

Analysing Redundancies in the World-Wide-Web

Master of Science Thesis

Jose Luis Puig Guerra
Jose.puig.guerra@aalto.com

Thesis supervisor: Jörg Ott
Thesis instructor: Pasi Sarolahti

Helsinki / 2014

Aalto University
School of Electrical Engineering

AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF ELECTRICAL ENGINEERING MASTER’S THESIS

Author: Jose Luis Puig Guerra

Title: Analysing Redundancies in the World-Wide-Web

Date: 22.05.2014 Language: English Number of pages: 9+60
Department of Communications and Networking
Professorship: Code:
Supervisor: Prof. Jörg Ott
Instructor: Dr. Pasi Sarolahti
The World Wide Web is one of the most relevant Internet applications, and it is an
important tool for our daily lives. Although it is widely extended, the current web
access is still limited by two factors; the poor infrastructure in developing countries
and the increasing bandwidth demand for services such as cloud computing or video
streaming. Web caches have become a feasible solution to improve web access since
improve on network infrastructures is very expensive.

Multiple studies in past years aimed to characterize web traffic in order to improve
web caching. However, the WWW evolves very fast and previous studies about it are
no longer reliable. Moreover, many of the studies are based on passive measurements
by collecting traces at the edge of an organization. As a result, we miss little
knowledge on current web traffic. This thesis attempts to study present web traffic
and how caching systems can benefit from it.

We have developed an active measurement system that downloads popular web pages
during a short period of time. We analyse this data set from two different points of
view: compare old published web traffic and examine dynamic changes of web
content. Finally, we investigate the unchanged content of this data set using both
caching approaches traditional web caching and packet caching. Among our findings,
we observe similar bandwidth saving for both approaches as well as an increasing
number of objects per page.

Keywords: Caching, web site, traffic, bandwidth, web page, WWW, Unchanged bytes

This Page Intentionally Left Blank

Abstract

The World Wide Web is one of the most relevant Internet applications, and it is

an important tool for our daily lives. Although it is widely improved over time, the
current web access is still limited by two factors; the poor infrastructure in
developing countries and the increasing bandwidth demand for services such as cloud
computing or video streaming. Web caches have become a feasible solution to
increase web access since improving network infrastructure is very expensive.

Multiple studies in past years aimed to characterize web traffic in order to

improve web caching. However, the WWW evolves very fast and previous studies
about it may not be reliable anymore. Moreover, many of the studies are based on
passive measurements by collecting traces at the edge of an organization. Past
studies have not analysed the change rate of web content over time, which is relevant
information for assessing benefits of caching. This thesis studies present web traffic
and how caching systems can benefit from it.

We have developed an active measurement system that downloads popular web

pages at short time intervals. We analyse this data set from two different points of
view: compare old published web traffic and examine dynamic changes of web
content. Finally, we investigate the unchanged content of this data set using both
caching approaches traditional web caching and packet caching. Among our findings,
we observe similar bandwidth saving for both approaches as well as an increasing
number of objects per page.

 i

Contents

Contents .. i	

List of Acronyms and Abbreviations ... iii	

List of Figures ... iv	

List of Tables .. v	

1 Introduction .. 1	

1.1 Problem and motivation .. 1	

1.2 Goals ... 2	

1.3 Thesis outline .. 3	

2 World Wide Web .. 4	

2.1 HTTP protocol .. 4	

2.2 Web content types .. 8	

2.3 Analysis of web traffic ... 10	

3 Web caching .. 13	

3.1 Caching architectures .. 13	

3.2 Caching enhancements .. 15	

3.3 Packet caching .. 17	

3.4 Cache management algorithms .. 19	

4 Experimentation setup .. 21	

4.1 Methodology .. 21	

4.2 Metrics .. 23	

4.3 Implementation ... 26	

4.3.1	
 Overview ... 26	

4.3.2	
 Data collection .. 27	

4.3.3	
 Data analysis .. 29	

4.4 Tools .. 31	

4.5 Limitations .. 31	

 ii

5 Analysis of Results .. 33	

5.1 Overall characteristics of web content ... 33	

5.1.1	
 Overall analysis ... 33	

5.1.2	
 Distribution of different categories ... 36	

5.2 Analysis of temporal differences .. 41	

5.2.1	
 File-level comparison. ... 42	

5.2.2	
 Block-level comparison .. 47	

6 Conclusions and future work ... 52	

Bibliography ... 55	

Appendix A .. 1	

 iii

List of Acronyms and Abbreviations

AJAX Asynchronous JavaScript and XML
ASCII American Standard Code for Information Interchange
CDF Cumulative Distribution Function
CDN Content Delivery Network
CGMP Cache Group Management Protocol
CRP Content Routing Protocol
CSS Cascading Style Sheets
DNS Domain Name System
DOS Denial of Service Attack
FTP File Transfer Protocol
GPL General Public License
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
IP Internet Protocol
ISP Internet Service Provider
LAN Local Area Network
LFU Least Frequently Used
LRU Least Recently Used
MIME Multipurpose Internet Mail Extensions
RSS Real Simple Syndication
RTT Round Trip Time
TCP Transmission Control Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
WAN Wide Area Network
WPAD Web Proxy Auto-Discovery Protocol
WWW World Wide Web
XML eXtensible Markup Language

 iv

List of Figures

Figure 2.1 HTTP request scenario ... 5	

Figure 3.1 Proxy cache scenario .. 14	

Figure 3.2 Reverse proxy cache scenario ... 14	

Figure 3.3 Transparent proxy cache scenario .. 15	

Figure 3.4 Packet-level caching basic scenario. ... 18	

Figure 4.1. Overall implementation ... 26	

Figure 4.2. Query diagram ... 27	

Figure 4.3. Folder’s structure .. 29	

Figure 4.4. Comparison process ... 29	

Figure 4.5 MainPageCompare analysis process ... 30	

Figure 4.6 Chunks comparison process .. 30	

Figure 5.1 Average number of objects at the index page .. 34	

Figure 5.2 Object size for different web content types .. 35	

Figure 5.3 Average of index web page size .. 35	

Figure 5.4 Number of objects at the index page level by category .. 37	

Figure 5.5 Google’s tiled image ... 37	

Figure 5.6 Different sharing icons in one image .. 38	

Figure 5.7 Composition of web content types per category ... 39	

Figure 5.8 Index web page size grouped by category .. 40	

Figure 5.9 Top-level page set size grouped by category .. 41	

Figure 5.10 Fraction of unchanged data for 15-minute interval between two downloads of the
same page at the index page level by category .. 42	

Figure 5.11 Unchanged percentage for 15-time interval between two downloads of the same
site at the top-level page set by category .. 43	

Figure 5.12 Unchanged bytes for 15-minute interval between two downloads of the same page
at the index page level grouped by category ... 44	

Figure 5.13 Unchanged bytes for 15-minute interval between two downloads of the same site
at the top-level page set grouped by category ... 45	

Figure 5.14 Total number of files at the top-level page set per category 46	

Figure 5.15 Identical files distribution at the top-level page set per category 47	

Figure 5.16 Unchanged percentage with block comparison for 15-minute interval between two
downloads of the same page at the index web page by category ... 48	

Figure 5.17 Unchanged percentage with block comparison for 15-minute interval between two
downloads of the same site at the top-level page set by category ... 49	

Figure 5.18 Unchanged bytes with block comparison for 15-minute interval between two
downloads of the same page at the index web page level grouped by category 50	

Figure 5.19 Unchanged kilobytes with block comparison for 15-minute interval between two
downloads of the same site at the top-level page set grouped by category 51	

 v

List of Tables

Table 2.1 Request methods. .. 5	

Table 2.2 Server response. ... 6	

Table 2.3 HTTP/1.0 and HTTP/1.1 caching headers ... 6	

Table 2.4 Media content-types. ... 9	

Table 4.1 Top-level page set metrics. .. 23	

Table 4.2 Index web page level metrics ... 24	

Table 4.4 List of categories. ... 25	

Table 4.5 Relation between scripts and analysis levels. ... 26	

 1

Chapter 1

1 Introduction

As of today Internet is one of the most important tools that we have for business,
a good way to keep us well informed about what is happening over the world and
recently an important aspect about our social lives and leisure. Its relevance has
become so important that United Nations has proposed Internet as a human right [1].

1.1 Problem and motivation

Internet is a platform where many services coexist. We see it in daily actions such
as sending emails, watching streaming videos or read online newspapers. Also it is the
core for new applications, for instance, cloud computing [2] or games [3]. At the same
time, as new and old services evolve, the traffic generated on Internet grows.
Although new applications generate larges amounts of data, actually peer-to-peer
services stand as the main contributor of Internet’s traffic followed by web traffic [4].
Despite its relevance in our life, web access is still limited by two factors: the growing
demand of bandwidth by services such as Skype or Cloud computing, and limited
network infrastructures in developing countries [4].

Web caching is a common technique to save bandwidth, reduce load from the

servers and improve resilience. Web caches works by storing web documents visited
by users in order to serve them in future requests. The cached content must be
updated or the user may get an outdated document. There are many caching
solutions depending on where web caches are placed, which method is used to
determine which documents are cached or how these documents are maintained
updated. Despite the multitude of solutions to deploy caches mechanisms, none of
them differentiate between web services, even when they are clearly different.

The characterization and comprehension of redundant web traffic is necessary to

generate synthetic workload for benchmarking on web servers [5]. Studies of web
traffic also provide techniques to identify shortcomings. For example, by studying the
loading time of a web page we could determine whether it exceeds the tolerable
waiting time for users [6]. If this time is longer than the user is willing to wait, the
user might not visit the web site again.

Analysing web traffic characteristics help us understand how useful web caching in

the Internet is today. Different studies in past years [7] [8] [9] [10] aimed on

 2

characterizing and understanding web traffic, but according to [4], the number of
studies in recent years has decreased because of the continuous evolution of the
World Wide Web (WWW). On the other hand, many studies quantify the
redundancy and cacheability of web sites in order to be implemented on caching
mechanisms [11] [12] [13].

Many of the past studies are based on passive measurements, meaning they

examine data generated by users. These studies do not control which web sites are
accessed. Taking into account that popular web sites become more popular [4] and
90% of the users go deeper into the web site [14], much of the web sites are not
completely analysed.

1.2 Goals

Since web access is difficult to be improved by updating the infrastructure for
economical and practical reasons, web caches stands as a feasible solution to save
bandwidth and increase web access. Before implementing a web cache, we need to
determine the potential impact of this cache and its benefits. Studying the WWW is
a tool to quantify the potential impact of web caches and its benefits. Since the
World Wide Web change very fast, the properties of web content needs to be
analysed regularly.

We have designed and implemented a measurement system for analysing web

content characteristics and the content dynamics over time. We analyse changes in
web content changes at well-defined constant intervals, which is not possible with
passive measurements. We have designed and implemented a software solution based
on active measurements, in other words, it is able to select the web sites. This
application download all content in the web pages and analyse it.

 We compare earlier published web traffic models with data collected by the

measurement system, to determine possible long-term changes in the web traffic
characteristics. Old published web traffic models need to be updated because the
WWW evolves continuously. It does not mean necessarily that old traffic models are
not valid, but we want to determine whether models have changed over time. We
compare our results to earlier published works to determine possible changes in the
traffic characteristics.

We study changes on the content of popular web pages over short time periods to

analyse the potential impact of different caching strategies. Web traffic is a wide area
to research. We have focused on examining unchanged content by storing web pages
during a short period of time. The data is analysed by our measurement system
identifying content changes and how these changes could benefit caching mechanisms.

 3

1.3 Thesis outline

The thesis is structured as follows:

Chapter 2 describes the basics of WWW. It begins describing the protocols and

content types used on the WWW, followed by previous researches on Web traffic.

Chapter 3 details different caching architectures as well as some enhancements on

web caching. This section also covers other method of caching, packet caching.
Finally, it ends describing common cache management algorithms.

