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We introduce an alternative way to derive the generalized form of the master equation recently presented by
J. P. Pekola et al. [Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically steered two-level quantum system
interacting with a Markovian environment. The original derivation employed the effective Hamiltonian in the
adiabatic basis with the standard interaction picture approach but without the usual secular approximation. Our
approach is based on utilizing a master equation for a nonsteered system in the first superadiabatic basis. It is
potentially efficient in obtaining higher-order equations. Furthermore, we show how to select the phases of the
adiabatic eigenstates to minimize the local adiabatic parameter and how this selection leads to states which are
invariant under a local gauge change. We also discuss the effects of the adiabatic noncyclic geometric phase on
the master equation.
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I. INTRODUCTION

The adiabatic theorem [1,2] has been one of the workhorses
of quantum physics for decades. It states that if the external
control parameters of the system Hamiltonian vary slowly
enough, the system remains very accurately in one of its
initial instantaneous eigenspaces. As slowly varying quantum
systems appear in many fields of physics, a multitude of
applications for the theorem exists. In recent years, adia-
batically steered quantum systems have attracted a lot of
interest due to their connection to geometric phases in cyclic
evolution [3–5]. These phases provide a potential alternative to
quantum information processing [6–8] in which the quantum
gates are implemented by purely geometric means [9–18].
This geometric quantum computation has been shown to
offer inherent robustness against control errors [19–22] due
to the fact that geometric phases depend only on some global
geometric properties. Different ways to describe geometric
phases in open systems have been introduced [23–28] and
methods to account for the effect of the environment on
the system evolution have been studied [19,29–36] along
with techniques to reduce the unwanted noise. However, a
consistent description of the combined effect of adiabatic
steering and noise was missing until recently, when a master
equation was introduced in Refs. [37] and [38].
In the approach of Ref. [37], it was shown that the

typically applied secular approximation [32,39] is not suitable
in describing adiabatic evolution. Taking into account all the
relevant contributions leads to amaster equationwhich ensures
relaxation to a proper basis and shows that the ground-state
dynamics are not influenced by zero-temperature Markovian
noise in the adiabatic limit. Thus the system exhibits inherent
robustness. The master equation derived in Ref. [37] was
generalized to hold for a generic system-environment coupling
operator in Ref. [38]. Furthermore, the master equation was
applied to describe Cooper pair pumping [40–42] in Refs. [37]
and [38].

*juha.salmilehto@tkk.fi

In this paper, we introduce an alternative derivation of the
master equation for adiabatically steered quantum systems
coupled to a Markovian environment. Our derivation is
based on utilizing a nonsteered master equation in the first
superadiabatic basis. We show that the master equation we
obtain is the same as in Ref. [38]. Our method is potentially
more efficient in obtaining higher order expansions in the
adiabatic parameter. In addition, we introduce a way to select
the complex phases of the adiabatic basis states such that the
local adiabatic parameter is minimized, leading to vanishing
diagonal elements for the operator describing the steering.
We show that this selection results in locally phase-invariant
basis states. Finally, we discuss how to account for the
time-local accumulation speed of the geometric phase in the
environment-induced transitions.
The structure of this paper is as follows. In the next section,

we introduce our model describing the open quantum system.
In Sec. III, we derive the master equation for a nonsteered
system subject to decoherence. In Sec. IV, we use the
nonsteered master equation to obtain the full master equation
for adiabatic steering. In Sec. V, we introduce the optimal
phase selection for the adiabatic eigenstates and demonstrate
the main implications of such a selection. We conclude the
paper in Sec. VI.

II. MODEL

We consider a quantum system with a Hamiltonian ĤS

which depends on a set of real control parameters {qk} that
vary in time. The system is assumed to be interacting with the
environment so that the total Hamiltonian is

Ĥ (t) = ĤS(t)+ V̂ (t)+ ĤE, (1)

where V̂ (t) is the coupling between the system and its
environment and ĤE is the Hamiltonian of the environ-
ment. We assume that the coupling is of the generic form
V̂ = Â ⊗ X̂(t), where Â is the system part of the cou-
pling operator and X̂(t) acts in the Hilbert space of the
environment. Let |m; �q(t)〉 be the instantaneous eigenstate
of ĤS(t), and Em(t) the corresponding eigenenergy defined
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by ĤS[�q(t)] |m; �q(t)〉 = Em[�q(t)] |m; �q(t)〉. In the context of
adiabatic evolution, {|m; �q(t)〉} is referred to as the adiabatic
basis. We assume that the adiabatic states are normalized and
nondegenerate.
Let the Hamiltonian ĤS(t) be diagonalized in a fixed

basis {|mf 〉} using the eigendecomposition as ˆ̃HS(t) =
D̂†(t)ĤS(t)D̂(t), implying that 〈nf | ˆ̃HS(t)|mf 〉 = Em(t)δnm.
Wedefine a similar transformation for the total density operator
ρ̂(t) in the Schrödinger picture as ˆ̃ρ(t) = D̂†(t)ρ̂(t)D̂(t). It
follows from the Schrödinger equation that the evolution of
ˆ̃ρ(t) is governed by the effective Hamiltonian for the adiabatic
basis

