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Despite the rapid growth in the number of robots in the world, the number of service
robots is still very low. The major reasons for this include the robots’ lack of world
knowledge, sensitivity, safety and flexibility. This thesis experimentally addresses
the last three of these issues (sensitivity, safety and flexibility) with reference to
advanced, industrial level robotic arms provided with integrated torque sensors at
each joint.
The aims of this work are twofold. The first one, at a more technical level, is
the implementation of a real-time software infrastructure, based on Orocos and
ROS, for a general, robust, flexible and modular robot control framework with
a relatively high level of abstraction. The second aim is to utilize this software
framework for Programming by Demonstration with a class of algorithms known
as Dynamic Movement Primitives. Using kinesthetic teaching with one or multiple
demonstrations, the robot performs simple sequential in-contact tasks (e. g. writing
on a notepad a previously demonstrated sequence of characters). The system is
not only able to imitate and generalize from demonstrated trajectories, but also
from their associated force profiles during the execution of in-contact tasks. The
framework is further extended to successfully recover from perturbations during
the execution and to cope with dynamic environments.

Keywords: Programming by Demonstration, Dynamic Movement Primitives, In-
contact tasks
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1 Introduction
Robots can hardly be found in any household. There may be lawn mowing or vacuum
cleaning robots. However, they are very limited and specific both in their functionality
and interaction with humans. Two reasons for that are the demanding challenges
of human-robot interaction (HRI) and the complexity of household tasks. For these
complex tasks, robots typically miss some important attributes: world knowledge,
sensitivity (capability to sense environmental stimuli), safety and flexibility. This
thesis work tries to improve the situation for the last three of these attributes.

Programming by Demonstration (PbD), also known as imitation learning, is a
broad field that tries to cope with problems at a similar level of complexity as the
mentioned household tasks [1]. A human teacher is directly integrated in the robot
learning process. The teacher demonstrates a skill to the robot, which receives the
information via various sensors and sensor modalities. An algorithm tries to extract
an appropriate representation of the demonstration, which must contain the key
features of the experienced skill. Crucially, such a representation must be capable
of generalization, i. e. performing adequately in the case of perturbations or changes
in the environment. The aim of this thesis is to teach (by demonstration) robots
human-level skills with the necessary sensitivity for in-contact tasks [2].

In-contact tasks Usually in-contact tasks (in the field of robotics) are understood
as tasks, which require a contact between the robot and the environment. The object
of contact is typically static, but can also be dynamic, animated or not (for example
a human patient during a surgery). In-contact tasks therefore require force exertion
between the two objects being in contact. These forces must be controlled to both
fulfill the tasks and not to damage anything or harm anyone. In this thesis, the
definition of in-contact tasks is extended to undesired contacts. During the execution
of a task, non desired contact is possible in a dynamic environment (for example when
a person steps into the work area). These contacts also need appropriate handling,
for the sake of the proper task execution and safety. An example for an in-contact
task using PbD is given in Figure 1. It shows the setup of the experiment that will
be described in Section 5.4 and 5.5, in which the instructor directly demonstrates
the robot to write on a notepad.

In-contact tasks have been studied for over 30 years [3]. Especially the dynamic
interaction forces of in-contact tasks have been investigated in detail (e. g. [4]). In-
contact tasks were have been in the context of grasping [5] or for strategies to reach
a certain contact configuration [6].

More relevant to the contents of this thesis are the studies about impedance
controllers. A breakthrough for in-contact tasks may have been [7] – “Stiffness isn’t
everything”. Before this study, the target of most robot actuator designs was the
maximization of the stiffness. However, [7] demonstrates the advantages of a compli-
ant design for in-contact tasks. This is supported by [8], in which the importance of
impedance control for in-contact tasks for humans is highlighted. In [8], it is shown
how humans adapt the stiffness of their muscolo-skeletal-system depending on the
requirements of the task. The stiffness is dynamically changed right before starting



the motion for a task. These insights are for example used in [9]. There, the dynamic
stiffness of a muscle is imitated using a pneumatic actuator. The stiffness is controlled
by the air pressure.

Despite all of these studies, literature about learning impedance and contact
forces is very limited. In [10], the optimal impedance is learned for a number of
practical experiments, such as door-opening. However, the impedance is not learned
from demonstrations, but using reinforcement learning (RL) (see Section 2.6). The
paper that is more closely related to this thesis is [11]. Both force and stiffness are
learned from kinesthetic teaching (see Section 2.1). The success of their methods are
shown in an ironing and an door-opening experiment.

Objectives This work aims for three main objectives. First, by comparing current
PbD approaches, the one most appropriate for the context of this thesis is searched.
Second, a software framework should be established, in which this PbD approach is
implemented in a flexible manner. Third, the algorithms on the chosen PbD approach
should be expanded to make them applicable for in-contact tasks, which means that
both trajectories and force profiles should be imitated. The approach should be
applied to an existing robotic arm equipped with torque sensors in each joint. Thus
the system is static (not mobile), but works in a dynamic environment with users.
The safety of the users is very important. The system should proof its capabilities in
an actual robotics experimental scenario, in which the robot learns to write letters.

Structure The thesis is organized as follows. In Chapter 2, more information
about PbD and its alternatives is offered. In this chapter, also the different learning
approaches are described and evaluated in detail. The following Chapter 3 describes
the chosen Dynamic Movement Primitives (DMP) approach in detail. First, the
existing basics about this framework are given (Section 3.1). Then, these principles
are extended by novel algorithms for in-contact tasks (Section 3.2). The infrastructure
used for the project is presented in Section 4. There, also the newly developed
software architecture is introduced (Chapter 4). Chapter 5 experimentally evaluates
the developed DMP framework. Finally, an overall conclusion is given in Section 6.

Figure 1: Setup of the writing experiments. In the left image, the trajectory is
recorded using kinesthetic teaching (see Section 2.1). The right image shows the
(autonomous) execution phase with the notepad directly positioned on the table.
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2 Programming by Demonstration
This chapter explores the details of PbD. First, the different teaching methods are
introduced. This is followed by an extensive review of PbD learning approaches.
Finally, alternatives to PbD are given.

2.1 Teaching methods
Imitation learning itself can technically be done using three different methods, each
with different features [1, 12]. The first is teleoperation, in which the user has some
kind of remote controller or haptic device and can control the robot from a distant
position. The second method is kinesthetic teaching; in this case, the user directly
moves the robot by grabbing it. This approach can be more intuitive for the operator,
who might feel more natural in the execution of the demonstration and get a better
impression about the robots limitations. The third is observational learning, that
uses cameras or other positioning/motion capture systems; the movement of a user is
recorded and transferred to the robot. In this case, the different embodiments must
be considered, an issue that is also known as the correspondence problem [1].

Kinesthetic teaching is gaining importance due to improved hardware of state-
of-the-art robots [2]. In order to manually move a robot, its motors must be either
backdrivable or actively controlled [11]. While the first method has been existing for
a longer time, it is also more limited. Gear transmission cause friction, which as well
as the inertia of bigger robots require higher forces, thus restraining the teacher in
the execution of natural movements. Actively controlled robots are often much more
sophisticated and include force/torque (F/T)-sensors in each joint or for all Cartesian
axes. In combination with advanced controllers, these systems allow a very easy and
natural steering. Most recent developments of light-weight robots (LWRs), such as
the KUKA LWR [13], support gravity compensation and dynamically changeable
compliance.

Another advantage of kinesthetic teaching is the possible recording of force profiles.
For this, an additional F/T-sensor is mounted at the tip or wrist of the manipulator.
However, also haptic devices have been used in teleoperation for force feedback [11].
By integrating these measures, not only positional/trajectory data are collected from
the instructor, but also force and torque profiles when being in-contact with objects.
This information constitutes a crucial component of the dynamics of in-contact
skills [2].

2.2 Symbolic learning
Learning algorithms in research usually either take place on the symbolic or trajectory
level. While the latter is explained in detail in the next section (2.3), the former is
only outlined briefly here. Symbolic learning is much about reasoning. Questions
being answered are more of the form “what” and “why” to execute a certain action,
instead of “how” to do it.
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In [14], the typical building blocks of PbD at symbolic level are presented (see
Figure 2). A demonstrated task must first be segmented, i. e. discrete actions have
to be identified. A typical example is setting up a dinner table, which (arguably)
consists of several pick-and-place actions. After that, the actions are modeled as
states, taking into account several slightly varying demonstrations. An important
aspect of this kind of research is the following step of task generalization, which tries
to derive a temporal and hierarchical order of the states. Referring to the previous
example, the saucer must be placed before the cup, but these are independent from
the cutlery. Having planned the task, the robot may execute the task on its own,
though the scope of this execution phase is still very limited and not handled on the
symbolic level. Another big challenge is the perception side, which is both needed
for the learning and the planning/execution part.

Figure 2: Building blocks of a PbD approach on the symbolic level. (Source: [14])

A review over the issues of perception and recognition is given in [15]. Mostly
video cameras are used in combination with motion capture and tracking algorithms.
Recognition is divided in four approaches in [15]: Scene-based (only the position of
objects is followed without knowing their identity), full-body-based (humans and
their positions are identified), body-parts-based (human limb actions are considered)
and action-primitives-based (actions are split into their primitives and interpreted).

On the one hand, this approach has the advantage of being abstract and high-
level, making it possible to teach whole tasks. On the other hand, this approach has
a drawback: Many things have to be predefined (for example possible actions) and
the robot has to be provided with a broad knowledge about the world [1].

2.3 Trajectory learning
Learning on the trajectory level is currently more relevant for practical implemen-
tations compared to symbolic learning. Trajectory level gives rise to the question,
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how to perform a given task. The used methods have evolved from strict trajectory
encoding to representations using statistical models or dynamical systems.

2.3.1 Traditional encoding

Traditionally trajectories are encoded using splines or Bézier curves [16, 17]. Thus the
encoding is done explicitly, the generated trajectory is defined from a fixed starting
point to a fixed endpoint.

An example for traditional encoding is given in [16]. Triangulation with two
cameras is used to record trajectories from human instructors. Different models are
derived to calculate the poses. The poses include uncertainty by using Gaussian dis-
tributions, whose variances are considered when generating vector spline trajectories.
The trajectories have the constraints of being smooth and as close to the presented
trajectory as possible, according to a given metric.

In [17], two more feature were introduced. First, a significant point extraction
algorithm was developed, which chooses less points than common corner detection
algorithms. Second, their generated piecewise cubic Bézier curves (PCBC) are online
adaptable to obstacles. Figure 3 shows schematically the steps of this approach. The
success of their approach is demonstrated with a 2D mobile robot. This robot can be
steered using a touchpad. During reproduction in a cluttered environment, obstacles
are avoided automatically.

Figure 3: After extracting significant points from a given route, a PCBC is extracted
and can be modified online. (Source: [17])

An approach to learn from several demonstrations is shown in [18]. The shown
examples are first clustered according to their distance to each other. Next Hid-
den Markov Models (HMMs) are used to derive Non-Uniform Rational B-Splines
(NURBS). An example is shown in Figure 4.

2.3.2 Statistical models and dynamic systems

Besides this traditional encoding approach, a number of various recent methods exist.
They can hardly be categorized as each has their own features and disadvantages
(see Section 2.4 for a comparison). These different approaches make use of statistical
models or dynamical systems (or both) and can often be described as regression
methods.

Regression is an important part of statistics and a number of different regression
methods have been adapted to fit the needs of PbD. Informally speaking, regression
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Figure 4: Similar demonstrated trajectories are clustered and converted to curves
(bold). (Source: [18])

is the technique to generate a sought output (such as a position or velocity) for a
given input (such as the time or the current position) based on a finite set of data.
For PbD, regression is used for a plausible trajectory generation based on several
demonstrations.

Locally weighted learning

Locally weighted learning (LWL) is a family of local regression methods, which are
usually linear. “Local” here refers to the fact, that for the searched output, only data
points, which are close (according to some metric) to the given input, are considered.
For regression, only these points are weighted depending on their distance [19], see
Figure 5. The first LWL approaches, named Locally weighted regression (LWR),
were fully memory-based, i. e. all data points were kept and used for regression
calculations. A LWL implementation is characterized for example by its distance
functions, weighting functions, smoothing parameters and more; a good overview is
given in [20]. Figure 6 exemplifies outlier detection/removal, which can be another
feature.

LWL methods have been expanded to be incremental (thus not memory-based)
and computationally efficient for high dimensional spaces [21]. Following the approach
named Locally Weighted Projection Regression (LWPR), LWL is thus able to learn
online, even in the case of big datasets. Four approaches are experimentally compared
in [21], and the LWPR method introduced there proved fast and accurate.

Gaussian process regression

The theory behind Gaussian process regression (GPR) is comprehensively de-
scribed in [22]. A Gaussian process generalizes Gaussian distributions by defining
the distribution over functions, that is a mean function and a covariance function.
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Figure 5: LWL uses only the points in the region of interest to perform local regression.
(Source: [19])

Figure 6: Two examples of LWR on a 1D data set: The right one uses outlier removal,
the left one is not. (Source: [20])

The mean and covariance functions are determined based on the input datapoints.
An example is shown in Figure 7.

Figure 7: GPR visualized: From a finite set of data points (crosses), the continuous
mean (solid line) and variance (gray area shows 90% confidence interval) are derived.
(Source: [22])

The largest drawback of plain GPR is the high computational complexity, as it
lacks online learning capabilities. Thus, GPR becomes very time consuming for an
increasing number of datapoints. This is due to the fact, that GPR has a computa-
tional complexity of O(n3) with n being the number of data points [22]. A reduction
of the computational complexity was therefore achieved in [23] by introducing some
approximation inspired from the local nature of LWL. Their resulting Local Gaus-
sian process (LGP) models proves more computational efficient (O(n3/M) with M
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being the number of subspaces) while maintaining the same levels of accuracy. The
approach assigns new data points to local models. These are extracted by a distance
metric using a Gaussian kernel.

A recent extension using sparse approximation was presented in [24]. Sparse
approximations are another technique to speed up computations. Instead of looking
at local sub-data as in the previous approach, only data points that are considered
most salient according to a certain metric are kept, thus reducing the number of
data points. In [24], Leave One Out Cross Validation (LOOCV) is used to determine
the representational value of new data. In combination with local regression, this
constitutes Localized Sparse Online Gaussian Process (LSOGP).

Gaussian mixture regression

Gaussian mixture regression (GMR) consists of several (partly optional) steps,
which are shown in Figure 8 and are subsequently explained. In order to obtain
values using GMR, first a probabilistic model is needed. Usually, either the HMM
or the Gaussian mixture model (GMM) are used, which share many properties. For
a comparison of the two (based on temporal alignment), see [25]. Both GMM and
HMM are described in the present section. These models usually operate in the task
space, that typically consits of the (relative) Cartesian position and velocity. The
raw measurements, once projected in the task space, form the data set which consists
of datapoints.

Dataset

DTW
(temporal 
alignment)

HMM

GMM

Optimization
(optional) GMR

Measurements

Task space mapping

Input query
(e. g. position)

Output
(e. g. velocity)

EM, BIC

EM, BIC

Figure 8: Building blocks of GMR: After a model is generated (GMM or HMM) and
optimized, GMR is used to retrieve commands.