Chapter 4 describes the purposed solution in detail. Firstly, explaining the

methodology and metrics used and then describing the overall design. The next
sections detail the specific parts of the collection and analysis of our dataset. Finally,
the section ends evaluating the used tools and determining the present limitations of
our proposal.

Chapter 5 evaluates the solution implemented in the abovementioned chapter with

previous works. It also studies the current state of the WWW by determining the
redundancy and how it could benefit web caches.

Chapter 6 gives the conclusions obtained through all this work. The section ends

giving some ideas that could be helpful in future works.

 4

Chapter 2

2 World Wide Web

Because this thesis compare old studies on web traffic, we will look at the prior
work on most relevant work done on analysing web traffic. To understand the results
from these works, we will summarize the factors involved on web traffic. In this
section we will give the basics of HTTP/1.0 and HTTP/1.1 and how users access the
web sites. In addition, we explain different types of resources present in web pages,
because not all of them have the same cacheability and relevance on the WWW.

2.1 HTTP protocol

Today it is difficult to think on Internet without the World Wide Web. This is
because its use has spread among all the daily services such as social networks, video
streaming or electronic commerce [15]. In all these cases the protocol used to
transport the information is HyperText Transport Protocol (HTTP), which has
become the most used protocol on Internet [16]. It is a text-based protocol using the
American Standard Code for Information Interchange (ASCII) as character encoding.
It is very flexible and can be extended by modifying the methods, main point from
where HTTP has become so popular. The communication is based on the request-
response paradigm: a user queries a server and the server responds to the user. The
WWW uses a Unique Resource Identifier (URI) [17], adapted to the web necessities
called Uniform Resource Locator (URL) which identifies the server and where the
item is located.

In mid 90’s the increasing use of Internet represented a problem for web servers

and service providers because the demand of content was not adapted to the
available bandwidth. It was partly solved by the improved HTTP/1.1. That version
reduced the number of packets sent and the elapsed time as well as better support
for web proxies [18] [19]. It also improved its compatibility with different caching
systems and it has been object of study ever since. Liang Shuai et al. [20] studied
this protocol in the modern web [21] where discusses the rise of the web traffic as
consequence of the use of bigger files and the increasing new services such as instant
messages or updating applications.

Figure 2.1 shows a typical scenario for a HTTP request between client and server.

The user types in the browser a URL belonging to a web site, for instance
www.google.fi. The client needs to locate the resource to the remote server through a

 5

Domain Name System (DNS) server. The DNS sends I.P address of the web server to
the client. Then the HTTP client sends a HTTP request to the server with the
resource (www.google.com/index.html). The server checks the HTTP header and
responds to the client with the queried information, in this case index.html.

Figure 2.1 HTTP request scenario

Another remarkable point is that the behavior of HTTP is simple; the client
contacts the server with a HTTP request, it could contain multiples options such as
different languages, and the server responds with a preferred option in order to start
the conversation based on a client-server paradigm, as depicted in Figure 2.1. Each
message sent by either client or server has three parts: start line, header, and the
body of the answer.

Table 2.1 Request methods.

Method Description
GET Request information for a specific URI
HEAD Similar to GET but the response only contains the headers
POST Allows data to be send to a server
PUT Add a resource
DELETE Delete the resource
OPTIONS Request information about the available options at the server

Each HTTP request starts with a method that indicates the purpose of the

request. Table 2.1 shows the basics methods used in webs and generated by the client.
It has the same basic capabilities than a file: add, request and delete data, this is
essentially because meshes of documents form the WWW.

 6

On the server side, the different type of responses is quite large and out of scope

in this thesis, therefore we only explain the GET response. Responses do not
explicitly tell what the request was, but typically only GET results in cacheable body
in response. This request returns the name of the resource. For instance, the file that
contains the logo of Google is visible from the URL:
http://www.google.com/images/srpr/logo4w.png. The first part of the URL is
actually a DNS name (http://www.google.com), and the rest,
(/images/spr/logo4w.png), is parsed by the HTTP server after a HTTP request. The
information parsed by HTTP typically refers to the logical structure of the web site.

The web server responds with a three-digit number, which is interpreted by the

client, and it acts consequently. Table 2.2 summarizes the messages sent by the
servers. The first number identifies the type of response and the last two numbers
identify the exact message. For instance if we receive the code 404 we know that the
identified resource was not found, which is attributed as client error.

Table 2.2 Server response.

Response Description
2xx Success
3xx Redirection
4xx Client error
5xx Server error

Nevertheless, web caches do not handle all responses, only successful requests are

taken into account. Hence, caches operate only on responses like 200. Some caching
systems might break the end-to-end paradigm and some applications may not
tolerate (i.e., web commerce or security applications).

Table 2.3 HTTP/1.0 and HTTP/1.1 caching headers

HTTP/1.0 HTTP/1.1
If-Modified-Since If-Modified-Since
Last Modified Last Modified
Expires Expires
Pragma Pragma
 E-Tag
 If-None-Match
 If-Match
 Cache-control

Table 2.3 shows the HTTP headers defined to be used in caching systems.

HTTP/1.0 [22] details only three headers whereas HTTP/1.1 [23] keep the previous

 7

headers and increase the number of fields. The common headers in both versions of
HTTP have not been modified to preserve retrospective compatibility between
versions. The specific HTTP headers for caching are If-Modified-Since, Last-
Modified, Expires, Pragma, ETag, If-None-Match, If-Match and Cache-control.

The If-Modified-Since header field is used along with the GET method to

determine if the content has not been modified since the time specified in this field. If
the content has not been modified since a specific date, the response is the same than
a normal GET with a code 200. On the other hand, if the content has changed since
that date, the server returns a modified response, which correspond the code 304.

The server responds with the header Last-Modified to indicate the time and

date at which the resource was last modified. If the cache has a copy with a lower
value in that field, the cached document must be considered stale.

The server could also response with the field Expires, which indicates the date

and time after which the document is considered outdated. However, that time does
not imply that the content has changed or it is going to be modified, it is just an
approximation of how long a document could be not modified. If the resource has an
Expires time earlier than the current date, the document must not be cached
because it is still valid.

All three headers have a date as a parameter in standard representation format,

defined in RFC 822 [24] and adjusted in RFC 1123 [25]. An example of one header
is:

Last-Modified: Sat, 4 May 2013 12:43:22 GMT

The field header Pragma is not a specific cache field but it is used for additional

instructions for HTTP processing, and it might forbid caches to store documents.
Currently it is used in HTTP/1.0 because that version of HTTP has fewer fields
dedicated to caching. The directive no-cache ensures that the request will be
forwarded to the origin server without storing any copy at the cache. This allows
users to receive an authoritative response from the origin server. Caching systems
might use it to replace stale or corrupted resources from the cache.

Previous header fields rely on absolute timestamps with one second of resolution,

which can lead to caching errors because of clock synchronization errors or lack of
resolution. To solve these errors, HTTP/1.1 introduces several header fields such as
Age or max-age. These fields work by counting the seconds until some criteria are
fulfilled. The parameter, Age, indicates for how long the object has been in cache. It
is determined by the web cache instead of the origin server to avoid clock skews.
Another significant improvement is the introduction of an opaque identifier, called
Entity Tag or ETag for brevity. This tag specify the version of the resource in a URL,
thus when the resource is modified the origin server produces a new ETag. If the
identifier does not match with the cached ETag means that the resource has changed.

 8

The header If-None-Match is used with the method GET to make it conditional.

A web client can check whether the resource is still the same by sending the ETag in
the If-None-Match header to the origin server. In the case the ETag is not the same,
the server will send to the cache an updated version of the resource. Moreover, a
cache could request the header If-Match to verify if the resource has been modified.
Both headers are similar but in the first case the cache checks the freshness of the
resource meanwhile the second attempts to verify if the content is still the same.

HTTP/1.1 determines a new request field that must be obeyed by all caching

mechanisms, both requests and responses, between the origin server and user called
Cache-control. That field indicates caches that should first validate with the origin
server the resource before send the content to the user. A common technique to
prevent stale documents from being sent to the user without previous validation is by
setting the directive max-age=0, which makes the document stale. Cache-control
also provides other directives, such as no-store that indicates web browsers to not
store content. This directive also specifies whether the content is public, cacheable,
private or uncacheable, which allows browsers but not proxies to store information.

 HTTP/1.1 defines multiple fields but none of them is mandatory for web

developers. Around 56% of the resources do not fill the max-age field within the
HTTP header and 3% have zero value [26]. As we commented above, if the field is
left blank or has the value zero, the cache must request the content to the origin
server. It means that only 41% of the resources are cacheable. Craig et al. [27]
determine that 33% of HTML resources do not contain any cache directive and few
contain expiration time.

2.2 Web content types

The WWW is not only composed by text, it has different types of resources such
as videos, images or audio. These types of resources are registered by the IANA [28],
and are known as Multipurpose Internet Mail Extensions (MIME) types. Originally
MIME types were defined for sending other kind of information in email such as
pictures or audio [29], but it has been adapted for web pages. The content types have
two or more parts: the type, subtype and optional parameters. The top-level type of
content indicates which kind of resource is, whereas the subtype indicates the
encoding. For example, if the content type of a resource is image/gif we can
determine that it is a bitmap image. Table 2.4 summarizes the basic content types.

 9

Table 2.4 Media content-types.

Type Description
Application Application-specific data
Audio Contains audio formats
Example Used for examples
Image Support multiple image formats
Message For encapsulating mail messages
Model Reserved for 3D models
Multipart For objects contained in multiples parts
Text Used for text and programming code
Video Contains several videos formats

We do not have detailed each subtype in Table 2.4 because it is in constant

expansion and open for new content subtypes though the IANA. Not all content
types change in the same degree, some types change more frequently than others. For
instance, Application messages transmit application data, therefore this data is less
static than other MIME types such as Images or Text because it transmits
application-specific data.

The web pages are composed by several MIME types, which together form a

complex web page. HyperText Markup Language (HTML) is a mark-up language
[22] to control content formatting, and widely language for web pages based on tags.
The Cascading Style Sheet (CSS) is a language to describe formatting templates of
documents and it is very common in HTML and eXtensible Markup Language
(XML). JavaScript is a programming language used mostly in the client side and its
use is extended in dynamic web sites. Typically, JavaScript is used to personalize
content or to show content dynamically. There is another web technique where CSS,
HTML and JavaScript works together called Asynchronous JavaScript and XML,
also referred as AJAX [30]. It works at the client side and it is capable of retrieve
information from a server without interfering with the behavior of the web page.

Images or other resources are common in web pages, and might be included in a

web site as linked or embedded resources. Linked images are not part of the
document itself, and have the following format:

The main drawback is that images cannot be accessed off-line, for that reason
these resources use to be implemented as embedded. Unlike linked resources,
embedded resources are part of the text and the content is identified using a content
ID. The same image than before but embedded could be formatted as:

 10

As we see, there is no information about the format of the image or where it is
located. Generally the ID is a mechanism to identify components within the web
page, and it might be different than the name of the image (we have used the same
file name than before for clarity).

The types Text and Image are suitable for caching as numerous studies shows [8]

[31] [32]. Study the composition of web sites is important for understand the variety
of content types, their traffic, as we will comment in the below section, and possible
benefits for caching. These studies demonstrate that some content-types are more
suitable for caching than others. For instance text/html reaches 24% of cacheable
content while image/gif is about 48% but represents 33% of all bytes compared to
the 18% of text/html accordingly. Z. Luwei [33] shows the cacheability of different
content types and subtypes. Luwei determines a greater cacheability of dynamic
content such as JavaScript [34] rather than cascade style sheet [35] (also known as
CSS).

Douglis et al. [8] conducted a study through 950,000 web traces where the last-

modified timestamp was analysed. They reveal that HTML resources changes more
often than images, which almost never change. In addition, 5.9% of the traces had an
explicit directive to not be cached via the header Pragma: no-cache.