ˆ̃H (1)(t) = ˆ̃HS(t)+ h̄ŵ(t)+ ˆ̃V (t)+ ĤE, (2)

where ˆ̃V (t)= D̂†(t)V̂ (t)D̂(t)= D̂†(t)ÂD̂(t)⊗ X̂(t) and ŵ(t) =
−iD̂†(t) ˙̂D(t). Omitting the environment and assuming
adiabatic evolution, a more accurate approximation for the
exact evolving state is achieved if the adiabatic states are
corrected by

|δm; �q(t)〉 = −ih̄
∑
k �=m

|k; �q(t)〉 〈k; �q(t)| ∂
∂t

|m; �q(t)〉
Em − Ek

, (3)

in the first order in the perturbation theory. The basis formed
by the corrected states {|m〉 + |δm〉} is usually referred to as
the first superadiabatic basis [3].
We introduce the local adiabatic parameter as α(t) =

h̄||ŵ(t)||/�(t), where we compare the Hilbert-Schmidt norm
of the operator arising from the adiabatic evolution ||ŵ(t)|| =√
TrS{ŵ(t)†ŵ(t)} to an instantaneous minimum energy gap

in the spectrum �(t). Here TrS denotes the trace over the
system degrees of freedom, and in the following we use
TrE to denote the trace over the environment degrees of
freedom. The parameter α(t) typically yields a good estimate
for the degree of adiabaticity of the evolution [25,38]. In
cyclic evolution with the period T , the parameter scales
as 1/T , and thus, in adiabatic evolution we should have
α(t) � 1.

III. MASTER EQUATION FOR A NONSTEERED SYSTEM

Let us study the dynamics of a generic nonsteered two-level
quantum systemcoupled to its environment.Denote the ground
and excited states of ĤS in the Schrödinger picture as |g〉 and
|e〉, respectively, with corresponding eigenenergiesEg andEe.
We apply the standard method [37–39] to obtain the master
equation for a nonsteered system as

dρgg

dt
= −(�ge + �eg)ρgg + Re{�̃0ρge} + �eg, (4)

and

dρge

dt
= iω01ρge − (�̃+ + �̃−)ρgg

−
(

�eg

2
+ �ge

2
+ �ϕ

)
ρge + (�α+�β)ρeg+�̃+, (5)

where ρrs = 〈r|ρ̂S |s〉 with r,s ∈ {g,e}, and ω01 =
(Ee − Eg)/h̄. The transition rates are defined as

�ge = |〈e|Â|g〉|2
h̄2

SX(−ω01),

�eg = |〈e|Â|g〉|2
h̄2

SX(+ω01),

�̃0 = 〈e|Â|g〉(〈g|Â|g〉 − 〈e|Â|e〉)
h̄2

SX(0),

�̃± = 〈g|Â|e〉(〈e|Â|e〉 − 〈g|Â|g〉)
2h̄2

SX(±ω01),

�ϕ =
( |〈e|Â|e〉|2

2h̄2
+ |〈g|Â|g〉|2

2h̄2
− 〈g|Â|g〉〈e|Â|e〉

h̄2

)
SX(0),

�α = 〈g|Â|e〉2
2h̄2

SX(ω01),

�β = 〈g|Â|e〉2
2h̄2

SX(−ω01).

The spectral density is denoted SX(ω) =∫∞
−∞ dτTrE{ρ̂EX̂(τ )X̂(0)}eiωτ . Note that we neglect
the drive, that is, omit all terms proportional to ŵ.
Furthermore, Eqs. (4) and (5) include all the nonsecular
terms neglected in the usual application of the approach in
Ref. [39].
For details concerning the derivation of Eqs. (4) and (5), see

the Appendix. Especially, we neglect the possible imaginary
parts of the transition rates, that is, the Lamb shift, by assuming
that the system time scales are longer than the environment
autocorrelation time.

