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We study the effect of flux noise on the Cooper pair current of a superconducting charge pump. We generalize
the definition of the current in order to take into account the contribution induced by the environment. It turns
out that this dissipative current vanishes for charge noise but it is finite in general for noise operators that do
not commute with the charge operator. We discuss in a generic framework the effect of flux noise and present a
way to engineer it by coupling the system to an additional external circuit. We calculate numerically the pumped
charge through the device by solving the master equation for the reduced density matrix of the system and show
how it depends on the coupling to the artificial environment.

DOI: 10.1103/PhysRevB.85.024527 PACS number(s): 03.65.Yz, 85.25.Cp, 85.25.Dq

I. INTRODUCTION

Geometric phases are ubiquitous in quantum physics. Both
the Abelian Berry phase1 and the non-Abelian2 generalization
were theoretically discovered in the eighties. During the last
decade, there has been renewed interest in their possible use
as tools to manipulate quantum information. The so-called
geometric3 or holonomic quantum computation4 relies on the
fact that it is possible to build unitary transformations which
depend only on geometric properties of an abstract parameter
space. The main advantage of this approach is that such
geometric transformations are robust against certain types of
noise.5,6

While the Berry phase has been observed in many
quantum systems,7–9 clear experimental evidence of the
non-Abelian adiabatic geometric phases is still missing
despite different proposals for their theoretical implemen-
tation.10–16 One of the main reasons for this is that the system
must be cyclically steered in an adiabatic fashion. In other
words, the time to implement a geometric non-Abelian
transformation is long with respect to the dynamical time
scale of the system. This renders it difficult to protect the
system from environmental noise and thus decoherence can
become an issue in the implementation of geometric quantum
computation.
A step toward understanding the effect of the environment

and the robustness of steered quantum evolution was taken
in Refs. 17–19, where it has been shown that ground-state
evolution is robust against relaxation and dephasing induced
by a low-temperature dissipative element.
Among different physical systems, the Cooper pair sluice20

is a promising candidate for studying environmental effects
on geometric phases. In fact, the pumped charge through the
Cooper-pair sluice is known to be directly connected to the
geometric phases.21–24 This has allowed measurement of the
Berry phase in such a system.9 This has paved the way
for ground-state geometric quantum computating in which
the quantum information is manipulated through a geometric
operator but the system is kept in a doubly degenerate ground
state during the whole evolution.24,25

Furthermore, transmon quibits coupled to a supercon-
ducting cavity offer potential systems for the observation
of the non-Abelian phases.26 They constitute the other

superconducting platform in which the Berry phase has been
observed experimentally.8,27,28

The Cooper-pair sluice operates in the charging regime;
i.e., the charging energy dominates over the Josephson energy.
For this reason, the noise induced by charge fluctuations is
likely to be dominant and it has been studied in Refs 17
and 18. In this paper, we analyze the effect of another kind
of noise: flux noise. This can be induced, for example, by a
fluctuating magnetic field. We find that the definition of the
current must be extended to include the contribution induced
by the environment. This dissipative current is directly related
to the symmetry of the system and can be calculated using the
master equation approach.
As a practical application, we discuss the effect of flux

noise on Cooper pair pumping. Instead of a purely theoretical
approach, we study a possible implementation in a realistic
experimental setup. We couple the Cooper-pair sluice to
an artificial noise source produced by an external circuit.
The main advantage of this approach is the possibility of
controlling in situ the coupling strength between the system
and the noise source.
The article is organized as follows. In Sec. II, we derive the

general expression for the current operator, with the emphasis
initially on the symmetries of the problem and then on the
connection with the master equation. In Sec. III, we apply
these results to the pumping process and identify the different
contributions to the current and the pumped charge due to
the environment. We analyze the particular case of flux noise
which perturbs the phase across the superconducting loop.
Section IV presents the circuits for engineering the artificial
flux noise environment. In Sec.V, we discuss how the pumped
charge is influenced by artificial noise.

II. EVOLUTION OF OPERATOR EXPECTATION VALUES

Let us assume that a quantum system is in a state described
by the density matrix ρ̂. The expectation value of a quantum
observable Â is

〈Â〉 = Tr(ρ̂Â) =
∑

i

〈i|ρ̂Â|i〉, (1)

where the last term is the explicit expression in a time-
independent basis {|i〉}. If Â is time independent, the time
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derivative of the expectation value is

d

dt
〈Â〉 =

∑
i

〈i|dρ̂

dt
Â|i〉 = Tr

(
dρ̂

dt
Â

)
. (2)

Using the vonNeumann equationwe obtain thewell-known
Ehrenfest theorem

d

dt
〈Â〉 = − i

h̄
Tr(ρ̂[Â,Ĥ ]), (3)

where Ĥ is the Hamiltonian which determines the dynamics.
The above equation allows the definition of the current
associated with the Â operator, that is, it describes the
respective temporal change. The definition reduces to the case
of the electric current if Â is selected as the charge operator.
The obtained result is valid for a general quantum system.