2.3 Analysis of web traffic

Our work is not the first analysing web content, but our approach differs from
many studies because we use active measurements rather than passive measurements
and also analyse changes over time. Web traffic has been studied for many years in
order to improve web performance and bandwidth efficiency. Results of these studies
are the improvement on protocols [36] [37] [38] and browsers [39]. However, not all
studies use the same methods, for instance, [40] verify the checksum and [41]
compare words to determine if the document has changed.

Cho and Garcia-Molina [40] study how web pages evolve over time. They collected

720,000, and conducted several analyses and correlations to understand their
evolution over time. They found that a page under domain .com does changes faster
than domains like .org or .edu. They reveal that 20% of the pages, most of them
under .com, changes within a day meanwhile the rest of domains change less than
10%.

The work of Cho and Garcia-Molina was extended by Fetterly et al. [41] by

quantifying the degree of the change across different domains. They found a
correlation between the frequency of change of a document and the top-level domain
(i.e., .com, .edu). That effect is also seen in [40], where .com and .net domains
change more often than .edu or .gov. The study also points that the size of a

 11

document is a strong predictor of the frequency and degree of the change. Larger
documents change more deeply and often than smaller documents.

Cunha et al. [42] accumulated more than 500,000 requests for web documents

between 1994 and 1995. They demonstrate that many characteristics of the WWW
can be modeled using power-law distributions. They determine that the number of
references to documents as function of the document’s rank in popularity follows a
Zipf’s law. It states that the relative frequency of a request for the i’th most popular
web page is proportional to 1/i [43]. This power-law distribution helps web caches
to determine the distribution of objects that may be cached by looking at the pattern
of use of objects. This study is helpful when designing caching policies for web
documents as multiples studies determined [44] [45] [46].

Butkiewicz et al. [47] have done a recent and accurate study. They used multiple

metrics to determine how web traffic is composed. Moreover, they used Alexa
categories to divide the sites. By doing this categorization, they have obtained
interesting correlations between categories and metrics. They found that web sites
contain around 40 objects per page, whereas web sites related to news exceeds this
number largely. They confirmed the previous work done by Sunghwan and Vivek [48]
where affirms the increasing use of JavaScript, a minimum of 6 objects per page, and
CSS with two. They concluded that 30% of the objects and bytes belong to other
domains (e.g., Facebook, Twitter) is even higher in News sites reaching 40% of the
total number of objects. Their study also reflects the impact of the increasing number
of resources at the client side, where more than half of the sites have loading times
greater than 2 seconds, closely near to the threshold of the user’s frustration [6].

Sunghwan and Vivek [48] have done a worldwide study about Web traffic along

five years of data collection, between 2006 and 2010, in 187 countries. They confirm
the increasing use of JavaScript, CSS and XML as a result of AJAX. Sunghwan and
Vivek also points an increasing use of Flash Video, especially in United States and
Brazil, where it is nearly the 25% of the total traffic. They determined that the
increasing size of the pages as consequence of the advertisements and analytics,
without neglecting the contribution of AJAX. Sunghwan and Vivek gives attention
to caching systems where two trends were found; popular URLs gets more popular
and the percentage of URLs that are accessed only once is increasing. Other
interesting points are the 28% of uncacheable URLs, which represents 14% of the
total bytes. Going further, they remark that a significant part of XML traffic is
uncacheable, over 70% in China, because they implement Really Simple Syndication
(RSS) feeds.

As summary, not all web pages use the available headers present in HTTP. As

consequence the number of cacheable document is reduced. The cacheability is also
reduced depending on the web content type because images or text are more likely to
be cached rather than application data. Earlier works shows an increasing number of

 12

objects per page as well as a rising use of new technologies. The following section
explains the most common caching architectures and several caching enhancements.
The section also details the algorithms to cache management.

 13

Chapter 3

3 Web caching

This thesis analyses dynamics on web sites to determine the possible impact on
web caches. In order to know which factors affect them, we must understand first
how caching systems works. In this section we will explain different caching
architectures and their implementations as well as recent and old caching
improvements. We briefly describe different algorithms used on maintaining caches
up-to-date. At the end, we detail a caching approach based on detecting duplicated
packets in the network.

3.1 Caching architectures

The goal of caching systems is to reduce the bandwidth and increases the
availability of the content if the origin server is offline because the caching system
has previously stored the document. The aim of web caches depends on where are
located within the network. The most common architectures are proxy caching,
reverse proxy caching and transparent caching.

Proxy Cache: Also known as simple caches [49], they are usually located at the

edges of a network (i.e., firewall or gateway) to deal with the maximum number of
users. Figure 3.1 depicts the typical scenario where a proxy cache receives for first
time a user request. First, web clients must to configure their web browsers to
identify proxies. The Web Proxy Auto-Discovery Protocol (WPAD) [50] has solved
this issue by locating proxies within the Local Area Network (LAN). When clients
send a HTTP request to the proxy, it checks whether the requested content is
already in its cache. Since this is the first time the cache receives a HTTP request, it
sends the request to the origin server. Once the response from the origin server
arrives to the proxy it might store a copy before gives it back to the client,
depending on the cache management algorithm.

 14

Figure 3.1 Proxy cache scenario

In a medium size network (typically 1,000 users or less) the proxy cache can save
a reasonable bandwidth, reduce the response time and can serve data when the
original server is unreachable. Despite all the benefits, it has some shortcomings. The
main issue is that all queries are sent to the same machine increasing its processing
load. All the queries produces a slow response from the server because it has to
process all the queries. It also could produce a single point of failure because all
requests go through the proxy cache, and the cache is the link between the client and
the origin server.

Reverse Proxy Cache: This architecture is just the opposite of proxy cache

because is deployed near the content instead of the user [49]. Many benefits such as
load balancing, compression, encryption and security are provided by this
architecture. It is also useful for hosting farms because all queries are sent to the
proxy instead the content server. This feature is appropriate for being implemented
at Internet Service Provider (ISP) or Content Delivery Network (CDN) since it is
beneficial for content providers rather than users.

Figure 3.2 Reverse proxy cache scenario

Figure 3.2 depicts the typical scenario for using reverse proxy cache. The web
client sends a HTTP request directly to the reverse proxy cache. The request could
be forwarded to the origin server or could be served by the reserve proxy itself. This
configuration is totally transparent to the client and it could work together with a
proxy cache.

Web client Proxy cache
Origin
server

HTTP request HTTP request

HTTP responseHTTP response Internet

Web client
Reverse proxy

cache
Origin
server

HTTP request

HTTP response Internet

HTTP request

HTTP response

 15

Transparent cache: Unlike the previous architectures, transparent caches are
implemented on switches or routes. The main difference is that the client does not
see the cache. The devices process the HTTP requests sent by the web client and
forward them to web caches, clusters or end users [49]. The transparent cache itself
does not store any content because are implemented on switches or routers, but
redirect the request to an appropriate cache or end user like a load balancer would do.
By forwarding the packet it violates the end-to-end principle, because it has to
change the destination address. This might be a problem if the application requires
keeping constant this principle.

Figure 3.3 Transparent proxy cache scenario

The common implementation for transparent proxy cache is depicted in Figure 3.3.
The web client requests a resource to the origin server. This HTTP request is
intercepted by the transparent proxy and forwarded to a proxy cache or to the origin
server on the user behalf. Abba et al. [51] studied the effectiveness of transparent
web caching on a local area network. Their work conclude that the latency and
download time is improved as well as a minor bandwidth saving.

Common software to implement any of the abovementioned architectures is Squid

[52]. This software is free licensed under the General Public License (GPL or GNU),
and works in different operating systems such as Microsoft Windows or Linux. Squid
is very robust and can work with different protocols such as File Transfer Protocol
(FTP), HTTP or HyperText Transfer Protocol Secure (HTTPS).

3.2 Caching enhancements

The principles behind caching is storing objects queried by clients, through proxies
or browsers, and then serve them locally in further requests without requesting the
web server. This principle has been deeply studied and as result some improvements
have been made.

Web client
Origin
server

HTTP request

HTTP response Internet
Transparent
proxy cache

Proxy cache Proxy cache

Redirected Http Request

 16

Adaptive web caching: Jacobson et al. proposed adaptive web caching [53], and
studied in [54]. Later was improved by L. Zhang et al. [55]. It focuses on the “hot
spot” phenomenon, which consists on some content becoming popular in a short
period of time. After a brief period of time the numbers of requests for that content
are reduced drastically to the normal number of requests. The hot spot might occur
anywhere at anytime giving no time for re-provision caches. Adaptive web caching
uses a mesh of distributed web caches capable of join and leave groups when the hot
spot phenomenon appears. The ability to join and leave groups differs from Squid’s
hierarchical tree architecture where all the nodes are statics and well defined, hence
unable to handle exponential growth on a dynamic environment. The Cache Group
Management Protocol (CGMP) allows caches to create and leave meshes. CGMP
uses multicast as technique to deliver large amount of messages efficiently within
multicast groups. The Content Routing Protocol (CRP) detects and distributes
cached content within the group of caches. The main issue of the hot spot
phenomena is that a content might become popular anywhere. Hence, meshes of
caches should be able to work and cooperate among different countries. This might
arise some administrative problems because each country has its own legislation.
Michel et al. [55] proposes a method to reduce the traffic between meshes whenever
CRP distributes the fetched content. The study proposes a compressed hash tables
with the URLs to reduce information between caches.

Active caching: Several studies along the last years have concluded that

personalized content, for instance cookies or scripts, are increasing [56] [57] [11] [58]
therefore unable to be cached in the traditional sense. Active caching [59] uses plug-
ins as method to personalize objects on server’s behalf. The queries sent to a proxy
server for first time are forwarded to the web server. The origin server gives to the
proxy the document and all cache applets required for process the queries. When a
second request hits for the same document the cache invokes the corresponding
applet for this hit. The cache applet decides whether allow the cache to give the
document to the user, give a new document to the cache for sending it back to the
client or redirect the query to the origin server. Furthermore, different information
could be stored in a log object and send back to the origin server periodically,
increasing the applet possibilities to log in users in the system, rotating
advertisements or verify users permissions. That strategy relieves web servers from
computational process but increases proxy cache load, important issue that as has
been studied in [60].

Push caching: The aim is to proactively push data close to users before they have

even requested it. The idea of Geographical push caching was introduced by
Gwertzman [61] based on the premise that cached data should be keep it close, in
geographically terms, to those users that are requesting this information. Unlike the
previous approaches, this is server-initiated cache where the origin server has control
over the content. Centralized registration services tracks push-cache servers to help
them locating push-caching servers on demand. By knowing the IP address and users’

 17

access record, the server can decide where would be more efficient to set a copy of
the requested document. Push caching uses IP prefixes to define the structure of the
network. The topology consists on primary servers, which have the original document,
and secondary servers where a copy is stored. When a primary server replicates the
document, its load decreases because the user access to the other server. If the
server’s load increases too much, it can replicate the document again to another
server and so on. That behavior maximize bandwidth and reduce load but only the
origin server can override the document. This method needs some time to spread the
new content to the rest of servers. In several articles [62] [63], Gwertzman and Seltzer
discussed topology issues, when and how much data should be “pushed”. They also
determine that client-initiated combined with server-initiated gives a greater
bandwidth savings rather than separately.

3.3 Packet caching

Packet level caching relies on the premise that duplicated packets are sent
continuously. By detecting these redundant bytes, there is no need to transmit them
again, only a code or “fingerprint” which represents these bytes. This architecture is
based on Manber [64] for detecting duplicated files on a system and applied by
Broder [65] to web documents.

