'

The study of production risk has been prevalent in agricultural economics since uncertainty over output
is especially present in agriculture, which is characterized by uncertain production environment due to,
for example, weather, pests and pollution (Just and Pope, 2001, pp. 643—-647; Moschini and Hennessy,
2001).2 Such risk/uncertainty is often labelled as production or output risk.> Obviously, production risks
also occur in other fields of production. However, for example, in manufacturing the consistent factory-like
production environment significantly decreases the occurrence of such risks. In some sense, the production
risk in agriculture resembles the well-known definition of risk in traditional finance literature where risk
can be seen as the volatility (variance) of return associated with a given investment portfolio. In a similar
manner we could assume that a farmer faces a certain degree of risk given the input factor portfolio.

The frontier field however assigns variations in output between producers mainly to the inefficiency
of the producers. Inefficiency is measured against an ideal best-practice frontier. Moreover inefficiency
is generally considered to be due to actions that are under the control of producer. Thus, the view of the
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2 SAASTAMOINEN

Table 1. The Positioning of the Review within the Literature.

Regression Frontier
Heteroscedasticity Harvey (1976) Caudill et al. (1995)
Amemiya (1977) Hadri (1999)
Production risk Just and Pope (1978, 1979) Kumbhakar (1993)
Battese et al. (1997)
Kumbhakar (2002a)

frontier field seems distinctively different to that of the production risk field, which considers exogenous
output shocks. However, varying operating conditions make efficiency measurement challenging as
comparing the efficiency of producers makes sense only if the producers can be assumed to be operating
in a relatively similar environment. Otherwise, it could be the case that some producers are seen as
being more efficient only because they operate in a more favourable environment. This problem has
long been acknowledged within the frontier field and consequently solutions have emerged to account
for production environment. The core idea of more well known solutions has been to assume that
the expected inefficiency or variance of inefficiency is producer- or environment-specific. In terms of
econometric jargon, inefficiency is heteroscedastic in the latter case. The following example illustrates
this point.

Consider producers in regions A and B. In region A, the variability of performance is higher than in
region B. Assume also that the conditions of production environment in region A are more volatile than in
region B. Now consider why the variation of performance might be higher in region A. We can assume that
producers in either region differ in their capabilities to adapt themselves to the changes in their production
environment. Thus, initially significant variation in performance can be present in region B also. But it is
likely that in the long run, the more stable operation conditions lead to similar and predictable responses
in this region. In region A on the other hand, the performance variations can persist simply due to a
more risky environment. In this context, the risks of production manifest themselves as performance or
inefficiency variations. Using again an analogy drawn from finance; both returns and losses are likely to be
higher under high volatility. Evidently the riskiness of environment affects the production performance.
Thus, it is surprising to notice that the concept of production risk is rarely mentioned in the frontier
literature although heteroscedasticity is often discussed. This is despite that the production risk and the
frontier fields share a substantial common ground in empirical applications in agriculture (see surveys by
Battese, 1992; Bravo-Ureta et al., 2007).

Probably due to the profound conceptual differences between the two fields, historically neither field
has been very aware of the other. Thus, a systematic and simultaneous exploration of the two fields would
be warranted to see whether the fields have more in common than what the historical retrospective might
suggests. Unfortunately, to our knowledge no such examination has been conducted. This review aims to
fill this gap. We explore how ideas from both the fields have contributed to a synthesis in knowledge. This
idea of synthesis we base on the concept of heteroscedasticity. Conceptually this review is positioned
as in Table 1. There we have roughly identified four branches of literature. The literature in the upper
left-hand cell refers to the traditional literature on heteroscedasticity in regression analysis. It serves as
reference point for the three other branches that we deal in this review. The synthetic literature, which
seeks to combine ideas from the two fields discussed, is located at the lower right-hand cell.

Our focus is on the empirical literature as the estimation of heteroscedastic econometric models
has been a most fruitful area of convergence between the fields. The review adopts a microminded
approach instead of a meta-analysis. We do not provide a full coverage of the literature in production
risk, frontiers, heteroscedasticity or in agricultural economics — these goals have already been achieved
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elsewhere. Agricultural production is however an integral part of the discussion because of the common
ground of applications. Besides an expositional coverage of the subject, some critical insights regarding
the possible challenges in combining the two fields are presented. This discussion also reaches beyond
the core topic of heteroscedasticity. The synthetic view of the two fields constructed in this review should
benefit the future research in bridging the gap between the fields. The examination in this study proceeds
such that Sections 2 and 3 cover the production risk literature and frontier literature separately. Section 4
examines the studies, which aim to synthesize the ideas from these fields. Section 5 discusses the potential
challenges, such as production dynamics and heterogeneity, of synthesis. Finally Section 6 concludes.

2. A Brief Introduction to Production Risk

Risk is not a new concept in agricultural production economics. However for our purposes, the appropriate
origin of the literature dates back to the 1960s. Then the emphasis was on studying the distributional
characteristics of crop yields by examining the moments of yield distribution. This also provided
information about how input use might affect these moments. In his influential article, Day (1965)
proposed that crop yield distributions ought to be positively skewed instead of being symmetrically
normal. Risky weather conditions should imply less than mean yields as being the most likely. Only under
ideal weather conditions, could extraordinary yields be obtained. For Day, the skewed distribution was a
sign of risk. He also considered how different levels of fertilizer (nitrogen) use would affect the skewness
of a crop yield. Day concluded that generally, a higher level of nitrogen use ‘... places him [farmer] in
a more favorable risk environment’. implying that the risk is reduced by the use of nitrogen. This was
in contrast with Fuller (1965) who found that the variability of yields increased along with nitrogen use
(see also Just and Pope, 1979). Fuller, however, targeted his attention to variance instead of skewness
as a measure of risk (see also Anderson, 1973).* These early analyses of risk in agriculture were much
grounded on the distributional analysis of crop yields. From the perspective of production economics, the
more production function-minded work of Just and Pope (1978, 1979) is generally considered to be the
starting point of production risk literature in its current form.

Even today, the work of Just and Pope (1978, 1979) is often regarded as one of the hallmark models of
production risk. Just and Pope (1978) criticized the traditional stochastic input—output responses such as
Cobb-Douglas production function, since they impose strict constraints on how inputs affect the observed
output variance, that is, the production risk. All traditional production functions applied held inputs to
have only a risk-increasing effect on the output variance. Instead, Just and Pope suggested formulating
the production function as shown in equation (1):>

y=fX)+h(X)e 6]

The Just-Pope model (JP-model hereafter) in equation (1) combines the deterministic production
function f{.), which is a function of inputs X, with the additive stochastic error term & with zero mean and
constant variance. However, the term ¢ is scaled by arisk function /4(.). Just and Pope (1978) show that this
formulation does not restrict the sign of the marginal risk effects of inputs on the variance of output. They
also present a consistent and asymptotically efficient maximum likelihood (ML) estimation procedure to
estimate the parameters in functions f(X) and /(X). The follow-up study by Just and Pope (1979) presented
a three-step feasible generalized least squares (FGLS) estimator for obtaining the parameter estimates
of the risk function. This latter estimator has subsequently been the tool mostly applied in empirical
work (see Saha et al., 1997). Both estimation approaches take much from the traditional estimation
of heteroscedastic regression models such as Harvey (1976) and Amemiya (1977) as the JP-model
is in fact a model with heteroscedastic errors due to function A(.). It is also important to note that the
JP-model considers producers operating efficiently. Consequently, it assigns all variation from the optimal
production levels only to exogenous shocks.
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The JP-model framework has been fairly popular in empirical applications (e.g. Traxler et al., 1995;
Kumbhakar and Tveteras 2003). Asche and Tveteras (1999) employ the JP-framework to estimate the risk
effects in the Norwegian salmon farming industry. Departing from the FGLS procedure presented by Just
and Pope, they estimate the production function and the risk function with ordinary least squares (OLS)
in two separate steps, exploiting the fact that production uncertainty can be treated as heteroscedasticity.
The approach by Asche and Tveterds avoids using non-linear least squares needed in FGLS approach
but they lose some of its estimation efficiency. They also discuss the role of heteroscedasticity in risk
considerations. They see heteroscedasticity as a phenomenon with some economic content instead of
purely econometric misspecification problem. This review concurs with this interpretation. Consequently
they propose that typical heteroscedasticity tests can be applied to detect production risk. Of course, these
tests may also pick up misspecification that is not production uncertainty. Another novel application of the
JP-framework by Koundouri and Nauges (2005) augments the JP-model with a Heckman-type selection
model. According to them, the parameters of the risk function can be biased if crop selection is not taken
into account. It is reasonable to expect that risk parameters can be affected by crop selection as selection
is often determined by the same variables (e.g. weather) that constitute the variability in output.

Relatively quickly after its introduction, the JP-model was noted by Antle (1983b) as still rather
restrictive. According to Antle, the JP-model imposed similar restrictions on higher order moments
(above the second moment) than the models criticized by Just and Pope (1978) imposed on the second
moment. Antle showed that the elasticity with respect to input(s) of any higher order moment is directly
proportional to the elasticity of the second moment.® For Just and Pope, this was not a problem as they
considered only variance as the relevant measure of output risk. Thus, the research line initiated by Antle
revived the discussion seen already between Day and Fuller about the proper measures of risk. Antle also
proposes a flexible moment-based estimation approach where the effects of inputs on each moment are
allowed to differ.

Antle and Goodger (1984) applied Antle’s earlier framework in a milk production application. They
found that after accounting for the third moment, the input use of the risk-averse decision maker may
change when compared to the traditional mean-variance set up. Antle (1983b) and Antle and Goodger
(1984) also contemplated the relevant number of moments. Following Kendall and Stuart (1977), Antle
(1983b) viewed moments up to the fourth moment as being sufficient to describe the yield distribution.
Of course, the number of relevant moments is ultimately an empirical matter. Recently, Antle (2010a)
suggests that partial moments instead of full moments provide a more detailed description of inputs’
effects on moments since inputs are allowed to have different effects on the moments in the different
parts of the output distribution. Further discussion can be found, for example, from Du et al. (2012) who
extend the JP-model to include also skewness.

With a slight digression, we note that we have not yet touched upon the issue of risk preferences
of the producers. For example, Love and Buccola (1991) call for a joint estimation of technology and
risk preferences since technology parameters are inconsistent if these preferences are not accounted
for. Lence (2009) and Just and Just (2011) have, however, pointed out some challenges in estimating
risk preferences from the production data. Preferences are also significant when comparing alternative
technologies. Tveterds (1999) notes that in a deterministic setting, technical efficiency is a sufficient
condition to rank two alternate technologies. But as the setting becomes risky (stochastic), efficiency is
no longer an objective measure, as the ranking of technologies depends on the risk preferences of the
producer. In other words, the ranking of technologies depends on how the producer prefers the expected
output over its variance. Since the review of risk preference literature would practically merit a review
study of its own, we do not diverge further on this topic.’

It seems that production risk literature has been divided between the variance-based and the skewness-
based measurement of risk. The core question is whether the first two moments are an adequate
representation of output distribution and its riskiness.® Just and Weninger (1999) suggest that crop yields
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can be adequately represented with a normal distribution. Antle (2010b) argues that it is an empirical and
testable question as to whether, for example, any two parameter location-scale distribution is adequate.
He points out that location-scale assumption is at the heart of the JP-model with heteroscedastic errors.
But considering the next section on heteroscedastic frontier models, we view that the relevant comparison
point for these models is the JP-model due to its direct grounding on heteroscedastic regression models.
It is, however, important to be aware of the basic higher order moment-based approaches of estimating
production risk, since skewness of the error term is one of the central issues of the frontier field also (see,
e.g. Kuosmanen and Fosgerau, 2009 and the next section). It is especially interesting that skewness is
given different meanings in these fields; a point that will become evident in our future discussion.

3. Frontier Literature on Heteroscedasticity

We start with a very brief overview of the frontier field for those not familiar of it. The field targets an
estimation of a frontier, which usually defines maximal production. Different from typical production
function estimation, the producers are not assumed to operate efficiently. Inefficiency is then a one-sided
deviation from this frontier. This also suggests a different error structure for estimation than in a typical
production function with random symmetric noise. The general definition of technical efficiency by
Koopmans (1951) states that the firm is technically efficient if any increase in one output would imply
a reduction in at least one other output or increase at least one input, The origins of efficiency measures
are by Debreu (1951) and especially by Farrell (1957), whose definitions of the measures are based on
the radial expansion of outputs or the radial contraction of inputs. The development of current efficiency
estimation methods however dates back to end of 1970s, interestingly coinciding with the development
of the JP-model.

The frontier field has been characterized by two efficiency estimation paradigms. The non-parametric
data envelopment analysis (DEA) concept was originally suggested by Farrell (1957) but popularized by
Charnes et al. (1978). Since, it has been the predominant approach within the operation research and
management science community. DEA has gained its popularity mainly due to its axiomatic approach in
defining the efficient production frontier. This approach relies on a minimal set of regularity conditions
for production technology such as monotonicity, concavity and certain returns-to-scale. Given these
assumptions, the technology is estimated with a mathematical linear programming optimization. The
main limitation of DEA is that it assumes all deviation to the frontier being due to inefficiency. The
inability of DEA to account for statistical noise and measurement errors gave rise to another strand of
frontier estimation with a strong econometric background. Stochastic frontier analysis (SFA) (Aigner
et al., 1977; Meeusen and van den Broeck, 1977) incorporates statistical noise into its estimation
framework. It however imposes a functional form for the production technology. Typically it also requires
assumptions regarding the distribution of inefficiency and noise. Due to the econometric groundings
of SFA, it has achieved a more fruitful treatment of heteroscedasticity. Thus, we limit our interest on
SFA literature and leave an exploration of DEA and other semi- or non-parametric methods under
heteroscedasticity as a topic of further research. Many semi- and non-parametric methods are anyhow
more robust with respect to heteroscedasticity than SFA as they attempt to relax some of the assumptions
of the parametric models (see, e.g. Kumbhakar et al., 2007). These approaches however pay little attention
to model heteroscedasticity as an economic phenomenon.

The original SFA model that Aigner et al. (1977) proposed for the estimation of production function
in the presence of noise and inefficiency is in equation (2):

yi=f&xi:B)+e ()

where &, = v; — u;.
In equation (2), the deterministic part of the production frontier f(x;; ) specifies the maximum
production given inputs x; for firm i. The parameter vector B represents the parameters of the production
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function. Some parametric functional form (e.g. Cobb—Douglas, translog) is assumed for f(.). The
composed error term, &; represents the overall deviations from the frontier. The term, v; is a typical
two-sided symmetric noise term. Consequently f(x;; 8) + v; forms the stochastic frontier. Aigner et
al. (1977) characterize v; being the result of external events outside the control of a firm such as
luck, weather and topology. Another source for v; is in specification and measurement errors. The
term, u; is the one-sided inefficiency component. For production function, it is always assumed as
positive. The parameters 8 are typically estimated with ML although OLS-based approaches are also
available. Using ML necessitates some distributional assumptions for the error components. The usual
assumptions are v; ~ N (O, 03) and u;that follows some one-sided distribution such as half-normal,
u; ~ |N(O, auz)| or exponential. It is also assumed that u; and v; are independent of each other and of
inputs X;.

One complication in the early stages of SFA literature was that in a cross-sectional case, only industry-
wide average inefficiency could be obtained. Jondrow et al. (1982) derived the point estimator for
firm-specific inefficiency as E (u;|¢;) and this estimator still frequently applied despite being inconsistent
in a cross-sectional case. Since the distribution of inefficiency is one-sided, the composite error &; should
be negatively skewed in the case of a production frontier. Thus, a test on the skewness of & serves as
a specification test, as to whether the frontier formulation is appropriate in contrast to a neoclassical
production function (Kuosmanen and Fosgerau, 2009).’

It is also reasonable to ask whether distributional assumptions on inefficiency have any major effect
on the SFA estimation. The choice of the distribution for the inefficiency term is relatively arbitrary
as long as the chosen distribution is one-sided. Generally, the choice does not significantly affect the
estimated efficiency scores or their rankings (e.g. Greene, 2008, pp. 180—184). Certain distributional
assumptions however may have some interesting conceptual implications as we later note. Relaxation of
these assumptions is possible by using panel data or generalized method of moments (GMM) estimation
(Schmidt and Sickles, 1984; Kopp and Mullahy, 1990).

Heteroscedasticity is introduced by allowing the variances of the error components to be observation-
specific, thatis, o} ; and/or o ;. Within frontier literature, the discussion of heteroscedasticity is necessarily
preceded by a more general discussion of the modelling of exogenous inefficiency effects with so-called z-
variables (see survey in Kumbhakar and Lovell, 2000, Chapter 7). The z-variables are usually considered
to be variables which are not part of the production technology as such but which can still affect the
efficiency of the production process. These variables thus affect the relative location of the frontier but
not the shape of it. These may include variables describing, for example, the operating environment or
producer-specific characteristics. The early and rather intuitive approach to assess the effects of z-variables
was to first obtain a measure of efficiency and then run a regression of the obtained efficiency scores on
z-variables. This approach has since been proven to be unsatisfactory due the complications concerning
the two separate steps of estimation (see, e.g. Schmidt, 2010). Thus, usually the z-variables parametrize
the distribution of inefficiency and the effects of them and the production function are jointly estimated
in a single stage.

Kumbhakar et al. (1991) (KGM hereafter) parametrizes the mean of inefficiency distribution such
that u; ~ |N(z;y, 02)|. The parameter vector y gives the effects of z-variables on mean inefficiency.
This approach however confounds the effects of z-variables on the expected level of inefficiency and
the variance of inefficiency. Shifting the underlying mean of the untruncated u necessarily shapes the
variance of the truncated u. Extensions of the KGM model are Huang and Liu (1994) and Battese and
Coelli (1995). Huang and Liu’s model (1994) includes the interactions of inputs and z-variables in the
vector z. Thus, the inefficiency effects may vary according the input level. Battese and Coelli (1995)
extend the model to panel data. By parametrizing the expected inefficiency, these models shift the relative
location of the frontier. The location of the frontier can also be shifted by other means. Nothing in our
earlier definition of z-variables prevents them being entered into the model as in equation (3), as suggested
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by Reifschneider and Stevenson (1991):
yi = fxi; 8) + 8(2i;8) + & 3)

In equation (3) the z-variables act as direct production function shifters. The practical effects of KGM
(1991) and Reifschneider and Stevenson (1991) specifications are quite similar. As a consequence, it is
difficult to differentiate between these two positioning (see discussion in Fried et al., 2008, pp. 156-157).
Conceptually the interpretations, however, will differ. In the latter case, the production function is shifted
with respect to the observations, whereas in the former case the observations are effectively adjusted by
their environment/characteristics with respect to the frontier.

None of the above studies explicitly model heteroscedasticity with z-variables. Reifschneider and
Stevenson (1991) noted that the standard deviation of inefficiency could be modelled as a non-negative
function of the z-variables but did not implement this approach. With simulation experiments, Caudill and
Ford (1993) and Caudill ef al. (1995) (CFG hereafter) showed that unaccounted heteroscedasticity biases
the parameter estimates of frontier function and the obtained efficiencies. To account for heteroscedasticity,
CFG (1995) suggested the parametrization shown in equation (4) for the standard deviation of inefficiency.
In the equation, Z is a vector of variables mainly related to firm size (their definition) and y is again a
vector of the unknown coefficients to be estimated. The exponential form for parametrization guarantees
that the standard deviation is non-negative:

oui = exp(Z;y) 4)
o, = exp(W;0) )

Subsequently, Hadri (1999) proposed an obvious extension to the CFG (1995) model with his doubly
heteroscedastic model, by parametrizing also the standard deviation of the two-side noise component
within the same model. Thus, Hadri’s model encompasses the CFG (1995) model as a special case if the
standard deviation of noise is constant. Notice that parametrizing only the standard deviations or variances
of the distributions does not necessarily offer much more clarity compared to the above models, which
parametrize the mean only. If the underlying variance is parametrized, keeping the pre-truncated mean
constant, then the after truncation mean is again necessarily changed. It also serves to briefly discuss the
variable choice at this point. Hadri viewed the Z-variables in equation (4) to be variables related to firm
management, whereas the W-variables in equation (5), he viewed as size related variables. In the context
of this review, it is however more relevant to ask whether a variable is under or beyond the control of
firm management. It would be tempting to say that Z-variables are more in the control of management
than W-variables as unlike noise, inefficiency should be controllable. However, while noise itself is not
controllable, the effects of it may be, at least considering from a production risk perspective. Thus, is not
directly obvious that all W-variables are uncontrollable as in the spirit of JP-model it could include inputs,
for example.

