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We derive a fundamental conservation law of operator current for master equations describing reduced quantum
systems. If this law is broken, the temporal integral of the current operator of an arbitrary system observable does
not yield in general the change of that observable in the evolution. We study Lindblad-type master equations as
examples and prove that the application of the secular approximation during their derivation results in a violation
of the conservation law. We show that generally any violation of the law leads to artificial corrections to the
complete quantum dynamics, thus questioning the accuracy of the particular master equation.
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I. INTRODUCTION

Quantum master equations are a valuable tool when de-
scribing the dynamics of open systems. However, the typically
employed reduced-density-operator theory does not a priori
guarantee that the resulting evolution maintains all necessary
physical properties. A well-known example of the pursuit
for these properties is given in the case of quantum Markov
processes by the Lindblad form describing the most general
generators of the quantum dynamical semigroup [1,2]. Even
though this form and its time-dependent generalizations ensure
certain critical properties of quantum evolution [1–3], they do
not account for time-local conservation of observables. Ad-
ditionally, many microscopic derivations of master equations
exploit the secular approximation [4] that has been shown
to lead to nonphysical behavior including nonconservation of
electric charge [5–8]. Related to the conservation, the continu-
ity equation for current has been studied in the coarse-grained
description of the reduced quantum dynamics in Refs. [9–11].
In this paper, we introduce a general framework for the

conservation law that allmaster equations for reduced quantum
systems should ideally follow. The evolution obeying the law
ensures that the temporal integral of the current operator of an
arbitrary system observable, as obtained from the commutator
with theHamiltonian of the complete system, yields the change
of that observable in time. In other words, the current flowing
into the system equals the current obtained by it. As examples,
we apply the conservation law to a few typical derivations of
master equations leading to the Lindblad form and show that
the secular approximation leads to nonconservation. Hence,
Lindblad-type master equations do not intrinsically guarantee
conservation for all observables.

II. CONSERVATION OF OPERATOR CURRENT

Let us consider a quantum system described by a density
operator ρ̂. We differentiate a subsystem S described by a
reduced density operator ρ̂S = TrE{ρ̂}, where the trace is
over the remaining environmental degrees of freedom, and
we denote a general S-observable as Ĝ. We refer to the time
derivate of the expectation value of the observable as operator
current and write it as

d

dt
〈Ĝ〉 = Tr

{
dρ̂

dt
Ĝ

}
+ Tr

{
ρ̂

dĜ

dt

}
. (1)

The von Neumann equation, d
dt

ρ̂ = − i
h̄
[Ĥ ,ρ̂], results in the

Ehrenfest theorem stating that [12]

d

dt
〈Ĝ〉 = − i

h̄
Tr{ρ̂[Ĝ,Ĥ ]} + Tr

{
ρ̂

dĜ

dt

}
, (2)

where Ĥ is the Hamiltonian of the total system. In order to
relate this to the evolution of the subsystem of interest, we
write the total Hamiltonian in the general form Ĥ = ĤS ⊗
ÎE + ÎS ⊗ ĤE + ĤI , where we have separated Hamiltonians
for the system, the environment, and the interaction between
them, respectively. Using the full form of the Hamiltonian
results in

d

dt
〈Ĝ〉 = − i

h̄
(TrS{ρ̂S[Ĝ,ĤS]} + Tr{ρ̂[Ĝ,ĤI ]})

+TrS
{
ρ̂S

dĜ

dt

}
, (3)

yielding our first definition for the operator current. We have
denoted the trace over the subsystem degrees of freedom by
TrS . The current is comprised of three separate contributions.
The first and third terms relate to the evolution of the
closed system, and they are affected by the environment only
through ρ̂S . The second term describes current induced by
the interaction with the environment and vanishes for closed
systems.
To illustrate how decoupling of the eigenstate populations

and the coherence between them leads to nonphysical be-
havior, we provide a simple example. Consider a two-level
system whose Hilbert space is HS = span({|g〉 , |e〉}), where
ĤS |i〉 = Ei |i〉 and inner products for an arbitrary system
operator ÔS are defined as 〈s|ÔS |p〉 = OS

sp, where s,p ∈
{g,e}. Assume that the system starts from a fully excited state
ρ̃S