Generally, packet-caching works by analysing a stream of packets and detecting

repeated bytes from earlier packets. A token dictionary is computed using
fingerprints between two caches, which represent the packets of the data. Typically,
these two caches have different roles depending whether they are. A parent cache
never queries to their children but they might querying the parent cache. The parent
cache assumes the role of manager whereas child cache serves the queries from the
users. Figure 3.4 depicts the basic scenario of a system where packet-level caching is
used. When client A sends a query to a server, both parent and child caches store the
packets (one packet represents one white square) and compute their fingerprints (one
fingerprint depicts one grey square). Later, client B demand the same content,
therefore the parent cache replace one packet for one token computed earlier from
the access of client A. The A token is an identification of the packet, which consumes
less bandwidth because is smaller than a packet. The token is transmitted between
caches and translated to the original packet using the child’s dictionary.

 18

Figure 3.4 Packet-level caching basic scenario.

The difference between packet-caching algorithms relies on how the fingerprints
are computed. Most of the solutions implement a variation of Rabin fingerprints [66].
Rabin’s fingerprint is a method to identify uniquely resources by using polynomials.
For instance, if two files differ only from one byte, the fingerprints for those
documents might be completely different.

Spring et al. [67] was the first to develop a protocol-independent technique to

detect and eliminate redundant traffic on networks. That protocol is based on
Manber [64] and Mogul [32] [31] work. Several vendors such as Juniper [68] or
Riverbed [69] have been encouraged by their results, along with other studies, and
developed middleboxes called WAN optimization. The middleboxes are centered in
links where bandwidth is limited (because of high demand or poor infrastructure), for
instance an enterprise, ISP or datacenter.

Anand et al. [70] expanded Broder work to all routers, obtaining 10-50%

bandwidth reduction on network links. Anand et al. [71] compare two solutions for
eliminating redundant packets; redundancy suppression and data compression.
Redundancy suppression identifies common strings of bytes in the current packet and
packets previously stored in cache through a cache or dictionary. On the other hand,
data compression applies compressing algorithms (e.g., deflate) to each packet. They
determine a maximum bandwidth saving of 35% and 26% accordingly.

Rhea et al. [72] propose a different approach from the standard web caching by

indexing data by its value instead of its name. They identify two factors for
bandwidth wasting: aliasing and resource modification. The first one appears when
the same content is identified by multiples URIs. It represents 54% of all data, which
means 36% of all bytes transferred. The second factor is caused when the data

Child cache Parent cache Web server

Client A

Client B

GET URL

GET URL

Response

Packet Token

ResponseResponse

ResponseResponse

 19

identified by a unique URI has changed because then the new data is transmitted as
well as old data.

3.4 Cache management algorithms

Extended and hard work has been done on cache management algorithms area,
not only to improve basic algorithms but also because each has its own constraints.
Depending on which metric is desired to improve (i.e., hit rate, latency, network
traffic [73]) the algorithm differs. At that point it has to decide whether include the
next document or not and which document is going to be replaced. During that
decision is when algorithms differs. The following algorithms have been proposed for
cache managing.

Least Frequently Used (LFU): LFU takes into account how many times a

document is used and evicts the least frequently used.

Least Recently Used (LRU): LRU discards the least recently consulted document

keeping records of what and when was it used [74].

LRU-Threshold: This algorithm is nearly the same than LRU but it takes into

account the size of the item. Files with size is larger than a certain threshold are
evicted [74].

LRU-Min: The algorithm expels the least recently used if its size is at least S. If

there is no object that fulfills such criteria, it starts evicting documents with half
that size (S/2) [74].

Size algorithm: The algorithm evicts the document with higher size first, favoring

small items rather than larger [73]. The documents are evicted when the requested
document exceeds the free space of the cache.

Pitkow/Recker algorithm: The algorithm uses two rules depending whether the

document is accessed the same day or not. If the items are referenced the same day,
then evicts the biggest object (same than size algorithm). When the document is
accessed the same day the LRU algorithm is applied [75].

Abrams et al. [74] compare different versions of LRU, which are LRU-Min and

LRU-Threshold. They determine that LRU-Min outperforms LRU because does not
take into account the size of the document. When the documents’ size is large, LRU
performs better than LRU-Min. On the other hand, LRU-Threshold is comparable to
LRU-Min when the available disk size is smaller than the theoretical cache’s size,
although the though configuration1 makes it less attractive. They remark that a more

1 Depends on the current disk workload and available disk size.

 20

effective caching is done close to the origin server rather than the client side due to
save disk space and can forecast which documents are worthy to catch for a long-
term period.

This chapter details the most common caching architecture and some of their

enhancements. Depending on the purpose of the cache it should be placed near the
client or the origin server. This section also covers different cache management
algorithms. For small documents LRU is better whereas for big files is LRU-Min. We
introduce packet-caching systems, which consists on dividing a file into smaller pieces.
The next section details our implementation and its limitations as well as the tools
we have used for developing it.

 21

Chapter 4

4 Experimentation setup

This thesis investigate the characteristics of different web sites and their changes
over time to analyse how much data might be cached. The data set is obtained by
active measurements of popular web sites from a host located at Aalto University.
The metrics used for the analysis are detailed in the next section, followed by the
implementation and limitations of this application.

4.1 Methodology

One goal of this study is the analysis of changed content in the WWW to evaluate
how much content is unchanged over a delimited period of time. To understand and
quantify the current web traffic, we need to look web sites from different points of
view. For instance, we could examine the IP addresses from which the content is
downloaded to describe the balancing performance of these web servers.

The data set for this study is composed by the 50 most visited web sites according

to Alexa’s ranking [76] 2. This number of selected web pages is limited because we
only have one measurement client to fetch and process all the data. Typically, web
analysis tools and search engines use data centers to distribute load because of the
vast quantity of data. Popular search engines, such as Yahoo! Or Google use web
crawlers to index web pages in order to be found in their services. However, these
services uses distributed programming models to process that data. A relevant model
is MapReduce [77], which is implemented at Google for processing large datasets.
The model distributes the task among the servers to make an efficient use of these
machines. This technique is also used for other purposes such as machine learning,
data mining or statistical machine translation.

Alexa’s web site classifies domains, but some services use multiples domain names

that appear as separate items in Alexa’s classification. Analysing different top-level
domain names of the same service would not give us a better understanding about
the web site because of the small differences between domains. Therefore, we have
keep one domain and excluded the rest (e.g., national Google sites).

2 As of June 2011.

 22

Our implementation fetches all objects in the index page as well as all documents
linked to it. By index page we mean the top-level index page under that domain. In
this thesis we also refer it as first load page or main page. We retrieve the web pages
at a constant interval of 15 minute, enough to capture small changes and large
enough to not overload the servers. Sending multiples request for a web site in a
short period of time could be interpreted as Denial of Service Attack (DOS attack)
[78]. The mechanism fetches content 24 hours per day, 7 days per week, starting at
February 30th of 2012 and ending on October 30th of 2012. The implementation does
not interpret JavaScript [79] embedded in HTML, thus it misses those types of
objects. Even so, all the other objects contained within the web site are downloaded.

We have adopted a hierarchical approach aimed to characterize different aspects

of the web pages in our data set. The levels of analysis are the followings:

Top-level page set: Web sites include all documents at the initial web page and

the direct links from the index page. The links are obtained by recursive requests
from the index page that goes one level further down the web site hierarchy. This
level of analysis gives an overview about the composition of the web site to
understand how changes are distributed. The study at this level provides a better
understanding on the use of static and dynamic content through the study of
unchanged bytes.

Index web page: That level represents the study of the index page at root, for

instance www.site.com/index.html plus all embedded content. We compare our
results to previous studies of the WWW [11] [12] [13] as well as determine its
potential cacheability.

To extend our analysis we used two different comparison methods at the top-level

page set and index web page. Each method aims to emulate different web caching
approaches.

File level: Entire documents are compared between them. That comparison

intends to determine possible benefits for file-level caching. This approach is common
between web caches because it is simpler to implement and cheap.

Block level: Every document is divided into smaller pieces to identify and quantify

the degree of change. This approach aims to analyse possible benefits for packet level
caching. We compare a previous work [71] to determine which model provides a
better detection of unchanged web content. This approach is used in both levels the
index web page and the top-level page set level.

The comparison mechanism works along with the data collection. When the

fetching process ends the list of web sites, the comparing process starts to analyse the
data set. Identifying redundancies at these two levels with two different comparison

 23

methods provides a better understanding of web pages to assess the benefits of web
caching mechanisms.

4.2 Metrics

This work uses several parameters at different levels to characterize redundant
content. Different approaches require different metrics, although all levels attempts
to identify content similarities. The metrics for the top-level page set are listed in
Table 4.1.

Table 4.1 Top-level page set metrics.

Metric Description
Size Total size of the web site in kilobytes.
Unchanged [%] Fractions of unchanged files for one implementation’s iteration.
Unchanged [Kb] Fraction of unchanged bytes of the Unchanged percentage.
Full match files Number of files that are exactly the same for different web page

versions.
Full match [Kb] Size in kilobytes of full match files.
Existing files Number of modified files that remain from previous iterations.
Total files Total number of files per web site.

Previous works [4] [47] examines the impact of web site’s size and their

consequences to web caching. We compare the current size of web sites of these
works to determine whether their models are still valid or have become outdated. To
identify similar content we have used three parameters: Unchanged [%], Full match
files and Existing files.

Unchanged [%] indicates the relation of similar content between two consecutive

iterations of the same web site. This metric is calculated by averaging the unchanged
percentage for all files belonging to a web site. Detecting relative percentage of
redundant content is not enough, it is necessary to quantify the amount of data by
the metric Unchanged [Kb]. Moreover, a web site with high similarity and few
unchanged bytes is less important to be cached rather than other with more
duplicated bytes and less Unchanged [%]. These metrics not only show that the
document has changed, they also determine the amount of similar content that has
changed, hence, how much content could be cacheable.

The continuous updating process does not affect all the documents; some of them

keep unchanged over time. That part of the web site is also called permanent content
[41] because rarely (or never) is modified (e.g.; favicon). Favicon is an icon that
associates a web site to a small image. Full match files attempts to count the number
of files that keeps exactly the same for two consecutive iterations of our program. We
will compare it with an earlier work [41].

 24

Some of the metrics for the top-level page set of analysis are no longer valid for

the index web page level since only one web page is analysed. Table 4.2 shows the
metrics used for this level.

Table 4.2 Index web page level metrics

Metric Description
No. Objects Number of objects in the index page.
Size Size of the index web page.
Unchanged [%] Fraction of unchanged data for one program iteration of the

main web page.
Unchanged [KB] Fraction of unchanged bytes of the Unchanged percentage.
Content-types
(number)

Number of resources that may be something else in the index
web page.

Content-types
(bytes)

Size of the different web resources in the main page.

The No. Objects is a relevant metrics because it determines the number of files

that caches should store to represent the full index page. We will compare them to
an earlier study [80].

We use two similar metrics used in the top-level page set, Unchanged [%] and

Unchanged [KB]. In this case, we use Unchanged [%] to determine the percentage of
unchanged data within the index web page for one comparison iteration. It gives us
and approximate value of how cacheable this web page could be. As we did in the
top-level page set, we determine the number of bytes that this percentage of similar
data represents and the impact on web caches.

We have abbreviated the last two metrics, Content-types (number) and Content-

types (bytes), because refers to five different web content types: HTML, CSS,
JavaScript, images and others. The Content-types (numbers) counts the number of
different web content-types within the index page level. The Content-types (bytes)
takes into account the bytes used for each content-type. We aggregate the most
common image formats (jpg, png and gif) into one metric: Image. The objects that
do not fit into one of the previous content types are counted as Others. Typical
objects in this category are icons and AJAX files. We counted the number of objects
and their size for different content types because not all resources have the same
cacheability. We evaluate the potential cacheability of these objects and we will
compare to earlier studies [8] [48] [47].