IV. MASTER EQUATION FOR ADIABATIC STEERING

We aim to derive the full master equation for the system
coupled to its environment in adiabatic steering using the
master equation for a nonsteered system. Define a unitary
transformation D̂1(t) making ˆ̃HS(t)+ h̄ŵ(t) diagonal in the
fixed basis {|0〉 , |1〉}. Thus the evolution of the density matrix
ˆ̃ρ
(2) = D̂

†
1
ˆ̃ρD̂1 = D̂

†
1D̂

†ρ̂D̂D̂1 is governed by the effective
Hamiltonian for the first superadiabatic basis,

ˆ̃H
(2)
(t) = ˆ̃H

(2)

S (t)+ h̄ŵ1(t)+ ˆ̃V
(2)
(t)+ ĤE, (6)

where ˆ̃H
(2)

S (t) = D̂
†
1(t)[

ˆ̃HS(t)+ h̄ŵ(t)]D̂1(t), ˆ̃V
(2)
(t) =

D̂
†
1(t)

ˆ̃V (t)D̂1(t), and ŵ1 = −iD̂
†
1(t)

˙̂D1(t).
Assume that the superadiabatic correction, ŵ1, is negligible

with respect to the adiabatic one so that we can write Eq. (6)

as ˆ̃H
(2)
(t) ≈ ˆ̃H

(2)

S (t)+ ˆ̃V
(2)
(t)+ ĤE . Since this Hamiltonian

describes effectively a nonsteered system, we can employ the
approach of Sec. III to write a master equation similar to
Eqs. (4) and (5) as

dρ(2)gg

dt
= −(�(2)ge + �(2)eg

)
ρ(2)gg + Re{�̃(2)0 ρ(2)ge

}+ �(2)eg , (7)
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and

dρ(2)ge

dt
= iω

(2)
01 ρ

(2)
ge − (�̃(2)+ + �̃

(2)
− )ρ

(2)
gg

−
(

�(2)eg

2
+ �(2)ge

2
+ �(2)ϕ

)
ρ(2)ge + (

�(2)α + �
(2)
β

)
ρ(2)eg

+ �̃
(2)
+ , (8)

where we have marked the relevant terms in the superadiabatic
basis with the superscript (2) to avoid confusing them with the
adiabatic ones. The transformation D̂1(t) can be approximated
using the perturbation theory for the adiabatic correction. This
results in the superadiabatic eigenstates which we can obtain
from Eq. (3) up to the linear order in α(t) in the two-state
model as

|g(2)〉 = |g〉 − |e〉 w∗
ge

ω01
, (9)

and

|e(2)〉 = |e〉 + |g〉 wge

ω01
, (10)

with the eigenenergies E(2)
g = Eg + h̄wgg and E(2)

e = Ee +
h̄wee, respectively. Here, we denote the matrix elements of the
adiabatic correction wsr = −i 〈s|ṙ〉, where r,s ∈ {g,e}. Thus,
the superadiabatic angular frequency up to this order becomes
ω
(2)
01 = ω01 + (wee − wgg).
The matrix elements in Eqs. (7) and (8) can be written using

the superadiabatic eigenstates to obtain the master equation
for adiabatic steering up to the linear order in α(t). We restrict
our derivation to the linear order since, in the adiabatic limit,
α(t) → 0, making the contributions beyond the linear one
negligible. If we assume that the system is driven adiabatically
but does not necessarily remain in the ground state at all times,
we cannot assume that density matrix elements ρge become
small enough to be neglected due to their order in this limit.
Hence, we are only considering α(t) as a small parameter and
neglect all terms with α2 or higher order. If we rewrite ρ(2)gg and
ρ(2)ge using Eqs. (9) and (10), the master equation becomes

ρ̇gg − 2Re(w
∗
geρ̇ge)

ω01

= −(�(2)ge + �(2)eg

) (
ρgg − 2Re(w

∗
geρge)

ω01

)
+Re

{
�̃
(2)
0

(
ρge + 2wge

ω01
ρgg − wge

ω01

)}
+ �(2)eg , (11)

and

ρ̇ge + 2wge

ω01
ρ̇gg

= i[ω01 + (wee − wgg)]

(
ρge + 2wge

ω01
ρgg − wge

ω01

)
− (�̃(2)+ + �̃

(2)
− )

(
ρ̇gg − 2Re(w

∗
geρ̇ge)