Let us consider the case in which the total system is composed
of the subsystem S and the environment E. We are interested
in the dynamics and observables related to the subsystem S.
To simplify the discussion, in the following, we refer to S

simply as the system. The total Hamiltonian can be written
as Ĥ = ĤS + ĤE + ĤI , where ĤS denotes the Hamiltonian
of the system, ĤE is the Hamiltonian of the environment,
and ĤI describes the interaction between the system and the
environment. The Â operator acts only on the system space,
i.e., [ĤE,Â] = 0, and from Eq. (3) we obtain

d

dt
〈Â〉 = − i

h̄
{Tr(ρ̂[Â,ĤS])+ Tr(ρ̂[Â,ĤI ])}. (4)

The trace in Eq. (4) is over all the degrees of freedom and can
be split into the trace over the degrees of freedom of the system
and the environment: Tr(Â) = TrS[TrE(Â)]. By noticing that
both Â and ĤS act only on the system degrees of freedom and
that TrE(ρ̂) = ρ̂S (where ρ̂S is the reduced density operator of
the system), we obtain

d

dt
〈Â〉 = − i

h̄
{TrS(ρ̂S[Â,ĤS])+ Tr(ρ̂[Â,ĤI ])}. (5)

The two contributions in the current associated with Â

have different origins. The first term on the right-hand side
of Eq. (5) resembles the current for an isolated system. In fact,
if the system does not interact with the environment, ĤI = 0,
this is the only contribution present. The second term can
be interpreted as an additional contribution to the current due
to the interaction with the environment. In the following, we
refer to the two contributions as the system current and the
dissipative current, respectively.
The case in which ĤI commutes with the Â operator

is particularly interesting. Here the dissipative contribution
to the current vanishes. However, the interaction with the
environment influences the evolution of ρ̂S and thus it can
modify the current.

A. Connection to the master equation

Equation (5) is written in order to emphasize the symmetry
of the problem. However, if the system and the environment
have no particular symmetry, it cannot be used in general to
estimate analytically the contribution of the dissipative current
since the calculation involves the full density operator.

The dynamics of the reduced density matrix of the system
ρ̂S is obtained by writing the formal solution of the von
Neumann equation, expanding it in powers of the system–
environment coupling, and then taking the trace with respect
to the environmental degrees of freedom.29 With this procedure
we arrive at a standard form of the master equation,

dρ̂S

dt
= − i

h̄
[ĤS,ρ̂S]+ L̂, (6)

where L̂ includes all the contributions due to the environment.
We can apply this formalism to the case discussed above. As

assumed in the derivation of the master equation, TrE(
dρ̂

dt
) =

dρ̂S

dt
, and thus, Tr( dρ̂

dt
Â) = TrS{TrE( dρ̂

dt
Â)} = TrS(

dρ̂S

dt
Â). Using

this result, Eqs. (2), and (6), we have

d

dt
〈Â〉 = − i

h̄
TrS([ĤS,ρ̂S]Â)+ TrS(L̂Â). (7)

The first contribution on the right-hand side matches with
the system current in Eq. (5), and hence, we have an explicit
expression for the dissipative current:

− i

h̄
Tr(ρ̂[Â,ĤI ]) = TrS(L̂Â). (8)

This equation allows us to calculate the dissipative contribution
to the current using the expression of L̂ from the master
equation for the reduced system dynamics.
This analysis has similarities to the one presented in

Refs. 30–32 in the specific case of the usual current operator
associatedwith the charge operator. Equation (8) has important
implications involving the conservation of physical quantities
during dissipative evolution as discussed in Ref. 33.

III. APPLICATION TO CHARGE PUMPING

The above analysis helps us to set the framework for
discussing the pumping process in the presence of an envi-
ronment. We consider the Cooper-pair sluice20,34,35 shown in
Fig. 1. It consists of a superconducting island separated by
two superconducting quantum interference devices (SQUIDs)
with controllable effective Josephson energies JL,R . The
electrostatic potential on the island can be controlled by
varying the gate voltage Vg . The experimental access to the
parameters JL,R and Vg allows for full control of the quantum
system and makes it an excellent prototype for different
applications. Several steps have been taken in the study of
the connection between Cooper-pair pumping and geometric
phases, in both its Abelian9,22 and its non-Abelian version,23–25

the robustness of the ground-state pumping,17–19,36–38 and
the geometric Landau–Zener–Stückelberg interferometry.39

Analogous systems have been studied for the relations between
pumping and topological phases.40,41

The Hamiltonian of the sluice ĤS is the sum of the
charging Hamiltonian Ĥch = EC(n̂ − ng)2 and the Josephson
Hamiltonian34,42

ĤJ = −JL cos

(
ϕ̂

2
− θ̂

)
− JR cos

(
ϕ̂

2
+ θ̂

)
, (9)

where ϕ̂ = ϕ̂R + ϕ̂L is the superconducting phase difference
between the two leads, ng = CgVg/(2e) is the normalized gate
charge, EC = 2e2/C� is the charging energy of the sluice, Cg
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FIG. 1. (Color online) (a) Circuit diagram of the Cooper-pair sluice (left) and the artificial environment circuit (right). The experimentally
controlled parameters are JL,R and ng , ϕ = 2π�/�0 is the phase difference across the device, and �0 is the flux quantum. The system is
coupled to the artificial environment through mutual inductanceM . The engineered environment is composed of a resistor R associated with a
voltage source δV , an inductor L, and an experimentally controllable SQUID. The SQUID allows us to change the effective noise spectrum of
the environment. (b) Time dependence of the parameters JL,R and ng during a Cooper-pair pumping cycle.

is the gate capacitance, and C� is the total capacitance of
the island. We denote by n̂k = −i∂ϕk

(k = L,R) the Cooper-
pair number operator of the kth SQUID, and by θ̂ = (ϕ̂R −
ϕ̂L)/2 and n̂ = −i∂θ the operators for the superconducting
phase and the number operator of excess Cooper pairs on
the island. If the device operates in the charge regime, i.e.,
EC � max{JL,JR} = JM