Concluding this section, the most pressing issue in modelling exogenous efficiency effects is well
characterized by Greene (2008, p. 154) when he asks ‘Where do we put the z's’? The problem is,
that regardless of the placement of the z-variables their practical effect is often much the same and
thus hard to explicitly identify. For modelling risk, however, the more important issue is whether the
standard deviations given in equations (4) and (5) can be interpreted as production risk or uncertainty. The
discussion in the following section will endeavour to show that indeed they can be given such meaning.

4. Convergence of the Two Fields: The Synthesis

In this section, we examine how the ideas from the production risk and frontier fields have been
synthesized. We begin with a statement from Gallagher (1987): ‘Capacity is defined here as the yield that
would occur with efficient use of the given technology for controllable inputs and ideal weather’. This
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statement well captures the importance of the operating environment in frontier models. More specifically
it says that the maximum capacity is achieved only under ideal conditions. With capacity Gallagher
referred to a frontier and according to him the deviations from this frontier are due to one-sided random
fluctuations, that is, production risks. Thus, Gallagher does not have any inefficiency considerations in
his study. That is why we do not consider the model by Gallagher as a synthetic approach in the sense
what is meant in this review as it does not discuss inefficiency and production risk together.

Somewhat closer to such synthesis is the work by Antle and Crissman (1990) who derive a measure
of technical efficiency within an expected utility framework. Their efficiency measurement concerns the
differences in efficiency between traditional and modern crop varieties. The relative efficiency between
the producers of these varieties is the ratio between their expected utilities, which again depend upon the
producer surplus. The moments of producer surplus are functions of inputs. Thus, the uncertainty over
output is taken into account in the producer problem by defining the objective as an expected utility of the
producer surplus instead of surplus itself. Since their efficiency comparisons are only pairwise, they do
not estimate any frontiers and thus again their work cannot be considered as synthesis quite in the sense of
this review. Their work, however, raises an important issue of production dynamics and its implications
on efficiency measurement (see Section 5).

Closer to the typical SFA framework, Kumbhakar (1993) stated the need for a joint estimation of
technology, production risk and inefficiency. He views that incorporating risk into to the basic SFA
framework makes SFA model heteroscedastic. Indeed, from equation (6), we see that his model is an
extension of the JP-model. The actual estimation much follows the panel data model of Griffiths and
Anderson (1982). Griffiths and Anderson present a framework for estimating firm-specific effects under
the Just and Pope risk specification without considering these individual effects as inefficiency. Kumbhakar
gives them such an interpretation. Unfortunately, also the main challenges of Kumbhakar’s model relates
to these firm-specific effects. First they are assumed to be fixed over time. It may not be reasonable to
assume this in longer panels. The model nevertheless allows these firm-specific effects on output to vary
along with the input use in Just—Pope fashion, but the underlying inefficiency is fixed. Secondly, as we will
later discuss, the fixed effects component faces problems when we attempt to identify it as inefficiency,
as it easily picks also other heterogeneity that is not related to inefficiency:

Iny =1In f(x; ) + g(x; Bt + A + vi¢] (6)

where
7; is the time-invariant firm effect/inefficiency
A; is the time-specific effect,
v;; is the firm- and time-specific random noise and
«, B are the parameters associated with the production and risk functions.

Strictly in SFA context, Battese et al. (1997) (BRW) introduced a cross-sectional stochastic frontier
model with a composed error term and flexible risk properties as shown in equation (7). All terms in
equation (7) are similarly defined as before apart from the non-negative u; which is now distributed as
the truncation of the N (u, ouz) distribution. We see that the standard SFA and JP models result as special
cases of the model in equation (7) if we omit the function g(.) or inefficiency correspondingly. In their
application the risk flexible model or the traditional JP-model did not yield noticeably different marginal
products of inputs, compared to the typical SFA model. Moreover, inefficiency effects were tested being
absent in stochastic flexible risk model, suggesting that it does not differ significantly from a typical
JP-model. Finally, the parameter estimates of the risk function did not differ between the JP-model and
the risk flexible SFA specification. The last finding is quite expected as BRW do not identify which error
component is the source of risk since the function g(.) is the same for both v and u:

Yi = f(xis) + g(xi; B)lvi — uil )
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The natural extension of the BRW (1997) model was presented by Kumbhakar (2002a). This model
is shown in equation (8). Kumbhakar aims to augment the SFA model with production risk and on the
other hand to account for the possibility of inefficiency in the JP-model. Most importantly, however,
Kumbhakar also includes the estimation of risk preferences in this model. Thus, the model allows
us to elicit information as to how both technical inefficiency and production risk contribute to the input
decisions given the risk preferences. Neither the traditional JP-framework nor the SFA-framework account
for preferences, so preferences are not assumed to affect the input use. In reality a risk-averse producer
could prefer risk-reducing inputs over other inputs.

y=f(x,2) + gX,2)v — g(X, 2)u ®

Note that, Kumbhakar defines the vector z as quasi-fixed inputs, not as the usual z-variables we
have discussed earlier. It is straightforward to see that the BRW-model results as a special case if
g(x, z) = g(x, z) and the standard JP-form is obtained if no inefficiency is present. Functional form for all
the functions f{.), g(.) and ¢(.) has to be specified. It is often argued in favour of semi- or non-parametric
frontier models that any pre-determined functional form is hard to justify for the production function.
Just and Weninger (1999) pointed out that functional form misspecification is often a major source of
complication in the estimation of crop yield distributions. Thus, it might be hard to justify any specific
form for the functions g(.) and ¢(.) also. Kumbhakar and Tsionas (2010) partly relax these parametric
restrictions and consider non-parametric kernel estimation of the production and risk functions. They
however remain within the standard JP-model and do not consider inefficiency to be present. Relaxing
these parametric assumptions further in this context might provide a potential avenue for further research.

Kumbhakar applies his model to data on Norwegian salmon farmers. He finds that for risk-averse
farmers, the output risk impacts more on their input decisions than technical inefficiency. This implies
that the risk-averse producer is more concerned in reducing the output risk at the expense of the efficient
use of inputs. Already Ramaswami (1992) pointed out that the marginal risk premium is negative for
risk averters if and only if the input is risk decreasing. In contrast, a risk-averse producer should be
compensated (positive risk premium) for the use of risk-increasing input. Thus, in sectors where risk
considerations are of concern but where firms are risk neutral, the firms may not have sufficient incentives
to reduce risk. Consider, for example, the regulation of public utilities and their service provision. Often
incentive schemes in regulation emphasize efficiency over quality factors (see, e.g. Giannakis et al.,
2005). Furthermore, the minimization of inefficiency and risk are often contradictory objectives as the
high use of risk-reducing input can appear as technical inefficiency (see Kumbhakar, 2002a). Therefore,
the regulated utilities may be more concerned with being technically efficient, rather than improving the
quality (riskiness) of their services.

The models by Kumbhakar (1993, 2002a) and BRW (1997) are JP-augmentations of the standard SFA
model. Nevertheless, the concept of production uncertainty has been introduced in SFA literature without
any reference to the JP-framework. Instead of the parameters of risk function, Bera and Sharma (1999)
targeted their analysis towards the variability of inefficiency. Following the Jondrow et al. (1982) estimate
of inefficiency E(u;|¢;), they introduce the conditional variance of inefficiency Var(u;|e;) as a measure
of production uncertainty, where ¢; is the composed error term from a typical SFA model.

Bera and Sharma show that both E(u;|e;) and Var(u,|e;) are monotonically decreasing in ¢; for
production function. This implies that given a fixed v;, the closer the production is to the frontier, the
less production uncertainty it faces. They also note that the possibility for efficiency improvement is
larger under a high uncertainty. That is, the largest scope for efficiency improvement is where the largest
variability of efficiency occurs. However, we must take some care in interpreting Var(u,|¢;) as a measure
of production uncertainty. If we compare the result of Bera and Sharma to Kumbhakar (2002a), they seem
somewhat contradictory. In Kumbhakar’s approach, the objectives of technical efficiency and production
uncertainty can be in contradiction due to risk aversion. In Bera and Sharma’s approach, these measures
go to the same direction. Bera and Sharma acknowledge that production uncertainty can be due to factors
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other than inefficiency (e.g. environment). There is no need to assume that these factors are less volatile
near the frontier. In fact, the producer may need to be more efficient in order to successfully operate in a
riskier environment. Thus, the most efficient units may face the highest production uncertainty. Finally,
note that, due to conditioning on ¢;, the noise component is fixed in their approach. Thus, factors in v
cannot be considered to be contributing to production risk. For future research they propose to investigate
the conditional skewness and kurtosis measures (see also Asche and Tveteras, 1999, and the reference
therein).

Wang (2002) also considers the variance of inefficiency as the measure of production uncertainty. For
analytical simplicity, Wang uses the unconditional variance of inefficiency Var(u;) instead of Var(u;|e;).
Wang however places more interest on how z-variables affect his measure of production uncertainty.
We have previously discussed some developments of modelling the exogenous efficiency effects in SFA
models. Those models were mainly concerned with parametrizing either the mean or the variance of
inefficiency distribution. Wang (2002) proposes a model where the z-variables affect both the mean
and the variance such that u;; ~ N (u;,, cr,-z,). The detailed parametrizations are shown in equations (9)
and (10).

Mir = 218 ©

o7 = exp(Zi;y) (10)

This model seems to be a direct extension of the models by KGM (1991) and CFG (1995). The model
allows the z-variables to have non-monotonic marginal effects on inefficiency within the sample. This
means that the effect of z-variables on E(u;) and Var(u;) can differ in magnitude and even in sign with
different values of z-variables. Wang notes that in KGM framework, a certain z-variable is either efficiency
enhancing or efficiency impeding. To illustrate his model, Wang uses farmer’s age as an example. For
younger farmers, ageing affects positively on productivity through gaining more experience. Above a
certain age the effect turns to be negative as older farmers are physically less capable to perform well.
The effects on variance are generally the same. Wang however notes that in his model, the effects on
mean and variance can also differ. Nonetheless, it is not directly observable whether the Wang model
suffers from the same problem of confounding effects as the KGM (1991) model. Moreover, it is not
obvious either from the work of Bera and Sharma or the one by Wang, whether their use of the term
‘production uncertainty’ holds significantly different connotations to what is meant by production risk in
the sense of Just and Pope. But since variations in inefficiency arguably translate to variations in output,
these concepts can be seen to coincide at some level.

In a parallel study to Wang (2002), Wang and Schmidt (2002) propose a model shown in equation
(11) with a so-called scaling property for inefficiency (see also Simar et al., 1994). In equation (11), the
distribution u* is independent of z-variables. This so-called base inefficiency is however scaled with a
scaling function h(.) where § is a parameter vector associated with the z-variables. Following Alvarez
et al. (2006), the scaling property can be interpreted such that the basic distribution of u* reflects,
for example, the natural managerial abilities of the manager which are not affected by any contextual
factors:

u(z, 8) = h(z, 8)u* (11

The scaling function, which can be a function of the operating environment, then effectively scales
up or down the mean and the spread of these managerial capabilities. In other words, the extent that the
natural skills of the manager are used effectively depends, for example, on the manager’s schooling and
operating environment. Interestingly, the scaling function could also be interpreted as a risk function.
Since the scaling function determines the scale of the distribution for inefficiency, a larger scale can be
considered as a riskier environment. In the JP-model also the effects of random shocks are in some sense
scaled up or down by the risk function.
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The main contributions for the synthesis between the stochastic frontier models and production risk
models can be considered to be those listed above. However, few other studies warrant a mention. Jaenicke
et al. (2003) compare different SFA models and the JP-model in a cotton cropping system application.
They found that the ordering of different cropping systems with respect to their riskiness was much
affected by the chosen method. However, they do not combine the JP- and SFA-model in the same fashion
that has been done above by BRW (1997), for example. Their final ‘new’ model is in fact a variant of the
Wang (2002) model with the exception that Jaenicke et al. parametrize the variance of noise instead of
the variance of inefficiency. Thus, they interpret the variance of noise to represent production risk. Huang
and Kao (2006) extend the inefficiency/risk estimation to a multi-output setting as according to them any
single output model is unable to identify risk from technical efficiency. They argue that since observable
output is affected by the production risk, these factors become undistinguishable from output inefficiency.
Instead they propose to associate risk to only one of the outputs and regard the other outputs as riskless.
It is uncertain as to what constitutes the rules in determining risky output. In the Huang and Kao (2006)
banking example, their approach may seem plausible, but in agriculture the multi-output farmer is likely
to face risks relating to each of the outputs. Their notion of identification however merits its place.

This section outlines two distinctive approaches to synthesis. The JP-augmentation of SFA models
(Kumbhakar, 1993, 2002a; BRW, 1997) can be considered as the more direct approach, whereas ‘the
variance approach’ (Bera and Sharma, 1999; Wang, 2002; Jaenicke et al., 2003) examines the production
risk indirectly from the variance of inefficiency or noise. The former approach allows us to infer the
effects of input use on production risk with the cost of more complex estimation. The latter approach
could in principle be extended to examine the risk effects of inputs by obtaining a measure of production
risk and regressing that on the inputs. However, this type of approach might yield similar statistical issues
to those known in the two-step approach of z-variable modelling in frontier literature (Schmidt, 2010).
It is often argued that the validity of a two-step approach relies upon z-variables being separable from
the input—output space (see, e.g. Daraio and Simar, 2005). Similarly, it can be argued that risk cannot
be separated from technology estimation, especially if we study inputs’ effects on risk. Thus, it may be
preferable to jointly estimate the technology and risk parameters. This goal is partly achieved with the
JP-augmented SFA-models. However, complications arise, as often such models are unable to adequately
separate between inefficiency, production risk or any other form of heterogeneity.

5. Discussion and Further Extensions

As we have seen, the concept of heteroscedasticity appears to be the linking channel between the
production risk and SFA models. Our treatment so far has largely been expositional. We have tangentially
discussed some of the challenges of a synthetic approach but the implications of these challenges are yet
to be studied in detail. In this section, we deal the challenges of a synthetic approach in a wider context
and extend the discussion also beyond the concept of heteroscedasticity. There are two issues that we
especially examine in this section. First, our previous discussion has not yet identified as to what stage of
production process inefficiency and risk should be considered. But clearly production dynamics affects
our perceptions of inefficiency and risk, as production decisions often are long-term decisions. Secondly,
identification between inefficiency and production risk can be problematic since producer or environment
heterogeneity may perturb our attempts to separate them.

The full exploration of production dynamics falls beyond the scope of this review. Dynamics, however,
has some relatively intuitive implications for risk and inefficiency. So far, a relatively static view of risk
has been presented. Up to this point, we have mainly considered risk to manifest itself in the uncertain
output given the decision on inputs. But of course the riskiness of production may already affect the
input decisions. Already Just (1974) found that past experiences of risk significantly affect the future
decisions of a farmer. Implicitly the later Just and Pope (1978) model also aims to learn something about
this feedback process as it aims to see how risk could be controlled with the input use. Jolly (1983) has
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categorized the risk management of a farm to be compiled from two types of actions, namely, those actions
against risk exposure and those in controlling risk impacts. The producer probably seeks to minimize both
the exposure to risk and the impacts of a realized risk. In practice, the former may be impossible to control
for but the latter seems more controllable through the use of risk-reducing inputs. Regardless of how
controllable exposure and impacts are, the decisions concerning them are anyhow made with incomplete
information. The farmer has only subjective ex ante evaluation regarding risk or uncertainty at hand at the
time of the decision. Therefore, some degree of inefficiency may result from this informational deficiency.
The risk-efficiency hypothesis by Antle (1983a) well summarizes the farmer’s problem: ‘... previously
optimal decisions based on old information become suboptimal with new information. These facts lead
me to hypothesize that risk affects both, productivity (technical efficiency) and optimal resource use
(allocative efficiency) ...’ . Simply put, previously technically (or allocatively) efficient decisions may
not be efficient when subject to new information. Clearly, efficiency after resolved uncertainty is different
from the efficiency before unresolved uncertainty. The problem for the analyst is that production analysis
is often ex post analysis of the observed behaviour. Pope and Chavas (1994) and Pope and Just (1998)
show that a so called ex post cost function conditioned on the observed output is not compatible with the
expected utility maximization when the output is in fact stochastic. As a consequence, biased parameter
estimates of the cost function are obtained if ex post function is applied instead of ex ante function.

Production dynamics also matter for technology adoption, which inherently is a dynamic process. As
discussed by Antle and Crissman (1990), technology adoption has implications for efficiency measurement
also. Consider that in a certain period, a farmer experiments with new technology to obtain possible future
gains. The farmer may appear relatively more inefficient in this adoption period than in a previous period
as the farmer is yet to fully master the new technology. Is it then correct to interpret this as inefficiency?
Especially if the learning process results in significantly better outcomes in the future, a snapshot view
on efficiency can be severely misleading. Thus, the long-term optimization problem might significantly
differ from the short-term one as noted by Antle and Crissman (1990). Indeed they find that during the
early periods following the introduction of a new technology, the adopters suffered efficiency loss relative
to the users of old technology. This relationship is however reversed due to learning in later periods.
Thus, in the present context we see that technology adoption can imply period-specific heteroscedasticity.
Experimenters have higher variation in their output during experimental periods compared to the non-
experimenters. Ghosh ef al. (1994) also examine the role of technical inefficiency and risk attitudes in
the technology adoption process and found that technically more efficient producers were more willing
to adopt the new technology. They view the new technology as risky and as a result, the technically
inefficient risk-averse producers are not willing to adopt the new technology. This is because in principle
they can increase their expected profits with old technology by increasing their efficiency.'? These results
in together may explain why we may observe rather large efficiency variations of a producer between
different periods.

The second complication of the synthetic treatment of risk and inefficiency comes from the identification
between them. Identifying is challenging, as both are deviations from a production frontier. Here, we
consider both deviations to be output reducing. Of course, we could have a positive shock, but in a case
of risk it is maybe more natural to speak of negative shocks. More specifically, the problem is how to
properly decompose the overall residual into these two (or even more) subcomponents. Before that, it is
informative to ask a more general question about how we obtain this residual at first place. The residual
is always a result of unaccounted factors of our model (or misspecification). Thus, the key is how much
conditioning we can and want to do in our model. In practice we are forced to put some limit to our
conditioning. By imposing this limit, something is necessarily left unexplained. From here, it is only a
matter of labelling as to whether we call the remaining residual as inefficiency, production risk or noise.
Abramovitz (1956) famously stated that the residual can be seen ‘as the measure of our ignorance’.
Unfortunately, whether the residuals represent the ignorance of the firm under study or the analyst is
often unclear. We can only hope that the analysts have the competence to include all the relevant factors
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to minimize their ignorance. According to Stigler (1976), observed inefficiency might be a result of the
failure of the model itself. !' However, even after a correctly specified model it is not certain what does
the obtained residual stand for. As said, this deviation can be manifested as inefficiency, production risk or
noise. Thus, the next step would be to decompose the residual. The problem of decomposing the overall
error to its parts (inefficiency and noise term) is known as the deconvolution problem in frontier literature
(see, e.g. Amsler et al., 2009). The signal (inefficiency) that we are looking to extract is convoluted with
the relatively uninteresting part (noise). Similarly, inefficiency can be convoluted with production risk
(O’Donnell and Griffiths, 2006). Thus, what often is labelled as inefficiency might simply be a realized
output risk. The deconvolution is further complicated as the convolution with production risk in fact
involves three parts: inefficiency, production risk and also noise. O’Donnell and Griffiths (2006) propose
to achieve this type of deconvolution in a Bayesian estimation framework.