ee = 1 and ρ̃S
gg = ρ̃S

ge = 0, and ĤI = Ĝ ⊗ Ê, where Ê is any

nontrivial environment operator and Ĝ is time independent.
We assume that Ĝ is not diagonal in the eigenspace of the
systemHamiltonian so that the systemhas a nonzero relaxation
rate to the ground state. We consider a zero-temperature
environment, and hence the system relaxes to the ground state
and we have a stationary state ρ̄S

gg = 1 and ρ̄S
ee = ρ̄S

ge = 0. The
expectation value of an observable assumes the general form
〈Ĝ〉 = (Ggg − Gee)ρS

gg + 2Re(ρS
geGeg)+ Gee so that, in the

long-time limit, the temporal change in the expectation value
becomes� 〈Ĝ〉 = Ggg − Gee, which is nonzero for an almost
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arbitrary operator Ĝ. Equation (3) yields a current operator for
Ĝ as ÎG = − i

h̄
[Ĝ,ĤS] corresponding to the usual definition

for subsystem current operators [13]. Hence, we have 〈ÎG〉 =
−2ω01Im(ρS

geGeg), where ω01 = (Ee − Eg)/h̄, so that the in-

tegrated current becomes
∫ 〈ÎG〉 dt = −2ω01Im(Geg

∫
ρS

gedt).
Up to this point, the example has been on a very general level
and no approximations on the dynamics have been invoked.
However, if the populations and coherences decouple in the
description of the dynamics for ρ̂S , our assumption of the
initial state implies that ρS

ge = 0 at all times. Thus 〈ÎG〉 = 0 at

all times yielding � 〈Ĝ〉 �= ∫ 〈ÎG〉 dt for an almost arbitrary
Ĝ. Hence, the local conservation of the operator current breaks
down in the sense that the current cannot accurately describe
the temporal change of the observable. In the following, we
formulate a general condition ensuring this conservation.
Let the temporal evolution of the reduced system be

described by a master equation as

d

dt
ρ̂S = − i

h̄
[ĤS,ρ̂S]+ D̂, (4)

where we have separated the part relating to unitary evolution
from the generator and D̂ = D̂(ρ̂S,t) represents a generalized
dissipator; that is, it also accounts for any unitary contribution
stemming from the system–environment interaction. Combin-
ing Eqs. (1) and (4) results in our second definition for the
operator current:

d

dt
〈Ĝ〉 = − i

h̄
TrS{ρ̂S[Ĝ,ĤS]} + TrS{D̂Ĝ} + TrS

{
ρ̂S

dĜ

dt

}
.

(5)

Thus, we have two fundamental definitions provided by
Eqs. (3) and (5) leading to a necessary and sufficient condition
for the conservation of the operator current:

− i

h̄
Tr{ρ̂[Ĝ,ĤI ]} = TrS{D̂Ĝ}. (6)

This condition states that the dissipative current obtained
from the master equation must be equal to the dissipative
current related to the interaction Hamiltonian and ensures
the conservation of operator current which we define as
� 〈Ĝ〉 = ∫ 〈ÎG〉 dt , where� 〈Ĝ〉 is the temporal change given
by the master equation and Eq. (3) defines 〈ÎG〉 = d

dt
〈Ĝ〉.

In practice, the complete dynamics of the total density
operator can be unknown, and hence it is convenient to cast
Eq. (6) into the form TrS{D̂Ĝ} = 0 for all [Ĝ,ĤI ] = 0. This
condition emphasizes the fact that physical quantities which
are conserved by the interaction Hamiltonian have to be
conserved in the reduced dynamics; that is, the dissipative
current must vanish in this case.
Note that the preceding derivation required that the master

equations describe the system dynamics exactly. However, a
typical derivation of a quantum master equation involves a set
of approximations resulting in an approximate description of
the dynamics. The conservation law is a valuable tool also in
this case: We can take any master equation determining the
reduced-system evolution and define a set of corresponding
total quantum states {|�〉} as the ones satisfying ρ̂S =
TrE{|�〉〈�|} [14]. For each of these states, the evolution is
unitary, and hence we can define an operator corresponding

to the total Hamiltonian ĤA = Ĥ + Ĥδ . Thus the real ap-
proximate evolution, ρ̂S , corresponds to an exact evolution
of a different system. As a consequence, Eq. (6) yields
− i