L,R , and the gate parameter is close
to a half-integer, only the two lowest energy charge states
are important for the dynamics and we can adopt the two-
state approximation. Let |0〉 and |1〉 denote the states with
no and one excess Cooper pair on the island, respectively.
For the system under consideration, it is convenient to reduce
the Hilbert space, restricting it to states with well-defined ϕ.
In this case, ϕ = 2π�/�0 can be treated as a real number
and it is determined by the magnetic flux through the large
superconducting loop � in Fig. 1(a).
Starting from the definition of the charge operator through

the kth SQUID Q̂k = −2en̂k , the discussion in Sec. II can
be interpreted in terms of physical quantities. If the dynamics
is influenced by the environment, the average total current
through the kth SQUID is

〈
Î totk

〉 = d

dt
〈Q̂k〉 = 2ie

h̄
TrS(ρ̂S[n̂k,ĤS])

+ 2ie

h̄
Tr(ρ̂[n̂k,ĤI ]). (10)

The current operator for a closed system is usually defined
as Îk = 2ie

h̄
[n̂k,ĤS] and it corresponds to the first term on the

right-hand side in Eq. (10) (see Ref. 22). Using Eq. (8), we
have 〈

Î totk

〉 = TrS(ρ̂S Îk)+ TrS(L̂Q̂k). (11)

The second contributions in Eqs. (10) and (11) represent an
additional dissipative current,

〈
Î dissk

〉 = 2ie

h̄
Tr(ρ̂[n̂k,ĤI ]) = TrS(L̂Q̂k), (12)

induced by the environment.
It is convenient to write Eq. (11) in the eigenbasis of

ĤS . Let |g〉 and |e〉 be the eigenstates of ĤS and Mmn =
〈m|M̂|n〉, with m,n = g,e for any operator M̂ . Equation (11)

becomes〈
Î totk

〉 = ρS,ggIk,gg + ρS,eeIk,ee + (Qk,gg − Qk,ee)Lgg

+ 2�e(ρS,geIk,eg)+ 2�e(LgeQk,eg), (13)

where we have used the fact that, from the symmetries of the
master equation, Lee = −Lgg and Leg = L∗

ge. We identify
the first line as the dynamic current and the second one as
the geometric current. Both are composed of standard contri-
butions ID

k = ρS,ggIk,gg + ρS,eeIk,ee and IG
k = 2�e(ρS,geIk,eg)

and dissipative contributions ID,diss
k = (Qk,gg − Qk,ee)Lgg and

I
G,diss
k = 2�e(LgeQk,eg). The pumped charge through the kth
SQUID is defined as

QG
k = 2

∫ Tad

0
�e(ρS,geIk,eg)dt + 2

∫ Tad

0
(LgeQk,eg)dt, (14)

and it is also composed of a standard and a dissipative part.
In the rest of the paper, we consider the current operator

for the average current across the device Î tot = (Î totL + Î totR )/2.
The standard contributions can be obtained directly from
Eq. (10) and explicitly read ÎL = (2e/h̄)JL sin(ϕ/2− θ̂ ) and
ÎR = (2e/h̄)JR sin(ϕ/2+ θ̂ ). The dissipative contributions to
the current can be calculated using the last term on the right-
hand side of Eq. (11). However, general expressions similar
to the standard contributions do not exist since the dissipative
parts depend on the characteristics of the environmental noise
and the form of the master equation used. If such details are
specified, Eq. (14) allows us to calculate the corresponding
average geometric charge QG = (QS

L + QS
R)/2, which is the

physical observable in our case.
Note that the dissipative contributions I

D,diss
k and I

G,diss
k

are typically small with respect to ID
k and IG

k . If λ is the
effective coupling between the system and the environment,
the dissipative contribution in the master equation L̂ scales as
λ2. Since the master equation, (6), is derived in the limit of
weak coupling between the system and the environment, we
expect a small contribution in Eq. (13) from the dissipative
currents. However, there can be cases in which the dissipative
contributions could be detectable if we reduce ID

k and IG
k .

A. Charge noise environment

When the system is in the charge regime, the main source
of noise originates from the fluctuations of the gate voltage.
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References 17–19 focus on the study of this charge noise
induced by the environment. If we write the Cooper-pair
number operator and the charge on the island as n̂ = n̂L −
n̂R and Q̂ = −2en̂, respectively, the corresponding system–
environment interaction is ĤI = −2eλn̂ ⊗ δV̂ , where λ is
the system–environment coupling constant and δV̂ acts on
the environment degrees of freedom.17,18 The operators n̂k

commute with n̂, and from Eq. (10), there is no dissipative
current 〈Î dissk 〉 through the kth SQUID and no dissipative
contribution to the average current. Therefore, the current
is described by the usual definition of the current operator
through the SQUIDs, that is, the first term on the right-hand
side of Eq. (10), and the corresponding usual current operator
across the device.17,18 Nevertheless, the transferred charge is
influenced by the environment since, as discussed in Sec II,
even if the dissipative current vanishes, the total current is
modified by the interaction with the environment through the
dynamics of ρ̂S .
For our result to be consistent, we must check that Eq. (8) is

satisfied. Since no dissipative current can be induced by charge
noise, i.e., [Q̂,ĤI ] = 0, Eq. (8) requires that the term TrS(L̂Q̂)
calculated from the master equation vanishes. This can be
verified by a direct calculation using the master equations
as discussed in Appendix A. However, this result depends
critically on the form of the master equation used and the
approximations done. In Refs. 17–19 and 36, the master
equation was obtained keeping the nonsecular terms and this
procedure produces the expected result. In a similar way, it
can be verified that if we use the secular approximation29

and perform the same calculation, we obtain TrS(L̂secQ̂) �= 0.
This result is in contradiction with the one based simply on a
symmetry argument stating that, since [ĤI ,Q̂] = 0, we do not
have a dissipative contribution to the current. This observation
is enough to state that the secular approximation is not feasible
in the description of Cooper-pair pumping as has already been
pointed out earlier.17,18 The obtained result is closely related to
the general framework of the conservation of operator currents
that was introduced in Ref. 33 for essentially any quantum
system.