ω01

)
−
(

�(2)eg

2
+ �(2)ge

2
+ �(2)ϕ

)(
ρge + 2wge

ω01
ρgg − wge

ω01

)
+ (

�(2)α + �
(2)
β

) (
ρeg + 2w∗

ge

ω01
ρgg − w∗

ge

ω01

)
+ �̃

(2)
+ , (12)

where we have neglected all terms of order α2 or higher,
except in the �(2) terms, which we treat later. We can solve
ρ̇gg and ρ̇ge from these equations to obtain the full master
equation. In addition, we employ Eqs. (9) and (10) to rewrite
the rates in the superadiabatic approximation. To present the
full master equation, we adopt a notation which will not
reduce the generality of the equations but simplify them. In
the nested commutator expression for themaster equation for a
nonsteered system [seeEq. (A1) in theAppendix], the coupling
operator is only found in places where it is commuting with
other operators, and hence, provided that the Lamb shift
is neglected, we can add any operator comparable to the
identity operator to it without affecting the nested expression.
Thus, the system part of the coupling operator can be chosen
traceless in the two-state basis. We adopt this convention
by introducingm1 = 〈g|Â|g〉 = − 〈e|Â|e〉 andm2 = 〈g|Â|e〉.
Note that m1 ∈ R, whereas m2 ∈ C in the case of a general
coupling operator. The master equation up to the linear order
in α(t) and the quadratic order in the system-environment
coupling becomes

ρ̇gg = −2Im(w∗
geρge)+ S(ω01)|m2|2 − [S(−ω01)+ S(ω01)]

× |m2|2ρgg + 2[Im(m2)Im(ρge)+ Re(m2)Re(ρge)]

× S(0)m1 − 22S(0)− S(−ω01)− S(ω01)

ω01

×{[Im(m2)Im(wge)+ Re(m2)Re(wge)]

× [Im(m2)Im(ρge)+ Re(m2)Re(ρge)]}
+ 22S(0)− S(−ω01)− S(ω01)

ω01
{Im(m2)Im(wge)

+Re(m2)Re(wge)}m1ρgg − 2S(0)− S(ω01)

ω01
m1

×{Im(m2)Im(wge)+ Re(m2)Re(wge)} (13)

and

ρ̇ge = iwge(2ρgg − 1)+ i(wee − wgg)ρge + iω01ρge − S(ω01)

×m1m2+[S(−ω01)+ S(ω01)]m1m2ρgg − 2S(0)m2
1ρge

− i[S(−ω01)+ S(ω01)]m2[Im(ρge)Re(m2)− Im(m2)

×Re(ρge)]− 22S(0)− S(−ω01)− S(ω01)

ω01
m2
1wgeρgg

+ 2S(0)− S(ω01)

ω01
m2
1wge − im2

S(−ω01)− S(ω01)

ω01

×{Im(m2)Re(wge)− Im(wge)Re(m2)}
− 22S(0)− S(−ω01)− S(ω01)

ω01
m1{im2[Im(wge)

×Re(ρge)− Im(ρge)Re(wge)]− [Im(m2)Im(wge)

+Re(m2)Re(wge)]ρge}. (14)

Here, we applied a shortened notation for the spectral
densities S(ω) = SX(ω)/h̄2. We would like to emphasize that
in this section, we assume that the system is externally steered;
that is, the systemHamiltonian is time dependent. Even though
we do not explicitly make the approximation of adiabatic
rates [39], that is, assume that the evolution time is much
longer than the environment autocorrelation time so that ω01,
m1, m2, and the matrix elements of ŵ vary slowly in time,
the approximation is implicitly assumed. This assumption
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stems from the fact that we use the master equation for a
nonsteered system in the linear order in α(t). Furthermore,
we have neglected corrections proportional to ∂ωS(ω)|ω=±ω01

when estimating the preceding power spectra, since they
correspond to driving-induced Lamb shift contributions which
are neglected also in the derivation in Refs. [37] and [38]. In
Sec. V, we show that wgg and wee vanish from Eq. (14) for a
specific choice of the phases of the adiabatic basis states.
Let us explicitly reformulate and assess the range of

validity of the master equation [see Eqs. (13) and (14)]. The
approximation of adiabatic rates requires that the external drive
does not change the Hamiltonian governing the system on
the time scale of the memory time of the bath; that is, we
assume that τcorr � 1/||ŵ||, where τcorr is the environment
correlation time. Furthermore, we require that the dynamics
of the density operator occur on time scales longer than the
environment autocorrelation time, so that τcorr � 1/ω0, where
1/ω0 is a typical system transition time relating to the off-
diagonal elements of the density matrix. As mentioned in the
Appendix, we apply the Markov approximation by assuming
that τcorr � 1/γ , where 1/γ is a typical relaxation time of the
system. Moreover, the assumptions we employ demand that
1/ω0 � 1/γ,1/||ŵ||. Combining the used approximations
leads to a requirement of time scale separation τcorr � 1/ω0 �
1/γ,1/||ŵ||.
Remarkably, our master equation is identical to that derived

in Ref. [38], however, the manner in which the master equation
was derived is different. In Ref. [38], one starts from the
effective Hamiltonian for the adiabatic basis presented in
Eq. (2) and formulates a nested commutator expression for
the derivative of the reduced system density operator in the
adiabatic basis, applying h̄ŵ(t)+ ˆ̃V (t) as the perturbation,

d ˆ̃σ I (t)

dt
= i[ ˆ̃σ I (t),ŵI (t)]