h̄
Tr{|�〉〈�|[Ĝ,ĤI + Ĥδ]} = TrS{D̂Ĝ}. If the condition in

Eq. (6) is not obeyed naturally by the approximate master
equation, we obtain Ĥδ �= 0. Hence, an artificial effective
Hamiltonian emerges in the complete description of the
dynamics. Thus the conservation law provides an indicator of
the reliability and accuracy of different approximations leading
to reduced-system dynamics even if the complete quantum
dynamics cannot be solved.
Let us return to the two-level example and apply the

conservation law. We have [Ĝ,ĤI ] = 0 implying that the
dissipative current vanishes. A general master equation yields
TrS{D̂Ĝ} = (Ggg − Gee)Dgg + 2Re{DgeGeg}, wherewe used
Dgg = −Dee and Dge = D∗

eg stemming from the properties
of the density operator through the master equation. If
populations ρS

gg and coherences ρS
ge decouple as in typical

master equation approaches, the conservation law only holds
for constant populations, which is a contradiction. Hence, the
accuracy of the approach is compromised as discussed above.

III. PROPERTIES OF DISSIPATIVE CURRENT

Let us define the most general form for the interaction
Hamiltonian as ĤI = ∑

α Âα ⊗ B̂α , where Âα = Â†
α acts

on the system degrees of freedom and B̂α = B̂†
α on the

environment degrees of freedom. The dissipative current on
the left-hand side of Eq. (6) becomes

− i

h̄
Tr{ρ̂[Ĝ,ĤI ]} = − i

h̄
TrS

{∑
α

[Âα,TrE{B̂αρ̂}]Ĝ
}
, (7)

allowing us to reduce the conservation law to a comparison
of traces over S. Formulating operators TrE{B̂αρ̂} requires
knowledge of the total system evolution and, hence, must
be done for each system separately. However, an adequate
condition for the disappearance of the dissipative current,
not dependent on the time evolution, is evident: if [Ĝ,ĤI ] =∑

α[Ĝ,Âα]⊗ B̂α = 0, the dissipative current vanishes. The
interaction Hamiltonian can always be expressed such that
{B̂α} forms an orthogonal basis of the environmental operator
space, and hence the tensor product form implies that this
condition is equivalent to [Ĝ,Âα] = 0 for each system operator
in the decomposition.
A large range of microscopic derivations of master equa-

tions relies on the Born approximation stating that the
environment is only weakly coupled to the system. Thus, the
density matrix of the environment is assumed to be negligibly
affected by the interaction so that ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂E . This
results in TrE{B̂αρ̂} = TrE{B̂αρ̂E}ρ̂S(t) = 〈B̂α〉E ρ̂S(t) using
〈 〉E for the environment average. A noise source for which the
environment average of the perturbation vanishes for each α,
an assumption used in a variety of derivations, leads apparently
to a vanishing dissipative current on the right-hand side of
Eq. (6). This would naively imply that any derivation of the
quantum master equation utilizing the Born approximation
and the preceding assumption should result in TrS{D̂Ĝ} = 0.
However, we will show that this does not generally apply and
that the level, at which the approximation is performed, is the
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key. Performing it in the derivation of the master equation as
usual allows for weak dissipative current, whereas performing
it on the level of Eq. (3) results in the artifact of total decoupling
of the dissipative contribution.

IV. LINDBLAD FORM AND SECULAR APPROXIMATION

To connect our general theory described above to a few
important examples, we turn our attention to quantumMarkov
processes [3] and study different microscopic derivations
leading to master equations of the Lindblad form. The
Lindblad form describes the most general form that the
generator of a quantum dynamical semigroup can take, hence
guaranteeing both the semigroup property and the properties of
the dynamicalmap [1,2]. However, the form itself is an abstract
construction and does not imply operator current conservation.
Hence, microscopic derivations leading to specific dissipators
must be individually studied to see if they are in accordance
with the conservation law. We are especially interested in
derivations exploiting the secular approximation as it leads
to the decoupling of populations and coherences, a feature
which was shown above to result in nonphysical behavior in
general.