B. Flux noise in a Cooper-pair sluice

If the Cooper-pair sluice is subject to flux noise, the
dissipative contribution to the current is finite and, hence,
requires further analysis. As an example, we consider the case
in which the fluctuations of the magnetic flux through the outer
loop influence the total phase across the sluice ϕ. We refer to
this as phase bias noise.
We consider small phase fluctuations in the vicinity of

the static point ϕ0 so that the total phase is
ϕ

2 = ϕ0
2 + δϕ,

with δϕ � ϕ0. The total Hamiltonian is ĤJ = ĤJ (ϕ0)+ δĤJ ,
with

δĤJ =
[
JL sin

(
ϕ0

2
− θ̂

)
+ JR sin

(
ϕ0

2
+ θ̂

)]
δϕ

2
. (15)

With the two-state approximation, we can write this in
terms of the excess of Cooper pairs on the island {|0〉,|1〉}.
Using the formulas eiθ̂ = |1〉〈0| and e−iθ̂ = |0〉〈1|, we

have

δĤJ = (δJ ∗|0〉〈1| + δJ |1〉〈0|)δϕ
2

, (16)

where δJ = (sin ϕ0
2 J+ + i cos ϕ0

2 J−) and J± = JL ± JR .
Equation (16) can be interpreted as the system-environment

interaction Hamiltonian when δϕ are induced by the environ-
ment. Note that the operator acting on the system degrees of
freedom is ĤI,S = δJ ∗|0〉〈1| + δJ |1〉〈0|. The charge operator
on the island is Q̂ = −2e|1〉〈1|, and since [ĤI,S,Q̂] �= 0, we
must include the contribution of the dissipative current. As
discussed above, this contribution can be calculated using the
master equation approach. To this end, we can employ the
general form of the master equation presented in Ref. 17.
The only difference resides in the matrix elements of the
coupling operator 〈m|ĤI,S |n〉, where |n〉 and |m〉 are the
time-dependent eigenstates of the sluice Hamiltonian ĤS , and
in the spectral density function of the environment. The latter
is defined as Sϕ(ω) = ∫∞

−∞ dτ 〈δϕ(τ )δϕ(0)〉eiωτ and it can be
calculated from the correlation function 〈δϕ(τ )δϕ(0)〉 of the
phase fluctuations.

IV. ENGINEERED ENVIRONMENT FOR PHASE
BIAS NOISE

To determine experimentally and discriminate the effect of
environmental noise on Cooper-pair pumping, we should be
able to control several properties of the environment. This is
possible if, in addition to the natural environment, the system
is coupled to an engineered source of noise.
A schematic description of the circuit used for the imple-

mentation of such a phase bias environment is presented in
Fig. 1. The main source of noise is the thermal resistor R with
noise voltage δV . This circuit is coupled to the system by
mutual inductanceM and thus it perturbs the phase across the
device. To modify the effects of the environment we introduce
a control SQUID. By controlling the flux threading it, we can
change the current noise in the circuit which is coupled to the
system.
The control SQUID can be represented by an RLC

parallel circuit with resistance RS , inductance LS , and ca-
pacitance CS . The impedance of a single SQUID is ZRLC =

RSZCS
ZLS

RSZCS
+ZLS

ZCS
+RSZLS

= iLS (φ)ωRS

iLS (φ)ω+RS(1−LS (φ)ω2CS) , where ZLS
and

ZCS
are the impedances associated with the inductance LS

and capacitance CS , respectively. The SQUID inductance
LS(φ) = L0/ cos(πφ/�0) can be controlled by changing the
normalized flux through the SQUID φ/�0. The constant
component depends on the maximum critical current of the
SQUID IC : L0 = h̄/(2πeIC). Given ZRLC , we can calculate
the total impedance of the circuit Ztot = ZRLC + ZR + ZL,
where ZR and ZL are the impedances of the resistor and
inductor, respectively.
We consider a cold resistor with a cutoff frequency much

higher than the typical transition energy of the system �,
i.e., � � kBTR and � � ωc, where ωc, and TR are the
cutoff frequency and the temperature of the noise source,
respectively. In this limit, the spectral density of the Johnson-
Nyquist voltage noise across the resistor is SV (ω) = 2h̄ωR

for ω � 0 and SV (ω) = 0 for ω < 0. We obtain the spectral
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density of the current noise SI (ω,φ) = SV (ω)/|Ztot|2 as

SI (ω,φ) = 2Rh̄ω[
ω2LS (φ)2RS

R2S (1−CSω2LS (φ))2+ω2LS (φ)2
+ R

]2 + ω2
[ LS (φ)R2S (1−CSω2LS (φ))

R2S (1−CSω2LS (φ))2+LS (φ)2R2S
+ L

]2 . (17)

The flux noise spectrum is S�(ω,φ) = M2SI (ω), and hence,
the phase noise spectrum reads

Sϕ(ω,φ) = 4π2M2SI (ω,φ)

�2
0

. (18)