Counting the number of Total files determines the rate of introducing files and

identifies where the change has been made. In other words, it discerns whether the
web sites update existing documents or create new files. That raises some questions:

 25

when a web site change, does it change completely? Do caches need to store again
the whole document? To answer these questions we have divided files into smaller
pieces. With these pieces we identify those parts of the document that have actually
changed.

The size of the chunks is 1460 bytes, which matches the typical Transmission

Control Protocol (TCP) maximum segment size (not assuming TCP options) [81].
This approach simulates packet level caching, hence results can help to improve
caches. Redundant blocks are measured with Unchanged [%], which is determined by
averaging the number of repeated chunks in a web site. We also determine the
unchanged bytes with the metrics Unchanged [KB].

We aggregate similar web sites into categories depending on their type of

service. Thereafter, different categories (e.g.; search engine or social network) are
compared in order to identify models of redundant content across categories.
Alexa web service, from which we obtained the ranking of most visited web pages,
has its own category list. Nevertheless, some categories are too general and in
some cases not accurate. As example, www.youtube.com and www.google.com are
clustered in the same category: “Internet”, whereas each domain has different
goals and content. Another example is www.facebook.com situated as “Activism”
when www.twitter.com is categorized as “Internet”. This study presents an
alternative categories list where web sites are differentiated depending on their
content rather than the use that we do with them.

Table 4.3 describes the different categories used in this work, and the complete list
of web sites and their categories are detailed in Appendix A.

Table 4.3 List of categories.

Category Description Nº of web sites
Search service Web sites that require keywords to produce

results.
4

Content
sharing

Web sites that prevalently exist for distribution
of static content.

11

Video
streaming

Pages dedicated to distribute video and audio. 8

E-Commerce Entities that focuses on electronic commerce. 6
News Pages dedicated to inform users about news. 6
Social network Web pages where users are members of an

online community.
9

Service portal Pages that offer multiples services such as e-
mail or news.

6

 26

The study at this level implies a better understanding of the web sites according
to the service that are offering and how could be applied to caching systems. Web
sites whose categories have more changed content is more likely to be stored in a
cache rather than web sites whose categories have less unchanged data.

4.3 Implementation

In this section we detail how we obtain the data set and how implemented our
solution. The section begins with an overview of the implementation followed by
detailing data collection and comparison processes. Tools and limitations of the
solution are described next.

4.3.1 Overview

We developed a system where web sites are downloaded and examined at different
levels. Our program is composed of three scripts, each one working independently
from each other, to avoid functional errors. Each scripts aims to different analysis
levels, as Table 4.4 shows.

Table 4.4 Relation between scripts and analysis levels.

Analysis level Script
Top-level page set Compare
Index web page MainpageCompare

The first script is responsible of collecting the dataset, Gather script, is not

included in Table 4.4 because it collects data instead of analyses.

The overall implementation is depicted in Figure 4.1 where circles represent

scripts, rectangles folders and rectangles with bended tabs text files. The gather and
comparing scripts are handled by a time-based job scheduler, in this case the daemon
cron [82]. This daemon is configured to run the scripts every 15 minutes. The last
step does not need a scheduler because is a statistical software that processes the
data.

 27

Figure 4.1. Overall implementation

For brevity, Figure 4.1 only depicts the general structure. Comparing scripts refer
to our three analysing scripts: Compare, MainpageCompare and BlockCompare. All
of them use the same structure but with different comparison methods.

Gather script is dedicated to query each web site to download all the documents

within it. Information about gather process is stored on a log file in order to register
any anomaly during the process. Along the execution of the program a set of folders
are created, which is where the information is stored.

The second stage, Comparing scripts, begin to work when the data is obtained. Its

function is to analyse the data of two consecutive queries from the same site looking
for common parts. Compare script analyses the entire file, meanwhile BlockCompare
split each file into smaller pieces and compare them. Finally, MainpageCompare
analyses the index page of each domain separately. BlockCompare also analyse the
content at the index web page level. Each script creates different Text files, based on
different metrics, following a table structure to register the comparisons between
documents.

The last part represent the data obtained on the previous stages with the

statistical program R [83]. The result is a series of Graphics that are used to compare
previous works and define new models for unchanged content.

4.3.2 Data collection

The measurements were done on a Linux-based dual-core AMD Opteron 2218
with 16 GB of RAM. The host has a gigabit network interface connected to the
FUNET network [84].

The web sites extracted from Alexa are listed in a text file where the script reads

them every time that it is executed by the daemon cron. The measurement client
queries all webs within the file, web site after web site, as Figure 4.2 depicts.

Data folders

Domain A Domain B Domain C

Measurement client

 28

Figure 4.2. Query diagram

The server takes one domain at a time from our list, and downloads all data into
the folders. Once the data is obtained from one web site, it jumps to another domain
repeating that process until it finishes the web sites in the list. When 15 minutes
have passed from the first query, the program starts the process again.

The queries are done using the tool wget [85] with some particularities at the

request header. The script represents itself as Chrome client, because it is the most
used web browser with more than 30% of market share around the world [86]. The
used version string of Chrome is: Mozilla/5.0 (Macintosh; U; Intel Mac
OS X 10_6_6; en-US) AppleWebKit/534.16 (KHTML, like Gecko)

Chrome/10.0.648.133 Safari/534.16.

The full command for the fetching process is the following: wget -r -l 1 –H -

p --random-wait -wait=2 robots=off. To download all content derived
from the index web page, wget follows hyperlinks with the option -r. If no other
option is settled, it downloads the web page indefinitely. We added the option -l 1,
for limiting wget to the first’s links from the index page in the web site hierarchy, as
it is explained in section 4.1. Nevertheless, not all links refer to the same domain,
some of them links to other domains. For instance, the main page of The New York
Times has advertisements and links to social networks. Expanding the request to
foreign host with the option –H downloads data from others domains Moreover, to
get all objects needed (i.e., images or stylesheets) we included the –p option to
display properly the web pages.

Along the years, some attacks have been performed against well-known web sites

[87] [88]. To avoid undesired retrieval programs some web sites examine logs to
forbid malicious software or denial of service attacks [89]. To mask wget as a
common web browser we have used the options –random-wait and -wait. Wget
wait a random time that varies from 0.5 to 1.5 times the parameter wait, which is
settled to 2.

The last parameter issues the use of Robot Exclusion Standard [90], which limit

search engines access to parts of a web site. It is useful for web developer to exclude
from crawlers to access some part of the web page, which requires big resources of
the server or parts where information is private. This file does not guarantee that the
resources are not queried, at the end depends on user’s purpose. The option
robots=off, give full access to those parts while no login is required.

The data set is stored following a tree-like structure, as Figure 4.3 depicts. The

framework has four levels determined by date, hour, browser and domains’ name.
That organization allows us to search easily for specific events that might occur at a
specific time.

 29

Figure 4.3. Folder’s structure

Figure 4.3 is an example of our tree-like structure. In this case, Google’s web page
has been downloaded using the web browser Chrome at 12:00 the 2nd of January in
2012. We have added a level for the browser because different browsers have different
behaviors. This feature is not implemented in this work, but it is discussed in section
6 as possible future work.

4.3.3 Data analysis

In these analyses we focus more on quantifying the degree of the change rather
than the changed content.

The Compare script examine the files obtained after fetch all files within the index

page and files linked to it, see section 4.1. The Compare script uses a recursive search
of all files within the domain’s folder, taking the files at different fetching times. If
the file does not exist in one version of the web site, it is labeled as a new file with
100% of change. On the other hand, if both files have been located, represented as
File A and File B in Figure 4.4, the script increases the existing file counter. This
indicates the number of files that have the same name for two program intervals. At
this point, we do not check whether both files, A and B, have the same content, this
checking is collected by the metric Full match files.

120102

1145

Chrome

Google

1200 1215

BBCEbay

Date

Hour

Browser

Domain

 30

 Figure 4.4. Comparison process

Each file is compared using the Cmp tool. If the files are exactly the same, it
means that we have obtained 100% of unchanged data, therefore Full match files
counter is increased. When the script has examined all the files within one domain, it
averages the unchanged percentage and unchanged kilobytes for all files and stores
them on a table along with other metrics.

MainPageCompare follows the same process but only for the index web page. It

locates each index file for all web site in the list, depicted as Index.html A and
Index.html B in Figure 4.5.

Figure 4.5 MainPageCompare analysis process

MainPageCompare also compares all objects contained in the index page plus
embedded data. Typically these resources are images and JavaScript, but also CSS
files.

The script BlockCompare uses a different approach for the analysis. It starts by

locating each file within a domain at different fetching times, as Compare script and
MainPageCompare does. This scripts works at both analysis levels. Once both files
are located, File A and File B, the program divides both files into chunks of 1460
bytes each one, as Figure 4.6 depicts. This division is implemented in C because it
provides better tools for reading a determined number of bytes.

Figure 4.6 Chunks comparison process

MainPageCompare
 script GraphicTable

Index.html A

@

Index.html B

@

 31

When each chunk is selected, in this case Chunk 3-A and Chunk 3-B, the script
compares them using the function strcmp. The function discerns whether Chunk 3-A
is bigger, equal or smaller than Chunk 3-B. Once all chunks are compared with that
script, the script averages the fraction of unchanged chunks of all files within one
domain. Finally the scripts count the number of bytes that represent the unchanged
blocks.

4.4 Tools

Alexa [76] is a web service that collects statistics on a large number of web sites
worldwide. This service collects number of hits, traffic and time on site among others
metrics, but we have used the ranking of the most visited sites that are expected to
have most impact on Internet. There are other web sites with similar crawls such as
Google trends [91] but Alexa has more than 30 millions of web sites in more than 125
countries.

Bash was chosen as scripting language (there could be have been many equally

good script language alternatives in UNIX). We have used basic bash functions but
also more specific tools that require special mention due to their specifics options.

The most important tool is wget because it is the responsible to download the web

pages. Wget is very flexible and robust on slow or unstable connections because if a
download fails, it keeps retrying until the document is download. This characteristic
is especially useful for domains on countries where the distance to our machine could
be a problem. There are similar tools such as cURL [92] or HTTrack [93].

R [83] is statistical software capable to represent data sets on multiples types of

plots such as boxplots, histograms or pie charts. Moreover, it is capable to handle
arrays or vectors but also calculate means and deviations. We have chosen this
environment because is free, powerful and easy to use. There are several alternatives
to R such as S-Plus [94] or PSPP [95].

4.5 Limitations

During our analysis we have found some shortcomings. Our intention to perform
an analysis as heterogenic as possible found a shortcoming when we query to social
networks. Any social network needs a login by the user, which is feasible to do it
technically (if we have got passwords or some kind of credentials from users), but
that invades the user privacy. We did not want to intrude the user’s privacy,
therefore, we have not compared any data beyond the index page for that category.

We suggested in section 4.1 the use of a distributed system where the load of the

machines is shared. The amount of downloaded objects and their further comparison
yields significant process consumption. By dividing the task into different servers (i.e.,

 32

one server to collect traces, one to compare and another to represent) would increase
the effectiveness and the possibility to spread the number of studied web sites. The
benefit of this task division is detailed in [77] and it has been used in huge server’s
clusters at Google. Unfortunately we only have access to one server, which limit us to
a relatively small number of sites. Although, our analysis is significant due to we
analyse the most popular web sites.

As summary, in this section we have detailed the methodology followed by our

implementation. We have introduced a categorization for different web sites
according to their content. With that categorization we analyse two levels: Complete
web site, Index web page level. Each level has its own metrics because we analyse
web sites from different points of view. The comparison process is done by two
different methods: file and block comparison. Later on we detailed the set of scripts
to fetch the content, analyse our data set and plot the results. Finally this section
ends explaining the tool we have used and the limitation of our implementation. The
next section shows the results that we have obtained through all that process.

 33

Chapter 5

5 Analysis of Results

This section compare earlier known 90’s results with our data set. We examine
number of objects, composition of the web sites and their sizes. Moreover, we study
the dynamics of popular web pages in order to determine the potential impact of
different caching techniques. We use categories, depending on their type of service to
determine any correlation between web sites and categories.