As the GMM also models time, temporal normalization among the available
demonstrations is needed. This is due to the possible variation in the execution
time of different demonstrations. The use of raw data would lead to an inaccurate
model with high variances, see Figure 9 (a). One elegant way to achieve temporal
alignment is the Dynamic Time Warping (DTW) algorithm, which is described
in [26]. The basic idea is to align all data samples of all trajectories to achieve a pair-
wise minimal distance to each other, according to some distance metric. Dynamic
programming (DP) can be used to generate the optimal solution, which is shown in
Figure 9 (b).
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Figure 9: (a) Trajectories and resulting Gaussian model (green ovals) before (left)
and after DTW (right)
(b): The white lines shows the result of DP to find the shortest path between two
demonstrations; the colored center visualizes the distance matrix between the two.
(Source: [26])

A GMM consists of K Gaussians of dimensionality D, which model the given
data set [25]. D is the number of dimensions of the datapoints plus one, as also
time is explicitly considered. Each Gaussian is described by a mean vector and a
covariance matrix. The K Gaussians can be imagined as several multidimensional
“bubbles” forming a sequence along the trajectory (see Figure 10). Each Gaussian is
also characterized by a prior, which represents an initial likelihood without taking
into consideration any input data. Theory and algorithms for the computation of
prior, mean and covariance in GMM have been described in [19]. An advantage of
Gaussian mixtures is that input and output do not need to be specified. Any subset
of dimensions can be used as input, the remaining dimensions represent the output.
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Figure 10: Gaussians model the data density. For a given input, the Gaussians are
mixed according to their expectation. (Source: [19])

Similarly, HMM also consists of a mixture of Gaussians, called states. In addition
to prior, mean and covariance, HMMs also consist of a transition matrix, describing
the pair-wise transition probability to switch from one state to another. In HMMs,
time is not an explicit component of task space and model.

In order for the Gaussians to effectively model the data set, some kind of training
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algorithm is needed. The Expectation-Maximization (EM) algorithm is often used [26].
The Baum-Welch algorithm is a possible alternative [27]. EM iteratively adapts the
parameters of all Gaussians to maximize their probability of modelling all datapoints.

Both GMM and HMM require the choice of the number of Gaussians to be used.
Many different approaches for this have been described in literature. However, the
approach being used most often is the Bayesian Information Criterion (BIC) [25, 26].
First the model is optimized for a various number of Gaussians. BIC then weights
the quality of the model (in terms of probability) against the number of Gaussians.
The model with the lowest BIC number is used, which yields the best compromise
between accuracy and complexity. In order to avoid the computation of the exact
model for many different K of Gaussians, [26] approximates the models without EM.
This approach significantly reduces the computational overhead, while achieving
comparable results (see Figure 11).
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Figure 11: Calculation of the BIC value for several numbers of Gaussian, the blue
line uses EM, the red line does not. (Source: [26])

Once the model is available, GMR can finally be used to obtain the desired outputs
for a given input. The Gaussians that constitute the model can be interpreted as
attractors, which offer a compact representation of the movement. For GMMs, the
input is time [25, 26], whereas for HMMs it is the current task space configuration [27].
The output of the two models describes the task space vector and the task space
target position and velocity, respectively. The corresponding covariance matrices are
also provided. The output is calculated by linear combination of the conditional
expectation of the input for each Gaussian component. For GMM, the weighting of
each Gaussian is based only on their probability. For HMM, it is expanded by the
transition probability based on the previous state.

A crucial situation can occur when the initial position is too far away from the
demonstrated starting positions: the trajectory may not follow the intended one,
see red line in Figure 12 (a). In [27], this problem is addressed by introducing a
spring-damper-system, which forces the trajectory to converge to the desired one.
The disadvantage is that this may lead to oscillations and a distorted dynamic, when
the gains of the spring-damper-system are not carefully chosen. The improvement
can be seen in Figure 12 (b).

The use of a similarity criterion in an additional optimization step also allows
a closer reproduction of the demonstrations. This optimization step is introduced
in [26] and follows the EM step. The similarity criterion is used for a gradient-based
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Figure 12: The figure shows the influence of a spring-damper-system to a 2D GMR.
The black lines are the demonstrations, the blue and red lines are outputs with differ-
ent starting positions. (b) uses a spring-damper-system, (a) does not. (Source: [27])

optimization, as described in [28]. Further examples which can be included in the
cost function are distances to obstacles or joint limit proximities.

Stable Estimator of Dynamical Systems

Stable Estimator of Dynamical Systems (SEDS) is a novel learning method pro-
ducing a globally stable system [29, 30]. SEDS also relies on Gaussian mixtures
for the modeling part and generates motions that closely imitate the demonstra-
tion. However, its focus lies on ensuring global asymptotic stability at the target, in
contrast to the other approaches described earlier.

Global stability is considered here in the terms of motion generation in the task
space. In other words, a motion generating function is defined as globally asymptoti-
cally stable, if motions starting from any point in the task space converge asymptot-
ically to a given goal vector. Conversely, local asymptotic stability is ensured when
the motion starting from a subspace of the task space converges asymptotically [29].

The model of SEDS consists again of a mixture of Gaussians. Only position
and velocity is taken into account (as for HMM), but no transition matrix exists.
Following a formal proof, sufficient criteria for global stability are identified and the
model’s parameters (prior, mean, covariance) can be accordingly constrained [29, 30].
Finally, SEDS determines the values for the constrained parameters by solving an
optimization problem either using log-likelihood or mean square error (MSE). The
above mentioned BIC is used to choose the optimal number of Gaussians. The
parameters of SEDS (mean, covariance) are visualized in Figure 13.

Dynamic Movement Primitives

Similar to GMR, DMP is more a framework or design principle, rather than
a set of defined equations and steps (see Section 3.1 for implementation details).
The approach consists of three main parts, a canonical system, a nonlinear function
approximator and a transformation system [31, 32, 33]. These basic components
are briefly described in the following paragraphs and shown in Figure 14. A more
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Figure 13: GMM for a 1D position input ξ and 1D velocity output ξ̇. The thick solid
line describes the function f̂ determining a velocity depending on the positional input.
In the upper part, the influence of the three Gaussians on f̂ is shown, depending
on ξ. (Source: [30])

thorough presentation of DMPs will follow in Chapter 3. DMP allow both discrete
(point-to-point) and rhythmic (limit cycle or cyclic) motions.

Figure 14: Building blocks of DMP (Source: [32])

The transformation system is a stable dynamical system that converts an input
force and goal position into output commands such as position, velocity and accelera-
tion. It is typically implemented as a critically damped spring-damper-system (which
can be seen as a point attractor) and a forcing term. The output is then typically fed
into a low-level controller that generates the motor commands. Additional coupling
terms allow online modulation of the spatial trajectory.

The nonlinear function approximator is used to modify the attractor landscape
by exciting the transformation system with a force term. This is done to achieve
the desired trajectories rather than plain asymptotic convergence. The input of
this function is the phase variable. Any function approximator can be utilized but
typically a normalized linear combination of distribution functions (Gaussians, von
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Mises) is used. This combination of basis functions is modulated by the phase variable
and by an amplitude. The phase variable, monotonically decreasing to zero, causes
the influence of the force term to vanish to guarantee stability. The amplitude serves
as scaling term, allowing the trajectory to be spatially stretched or shrinked while
ensuring the invariance properties of the system.

The third part of DMP is the canonical system, which is a substitute for time. In
its simplest form, it is a first-order linear system generating a phase variable. This
phase variable decreases exponentially from an arbitrary start value to zero. For
rhythmic motions, a phase oscillator can be used, consisting of amplitude and phase
signal. In both cases, a coupling term can be introduced, which allows for online
modulation in the temporal space.

Usually, the trajectory has a dimension greater than one. To incorporate several
degrees of freedom (DoF) (or dimensions), each dimension retrieves its own trans-
formation system and forcing term, while all dimension share the same canonical
system. By this, the canonical system couples the different DoF and can be seen as
central clock. [33] highlights similarities with biological pattern generators.

One advantage of DMP is the number of options in learning the parameters for
the function approximator to obtain the desired trajectory. Goal, amplitude and
time scaling can easily be derived from the shown demonstrations. The remaining
parameters, e. g. the weighting parameters for the basis functions, can be calculated
by LWR [33], as shown in Section 3.1.2. Thus all features of LWR are inherited, such
as its computational efficiency. More importantly, incremental learning is possible.
In [32], it is shown how RL (see Section 2.6) can be used to optimize the appropriate
parameters. Also other optimization techniques can be incorporated to minimize
jerk and torque change or optimize according to other criteria [31].

In [11, 34], the DMP approach is adapted to deploy some remarkable features.
The function approximator and the transformation system are replaced by a mixture
of PD-controllers, thus all dimensions share the same controller. This allows taking
into account correlation between the dimensions. In addition, the variance of the
demonstrations can be used to employ dynamical stiffness, i. e. forcing the robot
to be compliant in positions where the variance was high and being stiff where the
demonstrations showed less variance.

2.4 Comparison of learning approaches
Several different learning approaches have been presented in the previous two sections,
each with different features and drawbacks. The requirements are manifold and thus
are the criteria for evaluation.

The applicability of high-level symbolic approaches is still quite limited; much
research in this field is still basic research. These methods are not yet mature. Nev-
ertheless they are promising to develop as a high-level controller for the trajectory
level approaches in the future.

On the trajectory level itself, the traditional encoding with splines or similar
alternatives is limited. Although sophisticated algorithms are used for the model
generation, the model itself currently lacks flexibility. Only positions are encoded
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(over time), but no other variable from the task space. Spline encoding may still be
relevant for simple tasks in industries, such as welding. Yet in research, this approach
has greatly lost its relevance.

Methods using statistical models and dynamical systems are in general much
more flexible. Thus this comparison hereon focuses on these approaches. In order
to compare them, a qualitative and quantitative evaluation is given in the following
subsections.

2.4.1 Qualitative evaluation

The capabilities of an approach can often be assessed by considering what has been
or can be accomplished with it. This provides a first impression, which is then refined
in the quantitative evaluation.

General aspects

First the approaches shall be generally evaluated according to their handling of
time, online learning capabilities and global stability.

Time handling Implementation and handling of time varies throughout the
different methods. Often, explicit time dependency is not desirable. For LWL and
GPR, time can just be an additional dimension, but is often not modeled, as it has
no special meaning [21, 24]. For GMR with GMM, DTW has to be performed, and
time is used explicitly as input [25]. This is problematic in case of perturbations. For
GMR with HMM, time is just used for the generation of the model states [27]. After
that, commands are queried by the current position. The situation is very similar
for SEDS [30]. DMP follows another approach [33]. Different demonstrations have
to be aligned, but after that time can be discarded. The length of an execution can
be set arbitrarily. Time remains as an implicit input, but methods to cope with
perturbations have been developed [33].

Online learning In order to refine learned models by new demonstrations, it is
desired that the additional information is quickly incorporated without the overhead
of recalculations based on all data. This is called online learning. For LWL and
GPR there exist variations that can do so, namely LWPR [21] and LSOGP [24],
respectively. Online learning is not supported by GMR and SEDS [27, 30]. For DMP,
online learning capability depends on the function approximator, but is generally
possible, as described in [33].

Global stability Global stability guarantees that the movement asymptotically
converges to the goal from any position in the task space (see Section 2.3.2). This is
not achieved by most methods. In [29] and [30] stability is investigated for different
approaches. As can be seen in Figure 15, non-stable approaches create unintended
trajectories for points outside of the demonstrated region. The result are either
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spurious attractors or diverging trajectories. LWL, GPR and GMR are neither locally
nor globally stable. Stability is only guaranteed by SEDS [29, 30] and DMP [33].

  Target Demonstrations Reproductions Spurious Attractors

ξ 2

(a) GMR (b) LWPR

ξ1

ξ 2

(c) GPR

ξ1

(d) SEDS

Figure 15: Depending on the stability of an approach, starting from arbitrary points
may lead to diverging trajectories or spurious attractors. (Source: [29])

Specific features

In this section the most salient features of each approach are highlighted and
experiments documented in robotics literature are presented.

Locally weighted learning In the field of PbD, not many examples of LWL
can be found, though it is widely used in other fields. [21] describes shortly how their
7DoF robotic arm learned to balance a pole on its fingertip from human demon-
strations. Yet the main application of LWL in robotics is the learning of inverse
kinematics [19, 21], also for torque control [23]. In all cases, the used LWPR method
could be used for controlling in real-time (∼1ms cycle time). In general, LWR has a
very broad band of applications in several research fields, such as economics, analytical
chemistry and many more [20]. Additionally, LWR and its latest incarnation LWPR
is used in comparison with other statistical and dynamical approaches for the repro-
duction of human-like motion data [27] or handwriting motions [29, 30]. For these
purposes, LWPR has to be equipped with a controller, in [27] a mass-spring-damper
was used.

Gaussian process regression The situation for GPR is similar to that of
LWL, though these approaches were developed much more recently. To get competi-
tive results with GPR, the improved variations LGP and LSOGP have to be used,
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as they are much less computational demanding. In [23] the inverse kinematics of
a 7DoF robotic arm are quickly and accurately learned. In the same paper, it was
shown that LGP can also be used for real-time torque control. LSOGP is used in [24]
to demonstrate its speed and accuracy for two different inverse kinematics learning
examples. Handwriting motion experiments have also been evaluated with GPR,
unfortunately only with the basic variant and no local optimization [29, 30].

Gaussian mixture regression In contrast to the previous methods, GMR
has been often used for the purpose of PbD. In [25] three different experiments with
a human-like robot are shown. In each experiment, such as moving a chess figure,
the task is demonstrated several times by the user, who manually moves the robot.
The robot can generalize the task for different initial object positions. The humanoid
robot ASIMO is used in [26], where the robot imitates pouring a liquid from one glass
into another. A stereo vision system is used for the learning phase in the task space.
Optimization is used for an accurate reproduction without self-collisions, which are a
result of the correspondence problem. Even more sophisticated results were achieved
with the HMM in [27]. Due to the transition matrix, it is possible to have cyclic
crossing movements (see Figure 16), where the target velocity is not only dependent
on the current position but also on the previous state. Self-crossing motions are not
possible when only considering the position, as the trajectory contains some positions
(the crossing points) more than once. Another feature of this matrix is the possibility
to encode several motions in one HMM. In [27], two different table tennis strokes
(top spin and drive) were demonstrated several times in arbitrary order. The two
different motions were automatically seperated, as shown in Figure 17. The third
experiment in [27] demonstrates how trajectories can be learned that are constrained
by multiple landmarks.
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Figure 16: Cyclic motion with crossing point: (a) shows the demonstrations (black
lines) and HMM states (red), (b) displays the reproduction attempts. (Source: [27])

Stable Estimator of Dynamical Systems As already mentioned, SEDS
focuses on global stability. Next to the ensured convergence to the goal position, this
also has some interesting “side effects” [29, 30]. First of all, demonstrated trajectories
are followed very closely, as can be seen in Figure 18. Second, one SEDS model can
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Figure 17: Learning of different movements simultaneously: (a) shows the demonstra-
tions and the learned HMM states, (b) shows the reproductions. In (c) all possible
state transitions are shown; those with a likelihood greater than 0.1 are black, as
well as all likely initial states (shown with arrows). (Source: [27])

contain different movements depending on the start position, as shown in Figure 19. In
addition, with SEDS, second-order dynamics can be learned to allow self-intersecting
trajectories as shown for GMR. Online adaptivity in case of moving goals is also
possible.