If we are interested in both inefficiency and production risk within the standard SFA framework, the
easy way out would be to assume that the noise term is production risk. Nevertheless noise has not
usually been labelled as risk since the motivation to include the noise has been mostly statistical. Of
course placing risk to the noise term raises the problem of how to differentiate risk from measurement
errors and other statistical noise. By no means probably, but following the JP-framework analogy, there is
where the risk component naturally falls. But the way we generally see statistical noise in an econometric
model has an interesting consequence on how we assume risk being distributed if we consider noise
as risk. Since the noise term is usually always assumed to follow a symmetric distribution, we would
consequentially assume that production risk is symmetric. But already in Section 2, we noted that risk
might have a skewed distribution. For example, small- and mediocre-sized risks are often more likely
than high risks, thus leading to a positively skewed risk distribution. This however would complicate
identification, as now both inefficiency and noise would be skewed similarly. Analogously, as Amsler et
al. (2009) point out, nothing in principle rules out ‘nearly normal’ distributions for inefficiency. Again
identification would be practically impossible. It may be because of these challenges that risk has more
often been incorporated to the variance of the inefficiency term in frontier literature and the noise term is
subsequently left without further interest.

Even more general problem is how to untangle inefficiency from producer and environment
heterogeneity. Some authors in the efficiency literature are concerned that the variations in environment
and/or the characteristics of producers are often misinterpreted as observed inefficiency. For example,
O’Donnell et al. (2010) (OCQ hereafter) suggest that efficiency considerations with traditional frontier
models may be misleading due their inability to take into account the uncertain production environment
and the producers’ views about this environment. OCQ suggest that information asymmetry between the
producers can cause productivity differences even without any technical or allocative inefficiency. In other
words, the productivity differences are not due to any inefficient use of resources, as we would normally
understand inefficiency, but only due to differences in perceptions. Obviously the better informed producer
is more capable to adapt himself to the uncertain possibilities of the future. OCQ (2010) illustrate their
point in simulations where the expectations of risk among producers are heterogeneous.'? They assume
that producers are fully rational and optimize their production such that no inefficiency in its traditional
sense is present. This assumption illustrates their main point that even among fully efficient producers,
productivity varies due to the different states of nature. More specifically, they show that the traditional
efficiency estimators, such as SFA and DEA, identify inefficiency being present although all producers
are efficient. Thus, the unaccounted informational asymmetries are portrayed as inefficiency. They also
assume that producers face the same set of possible states of nature. This rarely is the reality but this
assumption highlights that producers differ only in their beliefs of future states, not in their possible states
of nature.

The work by OCQ (2010) recognizes more or less the same message as the study by Greene (2004).
Greene studied the differences in the efficiency of national healthcare systems using a large WHO data
set. He points out that a substantial proportion of the country heterogeneity has been misinterpreted
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as inefficiency in earlier studies on the subject. Greene notes that in typical panel data frontier models
such as Kumbhakar (1993), the time-invariant unit-specific component practically ‘masquerades’ all
heterogeneity as inefficiency. Instead Greene (see also Greene, 2005) suggests more general true fixed
and random effects models, which add a further heterogeneity component to the typical panel data models.
However, the true fixed effects model is often practically infeasible with a large cross-sectional dimension
as the number of estimable parameters increases rapidly.

The above true fixed/random effect models do not consider heterogeneity in production function
parameters. Greene (2005) actually shows that the above true random effects model is a special case
of a more general random parameter model where variation in technology parameters accounts for
heterogeneity (see, e.g. Kalirajan and Obwona, 1994; Tsionas, 2002; Huang, 2004). Often these random
parameter models are formulated within the Bayesian framework with certain prior distributions for the
parameters. Greene also discusses so-called latent class models or alternatively named ‘finite mixture
models’ (see, e.g. Beard et al., 1991; Gropper et al., 1999; Caudill, 2003). These models assume that
producers belong to different groups/classes for which different production functions with different
technology parameters are estimated. Often the probability of class membership parametrized as a function
of some firm-/environment-specific variables. Greene aptly points out that these latent class models can
be seen as discrete versions of the random parameter models above. The main limitation of these models
is that the number of classes has to be known beforehand. On the DEA side, group-specific frontiers are
estimated in frontier separation (Charnes et al., 1981) and meta-frontier approaches (Battese et al., 2004;
O’Donnell et al., 2008). These models however require that we beforehand know to which group each
producer belongs. In the latent class models, the class membership is unknown a priori.

Instead of estimating separate technologies based on some categorization on environment or producer
characteristics, we can consider that production technology differs at different levels of efficiency. It
might be reasonable to expect that technology closer to the frontier differs from technology far from it.
Quantile regression has been utilized for this purpose (Bernini et al., 2004; Liu et al., 2008; for a general
treatment of quantile regression see Koenker and Hallock, 2001). Different quantiles are estimated
such that one of the upper quantiles represents the efficient frontier. The problem is that the choice of
appropriate quantile to represent the frontier is relatively arbitrary. Finally, the approach by Li et al. (2002)
models technology heterogeneity by defining the production function parameters as functions of some
environmental variables. This is yet another placement possibility for the z-variables.

In general, the aim of including technology heterogeneity in a stochastic frontier context can be
summarized by the statement of Tsionas (2002): “ . . . free the frontier model from the restrictive assumption
that all firms must share exactly the same technological possibilities’. This would leave us to study the
‘true’ inefficiency that is remaining after accounting for technological differences. Moreover, since
technological differences are arguably mainly due to differences in operating environment, it seems that
the random parameter models could provide information on how technological choices respond to the
changes in environment. However, if the aim is only to allow flexibility in the production function, we
may want to resort to DEA style non-parametric methods, which inherently are very flexible in terms of
the production technology.

The issue of heterogeneity is of course not new. Already Hall and Winsten (1959) considered possible
problems in efficiency estimation when producers operating in different environments were compared.
According to them, difficulties arise since each environment sets a different range of choices for managers.
Interestingly, the current definition of z-variables can be dated back to their paper as they point out the
difference between production and environment variables as: ‘The lines between different classes of
comparisons are drawn by those changes which do not count as changes of technique, but which do
influence output’. They also suggest that some ‘allowances’ should be made according to how difficult
a certain task is to achieve in certain operating environment. This is basically the core reason why z-
variables are used. For example, in comparing the cost efficiency of electricity distribution firms, it is
important to take into account the operating environment. Companies in urban areas have to utilize more
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expensive underground cabling instead of cheaper overhead cabling that can be used in more rural areas.
Direct comparison of cost efficiency could then be unfair if the operating environment is left unaccounted.
For example Kuosmanen (2012) and Kuosmanen et al. (2013) use the proportion of underground cabling
from total cabling as a variable characterizing the operation environment.

The discussion above characterizes the multitude of ways by which we may account for the
heterogeneity of producers or their environment. Many of them reach far beyond the concept of
heteroscedasticity. However, whether heterogeneity is due to producer characteristics or environment
characteristics can be seen only as secondary in importance. The crucial issue is to acknowledge that
some form of heterogeneity is almost always present and neglecting it will be likely to lead to haphazard
results and interpretations. Of course in practice, we need to specify what type of heterogeneity we are
looking for, since from an estimation point of view it seems almost impossible or at least impractical to
include all types of heterogeneity. Thus, it is worth emphasizing that none of the above ways to include
heterogeneity is more correct than any other. The application at hand dictates what type of heterogeneity
we ought to model and how to model it. Considering the modelling of risk, models of heteroscedasticity
seem the most obvious choice.

6. Conclusions

This paper has examined two predominantly separate fields of research. Production risk literature has
attempted to understand the distribution of output and its related risk considerations. Specifically, the field
has contributed much effort to model how output variation could be better controlled through input use.
Frontier literature has concentrated on estimating maximum obtainable outputs and identifying departures
from this output due to inefficiency. At first these aims seem rather distinctive. However, with a systemic
coverage of the relevant literature, this review has built a more coherent picture of the connections between
these fields. The concept of heteroscedasticity has been utilized to bring these two veins of literature on par
with each other. Many of the empirical methods in these fields can be connected via heteroscedasticity.
Estimation methods that attempt to jointly estimate inefficiency and production risk have also been
covered. In many instances, this joint estimation seems necessary as it is likely that neglecting the other
factor might bias our estimation of the other. Unfortunately, conceptually it is difficult to identify between
production risk, inefficiency and general producer heterogeneity. Empirically two alternatives exist. We
can increase model complexity and try to estimate everything at once. Especially adding general producer
heterogeneity and risk preferences may inhibit us from using simple models. Alternatively, we can take
some traditional models and interpret their results in terms of risk and inefficiency. Many heteroscedastic
SFA models covered in this review would fall in this category. Both approaches however aim for synthesis,
either through novelty in estimation or in interpretation.

Although giving exact methodological prescriptions for future research is not the task of this review,
one general suggestion is made. Considering heteroscedasticity, it is necessary to define whether
we consider it only as an econometric problem or a concept with some economic meaning. In the
former case, a correction of it or models robust to it are appropriate ways to proceed. However, if
we aim to model the economic meaning of heteroscedasticity in a production economics context,
we should probably look towards models of risk. On the other hand, if we are examining risk, it
is the models of heteroscedasticity that we should first look towards. Furthermore, the analysis of
risk in a frontier context could be extended with the concepts such as heteroskewness (Antle, 1983b;
Bera and Sharma, 1999) and heterokurtosis since both skewness and kurtosis seem relevant for risk
considerations.

In summary, this review reveals a clear connection between the production risk literature and the
frontier literature. The fact that this connection mainly rests upon a single concept at the moment
is something that we view as a potential for future development. Establishing further connections
through methodological advances beyond the ones presented here is still a research agenda that could
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be extended. Since these issues still seem unsettled, it is sufficient to end this review with the still
relevant question that Anderson (1974) presented: ‘Can proper account of risk be taken in research and
extension’?

Notes

1.

2.

10.

11.

12.

The term frontier field is used in this study to refer to a branch of productivity and efficiency literature,
which is interested in estimating production frontiers and deviations from this frontier.

Some may differentiate between risk and uncertainty (Knight 1921), but others may not (Chavas
2004). In our discussion we use the terms interchangeably.

More generally, production risk can be defined as uncertainty over output or its price. We restrict
ourselves to output uncertainty and do not consider output price uncertainty. See, for example,
Kumbhakar (2002b) references therein for an output price uncertainty case.

. The difference in these results may also be explained by the fact that Day mainly focused on cotton

crops whereas Fuller investigated corn crop. For example, Pannell (1991) has pointed that the effects
of pesticide use does not always need to be risk reducing if multiple sources of output/income
uncertainty are considered. It is possible that nitrogen use interacts with the multiple sources of risk
differently in the respective cases of cotton and corn.

We have mainly presented the formulas as they appear in the original articles and have altered the
notation only when possible confusion may occur.

Antle also noted that many other stochastic production models, namely stochastic frontier models with
a two-component error term, impose restrictions such that all elasticities (w.r.t. inputs) of moments
beyond the first moment are directly proportional to the elasticity of the first moment.

See, for example, Pannell (1991) and more recently Just and Pope (2003) for a discussion about the
role of risk preferences in explaining risk responses in agriculture.

More generally, Hanoch and Levy (1969) notice that the mean-variance criterion is a sufficient
condition for the comparison of efficiency of two risky prospects if both prospects follow a two-
parameter distribution. Efficiency in their terminology refers to the dominance of one certain
distribution over another. However, mean-variance criterion is not a necessary condition for efficiency.
See also Anderson (1974) who considers stochastic dominance concepts in comparing technologies
in an agricultural context.

Dominguez-Molina et al. (2003) state the stochastic frontier model in terms of a skew-normal
distribution of the composed error term.

Tveteras (1999) found that technical change has contributed positively to the output risk in
the Norwegian salmon farming industry. This is somewhat surprising but from the point of
technology adoption, it is a plausible result as technology adoption might (temporarily) increase
variability. Tveteras shows that the effect on mean production has dominated the variance effect,
thus, implying an improved technical efficiency over all other producers, regardless of risk
preferences.

Of course, any model is only an approximation of the production process, as Jolly (1983) points
out: ‘Generally speaking no matter how many stochastic or dynamic bells and whistles are added
to the optimization problem, it will likely remain a stylized and incomplete representation of the
management process’. However, we could argue that, if indeed, such a complete representation of the
management process accounting for every manager and operating environment-specific factor could
be constructed, econometrically no producer would seem inefficient.

Inputs and, thus, outputs are state-allocable in their model. The period 0 output is non-stochastic and
the period 1 output is stochastic. The task for a producer is to allocate his production in an optimal
way given the probabilities of the states of nature.
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Is Corruption Grease, Grit, or a Gamble?

Corruption Increases Variance of Productivity Across Countries

Antti Saastamoinen, Timo Kuosmanen

ABSTRACT
The effect of corruption on economic growth has attracted interest in empirical
development economics. The conventional view of corruption as impediment for growth
has been challenged by the “grease-on-the-wheels” hypothesis. We take a new
perspective on the issue and suggest corruption as macro risk, referred to as a “gamble”
hypothesis. Using cross-country data and two alternative indicators of corruption, we find
corruption to be a significant driver of heteroskedasticity in total productivity. This
supports the new gamble hypothesis. We also note some misleading interpretations in the
previously published frontier applications. To avoid these shortcomings, we apply a

flexible semi-nonparametric estimator.

KEYWORDS: productivity;, corruption; heteroskedasticity; economic growth; semi-
parametric regression
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L INTRODUCTION

While the importance of institutional factors on macroeconomic performance is
widely recognised in economics (Hall & Jones, 1999), the effects of corruption on the
growth and productivity remain a subject of debate. There is vast empirical evidence
that corruption is detrimental to investments and to the economic performance and
development (Mauro, 1995, 1998; Mo, 2001; Lambsdorff, 2003, 2005; Assane &
Grammy, 2003; Méon & Sekkat, 2005; Everhart et al., 2009; see also Haggard &
Tiede, 2010 and the references therein). On the other hand, the possibility of “efficient
corruption” has already been suggested in the works by Leff (1964), Leys (1965), and
Huntington (1968), among others. Subsequently, the positive effect of corruption on
economic performance has been commonly labeled as the “grease in the wheels”
hypothesis (see for example, Méon & Weill, 2010). Although the vast majority of
empirical research refutes the grease hypothesis, it has stayed as a topic of discussion
among researchers due to the casual real-life observations of this phenomenon.
China’s impressive economic growth provides an obvious example: China scores 3.6
out of 10 in the Corruption Perception Index of 2011 by Transparency International
(score 10 indicates little corruption). Other examples of the so-called Asian paradox
are India, South Korea, and Indonesia, which have experienced high growth during
arguably a corrupt regime or institutional setting (Khan, 1996; Bardhan, 1997; Heston
& Kumar, 2007; Vial & Hanoteau, 2010). In general the more recent literature
suggests that the effects of corruption on growth are very much dependent from the
surrounding institutional setting (see for example, Bardhan, 2006; Méndez &
Sepulveda, 2006; Méon & Weill, 2010).

The intuition behind the grease hypothesis is that bribery or corruption might
act as a lubricant of otherwise rigid bureaucratic system (Beenstock, 1979; Lui, 1985).
It has been also suggested that some centralised institutional frameworks, even though
highly prone to corruption, can be good for economic performance if the institutions
are well organised and harnessed to the clear objective of growth (Ehrlich & Lui,
1999). Consequently some form of centralised corruption regime might have some
merits over de-centralised corruption (Shleifer & Vishny, 1993; Blackburn & Forgues-
Puccio, 2009). Furthermore Nye (1967) was one of the first to suggest that corruption
might act as a temporary fix to achieve certain development goals.

In this paper we argue that corruption is not simply grease or grit in the
wheels, but perhaps more importantly, we consider corruption as a risk factor for
economic performance (productivity) in the development process. We refer to the
proposed risk interpretation as the “gamble hypothesis” of corruption. The risk
interpretation warrants us to study the effects of corruption on the variance of

productivity, in the spirit of the seminal work on production risk by Just and Pope
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(1978). To this end, we draw a clear distinction between the effects of corruption on
the level (that is, the grease or the grit) and the variance of productivity (the new
gamble hypothesis). We introduce the grease, grit, and gamble hypotheses formally,
and test them on empirical data.

To test the gamble hypothesis, we can utilise the established econometric
tools for modeling heteroskedasticity. In the terminology of econometrics, the gamble
hypothesis implies that the distribution of productivity is heteroskedastic with respect
to corruption. Although heteroskedasticity is a major issue in econometrics, the
empirical literature on corruption and growth has thus far largely ignored it. To test for
the gamble hypothesis we take the heteroskedasticity effects of corruption
systematically into account. Our empirical results indicate that corruption has a
significant positive correlation with the variance of productivity across countries.

Our secondary objective is to clarify an econometric issue that has
apparently caused some confusion in the empirical literature on corruption. More
specifically, we show in Section 3 that in stochastic frontier models applied in this
literature, the effects of corruption on the level and the variance of productivity are
indistinguishable. Thus, the heteroskedasticity effects may have been wrongly
interpreted as support to the grit or the grease hypotheses. Therefore, while the
significant heteroskedasticity effect of corruption is an interesting empirical finding as
such, it can also help us to understand and reconcile seemingly contradictory empirical
evidence in favor and against the grease hypothesis.

As our third goal, we examine the sensitivity of the estimated effects of
corruption on the restrictive parametric specification of the aggregate production
functions. We apply a new semi-nonparametric frontier estimator developed by
Kuosmanen and Kortelainen (2012) and Johnson and Kuosmanen (2011, 2012), which
allows us to estimate the effects of corruption on productivity without imposing
arbitrary assumptions on the functional form of the production function or the
probability distribution of the composite disturbance term. This approach allows the
output elasticities of production factors differ across countries, in the spirit of Durlauf
and Johnson (1995). Further, this estimator allows for stochastic noise, and thus
circumvents the usual shortcoming of the conventional deterministic non-parametric
frontier estimators (Kumar & Russell, 2002; footnote 7).

The rest of the paper is organised as follows. Section 2 briefly reviews the
theoretical literature on which the gamble hypothesis is based on, and states the
hypotheses to be tested. Section 3 presents the alternative estimation methods
considered in this paper. Section 4 describes the data and its sources. Section 5
presents the empirical results. Section 6 presents our concluding remarks and suggests

avenues for further research. Finally, we provide the program code and the data used
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in our empirical estimations, and some further results and graphical illustrations in the

supplementary material that is available online.

II. MODELING FRAMEWORK AND THEORETICALBACKGROUND
Consider the standard macroeconomic model of aggregate production, which can be
stated as

y = p(x)exp(¢) M
where y is the total economic output of the country (GDP), X is the vector of
production factors (capital, labor), and ¢(x) is the aggregate production function.

Random variable & represents productivity shocks due to technological change and
inefficiency. In addition, the random variable & captures effects of any omitted or
unobserved variables, which do not appear as inputs to the production function. In this
paper we use the term contextual variable to refer to institutional and geographic
factors that are not production factors as such, but which nevertheless influence the
expected value and variance of the random variable £ .' Denoting the vector of
contextual variables by z, we assume that £(g) =8'z and Var(e)=vy'z. In words,
we assume that both the expected value and the variance of the productivity shock
depends on the contextual variables z. Coefficients & represent the marginal effects
of contextual variables on the level of productivity, whereas coefficients y represent
the marginal effects on the variance.

In this paper we are mainly interested in the effects of corruption, which we
model as one of the contextual variables. Specifically, the first element of vector z,
denoted as z,, is reserved for an index of corruption. We assume that an increase in z;
implies decrease in corruption, analogous to the World Bank’s Governance Indicators
(WGI) and the Corruption Perception Index (CPI) by the Transparency International.
Our rationale for treating corruption as a contextual variable is the following.
Although corruption obviously influences the economic output, it is difficult to control
the corruption by the government policy. Further, the effects of corruption on output
are far from deterministic. The uncertain influence of corruption is explicitly
recognised in our probabilistic model where corruption affects output indirectly
through the mean and the variance of the random variable & .

Taking the logarithms of both sides of (1), we can rearrange the terms to

obtain
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Interpreting ¢(x) as an input index (aggregator of production factors x), we have a

compelling interpretation of the left hand side of Equation (2) as the logarithm of total
factor productivity (TFP). Therefore, we find it appropriate to interpret the random
variable & as a TFP shock, which may be due to technological innovations,
inefficiency, or institutional factors, among other reasons.” The distinction between the
TFP growth rates (convergence) and the levels of TFP is worth noting. As institutional
change is very slow, Hall and Jones (1999) consider the level of TFP to be more
relevant in the present context. The TFP levels represent the economic performance of
the country in the long-run, whereas productivity change is only ‘transitory’ in its
nature. On the other hand, Cherchye and Moesen (2003) and Salinas-Jiménez and
Salinas-Jiménez (2010) find that that effects of institutional factors on the level of TFP
and its growth rate are very similar. In this study we focus on the TFP levels, noting
that our approach could be applied to the study of growth rates in a straightforward
manner.