5.1 Overall characteristics of web content

Along the years, the WWW has evolved, adapting to the time and capabilities of
the surrounding technology. Strong indicators of this evolution are the number of
objects per page, the number of resources within web pages and their size. All this
metrics are studied in the corresponding analysing levels.

5.1.1 Overall analysis

To determine the number of objects per page, we have recorded and examined
responses from different web pages for the index page. Figure 5.1 shows the
Cumulative Distribution Function (CDF) for the number of objects required at the
index load page when a user queried a web site. An earlier work by Hernandez-
Campos et al. [80] studied the number of objects on web pages from 1998 to 2003,
finding three or fewer objects per page for the 75% of their data set. These values are
far lower than our results since 81% of web pages have 100 objects or more and none
of them has three or less objects. It is because current web pages use new
technologies, such CSS or JavaScript, which were less popular in the early 2000 than
they are now. Advertisements are the other contributors for the growth of the
number of objects per page.

 34

Figure 5.1 Average number of objects at the index page

The number of objects is a factor to take into account for web caches, but also the
size of the objects. The reason is similar to the number of objects, since bigger
objects needs more space in caches rather than smaller objects. Bigger objects load
slower than smaller because it takes more time to be transmitted. Therefore some
caching algorithms prefer bigger objects because the user downloads small files faster.
Two HTTP/1.1 mechanisms: persistent connection and pipelining [18] favors the use
of more objects per page. The reason is because these techniques allow transferring
multiple HTTP requests without waiting for the corresponding responses on the
server’s behalf. Therefore, a higher number of objects could be sent regardless the
acknowledgments. These two techniques allow web designers and web masters
including more objects per page without excessively increase the load time of the web
page.

Figure 5.2 shows the cumulative distribution of size of objects presents at the

index page level. We observe that HTML is the main contributor followed by
JavaScript resources. Contrary to Butkiewicz work [47], the median size of the
resources is lower in most of the cases. One possible reason for reduction in size is the
minification of the objects [96]. This technique removes all unnecessary characters
from the web code without changing its functionality reducing the size. It is not the
same process than compressing since minification does not require any uncompressing
process. HTML, JavaScript and CSS are resources that may be minified with current
tools such as Clousure Complier [97] or YUI Compressor [98].

Nevertheless, we have found an increasing size of image resources, the median size

of an image is 8 KB whereas in Butkiewicz’ study is less than 2 KB. The use of

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of references

No. of objects

C
um

m
ul

at
ive

 w
eb

si
te

s

 35

multiple icons per image, also called tiled images, is a possible factor for increase the
size of images.

Figure 5.2 Object size for different web content types

Finally, we focus on the size of the web pages as Figure 5.3 shows. Sunghwan and
Vivek [48] compare the evolution of the page size along several years. During the last
two years the average size of the pages has remained similar, from 133 KB in 2010 to
124 KB in 2012 as median.

Figure 5.3 Average of index web page size

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HTML median size

Median size [KB]

C
um

m
ul

at
ive

 w
eb

si
te

s

HTML
CSS
JavaScript
Image
Others

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Main page size

Size[Kb]

C
um

m
ul

at
ive

 w
eb

si
te

s

 36

For the last few years the web pages have maintained their size, but the
complexity of the web sites has increased because there are more objects per web
page. Some types of objects have reduced their size through the minification process,
but not images, which in fact have more bytes.

5.1.2 Distribution of different categories

There are many types of web services on the WWW. For instance, we can search
for information with a search engine or buy an article from a web page. Each web
service type is created to cover a specific goal, therefore the structure and approaches
for achieve it are different from each web service. For example, social networks are
based on dynamic content from the users meanwhile newspapers focuses on news
from around the world. Some question arises from that diversity of web services:
Have different web services the same structure and size? Do they use the same
technologies? And, finally, in what degree different web services have changed their
objects composition along the last years? To answer these questions we have used
categories that enclose similar web services (e.g., www.ask.com and wwww.bing.com).

As described in the above section, the number of objects per page is an important

factor when a web cache is deployed. Figure 5.4 plots the cumulative distribution
function of objects per web page broken by categories. We have not performed any
login for those web sites belonging to social networks because we did not want to
fetch private data such as usernames or passwords. Therefore this category is at the
lower range on the plot.

The category News exceeds the rest of categories by more than 200 objects. This is

because the number of articles contained per page. Typically, an article consists of
some text, several images and multiples references to other news. These factors
increase the number of objects substantially.

 37

Figure 5.4 Number of objects at the index page level by category

Figure 5.5 shows an image from www.google.fi that contains different icons in one
picture. These images are called tiled images. Not all the web sites use the same
approach, for instance, www.nytimes.com or www.spiegel.de uses one image per icon.
The use of small images contributes to increase the number of objects per page. Also
increases the number of bytes and difficult the cacheability of the web site because
multiple images needs to be stored in the cache.

 a) www.google.fi

Figure 5.5 Google’s tiled image

The search engines www.baidu.com and www.bing.com also uses this technique
including several icons in one image. However, we have observed that some web sites

 38

do the same but only for sharing icons. For instance, for posting a comment on
Facebook or send a message via Twitter.

a) www.imdb.com b) www.flickr.com

Figure 5.6 Different sharing icons in one image

Figure 5.6(a) shows different sharing services grouped in one picture for the web
site www.imbd.com. Figure 5.6(b) uses the same methodology but with more services
such as www.wordpres.com or www.yahoo.com. Moreover, the name of the file is the
same across all web sites, sprite.png. We suppose that this name is becoming a
non-written agreement between web developers, similar to the favicon icon (see
section 4.1).

Not only the number of objects has changed, the composition of the web pages

also is different compared to previous years. This is a relevant factor because not all
web content types have the same cacheability. Douglis et al. [8] did a study on the
WWW in 1997. They found 24% of the resources were HTML files and 65% were
different image formats. Their representation in bytes was 33% and 46% respectively.
Figure 5.7 shows the composition of current web pages, index pages plus embedded
objects from index page, and their percentage in bytes. HTML and image resources
are the most common, although CSS and JavaScript have become relevant. One
might expect that the Video streaming category is mostly composed by video files
but typically videos are only downloaded by user’s action (i.e., the stream starts by
clicking on the play button). Typically videos are also in Flash files, which are not
supported by our implementation. Our results are different compared to Douglis et al.
work: we obtained 42.3% of HTML resources and 25.28% of image resources in
average across all categories.

 39

Figure 5.7 Composition of web content types per category

Sunghwan and Vivek [48] studied in 2011 that around 25% of the objects of their
data set were HTML. We have obtained a higher percentage, 42% of HTML objects,
but when we look at the percentage of bytes that they represents, this fraction raises
to 45%. The fraction of HTML bytes obtained by Sunghwan and Vivek is just 32% of
the total size of the web page. The increasing number of HTML resources confirms,
in part, the trend of using more objects but with smaller size. In their work, they also
analyse the number of image resources, obtaining more than 50% of image objects
and 38% of images bytes. We have obtained lower percentage of image resources, just
25%, but it represents the 29% of the web sites’ bytes. As we can see, the number of
image objects has not increased, possible because some web sites use tiled images.

On the other hand, Sunghwan and Vivek found that 12% of the requests involves

JavaScript, which represents the 36% of the web pages’ bytes. Our results are similar
in percentage, with 10%, but only 8% of bytes are JavaScript. We find more
JavaScript objects but with smaller sizes. We noticed a high percentage of bytes for
Others objects in Social Network category. We have found a representative number
of AJAX resources in this category, less likely to be cached because is generated by
client-side interactions.

The size per page across all categories is plotted in Figure 5.8. Similar to previous
figures, the category News stands the first in terms of bytes, followed by Video
streaming and E-Commerce, being 401 KB, 104 KB and 101 KB their medians

 40

respectively. As occurs in Figure 5.7 the category News has 4 times more bytes than
the rest of categories in average.

Figure 5.8 Index web page size grouped by category

Our results are roughly consistent with the analysis of Sunghwan and Vivek. They
found a strong fraction of image resources across all categories as well an increasing
use of CSS and JavaScript. The study also remarks the difference between the
category News and the rest of categories in terms of size. This difference corresponds
to the increasing use of objects per web page (Figure 5.1). Sunghwan and Vivek
determined that 20% of web sites uses 100 objects or more, while we obtained 81% of
web sites.

The structure of the web pages does not end at the index web page, in fact, most

of the content is derived from that web page. Figure 5.9 depicts the size of the
categories at the top-level page set. It clearly shows a remarkable increase on the size
of the web sites. In average, we have found that data derived directly from the main
web page represents 32 times the data at the index load page. Content sharing stands
as the category with more relative deep content with 47 times the size of the index
web page. News and Video streaming follows Content sharing with 39 and 32 times
more deep data.

 41

Figure 5.9 Top-level page set size grouped by category

We have confirmed a higher use of HTML objects but fewer number of image
objects compared to the study of Douglis et al from 1997. Nevertheless, the number
of objects has increased compared to 2011 but with lower size per file. We also found
tiled images, which reduces the number of images per page and, a higher number of
JavaScript objects but with less size. It may be explained by the improvements of
HTTP/1.1 with the persistent connection and pipelining. We also have shown that
different web services do not share the same structure and number of resources. The
category News exceeds the rest of categories in number of objects and size. This is
probably because these web pages have multiple articles, which contains multiple
images and text.

5.2 Analysis of temporal differences

Analysing changes in content depends on many factors such as the comparison
interval, which elements are compared or the comparison method itself. Detecting
changes within an interval time too low will yield on no unchanged content whereas
too long may obtain only changes. Therefore, we have selected a medium-range time
of 15 minutes, enough to detect small changes within web sites. The same interval
time was used for Mikhailov and Craig E. in their work [56]. The second factor for
analysing changes in content depends on which elements are compared. We expand
our research to those objects that are directly linked from the index web page. The
objects from these links (top-level page set) provide a better understanding for web
caches of the objects that may be accessed for the users and their potential
cacheability.

0 10000 20000 30000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size[Kb] CDF

Size[Kb]

C
um

m
ul

at
ive

 w
eb

si
te

s

Search service
Service portal
News
Social network
Video streaming
E−Commerce
Content sharing

 42

5.2.1 File-level comparison.

We determine the cacheability of a web site by quantifying the fraction of content
that is unchanged between two consecutive iterations of our implementation. We do
this analysis at the index web page level and at top-level page set. Figure 5.10 shows
the potential cacheability for different categories at the index web page level. The
categories Search service and Content sharing rarely change when we compare two
consecutive intervals of 15 minutes.

On the other side, Video streaming, News and Social network change more often,

in median, 57%, 61% and 66% respectively. These percentages are lower than the
77% of unchanged data in average for all web sites across categories. For some
categories, we can assume that the type of service of these sites is to update the
content more frequently, such as Video streaming or News. For instance, web sites
with news update more frequently than search engines, which rarely changes. The
high percentage of changed content on Social network category is higher than
expected without having performed any login. We have found that Social network
uses different mechanisms to track the user’s session and make more dynamic the
index pages. For instance, Badoo uses different pictures for the index field. It is
emphasized in this category by the low size of the web page because we only compare
the login page. The use of AJAX is commonly particular in this category because the
content is mostly personalized.

Figure 5.10 Fraction of unchanged data for 15-minute interval between two downloads of
the same page at the index page level by category

In contrast to the index web page level, the number of objects compared at the
top-level page set is much higher. Figure 5.11 plots the fraction of unchanged data
for 15-minute interval for all files linked to the index web page. That picture shows

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Common [%] Index page

Unchanged [%]

C
um

m
ul

at
ive

 p
ro

ba
bi

lit
y

Search service
Service portal
News
Social network
Video streaming
E−Commerce
Content sharing

 43

the level of unchanged data of the index load page and the embedded objects directly
linked from index page. Search service remains as the higher percentage of
unchanged data along with Content sharing and Social network. All investigated web
sites belonging to Search service category have a section called “News”, which is
updated regularly. This section reduces the cacheability of these web sites because
the content is modified regularly.