Figure 18: With SEDS, the handwriting demonstration are followed very accurately.
(Source: [30])
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Figure 19: Different types of movements can be incorporated in one SEDS model.
(Source: [29])
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Dynamic Movement Primitives With DMP, similar advanced experiments
can be performed. DMP is as well as the two previous methods able to follow self-
crossing trajectories by extending the task-space with second-order dynamics [31]. By
changing only one parameter, a learned trajectory can be amplified, sped up/slowed
down or moved in space, respectively [31], as shown in Figure 20. Due to the fact
that similar movements share similar weighting parameters, it is possible to perform
movement segmentation and recognition [32, 33].
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Figure 20: A learned drumming motion (A) is modified in B–C between 3 s and 7 s.
In B, the amplitude is doubled, in C the time parameter is halfed. In D, the goal is
increased by 1. (Source: [31])

As already mentioned, coupling terms can be introduced in the different parts of
DMP to allow further extensions [32, 33]. Spatial coupling can be utilized for obstacle
avoidance using force field approaches from Potential Field Methods (PFMs), see
Figure 21. Temporal coupling can be used for rhythmical canonical systems to phase
lock with an external oscillator or even to adjust to its frequency. An application is the
adaption to the music beat for a drumming motion. When incorporating both spatial
and temporal coupling, an elegant way to reject perturbation can be implemented.
For example, when a robotic arm, following a given trajectory, is stopped for a certain
time, these properties can be used to avoid high forces and speeds as the arm catches
up with the expected trajectory.

With the extended DMP approach in [11, 34], it is possible to deploy what [32]
describes as associative skill memories (ASM). Next to spatial information, also the
force profile can be tracked in the learning process. By this, the robot is able to
perform in-contact tasks such as ironing and door-opening.

2.4.2 Quantitative evaluation

The aforementioned approaches have been evaluated quantitatively in many papers.
However, no publication currently covers all of these approaches up to their most
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Figure 21: 2D (a) and 3D example (b) of DMP using PFM for obstacle avoidance.
(Source: [32])

recent implementation. Therefore the results have to be taken from different sources
and may thus not be fully comparable.

The most detailed comparison is done in [27], comprising GMR with HMM, GMR
with GMM (there called TGMR), LWL with LWPR and DMP. Human-like motion
data was artificially generated and each approach learned the movement with an
increasing number of states. The comparison was then done based on the root mean
square (RMS) error of the trajectory before and after DTW, norm of jerk, learning
time and retrieval time. The results are presented in Figure 22.
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Figure 22: Quantitative comparison of several PbD approaches, depending on the
number of states K. (Source: [27])

These diagrams are quite revealing. First of all, the investigated approaches are
about equally accurate. Only DMP is moderately less accurate for a low number of
states. The norm of jerk is an indicator of the smoothness of the trajectory. DMP
produces the smoothest results (smoother than the original trajectory, depicted with
a dashed line), HMM the least smooth trajectories. The batch learning time for both
HMM and TGMR are relatively high, especially for higher K. While LWR does not
need to learn in advance (zero learning time), its successor LWPR is about twice as
fast as HMM/TGMR. DMP is significantly fast and remains fast even for a higher
number of states. During execution, DMP again outperforms the other approaches.
Nevertheless, all the other approaches stay below 1ms and are therefore all usable
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for real-time applications.
In [30], SEDS, GMR, LWPR and GPR (although unfortunately not in one of its

latest variants LGP or LSOGP) are compared. The criteria are accuracy, learning
time and retrieval time; the results are displayed in Table 2. The experiment per-
formed was learning 20 human handwriting motions, which are shown in Figure 18.

Method Average / Range of
error e

Average / Range of Training
Time (sec)

Average Retrieval
Time (sec)

SEDS-Likelihood 0.19 / [0.11 - 0.33] 19.23 / [2.22 - 48.26] 0.00068
GMR 0.13 / [0.08 - 0.28] 0.211 / [0.038 - 0.536] 0.00068
LWPR 0.17 / [0.07 - 0.35] 2.49 / [1.51 - 4.01] 0.00054
GPR 0.04 / [0.02 - 0.07] 52.42 / [22.84 - 142.27] 0.07809

Table 2: Quantitative comparison of the performance of different PbD approaches
for learning handwriting motions. (Source: Adapted from [30])

In particular, this study adds insights about SEDS and basic GPR, which had not
been compared in the aforementioned study. It can be seen that GPR is significantly
more accurate than the other approaches, SEDS is slightly less accurate than GMR
and LWPR. On the other hand, GPR is very computational demanding while training,
by a factor of about 20 compared to LWPR and about 200 compared to GMR. In [27],
the learning time of LWPR was shorter than for GMR. This shows how application
and implementation dependent these figures are. For the retrieval time, SEDS is as
fast as GMR. This is logical, as the complexity of the generated model is the same.
GPR is much slower than the other methods, by a factor of around 100. GPR is
therefore not real-time capable.

The competitiveness of a more recent implementation of GPR is evaluated in [23],
which compares LGP with GPR. Here the accuracy of LGP is shown to be similar
to basic GPR, while the retrieval time is sped up by a factor of about 5. While this
is a significant improvement, the speed is still not as comparably fast as for the other
approaches. For LSOGP no comparison was found.

2.5 Discussion
In the beginning of Section 2.4, the applicability of symbolic approaches (Section 2.2)
and those utilizing spline encoding (Section 2.3.1) has already been discussed. Hence,
the focus is here on statistical and dynamical approaches of PbD. Indeed each of these
methods has its own unique features, but within the context of imitation learning,
the number of competitive candidates can be narrowed down to two.

In the qualitative evaluation (Section 2.4.1), it was shown that both LWL and
GPR have not been used much for PbD. The reason for this is that these approaches
are more or less plain regression methods. In order to make them usable for imitation
learning, they have to be equipped at least with a controller for the execution phase.
This does not mean that LWL and GPR are useless, but they have to be seen as
tools, especially for DMP.

Although SEDS has been considered here as its own approach (following the
current literature), it can actually be classified together with GMR. The learning
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method SEDS was developed for HMM without transition matrix, but it is probably
possible to adapt it for HMM with transition matrix and for GMM. In that case,
the advantages of SEDS and GMR are combined.

Thus for imitation learning, the choice should be between GMR and DMP. These
have already been compared in literature [27, 30], and their similarities on the
mathematical side were shown [35]. One major difference is the handling of time as
described in Section 2.4.1. As commands from GMR (with HMM) depend only on
the position, perturbations are handled inherently, while the time dependent DMP
must be adapted with coupling terms to do so. On the one hand, this requires extra
efforts, on the other hand, this also offers more flexibility. As already mentioned,
the speed of the execution for DMP can simply be adjusted with a single time
parameter. Another aspect of this is that GMR (with HMM) does not require to
start the trajectory at the beginning, but is inherently able to execute only the
“tail” of the trajectory. Using DMP, managing this situation requires logic to adapt
the phase variable beforehand. Intrinsic to GMR is the equal treatment of discrete
and cyclic motion, whereas for DMP this requires separate handling. This may
seem disadvantageous, but according to [31], nature also distinguishes the two. An
advantage of GMR is the learned correlation between different variables. In most
DMP implementation, this is not considered, although there exists an approach to
do so [11, 34]. Global stability is guaranteed in DMP with a decaying term, while
GMR needs a special learning method such as SEDS, which is computational heavy.
Computational efficiency is in general much higher for DMP than for GMR. Another
aspect is that DMP generates an accurate model from just one demonstration, in
contrast to GMR, which usually requires several. Finally, GMR (with transition
matrix) can handle multiple trajectories in one model, which is not possible with
DMP.

Summing up, both GMR and DMP are powerful PbD frameworks. Which one
is preferable depends mainly on the application. When using GMR, the HMM with
transition matrix seems to be advantageous (compared to GMM). In general, DMP
might be the more flexible approach, as it allows interchangeable components and
coupling terms for online modification of the trajectory.

2.6 Alternatives to Programming by Demonstration
A number of alternatives to PbD exist. These alternatives, including biologically-
oriented approaches, direct programming and RL are briefly presented here, but a
detailed analysis goes beyond the scope of this thesis.

Biologically-oriented learning approaches are significantly different from the other
described methods. They are inspired by human and animal learning and make
use of artificial neural networks imitating mirror neuron system (MNS) [36]. More
information about MNS and their computational models can be found in [36] with
a current revision in [37].

In contrast to direct programming, PbD offers the potential to teach new skills
much faster. Direct programming is often tedious, error prone and sometimes might
even be unfeasible, whereas PbD can be very intuitive for the teacher. Nevertheless,



22

direct programming is still widely used in the industry, where the focus is on accuracy
and the environment is often highly predictable and customized for the specific needs.

Another alternative to PbD is RL. In the case of RL, the robot (or more in general
the learning-system) learns fully autonomously using a reward function, which gives
feedback about the correctness of the current performance. The system tries to
maximize the reward function by trial and error [38]. RL offers some advantages over
PbD [12]: First, tasks, which cannot be demonstrated, can still be learned. Second,
tasks can be optimized according to a freely definable reward function. Third, tasks
can be adapted to changed environments. On the other hand, several contemporary
robot designs lean towards an increasing number of DoF, for which the search space
is very big and computational demanding. In such cases, the probability of finding a
global optimum can be negligible. However, reaching the global maximum is often
not needed and neither reached by the other PbD methods.

Currently, RL receives an increasing role in PbD, as it can be used in combination
with imitation learning: the task is first demonstrated to give an initial solution, which
is then optimized using RL. One example for this approach is the pancake flipping
robotic arm shown in Figure 23 [12].

Figure 23: Image series of a robotic arm flipping a pancake imitation. (Source: [12])

In a long term perspective, [12] anticipates what they call “Goal-directed learning”.
Here only the goal is shown, not how it is achieved. The computational complexity will
increase, while the difficulties for the teacher decreases. This seems to put emphasis
on symbolic approaches.
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3 Dynamic Movement Primitives
The discussion in Section 2.5 concluded that, given the goal of in-contact tasks
in dynamic environments, DMP is the most flexible framework. The capabilities
are similar to GMR, but especially the coupling terms of DMP promise advanced
dynamic modifications of the trajectory in the execution phase. That is why the DMP
framework was chosen to be implemented and used for further research. Therefore,
the details about this theoretical framework are presented in this chapter. First, the
basics of DMP are presented. Subsequently, the fundamental equations are extended
by novel algorithms for in-contact tasks.

3.1 Basics of Dynamic Movement Primitives
The basics of the DMP framework have already been introduced in Section 2.3.2
and its building blocks have been shown in Figure 14. The following section focuses
on the details of the implementation of both the execution and the learning phase,
in the case of a one dimensional task. Subsequently, the generalization to multiple
dimensions is shown.

3.1.1 Execution phase

DMP have been introduced in the machine learning literature as a general and flexible
framework. However, most implementations of DMP share a common mathematical
formulation, which is presented in great detail in [33]. The implementations used in
this thesis largely refer to these common implementations. To give a better impression
of the meaning of the different equations, they are visualized for an exemplified 2D
system shown in Figure 24.
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Figure 24: The plots show a 2D system. The left plot displays the trajectory and
the middle and right one give the single dimensions over time.

Transformation system The basic implementation of DMP considers each di-
mension of the system in isolation. Therefore, there is a 1D transformation system
for each dimension. As mentioned in Section 2.3.2, one crucial requirement for DMP
is stability. For example, in the case of discrete (i. e. non-cyclic) movements, the
system is supposed to asymptotically converge to the set point from any state. One
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possible way to fulfill this requirement is by implementing the transformation system
by the so called spring-damper-system

τ ÿ = αz(βz(g − y)− ẏ) + f(x), (1)

which can be written in first-order notation:

τ ż = αz(βz(g − y)− z) + f(x) (2)
τ ẏ = z,

where τ is a time constant (temporal scaling factor), g is the goal (in the case
of discrete motions, the point of asymptotic convergence) and y, ẏ, ÿ are position,
velocity and acceleration (the output of the system). The positive parameters αz
and βz are related to stiffness and damping. The system is critically damped for
βz = αz/4. The transformation is excited by the force term f(x) in order to generate
the desired trajectory, rather than an asymptotic approach to the set point.

To get a first impression, Figure 25 visualizes the effect of the interaction between
the transformation system and the force term (in a 2D system) as force field. This
force field (shown as arrows) causes the system to move towards the current set point
(i. e. the point all arrows are pointing to), at each time, independently on its current
state. This is why the system is also called point attractor. The shift of the set point,
dynamically changing in time, is caused by the force term.
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Figure 25: These graphs illustrate the force field generated by the transformation
system (arrows), the overall trajectory (solid line) and current position (circle on the
trajectory) at different time steps.

Function approximator It was shown that the force term is responsible for the
system moving along the desired trajectory. This force term f(x) is generated by a
nonlinear function approximator. The function approximator takes a monotonically
evolving variable x as input (the phase variable from the canonical system described
next) and produces the appropriate force term, resulting in the anticipated trajectory.
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One possibility for the approximator is the normalized linear combination basis
function:

f(x) =
∑Nw
i=1 Ψi(x)wi∑Nw
i=1 Ψi(x)

(3)

The basis functions are represented by Ψi(t), which are weighted by wi. Nw defines
the number of basis function. A higher number of basis functions allows for better
accuracy, but also causes higher computational time, both in the learning and ex-
ecution phase. The choice of basis function offers several options, yet distribution
functions are typically used. In our implementation, the basis function for discrete
motions is the Gaussian function

Ψi(x) = exp
(
− 1

2σ2 (x− ci)2
)
. (4)

For cyclic motions, the basis functions are von Mises functions,

Ψi(x) = exp (h(cos(x− ci)− 1)) , (5)

the circular variant of the Gaussian function. The choice of the centers ci of the
distributions, as well as the standard deviation σ and measure of concentration h
will be explained in Section 3.1.2.

In the example in Figure 26 and 27, the number of basis functions is Nw = 10. Fig-
ure 26 shows the (non weighted) Gaussians Ψi(x), both over time and phase variable.
Figure 27 gives the corresponding weighting factors wi for the two dimensions.
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Figure 26: The ten Gaussian basis functions are plotted over time (right) and over
the phase variable (left). The Gaussians are equally spread in the phase variable,
not in time.

Canonical system The so called canonical system generates a phase variable x,
which is used as input for the function approximator. The use of the canonical system
allows the description of the evolution of the system in time without the explicit use
of a time variable. Thus, the execution speed can be controlled, e. g. to take into
account external perturbations (see Section 3.2.2).

As canonical system for discrete motions, the following first-order linear system
is used:

τ ẋ = −αxx. (6)
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Figure 27: The ten weighting factors for the x dimension are shown in the left plot
and those for the y dimension in the right plot.