− 1

h̄2
TrE

{∫ t

0
dt ′

[
[ ˆ̃ρI (t),

ˆ̃V I (t
′)], ˆ̃V I (t)

] }
+ i

h̄2
TrE

{∫ t

0
dt ′

∫ t ′

0
dt ′′[[ ˆ̃ρI (t),[ŵI (t

′), ˆ̃V I (t
′′)]], ˆ̃V I (t)]

}
,

(15)

in the interaction picture. Using this operator directly results
in the same master equation that we obtained. Thus, we find
that with respect to adiabatic temporal evolution, it makes no
difference whether one uses the effective Hamiltonian for the
adiabatic basis and takes h̄ŵ(t)+ ˆ̃V (t) as the perturbation, as
done in Refs. [37] and [38], or whether one uses our approach
to express the effective Hamiltonian for the superadiabatic
basis assuming that the superadiabatic correction is small,

thus taking ˆ̃V
(2)
(t) as the perturbation and writing the su-

peradiabatic basis states up to the linear order in α(t). Our
discovery reaffirms that the superadiabatic basis approximates
the exact evolving state in the next order in α, so using only the
bath coupling as the perturbation will result in describing
the dynamics in the same order as the effective Hamiltonian for
the adiabatic basis does. This result is an important consistency
check for the master equation derived in Refs. [37] and [38];
see Eqs. (13) and (14).

The original way [37,38] of deriving the full master
equation can be extended to obtain master equations in higher
orders in α by applying the nesting procedure iteratively [see
Eq. (15)]. Our method can also be used to obtain higher order
master equations by using higher order perturbation theory
to write the matrix elements required to utilize the master
equation for nonsteered systems. Since our technique is based
on applying algebraic operations, it is potentially simpler to
obtain higher order equations with it than with the nesting
procedure, which results in complicated integral expressions.
As an example, let us illustrate how to obtain the master

equation up to the second order in α(t) using our method
for a two-level system. We begin by defining a unitary

transformation D̂2(t) making ˆ̃H
(2)

S (t)+ h̄ŵ1(t) diagonal in the
fixed basis {|0〉 , |1〉}. Thus the relevant densitymatrix becomes
ˆ̃ρ
(3) = D̂

†
2
ˆ̃ρ
(2)

D̂2 and its evolution is governed by the effective
Hamiltonian for the second superadiabatic basis,

ˆ̃H
(3)
(t) = ˆ̃H

(3)

S (t)+ h̄ŵ2(t)+ ˆ̃V
(3)
(t)+ ĤE, (16)

where ˆ̃H
(3)

S (t)= D̂
†
2(t)[

ˆ̃H
(2)

S (t)+ h̄ŵ1(t)]D̂2(t), ˆ̃V
(3)
(t)= D̂

†
2(t)

ˆ̃V
(2)
(t)D̂2(t), and ŵ2 = −iD̂

†
2(t)

˙̂D2(t). Assuming that ŵ2 is
negligible with respect to ŵ1, we can again resort to the
approach in Sec. III and write a master equation similar to
Eqs. (4) and (5). Finding the relevant matrix elements is
slightly more complicated than in the case of the master
equation up to the linear order in α(t). We essentially wish to
describe D̂(t)D̂1(t)D̂2(t) |m〉, where |m〉 is a fixed state, up to
the second order in α(t). We first write the first superadiabatic
eigenstates up to the second order in α(t) as

|g(3)〉 = |g〉 − |e〉 w∗
ge

ω01
+ |e〉 weew

∗
ge

ω201
, (17)

and

|e(3)〉 = |e〉 + |g〉 wge

ω01
+ |g〉 wggwge

ω201
, (18)

with the eigenenergies E(3)
g = Eg + h̄wgg − h̄|wge|2/ω01 and

E(3)
e = Ee + h̄wee + h̄|wge|2/ω01, respectively. Additionally,
we must account for the lowest order in ||ŵ1(t)|| ∼ α(t)2 to
obtain the states of interest up to the second order in α(t) as

D̂(t)D̂1(t)D̂2(t) |0〉 ≈ |g(3)〉 − |e〉 w∗
1,ge

ω01
, (19)

and

D̂(t)D̂1(t)D̂2(t) |1〉 ≈ |e(3)〉 + |g〉 w1,ge

ω01
, (20)

and the angular frequency as ω
(3)
01 = ω

(2)
01 + 2|wge|2/ω01 +

(w1,ee − w1,gg). Here we denotew1,gg = −i 〈0|D̂†
1(t)

˙̂D1(t)|0〉,
w1,ee =−i〈1|D̂†

1(t)
˙̂D1(t)|1〉, and w1,ge= − i〈0|D̂†

1(t)
˙̂D1(t)|1〉.