The fraction of unchanged data for social networks is similar in both levels index

page and top-level page set. The number of objects that might be accessed without
any login is lower than the number of objects accessed with a logged user. The rest of
the available links in the web page without login are in most of the cases, links to
“Terms”, “Privacy” or “About”, information that rarely changes.

Figure 5.11 Unchanged percentage for 15-time interval between two downloads of the
same site at the top-level page set by category

In average, the fraction of unchanged data is reduced by 21 % compared to the
index page level. One might expect that unchanged percentage of data on the
category News at the top level page set would be much lower than the index page,
but the difference is just the 12%. The reason for such result is that index page is
updated constantly, however the rest of the web site where old news are located,
remains constant for several days. It produces a fast update but only at the index
load page.

The fraction of unchanged content is not enough to characterize the potential

cacheability of web sites; we have to quantify the number of unchanged bytes. Figure
5.12 shows the number of identical bytes present at the index load page level. The
average amount of unchanged content over 15-minute interval is 83 Kilobytes across
categories. All the categories have similar results but the category News. The results

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unchanged [%]

Unchanged [%]

C
um

m
ul

at
ive

 p
ro

ba
bi

lit
y

Search service
Service portal
News
Social network
Video streaming
E−Commerce
Content sharing

 44

are closer between categories compared to the fraction of unchanged data depicted in
Figure 5.10. It is because there is a difference in the size of the web page between
categories.

Figure 5.12 Unchanged bytes for 15-minute interval between two downloads of the same
page at the index page level grouped by category

There is some similarity between the web site size and amount of unchanged data.
Fetterly et al., [41] concluded that the document size is a good predictor of the
degree of change. The changes in small objects produces lesser amount of unchanged
bytes compared to the same fraction of big files. For instance, if an object has a large
percentage of common data but its size is small (few kilobytes), the amount of
unchanged data will be low. Otherwise if the fraction of unchanged data is small but
the file is big (tens of kilobytes) the number of unchanged bytes will be high. That
similarity is still valid when we compare the files at the top-level page set. Figure
5.13 depicts the redundant kilobytes for data beyond the first page. The median size
of web pages is 3192 KB, whereas the unchanged content is just 1713 KB, which
means that half of the size of the web page may benefit from caching.

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Common [KB] Index page

Unchanged [KB]

C
um

m
ul

at
ive

 p
ro

ba
bi

lit
y

Search service
Service portal
News
Social network
Video streaming
E−Commerce
Content sharing

 45

Figure 5.13 Unchanged bytes for 15-minute interval between two downloads of the same
site at the top-level page set grouped by category

 To determine where changes are produced we have compared all files at the top-
level page set counting which files are new and which were present in previous 15-
minute intervals. Figure 5.14 depicts the relation between previous versions of
existing files and introduced files between intervals. Similar to previous plots, News
stands as the category with the largest number of total files, 567 in median, followed
by E-Commerce and Content sharing, with 162 and 153 files respectively. On the
contrary, Social network and Service portal are the domains with fewer files, 30 and
22 accordingly. Earlier we have pointed the small number of objects for Social
network and their effect on the results for that category.

It is interesting to examine the update rate of new files to determine whether a

web site modifies existing files or introduces new data. The web pages related to E-
Commerce stands as the category with the lowest ratio, just 11% of their files are
constant between consecutive comparison intervals. The fraction of common files is
69% across all categories. Part of this low ratio is explained by the dynamism of that
category because these web sites personalize the offers depending on the user’s
preferences.

0 5000 10000 15000 20000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Common [KB]

Unchanged [KB]

C
um

m
ul

at
ive

 p
ro

ba
bi

lit
y

Search service
Service portal
News
Social network
Video streaming
E−Commerce
Content sharing

 46

Figure 5.14 Total number of files at the top-level page set per category

The high percentage of common files represents that changes are produced mostly
on existing documents. Thereby caches might use management algorithms of which
metrics takes into account the time that the file has been in cache. For instance LRU
or LFU, rather than algorithms that focuses only in their size.

Among the files that were present in previous comparison intervals, we detail in

Figure 5.15 the corresponding number of files that are exactly the same for two
consecutive intervals of 15 minutes. These are the files that potentially benefit from
caching. Content sharing, News and Social network are the categories with higher
percentage of identical files among the files that remained from the previous
comparison interval with 98%, 95% and 81% respectively. In average across all
categories, the 71% of files that are common between two comparisons iterations are
identical, which means that changes are produced mostly in new files.

 47

Figure 5.15 Identical files distribution at the top-level page set per category

We have confirmed that not all categories change likewise, probably because the
type of service of some web services makes introduce content more often than others.
Nevertheless the fraction of unchanged data is higher at top-level page set in all the
cases and does not correspond to the number of unchanged bytes for the same
analysis level. We have found a similarity between size and unchanged bytes because
changes are in small files. We also found that the majority of files are constant
between iteration and among these files most of the files are identical.

5.2.2 Block-level comparison

Finally, in this section we use a different approach to determine the potential
cacheability of web sites based on packet caching. We have not examined the data at
a low level as packet caching does, but we have compared blocks of data rather than
the entire file. It is an approximation on packet-level caching because we divide files
into smaller pieces. With this approach we determine the potential cacheability of the
content for web caches that implements packet caching.

The following exhibit, Figure 5.16, depicts the percentage of unchanged data at

the index page level using blocks of 1460 bytes, see section 4.1. This percentage is
calculated by dividing the unchanged blocks at the index web page with the total
number of blocks obtained from that web page. The average percentage of unchanged
blocks is surprisingly low with 20% across all categories, which is lower compared to
the 77% obtained by entire file comparison as it is shown in Figure 5.10.

 48

Figure 5.16 Unchanged percentage with block comparison for 15-minute interval between
two downloads of the same page at the index web page by category

The main reason for that low percentage of unchanged data is that any change at
the beginning of the web page affects deeply to the whole percentage. Since we are
comparing constant blocks size, if any dynamic content or reference changes its
length, the remaining bytes of that content will be shifted to the next block.
Thereafter these block are different, hence the fraction of unchanged data is
decreased even if the change is only in one byte. For instance, YouTube personalize
content depending on what is popular at that time. In the code below we can see a
sample of YouTube’s personalization code.

yt.timing.info('e',

"909520,914037,906040,907217,907335,921602,919306,919316,904455,
912804,919324,912706,904452")

If we compare that sample with the same part of code at the next iteration of our

implementation (below), the length of the sample differs from the above code.

yt.timing.info('e',
"909707,907217,907335,921602,919306,919316,904455,912804,919324,
912706,904452")

The difference of two values has a big effect on the rest of the blocks because the

length of that part of code has changed and the rest of blocks will not match their
corresponding blocks. This “shift effect” is caused as well for advertising due to ads
do not have the same length. We have extracted two HTML advertising’s tags for
consecutive iterations in Yahoo’s website.

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unchanged [%] Initial load page

Unchanged [%]

C
um

m
ul

at
ive

 p
ro

ba
bi

lit
y

Search service
Service portal
News
Social network
Video streaming
E−Commerce
Content sharing

 49

<div class="gdhp-product-pod gdhp-rounded-corners gdhp-product-pod-
left" title="Make your website run faster - From $4.24/mo"
onclick="location.href='http://www.en.yahoo.com/hosting/web-
hosting.aspx?ci=21391';" style="position:static">

<div class="gdhp-product-pod gdhp-rounded-corners gdhp-product-pod-

left" title="Get more visitors to your website! - From $2.69/mo"
onclick="location.href='http://www.en.yahoo.com/search-
engine/seo-services.aspx?ci=57555';" style="position:static">

The length of the title and the URL where the ad is located differs from each

sample, shifting part of the HTML element to the next block. That shifting effect is
done in every index page that we have compared.

The results from Figure 5.16 differ for the index web page level when we

determine the similarities at the one level web page, as Figure 5.17 depicts. To
calculate the percentage of unchanged data we have performed several calculations.
We have averaged the number of unchanged blocks within a web site with the total
number of blocks that has this web site. Then, all web sites belonging to one
category are averaged. By doing these calculations we observe that some categories
have similar and, in some cases higher fraction of unchanged resources than we
obtained in Figure 5.11. Such categories, Search service, News and Content sharing
have more unchanged blocks. In fact, the average fraction of unchanged content
using this method is 53%, slightly lower compared to the 57% that we have obtained
with the file-level comparing method.

Figure 5.17 Unchanged percentage with block comparison for 15-minute interval between
two downloads of the same site at the top-level page set by category

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unchanged [%]

Unchanged [%]

C
um

m
ul

at
ive

 p
ro

ba
bi

lit
y

Search service
Service portal
News
Social network
Video streaming
E−Commerce
Content sharing

 50

The narrow difference between both comparison methods, file and block levels, at
top-level page set indicates that the data directly linked to the index page do not
have the same level of personalization than the index load page.

The low percentage of unchanged data at the index web page level is traduced in

less unchanged bytes as Figure 5.18 shows. The average amount of unchanged bytes
across all categories is 20 KB, which is less than the 78 KB calculated with the
traditional caching at the same level. Service portal is the category that produces the
similar amount of unchanged bytes in both comparing methods with only 9 KB of
difference.

Figure 5.18 Unchanged bytes with block comparison for 15-minute interval between two
downloads of the same page at the index web page level grouped by category

The same analysis at top-level page set with the file-level comparison yields
different results as Figure 5.19 depicts. The average of unchanged bytes is 1772 KB
slightly larger than the 1713 KB calculated with the file-level comparison. Only two
categories have lower results, News and Social network with 8875 KB and 40 KB
accordingly. In fact, if we exclude both categories from our analysis, the difference
between comparison methods reduces to 111 KB of unchanged data. These
differences confirm that at this level the tracking systems and personalization are
implemented in a lesser degree.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unchanged [KB] Initial load page

Unchanged [KB]

C
um

m
ul

at
ive

 p
ro

ba
bi

lit
y

Search service
Service portal
News
Social network
Video streaming
E−Commerce
Content sharing

 51

Figure 5.19 Unchanged kilobytes with block comparison for 15-minute interval between
two downloads of the same site at the top-level page set grouped by category

We have noticed that the ideal size of the blocks strongly depends on the expected
packet size in the network because all the packets do not have the same length. Our
implementation is an approximation of the packet level caching, therefore our results
are not exactly the same than an actual packet level cache. Nevertheless the level of
personalization and tracking code at the index page level makes use of packet caching
techniques more difficult.

As summary this section details the results that we have obtained with our

implementation. At the index web page level we found that web pages mostly
composed by HTML and CSS are the most static. By looking at the size of the index
page, we can predict in some degree the cacheability of that web site. When we look
at the top-level page set we observe a relevant increase of the size as well as a
reduction of the unchanged data. If we look at the number of files, more than half of
files are present in two consecutive comparison iterations. The block-level comparison
yields lower results for the index load page level but obtains a greater percentage of
unchanged data for the top-level page set. This difference indicates a lesser level of
personalization for the web pages linked to the index page. The next section explains
the conclusions and possible future work.

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unchanged [Kb]

Unchanged [Kb]

C
um

m
ul

at
ive

 p
ro

ba
bi

lit
y

Search service
Service portal
News
Social network
Video streaming
E−Commerce
Content sharing

 52

Chapter 6

6 Conclusions and future work

Along the years the WWW has faced multiples transformations, adopting
emerging technologies. As consequence, we have observed an increasing number of
objects per index page from few objects per page in 1998, to more than 100 objects
for half of the compared web services. Technologies such as JavaScript, JavaScript or
CSS, inexistent in earlier days of the WWW are now popular, being approximately
22% of the bytes, a relevant portion of the web page. Much of the web content is still
HTML with more than 43% of the bytes per web site. We believe that percentage
will increase as HTML5 gets adopted because of the improvements in multimedia
media. Such improvements are focused on incorporating audio/video codecs and
vectored graphics. The predominant use of HTML compared to JavaScript or AJAX
favors caching systems because contains more unchanged bytes than other content
types.