The behavior of Sϕ(ω,φ) as a function of the SQUIDfluxφ and
for a fixed frequency ωm is shown in Fig. 2(a). The spectrum
shows two resonances at φ/�0 = 1/2,3/2 and it reflects the
behavior of the control SQUID inductance LS(φ). At these
points the artificial environment is maximally decoupled.
It is useful to analyze in detail the behavior of the spectrum

near the resonance φ/�0 = 1/2. The spectral density function
in Eq. (18) for realistic circuit parameters used in the numerical
simulations (see Fig. 2) is well approximated by

Sϕ(ωm,φ) = 8π2M2Rh̄ωm

�2
0

{
R2 + L2ω2m

[
1− L0

πL(φ/�0−1/2)
]2} . (19)

This expression allows us to calculate the positions and the
values of the maximum and the minimum of the spectral
density function. The maximum is found at φmax/�0 =
1/2+ L0/(πL) and it is Smaxϕ (ωm,φmax) = 8π2M2h̄ωm

R�2
0
. The

minimum can be obtained from Eq. (17) in the limit
φ/�0 → 1/2 and it is denoted Sminϕ (ωm,1/2). The width
of the drop is given by the difference φmax/�0 − 1/2 =
L0/(πL). It is determined by the ratio between the minimum
inductance of the SQUID and the inductance of the circuit
[see inset in Fig. 2(a)]. Using the circuit parameters in
Fig. 2, we can estimate the decrease in the noise spectrum
at the minimum: Sminϕ (ωm,1/2)/Smaxϕ (ωm,φmax)} ≈ 10−4 and
Sminϕ (ωm,1/2)/Sϕ(ωm,0) ≈ 10−3. This means that we can

reduce the strength of the system-environment interaction and
effectively decouple the system from the artificial noise source.
The noise influences the circuit at a frequency equal to the

energy gap� in the system. In steered evolution� changes in
time and so does the coupling frequency. To have an estimate
of this effect, Fig. 2(b) shows the change in the spectrum as the
ratio Sϕ(ω,φ)/Sϕ(ω,0) for the range of frequencies� spanned
in the evolution during the cycle in Fig. 1(b). Here controlling
the SQUIDdrastically reduces the strength and spectral density
of the noise during evolution.
We note that the corresponding decoherence processes

induced by artificial noise are stronger than those naturally
produced by the flux noise typically observed in experiments
(see Appendix B). For this reason, we neglect the effects of
the latter and consider only the decoherence induced by the
engineered environment.
In the following we also neglect charge noise. An estimate

of the artificial flux noise strength (see Appendix B) shows
that, on average, it is stronger than the charge noise except
that near the resonance points of Sϕ(ω,φ). Thus, the effect
of artificial flux noise near these regions would be partially
hidden. To observe clearly the influence of flux noise for all
values of φ, it is necessary to reduce the charge noise or to
further increase the strength of the flux noise coupling, i.e.,
increase the mutual inductance.

V. NUMERICAL RESULTS

Let us study the effect of the artificial noise on the pumped
charge in the device shown in Fig. 1(a). The SQUID energies
and the gate voltage are modulated within the adiabatic time
Tad = 1/f , where f is the pumping frequency. The system is
initialized in the ground state and the dynamics is obtained by
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φ/�0 for frequency ωm = 1.7× 1010 s−1. Inset: A zoom near the resonance point φ/�0 = 1/2. Dashed lines show the region delimited by the
minimum and maximum Sϕ(ωm,φ). Its width is given byL0/(πL). (b) The ratio Sϕ(ω,φ)/Sϕ(ω,0) for φ/�0 = 0.5 (solid line), φ/�0 = 0.4991
(dashed line), and φ/�0 = 0.5003 (dot-dashed line). The shaded region denotes the frequency range spanned during the typical pumping
cycle shown in Fig. 1(b): 1.7× 1010 s−1 � ω � 7.9× 1010s−1. The parameters of the artificial noise are R = 30 �, RS = 500 �, CS = 50 fF,
IC = 25 μA, and L = M = 0.69 nH.
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SOLINAS, MÖTTÖNEN, SALMILEHTO, AND PEKOLA PHYSICAL REVIEW B 85, 024527 (2012)

0.0 0.2 0.4 0.6 0.8 1.0
0.0010

0.0005

0.0000

0.0005

0.0010

t Tad

In,
di

ss
I m

ax
G

(a)

0.0 0.5 1.0 1.5 2.0

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0

Q
2e

0.504
0.86

1

0

Q
2e

(b)

φ

φ

FIG. 3. (Color online) (a) Dynamic dissipative currents ID,diss (solid line) and geometric dissipative currents IG,diss (dashed line) normalized
to the maximum geometric current IG

max during the pumping cycle. The maximum geometric current during one cycle is IG
max = 0.5 nA and the

control SQUID of the environmental circuit is open with φ/�0 = 1. (b) Pumped charge as a function of the flux through the control SQUID
of the artificial environment circuit. Inset: Behavior near one of the resonance points. Dashed lines are determined from Fig. 2(a) and they are
located at the minimum φ/�0 = 1/2 and at φ/�0 = 1/2± L0/(πL) of the spectral density function. In numerical simulations, the phase bias
is ϕ0 = π/2, the pumping frequency is f = 150 MHz, and the device parameters are JM

i /EC = 0.1, J m
i /J M

i = 0.03 (with i = L,R), nM
g = 0.8

nm
g = 0.2, and EC/kB = 1 K [EC/(2πh̄) = 21 GHz].