We are now equipped to state the three empirical hypotheses to be tested,

defined as follows:

Grease hypothesis: 9E(2) =9,<0
0Oz,
E
Grit hypothesis: w =0,>0
Zl
Gamble hypothesis: @ =79<0
Zl

Since & is a random variable, the above hypotheses are stated in terms of the
expected value and variance.

The grease hypothesis suggests that an increase in the index z, (reduction in

corruption) decreases the expected value of logarithm of TFP. The grit hypothesis
implies the opposite effect, that reduction in corruption increases the expected TFP. In
this interpretation, the grease and grit hypotheses are mutually exclusive statements
regarding the expected value. The accumulated empirical evidence mainly supports
the grit hypothesis (for example, Adkins, Moomaw & Savvides, 2002; Cherchye &
Moesen, 2003; Salinas-Jiménez & Salinas-Jiménez, 2007, 2010; Hauner & Kyobe,
2010). However, for example Méon & Weill, (2010) and Rock & Bonnett (2004) do
find some support for the grease hypothesis. Méon & Weill, (2010) nevertheless
differentiate with two forms of the grease hypothesis, namely strong and weak form.
The strong form says that at certain low levels of institutional quality, corruption can

have positive effect on productivity. The weak form however states that corruption is



only less detrimental at certain low levels of institutional quality, but overall the effect
on productivity is negative for all countries.

The gamble hypothesis introduced in this paper considers the effect of
corruption on the variance of TFP, stating that corruption increases the variance,
which can be further interpreted as increase in risk. As an empirical motivation, we
refer to Figure 1 in Wyatt (2003), which presents a scatter-plot of a corruption index
and the logarithm of labor productivity. This figure aptly illustrates how the variance
of productivity across countries is associated with the level of corruption. In a similar
vein, Cavalcanti and Alvaro (2005) observe that: “... the distribution of output per
worker tends to become less disperse as countries improve their institutional
framework.” To our knowledge, however, the gamble hypothesis or the
heteroskedasticity effects of corruption have not been systematically examined or
tested statistically before.

The theoretical backbone of the gamble hypothesis can be drawn from the
literature of multiple growth regimes. Durlauf and Johnson (1995) empirically refute
the standard linear growth model in favor of a multiple regime growth model. In their
view, different growth regimes emerge as the initial level of economic development
differs from one country to another. Thus, their findings conform to the multiple
steady state growth models. The idea of multiple regimes has carried over to the
empirical literature of the effects of institutional factors on growth (Méndez &
Sepulveda, 2006; Aidt, Dutta & Sena, 2008; Méon & Weill, 2010). Recently,
Blackburn and Forgues-Puccio (2009) present a model where the effect of corruption
varies between the different levels of coordination of corrupt practices among
bureaucrats, conforming to the literature on centralised versus de-centralised
corruption. This issue can also be related to corruption club literature where countries
experience rather different equilibrium levels of corruption (Herzfeld & Weiss, 2007).
This is often explained by the complex interplay between other (legal) institutions and
corruption (Herzfeld & Weiss, 2003). In the context of our analysis, the gamble
analysis means that within a certain corruption club (i.e. equal corruption level) the
effects of corruption on growth can vary.

The marginal effects presented above follow from our assumptions regarding
the expected value and the variance of &. The connection to the theory of multiple
regimes can be established as follows. Suppose there exists only a single growth
regime that does not depend on the level of corruption. This would imply that all
countries have the same expected value and variance of productivity regardless of the

corruption level, so we must have OE(¢)/0z, =0 and dVar(e)/dz, =0 . Now,

suppose there exists multiple regimes of growth and productivity, which depend on

level of corruption. This would suggest that the variance of productivity is not
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constant, but we must have dVar(g)/dz, #0. Our gamble hypothesis additionally

states that the sign of the variance effect is negative, such that corruption increases the

risk.

II. ECONOMETRIC METHODS

The purpose of this section is to introduce the econometric methods that we apply for
estimating the effects of corruption on TFP, and to clarify some issues that are well
understood in econometrics, but have apparently caused some confusion in the
empirical literature on corruption.

Our TFP measure includes the GDP as the output (y) and the capital stock,
human capital, and labor inputs as the factors of production (x). The first approach to
estimating the production function is the standard linear regression, which is used as a
benchmark. It serves to study the effects of functional form on the significance of the
estimates. The second method is the Stochastic Frontier Analysis (SFA hereafter)
which is commonly applied in the empirical literature of frontier estimation.’ As the
third approach we consider the one-stage StoNED-estimator recently developed by
Kuosmanen and Kortelainen (2012) and Johnson and Kuosmanen (2011, 2012).* Since
SFA and particularly StoNED are not standard techniques, it is worth to briefly review
these methods to enable readers to understand how the empirical results to be

presented in Section 5 are obtained.

OLS regression
Given the general production function model in (1), we define our baseline model as
the Cobb-Douglas production function with the linear effects of the contextual

variables. For the sample of 7 countries indexed as i =1,...,n, the baseline model is
’ !, ~
Iny, =a+p'(Inx;)+0'z, + ¢ 3
where vectors are defined as in Section 2. The notation InX; is used to indicate that

the natural logarithm has been applied to each element of this vector. Notice that the

disturbance term &, is not the same as the random variable & . Recall that we assumed
E(g)=8'z+# 0. However, since the expected value of the productivity shock is
explicitly controlled for in the regression equation, we can state the disturbance term
as €=€—12'0 to obtain E(&)=E(¢)—8'2=8'2—8'z=0. We assume that the
disturbances &, are statistically independent of the inputs x and the contextual
variables z, but we do allow & to be heteroskedastic. That is, the variances of the

disturbance term can differ across countries.



We estimate the baseline model (1) by OLS. It is well known that the OLS
estimator is unbiased and consistent under heteroskedasticity. A more efficient
generalised least squares estimator could be used, but this requires that some specific
model of heteroskedasticity is assumed. The main problem of the conventional OLS
estimator is that the standard errors are invalid. To avoid this problem, we resort to
White’s (1980) heteroskedasticity robust standard errors in our statistical inferences

based on OLS.

Stochastic Frontier Analysis
We next consider the stochastic frontier model by Kumbhakar, Ghosh and McGuckin
(1991, KGM hereafter), where contextual variables such as corruption can be used as
explanatory factors for productive inefficiency. In the present context, the KGM
model has been used for example by Méon and Weill (2005) to study the effect of
corruption on productivity. The KGM model has been adapted to the panel data setting
by Battese and Coelli (1995). This panel data variant has been applied in several
empirical studies on corruption and governance (Adkins et al., 2002; Jayasuriya &
Wodon, 2005; Weill, 2008; and Méon & Weill, 2010).

In the stochastic frontier model, we use the Cobb-Douglas production
function similar to the linear regression model in (1). However, the definition of the
disturbance term differs from OLS. In the SFA model, the disturbance term consists of

two components according to & =v, —u,, where v, is a random, normally distributed

noise term with the zero mean and the variance o

)

and u, > 0 is an asymmetric
inefficiency term. In the KGM model, the inefficiency term u, depends on the
contextual variables according to the following inefficiency model: u, =0'z, +w, .
We use the vector @ to represent the indirect effects of the contextual variables
through the inefficiency term u; , to distinguish them from the direct effect modeled
by the coefficients & as in Equation (3). The random variable w, has a truncated
normal distribution with the zero mean and the variance O'i, . The point of truncation is
—0'z; such that w, >—0'z,. Thus, inefficiency u, is distributed as a non-negative
truncation of N(0'z,,5.). Consequently, the KGM specification of the SFA model
can be stated as

Iny, =a+p'(nx,)+v,—(0'z, +w). 4

In the KGM model, the parameters of production frontier and the parameters of the

inefficiency model are simultaneously estimated using maximum likelihood.



It might be tempting to interpret the parameters @ of the SFA model as the

marginal effects on the expected level of the productivity shock, similar to coefficients
0 in the regression Equation (3). However, this interpretation is incorrect and
misleading, because coefficients @ also influence the variance of the truncated
inefficiency term u; . This can be seen from the first two moments of the truncated

normal distribution of u, that can be stated as (see for example, Greene, 2003, p. 759):

Elu|truncation] =0'z, + o, A(w)

Varl[u | truncation] = o.[1 - v(®)] ®)
where
o= (_B'Zi) / O-w

Hw) = P(w)/[1-D(w)]
v(w) = Hw)[A(@) -]

In the set of Equations (5), ¢(w) and ®@(w) are the standard normal density and
cumulative distribution functions, respectively. The formal expression of the variance
of the truncated random variable u; reveals that the contextual variables z influences
both the expected value and the variance of the inefficiency term. Therefore, the
interpretation of the coefficients @ is somewhat ambiguous: it is possible that they
capture the effect of contextual variables on the expected level or the variance of
productivity, or possibly both.” Therefore, we cannot use this model for testing the
grease, grit, or the gamble hypotheses stated in Section 2.

Unfortunately, the truncation of the inefficiency term has not been duly
recognised in the empirical literature on corruption and productivity. For example,
Meéon and Weill (2010) apply the panel data variant of the KGM model to test for the
grit and grease hypotheses, but they overlook the truncation. Following Méon and
Sekkat (2005), they define the effect of corruption being a function of other
governance indicators by including an interaction between corruption index and other
governance indicators. Interaction term indeed allows to test whether the effect of
corruption depends from the other institutional setting. However the marginal effect of
corruption on output becomes even more tedious to assess because one should also
take into account the effect of the interaction terms to the truncation. Hence, it is
possible that reported empirical results obtained using the KGM model or its panel
data variants have been misinterpreted as support for the grit or the grease hypothesis,
while in fact the coefficients @ capture the heteroskedasticity in empirical production
data. Thus we do not include an interaction term into our models as we see that it is

not clarifying the effects much in SFA context. We emphasize that in this paper the
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results of the SFA model are only reported in order to show that the misinterpretation

of the coefficients 0 is indeed a relevant concern in the present context.

StoNED estimator
To avoid the problem noted in the previous section and to relax the restrictive
functional form assumption of the production function, we also apply a more flexible
semi-nonparametric specification. Recently, Johnson and Kuosmanen (2011)
introduced a more flexible semi-nonparametric model:

Iny, =Ing(x,)+8'z, + &, (6)
where ¢ is an increasing and concave production function with an unspecified

functional form. The composite disturbance term &, contains the inefficiency and

noise components, similar to the SFA model. To estimate Equation (6), Johnson and
Kuosmanen (2011) develop a semi-nonparametric StoNED estimator where the effects
of contextual variables are simultaneously estimated with the production function. The
estimator can be seen as an extension of Kuosmanen and Johnson (2010) and
Kuosmanen and Kortelainen (2012) to the case where contextual variables are taken
explicitly into account. Kuosmanen and Kortelainen (2012) proposed the StoNED
estimator as an amalgam of SFA and the nonparametric Data Envelopment Analysis
(DEA).® Both SFA and DEA can be obtained as restricted special cases of the StoNED
model. Note that Equation (6) reduces to (3) if the Cobb-Douglas functional form is
imposed on ¢ .

The StoNED estimator is obtained as the optimal solution to the following

least squares problem:

n

. 2
min e 7
min_ Z : %)

subject to

Iny =Ing +8'z,+e, Vi=1,..,n

¢i :ai-‘,-p;xi ViZl,...,n
a,+Bx, <a,+B)x, Vhi=l..n
B, =0 Vi=1,...,n

In the problem (7), we are minimizing the sum of squared residuals e, , which we will
henceforth refer to as StoNED residuals. The first constraint is the empirical
counterpart to Equation (6). The parameter ¢, is the estimated frontier output. The

estimation of the nonparametric production function is based on the tangent
hyperplanes defined by the second set of constraints. Concavity of the estimated
frontier is ensured by the third set of constraints, which can be interpreted as the Afriat
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inequalities (Afriat, 1967; 1972; see Kuosmanen, 2008, for a detailed discussion).
Monotonicity of the production function follows from the non-negativity of f
coefficients. The parameters that characterise the frontier (¢, cr,p ) differ across
countries, whereas the effects of contextual variables are common to all countries.

We examine the gamble hypothesis by empirically testing if contextual
variables z can explain heteroskedasticity in the OLS and StoNED residuals. We apply
the standard econometric approach to testing heteroskedasticity where the squared
residuals are regressed on the variables associated with heteroskedasticity (White,
1980; Greene, 2003). Specifically, in our empirical application we regress the squared
OLS and StoNED residuals on the contextual variables z according to the following
equation

e =y, +YZ,+7, (8)
where the random variable V, is the usual disturbance term of the linear regression
model. Parameters y represent the effects of variables z on heteroskedasticity. We can
estimate Equation (8) by OLS and test the statistical significance of coefficients y by
using the conventional methods. In both OLS and StoNED approaches, the parameters
O represent the effects of contextual variables on the expected level of productivity,

whereas the parameters y capture the variance effects.

Iv. DATA AND VARIABLES

The empirical analysis uses two distinct cross sections from years 1990 and 2010. The
first dataset from 1990 mimics the data used by Méon and Weill (2005). Using a
comparable data, we examine the effects of corruption on the expected value and
variance of TFP separately in order to test the grease, grit, and gamble hypotheses. In
addition, to subject these hypotheses against the test of time, we use another cross
section of data from year 2010, the latest year currently available to us. To fully
ensure that the results between the two time periods are comparable, both of the
datasets contain the same set of 80 countries. The variables in both datasets are briefly
described next. The countries included in the study are listed in Appendix. The full
data set and more detailed descriptions of the definitions and sources of data are

provided by request from the authors.

Corruption indicators

In the quantitative corruption research at the macro level, the WGI and CPI indices are
the two standard and most commonly used measures of corruption. In this study we
consider the both indices as alternative measures of corruption. For the dataset of

1990, we only use the WGI index as the CPI index for the same number of countries
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was not available. For the cross section of 2010 we use both WGI and CPI, which
allows us to study the robustness of our results with respect to alternative corruption
measures.’

For the sake of comparability, the original WGI and CPI indices have been
rescaled to the interval [0,10] such that the sample minimum is 0 and the sample
maximum is 10. For both indices, the value 10 refers to the lowest level of (perceived)
corruption. In the 1990 data set we use the WGI index numbers from the year 1996
because this is the earliest year for which WGI indicator is available. However, the
levels of corruption are generally considered to be stable over time (for example,
McAdam & Rummel, 2004), and the corruption indices used in the present study
support this view. Table 1 presents the summary statistics and correlation coefficients
for the rescaled indices. All the indices are very highly positively correlated, as
expected. We can see that the WGI indices from 1996 and 2010 have a very high

positive correlation, which confirms its stability over time.

Table 1: Summary statistics and correlations of the corruption indices

Mean St. dev. Median
WGI 1990 5.11 2.80 3.97
WGI_2010 4.06 3.04 2.74
CPI 2010 3.66 3.27 2.12
Correlation
matrix WGI_1990 WGI 2010 CPI 2010
WGI_1990 1
WGI 2010 0.936 1
CPI_2010 0.944 0.992 1

Macroeconomic data
Following Méon and Weill (2005), the macroeconomic data for the output, the capital
stock, and the labor input in the cross section of 1990 are based on Easterly and
Levine (2001). The data for these variables are obtained from World Bank’s Global
Development Network Growth database. The data for human capital is from Barro and
Lee (2000), and it is downloaded from Center for International Development. Human
capital is measured by the total years of schooling in the working age population (+15
years of age), calculated as average years of schooling times +15 aged population. The
output and the capital stock are in Billions of U.S. dollars (at the prices of 1985;
currencies converted using the PPP exchange rates), the human capital is in Millions
of years, and the labor input is in Millions of workers.

For the cross section of 2010, data of the total population, output, number of
workers and capital are obtained from the latest edition of Penn World tables (edition
7.1). The real output per worker is based on the PPP conversion rates and the prices of

2005. The capital stock in each year is calculated from the Penn data using the

13



perpetual inventory method (see Caselli, 2005, for details). The human capital
measure is the same as in the 1990 cross section; the average years of schooling is
obtained from the latest update of Barro and Lee (2010) dataset. To calculate the +15
aged population, the share of +15 aged population from total population is obtained
from the World Bank.

The constant returns to scale (CRS) production function is generally
preferred as a benchmark technology in cross-country productivity comparisons (Fére
et al,, 1994; Moroney & Lovell, 1997). To impose CRS in the Cobb-Douglas
production function, the standard approach is to use scaled output and input variables
obtained by dividing each variable with one of the inputs. In our empirical estimations
we use the labor input as the scaling factor. The use of the scaled variables also
imposes CRS in the StoNED method introduced in Section 2. Summary statistics of

the scaled output and input variables used in the estimations are presented in Table 2.

Table 2: Summary statistics of the macroeconomic variables

Mean St. dev. Min. Max.
Output/Worker 1990 13310 10521 1107 36771
Capital/Worker 1990 29088 28746 288 103450
Hum.Cap./Worker 1990 10.37 5.01 0.80 21.47
Output/Worker 2010 31363 27643 606 101094
Capital/Worker 2010 90169 97848 375 305171
Hum.Cap./Worker 2010 13.81 495 2.07 23.35

Other contextual variables
In addition to the two corruption indices (WGI, CPI), we also control for three other
contextual variables, following the specification by Méon and Weill (2005, 2010). The

full vector of contextual variables is

z = (Corruption,Openness, Ethnicity, Latitude) .

Corruption refers to the WGI and CPI indices. The other three contextual variables are
the following.

Openness refers to openness to trade, measured as the total trade (imports
plus exports) divided by the GDP. For the 1990 data, this variable is adopted from
World Bank’s Global Development Network Growth database. For the cross section
of 2010, we use the figures from Penn Tables 7.1. We use the total trade to account for
the possibility of export-led growth (Mookerjee, 2006; Wagner, 2007).® While
evidence regarding the effects of trade openness on the economic performance is
somewhat mixed (for example, Yanikkaya, 2003; Lee, Ricci & Rigobon, 2004), the

effects seems to be positive in the presence of other favorable conditions such as good
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institutions (Baldwin, 2003). Controlling openness is also justified on the grounds that
it may influence the prevalence of corruption (Ades & Di Tella, 1999; Pellegrini &
Gerlagh, 2004).

Ethnicity refers to the indicator of social, ethnic, and cultural
fractionalization of the population. It is generally important to control for the ethnical
fractionalization since fractionalised countries are often perceived to have decreased
quality of government (La Porta et al., 1999). In the 1990 cross section, we use the
ELF indicator by Roeder (2001). ELF is a proxy for the ethnolinguistic
fractionalization, defined as the probability that two randomly drawn individuals in a
country speak different native languages. The ELF indices are from the year 1985, as
this is the latest year available in Roeder’s dataset. Like corruption, ethnical
fractionalization can be shown to be relatively stable over time. In the 2010 cross
section, we use the ETH indicator from Alessina et al. (2003). While ELF index
focuses on the linguistic aspect of fractionalization, the ETH indicator is more general
in the sense that it also considers racial aspects.

Finally, Latitude is the absolute value of the average geographic latitude of
the country, obtained from the OpenData webpage by Socrata Inc. The use of the
absolute value implies that countries located North or South of the equator are treated
symmetrically. The role of the latitude as a control variable is based on Sachs (2001),
who found that tropical countries are generally on the lower level of development.

For the sake of comparability, our specification of contextual variables
follows that of Méon and Weill (2005) as closely as possible. Of course, further
contextual variables could be considered, but we prefer to leave this as a question for
future research. For example, one could try to control for other aspects of governance,
and also the interactions between governance and corruption (see, e.g., Méon and
Weill, 2010). In this study, however, we focus on estimating the total effect of
corruption, which includes the indirect effects of corruption that run through other
governance aspects (see, e.g., Doucouliagos and Ulubasoglu, 2008, and Campos,
Dimova, and Saleh, 2010, for further discussion on the direct and indirect effects).
Thus, our estimates on the productivity effect can be interpreted to represent an upper
bound of the direct effect as our estimates do not make distinction between the direct

and indirect effects.