A. Singular-coupling limit

Let us begin with the so-called singular-coupling limit, in
which the coupling between the system and the environment
is strong compared with the system Hamiltonian but weak
compared with the bath Hamiltonian [3,15]. The master
equation reads in the Schrödinger picture [3]

d

dt
ρ̂S = − i

h̄
[ĤS + ĤLS,ρ̂S]

+
∑
αβ

γαβ

2
([Âβ,ρ̂SÂα]+ [Âβ ρ̂S,Âα]), (8)

which we have left in the so-called first standard form that
can be explicitly transformed to the Lindblad form by a
diagonalization of the Hermitian rate matrix {γαβ}. The Lamb
shift Hamiltonian is ĤLS = ∑

αβ SαβÂαÂβ . Note that γαβ and
Sαβ are dependent on the Fourier transforms of the environment
correlation functions. The only requirement for the correlation
functions imposed by the derivation is sufficiently fast decay
to accommodate the Markovian approximation.
Let us concentrate on the special case of vanishing dissipa-

tive current such that [Ĝ,ĤI ] = 0. Since this implies [Âα,Ĝ] =
0 for each α, it suffices to study ĤI = ∑

α Âα ⊗ B̂α = Â ⊗ B̂.
Using the generalized dissipator D̂sc from Eq. (8), we obtain

TrS{D̂scĜ} = − iS

h̄
TrS{Âρ̂S[Ĝ,Â]}

+γ

2
TrS{ρ̂SÂ[Ĝ,Â]+ Âρ̂S[Â,Ĝ]}, (9)

where S and γ are scalar constants. Above, we utilized the
cyclicity of the trace. This expression vanishes due to the
commutation of Â and Ĝ and, hence, the operator current is
conserved in the case of the vanishing dissipative current. We
emphasize that even though themaster equation was in the first
standard form and utilized the Born–Markov approximation,
the secular approximation was not used in its derivation.

B. Weak-coupling limit

Next, we study the derivation in the weak-coupling limit
in which the secular approximation is necessary to achieve a
Lindblad-type master equation. Again, it is sufficient to study
interactionHamiltonians of the form ĤI = Â ⊗ B̂. Themaster
equation assumes in the Schrödinger picture the form

d

dt
ρ̂S = − i

h̄
[ĤS + ĤLS,ρ̂S]+

∑
ω

γ (ω)

2
([Â(ω),ρ̂SÂ

†(ω)]

+[Â(ω)ρ̂S,Â
†(ω)]), (10)

where ĤLS = ∑
ω S(ω)Â†(ω)Â(ω). The eigenoperators are

defined as Â(ω) = ∑
ε′−ε=h̄ω �̂(ε)Â�̂(ε′), where �̂ are pro-

jections to the respective eigenspaces of ĤS and the sum is over
all eigenvalues ε and ε′ with a fixed ω. Note that the master
equation is of the first standard form, and the parameters γ (ω)
and S(ω) attain a dependence on the frequency difference ω.
We obtain

TrS{D̂WCĜ}
=
∑

ω

(
− i

h̄
S(ω)TrS{Â(ω)ρ̂S[Ĝ,Â†(ω)]}

+γ (ω)

2
TrS{ρ̂SÂ

†(ω)[Ĝ,Â(ω)]+Â(ω)ρ̂S[Â
†(ω),Ĝ]}

)
,

(11)

where D̂WC corresponds to the dissipator in Eq. (10). Assum-
ing vanishing dissipative current due to commutation translates
to [Â,Ĝ] = ∑

ω[Â(ω),Ĝ] = ∑
ω[Â

†(ω),Ĝ] = 0, which does
not necessarily result in a vanishing expression in Eq. (11).
However, if Ĝ commutes with all the eigenoperators individ-
ually, the operator current is conserved. One way to meet this
special condition is to set [Ĝ,�̂(ε)] = 0 for every ε implying
that the observable Ĝ must be diagonal in the eigenbasis of
ĤS and hence cannot induce transitions. Again, this does not
hold in general.
Comparison with the singular-coupling limit points to

problemswith the secular approximation. In order to determine
if this is the cause of the nonconservation, we go to an
earlier stage in the derivation of the master equation in
the weak-coupling limit. Without the secular approximation,
the Redfield-type master equation yields a dissipator D̂nonsec

WC,I

in the interaction picture for which

TrS
{
D̂nonsec
WC,I ĜI

} =
∑

ω

�(ω)e−iωtTrS

{
Â(ω)ρ̂S

×
∑
ω′

eiω′t [Â†(ω′),ĜI ]

}
+ c.c., (12)

where ĜI = eiĤS t Ĝe−iĤS t , �(ω) is a specific Fourier
transform of the environment correlation functions, and
c.c. denotes a complex conjugate of the preced-
ing term. Here, the construction of the eigenoperators
yields