solving themaster equation for the reduced density operator up
to the first order in the adiabatic parameter.17,18 The pumping
cycle is repeated until the system reaches the steady-state
solution ρS(t + Tad) = ρS(t). We assume that the dissipative
source R is at such a low temperature that the environment
cannot excite the system.
In Fig. 3(a), we show the time dependence of the dissipative

dynamic and geometric currents induced by the phase bias
noise. Curves correspond to dissipative currents flowing
through the circuit when the system reaches the steady-
state solution. The dissipative currents are about 3 orders
of magnitude smaller than the total geometric current. The
corresponding dissipative pumped charge is almost 0. This
is not surprising since we are analyzing the system in the
steady-state solution, and since the dissipative currents have
no favored direction, the corresponding charge averages out
over many pumping cycles. The dissipative contributions are
significantly greater during the first pumping cycles when the
system is still far from steady state.
In Fig. 3(b), we present the stationary pumped charge under

the influence of artificial flux noise. The tuning parameter
is the flux of the control SQUID φ/�0, which allows us
to effectively change the system-environment coupling. As
shown, the pumped charge is almost constant except near the
resonance points φ/�0 = 1/2, 3/2. The global behavior of
the pumped charge and its drop at the resonance points can
be physically explained keeping in mind that here the system-
environment coupling is effectively suppressed [Fig. 2(a)]. The
stationary pumped charge is determined by two competing
effects. Nonadiabatic transitions tend to excite the system,
while the relaxation induced by the environment tends to
keep the system in the ground state. Since the ground and
excited states pump in opposite directions, the first effect
reduces the pumped charge while the second one stabilizes
it near the expected value of one Cooper pair per cycle.17,18,43

The stationary solution is reached after many pumping cycles
when the two effects are in balance. Away from the resonance
points, the spectrum is almost constant, producing a constant
pumped charge. At the resonances, the results in Fig. 3(b)
reflect the fact that, since we are effectively decreasing the

system-environment coupling, nonadiabatic excitations be-
come more important. Correspondingly, the excited-state
component is enhanced in the final steady state and we observe
a smaller pumped charge. The maximum drop of the pumped
charge is (Qmax − Qmin)/Qmax ≈ 15% and the drop from the
pumped charge away from the resonance (Q0 − Qmin)/Q0 ≈
10% [Q0 = Q(φ = 0)].
However, the details of the pumped current in the proximity

of resonances are different from those exhibited by the
environment spectrum Sϕ(ω,φ). This reflects the fact that the
pumped charge is an observable that can be influenced bymany
effects. In particular, the pumped charge first increases near the
resonance points, before decreasing. It has clearly nontrivial
behavior [inset in Fig. 3(b)]. One possible explanation of this
behavior is the influence of Landau-Zener-Stückelberg (LZS)
interference.39 During the pumping cycle in Fig. 1(b), the
system crosses two avoided crossings where ng = 1/2. Near
these points Landau-Zener transitions occur and the phase dif-
ference between the excited and the ground state accumulated
in the intermediate region leads to interference effects. The
overall result is a change in the ground-state population and
thus the pumped charge. In the present model, the phase bias
is kept constant but artificial noise can effectively induce a
change in the accumulated phase difference and hence in the
LZS interference. If the system is initially in the ground state,
the probability of exciting it due to LZS interferometry after
one cycle is Pe = PLZ(1− PLZ) cos2(α + ϕ/2), where PLZ

is the Landau-Zener transition probability and α depends on
the energy gap and on the pumping frequency.39 If δϕ is the
perturbation on the constant phase bias ϕ0 = π/2, we have
ϕ/2 = π/4+ δϕ. The average of the excitation probability
during a loop is

Pe ≈ P0e + 1
2PLZ(1− PLZ) sin(2α)〈δϕ2〉, (20)

where P0e is the excitation probability without noise, 〈δϕ2〉
is the average of the square phase fluctuation, and we have
assumed 〈δϕ〉 = 0. We calculated the contribution due to the
noise as 〈δϕ2〉 = ∫ ωM

ωm
Sϕ(ω,φ)dω, and as a function of the

control flux φ, and observe that it behaves as Sϕ(ω,φ) as a
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function of φ. The probability of remaining in the ground state
is Pg = 1− Pe and its dependence on the control SQUID flux
φ is inverted with respect to S(ω,φ). This means that when
the strength of the noise spectrum increases because of the
LZS effect, the ground state is less populated and the pumped
charge decreases. The final behavior of the pumped charge
as a function of φ is determined by the noise spectrum, the
LZS interference, and their relative strength integrated over
the pumping cycles.
Note that for numerical simulationswe have used themaster

equation which includes only the first-order contribution in the
perturbative adiabatic parameter.17,18 To obtain a more accu-
rate value of the pumped charge a different master equation
which includes high-order corrections can be used.19,36

VI. CONCLUSIONS

In summary, we have presented a study of flux noise
on the Cooper-pair pumping process. First, we showed that
in the presence of flux noise the current operator must be
modified in order to take into account the current induced
by the environment. This dissipative current is related to the
symmetry of the system and can be calculated from the master
equation for the reduced density matrix.
Second, we analyzed the effects of phase bias noise on