V. EMPIRICAL RESULTS
This section presents the results from empirical estimations. We first report the results
briefly, following the same order as in Section 2. The baseline estimations with OLS

are presented in Section (a), which are then followed by the SFA results in Section (b).
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The corresponding StoNED results are presented in Section (c). In the Section (d)

results are compared and discussed in more detail.

OLS results

The OLS estimates of the coefficients (9,f,a) of the baseline model (1) are reported in
Table 3. All three models yield good empirical fit, and the coefficients of the
production factors are positive as expected. Our main interest is in the coefficients of
the corruption indices. In all three models considered, find that the corruption indices
have a positive and significant effect on the expected value of productivity shock.
Recall that the high values of indices indicate low corruption, so the positive sign of
the coefficient suggests that corruption has a negative effect on the expected
productivity shock. In conclusion, the OLS estimates uniformly support the grit on the

wheels hypothesis, and there is no support for the grease hypothesis.

Table 3: OLS estimates — the expected levels (8)

DEP. VAR:
In(y/L) WGI_1990 WGI 2010 CPI 2010
Corruption 0.047%*  0.021%* 0.023%*
(0.023) (0.013) 0.011)
Openness -0.001 -0.00006 -0.00013
(0.001) (0.001) (0.0005)
Ethnicity -0.149 -0.093 -0.092
(0.172) (0.110) (0.110)
Latitude 0.001 0.001 0.00024
(0.004) (0.002) (0.002)
In(K/L) 0.507%%%  (.740%%% (), 739%%**
(0.060) (0.041) (0.038)
In(H/L) 0.129 0.170* 0.172%
(0.089) (0.089) (0.089)
Intercept 3.804%%% ] 3Q7Hkx | 4DEHHk
(0.480) (0.305) (0.295)
R? 0.908 0.974 0.975

*** 1% significance, ** 5% significance, * 10% significance
White’s heteroscedasticity robust standard errors in parentheses.

Consider the gamble hypothesis next. Table 4 reports the estimated
coefficients (y) of Equation (8) where we regress the squared OLS residuals on the
contextual variables z. In all three models, the corruption index has a significant
negative effect on heteroskedasticity. The degree of significance decreases as we
move from left to right in the columns of Table 4: we discuss this point in Section (d)
below. In conclusion, we find that corruption is associated with a higher variance of
productivity as all the coefficients are consistently negative and statistically

significant. The results of our heteroskedasticity tests support the gamble hypothesis.
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Table 4: OLS estimates — the variance effects (y)

DEP.VAR:
e WGI_1990 WGI_2010 CPI_2010
Corruption -0.032%**  -0.007** -0.006*
(0.011) (0.004) (0.003)
Openness 0.001 0.0002 0.00017
(0.00044)  (0.00014) (0.00015)
Ethnicity -0.050 -0.011 -0.011
(0.081) (0.032) (0.032)
Latitude 0.002 0.00018 0.00008
(0.002) (0.001) (0.001)
Intercept 0.197%** 0.051%* 0.047
(0.074) (0.028) (0.029)
R’ 0.149 0.092 0.073

*#% 1% significance, ** 5% significance, * 10% significance
Standard errors in parentheses.

SFA results

It worth to emphasise again that the SFA model considered below is not suitable for
testing the grease, grit, or gamble hypotheses as the effects of corruption on the
expected value and variance of productivity are indistinguishable in this model. We
report the empirical results of the SFA model for the sake of comparison, to illustrate
that the misinterpretation of the SFA estimates is indeed a concern in the present
context.

Table 5 presents the parameter estimates of the SFA model stated in
Equation (4). The parameter estimates of the production factors are again positive; the
only notable difference to the OLS coefficients is that the coefficient of the human
capital becomes significant the WGI 1990 model. The stochastic frontier specification
is supported by the LR test, which indicates that the parameters of the inefficiency
model are jointly significant.

In all three model specifications considered, the signs of the corruption index
are systematically negative. However, the coefficient of the corruption index is
statistically significant only in the WGI 1990 model. Note that in the SFA
specification the corruption indices influence inefficiency. Therefore the negative sign
of the corruption coefficient in SFA is in line with the positive sign of the OLS
coefficient that represents the direct marginal effect of corruption on output. The
negative sign of the corruption coefficient in SFA also conforms to the results reported
in earlier SFA studies (Méon & Weill, 2005; 2010)

As discussed in Section 3, it might be tempting to interpret the negative
coefficients of corruption in the SFA model as support for the grit hypothesis.

However, it is equally possible that the negative coefficients of corruption are driven
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by heteroskedasticity. Comparison with the OLS results obtained using the same
Cobb-Douglas production function specification suggests that corruption influences
both the expected level and the variance of productivity. Since in SFA both effects are

captured by the same coefficient, there is a major risk of confusion.

Table 5: SFA estimates

DEP. VAR.
In(y/L) WGI_1990 WGI_2010 CPI 2010
Corruption -0.156%%* -0.086 -0.098
(0.058) (0.072) (0.079)
Openness 0.001 0.001 0.002
(0.002) (0.002) (0.002)
Ethnicity 0.211 0.211 0.235
(0.337) (0.321) (0.318)
Latitude -0.008 -0.001 2.6e-4
(0.008) (0.006) (0.006)
Intercept 0.960*** 0.152 0.064
(0.327) (0.404) (0.437)
In(K/L) 0.440%%** 0.733%%%* 0.732%%*
(0.026) (0.027) (0.027)
In(H/L) 0.155%* 0.183%* 0.183%*
(0.076) (0.076) (0.077)
Intercept 5.024%** 1.720%** 1.724
(0.137) (0.283) (0.280)
Sigma-squared 0.182 0.071 0.069
Log-likelihood -3.165 21.217 21914
LR test 40.534%** 14.090%** 15.484**

*** 1% significance, ** 5% significance, * 10% significance
Standard errors in parentheses.

StoNED results
To assess the robustness of the previous results to the potentially restrictive parametric
specification of the Cobb-Douglas production function, we consider a more flexible
semi-nonparametric estimator that allows the output elasticities of production factors
differ across countries. The StoNED estimator is obtained by solving the least squares
problem presented in Equation (7). Recall that the coefficients of the nonparametric
production function (a,B;) refer to the tangent hyperplanes of an unspecified
functional form, and as such are not comparable with the coefficients of the Cobb-
Douglas production function. Moreover, since the coefficients (a;,p;) are country-
specific, and not necessarily unique, we do not report them in this paper. Instead, we
resort to a graphical illustration of the estimated production function in Figure 2
below. But first, let us examine the effects of the contextual variables (coefficients d),
which are presented in Table 6.

The corruption indices have systematically positive signs in all three

samples, analogous to the OLS estimates. Interestingly, the coefficient of corruption is
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not significant in the WGI 1990 sample, but it is significant in both the WGI and CPI
samples for the year 2010. The results of the StoNED estimator support the view from
the OLS regression: there is evidence in favor of the grit on the wheels hypothesis, but
no indication whatsoever in favor of the grease hypothesis.

The coefficients of determination (R) reported on the bottom row of Table 6
refer to the StoNED model as a whole, including the input variables (not reported in
the table). These coefficients are higher than the corresponding OLS statistics, which
indicates that the StoNED estimator has a slightly better empirical fit. The skewness
statistics refer to the skewness of the StoNED residuals. This statistic is expected to be
negative in the case of a production function when there is asymmetric inefficiency in
the disturbance term. The negative skewness statistics suggest that there is inefficiency
present in all three samples. However, we do not report or discuss the country-specific

inefficiency estimates, as this falls beyond the scope of the present study.

Table 6: StoNED estimates — the expected levels (6)
DEP. VAR.

In(y/¢) WGI 1990 WGI 2010 CPI 2010

Corruption 0.012 0.024** 0.024%%**
(0.018) (0.009) (0.009)
Openness -0.00033 0.00002 -0.000011
(0.001) (0.00047)  (0.00046)
ELF -0.166 -0.027 -0.028
(0.145) (0.099) (0.099)
Latitude -0.00041 0.001 0.001
(0.003) (0.002) (0.002)
Intercept 0.000 0.000 0.000
(0.137) (0.081) (0.080)
R’ 0.931 0.978 0.978
Skewness -0.590 -0.328 -0.352

*#% 1% significance, ** 5% significance, * 10% significance
White’s heteroscedasticity robust standard errors in parentheses.

Consider next the gamble hypothesis. We estimate Equation (7) by OLS,
regressing the squared StoNED residuals on the contextual variables. The estimated
coefficients and their standard errors are reported in Table 7. The coefficients of
corruption are systematically negative throughout all three models considered. The
negative coefficient for corruption implies that the variance of StoNED residuals
decreases as the corruption indices increase (that is, corruption decreases). In other
words, highly corrupted countries have a larger variation in their productivity levels
than less corrupted countries. In contrast to the effects on the expected level, the
coefficient in WGI 1990 sample is statistically significant at 5% significance level,

whereas in the 2010 samples the coefficients are closer to zero and significant only at
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10% significance level. In our interpretation, corruption is clearly a risk factor in the
1990 sample, with little effect on the level of productivity, but in the data from 2010,
the variance effect has notably decreased and the effect on the expected level is more
dominant.

Table 7: StoNED estimates — the variance effects (y)

DEP.VAR:
e WGI_1990  WGI_2010CPI_2010
Corruption ~ -0.022** -0.006*  -0.005*
(0.008) (0.003)  (0.003)
Openness 0.00054 0.0002 0.00019
(0.00035) (0.00013) (0.00013)
ELF -0.103 -0.001 -0.00012
(0.064) (0.029)  (0.029)
Latitude 0.001 0.00014  0.00014
(0.001) (0.001)  (0.001)
Intercept 0.174%%* 0.038**  (0.033**
(0.058) (0.025)  (0.026)
R’ 0.139 0.090 0.083

*#% 1% significance, ** 5% significance, * 10% significance
Standard errors in parentheses.

To get a visual impression about heteroskedasticy, in Figure 1 we have
plotted the StoNED residuals against the WGI corruption index. The upper panel in
the figure is the model with 1990 data, whereas in the left panel we have the obtained
residual using the 2010 data. This figure illustrates that the variation in residuals is
notably higher in the lower end of the corruption index, where highly corrupted

countries are.
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Figure 1: StoNED residuals vs. WGI index

Finally, it is worth to examine the shape of the estimated StoNED production
function graphically. The upper panel of Figure 2 illustrates the production function
for year 1990 and the lower panel for year 2010. Whereas in OLS and SFA cases (see
the online appendix for graphical illustrations) the Cobb-Douglas production function
imposes the substitution elasticity between inputs to be equal to one by construction,
in the case of the StoNED frontier, the range of substitution elasticity is from zero to
infinity. According to Figure 2, when the capital intensity is low in terms of both
human and physical capital, the substitution possibilities seem to be rather limited. In
our interpretation, this reflects the technology-skill mismatch in low development
countries. Acemoglu and Zilibotti (2001) emphasise this mismatch as a source of the
productivity differences at different levels of development.'” The technology-skill
mismatch occurs because the physical capital itself does not increase production if
there are no skills to utilise it. Conversely, the human capital alone does not increase
the output without a sufficient level of physical capital. This implies that the
production function must exhibit the Leontief type fixed proportions structure at the
low level of development. The substitution elasticity of human and physical capital
increases at the higher levels of capital intensity. This suggests that it is easier to

match the technology with the necessary skills or vice versa in more developed
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countries. As the capital intensity continues to increase, the slope of the production
function becomes flatter due to the diminishing returns. In our view, the shape of the

estimated StoNED production function thus has a meaningful economic interpretation.
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Figure 2: Estimated StoNED production function (WGI)

Comparison of the production functions of years 1990 and 2010 reveals clear
signs of economic growth. The output levels have increased considerably during the
twenty year period, but also the amount of physical capital has increase as the latter
picture extends further in K/L axis. This also explains why the 2010 picture looks
somewhat stretched. Indeed, if we restrict the capital per worker in 2010 to the
observed range of K/L in year 1990, the two graphs would appear almost identical.
Thus the overall shape of the production function has not changed, but rather we see

capital deepening in our results.

Discussion of the results
By drawing a clear distinction between the effects to the expected level and the
variance, our results offer new insights to the adverse effects of corruption. We find

that besides the effect of corruption on the expected level of productivity, there is the
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added effect of increase in the risk. Previous studies that focus only on the expected
level ignore the corresponding increase in the risk, which may be even more harmful
consequence of corruption.

Both OLS and StoNED estimates indicate that corruption has a significant
positive effect on heteroskedasticity: corruption increases the variance of productivity.
Thus, we find significant support for the gamble hypothesis. The result is robust to the
functional form assumption (Cobb-Douglas used in OLS versus non-parametric
production function of StoNED), the time period (1990 sample versus 2010 sample),
and the choice of the corruption index (WGI versus CPI in 2010). Note that functional
form however has notable effect for the level effects of corruption when we consider
the 1990 cross section. The level effect is highly significant with OLS, but turns
insignificant when using StoNED. We do not see equally notable changes with the
heteroskedasticity effects. Thus the risk effect seems somewhat more robust.

When comparing the relative importance of level and variance effects of
corruption, Both OLS and StoNED estimates show that the heteroskedasticity effect
dominates in the 1990 cross section. In the 2010 cross section the effect on the
expected level becomes more pronounced. In our interpretation, this is a natural
consequence of economic growth and institutional convergence across countries. As
countries improve their institutions over time, countries converge towards a more
uniform growth path. Hence the heteroskedasticity that prevails at the lower levels of
development will gradually vanish, and the effect on the expected level becomes more
visible. In other words, the institutions become increasingly important at higher levels
of economic development (see Glaeser et al., 2004; Aidt et al., 2008, for further
discussion).

Let us consider next the above result in the light of the SFA results. A major
shortcoming of the SFA model considered above is that it cannot distinguish the
effects on the expected level and the variance. In the SFA results, the negative
coefficient of corruption implies that corruption increases the variance of the
inefficiency term (see Equation (5)), conforming to the OLS and StoNED results. By
comparison with the OLS and StoNED results, it seems that the SFA coefficient of
corruption is very sensitive to the heteroskedasticity effect. Indeed, the SFA
coefficient of corruption is highly significant in the 1990 cross section where the
variance effect is dominant in OLS and StoNED. In contrast, in the 2010 cross section,
where the level effects are more dominant, the SFA coefficient of corruption is
insignificant. These observations suggest that partial support for the grease hypotheses
reported in the literature, obtained with similar SFA models as the one considered in
this paper, may in fact result from a misinterpretation of the SFA coefficient that

captures the heteroskedasticity effect.
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The empirical support on the gamble hypothesis of corruption suggests a
new perspective to corruption as a source of macro risk in the fragile stages of
development. Countries at their early stage of economic development seem to differ in
their equilibrium levels of corruption, and consequently have different growth paths.
The probabilistic interpretation of corruption as a risk factor can help to understand
why some highly corrupted countries have managed to achieve relatively high level of
productivity. A high variance means that large deviations to both positive and negative
direction from the mean are likely. The gamble hypothesis allows for the possibility
that, with some good fortune, it is possible that a country achieves a relatively high
level of productivity despite a high prevalence of corruption. In our interpretation, the
mixed empirical evidence supporting the grease or the grit hypotheses can at least

partly be due to the variance effect of corruption.

VL CONCLUSIONS

Previous empirical studies (Méon and Sekkat, 2005; Méndez & Sepulveda, 2006;
Aidt, Dutta & Sena, 2008; Méon & Weill, 2010) rather unanimously show that the
effect of corruption is not uniform across countries and over time, but the effect
depends on other factors such as institutions and economic freedom. These studies
have however focused predominantly on estimating the effect of corruption on the
expected level of productivity or its growth rate. In this study we argue that corruption
also affects the variance of productivity, which leads us to propose a new gamble
hypothesis of corruption. Gamble hypothesis contributes to the literature by
introducing a new perspective: the risk. According to this probabilistic hypothesis,
corruption increases the variance of productivity, and can hence be seen as a source of
macro risk. The gamble hypothesis predicts a large dispersion of productivity levels at
high levels of corruption and a convergence to a more uniform productivity levels at
low levels of corruption. Note that high variance involves both positive and negative
risk. It is possible that a highly corrupted country achieves a high level of productivity,
but the probability of low productivity is also high.

Our empirical results indicate that corruption has a significant positive effect
on the variance of productivity, supporting the gamble hypothesis. Especially at the
higher corruption levels, we see large variations on how corruption affects to the
productivity of countries. This result is robust to the choice of the corruption index,
the estimation method, and the time period. We also find some support for the grit in
the wheels hypothesis, which suggests that corruption has a negative effect on the
expected level of productivity, particularly in the latest cross section from the year
2010. We do not find evidence to support the idea that corruption is directly beneficial

for economic performance, implying that grease hypothesis can be refuted. At most,
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the weak form of the grease hypothesis, as suggested by Méon and Weill (2010), can
be seen somewhat compatible with our results. Thus besides the expected effect of
better institutions positively contributing to the level of productivity, there is the added
benefit through the lower variance of productivity, that is, a lower macro risk.
Decreasing risk can be an important motivation to fight corruption, particularly for
risk averse governments.

Since our results suggest that corruption increases the macro risk, the policy
against corruption must similarly involve uncertainty. Therefore, it is hard to identify
and quantify the exact effects of anti-corruption policies as these effects vary
depending on the external conditions. We see this as an important lesson for the policy
makers. Consequently, the cost-benefit analyses of anti-corruption policy actions
should carefully take into account the institutional setting of a country. The optimal
policy measures to battle corruption are likely to vary across countries. Recall the
points by Shleifer and Vishny (1993) that were briefly discussed earlier: regardless of
whether we observe corruption in decentralized or centralized form, the fixes are
unlikely to be the same. In the latter case, the rules of corruption are likely to be rather
clear, and hence changing the rules can be an effective way to curb corruption. In the
former case, however, to mitigate the harmful effects of corruption, some rules need to
be established in the first place.

Of course, as always, some assumption and limitations of our study should
be kept in mind when interpreting our results. These limitations also offer new
avenues to extend our analysis further. Firstly, we could extend the set of control
variables to include indicators of other aspects of governance or interactions between
the variables, as already noted. The parametrization assumed in our study assumes that
corruption has a linear effect on the expected value and variance of the productivity
shock. While this parametrization allows us easily to distinguish the heteroskedasticity
effects from the level effects, it may ignore potential further nonlinear effects of
corruption on the level of economic output, which are likely to be characterized by the
interactions between the variables (see for example, Tan, 2010). Thus it is possible
that violations of the linearity assumption appear as heteroskedasticity, and
conversely, heteroskedasticity may appear empirically as nonlinearities. In future, we
could for example study how the degree of centralization of institutions is related to
the effect of corruption as different levels of centralization have been argued to more
prone to corruption than others.'" If different levels of centralization imply different
levels and types of corruption, it is likely that the effect of corruption varies
accordingly.

Secondly, we have only examined the effect of corruption to the overall

error, which consist both noise and inefficiency. It would be interesting to try to
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attribute heteroskedasticity to these subcomponents of the overall error separately.
Lastly we acknowledge that reverse causality may have some bearing on the results
considering the level effects. That is, we have assumed that causality runs only from
corruption to productivity, not the other way around. However, we argue that reverse
causality cannot explain the heteroskedasticity effects, which we consider as the main
finding of this study. The variance of productivity depends on the level of corruption

irrespective  of whether corruption drives productivity, or vice versa.

ENDNOTES

1. The terms environmental variables and z-variables are also commonly used in
the literature.

2. The distinction between productivity and efficiency is worth clarifying.
Productivity is defined as the ratio of output to input (or the index of inputs).
Output efficiency is defined as the ratio of the observed output and the
maximum output. Productivity change can be decomposed into the
components of efficiency change and technical progress, and possibly some
other components (see for example, Fére et al, 1994; Kuosmanen &
Sipildinen, 2009).

3. For a more extensive treatment of SFA, we refer to the book by Kumbhakar
and Lovell (2000).

4. StoNED is an abbreviation of Stochastic semi-Nonparametric Envelopment of
Data (Johnson & Kuosmanen, 2011, footnote 3).

5. This issue is related to the notion of scaling property (Wang & Schmidt, 2002;
Alvarez et al., 2006) in SFA models. The KGM model does not satisfy the
scaling property, as Wang and Schmidt (2002) point out.