∑
ω′ eiω′t [Â†(ω′),ĜI ] = ∑

ω′ [eiĤS t Â†(ω′)e−iĤS t ,ĜI ] =
eiĤS t

∑
ω′[Â†(ω′),Ĝ]e−iĤS t = eiĤS t [Â,Ĝ]e−iĤS t = 0. Hence,

we retrieve the operator current conservation for the vanishing
dissipative current if the secular approximation is not per-
formed.
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C. Weak-coupling limit for adiabatically driven systems

In our last example, a time-dependent external field is
used to drive a weakly coupled system adiabatically. See
Refs. [5,6,16–19] for recent theoretical progress in this field.
Using a superadiabaticmaster equation based on a perturbative
expansion, it has been shown for two-level systems that
the application of the secular approximation here results in
nonconservation of the operator current [20]. The current
was found to be conserved if the secular approximation was
dropped. To account for the exact effect of the steering, we
approach the problem utilizing a modified Floquet mode basis
[19] where the master equation in the Schrödinger picture is
given by

d

dt
ρ̂S = − i

h̄
[ĤS + ĤLS,ρ̂S]+ γ (0)

2
([L̂0,ρ̂SL̂

†
0]

+[L̂0ρ̂S,L̂
†
0])+

∑
α �=β

γ (ωαβ)

2
([L̂αβ,ρ̂SL̂

†
αβ]

+[L̂αβρ̂S,L̂
†
αβ]). (13)

where ĤLS = ∑
αβ S(ωαβ)�̂(β)Â�̂(α)Â�̂(β), L̂0 =∑

α �̂(α)Â�̂(α), L̂αβ = �̂(α)Â�̂(β), and �̂(x) =
|φx(t)〉 〈φx(t)| denotes a projection operator to the xth
modified Floquet mode at time t . The parameters ωαβ denote
the angular frequencies when the modified modes are used,
and the real-valued functions γ (ωαβ) and S(ωαβ) relate to
certain Fourier transforms of the environment correlation
function. Note that the rates and projection operators are time
dependent as they describe dynamics in the Floquet basis.
The generator in Eq. (13) is of the Lindblad form at each time
instant and is obtained by applying the secular approximation.
The derivation is carried out for ĤI = Â ⊗ B̂ but we expect
a similar result for a general decomposition. It turns out that
Eq. (13) does not necessarily result in vanishing dissipative
current for [Â,Ĝ] = 0 and an arbitrary noise source. Similarly
to the nondriven system, in the special case of [Ĝ,�̂(α)] = 0
for every α, the commutation leads to vanishing dissipative
current. The difference in this special condition compared
with the nondriven case is that instead of the observable being
diagonal in the eigenspace of the system Hamiltonian, it needs
to be diagonal in the Floquet basis at all times.

To clarify the role of the secular approximation, we can
rewrite the master equation without applying it. In the inter-
action picture, the resulting Redfield-type dissipator D̂nonsec

driven,I
gives

TrS
{
D̂nonsec
driven,I ĜI

}
=
∑
αα′

�(ωαα′ )e−i
∫ t

0 dt ′ωαα′TrS

{
Û †(α)ÂÛ (α′)ρ̂S

×
∑
ββ ′

ei
∫ t

0 dt ′ωββ′ [Û †(β ′)ÂÛ (β),ĜI ]

}
+ c.c., (14)

where ĜI denotes again the observable in the interaction
picture and Û (x) = |φx(t)〉 〈φx(0)| denotes a propagator for
the xth mode. Note that Â = ∑

ββ ′ �̂(β ′)Â�̂(β) so that in

the interaction picture ÂI = ∑
ββ ′ e

i
∫ t

0 dt ′ωββ′ Û †(β ′)ÂÛ (β).

Hence
∑

ββ ′ e
i
∫ t

0 dt ′ωββ′ [Û †(β ′)ÂÛ (β),ĜI ] = [ÂI ,ĜI ] = 0

since [Â,Ĝ] = 0. Thus, the dissipative current vanishes
indicating conservation.

V. CONCLUSIONS

We introduced a fundamental conservation law of operator
current in open quantum systems ensuring that the current
flowing into the system equals the current obtained by it. For
example, different Lindblad-type master equations stemming
from the secular approximationwere found not to obey the law.
In the future, our analysis provides a basic tool for exploring the
regimes of validity of the different approximations employed
in the reduced-density-operator theory for open quantum
systems. The conservation law is crucial especially in cases
where the operator current is of great interest.
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