Using these definitions, one could write the matrix elements in
the relevant master equation for a nonsteered system to obtain
the master equation for adiabatic steering up to the second
order in α(t).
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V. OPTIMAL PHASE SELECTION

Assume that we have nondegenerate adiabatic eigenstates
|g〉 and |e〉 that are normalized and smooth during the temporal
evolution, and that they can be obtained from the fixed states
with a unitary transformation as D̂ |0〉 = |g〉 and D̂ |1〉 =
|e〉. Thus, the operator determining the adiabatic evolution
becomes ŵ = −iD̂† ˙̂D [see Eq. (2)]. However, the choice for
the complex phases of the states is essentially arbitrary, and
hence its effect on ŵ should be studied. This means that we
could also work with basis states that differ from |g〉 and |e〉 by
phase factors which depend on the point in the control cycle.
In this section, we show that this degree of freedom can be
used to minimize the local adiabatic parameter, while in the
corresponding master equation it leads only to renormalized
matrix elements. Furthermore, we discuss how to account for
the noncyclic geometric phase leading to a slightly different
but generally more feasible phase selection.
Let us choose new phases for the states bymultiplying them

with phase factors eiλg and eiλe , where λg,λe ∈ R, so that a
phase selection operator �̂ is defined as

�̂ = eiλg |0〉 〈0| + eiλe |1〉 〈1|, (21)

yielding the new transformation as ˆ̃D = D̂�̂. Note that the new
states defined by the transformation are still eigenstates of the
original Hamiltonian. With this transformation, the operator
for the drive becomes

ˆ̃w = − i ˆ̃D
† ˙̂̃
D

= − i�̂†D̂†( ˙̂D�̂ + D̂ ˙̂�)

= λ̇g |0〉 〈0| + λ̇e |1〉 〈1| − i�̂†D̂† ˙̂D�̂, (22)

where we have used the unitarity of D̂. The matrix elements
in the phase-shifted basis become

〈0| ˆ̃w|0〉 = λ̇g − i 〈0|D̂† ˙̂D|0〉 = λ̇g + wgg,

〈1| ˆ̃w|1〉 = λ̇e − i 〈1|D̂† ˙̂D|1〉 = λ̇e + wee,
(23)

〈0| ˆ̃w|1〉 = −iei(λe−λg) 〈0|D̂† ˙̂D|1〉 = ei(λe−λg )wge,

〈1| ˆ̃w|0〉 = −iei(λg−λe) 〈1|D̂† ˙̂D|0〉 = ei(λg−λe)weg.

Thus, the phase shift induces a shift in the diagonal elements
and a phase shift in the off-diagonal elements.
Since the choice of the phases of the eigenstates changes

the ŵ terms of the master equation and affects the quantum
evolution, it has to be fixed by physical reasoning. One way
to avoid artifact effects arising from the phase choice is to

minimize the Hilbert-Schmidt norm || ˆ̃w|| =
√
TrS{ ˆ̃w† ˆ̃w} at

each time instant. For this task, it suffices to minimize

TrS{ ˆ̃w† ˆ̃w} = |〈0| ˆ̃w|0〉|2 + |〈1| ˆ̃w|1〉|2
+ |〈1| ˆ̃w|0〉|2 + |〈0| ˆ̃w|1〉|2. (24)

The last two terms consist of the off-diagonal terms and the
phase selection has no effect on them. Thus, the minimum is

found when we select the diagonal elements in Eq. (24) to
vanish, yielding

λg(t) = −
∫ t

0
dt ′wgg(t

′)+ λ0g = i

∫ t

0
dt ′ 〈g|ġ〉 + λ0g,

(25)

λe(t) = −
∫ t

0
dt ′wee(t

′)+ λ0e = i

∫ t

0
dt ′ 〈e|ė〉 + λ0e,

and

〈0| ˆ̃w|1〉 = ei(λ0e−λ0g)ei
∫ t

0 dt ′[wgg(t ′)−wee(t ′)]wge

= ei(λ0e−λ0g)e
∫ t

0 dt ′[〈g|ġ〉−〈e|ė〉]wge. (26)