Cooper-pair pumping. In the model studied, the noise is
produced by an artificial environment coupled to the system
by mutual inductance. The advantage of this scheme is that,
introducing a control SQUID in the environmental circuit,
we have access to the system-environment coupling and can
essentially decouple the system from the environment. The
pumped charge obtained by solving themaster equation clearly
shows the features induced by noise.
The system presented here operates in the charge regime

and it is then primarily sensitive to charge noise. For this
reason, it can be challenging to experimentally measure
the predicted effect because it can be partially hidden by
the charge noise. However, there are several modifications
which can increase the experimental accessibility: reducing
the effect of charge noise and increasing the mutual inductance
coupling with a different design of the artificial noise circuit.
For example, using multilayer lithographic techniques, it is
possible to increase the coupling between the system and the
environment.
This work is a step toward understanding the effect of

different types of noises on steered superconducting devices.
Such understanding is critical for practical applications such
as metrology and quantum information processing. A deeper
knowledge of the effect of the environment can open a way
to the design and implementation of robust devices or, in the
case of quantum information, error correction techniques.
In this direction, the pioneering experimental works of

implementing engineered environments have been carried
out using trapped ions.44,45 One of the most striking results
of these experiments was the proof that it is possible to
store quantum information in states which are robust against
decoherence.45 Still, apart from a few theoretical proposals,18

similar experiments are missing in condensed matter systems.
Along these lines, the next step is to analyze the effect

of similar flux noise sources on superconducting devices in

different regimes. For example, in the transmon regime the
system is insensitive to charge noise, and flux noise becomes
the dominant source of noise.46 Thus, using the discussed
engineered environment, we should be able to study and
measure the environmental effect in controlled situations.

ACKNOWLEDGMENTS

We received funding from the European Community’s
Seventh Framework Programme under Grant Agreement No.
238345 (GEOMDISS). We acknowledge the Academy of
Finland, Emil Aaltonen Foundation, Väisälä Foundation, and
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APPENDIX A: ABSENCE OF DISSIPATIVE CURRENT
WITH A CHARGE NOISE ENVIRONMENT

By using Eq. (8) we can check by a direct calculation
that, when the system is subjected to charge noise, there
is no dissipative current contribution. When the system is
adiabatically steered along a cyclic loop, themaster equation is
conveniently written in the time-dependent eigenbasis of ĤS .
There are several equivalent approaches17–19,36 exploiting the
two-level approximation in the weak coupling limit. Since the
present calculation can be done in an abstract way without
explicitly taking into consideration the form of ĤS , it is
convenient to use the master equation in the superadiabatic
basis representation,19,36 which is easier to manipulate.
Let D̂1 be the operator which diagonalizes ĤS in a fixed

basis. Then the dynamics of the closed system are effectively
governed by ĤS,1 = D̂

†
1ĤSD̂1 + h̄ŵ1, where ŵ1 = −iD̂

†
1
˙̂D1.

Defining D̂2 as the diagonalizing operator for ĤS,1 allows us
to define a new effective Hamiltonian as ĤS,2 = D̂

†
2ĤSD̂2 +

h̄ŵ2, where ŵ2 = −iD̂
†
2
˙̂D2. If the evolution is sufficiently

slow, that is, |ŵ2| � |ŵ1|, we may approximate ĤS,2 ≈
D̂

†
2ĤSD̂2, yielding an effectively nonsteered picture. Denot-

ing the superadiabatic basis {|g〉 = D̂1D̂2|0〉,|e〉 = D̂1D̂2|1〉},
where {|0〉,|1〉} defines the fixed basis, yields amaster equation
in the Schrödinger picture as

dρgg

dt
= −(�ge + �eg)ρgg + �e{�̃0ρge} + �eg, (A1)

and

dρge

dt
= i�ρge − (�̃+ + �̃−)ρgg

(
�eg

2
+ �ge

2
+ �ϕ

)
ρge

+ (�α + �β)ρeg + �̃+, (A2)

where ρrs = 〈r|ρ̂S |s〉with r,s ∈ {g,e}, and� = (Ee − Eg)/h̄.
If ĤI = Ẑ ⊗ X̂, where Ẑ and X̂ are the operators acting on the
systemand the environment, respectively, the rates inEqs. (A1)
and (A2) are defined as

�ge = |〈e|Ẑ|g〉|2
h̄2

S(−�),

�eg = |〈e|Ẑ|g〉|2
h̄2

S(+�),

�̃0 = 〈e|Ẑ|g〉(〈g|Ẑ|g〉 − 〈e|Ẑ|e〉)
h̄2

S(0),
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�̃± = 〈g|Ẑ|e〉(〈e|Ẑ|e〉 − 〈g|Ẑ|g〉)
2h̄2

S(±�),

�ϕ =
( |〈e|Ẑ|e〉|2

2h̄2
+ |〈g|Ẑ|g〉|2

2h̄2
− 〈g|Ẑ|g〉〈e|Ẑ|e〉

h̄2

)
S(0),

�α = 〈g|Ẑ|e〉2
2h̄2

S(�),

�β = 〈g|Ẑ|e〉2
2h̄2

S(−�). (A3)

The spectral density is denoted S(ω) = ∫∞
−∞ dτ 〈X̂(τ )

X̂(0)〉eiωτ . Note that Eqs. (A1) and (A2) still contain the
nonsecular terms.
We can write the superadiabatic states in a general form as

|g〉 = cos θ |0〉 + sin θeiφ|1〉,
(A4)

|e〉 = sin θ |0〉 − cos θe−iφ|1〉,
where θ and γ are time-dependent functions. We consider
a generic diagonal noise operator in the charge basis, Ẑ =
a|1〉〈1| + b|0〉〈0| for a,b ∈ R. Expressing the charge operator
of the island as Q̂ = −2e|1〉〈1| and the noise operator Ẑ in the
time-dependent basis (A4), we have