The solution to this differential equation is (for constant τ and αx)

x(t) = x0 exp
(
−αx

t

τ

)
. (7)

Here, τ is the temporal scaling factor from (3) and αx the decay parameter. For
rhythmic motions, the canonical system is described by the equation

τ ẋ = 1, (8)

with x ∈ [0, 2π] yielding the solution

x(t) =
(
x0 + t

τ

)
mod 2π, (9)

The initial value for the phase variable x for both systems is described by x0, which
is set to an arbitrary value (typically one for the discrete and zero for the cyclic
system).

The canonical system generate a nonlinear relationship between the time t and
the phase variable x. An example for the discrete canonical system described by (7)
with x0 = 1 and αx = 3 can be seen in Figure 28. The output of (9) is that of a
saw-tooth generator.
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x0 = 1 and αx = 3.
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Extensions To extend the possibilities of DMP and to add some helpful charac-
teristics, two extensions are necessary [31, 33]:

First, the force term usually embeds a scaling term ξ(x):

f(x) =
∑Nw
i=1 Ψi(x)wi∑Nw
i=1 Ψi(x)

ξ(x) (10)

The basic scaling term, used e. g. in [33], is

ξbasic(x) = (g − y0)x (11)

for discrete and

ξbasic(x) = (g − y0) (12)

for cyclic motions (y0 is the starting position). The phase variable x causes the
force term of the discrete system to vanish as x approaches zero with increasing t.
Therefore, the asymptotic stability of the transformation system is guaranteed1.
This can be seen in the bottom right panel of Figure 25, where the current position
coincides with the center of the force field, as the force term has approached zero
and the system has reached its goal.

The term (g − y0) ensures the invariant properties of the attractor landscape
when spatially scaling the motion [33]. This is further explained and proved in [33].
Yet, this term is problematic for motions having a starting and end point very
close nearby. That is the reason why (g − y0) in both (11) and (12) is replaced by
Amax = max(y)−min(y), as also suggested by [33]. Amax is the maximum amplitude
of the trajectory, as max(y) is the maximum and min(y) the minimum value of all
trajectory points y. This yields

ξminmax(x) = Amaxx = (max(y)−min(y))x (13)

for discrete and

ξminmax(x) = Amax = max(y)−min(y) (14)

for cyclic motions.
The second extension is the inclusion of coupling terms in the transformation

and canonical system. These coupling terms are intended for online modulation of
the trajectory. As they are only used during the execution phase, the coupling terms
are added to the differential equations. The temporal coupling term Cc is added to
the canonical system, thus equation (6) and (8) are changed to

τ ẋ = −αxx+ Cc (15)

respectively

τ ẋ = 1 + Cc. (16)
1Similarly, BIBO stability can be proved for cyclic movements [33]
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Similarly, the spatial coupling term Ct is added to the transformation system, causing
(2) to become

τ ż = αz(βz(g − y)− z) + f(x) + Ct, (17)
τ ẏ = z.

One implementation for the temporal coupling term is shown in Section 3.2.2, which
uses Cc to handle perturbations during the execution of the movement. The spatial
coupling term is not used in this thesis, yet an example can be found in [33], which
exploits Ct to avoid obstacles (see also Figure 21).

3.1.2 Learning phase

For the determination of the different parameters, a variety of methods exist. One
common choice is LWR [33], which is described in this section.

Input The input of the learning algorithm is a certain number ND of demonstra-
tions (one is sufficient), which are indexed by j = [1 . . . ND]. The trajectory of every
demonstration consists of sets of time tj, position yj, velocity ẏj and acceleration ÿj,
each of size Mj. In the case that the velocity and acceleration information are not
given, ẏj and ÿj have to calculated from tj and yj.

Trimming When recording a trajectory, the recorder is first manually started,
then the robot is moved and finally the recorder is manually stopped. Therefore,
the robot is typically not moving at the beginning and end of the recorded sets. In
order to reduce the representation to the essential moving part of the demonstration,
the sets should be trimmed. This is done according to [33]: the maximum velocity
ẏjmax = max(ẏjk, k ∈ [1 . . .Mj]) is determined and all samples at the beginning and
end of the sets j are cut off, for which the velocity is lower than 0.02 · ẏjmax. The
number of elements of each set of a demonstration is now M ′

j with M ′
j ≤Mj.

Learning With the input data having been trimmed, for each demonstration j the
following parameters and values are calculated:

• The goal is given by
gj = yjM ′

j
. (18)

• The time factor τ , which is simply the duration of the demonstration can be
derived from

τj = tjM ′
j
− tj1. (19)

• For the next step, a set f j of forces is calculated based on (1)

f jk = τ 2
j ÿ

j
k − αz(βz(gj − y

j
k)− τj ẏ

j
k). (20)
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This leads to

Ji =
M ′∑
k=1

Ψi(x(tk)) (fk − wiξ(x(tk)))2 , (21)

which is a weighted linear least square problem. To find the weighting factors wi
using LWR, the vectors s and f and matrices Γi first have to be set up:

sj =


ξj1(x(t1))
ξj2(x(t2))

...
ξjM ′

j
(x(tM ′

j
))

 s =


s1

s2

...
sND

 (22)

f j =


f j1
f j2
...
f jM ′

j

 , f =


f1

f2

...
fND

 (23)

Γj
i =


Ψj

1,i(x(t1)) 0
Ψj

2,i(x(t2))
. . .

0 Ψj
M ′

j ,i
(x(tM ′

j
))

 Γi =


Γ1
i 0

Γ2
i

. . .
0 ΓND

i


(24)

ξjk(x) is the aforementioned scaling term and Ψj
k,i(x) the basis function. The

weighting terms wi are then calculated as follows:

wi = sTΓif
sTΓis

(25)

Only a few parameters remain. The number Nw of basis functions must be pre-
defined based on the demonstrations and the desired accuracy. For discrete motions,
the centers ci of the Gaussian functions are spread equally between zero and one

ci = i− 1
Nw − 1 (26)

and the standard deviation is set to σ = 0.5/Nw, which was determined experi-
mentally. For cyclic motions, the centers of the von Mises functions are accordingly
spread between 0 and 2π

ci = 2π i− 1
Nw − 1 (27)

and the measure of concentration is set to h = 4N2
w (1/h is analogous to σ2). The

decay parameter αx > 1 should be choosen low (< 2) for accurate trajectory following
and high (> 5) for a precise goal approach.
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3.1.3 Multiple dimensions

A trajectory in an N -dimensional space is represented by ND ≥ N components. For
example, in a 3D space, there can be three components for the position, three for
the orientation (or four when using quaternions as representation) or one for each
joint when working on the joint level.

DMP handle multiple components easily. Each component has its own transfor-
mation system and function approximator. Consequently, for each component, the
weighting factors wi are learned independently. However, the parameters αx, αz, βz,
τ , Nw, ci, σ and h usually coincide.

In the execution phase, the function approximator and transformation system are
also calculated independently. The connecting and synchronizing part is the unique
canonical system, which is shared by all dimensions.

3.2 Dynamic Movement Primitives for in-contact tasks
Motions for the execution of in-contact tasks require several extensions and adap-
tations to basic DMP implementations. These have been developed in this thesis
and to our knowledge, they present novel approaches. When the robot is in contact
with another object, two different situations must be distinguished and appropriately
handled: (i) intended contacts and (ii) not intended contacts. The former occurs
when the robot was taught to interact with the environment. The latter can take
place at any time, when a robot accidentally collides with objects in its (dynamic)
environment and can be considered as a perturbation. The handling of both cases is
heavily based on the capabilities of the controller, which is described in the following
section. After that, the developed algorithms for perturbations and in-contact tasks
are examined.

3.2.1 Controller

In the execution phase of DMP, a trajectory is generated by the transformation
system. This trajectory can be on the joint level, Cartesian level and can also contain
desired forces (see Section 3.2.3). Subsequently, one or more controllers are responsible
for converting the trajectory to motor commands (see Figure 14).

The controllers used for the implementation are a Cartesian and a joint impedance
controller. Next to the set point or equilibrium point (the desired position), also the
stiffness and damping factors can be defined. Either on joint or Cartesian level, the
controller then imitates a spring-damper-system. Additionally, also an exerted F/T
can be defined, which is added to the spring-damper-system. The controllers have a
very accurate dynamical model of the arm, which allow for automatic compensation
of dynamical forces such as gravity or Coriolis force.

The algorithms developed in this thesis can be applied to any hardware with
controllers equivalent to the described ones. The KUKA Robot Controller (KRC)
(see Section 4.2) of the KUKA LWR, which is used as hardware in this thesis, offers
those two controllers. For stiffness and damping, only the diagonal values of the
corresponding matrix can be set, not the correlation factors. It can also be decided,
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whether the rotational frame of reference is fixed in the base or should be relative to
the current tool orientation. The control law for the controllers is described in [39].
For the joint impedance controller, it is

τcmd = kj(qdes − qmsr) +D(dj) + τdes + fdyn(q, q̇, q̈). (28)

For the Cartesian impedance controller, it is

τcmd = JT (kc(xdes − xmsr) +D(dc) + fdes) + fdyn(q, q̇, q̈). (29)

Here, qdes and qmsr are the desired respectively measured joint positions, equivalently
xdes and xmsr for the Cartesian pose (position and orientation). The stiffness and
normalized damping parameters are kj/kc and dj/dc for the joint/Cartesian level.
The desired joint torques are expressed by τdes and the desired Cartesian F/T by
fdes. The Cartesian command is converted to joint torques τcmd by the transposed
Jacobian JT . Finally the dynamics of the arm are taken into account by the term
fdyn(q, q̇, q̈). More details about the two controllers can be found in [40].

When not working with forces, the trajectory y generated by the transformation
system is simply forwarded to either of the two impedance controllers (qdes/xdes)
with the desired F/T set to zero (τdes/fdes). The stiffness αz and damping values βz
of the spring-damper transformation system of the DMP are being assigned to the
same values as used for the spring-damper-system of the controller, as this resulted
in the most accurate trajectory reproductions.

3.2.2 Handling of perturbations

As one of the aims of this thesis is a robot safely interacting with humans, much care
has to be taken to prevent harmful collisions. Although it would be preferable to
always avoid undesired collisions, this is currently not possible. That would require
external sensors, for example a camera.

Therefore, some precautions must be made to reduce the risks of a collision. First
of all, the smooth and rounded design of the arm (see Section 4.2) is a big step
towards this. Although this design is already biologically inspired, the construction
is still very stiff compared to soft organic tissues.

The previously described impedance controller further mitigates the impact of a
collision for flexible objects, as the arm is compliant to a certain extent. On removal
of the obstacles, the arm asymptotically approaches the desired set point.

The KRC arm has an additional feature, which allows to restrict the maximum
F/T exerted on the environment. This must of course make use of the torque sensors
and the dynamic model of the arm, to distinguish between internal forces (gravity,
Coriolis, friction, acceleration) and external forces (collisions). The maximum allowed
F/T can be set for each joint or Cartesian dimension. When the calculated external
F/T is higher than the allowed one, the arm stops moving and even gives back.
Torques are measured in a 3 kHz cycle [40] for each joint, thus reactions to collisions
are fast.
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Nonetheless, also the DMP algorithm has to be adapted to stop or slow down
the execution in case of perturbations. In case this precaution is omitted, removing
an object after the robot had stopped would cause a fast and direct movement to
the set point of the unperturbed trajectory. One way of coping with perturbations
was described in [33]. There, the spatial coupling term Ct (see Section 3.1.1) is set
proportional to the absolute error (which is low-pass filtered) and τ is set to a value
proportional to the squared error. There are several problems with this approach.
First, it does not just establish a coupling term, but also changes the parameter τ .
Second, new non-intuitive parameters have to be introduced and tuned manually.
Third, it is not clear how to implement the algorithm for a multi-dimensional case.

Because of these limitations, a novel approach to manage disturbances has been
developed in this thesis. The targets targets of this approach were the ability to
handle several dimensions, an easy parametrization and an implementation using
only the temporal coupling term Cc. To achieve this, initially a maximum deviation
∆ejmax from the desired trajectory for all dimensions j ∈ {1, . . . , ND} is defined, for
which the algorithm shall cause a full stop of the execution progress. This can for
example be a fixed length, be relative to the maximum amplitude of the dimension
or the maximum of the two previous options:

∆ejmax = max(5 cm, 0.05Ajmax). (30)

In each iteration, for every dimension, the current error

∆ej = yj − yjmeasured (31)

is determined and the absolute value of the relative error calculated as

ejrel =
∣∣∣∣∣ ∆ej

∆ejmax

∣∣∣∣∣ . (32)

The maximum emax, rel of the relative errors of all dimensions determined

emax, rel = max(ejrel | j ∈ {1, . . . , ND}) (33)

and limited to one
e′max, rel = min(1, emax, rel) (34)

To stop the canonical system (i. e. ẋ = 0), the temporal coupling term would
have to be set to

Cc, stop = αxx (35)
for discrete motions and

Cc, stop = −1 (36)
for rhythmic motions (see Equations (6) and (8)). By assigning

Cc = Cc, stope
′
max, rel, (37)

the canonical system is slowed down when deviating from the desired trajectory and
finally stopped, when the error emax, rel grows above one. After the error reduces
eventually, the canonical system continuous. Thus, the canonical system adjusts not
just to external perturbations, but also to non-feasible trajectories.
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3.2.3 Handling of desired forces

In-contact tasks require another extension of the basic DMP algorithm, especially on
the controller side (the part after the transformation system). For the experiments
described in this thesis, the implementation limits exerted forces to the Z direction
(in the tool frame) and when working under the Cartesian impedance controller.
Forces in that direction are probably the most common ones (e. g. pressing a button,
writing with a pen).

If the robot is supposed to exert forces on other objects, also the force profile is
needed in the demonstration. Therefore, additionally to the pose, also forces in the
Z direction are recorded using the F/T-sensor. In the learning phase (see Figure 34),
the force is just treated as an additional dimension.

For the execution, two additional force controllers were designed, which work on
top of the Cartesian impedance controller. The first is responsible for the approaching
velocity, the second one for the exerted force. A state machine of these controllers
is shown in Figure 29. If during the execution the desired force fDMP (i. e. y of the
transformation system for the force component) is above a certain threshold fdes, min,
the stiffness for the Z-dimension is set to zero. This has the effect that the position
in Z-direction is no longer controlled by the spring-damper system. Movements in
Z-direction are then only generated by the force term fdes in equation (29). This
follows the suggestions from [3].

Position Controller Force Controller

No force 
control

stiffnessZ = 2000

Position
control

Approaching
stiffnessZ = 0

Force exertion
stiffnessZ = 0

fDMP ≥  fdes,min fDMP < fdes,min

fDMP ≥  fdes,min &&
fmsr ≥ fcontact

fmsr ≥ fcontact

Figure 29: State machine for in-contact tasks. The position and force controller run
in parallel. The approach state is activated when fDMP ≥ fdes, min, the force exertion
starts with fmsr ≥ fcontact and stops again when fDMP < fdes, min.