The absolute phases are not fixed since we have a degree of
freedom in the selection of the constant parts λ0e and λ0g . Note
that the primary selection of the smooth eigenstates |g〉 and |e〉
determines the accumulating phase. We denote the integrals
as simply over time, but one should bear in mind that they
contribute a path in the parameter space. Used in conjunction
with our master equation, the preceding phase selection results
inwgg andwee vanishing inEq. (14). Furthermore, itminimizes
the local adiabatic parameter α̃(t) = || ˆ̃w(t)||/ω01(t). Thus we
refer to it as optimal phase selection, although it may not yield
the most accurate evolution, as discussed here.
Utilizing the optimal phase selection scheme with our

master equation requires a careful consideration of the used
approximations, in particular, the approximation of adiabatic
rates. We used this approximation in the derivation of the
master equation [see Eqs. (13) and (14)] to state that ω01, m1,
m2, and the matrix elements of ŵ vary slowly in time. With
the optimal phase selection, the corresponding parameters are
ω̃01 = ω01, m̃1 = m1, m̃2 = ei(λe−λg )m2, w̃gg = w̃ee = 0, and
w̃ge = ei(λe−λg )wge. Since the approximation of adiabatic rates
applies for the derivatives of the accumulating phases defined
in Eq. (25), any possible shift in the power spectra induced
by the optimal phase selection can be neglected since it would
only lead to higher order terms in themaster equation. Thus, the
master equation can be used directly by replacing the original
variables with the phase-shifted ones.
With the optimal selection, the phase-shifted basis states

become |g̃〉 = eiλ0g e− ∫ t

0 dt ′〈g|ġ〉 |g〉 and |ẽ〉 = eiλ0e e− ∫ t

0 dt ′〈e|ė〉 |e〉.
Thus we have 〈g̃| ˙̃g〉 = 〈ẽ| ˙̃e〉 = 0 independent of |g〉 and |e〉
and the selection renders the phase-shifted states also to be
invariant under a local gauge change; that is, |g〉 → eiβ(t) |g〉
has no effect on |g̃〉 and |e〉 → eiη(t) |e〉 has no effect on |ẽ〉,
where β(t) and η(t) are any smooth functions. For a closed
path in the parameter space γ , we have

λg(tb)− λg(ta) = i

∮
γ

〈g|ġ〉,
(27)

λe(tb)− λe(ta) = i

∮
γ

〈e|ė〉,

where we have denoted ta and tb the virtual starting and ending
time instants for the path, respectively. These are the Berry
phases accumulated over the path for the phase-shifted basis
states and, as such, cannot be removed by any continuous local
gauge change [3]. Thus, selecting the optimal local phase for
a closed loop in the parameter space implies a gauge-invariant
accumulated phase at the end of the loop. However, the optimal
phase selection neglects the effects of the accumulation speed
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of the geometric phase on the environment-induced transitions
in the master equation. Although this effect is negligible in the
adiabatic limit, it is useful to provide means to take it into
account consistently.
To go beyond the optimal phase selection, we need to study

the adiabatic noncyclic geometric phase acquired during the
evolution [43,44]. The adiabatic noncyclic geometric phase
acquired by the nth eigenstate [44] can be defined as

γn(t) = arg{〈n; �q(t0)|n; �q(t)〉}
+ i

∫ t

0
dτ 〈n; �q(τ )|∂τ |n; �q(τ )〉, (28)

where |n; �q(t0)〉 is an essentially arbitrary reference eigenvec-
tor not orthogonal to |n; �q(t)〉. The phase γn(t) is invariant
under any local phase transformation of the basis states and
independent of the speed at which we traverse the open path
in the control parameter space. To allow for the accumulating
phase of the basis vectors to describe the noncyclic geometric
phase, one can define a phase transformation of the eigenstates
|n〉 = e−i arg{〈n′;�q(t0)|n′;�q(t)〉} |n′〉, where n ∈ {g,e} and |n′〉 de-
scribes an eigenstate with an arbitrary continuous local phase.
This transformation produces

wnn = − ∂t arg{〈n′; �q(t0)|n′; �q(t)〉} − i 〈n′|ṅ′〉
= − γ̇n(t). (29)

Thus the time-local accumulation speed of the geometric phase
can be made to appear in the master equation [Eqs. (13) and
(14)]. However, the accumulation speed in Eq. (29) is depen-
dent on the reference point |n′; �q(t0)〉, and thus, redefining
the reference typically changes the accumulation speed at all
times. This can become a problem since the accumulation
speed affects in general the resulting physical quantities, which
should not depend on the choice of the reference point. A
possible way to correct for this inconsistency is to use the
geodesic approach [43].