Q̂ = −2e[sin2 θ |g〉〈g| + cos2 θ |e〉〈e|
− cos θ sin θ (|e〉〈g| + |g〉〈e|)] (A5)

and

Ẑ = (a cos2 θ + b sin2 θ )|g〉〈g|
+ (b cos2 θ + a sin2 θ )|e〉〈e|
× (a − b) cos θ sin θ (|e〉〈g| + |g〉〈e|). (A6)

At the same time the Lij terms in Eq. (7) can be read directly
from the dissipative part of the master equation,

Lgg = −(�ge + �eg)ρgg + �e{�̃0ρge} + �eg,

Lge = −(�̃+ + �̃−)ρgg −
(

�eg

2
+ �ge

2
+ �ϕ

)
ρge

+ (�α + �β)ρeg + �̃+. (A7)

Thus we have all the elements to calculate the dissipative
current

TrS(L̂Q̂) = (Qgg − Qee)Lgg + 2�e(LgeQeg). (A8)

By explicitly writing the transition rate in Eq. (A3) for the
noise operator Ẑ and inserting all the contributions in Eq. (A8),
we verify that TrS(L̂Q̂) = 0. These results are valid for any
perturbation operator diagonal in the {|0〉,|1〉} basis and thus
for the charge noise discussed in Sec. III A. The same result
can be obtained using the master equation in the adiabatic
basis.17,18

It is interesting that the condition TrS(L̂Q̂) = 0 depends
critically on the form of the master equation. As an example,
we consider the same problem, but we perform the usual
secular approximation.29 The correctness of the secular ap-
proximation in the analysis of the charge pumping has been
questioned17,18 since it has been shown that it can lead to

unphysical results such as charge nonconservation. Themaster
equation after the secular approximation reads

dρsecgg

dt
= −(�ge + �eg)ρ

sec
gg + �eg (A9)

and

dρsecge

dt
= i�ρsecge −

(
�eg

2
+ �ge

2
+ �ϕ

)
ρsecge . (A10)

In this case, it can be shown that a calculation similar
to the one above gives nonvanishing dissipative current
since TrS(L̂secQ̂) �= 0. This result is in contradiction to the
result based on the symmetry argument. Similar results
can be obtained in a more formal framework as discussed
in Ref. 33.

APPENDIX B: ARTIFICIAL AND NATURAL
DECOHERENCE RATES

In addition to the artificial environment discussed in
Sec. IV, we should also take into account the effect of natural
flux noise. It is sufficient to consider the generic decoherece
rate �(φ) = |〈i|δĤ |j 〉/h̄|2Sϕ(ω,φ), where Sϕ(ω,φ) is the
spectral density function of the environment. The matrix
element |〈i|δĤ |j 〉|2 is associated with the relaxation process if
i �= j and with the dephasing if i = j . The order of magnitude
of |〈i|δĤ |j 〉/h̄|2 for the pumping cycle in Fig. 1(b) can be
estimated using Eq. (16) as (JM/h̄)2. Combining this with the
values of Sϕ(ω,φ), we have an estimate of the decoherence
times (both dephasing and relaxation), τ (φ) = 1/�(φ).
During the pumping cycle the system energy gap changes

in time17,18 and the minimum energy gap is reached near the
degeneracy points where ng = 1/2. For the majority of the
evolution time, the system frequency is close to its maximum
ωM = 7.9× 1010 s−1. We can use this reference frequency to
estimate the decoherence rates. The minimum and maximum
values of the spectral density function at ωM are Sminϕ = 2.8×
10−15 s and Smaxϕ = 3× 10−12 s. The estimated relaxation and
dephasing times with the parameters used in the numerical
simulation (see caption to Fig. 3) are τmin ≈ 1.9 ns and τmax ≈
2 μs.
For charge noise, the decay and dephasing times can be

estimated as in Ref. 17 and they are of the order 10 ns. Thus,
artificial flux noise is the dominant source of noise except that
near the resonance points of Sϕ(ω,φ).
The effect of the natural environment can be estimated from

the experimental results of the decoherence time for devices
affected by flux.47–49 We focus on the effect of ubiquitous 1/f
noise. In this case, measurements of the decoherence induced
by such noise suggest that the decay has a Gaussian and not
an exponential shape.48,49 Note that, strictly speaking, this
implies that it cannot be described by a linear master equation.
However, a phenomenological approach has been applied.47

The effective dephasing rate is � = √
Aϕ ln 2|∂�/∂ϕ|, where

the spectral density function for 1/f noise is Sϕ(ω) = Aϕ/|ω|
and � is the frequency of the system. A maximum of
|∂�/∂ϕ| is obtained when the system is at the degeneracy
point, i.e., ng = 1/2 and only the Josephson contribution
is present in the Hamiltonian [see Eq. (9)]. In this case,
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� =
√

J 2R + J 2L + 2JRJL cosϕ/h̄ and we can approximate
JR ≈ JM � JL ≈ Jm. From the measured amplitude of the
magnetic flux spectrum A� = (1.7μ�0)2, we can calculate
the amplitude of the phase spectrum Aϕ = 4π2A�/�2

0. Thus,

we obtain the dephasing time due to low-frequency noise:
τ ≈ 28 μs. This dephasing time is very long compared to
the artificial decoherence time, and hence the natural low-
frequency noise does not change the results of the numerical
simulations presented .
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19J. Salmilehto and M. Möttönen, Phys. Rev. B 84, 174507
(2011).

20A. O. Niskanen, J. P. Pekola, and H. Seppä, Phys. Rev. Lett. 91,
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