The use of the velocity controller allows an object to be displaced in positive
Z-direction compared to its position during teaching. As long as there is no contact
(fmsr < fcontact) but fDMP > fdes, min holds true, the tool shall be moved in Z-direction
with a fixed speed vapproach by applying a force fdes. A proportional-intergral-derivative
controller (PID controller) is used, which compares the current speed vcur (difference
in position divided by elapsed time) to vapproach and adapts fdes appropriately2.

2The gain of a PID controller is the sum of the weighted error (KP · e(t)), weighted sum of the
error over time (KI ·

∫
e(t)∆t) and a weighted change in error since the last cycle (KD ·∆e(t)/∆t)

[41]
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The force controller is needed due to the limitations of the force estimation of
the LWR arm. Although much care has been taken to model the payload data
(see Section 4.2) and to calibrate the internal torque sensor, the offset of the LWR
force measurements could not be decreased below about ±1N. This is a mainly
pose dependent offset or bias (a systematic error), which does not affect relative
measurements or commands. Here again, a PID controller was used that compares
fDMP with the F/T-sensor measurement fmsr to adjust fdes.

One problem occurs in case the contact is lost (fDMP < fdes, min). When this
occurs, the stiffness is being reset. The arm would consequently jump to the point
where it would have lost contact with a non-displaced object. As this is of course
not desired, precautions must be taken. The developed solution is rather straight-
forward. At the switching point, the offset between the current pose and the desired
pose is determined (∆x = xmsr − xDMP) and added to all future pose commands:
xdes = xDMP + ∆x.

Some further adaptions are made to the DMP algorithm to ensure a smooth
execution:

• Once the force controller is activated, it is not allowed to switch back to the
velocity controller before the the contact is intentionally abandoned (fDMP <
fdes, min, see Figure 29). This prevents oscillations resulting from periodical
switches between the two controllers at the moment the contact is made.

• As was shown in Section 3.2.2 and will later be further explained (Section 4.6.4),
the controllers introduced in this section can influence the temporal coupling
term by adjusting the feedback to the DMP perturbation handler. This is
used in two ways. First, while approaching an object, the feedback of the force
measurement is altered and set to the value causing the canonical system to
stop (see Equation (35)). The idea here is that a displaced object is similar to
a perturbation of the trajectory, just the reference frame is different. Second,
while in contact, this force measurement feedback is again changed and set to
the desired value fDMP. This prevents force errors from having an effect on
the canonical system. The reason here is the relatively high force error, which
would prevent a continuous execution when being in-contact. When in contact,
also the feedback of the measured pose is set equivalently to the desired one.
This must be done to ignore the positional offset of the surface.
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4 Infrastructure
For the implementation and execution of the algorithms, a sophisticated hardware
and software environment is needed. The infrastructure used in this thesis, capable
of hard real-time robot sensing and control, is described in the following sections.

4.1 Overview
A general overview showing both hardware and software is given in Figure 30. It
shows the three different hardware systems (external computer, KRC and arm) and
how they are made up on hardware and software level. The operating system of the
external computer with its real-time extension and real-time Ethernet drivers had to
be set up and ad hoc configured (Section 4.2). Although this is to date a non trivial
technical task, the development of the thesis was mainly focused on the components
highlighted in green, ,amely, the program running on the KRC (Section 4.4) and
the Robot Operating System (ROS) packages as well as the Open Robot Control
Software (Orocos) components for the external computer (Section 4.5).
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KRC and the LWR with the F/T-sensor. Only the green components were developed
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software (mainly operating system and middleware). (Sources: [39, 42, 43, 44])
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4.2 Hardware
Industrial robotic arms are not comparable to human arms. They may be highly
accurate, fast and offer redundant degrees of freedom. Nevertheless, they typically
lack sophisticated sensors to explore the environment. Most robotic arms available
only have encoders as sensors, so they can only determine the current position of
each joint. Some of these arms are backdriveable, meaning that the rotational joints
are compliant and can be moved by hand. This allows kinesthetic teaching. However,
newly developed arms, such as the KUKA LWR used for this research, are equipped
with integrated torque sensors in each joint. This allows them to precisely measure
F/T acting on the arm.

While this is a huge improvement, allowing much more sophisticated applica-
tions [2], these arms still do not reach the multimodal sensitivity of human arms.
They still lack a kind of skin, providing fine-grained information about pressure, tem-
perature, vibration, touch, strain and more. These senses belong to the somatosensory
system [45] and are essential for human movements and interactions [46].

For the experimental part of this thesis, the KUKA LWR 4+, a robotic arm
with 7DoF was used. The arm was given for this thesis, but proved to be a suitable
platform for PbD experiments. Albeit it is a cutting-edge robotic arm with highly
accurate torque sensors in each joint, it is still outperformed by the capabilities of a
human arm as previously described. However, it allows state-of-the-art research for
PbD and in-contact tasks. The dynamic model of the arm is known, which allows
sensitive measurements of external forces.

The KUKA LWR 4+ was designed with research in mind [13]. With a mass
of 16 kg, it is a lightweight arm having a rated payload of 7 kg. Its repeatability is
±0.05mm and the maximum outreach is about 0.8m [47]. Thanks to its round shape
with no sharp edges, in combination with the torque sensors and the dynamic model,
the robot is safe to use for interactions with humans [40]. What is crucial for the
development of this thesis on this platform is its active compliance: stiffness and
damping can be dynamically changed on joint or Cartesian level.

The arm is connected to the so called KRC, an industrial computer controlling
the arm. It is coupled with the KUKA Control Panel (KCP) that consists of a screen,
a keyboard with additional keys and a 6D mouse (see Figure 31). The KRC can
communicate with an external computer using a User Datagram Protocol (UDP)
Ethernet connection. In this case, the external computer runs the main program.

In the setting used in this thesis, a 6D F/T-sensor3 is installed between the tip
of the arm and the tool, which was also given beforehand. This sensor allows to
measure the applied F/T during demonstration and enables feedback measurements
in the execution phase. The maximum allowed force is 290N in X/Y and 580N
in Z-directions. For torques, the limit is 10Nm. The force resolution is 1/8N and
the torque resolution 1/376Nm and 1/752Nm for X/Y and Z-axis respectively [48].
The sensor can provide measurements with a rate of up to 7000Hz and allows the
activation of different low-pass filters [49]. It is directly connected to the external
computer using a second UDP Ethernet connection.

3ATI Mini45 F/T Transducer
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Figure 31: Hardware overview. The LWR arm (4) and the KCP (3) are both con-
nected to the KRC (2). The KRC is via Ethernet connected to the external computer
(1). The arm is equipped with a F/T-sensor and a pen tool.

An ad hoc tool has been designed and built for this thesis and mounted on the
robot flange. The full tool assembly is shown in Figure 32. The flange cover mainly
serves as protection for the cables coming out of the tip of the arm. The F/T-sensor
is mounted on an adapter, which is fixed with screws and several plastic distance
washers to the flange. This is done for two reasons. On the one hand, it admits air
ventilation, thus allowing optimal cooling of the robot motors. On the other hand,
it insulates the F/T-sensor thermally, limiting undesired thermal effects. To allow
easy and fast exchange of different tools, a tool plate has been designed, which is
joined to the assembly by a big threaded ring. In Figure 32, a custom pen holder is
mounted on this tool plate, which is used for some of the experiments in chapter 5.
The two handles have been integrated to ease the manual movement of the arm.

The KRC needs exact information about the tool mass, center of gravity and
moments of inertia. This permits the activation of the gravity compensation mode,
but also improve vibration damping. Therefore, all parts of the tool were recreated
in a CAD program4 with respective material and masses. Using the geometrical and
physical properties, the program is able to calculate the necessary physical data.

The external computer provided for the thises is a commercial eight core desktop
computer with two additional network cards5 for the UDP Ethernet connections.
The Linux operating system6 is extended with a Xenomai real-time kernel7. Also the

4Autodesk Inventor Professional 2015
5Intel 82541PI Gigabit Ethernet Controller
6Ubuntu 12.04 LTE
7Version 2.6.2.1
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Figure 32: CAD explosion views from the pen tool with an assembled view in the
lower right corner.

network cards use real-time drivers8, in-order to meet the hard real-time requirements
of the communication with the KRC and the F/T-sensor.

4.3 Fast Research Interface
In order to control the arm from an external computer, a new interface was developed
by a cooperation between DLR9 and KUKA, namely the Fast Research Interface
(FRI) [39]. The FRI implements a communication protocol for a UDP Ethernet
connection between the KRC and an external computer, working at a fixed rate of
up to 1 kHz.

The communication supports two states. While in monitor state, data packages
are sent from the KRC to the external computer but do not have to be acknowledged.
Thus the current status of the robot can be observed, but not changed. The command
state can only be activated, when the external computer is able to prove excellent
quality of communication by replying to all packages within the previously defined
rate. In that state, the external computer can command the arm, configure the
impedance (stiffness and damping), set the desired position in joint or Cartesian
space and determine the F/T the arm exerts on the environment. The messages

8RTnet 0.9.13
9Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR, German Aerospace Center), Köln,

Germany
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from the KRC contain the measured and commanded positions, the measured F/T,
as well as status information about communication, hardware and software.

Both messages from and to the external computer contain each 16 boolean, integer
and double typed variables, which can be freely used for communication. They are
intended to send additional values over FRI that can extend the functionality. Those
variables can also be linked to inputs and outputs of the KRC and thus drive external
industrial controllers or read values from them.

4.4 KUKA Robot Language
The KUKA Robot Language (KRL) is the programming language for programs
running on the KRC. The language is quite simple in its syntax and shares many
similarities with Pascal. It is the only possibility to directly program the KRC. It is
used here to extend the capabilities of the FRI. For example, there is no native way
to switch between monitor and control state using only the FRI. However, utilizing
the variables of the FRI as flags and a custom KRL program, this can be realized.

To execute commands parallel to long lasting tasks (especially point-to-point
and linear movements), a so called submit interpreter runs in the background. It is
a special KRL program, which is called every 12ms and therefore should run only
for a very short period of time. As part of the background logic of the KRC, it is
independent of the user program.

4.5 Middleware: ROS and Orocos
To write complex programs without having to start from the very beginning, usually
some kind of middleware software is used. For robotic applications, a huge variety
of such frameworks is existing. We are using Orocos (version 2.6) [50] for software
parts requiring real-time control and ROS (Groovy) [51] for all other parts.

Orocos is under open-source license and was developed as multi-purpose control
software for robots [52]. Being modular and flexible, it is supposed to run on all
kinds of platforms. Orocos has a real-time motion control core with event-triggered
interactions [53]. This real-time capability is the main reason for choosing Orocos,
as the communication with the KRC requires hard real-time responses up to 1 kHz.
Orocos programs are organized in components. Having been initialized, components
are either activated periodically or on external events. After activation, the component
has to yield quickly, in order not to violate the real-time restrictions. Communication
between components utilizes so called ports, which have a fixed type. A component
writes values to its output ports and reads from its input ports, which have to be
connected to other component’s output ports. Components can also offer operations
or call operations from other components. See Figure 33 for a more detailed graphical
overview.

ROS is also open-source and arguably has become the de-facto standard robotics
middleware [54]. It was therefore chosen as middleware for non real-time critical
tasks in this thesis. Programs in ROS consist of nodes, which can run on different
machines that are connected in a network [55]. These nodes communicate using
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Figure 33: Orocos components mainly interact using ports and operations (left).
Ports are connected to other component’s ports (right). (Source: [43])

messages targeted to a certain topic having a distinctive type. A huge number of
packages have been developed for ROS to extend its capabilities, allowing a fast
development for all kinds of robots [56]. However, ROS does not meet real-time
requirements.

Luckily, Orocos has the possibility to share messages with ROS. This interaction
is limited10, but sufficient for our purposes. Output ports in Orocos can be set to
send their values as messages to ROS or vice-versa receive values from messages on
input ports. In the context of this thesis, serialization is used to exchange whole
objects between the two frameworks (see Section 4.6.3).

4.6 Software architecture
The sequence of steps involved in learning a trajectory is simple and shown in
Figure 34. The process can be divided into three phases. During the recording
phase, one or more users demonstrate the trajectory at least once, which is recorded
in separate files for offline processing. Then, in the learning phase, an algorithm
calculates the necessary parameters and stores them in another file. Finally, the
trajectory is replayed utilizing the parameters generated during the execution phase.

Generally speaking, the developed software architecture implements the compo-
nents from Figure 34. However, not only the DMP algorithms had to be integrated.
As few code was available for the LWR, also a basic framework with a higher-level
interface had to be developed. The programming language used is entirely C++(11),
except the program running on the KRC, which is written in KRL. A class diagram
including the crucial components can be found in Appendix A.

The DMP framework is modular and flexible, as was shown in Section 2.5. The
software architecture was designed in a way to reflect these attributes. Therefore,
logical units are encapsuled in packages and components. Classes are assigned to
hierarchical namespaces and organized in several layers of abstraction. Base classes,

10The currently latest version of Orocos is 2.6. With the about-to-be-released version 2.7, the
interoperability of ROS and Orocos will be extended.
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Figure 34: Basic sequence of learning a trajectory. This consists of the recording,
learning and execution phase.

templates and interfaces support the generic architecture where various implementa-
tions are possible.

4.6.1 Basic framework

To prevent users from tedious, repetitive and error-prone low-level programming,
several generic components were developed as a basic framework, encapsulating low-
level code and offering higher-level interfaces. In the following, these components are
described in more detail. See Figure 35 for a quick overview.

KRCOrocos

KUKACommander

FRIServerRT

KUKACommanderROS

FRIControl

FTSensor

Figure 35: Basic software framework for the LWR.

The Orocos component FTSensor handles the communication with the F/T-
sensor. It initially sends a start request and subsequently receives all measurements
over a UDP Ethernet connection. The measurements are provided to other compo-
nents using output ports. The status of the sensor is constantly surveilled and errors
are logged.

The FRIServerRT is also an Orocos component and heavily based on [57]. It
is responsible for establishing and maintaining the UDP connection as well as for
handshaking with the KRC. All measurements and current parameters from the
incoming FRI messages are output at the ports of the component. Similarly, the
component reads from its port to fill the appropriate fields of the outgoing FRI
message.

Although the communication details are hidden by the FRIServerRT, many de-
sired functions still require several steps or are even impossible to achieve with
plain FRI. Therefore, the Orocos component KUKACommander (on the external com-
puter) and the KRL program FRIControl (on the KRC) were designed to further
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simplify the work with the LWR, by offering higher-level functionality. First of
all, KUKACommander offers setter and getter methods for various parameters, such
as getCurrentControlMode or setCartesianImpedance. In order to access other
LWR functionalities, FRI itself is not enough and KUKACommander has to communi-
cate with FRIControl using the aforementioned FRI variables (Section 4.3). This
allows the user program to switch between states (e. g. switchToCommandState)
and modes (e. g. setControlMode). Additionally, it is possible to execute linear and
point-to-point motions on the KRC (e. g. CartesianLINMotion). KUKACommander is
a new development, FRIControl is based on [58] and [59].