6. Nonparametric DEA applies a similar axiomatic nonparametric frontier, but in
contrast to StoNED, DEA neglects the noise term altogether. We consider this
a major limitation in the present context. Further, regressing DEA efficiency
estimates on contextual variables is known to be problematic even if one
assumes away noise (see Simar and Wilson, 2007, for a sharp critique of two-
stage DEA). The problems concern particularly the statistical inferences. For
these reasons, we do not consider DEA appropriate for estimating the effect of
corruption on the level of productivity, let alone its variance.

7. 1Inthe 1990 data, the CPI index is available for a subset of 48 countries. Using
this subset of 48 countries, the results are rather similar than with the larger
sample. These results with the sample of 48 countries can be found from the

online appendix.
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10.

11.

The causality from exports to productivity is subject to debate. For example,
Yamada (1998) does not find strong evidence for the causality, but mentions
that the degree of causality may differ across countries (see also Konya,
2004).

Empirical analysis was conducted using the following software: Stata 11
(OLS and SFA) see and GAMS using MINOS solver (StoNED).

Murphy, Shleifer, and Vishny (1991, 1993) suggest rent-seeking and
corruption as possible explanations for the misallocation of talent.

For example Gerring and Thacker (2008) argue that centralized political
systems, reduce the prevalence of corruption largely because fragmented
systems create more opportunities for corruption and the path of
accountability is often more clearer in a centralized system (see also Tavis,
2007). In contrast, centralized systems have been criticized on the basis of
reducing the amount of checks and balances, and competition among
bureaucrats, thus inducing more chances on corruption. Thus any micro-level
actions against corruption are ineffective in the decentralized case and the
system should be centrally restructured. In contrast, in the centralized case the
benefits of centralization may be questioned. Note that by centralized system
Gerring and Thacker (2008) refer to a system that has a strong national
government and which follows parliamentarism. In such systems the electoral
threat should impose some checks on political corruption. On the opposite,
one can expect that dictatorial regimes are more likely to exhibit risk seeking
corrupt behavior than democratically elected governments as dictatorial

regimes are not subject to electoral threat (Quinn & Woolley, 2001).
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APPENDIX

Countries included in the empirical estimations:

Algeria
Argentina
Australia
Austria
Bangladesh
Belgium
Bolivia
Brazil
Cameroon
Canada
Chile
China
Colombia
Cyprus
Denmark
Dominican Republic
Ecuador
Egypt

El Salvador
Finland
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France
Gambia
Germany
Ghana
Greece
Guatemala
Guinea-Bissau
Guyana
Hungary
Iceland
India
Indonesia
Iran
Ireland
Israel

Italy
Jamaica
Japan
Jordan

Kenya

Korea, Rep.
Malawi
Malaysia
Mali
Mauritius
Mexico
Mozambique
Netherlands
New Zealand
Nicaragua
Norway
Pakistan
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Poland
Portugal

Senegal

Sierra Leone
Singapore

South Africa
Spain

Sri Lanka
Sweden
Switzerland
Syrian

Thailand

Togo

Trinidad and Tobago
Tunisia

Turkey

Uganda

United Kingdom
United States
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Venezuela
Zambia
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Electricity distribution is a prime example of local monopoly. In most countries, the costs of electricity distribu-
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1. Introduction

The last two decades have witnessed a widespread implementation
of incentive regulation in the European electricity distribution sector
(see, e.g., Jamasb and Pollit, 2001; Haney and Pollitt, 2009, 2011). In
this sector the firms are natural monopolies, and their pricing policies
are usually regulated by some government agency. The traditional
cost-of-service or rate-of-return regulation is known to provide insuffi-
cient incentives for distribution system operators (DSOs hereafter) for
cost efficiency. A number of European regulators have introduced
benchmarking approaches such as data envelopment analysis (DEA)
or stochastic frontier analysis (SFA) in order to create incentives for
cost efficient operation (see e.g. Jamasb and Pollit, 2007; Kopsakangas-
Savolainen and Svento, 2008; Bogetoft and Otto, 2011). The emphasis
on cost efficiency has however created adverse incentives for DSOs to
decrease the quality of their services (Joskow, 2008). Recently consider-
able interest has been placed on studying how incentive regulation
affects the quality related investments and the quality of service in
network industries (e.g., Ai et al., 2004; Cambini and Rondi, 2010;
Reichl et al.,, 2008). Empirical evidence suggests that incentive regula-
tion focusing only on operational costs can reduce the quality of service
unless regulation is amended with some quality incentives also

* Corresponding author. Tel.: +358 9 43131; fax: +358 9 43138535.
E-mail address: antti.saastamoinen@aalto.fi (A. Saastamoinen).

http://dx.doi.org/10.1016/j.eneco.2014.04.016
0140-9883/© 2014 Elsevier B.V. All rights reserved.

(Hafner et al., 2010; Ter-martirosyan and Kwoka, 2010). Thus it seems
clear that the regulatory models must be complemented with quality
regulation in order to maintain an acceptable level of supply security
(see e.g. Jamasb and Pollit, 2008).

The quality of service is seen an important objective by the cus-
tomers, industry and the regulator alike. Poor service quality such as
supply interruptions often leads to losses for industry and households
in terms of lost production or the lost utility that customers can obtain
from the energy services (de Nooij et al., 2007). As the task of the gov-
ernment (regulator) is to guarantee stable conditions to operate for
industry and households, the service quality is a concern for the regula-
tor also.! Consequently it needs to be examined how firms can improve
their quality of service. Investments on network are one of the more
direct ways to affect security of supply as older equipment is replaced
with newer one. The most pronounced investment type on how
firms can affect their quality of service is underground cabling. For
example Fenrick and Getachew (2012) identify underground cabling
as a highly important factor in reducing interruptions. Less emphasis
however has been placed on how underground cabling affects the
variability of interruptions. Since customers (and regulator) can be
viewed to be risk averse, they view not only the small level but also

! Customers' valuation of the interruptions of course partly depends from the customer
type. See for example Sullivan et al. (1996) for an early discussion and de Nooij et al.
(2007) for more recent study.
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the low variability of interruptions as a sign of good quality. Given a cer-
tain expected level of interruptions, the scenario with less variability
would be favored by most customers over a scenario with high fluctua-
tions in the duration and the frequency of interruptions as the former
scenario would guarantee a more stable planning horizon. Risk aversion
could be argued to be especially high in countries with highly variable
weather conditions, such as Finland. Thus quality regulation should
aim to reduce also the risk of interruptions in order to meet the
customers' expectations of low variability. However, as Fenrick and
Getachew (2012) state, the decision to invest on underground cabling
is not straightforward as these investments incur extra costs compared
to over-headlines. These costs include for example higher installment
costs, costs due to longer repair times, and higher material costs (Hall,
2013). Thus the managers have to weigh the benefits of underground
cabling against its extra costs. If the managers perceive the cost to be
greater than the benefit, the level of quality may not be at the socially
optimal level as managers probably do not consider the consumers’
valuation of supply security when making investment decisions. There
is large body of literature that discusses about the optimal level of qual-
ity in electricity distribution sector (Ajodhia and Hakvoort, 2005;
Jamasb et al., 2012; Sappington, 2005). The variability of quality is how-
ever often neglected from these discussions. This study aims to shed
light on how this variability can be affected by underground cabling
investments. Our results suggest that underground cabling does not
have a significant decreasing effect on the variability of interruption
costs. In fact, the effect may be even risk increasing. From policy per-
spective this implies that firms may need to be given further incentives
to undertake underground cabling investments.

Another issue is the practical implementation of quality regulation.
Setting the target quality level is one important part of the implementa-
tion. In general regulation is challenging as firms usually have an infor-
mational advantage over the regulator about their true costs (see Holt,
2005; Kopsakangas-Savolainen and Svento, 2010; Sappington, 2005).
Similarly to Shleifer's (1985) classic yardstick model of regulation,
already Alexander (1996) discussed using the performance of compara-
ble firms as a way to set the targets. However it may be difficult to find
such comparable firms (Pollitt, 2005). Benchmarking methods are con-
sidered to overcome the problem of asymmetric information and find-
ing an objective comparison point (see e.g. Ajodhia and Hakvoort,
2005). These methods however have not been used in the regulation
of service quality as extensively as in the regulation of costs. For exam-
ple in Finland the quality targets are set by averaging the own previous
performance of the companies. Thus, if a DSO currently operates at a low
quality level, it only needs to maintain its current low quality level with-
out any need to improve its performance over time.

In this study we suggest that the best practice benchmarking
methods could be utilized in setting the quality targets. We argue that
the best practice is preferred to the average level, as the latter approach
can create undesired incentives (see Ajodhia and Hakvoort, 2005). The
industry wide performance is also likely to be improved more by
using the best practices. We introduce a best practice method to be
used in setting the quality target and compare it to the current practice
of Finnish regulator. Our results indicate that the targets produced by
the proposed method are more stable for DSOs of similar sizes than
the targets obtained with the current approach of Finnish regulator.
These findings seem to be in line with the DSO hopes of developing
the foreseeability and stability of the regulatory model and improving
the incentives for better performance found by Tahvanainen et al.
(2012) in their survey (see also Kinnunen, 2006).

Methodologically both of the above aims, the examination of under-
ground cabling effects and setting the quality targets, can be met by uti-
lizing a recently developed StoNED method for frontier estimation
(Johnson and Kuosmanen, 2011; Kuosmanen, 2012; Kuosmanen and
Kortelainen, 2012). This estimation method non-parametrically esti-
mates a frontier of quality performance what we call as a quality frontier.
It also readily incorporates the effects of operational environment of

DSOs into its estimation framework. It is generally well acknowledged
that the operational environment of DSOs should be taken account in
a typical benchmarking process. Network operators are subject to
different weather conditions, geographical conditions, and consumer
densities which affect their costs and service quality (see e.g. Growitsch
et al., 2009, 2012; Simab and Haghifam, 2012; Yu et al., 2009a). In
this work we consider the amount of underground cabling as measuring
these operational conditions (see e.g. Kuosmanen et al, 2013;
Kuosmanen, 2012). DSOs operating in a dense city areas have different
underground cabling levels than DSOs in the rural areas. Thus the qual-
ity frontier presented in this study accounts for these differences in
determining the proper quality targets.?

This paper is organized as follows. Section 2 briefly discusses the
measurement of service quality and describes the theoretical quality
frontier model framework and the empirical estimation method
associated with it. Section 3 summarizes the data. In Section 4 we
examine the effects of underground cabling on the level and the var-
iance of interruption costs. Section 5 moves to examine the practical
implications of using the estimated quality frontier instead of the
current Finnish practice in quality target setting. This section also
briefly describes the overall Finnish regulatory system. Section 6 then
concludes.

2. Quality frontier model

This section introduces the quality frontier model and the necessary
terminology and notation. The purpose of this section is also to address
the questions of why a frontier model of quality is interesting and what
type of information it can provide for the regulators. We also briefly dis-
cuss about the measurement of quality at this junction.

2.1. The measurement of quality

In this study, we use the costs of interruptions as the quality indica-
tor (see e.g. Ajodhia, 2010; Growitsch et al., 2010). In Finland the inter-
ruption costs are calculated by the Finnish Energy Market Authority
(Energiamarkkinavirasto (EMV)). The calculation takes into account
the duration and number of interruptions. Thus in this study we are
only concerned about the continuity of supply aspect of quality. Conse-
quently we do not consider for example commercial or technical aspects
of service quality, such as the quality of billing services and voltage var-
iations. The estimates of customers' willingness-to-pay (WTP) to avoid
interruptions or the valuation of lost energy are then used to transform
the technical measures into costs (see e.g. Reichl et al., 2013; McNair
et al,, 2011; Growitsch et al.,, 2010; Yu et al.,, 2009b; de Nooij et al.,
2007).2 In Finland the customer valuation is based on the survey made
by Silvast et al. (2005). The formula on how interruption costs are calcu-
lated by the Finnish regulator can be found from EMV (Finnish Energy
Market Authority) (2011a) and from Appendix A of this study.

Alternative approach would be just to use technical measures com-
mon in the literature such as frequency and duration of outages, cus-
tomer minutes lost or the loss of energy delivered (see e.g. Fernandes
et al,, 2012; Simab and Haghifam, 2012). Such technical measures can

2 In Norway, a large set of environmental and operational condition variables are used
in a traditional regression model to estimate an expected level of interruption cost which
is then used as a reference value (see Langset et al., 2001). Kopsakangas-Savolainen and
Svento (2011) consider load factor variable as a variable describing the operational
environment.

3 Alternative to WTP is willingness-to-accept (WTA), that is, how much customer
should be compensated in order to accept an interruption of a certain size. Generally there
is large disparity between WTP and WTA measures as the latter is often measured to be
much larger than the former. WTA is heavily driven up by the loss aversion of the cus-
tomers (see e.g. Beenstock et al., 1998). WTP on the other can be subject to underestima-
tion (see e.g. Linares and Rey, 2013).
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be directly incorporated for example to a DEA model as one of the input
variables (Giannakis et al., 2005; Yu et al., 2009a, 2009b). The likely
problem of such approaches is that the firms may specialize to a certain
type of quality or specialize either on quality or operational costs (see
e.g. Ajodhia, 2006). That is, firms may seem efficient by only focusing
either on cost reductions or quality improvement, but not necessarily
on both. Some recent studies propose to combine multiple quality
dimensions to a single quality indicator using DEA (Ferrier and
Trivitt, 2012 (health sector); Simab and Haghifam, 2012 (electrici-
ty); Facanha and Resende, 2004 (telecommunications)). By forming
a single quality index these studies attempt to take account the
multi-dimensional nature of quality (see e.g. Fumagalli and Lo Schiavo,
2009). Such indices however might hide some specific aspects of
quality and it could be challenging to distinguish from these indices
that in what way quality should be improved. An economic measure
of quality, such as interruption costs used in this study, accounts for
both the technical aspects of and the customer valuation in forming
the measure. In terms of social welfare, the economic approach
makes it more straightforward to analyze whether the quality provi-
sion is at the socially optimal level. Of course, if the interest is to
examine on which specific (technical) aspects of the quality the im-
provements should be targeted, then we should use a disaggregated
analysis where each (relevant) quality component is separately included
into the model. But since our aim here is to estimate the reference level
within the Finnish system, we remain using the interruption costs as
our measure of quality.

2.2. Theoretical quality frontier model

The conceptual framework of the quality frontier model is given
Eq. (1). The total external supply interruption costs are given by the
variable x. We assume that interruption costs depend on the outputs y
and contextual variables z that characterize operational conditions
and practices of distribution networks. For the sake of generality, we
abstract from the definition of the output vector y and the contextual
variables z and leave it for the regulators. Using these notations, the
general model of quality frontier can be represented as

x=Q(y) u(z)-v(z) 1)
where

is the interruption cost

is the quality frontier function

is the vector of outputs

is the vector of contextual variables

is a random variable representing inefficiency

is a random variable representing stochastic noise.

S EN<OX

The quality frontier function Q is directly analogous to the frontier
cost function: it represents the minimum interruption cost at the
given output level. We assume that the quality frontier Q is a monotonic
increasing and convex function of outputs and that Q exhibits constant
returns to scale (see, e.g., Kuosmanen, 2012, for further discussion of the
axioms in the context of energy regulation). However, we do not im-
pose any particular functional form for the quality frontier. For example
the often used Cobb-Douglas form implies economies of specialization,
which is problematic when modeling joint production. Electricity distri-
bution companies are usually modeled as multi-output producers as
often variables such as number of customers and network length are
considered their outputs alongside the distributed electricity. On the
other hand, using more flexible functional forms often violate for exam-
ple monotonicity.

An important point to note in model (1) is that we assume the
random inefficiency term u and the noise term v depend on the contex-
tual variables z. More specifically, we assume that the asymmetric

inefficiency term u has the half-normal distribution that depends on
the contextual variables z according to

u(z) ~N'(0,0,(z), )

0,(z) = exp(2'0). 3)

Note that the expected value of inefficiency depends on z according
to

E(u(z)) = u(z) = exp(z'0)\/2/m. (4)

Similarly, we assume that the variance of the noise term depends on
contextual variables

v(z) ~ N(0,0,(2)), (5)

0,(2) = exp(zZv). (6)

In the terminology of econometrics, we assume that both the ineffi-
ciency and noise term are heteroscedastic. The stochastic part of the
quality frontier model can be interpreted as doubly heteroscedastic
model introduced by Hadri (1999, 2003) (see also the recent survey of
heteroscedastic SFA models by Alvarez et al., 2006).* Why should one
care about heteroscedasticity in the present context? There are at least
two good reasons why the regulators and the regulated firms should
care.

Firstly, as already stated in Section 1, the operational conditions and
practices can affect the risk of interruptions, commonly measured by
the variance. For example, the use of underground cables instead of
overhead cables can make the network less vulnerable to storms and
other extreme weather events. Note that customers of electricity distri-
bution networks are typically more risk averse than the firms providing
the service. Risk neutral firms may be willing to tolerate higher risks
than their risk averse customers, leading to a suboptimal investment
to underground cabling if the risk effect is ignored. If the elements of
vector z are controlled by firms, then the quality frontier model can
help the regulators to create better incentives for improving the quality
of service through the z-variables.

Secondly, even if one is only interested in the expected value of in-
terruption cost (e.g., all relevant parties are risk neutral) and even if
some (or all) elements of z are considered uncontrollable, it is important
to take the variance into account from the econometric point of view.
This is because the shape of the quality frontier Q will generally differ
from that of the conditional mean function E(x|y,z) if the inefficiency
is heteroscedastic. Therefore, the usual methods of regression analysis
provide biased estimates if the heteroscedasticity effect is ignored (see
Florens and Simar, 2005, for further discussion).

The following simulated example illustrates the second point. In this
example we assume the true quality frontier as Q(y) = y*. We assume
uniformly distributed y, and a single contextual variable that is uniform-
ly distributed with Cov(z)y) = 0.9. The standard deviation of the half-
normally distributed inefficiency term u is 0.4z and that of the normally
distributed noise term v is 0.2z. We draw a random sample (n = 200),
and add inefficiency and noise to the quality frontier Q(y). The true fron-
tier Q (the black curve) and the scatter of the simulated data points
are presented in Fig. 1. The OLS estimate of the quadratic function is
presented in the figure by a gray broken curve (the estimated equation
is x = 1.26y* + 0.35y — 0.23; R? = 0.93). The figure aptly illustrates

4 The model by Wang (2002) parameterizes both the mean and the variance of the in-
efficiency distribution with z-variables. His model accommodates non-monotonic effi-
ciency effects i.e. z-variables can have different effects at the different levels.
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Fig. 1. Illustration of the heteroscedasticity effect. Solid black curve is the true frontier
Q = y? used in the simulation. The gray broken curve is the OLS estimate. The shapes of
the two curves differ due to heteroscedasticity.

that the shape of the OLS curve differs notably from that of the true qual-
ity frontier Q.

2.3. Semi-nonparametric estimation®

To estimate the quality frontier model (1) in a semi-nonparametric
fashion without making additional assumptions to those stated in the
previous section, we resort to the StoNED approach (Kuosmanen,
2012; Kuosmanen and Kortelainen, 2012). As a starting point, we take
the logarithms of both sides of Eq. (1) and rewrite it as the partially lin-
ear model

Inx = InQ(y) +2'8 +&(2), (7)
where z’6 = E(In u(z)) and the composite error term
&(z) = Inu(z) + Inv(z)—2'8 (8)

has zero mean. Therefore, the quality frontier Q and the effects of
z-variables on the expected value of x can be consistently estimated
by the semi-parametric CNLS estimator (Johnson and Kuosmanen,
2011, 2012). Note that the coefficients & can be interpreted as the
post-truncation effects of the z-variables on the expected inefficiency,
whereas coefficients 6 introduced in Eq. (3) represent the pre-
truncation effects. In other words, 8 and 0 are just alternative param-
eterizations of the same effects.

In stage 1, we solve the following nonlinear programming problem
shown in Eq. (9):

n
min s,.2 9)
bpoE

s.t.

Inx, = Ind; + > Zyedy + & Vi
& = Briyai + BaiYai + By Vi

i =LBiny1i + BanYai + Banysi Yhi

Ba=0vk = 1,2,3;Vi.