VI. CONCLUSIONS

We devised a way to derive the full master equation for
adiabatically steered quantum systems in the two-state ap-
proximation under the influence of decoherence starting from
an interaction-picture-based derivation, in which the external
drive was first omitted. The full master equation was obtained
by approximating the transformation to the superadiabatic
basis using the perturbation theory and exploiting the master
equation for the nonsteered system.We showed that the master
equation we obtain in this way is the same as the one obtained
in Ref. [38] by a longer calculation. We concluded that our
manner of obtaining the master equation is a consequence of
the superadiabatic basis approximating the exact evolving state
in the linear order in the adiabatic parameterα(t). Furthermore,
there is no need to evaluate high-order nested commutators of
integrals in our method if it is extended beyond the linear order
in α(t), as opposed to the method in Refs. [37] and [38]. A
detailed study of the efficiency of these two approaches is left
for future research.
There exists a gauge degree of freedom in the choice of

the phases of the basis states during the evolution. We have
demonstrated a way to choose the phases in a way which

minimizes the local adiabatic parameter and simplifies the
derived master equation. We showed that this choice produces
basis states which are invariant under a local gauge change.
Furthermore, we have discussed how to account in a gauge-
invariant manner for the effects of the accumulation speed of
the adiabatic noncyclic geometric phase on the environment-
induced transitions.

APPENDIX: NONSTEERED MASTER EQUATION
IN THE TWO-STATE BASIS

The reduced system density matrix in the interaction
picture σ̂I (t) = TrE{ρ̂I (t)} can be used to derive the relevant
master equation assuming a stationary environment, that is,
dρ̂E

dt
= i

h̄
[ρ̂E,ĤE] = 0. We define the operators in the inter-

action picture as ẐI (t) = eiĤEt/h̄Û
†
S(t,0)Ẑ(t)ÛS(t,0)e−iĤE t/h̄,

where Ẑ(t) is the operator in the Schrödinger picture and
ÛS(t,0) is the time-evolution operator. For a time-dependent
system Hamiltonian, the time-evolution operator is ÛS(t,0) =
T e−i

∫ t

0 ĤS (τ )dτ/h̄ but simplifies to ÛS(t,0) = e−iĤS t/h̄ for non-
steered systems studied in this Appendix.
If we assume that the system interacts weakly with the

environment, the master equation acquires the standard form
(Redfield equation [45]),

dσ̂I (t)

dt
= − 1

h̄2

∫ t

0
dt ′TrE{[[σ̂I (t)⊗ ρ̂E,V̂I (t

′)],V̂I (t)]},
(A1)

in the interaction picture, where we have utilized the Born-
Markov approximation [45]. The transformation from the
interaction picture to the Schrödinger picture unfolds when
we employ

ρ̂S(t) = ÛS(t,0)σ̂I (t)Û
†
S(t,0), (A2)

which can be used to obtain the density matrix transformation
componentwise as

ρgg(t) = σI,gg(t),

ρee(t) = σI,ee(t),
(A3)

ρge(t) = eiω01t σI,ge(t),

ρeg(t) = e−iω01t σI,eg(t).

Derivating Eq. (A2) yields the transformation of the derivative
as

dρ̂S(t)

dt
= i

h̄
[ρ̂S(t),ĤS(t)]+ ÛS(t,0)

dσ̂I (t)

dt
Û

†
S(t,0). (A4)

Using Eqs. (A1) and (A4), we define the diagonal matrix
element

〈g|dρ̂S(t)

dt
|g〉 = − 1

h̄2

∫ t

0
dt ′TrE{〈g|[[σ̂I (t)

⊗ρ̂E,V̂I (t
′)],V̂I (t)]|g〉}, (A5)

and the off-diagonal matrix element

〈g|dρ̂S(t)

dt
|e〉 = iω01ρge(t)− eiω01t

1

h̄2

∫ t

0
dt ′TrE{〈g|[[σ̂I (t)

⊗ ρ̂E,V̂I (t
′)],V̂I (t)]|e〉}, (A6)
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for the nonsteered master equation. Note that our derivation
is based on assuming that the system relaxation time is long
compared to the environment correlation time τcorr, so that the
environment has no memory; that is, we are in the Markov
regime [39]. This allows us to neglect any variation of σ̂I (t)
between time t and time t + τcorr. The integral expressions in
Eqs. (A5) and (A6) simplify to give Eqs. (4) and (5)
when we expand the commutators, use the closure rela-
tion for the adiabatic basis, and utilize TrE{ρ̂EX̂(t ′)X̂(t)} =∫∞
−∞

dω
2π SX(ω)e−iω(t ′−t) and Eq. (A3). Furthermore, we assume

that the system time scales are longer than the system
autocorrelation time to approximate the spectral densities in

the remaining integral expressions. This treatment leads to
neglecting the Lamb shift.

ACKNOWLEDGMENTS

The authors thank J. P. Pekola and E. Sjöqvist for stimu-
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