It was preferred to do the main development in ROS rather than in Orocos. The
reason for this is the greater flexibility and the huge amount of readily available
packages for this middleware. Therefore KUKACommannderROS provides an interface
to all functions of KUKACommander to ROS using services11.

4.6.2 Recording

The recording phase requires only one additional component, the ROS package
Recorder (see Figure 36). It initially queries the user for the trajectory type (joint or
Cartesian) and for the inclusion of force measurements. Thus the ROS topic type of
the recorded messages varies for different trajectory types. In Figure 36, the message
type is for example “PoseMsg”.
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Figure 36: Software components of the recording phase.

For the rest of the procedure, the arm is put in a mode providing gravity compen-
sation. In this mode, the LWR can be moved easily. The joints are actively compliant
and compensate gravitational forces. After moving the robot to the start position,

11Services are public functions of a ROS node, which can be called with an arbitrary number of
parameters and return values. They are typically intended for longer lasting tasks. One disadvantage
is that a service call blocks the execution of the caller.
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all measured positions (and eventually forces), published from FRIServerRT (and
FTSensor), are recorded to ROS bag files12. After one demonstration, the program
allows to return to the start position and record further demonstrations in separate
bag files.

4.6.3 Imitation

The learning and execution phase are currently bundled together, which means that
each time a demonstration is repeated, it must be learned beforehand. Nevertheless,
these phases they are separated in several packages and components, as it is shown
in Figure 37. This the most sophisticated part of the software and is here referred
to as “imitation” (see Figure 34).
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Figure 37: Software components of the imitation phase.

Representation A demonstration is represented by the Demonstration class,
holding a trajectory (see Figure 38). A trajectory is made of a vector of timestamps
and objects of the class Triple. A Triple is a tuple consisting of a position, velocity
and acceleration object, which are derived from the base class Item. These items hold
joint positions, a pose or pose and force, depending on the user’s choice of the derived
class. This item type is defined by a C++ template class for Demonstration and
Triple, being Pose in Figure 37 and Figure 38. A Demonstration can be converted
to a vector of SimpleDemonstration objects. A SimpleDemonstration has four
equally sized vectors for time, position, velocity and acceleration, but contains only
one dimension of an Item. A Position item for example consists of the dimensions

12Bag files are special files in which ROS can store messages even at high frequencies including
their timestamps. ROS can also play back from bag files and offers a library to access the data
with C++.



44

X, Y, and Z is therefore converted into three SimpleDemonstration objects. For
more details, see Appendix A.

Demonstration x
...

Pose

Trajectory point 1

Time

Triple
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Acceleration
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Trajectory point 2

Time

Triple
Positition
Velocity
Acceleration

Pose

Trajectory point 3

Time

Triple
Positition
Velocity
Acceleration

Pose

Figure 38: A demonstration contains a trajectory of timestamps and tuples of position,
velocity and acceleration.

These classes also hold several methods. A demonstration can be trimmed or cal-
culate velocity and acceleration from only the temporal and positional data. For this,
items report about their distance to other items or calculate their temporal derivative.
There are also static functions to generate Item objects from ROS messages (see
Appendix A).

Imitation phase The application creates the Imitator and defines all its param-
eters, such as the prefix of the bag file names, stiffness or number of basis functions.
All these values can be configured in a ROS launch file. This allows a change of pa-
rameter settings without recompilation. The application also controls the execution
flow and informs the user about the current status.

The Imitator is the central class in ROS, coordinating all actions. It takes three
template classes: the learning class, the item type and the topic type of the bag file
(in Figure 37 these are LWRLearner, Pose and PoseMsg). The Imitator reads from
the bag files and creates a Demonstration for each of them. The demonstrations are
prepared (i. e. they are trimmed and velocity and acceleration data are calculated, see
Section 3.1.2) and passed to the learning class, together with the desired parameters.
Having received the execution parameters from the learner, they are forwarded to the
Interface. The execution is initiated and feedback is forwarded to the application.

Learning phase The only existing learning class so far is the LWRLearner. As it
can later be seen for the Executor, the LWRLearner works with vectors of double
typed values, representing a state with several dimensions. The reason for that is
to allow generalization. For example, the task of the Item classes to convert a pose
into this kind of vector. Therefore, the learner works with SimpleDemonstration
objects instead of Demonstration objects. The actual learning takes place in the
SimpleLWRLearner, implementing the equations from Section 3.1.2. Each dimension
has its own simple learner (they all share the same parameters) and retrieves the
simple demonstrations for its dimension. Thus the task of the LWRLearner is to first
separate the demonstrations into their dimensions and later put the results of the
different simple learners into nested vectors (see Appendix A).
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Execution phase Being part of the execution phase, the tasks of the Interface
are to prepare the execution data for Orocos and to communicate with the Controller.
It offers the functionalities of the Controller to other ROS components in form
of so called ROS ActionServers13. All execution parameters are stored in an object
of the ExecutionParameters class. This allows the parameters to be serialized and
stored in a file. Only the file name is passed to the Controller, which can then
retrieve the object again. This serialization procedure will in the future allow learned
motions to be stored permanently after learning.

On the Orocos side, the Controller plays the central role. The Controller
retrieves the execution parameters and passes them to the Executor. In each
cycle, the next desired state is queried from the Executor and forwarded to the
KUKAInterface. The Controller also calculates the coupling terms (currently only
temporal coupling is used). For this, feedback about the current state is received
from the KUKAInterface.

The only task of the Executor is the calculation of the force term and with
that the desired state. It initially retrieves the execution parameters. During the
execution, also the coupling terms can be set.

As the Controller only calculates the desired state, but does not not know
how to interpret this data, another interface is needed. The KUKAInterface is the
counterpart to Item on the execution side. KUKAInterface serves as abstract base
class for implementations such as KUKAInterfaceJoints or KUKAInterfacePose.
The interfaces convert the retrieved state vector into objects like JointState or Pose,
which are directly send to the FRIServerRT. Similarly, the current measurements
(coming from FRIServerRT and FTSensor) are serialized to vectors and returned
as feedback to the Executor. Next to that, the interfaces are also responsible for
switching to the correct command mode (e. g. Cartesian stiffness controller) and set
the correct impedance values using the KUKACommander.

Helper functions Not shown in the diagrams are the several helper classes.
Canonical is an abstract base class for the canonical system. Implementations are
Exponential and PhaseOscillator for, respectively, discrete and cyclic motions.
Similarly, Distribution is an abstract base class for the basis functions. Gaussian
is here the implementation for discrete motions and vonMises for cyclic ones. The
objects of these classes can be serialized, as they are part of the execution parameters.

4.6.4 Implementation details

Although the description of all details of the implementation would go far beyond the
scope of this thesis, some details are noteworthy. Especially the handling of rotations
with DMP requires some care, but also the observation of the execution.

It was mentioned that the Controller receives feedback from the KUKAInterface.
This requires some more explanation. The Controller sends the desired state in

13ActionServer/ActionClient as part of ROS actionlib are similar to services. The main difference
is that a call of an action does not block the execution of the caller. In addition, ActionServers can
give feedback about the current status and the ActionClients can preempt a task.
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form of a vector of type double, which the different interfaces interpret for example
as position, pose, or joint state. The Controller requires a state feedback, that is
the current (measured) state, also in form of a vector of type double. This feedback
is especially useful for the perturbation handler (see Section 3.2.2). Therefore the
interfaces must convert the current state (in form of position, pose, etc.) back into this
type of a vector. However, the interface is free to return not the true measurements,
but to modify them, as will be shown in the next paragraphs.

A common representation for rotations are unit quaternions [60, p. 54]. Different
rotational representations, such as Euler angles have the disadvantage to “jump”, not
to be unique (due to facts such as 0◦ =̂ 360◦) and to have singularities. This introduces
problems for the function approximator, which cannot handle these discontinuities
appropriately. Other representations, such as rotation matrices are computational
heavy and memory consumptive. Quaternions, consisting of four elements, do not
have these kind of drawbacks. That is why quaternions have been chosen in this
work to represent rotations.

However, following such representations, two issues must be addressed. First, two
quaternions result in the same orientation, when q1 = −q2. FRI gives the orientation
as rotation matrix, which is converted to a quaternion. In some cases, this conversion
produces a series of quaternions, whose sign can suddenly change. This also causes
undesired discontinuities. Therefore, when creating a Demonstration from a bag file,
a function iterates over all quaternions and switches the signs where needed.

The second issue concerns the feedback state of quaternions. From pairwise com-
parison of the four elements of the desired quaternion and the measured quaternion,
the generic Controller cannot correctly determine the relative error of the angle.
Therefore, the interfaces KUKAInterfacePose and KUKAInterfacePoseForceZ mod-
ify the quaternion which is returned as feedback. They take the desired and measured
quaternion and calculate the relative quaternion between the two (i. e. the relative
orientation). From this relative quaternion, the rotation angle is determined, which
corresponds to the absolute error of the angle. Three elements of the quaternion
feedback state are set to the desired value, thus not producing a relative error. The
forth component is set to a value causing the appropriate relative error.

A final note shall be given on the calculation of the weighting factor wi. The values
in the enumerator of Equation (25) can get smaller than the numerical accuracy of
double typed variables. This results in C++ in a value NaN (Not a Number). This is
detected and the corresponding weighting factor wi is set to zero.

4.7 Discussion
Evaluating a software architecture is not easy. In this thesis, no specific experiment
was performed to quantitatively support design decisions. However, the framework
was not developed for high-performance nor to be immune against external attacks.
The focus of the design was flexibility, modularity and abstraction.

Therefore the software not only uses established approaches of Object-oriented
programming (OOP), but also relatively new concepts such as template classes. After
the basic architecture had been written (in code), the further development could be
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performed quite fast. For example using the abstract base class KUKAInterface,
the coding of the implementing child classes such as KUKAInterfaceJoints or
KUKAInterfacePosition was only a matter of a few hours.

This was confirmed by the implementation of the basic DMP algorithms. The
extension for in-contact tasks could be implemented with hardly any change in
the software architecture. The design is flexible enough to support a variety of
implementation details. For example, modularity allows to test different kind of
canonical systems by only implementing a new child class inheriting from the abstract
canonical base class.

Nevertheless, one part still needing significant improvements is the interface be-
tween Orocos and ROS. This interface partially uses ROS topics and partially uses
ROS services, which are forwarded to other classes using services. This implemen-
tation is bounded by the limited compatibility between ROS and Orocos. With the
new version of Orocos (which will probably be released soon), this compatibility is
heavily increased. This release should be used to improve the disorganized current
interface and to upgrade the ROS version to Hydro. Instead of using several ports,
which translate to topics in ROS, ActionServer/ActionClients could be used for asyn-
chronous tasks giving feedback about the current status. The communication should
also be transparently passed through the different layers of abstraction, instead of
establishing pairwise encapsulated communication between the layers.

Another issue is the current limitation of the imitation phase. The learning and
execution phase are tied together, so all movements need to be newly learned each
time they are executed. The solution for that does not require dramatic extensions
in the code, as the functionality to store the learned parameters is already existing.
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5 Experiments
The DMP framework has demonstrated promising results in other implementations,
as was shown in Section 2.4.1. Nonetheless, the implementation, together with novel
perturbation and force handling strategies, has required significant technical work
and careful evaluation of the results. Therefore, some experiments were laid out, in
order to validate our experimental platform.

The target of the experiments is to verify the DMP framework with the developed
extensions. First the general functionality is tested, also with several demonstrations.
Then the perturbation handler as well as the force and velocity controller are eval-
uated. The main research questions are, whether it is safe and unproblematic to
interfere the execution and whether the system is able to at least qualitatively re-
produce not just a trajectory, but also a demonstrated force profile.

The results of the experiments mainly focus on the trajectory (poses) and force
data, which was recorded using ROS bag files. The measured poses are the position
and orientation of the tip of the F/T-sensor (not the tip of the pen), relative to
the base of the LWR. The reason for this is to make the measurements from the
F/T-sensor comparable to those from the LWR. There are five different examined
data sets, which have to be distinguished:

1. The demonstrated data: This is the data recorded from the user and the
therefore the input for the LWR learner. The data has already been prepared.
Preparation is especially done for the quaternions of the orientation, as is
described in Section 4.6.4.

2. The theoretical data: This is the output of the transformation system, thus
with neither hardware nor controller involved and the coupling terms set to
zero.

3. The calculated data: This is also the output of the transformation, but
with respect to the dynamic coupling terms. This means that the calculated
trajectory takes into consideration the effects of the perturbation handler during
the execution.

4. The experimental data: This is the data recorded during the execution
phase. It is the measured pose of the arm or the measured force of the F/T-
sensor, not the output of the controller.

5. The commanded data: This data-set only exists for forces. These are the
actual commands sent to the KRC. For the trajectory, the calculated and
commanded values are identical (and therefore only the calculated data is
shown here). However for forces, two additional controllers (force and velocity
controller, see Section 3.2.3) modify the calculated values before commanding
them to the KRC.

For quantitative comparisons, four metrics from [27] are used. M1 is the RMS
error between two trajectories. Similarly, M2 is also the RMS error, but with the
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trajectories being temporally aligned using the DTW approach [26] (see Section 2.3.2).
The M3 metric is the norm of jerk of a single trajectory. The time tlearn to learn the
model parameters is the metric M4, calculated on a processor with 3300MHz. For
the metrics M1, M2 and M3, only the position data is used, not the rotation or force
data.

5.1 Imitation of a circular motion
The goal of this experiment was to validate the results achieved with the software
and hardware infrastructure and test the basic DMP implementation. Next to the
comparison of the demonstrated and learned trajectory, also the learning time is of
interest.

5.1.1 Experiment

In the recording phase of this and all other experiments, the demonstration was taught
as described in Section 4.6.2. The recording took always place on the Cartesian level.
The poses were sampled with a frequency of 200Hz (5ms cycle). The arm was
grabbed and moved in a horizontally aligned circle. Only one demonstration with
M ′

1 = 1851 elements and ND = 7 (3 components for positions and 4 for quaternions)
was shown. Figure 39 shows the setup of the experiment.

Figure 39: Setup of the basic experiments. In the left image, the trajectory is recorded.
The right image shows an example perturbation (the motion is stopped) during the
execution phase.

For the imitation phase, the following parameters were used. The stiffness of the
Cartesian impedance controller (kc in Equation (29)) was set to 2000 N

m for linear and
to 300 Nm

rad for angular movements. The damping values dc were 0.7 Ns
m and 0.7 Nms

rad
for, respectively, linear and angular movements. The parameter αz of Equation (2)
was set to 2000 and βz was chosen for critical damping (βz = αz/4). The number
of basis functions was Nw = 50 for all dimensions. The exponential decay of the
canonical system (Equation (7)) started at x0 = 1 with a decay parameter of αx = 3.
The LWR was commanded with a FRI communication rate of 500Hz.
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5.1.2 Results

The arm repeated the demonstrated motion successfully after a learning time of
tlearn = 0.0403 s. Figure 40 shows the different trajectories in two 3D diagrams. The
left plot only displays the positional data, while the arrows in the right plot also
give the tool direction, i. e. the orientation. These arrows are equally spaced in time
with a time step of ∆t = 0.2 s. In Figure 41, all seven components of the poses are
plotted against time.
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Figure 40: Execution of a demonstrated circular motion: 3D view on the trajectories.
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Figure 41: Execution of a demonstrated circular motion: All components of the poses
are shown over time.