In the set of Eq. (9), all the variables are defined as earlier. The
parameter ¢; is the frontier interruption cost for firm i. Note that we

5 See Kuosmanen et al. (2014) for a detailed treatment of the estimation framework.
They also deal on some ways to model heteroscedasticity within the framework.

include time dummies into the set of contextual variables. The first
constraint defines the regression equation. The second set of constraints
specifies that the tangent hyperplanes of the frontier are linear. These
constraints do not however restrict the form of the frontier in any
way. The third and the fourth sets of constraints define the cost function
to be convex and monotonically increasing in outputs. The resulting
frontier is piece-wise linear and it is very flexible in terms of technology
as the marginal costs of outputs ((3;) are firm specific.

Given the CNLS residuals €; from the problem in Eq. (9), we can apply
the quasi-likelihood approach by Fan et al. (1996) to estimate the dou-
bly heteroscedastic inefficiency model by Hadri (1999). In stage 2, we
solve the quasi-likelihood problem, for which, following Hadri (1999),
the log-likelihood in terms of the CNLS residuals can be written as in
Eq. (10). It is assumed here that inefficiency and noise are distributed
according to Eqgs. (2) and (5).

logL(B,8,7) = > _ log(f;(&)) (10)
where

fi(&) = /00 f (&/07) FT(N&;/0y)

O = 0y + Oy
Ai = 0yi/0y;

where f* and F* are the standard normal density and distribution
functions. This problem can be computed with any standard software
packages (for example, Stata), which allows the parameterization of
both standard deviations (variances) separately in a frontier model. In
practice, we can estimate the parameters of the second stage ineffi-
ciency model by regressing the equation

Inx— Ingy =+ > 2y + & (11)

applying standard computational tools for SFA models. Note that
values ¢; on the left-hand side of Eq. (11) are obtained from the
optimal solution to Eq. (9), and hence the left-hand side of Eq. (11)
is given beforehand. The parametric inefficiency model in the second
stage serves to identify the effects on different variance components,
as it is computationally prohibitive to incorporate the variance
effects in the mathematical programming problem (Eq. (9)). Fur-
thermore the second stage provides us with the typical standard
errors to access the statistical significance of the effects. These are
not readily available in the first nonparametric stage. Notice that if
your interest is only on the significance of the level effects (parame-
tersd,), we could estimate Eq. (11) by OLS and adjusting the standard
errors for possible heteroscedasticity. As a consequence we estimate
the level effects in both ways as this serves as an internal consistency
check of our results. The estimates of &, parameters from Eq. (11)
should be relatively the same regardless of whether linear regression
or the parametric inefficiency model is applied in the second stage.
They will not be exactly the same as the inefficiency model includes
a further parameterization of the variances.

Lastly, we stress that the estimation framework followed here is not
a typical two-step method that has been heavily criticized in the litera-
ture (see, e.g., Wang and Schmidt, 2002). The critique concerns such
two-stage methods where the z-variables are neglected altogether in
the first stage estimation, creating a possible omitted variable problem.
Note that in our approach the effects of the z-variables on the condition-
al mean of the dependent variable are duly taken into account in the
first stage estimation. Moreover, the benefit of our methods is that we
estimate the effect of operational conditions and the quality frontier at
once. The standard two-stage methods are suitable for estimating the
effects of z-variables. However, some further stages would be required
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Table 1

Summary statistics of the variables used (period 2005-2010; n = 516).
Variable Mean Std. dev. 1st quartile Median 3rd quartile Min Max
Energy (GWh) 503.33 1021.01 73.99 173.47 446.7 14.54 7297.84
Network (km) 4297.62 10425.78 720.05 1055.00 3431.1 26.30 70096.90
Number of users (1000 s) 37.08 73.62 498 1212 2761 0.02 441.49
Underground cabling (%) 22.56 27.58 270 7.95 385 0.01 100.00
Interruption cost (mill. €) 1.46 434 0.11 030 0.82 0.0007 4490

in order to take these effects into account in estimating the quality tar-
gets via frontier (see e.g. Fried et al., 1999, 2002). Such multi-stage pro-
cedure may not be desirable in terms of transparency of the regulation.
Further, the first stage estimator remains unbiased and consistent even
if there is heteroscedasticity with respect to the z-variables. Therefore, it
is perfectly valid to reduce the heavy computational burden of the first
stage nonparametric estimator by leaving the variance effects to the
second stage regression.

3. Description of the application and data used

The data have been obtained from the website of the Finnish regula-
tor (EMV).° The data is a balanced panel consisting observations of 86
DSOs over the period 2005-2010, making it total of 516 observations.
We have data on interruption costs, underground cabling and three
outputs, namely energy transmission, network length, and number of
customers. These outputs are commonly considered as the primary cost
drivers for DSOs (see e.g. Korhonen and Syrjdnen, 2003; Giannakis
et al., 2005; Thakur et al., 2006). We consider the same outputs to be
the drivers of interruption costs also. In other words we argue that the
scale and scope of operations should dictate the reference level of inter-
ruption costs. The summary statistics of the variables are given in
Table 1.

The energy transmission output is a weighted sum of transmitted
energy at every voltage level. The weights are defined as the average
cost of energy transmission and the transmission at the lower voltage
level gets a higher weight such that the transmission is measured in
GWh of 0.4 kV equivalents. That is, the 0.4 KV transmission gets a weight
of one and higher voltage levels weigh below one. Underground cabling
is the proportion of underground cabling in 1-70 kV network. This var-
iable is used by EMV as a contextual variable to describe the operational
conditions of DSOs. In addition to the variables in Table 1 we have the
geographical location of DSO as an additional z-variable. This has been
approximated with the coordinates of DSOs" head office.” The informa-
tion is obtained from EMV as DSOs are required to report their contact
details. This proxy is rather rough approximation of the location as
some DSOs operate on very large areas or even on multiple areas
which are geographically separate. Typically operators however have
their offices within the same area that they operate in. For the majority
of companies in our data, this proxy of their location is straightforward
to define. There are two companies which have two (or more) distinc-
tively separate geographical operation areas. For these two companies
the location has designated so that if the undergrounding level of the
company is low, the company has been designated a more rural coordi-
nates and vice versa. Of course, it would be a concern if the data would
include many such companies with operating areas separated by long
distances. In this case, identifying the effect of location with coordinates
would be difficult. Below we however will see that our assumptions
about the locations of the abovementioned two companies are rather
unimportant (see footnote 7). Alternatively we could have used some
arbitrary division of the country for example into four regions in terms
of cardinal points. But such division would assign many companies the

6 The webpage of EMV is: http://www.emvi.fi/.
7 Coordinates have been obtained from Google Maps based on the city/town that the
company has the head office.

same location even though the area might include for example coastal
companies and inland companies.

Table 1 illustrates the structure of electricity distribution industry in
Finland. Few larger companies with significantly larger outputs
cause the output distributions to be heavily skewed to the right
(skewness statistic not shown, but it was positive for all variables).
For example, for 75% of observations energy transmitted is less or
equal to 446.65 GWh. The largest company has transmitted approxi-
mately 7300 GWh per year. The interruption costs vary from minimal
€714 to almost €4.5 million within the period 2005-2010. The yearly
summary statistics in online Appendix A show that 2010 was a stormy
year with high interruption costs.® Importantly, the high interruption
costs observed in 2010 will inflate the EMV reference values as average
is sensitive to outliers. This leads to more lenient targets. If the year for
which the target is calculated is also stormy, such target would be ade-
quate. But if interruptions revert back to their “normal” level after 2010,
the target would be overstated. Lastly note that our data includes few
industrial networks. They have rather low number of customers and
short network length but relatively large energy transmission.

Since the relationship between interruption costs and underground
cabling is our main target of interest, we illustrate their connection in
our data with Fig. 2. The observed interruption costs for each year
(2005-2010) have been plotted against the underground cabling levels.
As expected, the largest variability in interruption costs is at the low
cabling level. These are the companies with large overhead networks.
There is a slight downward trend in interruptions as the cabling level
increases, implying that the level of interruptions decreases along
with underground cabling. Nevertheless there are relatively large varia-
tions in the observed interruption costs at the higher levels of cabling
also. For example at the level 50% of underground cabling, the log of
interruption costs might vary from 10 to 15 (from €22,000 to almost
€3.3 million in actual monetary terms). We also see some observable
variation at the very high levels of cabling. The major part of the varia-
tion at these high levels is due to observations with 100% cabling.
These six observations belong to one of the abovementioned industrial
network which has 100% cabling proportion. We also conduct a robust-
ness check of our results when we exclude this (and one other) indus-
trial network from the sample (see online Appendix C).° The analysis
in the next section includes these two firms.

4. Estimated effects of underground cabling

We first study how underground cabling affects the level of interrup-
tion costs in Table 2. We present the results for two different model
specifications. Model 1 includes the underground cabling and the year
dummies as z-variables. Model 2 includes the coordinates of DSOs'
head office (i.e., latitude, longitude) in addition to the underground
cabling and year dummies. The alternative model specification tests
the robustness of the results and whether there is any other location
specific effects that underground cabling does not identify.

We present the direct estimates of the level effects from the StoNED
model and the estimates of the second stage parametric inefficiency

8 See also EMV (Finnish Energy Market Authority) (2011b).

© The network operators that have been removed from the results of online Appendix C
are an operator that provides services only for an airport and one which serves only an in-
dustrial park.
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Fig. 2. Scatterplot, In(x) vs. underground cabling (x = observed interruption costs).

model (Eq. (11)) (see discussion in Section 2). The standard errors in
StoNED results are adjusted for heteroscedasticity since we expect inter-
ruption costs to be heteroscedastic with respect to underground cabling.
In the second stage parametric inefficiency model heteroscedasticity is
explicitly taken into account by parameterizing the error component
variances.

Overall the results are rather stable over all specifications. Under-
ground cabling significantly decreases the level of interruption costs in
all models. Except the longitude variable in the StoNED Model 2 the co-
ordinate variables are mainly insignificant in explaining the level of
interruption costs. Underground cabling is already likely to capture
the most characteristics of the operating environment. Moreover, part
of the heterogeneity is modeled through variances of the error compo-
nents in the second stage inefficiency model.

The longitude variable in StoNED, Model 2, has the expected sign. The
Eastern Finland is likely to have higher interruption costs as it has more
forests and overhead cables. Subsequently it is more likely to observe in-
terruptions by trees falling on cables.'® Notice that when we take the
variance effect into account as in Model 2 of the 2nd stage inefficiency
model, this effect becomes insignificant. The yearly dummies indicate
a technical progress in the industry as their coefficients are negative.
In fact the industry level underground cabling proportion has slightly
increased over the period. Hence it is expected that the interruption
costs have declined. The coefficient for the year 2010 is surprising.
Knowing that 2010 was an exceptional storm year we would expect a
positive sign and probably a highly significant effect. We suspect that
the yearly dummies capture more the overall trend than any exceptional
events. Partly the exceptional storms of 2010 are manifested in the coef-
ficient as it is not large compared to the other yearly dummies. We inter-
pret that the insignificance of this coefficient implies that the effect of
improved technology has been insignificant because of the extreme
weather conditions in 2010.

Next we examine the variance effects. For the sake of completeness
and as an internal consistency check we also examine the variance
effects with the linear regression. In that case we are restricted to
study the effects on the estimates of the overall error obtained from
solving problem (9). That is we do not yet separate the effects between

10 Notice that the effect of coordinate variables could be partially driven by our assump-
tions of the locations of two companies with rather high interruption costs. Thus we con-
ducted an OLS analysis, where we regressed interruption costs on underground cabling
and the coordinates. We varied the values of coordinates in terms of different locations
of these companies in order to examine whether this had any major effect on the coeffi-
cients of the coordinate variables. None of the estimates experienced major changes in
sign or significance. Thus we conclude that these location assumptions do not affect the
overall results stated above. The results of these estimations can be obtained from the au-
thors by request.

Table 2
Level effects on the level of interruption costs.

StoNED 2nd stage inefficiency
z-Variable Model 1 Model 2 Model 1 Model 2
U. cabling —0025""" —0026™" —0019™"" —0022""
(0.002) (0.002) (0.003) (0.003)
Latitude —0.029 0.040
(0.015) (0.023)
Longitude 0.086™"* 0018
o (0015) (0.024)
2006 —0207 —0.209° —0.159 —0.201
(0.096) (0.094) (0.132) (0.118)
2007 —0323""" —0324"" —0319" —0347""
(0.102) (0.100) (0119) (0112)
2008 —0260"" —0259" —0275 —0310™
(0.107) (0.105) (0.115) (0.110)
2009 —0537" —0534"* —0591"** —0611°**
(0.107) (0.104) (0.115) (0.109)
2010 —0.133 —0.137 —0.196 —0.172
(0.121) (0.117) (0.107) (0.103)
Intercept 0.623" 0.416 0.013 —2.557
(0.074) (0.969) (0.117) (1373)

Standard errors in parenthesis.
**% 1% significance.
** 5% significance.

noise and inefficiency variances. To examine the overall effects we in
practice regress the squared estimates of the overall error on the
contextual variables. This is the standard practice in econometrics to
study heteroscedasticity (see e.g. White, 1980; Greene, 2008). The
results of this analysis are presented in Table 3. In Table 4 on the other
hand we explicitly differentiate the variance effects between ineffi-
ciency and noise in the second stage parametric inefficiency model
and examine the parameter estimates of functions (3) and (6). Notice
that the year dummies have been excluded from these models.!! We
stress that the parameter estimates in Tables 3 and 4 are not directly
comparable because of the differences in the variance parameterization.

Table 3 reveals that the variance of interruption costs increases as
the level of underground cabling increases. We would expect lower
variability with higher proportion of underground cabling. But the com-
panies which have a high proportion of underground cabling also have a
large customer base and large energy transmission. Thus when these
companies face an interruption, their costs are likely to be much higher
than their usual levels since a great number of customers are affected by
the interruption. Consequently the variance of interruption costs can be
high for these companies as we only observe small and some high inter-
ruption costs. In addition the higher initial installment costs and the
repair costs of underground cabling may be translated into interruption
costs. The maintenance costs of underground cables are generally lower
than the corresponding costs of overhead lines.

In Table 4 the variance of interruption cost has now been
decomposed into two parts. Underground cabling has remarkably
different effects on the variability of inefficiency and noise. Whereas
cabling (insignificantly) decreases the variability of inefficiency, it sig-
nificantly increases the variation in noise. Beforehand there is no reason
to assume any specific sign on the first effect. The negative sign indi-
cates that variation of (in)efficiencies among high underground cabling
companies is smaller. We could argue that the companies using mainly
overhead lines experience higher variations in their daily operations
and consequently they might have higher variations in their efficiency.
The positive effect of underground cabling on noise on the other hand

" This reduces the number of estimable parameters in maximum likelihood. In fact, in
the StoNED models, if we include year dummies in the models of Table 3, the coefficient
for 2010 dummy was positive and significant. This is expected as 2010 was a storm year
and the variability of interruption costs was expected to be high.
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Table 3
The variance effects; overall error.
z-Variable Model 1 Model 2
U. cabling 0.007"** 0,007
(0.002) (0.002)
Latitude 0.018
(0.024)
Longitude 0,053
) (0.025)
Intercept 0.401™** —2.083
(0.071) (1.521)

Standard errors in parenthesis.
*#% 1% significance.
** 5% significance.

implies higher variability of interruption costs due to random phenom-
ena such as weather. Therefore the effect of weather on variability
seems to increase along with cabling. For example Growitsch et al.
(2012) found that the higher amount of energy delivered strengthens
the cost increasing effect of poor weather. Recall that the companies
with a higher underground cabling proportion often deliver more ener-
gy than the companies with overhead lines. Comparing Tables 3 and 4
we notice that the effect on noise variability drives the effects on the
overall error since only noise effect is significant in Table 4. This finding
confirms the internal consistency of our estimation framework as the
effect on overall error is positive. The results after removing two indus-
trial networks considered as outliers from the data are given in online
appendix. These results can be briefly summarized here. The level ef-
fects were very robust and they stayed negative and significant. The var-
iance effects turned to be insignificant. Notably however we did not find
any significant negative effect either. That is, in our data, the effects of
underground cabling on the variance of interruption costs seem to be
either positive or negligible, but not negative as we would expect
beforehand.

From the practical policy perspective the results above show that it
is worthwhile to promote underground cabling to further increase the
security of electricity supply. Clearly the level of interruption costs can
be decreased with investments on better cabling. Nevertheless regula-
tor should also acknowledge that DSOs are likely to resists some of the
demands to invest in underground cabling due to its costliness. More
specifically, if the investments on underground cabling are in some
sense at the saturated level already, the DSOs may consider further
investments not worthwhile as they do not significantly improve their
performance in terms of variability. Indeed our results suggest that
underground cabling does not necessarily decrease the variability of
interruption costs although the level is clearly negatively affected.

5. Finnish regulatory framework and reference value comparison

In this section we compare the reference values/quality targets
obtained from the proposed quality frontier to the target values which
are obtained using the current practice of Finland. We first briefly out-
line the Finnish regulatory framework and its quality incentive compo-
nent. This illustrates the positioning of the quality targets within the
system. The comparison of the target values is conducted with summary
statistics and graphical illustrations.

5.1. Finnish regulatory model

We keep the description of the regulatory model relatively brief as
detailed description of the system can be found for example from the
document of EMV (Finnish Energy Market Authority) (2011a) and
also from Tahvanainen et al. (2012).

The regulation of Finnish electricity DSOs is based on the rate of
return regulation. In practice EMV determines the allowable returns
for companies. The allowable returns are compared to the actual real-
ized returns of the companies by taking the difference between them.
If excess returns (positive difference) are observed, the DSO is expected
to compensate the excess return by cutting the distribution prices in the
next regulatory period. In contrast, if the actual returns are smaller than
the allowable returns, the DSO has room for price increases. The cost
efficiency and quality incentives adjust the observed return of DSOs.
They are constructed such that it is beneficial for firms to meet (or
pass) the targets set by these incentives. In the quality incentive compo-
nent this means that it is beneficial for the company that the difference
between the target value and the observed interruption cost is positive.
In this way their difference is subtracted from the overall observed
return. This again increases the likelihood that the observed return is
lower than the regulated return. The same mechanism applies to the
cost efficiency incentive. The simplified illustration of the system is
given in Fig. 3.

Few comments are worth noting about the overall regulation frame-
work. First, in the current regulatory period (2012-2015), the efficient
cost frontier in the cost efficiency incentive is estimated with the similar
StoNED model that this study proposes to be used also within the qual-
ity incentive. Secondly the interruption costs are divided between the
cost efficiency and quality incentives. Inclusion of interruption costs
into other cost (such as operational costs) is called the social total cost
(SOTEX) approach in the literature (see e.g. Growitsch et al., 2010). It
is aimed to mitigate the specialization problem discussed already in
Section 2.1 as firms cannot neglect the quality considerations in the
cost efficiency incentive component. One might also be concerned
whether the overall cost level should be accounted for in determining
the target interruption cost level. Obviously, in reality interruptions
and their costs are dependent from the operational and capital costs of
the companies. Indeed, it would be technically possible to consider a
multi input multi output model where each cost type is separately
included as an input. Alternatively other cost types could be accounted
for by using the SOTEX approach outlined above. The main reason why
we follow the suggested approach is to keep our approach as close as
possible to the current regulatory model of Finland which includes an
independent quality incentive component, which is our interest here.
Note that the scale and scope of firms' operations are accounted for by
the fact that interruption costs are determined as a function of outputs.
Thus in this respect not accounting for other costs is not crucial for our
approach.

The formula on how EMV currently calculates of the reference value
is shown in Eq. (12). It is an energy transmission weighted average of
past interruption costs. In the current period, the target for certain
years is based on the values of 2005-2010. Notice also that the reference
value as such does not yet represent the actual size of the whole incen-
tive component. Before implementation the overall incentive compo-
nent is subject to some further modifications, such as capping the
maximum size of the penalty. The reference level however indicates
how strict the quality regulation is when different reference levels are
implemented. The higher the reference level is, the greater interruption
costs are allowed.