The first qualitative result from Figure 40 is that all three trajectories are close
together. Only at the end of the trajectory, some details of the demonstration were
lost. This is due to the fading of the force term (see Section 3.1.1), leaving only the
attractive force of the goal.

Another important fact arising especially from Figure 41 is that the theoretical
trajectory closely mimics the demonstrated one. Only in case of rapid changes, the
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theoretical trajectory smooths out the demonstration. This can for example be seen
in the Z dimension between t = 5 s and 9 s.

Obviously, the experimental trajectory deviates from the demonstrated and theo-
retical trajectories when considering the temporal dimension as shown in Figure 41.
The difference increases continuously towards the end of the execution. The cause
of this is the perturbation handler described in Section 3.2.2. As the arm always
remains slightly behind the desired pose, the canonical system is slowed down, until
the arm can follow the desired trajectory. This offset with respect to the desired
pose may be explained by considering the Cartesian impedance controller, which is
set to be critically damped. Therefore, the set point is only reached asymptotically.
The calculated trajectory has not been recorded for this experiment, that is why
the evaluation of experimental trajectory is further developed for the experiments
in Section 5.4 and 5.5.

Table 3 gives the quantitative results for this experiment for the metrics M1,
M2 and M3. The M1 data confirms the big offset between the experimental tra-
jectory and the demonstrated/theoretical one. However, the RMS errors between
the temporally aligned trajectories are all low (< 6mm). It can also be seen that
the experimental trajectory cannot as closely mimic the demonstrated one as the
theoretical trajectory does. The M3 metric gives some more interesting results. The
jerk of the demonstration is reduced a lot for the theoretical trajectory. However for
the experimental trajectory, the jerk is much higher than for the demonstration. One
explanation might the the different rate of communication during the recording and
the execution phase. The timestamps used for the evaluation are those generated
by ROS, which is not real-time capable. Therefore there might be a jitter in these
timestamps, causing the high jerk.

Comparison M1 [m] M2 [m] Trajectory M3 [m/s3]
Demonstration/Theory 0.0105 0.00247 Demonstration 283.3

Demonstration/Experiment 0.1662 0.00598 Theory 15.43
Theory/Experiment 0.1700 0.00396 Experiment 988.7

Table 3: Quantitative results for the first experiment

5.2 Multiple demonstrations
This experiment focuses on the handling of multiple demonstrated instances of the
same desired behavior. The system should be able to generalize over the different
demonstrations. Therefore, the resulting trajectory should be qualitatively similar
to all demonstrations.

5.2.1 Experiment

The experiment was conducted following the same protocol as the previous one. It
made use of the same parameters and of the previously recorded trajectory. The dif-
ference was the second demonstration with M ′

2 = 1909 elements, which was recorded
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and provided to the learner. The two demonstrations were similar, but the size and
duration varied a bit.

5.2.2 Results

During the execution, the arm performs a circular movement qualitatively similar
to the demonstrations. Figure 42 and 43 report the plots for this new experiment,
qualitatively similar to the previous one. Only the orientation data is omitted for
brevity. The two demonstrations differ in duration (τ 1 = 9.26 s and τ 2 = 9.54 s) and
spatial extension (e. g. for the Y dimension A1

max = 0.496m and A2
max = 0.531m),

but also in shape. The learning time was tlearn = 0.0842 s.
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Figure 42: Learning from two demonstrations: 3D view on the trajectories.
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Figure 43: Learning from two demonstrations: All positional components are shown
over time.

First of all, this experiment confirms the results from the previous experiment.
All trajectories are relatively close together, while the execution speed is slower than
the speed during the demonstration.

When comparing the 3D data in Figure 42 and the trajectory components over
time in Figure 43, the effect of a second demonstration can be seen. The learned
trajectory keeps the overall shape of the two demonstrations, while being much
smoother (the effect is particularly visible for the Z component). Thus, the learning
process successfully takes the data from all demonstrations into account. The spatial
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scale of the experimental trajectory is about the average between the two demon-
strations. This results from the fact that during the execution, the scaling term ξ(x)
is set to the average of all scaling terms of the demonstrations. So, although no
experiment was conducted which used varying values for the scaling term, it seems
that trajectories can successfully be scaled using this term.

5.3 Perturbation handling
The goal of this experiment is to verify the appropriate handling of external distur-
bances that physically disturb the movement of the robot during execution. On the
one hand, the question is whether it is safe for a user to interfere the execution. On
the other hand, the effect on the trajectory is of interest, for example whether some
details are left out.

5.3.1 Experiment

The input data as well as the parameters for this experiment were identical to the
first experiment (execution of a circular motion, Section 5.1). Yet, the robot was
stopped manually two times during the execution phase. A human experimenter
grabbed the tip of the arm at these situation and forced the movement to stop (see
Figure 39, right). After a short period of time, the robot was released again.

5.3.2 Results

The robot acted again as expected again accordingly to DMP theory [33]. The posi-
tional data resulting from this experiment are shown in Figure 44 and 45, according
to the previous experiments. The arm was being hold between t = 3.7 s and 5.2 s
and between t = 9.5 s and 10.6 s.
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Figure 44: Perturbation of a circular motion: 3D view on the spatial trajectory.

By looking at the first plot of Figure 45, it can be clearly seen that the execution
comes to a stand at the mentioned time intervals. After the two perturbations, the
arm continues its movement without any sudden jump. The trajectory is resumed
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Figure 45: Perturbation of a circular motion: All positional components are shown
over time.

from where it has been stopped, so no detail of the trajectory is omitted. Even more:
the arm smoothly compensates for its displacement, as can be seen for the first
perturbation in Figure 44. This is the effect of the developed perturbation handler,
described in Section 3.2.2.

The force needed to interrupt the execution was not measured. However, the
(subjective) sensed force necessary to stop the robot and keep it still with the hand
was very low. Also, due to the low speed, no hard impact was perceived.

5.4 Writing on a notepad
The purpose of this experiment is the evaluation of the in-contact task algorithm,
especially the force-controller. The system shall show its capabilities to follow both
the demonstrated force profile and the trajectory. It should smoothly switch between
motions in-contact and not in-contact.

5.4.1 Experiment

For this experiment, the cap of the tool pen (a whiteboard marker) was removed
and a notepad positioned on a sturdy box elevated to about 13 cm above the table.
Holding the robots arm from above the F/T-sensor, the robots name “KIM” was
drawn on the pad during the kinesthetic teaching phase. Particular attention was
paid to pressing the pen down with minimal necessary force. The number of elements
of the demonstration were M ′

1 = 29845 and the dimensionality ND = 8 (seven for
the pose and one for the force in Z direction). The setup of the experiment is shown
in the beginning of the thesis in Figure 1.

Most of the parameters were set to the same values as for the previous experiments.
However, the number of basis functions was increased to Nw = 250, to cope for the
longer duration. For the sake of accuracy (especially at the end of the trajectory), the
decay parameter was lowered to αx = 1.1. During both the recording and execution
phase, the FRI communication rate was 500Hz. In addition to the pose data, also
the force in Z direction of the F/T-sensors was recorded. The interface utilized
was KUKAInterfacePoseForceZ, which makes use of the algorithms described in
Section 3.2.3. This interface was modified, to limit the desired force fDMP to 3N.
The intention was to limit during the execution the effect of erroneous measurements
or accidentally exerted high forces experienced during the demonstration.
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5.4.2 Results

In this experiment, the system has to model an additional force component and a
much more complex trajectory. Therefore, the learning time increased to tlearn =
3.08 s. The motion in 3D Cartesian space is shown in Figure 46 (left). The plot to the
right shows the orientation of the pen. This orientation only slightly varies around the
negative Z-axis (in the base frame). Therefore, the corresponding plots are omitted in
Figure 47 and in the rest of the analysis, focusing only on the positional components
over time. An overview of the force profiles is given in Figure 48. Figure 49 zooms
in to offer a detailed view during the execution of the ‘K’ character. The force data
from the execution is plotted in Figure 50.
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Figure 46: Writing “KIM” on a notepad: 3D view on the trajectory.

The number of basis functions has been significantly increased compared to
the previous experiments. Nevertheless, due to the length of the demonstration, the
temporal density of the basis functions dNw,τ = Nw/τ is even smaller: dNw,τ = 4.19 s−1

compared to dNw,τ = 5.40 s−1 in the previous experiment. Thus the expected accuracy
is a bit lower. However, this density is only a theoretical average, as the basis functions
are equally spread in the phase variable and not in time (see Figure 26).

Pose trajectory The result is again a theoretical trajectory that closely mimics
the demonstration, even towards the end of it. In this similarity at the end, the effect
of a low value for αx can be seen, which causes the force term to keep its influence
during the whole execution. Only in the case of rapid changes (for example the high
peaks in the Y and Z component of Figure 47) the theoretical trajectory is smoothed.

The experimental trajectory offers two insights. First (as in the previous exper-
iments), the execution is slower than desired. However, the difference in execution
speed is lower than for the previous experiments. This results from a de-facto deac-
tivated perturbation handler while being in contact. In this case, all feedback values
are identical to the desired ones (see Section 3.2.3). Second, especially the Y and Z
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Figure 47: Writing “KIM” on a notepad: All positional components are shown over
time.

components of the experimental and calculated trajectory show some deviation from
the theoretical one. This offset increases every time the contact is lost. This can also
be explained: Since the correctness of the position is not controlled while in contact
(as just explained), the executed trajectory can deviate from the desired one. The
friction between the pen and the surface contributes to this deviation, as it exerts
an opposing force to the attractive force of the set point of the Cartesian impedance
controller. When the contact is lost, this offset is stored (see again Section 3.2.3).
However, the error introduced by this effect is at most 0.75 cm. Nevertheless, the
offset of the Z component cannot be interpreted in the same way. In this case, the
reason can be found by taking a closer look at what happens with the Z component as
the contact is lost the first time (t = 9.2 s, Figure 47). The synchronized theoretical
trajectory rises up to z = 0.25 and right after that jumps back to z = 0.24. Thus,
the storage of the positional offset, which should be done when the contact is lost,
takes place too late.

The quantitative results of the metricsM1,M2 andM3 are shown in Table 4. The
M1 data confirm the qualitative results. The demonstrated and theoretical trajectory
are very similar. The experimental trajectory deviates further from the other two,
but not as much as for the first experiment (Section 5.1.2). When temporally aligned,
the RMS error between the demonstration and theory is lower than 1mm (M2
metric). However, the experiment is not able to reach that accuracy. On the one
hand, the jerk of the theoretical trajectory is by three orders of magnitude lower
than the demonstrated trajectory (M3 metric). On the other hand, the jerk of the
experimental trajectory is about as high as for the demonstrated trajectory.

Comparison M1 [m] M2 [m] Trajectory M3 [m/s3]
Demonstration/Theory 0.0013 0.00073 Demonstration 394.5

Demonstration/Experiment 0.0388 0.00626 Theory 0.452
Theory/Experiment 0.0383 0.00629 Experiment 419.9

Table 4: Quantitative results for the writing experiment

Force profile Section 3.2.3 has introduced the force controller, which is active
while in contact. The output of this controller is shown in Figure 48 and 49 with the
label “Commanded forces”. These are the force commands, forwarded to the Cartesian
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impedance controller (Z component of fdes in Equation (29)). The limitation imposed
on fDMP (see Section 5.4.1) can be seen in the lower threshold of the theoretical
forces at −3N. The force data during the execution phase is given Figure 50.
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Figure 48: Writing “KIM” on a notepad: Force profiles over time.

Looking at the demonstrated forces in Figure 48, the measurements show oscilla-
tions with an amplitude of around ±0.5N and a frequency of about 8Hz, superim-
posed by weaker, higher frequency oscillations. The oscillations with lower frequency
only occur while the pen is in contact. The experimental forces show the very same
characteristics. This might be due to the limitations of the F/T-sensor in use, or
might also be an effect of the dynamics of the (frictional) contact forces between pen
and pater. While the experimenter tried to press the pen down with constant force,
it can be seen that this is a task difficult (or even impossible) to achieve.
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Figure 49: Writing “KIM” on a notepad: Detailed force profiles for the drawing of
the character ‘K’over time.

The theoretical forces are much smoother (see Figure 48). The function approxi-
mator acts like a low pass filter with a very low cut-off frequency. This is very visible
between t = 34 s and 41 s (an interval during which the force limitation did not
operate). While this filtering is most of the time advantageous (as the high frequent
oscillations are not desired), it can be problematic at the touch down and release
points. In fact, the rise and fall time in this experiment was at least t = 0.5 s for a
force difference of 3N. If the arm is taught to move immediately after contact loss,
this movement could take place while still in contact in the execution phase.
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Figure 50: Writing “KIM” on a notepad: Detailed force profiles of the execution
phase over time.

Taken into consideration the fluctuations of the F/T-sensor measurements, the
experimental forces are close to the calculated ones (see Figure 50). They do also
oscillate, but with a similar amplitude and frequency as the demonstrated forces.
The quantitative result from the M2 metric confirms the good visual impression.
The RMS error of the temporally aligned demonstrated and experimental force
profile is only 0.20N. Overshoots can mainly be seen at the point the pen gets in
contact (e. g. at t = 5 s). However, there were also comparatively very high force
exertion, for example between t = 11.8 s and 12.7 s. When looking at the theoretical
and commanded forces at this period of time, there is neither a force desired nor
commanded. Therefore this was most probably the result of getting in contact too
early, i. e. before a force exertion is desired. This was likely caused by the wrong
offset stored for the Z component, as has been described in the previous subsection.

The imperfections of the KUKA force controller and the performance of the
ID controller, introduced to compensate for them (Section 3.2.3) are visible in Fig-
ure 50. While the experimental forces (the actual exerted forces) match more or less
the theoretical ones, the commanded forces deviate quite far from them. That means
that a force with a large varying offset from the desired force has to be commanded
in order to exert a force that fits the desired one.

5.5 Writing on a lowered notepad
This experiment tests the ability of the system to generalize from the previous one
(Section 5.4). In particular, its aim is to evaluate the capabilities of the designed
velocity controller (see Section 3.2.3) and the general capability of shifting the overall
trajectory. Next to this, also the compensating effect of the force controller to the
erroneous dynamic force term is of interest.

5.5.1 Experiment

This experiment used the same input data and parameters as the previous experiment.
The difference appears during the execution phase, when the box, which elevated
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the notepad during the learning phase, was removed. Therefore the height of the
contact point is about 13 cm lower than expected (see Figure 1).

5.5.2 Results

The system copes with the height difference without any problems. Figure 51 shows
the 3D data, while Figure 52 plots the positional components over time (including
the calculated values). The demonstrated and theoretical forces are given in Figure 53.
The force data from the execution phase is plotted in Figure 54. Finally, pictures of
the demonstrated and the two experimentally written “KIM” letters are presented
in Figure 55.
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Figure 51: Writing “KIM” on a lowered notepad: 3D view on the trajectory.

Pose trajectory The 3D view (Figure 51) already gives a qualitative impression
of the success of this experiment. As the notepad had been lowered, the arm moved
downwards to the pad’s new height. The remaining trajectory is executed relative
to this new contact point.

The plots of Figure 52 confirm this result. The Z components moves in a straight
line from t1 = 4.62 s and z1 = 0.245m to t2 = 10.98 s and z2 = 0.12m. This
yields an average speed of vavg = 1.97 cm/s, which is very close to the desired
vapproach = 2.0 cm/s. The direction of the approach is in tool Z direction. As the tool
is not perfectly perpendicular to the plane of the notepad, the approach vector is
slightly tilted compared to the normal of the plane. This results in a touch down point
which is slightly away from the horizontal projection of the desired one. However, this
offset vanishes as the execution proceeds. The shape of the trajectory after contact
is similar to the one for a non displaced object. Nonetheless, the problem with the
wrongly stored offset is the same as for the previous experiment.
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Figure 52: Writing “KIM” on a lowered notepad: All components of the poses are
shown over time.

Force profile Also the general characteristics of the theoretical force profile, shown
in Figure 53, are the same as for the previous experiment. On the one hand, all high
frequent fluctuations are filtered out. On the other hand, the rise and fall time are
comparably high.
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Figure 53: Writing “KIM” on a lowered notepad: Force profiles over time.

Nevertheless, the calculated force profile in Figure 54 shows a new feature. Be-
tween t = 3.2 and 9.7 s, the development of this force slows down, stops (remains
constant) and continues again. This is the effect of the temporal coupling term, which
stops the canonical system while approaching the object. The coupling term is here
set during the approach phase, intentionally bringing the canonical system to a halt.

The constant offset between the experimental and the calculated force at the
beginning of the trajectory is no error. During this approach phase, there cannot
be an external force. With a few exceptions, the experimental force profile (plotted
in Figure 54) closely resembles the desired one. This is again confirmed by the
quantitative result of the M2 metric, yielding a RMS error of 0.24N. However, two
main issues exist. The wrong offset again results in two undesired force peaks at
t = 17.3 s and 28.5 s. Another problem is the emergence of strong oscillations during
the time between t = 37.9 s and 41.9 s. The reason for these oscillations is currently
not clear. Interestingly, the demonstrated trajectory also shows increased fluctuation
for the same portion of the trajectory.

The commanded force profile in Figure 54 offers further insight on the two
controllers presented in Section 3.2.3. During the approach phase, the commanded
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force oscillates around −4.5N. This is the force causing the arm to move downwards
with the desired speed. In Section 3.2.3, the KUKA force controller was said to
have mainly pose dependent systematic error. During three time intervals of this
experiment (between t = 10.1 s and 13.4 s, 18.2 s and 23.1, 50.8 s and 53.9 s), the
desired force remains constant (−3N) and the movement of the pen is along the
negative Y axes. When looking at the experimental force during these periods, the
measured force is around the desired −3N. Yet, the commanded forces linearly
decrease each time by about 4N. This both confirms the systematic error of the
dynamic force term fdyn (Equation (29)) and the compensating effect of the developed
ID controller. If there were no measurement error, the force measurements would
remain more or less constant during these periods, as the exerted force is roughly
constant.
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Figure 54: Writing “KIM” on a lowered notepad: Detailed force profiles over time.

A last qualitative evaluation is given by the images of Figure 55. The left image
shows the result of the manually demonstrated writing task. The written letters in
the middle and right image are created by the robot arm for the notepad in the
original and the lowered height, respectively. The similarities of the three “drawings”
are obvious. However, one can also see the alteration of the components in the Y
direction by comparing the vertical alignment. Even more evident is the different
starting point of the letter ‘K’ in the last image.

Figure 55: Writing results from kinesthetic demonstration: demonstration (left),
reproduction (center) and reproduction on a lowered notepad (right).
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5.6 Discussion
In contrast to the generality required for the software architecture, all experiments
aim to the evaluation of the DMP framework. Despite the fact that not all features
have been investigated, the performance of the major functionality was confirmed.

The first two experiments (Section 5.1 and 5.2) verify the general capabilities of
DMP. A simple trajectory can be learned from one or more demonstrations. In the
case of multiple demonstrations, the learned trajectory is basically the average over
all of them, removing for example undesired jitter.

The third experiment (Section 5.3) proves the successful handling of external
mechanical perturbations. When the arm hits an obstacle, the algorithm does not
simply stop the motion, but smoothly restores its motion as soon as the perturbation
is removed. Furthermore, this mechanism also proves safe for human interactions.
Only little force is needed to cause the robot to stop. This reduces the power of an
impact and with this the risks of injuries to a minimum.

The writing experiments in Section 5.4 and 5.5 demonstrated the success of the
novel in-contact task algorithms. The system is able to learn and exert desired forces.
The algorithm handles demonstrations of alternating motions with and without
contact. Despite that the dynamic force term shows a varying, pose dependent
systematic error, the higher-level controller is able to follow the desired force profile
quite accurately. In addition to that, the algorithm smoothly copes with displaced
targets. That means, when the desired object of contact is moved along the Z axis of
the tool compared to the position in the teaching phase, the arm moves in Z direction
until it finds contact. When the new position is found, the execution continues from
this point. There are some minor oscillations in the velocity controller when approach
an object. However these are not critical at all, as long as the amplitude stays low
(±20% around vapproach).

The jerk in the experimental trajectory of experiment one and four (Section 5.1
and 5.4) seems to be very high, especially compared to jerk of the theoretical trajec-
tory. However, the experimental jerk is still quite low when comparing it to the values
in Figure 22 (center panel). It might be that jerk values in the order of magnitude of
the ones of the theoretical trajectory are practically hard to achieve. However, also
a jitter in the ROS timestamps can be considered as possible source of error.

Nevertheless, a position deviation occurs and accumulates each time the contact
is lost. This deviation caused high force peaks and might also be problematic in other
scenarios, in which an accurate position matters more. Therefore, this is a problem
that needs to be solved.

In addition to that, the exertion of forces is not yet optimal. At some points,
the deviation from the desired force was not within acceptable ranges. Here, more
research is required. Different controllers with varying parameters must be compared
and evaluated. This also requires more experiments with different stiffness of the
object and the tool.

More experiments are in addition to the conducted ones needed for the further
evaluation of the DMP framework. An important aspect here is the support of cyclic
motions. This feature has been implemented, but yet only tested very roughly.
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Noticeable during the recording phase was the difficulty of teaching accurately
the desired force. Although the robot is actively compliant, the force needed to move
the robot is high enough to prevent very finely tuned force profiles. Also the difference
in joint configuration compared to a human hinders the demonstration of natural
arm movements.
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6 Conclusion
The objectives of this thesis were threefold. First, a survey and evaluation of current
PbD algorithms was necessary in order to pick the most appropriate methods for
the further research. Next, a software framework should be developed that is flexible
and implements the chosen algorithm. Finally, the conclusion of the work was the
validation of the software and hardware system by the development of in-contact
task algorithms, thus extending the chosen PbD approach. All of these targets were
met.

Initially, the PbD approach most appropriate for this work is selected. For that,
first, current learning algorithms are reviewed. After that,the most relevant of these
approaches are evaluated. The discussion leads to the conclusion that DMP is the
framework of choice for this thesis. Throughout this work, no opposing results were
found, which would have led to a different choice. Nevertheless, that does not mean
that other frameworks, especially GMR, would not have been sophisticated enough
as well.

Following this, the developed software framework is presented. The design de-
cisions of the architecture are motivated. Next to that, the principle ideas of the
components and their interactions are explained. In addition, some noteworthy im-
plementation details are shown, especially concerning the use of unit quaternions.
The critical discussion about the software architecture leads to the conclusion that
the flexibility in the design eased and sped up the later development process. On the
other hand, some issues need refinements, such as the interface between ROS and
Orocos.

The biggest part of the thesis is about the novel algorithms for in-contact tasks.
These algorithms are derived and explained. Some of these rely heavily on the
capabilities provided by the controllers of the KRC. The perturbation handler uses
the canonical system to slow down or stop the execution, in case of deviations
to the nominal trajectory. The velocity controller is used to approach an object
of desired contact. In the same section, also the force controller is presented. This
controller regulates the force commands to the KRC and compensates for its imperfect
measurements, in order to exert a desired force.

All these additions to the basic DMP framework are tested in the experiments.
The results of the experiments are evaluated in the discussion thereafter. The general
finding is that all extensions provide satisfactory results. The algorithms are able to
handle rather complex PbD in-contact tasks, as the writing experiments demonstrate.
Nevertheless, some problems are existing, which need fine-tuning of the code or
partially even modifications of the approach. The former ones include for example
the wrong positional offset, which is stored when the contact is lost. The latter include
the bundling of the learning and execution phase. More investigation is needed for
the force controller, where the biggest deviations occur.

Not much literature can be found about PbD for in-contact tasks. However, the
approach followed in [11] is similar to the one presented in this work. While in this
thesis, forces in the teaching phase are directly measured using a F/T-sensor at the
tip of the arm, in [11] an external haptic device is used. In contrast to this work,
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the 3D force vector is taught and applied in the execution phase. In addition, the
stiffness of the system is variable throughout the execution and depending on the
variations across the different demonstrations. One drawback of their implementation
is the handling of changes in the position of objects. The exerted force is higher than
desired, when the object for the in-contact task is further away than expected and
higher when closer. Thus on the one side, the approach of [11] is more sophisticated,
on the other side it requires a static environment.

The mentioned results can also be put in context of the attributes of robots,
which the introduction claimed to improve. These attributes were sensitivity, safety
and flexibility. Most robots greatly lack each of them.

Sensitivity is especially introduced by the choice of hardware. The KUKA LWR
has a torque sensor in each of its joints, giving it limited tactile sense, ordinary
industrial robots do not have. The sensors are used in combination with the accurate
dynamic model of the arm, allowing it to distinguish between internal and external
forces. In this thesis, this is further improved by the F/T-sensor, which is attached
to the tip of the arm. With this sensor, forces and torques can directly be measured
at the tool.

Safety is improved by two main contributing components. The first are the torque
sensor together with the dynamic model, which allow to limit the amount of exerted
force. The second is the novel perturbation handler, which causes a movement to
stop in the case of disturbances.

Flexibility is provided by three elements. First of all, by the use of the DMP
framework. This framework is amongst the most flexible ones of all PbD approaches.
Noteworthy here are for example the introduction of canonical terms, which allow
online modifications of a trajectory. Second, the designed software framework does
not restrict this flexibility, even more extends it. This was in detail described in
Section 4.6. Lastly, PbD is inherently flexible. It leaves it up to the user to teach a
robot all kinds of tasks.

Nevertheless, all these promising results must be seen within a bigger picture.
World knowledge was also mentioned in the introduction as lacking attribute of
robots. This is neither changed by the use of DMP nor by any of the other PbD
approaches working on the trajectory level. Yet, symbolic learning might be able to
improve the situation a little.

Thus, the approach that has been followed in this thesis is only one part of the
puzzle. This approach needs a higher-level logic, especially a component conceiving
the world and able to reason about action. This higher-level logic then defines tasks
and makes use of DMP and similar methods to execute these tasks. The definition
of a task may consist first of the choice of the movement (which is selected from
a library of learned movements). This movement could then be further refined by
adjusting the goal, the scale and the execution speed.

However, not all tasks fit in the scheme of predefined movements. One counter-
example may be the relatively easy task of ironing. For this task, a certain trajectory
or force profile is not that relevant. Yet, the focus is more on the coverage of the
whole piece of clothing, while not creating any creases. The task highly depends on
the geometry and the material. In addition, constant visual feedback is required to
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check for undesired creases.

6.1 Future work
The possible future extensions to the developed system are numerous. In this follow-
ing section, some ideas for interesting future steps are given.

Software architecture In a first step, the detected error and existing issues with
the software framework should of course be fixed (see Section 4.7). Another im-
provement would be the possibility to concatenate movements. That means that the
software is able to smoothly switch between different movements to achieve more
complex tasks. Also the extensions discussed in the following section will require
further adaptions to the software.

Dynamic Movement Primitives The previously described concatenation prob-
ably also requires changes in the DMP method or at least its implementation. It
should be possible to start a learned motion from arbitrary points. This means that
trajectories should be relative to the starting point and not fixed in space.

Currently, only force exertion in the Z direction are possible. The generalization
to all directions should be rather simple. Also the exertion of torques could be
implemented with the presented approach.

The experiments (Section 5) show that the current version of the perturbation
handler slows down the execution. This is not desired and requires changes in the
algorithm. Another version of the perturbation handler has already been designed,
but neither tested nor implemented. This version takes into consideration the change
of the error in the trajectory (the derivative over time). If the rate of change is
negative (the error decreases), then the canonical system is not slowed down.

Another improvement would be variable stiffness, as described in [32] and demon-
strated in [11]. If there is a big variance throughout different demonstrations for
parts of the trajectory, then the stiffness in the execution phase for this parts is
reduced. The interpretation of this variance is that the exact position is not relevant.
Accordingly, the stiffness would be set to higher values, when the demonstrations do
not show high variances.

General ideas In Section 5.6, it was described that the kinesthetic teaching ap-
proach is partially not optimal for the achievement of natural trajectories. This is
due to the different embodiment and the difficulty to move the robotic arm in the
way the human arm would move. There are (at least) two options to come around
this situation. The first idea could be called iterative teaching. A trajectory is demon-
strated, learned and executed as it is done now. During the execution phase, the
perturbation handler is deactivated and the stiffness is set to a low value. This allows
the demonstrator to alter the trajectory. The modified trajectory is recorded and
taken as new input for the next iteration. This can be repeated several times until
the resulting trajectory is satisfactory. A second approach is to use observational
learning instead of kinesthetic teaching (see Section 2.1). This would require new
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hardware (some kind of tracking system) and introduces the problem of different
embodiment.

RL could help to further improve a learned trajectory. In this case, the user gives
a basic demonstration of the movement and supplies a reward function. This reward
function defines the optimization criteria of the movement (see Section 2.6). Then
the robot tries to maximize the return of the reward function and thereby learns by
itself.

In order to allow the robot to do more human like tasks, a hand is needed. A
hand allows for much more versatile tasks. A hand is already existing for the arm.
Yet, the hand needs to be integrated with the system and the software architecture.
As the fingers of the hand are not backdrivable, one must think of an alternative to
teach finger movements.

In the previous conclusion (Section 6), it was already stated that DMP is only one
piece of the puzzle. The system developed in this thesis needs to be integrated in a
higher-level logic. A first step could be the addition of an external camera. A camera
(together with some additional software) would allow for example to determine a
target. Applied to the writing experiment, the camera would recognize the position
of the notepad and accordingly set this as goal point for the approach of the pen. As
a step in the more distant future, symbolic learning could be introduced. Together
with additional world-knowledge, the robot could eventually reason about its tasks
and act according to a given goal, not to a defined movement.
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A Class diagram
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1
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+dt : double
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Figure A1: Class diagram of the most important classes, helper classes are not shown.
Most of the public attributes and methods are displayed, but only few private ones.
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