2010
W
>, (w)

t=2005

Icref k= 6 ) (12)
where

ICrefi is the reference level for year k

ICx is the IC for year t in the monetary value of year k

Wy is the transmitted energy in year k

W, is the transmitted energy in year t.
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Table 4
Decomposition of variance effects in the second stage parametric inefficiency model.
Model 1 Model 2
z-Variable 6 inefficiency effects <y noise effects 6 inefficiency effects -y noise effects
U. cabling —0.031 0.017"* —0.046 0.018™*
(0.025) (0.002) (0.038) (0.003)
Latitude —0.787" 0.133"
(0.347) (0.054)
Longitude 0471 0.001
. (0.163) (0.058)
Intercept —0427** —1.425" 35.690 —9.738™"*
(0.207) (0.153) (19.097) (2.885)

Standard errors in parenthesis.
%1% significance.
** 5% significance.

5.2. Comparison of quality targets

We start the comparison with summary statistics of the reference
values in Table 5. The estimated reference values from the quality
frontier for two different model specifications are identified as Est. IC
ref (1) / (2). Note that the estimator discussed in Section 2 estimates a
target value for each observation. Therefore in the analysis of this sec-
tion we choose to use the targets for the observations that correspond
to the year 2010. That is, we pick only one reference value for each
firm. As a consequence we have 86 observations from where the sum-
mary statistics below are calculated.

On average the EMV method produces more lenient targets for com-
panies. Like we already suggested in Section 3, some large interruption
costs on 2010 for some companies have inflated EMV reference levels
on average. The EMV method is more volatile as the standard deviation
of EMV reference levels is substantially higher than the corresponding
standard deviation of the quality frontier estimates. The estimated
reference levels from Model 1 and Model 2 follow rather similar distri-
butions. In the following analysis we only examine the values from
Model 1 as results stay the same with Model 2.

Next we examine the stability of reference levels over the firms.
Within regulation it can be argued that the reference level for com-
panies of similar size should also be similar. In Fig. 4 we have plotted
the log-transformed EMV reference values and the log-transformed

Price reductions in the
next regulatory period

reference values from the quality frontier. The observations have
been ordered according to log-transformed average transmitted en-
ergy (2005-2010) in increasing order. Clearly the reference levels
from the quality frontier are more stable between companies of similar
size than the EMV reference levels. In log-terms the EMV reference
values may vary from 10 to over 14 in small range of company sizes.
In real monetary terms such differences mean a range of targets from
€22,000 up to €1.2 million.

One can argue that the reference levels of two similar sized compa-
nies should differ as they might operate in a very different environment.
Or vice versa, the reference level of similar sized companies operating in
a similar environment should be relatively close to each other. In Fig. 5
we compare the reference levels separately at different levels of under-
ground cabling. The firms have been grouped into four groups according
to the average underground cabling proportion over 2005-2010 (online
Appendix B describes how the groups have been formed). Once again
the firms have been ordered according to their size in terms of trans-
mitted energy.

Fig. 5 shows a clear difference in the variation of reference levels. The
EMV reference values vary substantially more than the quality frontier
levels even among companies of similar size and underground cabling
level. Notably the quality frontier estimates of the reference levels
for the high underground cabling group are substantially higher. We
would except that these companies should have a rather strict reference

Scope for price
SURPLUS RETURN DEFICIT RETURN I:> R e
regulatory period
{ OBSERVED RETURN I - REGULATED RETURN |
(REASONABLE RETURN)

QUALITY INCENTIVE

0.5* (REFERENCE IC LEVEL - OBSERVED IC)

B Sublraction of the terms.
ic Interruption Costs

COST EFFICIENCY INCENTIVI

E

REGULATED COSTS - OBSERVED COSTS |
M

OPEX+0.5*OBSERVED IC

Fig. 3. The Finnish regulatory model.
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Table 5

Summary statistics of reference levels (n = 86), mill. €.
Reference value Mean Std. dev. Skewness 1st quartile Median 3rd quartile Min Max
Est.ICref (1) 1.07 212 412 0.16 0.38 0.81 0.03 13.60
Est. IC ref (2) 097 1.92 418 0.15 0.34 0.76 0.03 12.50
EMV IC ref 147 4.04 4.86 0.14 0.28 1.01 0.02 25.80

levels since their usual level of interruptions is low. However since the
typical level of interruptions is low for these companies, the EMV
averaging approach might produce too strict targets for a year with
exceptionally high interruptions. When a company with the high
underground cabling level is actually hit by interruptions, the interrup-
tions generally are large scale and hard to fix. This leads to substantial
interruption costs.!? This result illustrates that the proposed semi-
nonparametric estimation of quality frontier better reflects the large
scale and scope of operations of these companies in its determination
of the target value. Finally, when we did your robustness check of the
results, we found similar pattern of reference values between EMV
values and the quality frontier values. The level of reference values
was affected by the removal of the two industrial networks, but quality
frontier still produced more stable targets than the EMV approach.

6. Conclusions

We have applied insights from productivity analysis to develop a
frontier model of service quality. To estimate the quality frontier from
interruption cost data, we proposed a new semi-nonparametric
method, which does not require any functional form assumptions
for the quality frontier. The method takes into account stochastic
noise and heteroscedasticity effects both in the inefficiency and noise
term. The proposed quality frontier was argued to provide more mean-
ingful and stable basis for setting quality targets and incentives than the
average practice benchmarks currently in use.

The empirical objectives of this study were twofold. Our first empir-
ical aim was to study how the level of underground cabling and opera-
tional conditions affect the level and variance of interruption costs. As
expected, underground cabling significantly explains the level of inter-
ruption costs. Interruption costs decrease with higher underground
cabling levels. The effects on the variance of interruption costs are either
positive or insignificantly different from zero. This implies that under-
ground cabling does not significantly decrease the variability of inter-
ruption costs. This is because of the higher costs associated with the
interruptions in underground networks. Even after robustness check
we do not find a significant negative (risk decreasing) effect of under-
ground cabling to the variability of interruption costs. Thus further
investments in underground cabling might be perceived as unnecessary
by DSOs after a desired level of interruption costs it attained. We also
find that the variability of inefficiency is related to the geographical
location of DSOs. This suggests that the performance differentials
between DSOs are location specific. From the regulatory perspective
this gives information for the regulator to characterize areas of relatively
similar performance and areas of high variance of performance.

From the practical policy perspective, the variability of interruptions
could play more significant role in the regulatory model in future.
Similarly to the quality incentives based on the level of quality, we
could amend the incentive system so that the low variability companies
are rewarded whereas the high variability companies are penalized.
This would be relevant especially in Finland, where high supply security

12 Recall however that the effects of such severe conditions have been mitigated in the
regulatory model by capping the maximum size of penalty from quality incentive
component.

requirements in future anyhow bring the overall level of interruptions
down and more emphasis could be placed on the variability of interrup-
tions as a regulatory channel.

Our second empirical objective was to compare the two alternative
ways to set the quality improvement targets in the context of Finnish
electricity distribution regulation regime. The current Finnish approach
is based on averaging the previous performance of a DSO itself. This can
be problematic for setting long term regulatory goals as poor previous
performance might be translated to inadequate targets. Averaging is
also susceptible of too high variation due to the influence of single
years of high interruptions. Instead we suggest that target quality level
should be set using a best practice benchmarking method. We estimate
a quality frontier that can be interpreted to give the minimum interrup-
tion cost at the given output level. The estimated frontier produces more
stable quality targets for similar sized companies than the current
approach of Finnish Energy Market Authority. The quality frontier also
explicitly accounts for the operating environment of companies.

For practical regulation in Finland, the use of quality frontier would
make the quality regulation coherent with the cost efficiency regulation
which is based on best practices. More importantly using quality
frontier would make regulation more stable and equal. The overall
best performance is likely to change less over time than the individual
performance of a single company and thus the planning of supply
performance would be easier. Since quality frontier produces similar
targets for similar companies, the regulation can be considered to be
more equal also.

As always, some limitations apply. First, we have used a rather lim-
ited set of contextual variables in our study. We have for example
excluded customer density and weather variables from the study.
Thus, no explicit conclusions about the effects of these factors should
be made from our study. However, underground cabling and coordinate
variables in practice already characterize these aspects of the operating
environment. Underground cabling is likely to correlate strongly with
population density. We considered only underground cabling variable
as the regulatory model in Finland includes only this variable.

1 A {ll |~ B
* ,gfﬁ/*‘ﬂ\]
L

In(Average transmitted energy 2005-2010)

In(EMV IC ref)y ———— In(Est. IC ref, model 1) l

Fig. 4. The EMV reference levels against the quality frontier reference levels.
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Fig. 5. The reference level comparison according the underground cabling level.

Second, we model the effects of z-variables as linear functions of
underground cabling and the coordinates. Some nonlinear alterna-
tives and interactions between the variables should be considered
in future research in order to examine whether the effect of under-
ground cabling differ between regions. Here we assume the effect
being the same everywhere.

The present study also provides many fruitful avenues for future
research. In particular, the following four issues are highly relevant
from the Finnish perspective. First, the panel aspect of the available
data could be further utilized. For example, Eskelinen and Kuosmanen
(2013) apply StoNED method in studying the inter-temporal variation
of performance of bank branches. Similar type of an analysis could be
informative in the present context to reveal patterns of interruption
costs over time and how these patterns are related to the investments
on underground cabling. Such information could be helpful for charac-
terizing long term performance targets. Second, it would be interesting
to study the whole incentive mechanism itself in more detail. Here we
studied only how the reference level for quality should be set. As
noted in our description of the Finnish regulatory system, setting the
reference level is only one part of the regulation. How the reference
level is actually implemented as an incentive mechanism in the regula-
tion is another question, which clearly warrants further investigation.
Thirdly, the cost efficiency incentive and the quality incentive are
currently modeled as two independent components of the Finnish
regulatory model. Clearly, cost efficiency and service quality are inti-
mately related, and it might be preferable to model them jointly. A sim-
ple approach is to regulate the total cost that includes the operational
costs, capital costs, and interruption costs. The main challenge in this
approach is to accommodate the costs of fixed inputs and other

nondiscretionary factors that cannot be adjusted by the firm manage-
ment in the short run. It may be preferable to model the costs of fixed
inputs and variable inputs as two separate input factors, imposing the
performance targets to the variable inputs only. This requires a model
of joint production with multiple inputs and multiple outputs. Dealing
with stochastic noise in nonparametric models of joint production
remains a methodological challenge. Fourth, as consequence of the
previous, the comparison of different ways to measure quality and
their consequences on the regulation would warrant a study of its
own. Indeed, it would be important to study if the results of regulation
change remarkably whether quality and other costs are examined sep-
arately as here in this study, jointly within the same model but as sepa-
rate inputs/outputs, or as an aggregate measure such as SOTEX.
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Appendix A. The calculation of the observable interruption costs (EMV, Finnish Energy Market Authority, 2011a)

All prices are in prices of 2005 and they are based on the survey by Silvast et al. (2005). Note that the Finnish EMA uses only the interruptions in
middle voltage (1-70 kW) network as the basis for their calculations. Note that the formula accounts both, the unexpected and planned interrup-
tions. Moreover the formula includes both, the duration and number of outages. For duration, the energy based prices are used (subscript E), whereas
the pricing of number of outages is power based (subscript W). Below the term KA is similar to the well-known SAIDI (System Average Interruption
Duration Index) measure and the term KM to the SAIFI (System Average Interruption Frequency Index) measure. Notice that the report by Silvast
et al. (2005) determined the weight of outage time to be significantly larger than the weight for the number of outages. Thus the interruption
costs reflect more the costs of long outages than costs of multiple (short) outages. This is desirable as companies are not obligated to compensate
very short term interruptions and most of the costs are due to long outages.

KAunexp‘t X hE.unexp + KMunexp.t X hW.unexp+ W, CPI
lCt,l( = KAplﬂnn.t X E.plann + KMplann.t X ‘W plann + X (T_t) (CP[k_l )
AJK; % hac + PIK, % hpye t 2004
ICex Actual imputed disadvantage caused by electricity supply outages to the DSO's customers in year t in the value of money in year k, euros
KAunexp.t Customer's average annual outage time weighted by annual energies, caused by unexpected outages in the 1-70 kV network in the year t, hours
hE unexp Price of disadvantage caused by unexpected outages to the customer in the 2005 value of money, euros/kilowatt-hour
KMunexpt Customer's average annual number of outages weighted by annual energies, caused by unexpected outages in the 1-70 kV network in year t, numbers
hw unexp Price of disadvantage caused by unexpected outages to the customer in the 2005 value of money, euros/kilowatt
KAplann.t Customer's average annual outage time weighted by annual energies, caused by planned outages in the 1-70 kV network in year t, hours
NE plann Price of disadvantage caused by planned outages to the customer in the 2005 value of money, euros/kilowatt-hour
KMpiann.e Customer's average annual number of outages weighted by annual energies, caused by planned outages in the 1-70 kV network in year t, numbers
hw plann Price of disadvantage caused by planned outages to the customer in the 2005 value of money, euros/kilowatt
AJK, Customer's average annual outage number weighted by annual energies, caused by time-delayed autoreclosers in the 1-70 kV network in year t, numbers
ha Price of disadvantage caused by time-delayed autoreclosers to the customer in the 2005 value of money, euros/kilowatt
PJK; Customer's average annual outage number weighted by annual energies, caused by high-speed autoreclosers in the 1-70 kV network in year t, numbers
hp Price of disadvantage caused by high-speed autoreclosers to the customer in the 2005 value of money, euros/kilowatt
W, The amount of energy transmitted to customers from the DSO's electricity network at voltage levels 0.4 kV and 1-70 kV in year t, kilowatt-hours
T, number of hours in year t
CPly — 4 consumer price index in year k — 1
CPlyoo4 consumer price index in year 2004

Appendix B. Online supplementary material

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.eneco.2014.04.016.
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Appendix A: Yearly summary statistics for observed interruption costs (in million €)

Year Mean Std. Min Max Total
Dev.
2005 1.467 3.731 0.016 294 126
2006  1.465 4.281 0.001 28.8 126
2007  1.290 4.085 0.004 323 111
2008 1.306 3.814 0.001 27.5 112
2009  0.982 2.781 0.018 17.9 84.5
2010  2.235 6.483 0.005 449 192

n=86 for each year



Appendix B: Formation of the underground cabling groups
The underground cabling groups are based on the firm-specific average underground cabling
proportion over 2005-2010. The groups are then formed according to the percentile points of the

average cabling proportion. The summary statistics are given in Table B below.

Table B: Summary statistic of average underground cabling proportion by firms.

Mean  Std.  Skewness 1 Median 3 Min Max
n=86 dev. quartile quartile
Mean U.cabling

22.56  27.60 1.25 2.77 8.07 38.18 0.17 100.00
2005-2010

The groups are formed such that the firm belongs in one following groups: <= 1st quartile (low cabling
proportion), between 1st quartile and median (medium-low), between median and 3rd quartile
(medium), above 3rd quartile (high). The limits of the percentile points are roughly the same as
presented in Table 1 since generally the cabling proportion does not change much over the years within
one company (i.e. the figures in Table 1 are over all observations, not summary statistics over firm-

specific averages as here).



Appendix C: Estimation results excluding 2 industrial networks

The sample size used in the estimations of this is 504 as two firms were removed from the sample.
Summary statistics of reference values when two outliers are removed are shown in the Table Cl
below. Again we pick the value from 2010 as the reference value when using quality frontier. Thus

number of observations is 84 in the table below.

Table C1: Summary statistic of the reference values (n=84), millions of €

Variable Mean Std. Min Max
Dev.
EMV IC ref 1.50 4.08 0.02 25.80

Est. IC ref, (1) 1.14 2.16 0.04 13.40
Est. IC ref, (2) 2.17 4.32 0.07 27.90

On average the reference values have increased. This is not surprising as the removed networks had
large underground cabling proportions and consequently rather low interruption costs. Compared to
the earlier results, on average the reference levels from Model 2 have changed the most. It is likely that
one of the removed firms was a frontier firm in the original data. After its removal, a firm with a
similar location and cabling level but completely different output profile (and bigger interruptions) is
attached with a frontier status. Recall that in Model 1 location in terms of coordinates is excluded and
thus frontier is not adjusted with location, only with the level of underground cabling. Although the
average level of reference values is somewhat sensitive to the chosen sample/variables, the main result
about the stability of reference values between firms is kept intact. This is illustrated in Figure C where
the reference values from the quality frontier and EMV approach have been plotted. We see again that
the reference values produced by the quality frontier are more stable for companies of similar size than

the values from EMA average.
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Figure C: The EMV reference levels against the quality frontier reference levels

In(EMV IC ref) ———— In(Est. IC ref, model 1)‘ ‘ In(EMV IC refy ———— In(Est. IC ref, model 2)

Lastly we examine how the effects of underground cabling change with the removal of the two firms.
Both sets of z-variables have been used (Model 1 & Model 2). The conclusions regarding the level
effects of underground cabling remains the same than previously. The level of interruptions is
significantly reduced by the underground cabling. Only notable change is in coordinate variables and

their significance. The year dummies show the same previously observed pattern.

Table C2: Level effects on the level of interruption costs

StoNED 2" stage inefficiency

Model 1 Model 2 Model 1 Model 2

U. cabling -0.028%** -0.025%** -0.023%** -0.024%***
(0.001) (0.001) (0.003) (0.002)

Latitude -0.038*** 0.047**
(0.014) (0.023)
Longitude 0.069%%** -0.004
(0.014) (0.024)
2006 -0.184%* -0.182%%* -0.176 -0.185

(0.090) (0.087) (0.130) (0.119)



2007 -0.329%** -0.330%** -0.332%* -0.350%**

(0.101) (0.098) (0.114) (0.111)
2008 -0.257*** -0.262%** -0.249** -0.281%*
(0.098) (0.097) (0.113) (0.109)
2009 -0.584*** -0.589%** -0.591%** -0.611%**
(0.104) (0.101) (0.109) (0.106)
2010 -0.126 -0.130 -0.182 -0.197
(0.125) (0.119) (0.104) (0.101)
Intercept 0.626*** 0.595 0.070 -3.260**
(0.072) (0.889) (0.123) (1.476)

Standard errors in parenthesis, heteroscedasticity robust standard errors for StoNED
HxE 1% significance

*K 5% significance

Lastly we check the robustness of the variance effects. Analogous to Tables 4 and 5 (in the paper),
Tables C3 and C4 present the variance effects in the case of overall error and the decomposed effects.
Considering Figure 2 it is not surprising that the significance of the variance effects largely disappears
when the 100% cabling company is removed from the sample. It is however notable that the effect is
practically zero, not negative and significant as we would expect. This implies that underground
cabling does not significantly decrease the variability of interruption costs. The effects on overall error
variance do not however yet reveal the effects on the variances of noise and inefficiency. In Table C4
the underground cabling effects on both variance components are insignificant. The coordinate
variables are still significant in explaining the inefficiency differentials indicating rather robust location

depended performance variation between DSOs.



Table C3: Variance effects on the overall error

variance effects;

StoNED

Model 1 Model 2

U. cabling -0.001 0.000
(0.002) (0.002)

Latitude 0.008
(0.018)

Longitude 0.027)
(0.019

Intercept 0.502%*%* -0.749
(0.057) (1.179)

Standard errors in parenthesis
ok 1% significance

** 5% significance



Table C4: Decomposed variance effects

Model 1 Model 2
9, v, 0, v,

inefficiency noise inefficiency ~ Noise

effects effects effects effects

U. cabling -0.029 0.003 -0.008 0.004
(0.026) (0.003) (0.010) (0.004)

Latitude -0.682%**  (.111**
(0.258) (0.056)

Longitude 0.443%*%* -0.044
(0.156) (0.068)
Intercept -0.610%*  -1.128***  29.858%*  -7.115%*

(0.266) (0.170)  (14.032)  (3.000)

Standard errors in parenthesis
*#%k 1% significance

ok 5% significance



Productivity analysis is interested in
comparing how much more productive for
example a firm is than another. Comparison
of units can, however, be unfair if the firms
operate in highly different environments.
For example, a firm might operate in a highly
risky environment and thus may look less
productive, not necessarily because of any
inefficiency, but because of the
environment. This dissertation studies what
implications a risky operating environment
of firms has for productivity and efficiency
analysis. The connections between risk and
inefficiency are explored with a conceptual
discussion and empirical applications. The
explicit discussion of these connections is
the novel feature of the dissertation. The
empirical applications illustrate how risk
and operating environment can be
interpreted and accounted for in the
analysis of aggregate productivity and
corruption and the cost-efficiency and
quality of service assessments of the Finnish
electricity distribution companies.
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