Although we have not noticed an increment of the total size of web pages for the

last few years, the size of objects has become smaller. One contributor for that
reduction in size is the minification process, which reduces the size of an object
without compression. The reduction of the objects size involves less time to load the
objects, decreasing the waiting time of the users. Hence, for small objects the Round
Trip Time (RTT) becomes dominant performance factor. Therefore having the
content close to the client (i.e. at cache) improves the performance because RTT can
be expected to become smaller. Nevertheless, the number of images per page has
decreased but their size has increased in the last few years. Probably this is because
different images are merged into one picture, known as tiled images. Transmitting
very small pictures separately it is not efficient because it adds one header for each
transmitted image. Merging multiple images into one avoids overhead since only one
image is transmitted.

Including or treating all web pages likewise has been the model for web caching

systems for many years. We have defined some categories where similar web sites are
joined according to the services that are offering. Our results are consistent with [47],
finding that web sites with the same services behave similar.

At the Index web page level we have found that Search service and Content

sharing stands as the most static web pages because are composed mostly by HTML
and CSS objects. On the other side, Video streaming and News are the categories
with less unchanged data. The type of service explains it, in part, because these

 53

categories update more regularly than others categories. However, the results differ
when we look at the top-level page set. The fraction of unchanged data is reduced by
21% in average across categories. The categories with higher percentage of unchanged
data at this level are Search service and Content sharing. That means that these
categories update their index web pages rather than the content directly linked to the
index load page.

The unchanged content, in terms of bytes, differs from the trend of percentage of

redundant data. In fact, we can see different trends between the percentage of
unchanged data and the number of unchanged kilobytes. We have found that the size
of the index load page is a good predictor of the unchanged bytes for a web page. It
could be used for caching systems to determine whether a web site is worth to be
cached or not.

On the other hand, we have determined the number of similar files for each

category. As median, 62% of documents were similar with previous iterations;
therefore, the changes are mostly produced on these files. Web caches could use that
information to not store documents related to some web sites. For instance, 89% of
the files in E-Commerce are new between comparison iterations. Storing files from
that category is not efficient because the files will change in a short period of time. In
addition, we have detailed the number of files that are exactly the same from
previous 15-time intervals. Content sharing, News and Social network stands as the
categories with higher number of identical files between intervals. It means that these
files remains identically over a medium time period hence are more suitable for being
cached than files from E-Commerce.

We determine unchanged content with another method, splitting files into equal-

sized blocks and quantifying their differences. Our results for the index load page
level are not as good as our previous analysis with the file-level comparison method.
In fact, redundant content has been reduced more than 70 KB in median. It is
explained by the personalization, tracking systems and advertising. All these systems
are generated dynamically and the length of that content varies between comparisons.
Any change in the length of the content will shift the excess of bytes to the next
fixed-sized block. That dynamism reduces the unchanged bytes obtained with the
block-level comparison. However, the redundancy increases when we look to the top-
level page set. Therefore dynamic data is strongly present at the index page but not
for objects directly connected to the index page.

As for future work, we described in previous sections the creation of the folders we

added and extra level for browsers. It is known that different browsers interpret the
resources within a web page differently. For instance, web browsers use different
engines to interpret JavaScript or uses different caching approaches on the client-side.
We let an open door to investigate differences among browsers in terms on
cacheability but it is a hard work because of the fast web browsers updating rate.

 54

The traffic generated by mobile phones was eight times the traffic generated on

Internet in 2000 according to [99]. Cacheability of mobile traffic has not been deeply
studied and it could be an interesting research topic. Not only mobile phones are
generating more traffic than computers, the data generated by tablets exceeds 3.4
times the traffic generated by smartphones [99].

When two users, implementing caching mechanism, access to one domain at

different times, the cache stores the web site the first time and thereafter serves it to
the others users the same web site locally, if the resource has not been modified. As
we have discussed previously in section 4.3.3 that web sites do not change completely,
usually they only change a portion of the content. An interesting application would
be the use of advanced caching mechanisms capable to serve part of web sites rather
than the entire site.

One comparison method used in this work is based on splitting files into smaller

pieces in order to compare them. We have used blocks of 1460 bytes, but we
encourage using different block sizes to determine which size fits better to each
category.

 55

Bibliography

[1] Frank La Rue, "Report of the Special Rapporteur on the promotion and protec- tion of
the right to freedom of opinion and expression "United Nations General Assembly
Human Rights Council, Resolution 7/36, 2011.

[2] Pekka Markkula, "Mobile Operators and Mobile Cloud (presentation)," in
Telecommunications Forum 2010, Espoo, Helsinki, 2010.

[3] Osma Ahvenlampi, "Games in the Social Age," in Telecommunications Forum 2010,
Espoo, Helsinki, 2010.

[4] S. Ihm, "Understanding and Improving Modern Web Traffic Caching" Computer
Science, Princeston School of Engineering and Applied Science, Technical Report 908-11,
2011.

[5] Paul Bardord and Mark Crovella, "Generating Representative Web Workloads for
Network and Server Performance Evaluation," in In Proceedings of the 1998 ACM
SIGMETRICS joint international conference on Measurement and modeling of
computer systems, vol. 26(1), 1998, pp. 151-160.

[6] Fiona Fui-Hoon Nah, "A study on tolerable waiting time: how long are Web users
willing to wait?," Behavior and Information Technology, vol. 23, no. 3, pp. 153-163,
2004.

[7] Martin F. Arlitt and Carey L. Williamson, "Internet Web Servers: Workload
Characterization and Performance Implications ," in IEEE/ACM Transactions on
Networking (TON), vol. 5(5), 1997, pp. 631-654.

[8] Anja Feldman, B. Krishnamurthy and J. Mogul Fred Douglis, "Rate of Change and
other Metrics: a Live Study of the World Wide Web," in USENIX Symposium on
Internetworking Technologies and Systems (USITS), 1997.

[9] James E. Pitkow, "Summary of WWW Characterizations," World Wide Web, vol. 2, no.
1-2, pp. 1-13, 1999.

[10] Stephen Manley and Margo Seltzer, "Web Facts and Fantasy," in Proceedings of the
USENIX Symposium on Internet Technologies and Systems, 1997.

[11] Craig E. Wills and Mikhail Mikhailov, "Towards a better understanding of Web
resources and server responses for improved caching," in In Proceeding of the 8th
International World Wide Web Conference, 1999, pp. 153-165.

[12] Xiangping Chen and Prasant Mohapatra, "Lifetime Behaviour and its Impact on Web
Caching," in Proceeding of the IEEE Workshop on Internet Applications, 1999.

[13] Derek Eager and Carey Williamson Anirban Mahanti, "Temporal Locality and its
Impact on Web Proxy Cache Performance," in Performance Evaluation - Special issue
on internet performance modelling, vol. 43 (2-3), 2000, pp. 187-203.

[14] Ricardo Baeza-Yates and Carlos Castillo, "Crawling the Infinite Web," Journal of Web
engineering, vol. 6, no. 1, pp. 49-72, Frebruary 2007.

[15] Ipoque. Ipoque. [Online]. http://www.ipoque.com/resources/internet-studies/internet-
study-2008_2009 Last visited on May, 2012.

[16] A. Feldman, V. Paxson and M. Allman G. Maier, "On Dominant Characteristics of

 56

Residential Broadband internet Traffic," in Proceedings of the 2009 Internet
Measurement Conference (IMC 2009), May 2009. [Online].
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009

[17] R. Fielding and L. Masinter T. Berners-Lee, "Uniform Resource Identifier (UR): Generic
Syntax" W3C, RFC 3986, 2005.

[18] J. Gettys, A. Baird-Smith, E. Prud'hommeaux, H. W. Lie and C. Lilley H. F. Nielsen,
"Network Performance Effects of HTTP/1.1, CSS1, and PNG," in Proceedings of the
ACM SIGCOMM'97 conference on Applications, technologies, architectures, and
protocols for computer communication, vol. 27 (4), 1997, pp. 155-166.

[19] M. Allman and V. Paxson T. Callahan, "A Longitudinal View of HTTP Traffic," in
Proceedings of the 11th Passive and Active Measurement Conference (PAM 2010),
2010, pp. 222-231.

[20] Gaogang Xie and Jianhua Yang Liang Shuai, "Characterization of HTTP Behavior on
Access Networks in Web 2.0," in In proceeding on International Conference on
Telecommunications, 2008, pp. 1-6.

[21] Tim O'reilly. Oreilly. [Online]. http://oreilly.com/web2/ Last visited on Sep., 2005.
[22] R. Fielding and H. Frystyk T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.0"

Network Working Group, The Internet Engineering Task Force (IETF), RFC 1945,
1996.

[23] J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-Lee R. Fielding,
"Hypertext Transfer Protocol (HTTP/1.1)" Network Working Group, RFC 2616, 1999.

[24] David H. Crocker, "Standard for the format of ARPA Internet text messages" RFC 822,
1982.

[25] R. Braden, "Requirements for Internet Hosts - Application and Support" Internet
Engineering Task Force, RFC 1123,.

[26] HTTP Archive. HTTP archive. [Online]. http://httparchive.org/interesting.php#max-
age Last visited on 2013.

[27] Craig E. Wills and Mikhail Mikhailov, "Examining the Cacheability of User-Requested
Web Resources," in In Proceedings of the 4th International Web Caching Workshop,
1999.

[28] IANA. Internet Assigned Numbers Authority (IANA). [Online]. http://www.iana.org
Last visited on October, 1970.

[29] N. Freed and N. Borenstein, "Multipurpose Internet Mail Extensions" Network Working
Group, RFC 2046, 1996.

[30] W3C. W3C Working Draft (AJAX). [Online]. http://www.w3.org/TR/2012/WD-
XMLHttpRequest-20121206/ Last visited on December, 2012.

[31] Jeffrey C. Mogul, "A trace-based analysis of duplicate suppression in HTTP" Western
Research Laboratory, Compaq Computer Corporation, Palo Alto, California, Technical
Report 97/4, 1999.

[32] Jeffrey C. Mogul, "Potential benefits of delta-encoding and data compression for HTTP,"
in In Proceedings of the ACM SIGCOMM'97 conference on Applications, technologies,
architectures and protocols for computer communication, 1997, pp. 181-194.

[33] Zhang Luwei, "Cacheability study for web content delivery" Computer Science, National
University of Singapore, Thesis 2003.

[34] ECMA, "ECMAScript Language Specification" ECMA International, Standard ECMA-

 57

262, 2011.
[35] W3C. W3C Cascading Style Sheets, level 1. [Online]. http://www.w3.org/TR/CSS1/

Last visited on December, 1996.
[36] Jeffrey C. Mogul, "The case of persistent-connection HTTP," in In proceeding of

SIGCOMM'95, 1995, pp. 299-313.
[37] Venakta N. Padmanabhan, Srinivasan Sesham, Mark Stemm and Randy H. Katz Hari

Balakrishnan, "TCP behavior of a busy Internet server: Analysis and improvements ," in
In proceeding of 17th IEEE INFOCOM, 1998.

[38] The Chrominum Projects. Chrominum. [Online]. http://www.chromium.org/spdy/spdy-
whitepaper

[39] Leo A. Meyerovich and Rastislav Bodik, "Fast and parallel web page layout," in In
proceeding of the 19th International conference on World Wide Web, 2010, pp. 711-720.

[40] Junghoo Cho and Hector Garcia-Molina, "The evolution of the web and implications for
an incremental crawler," in In proceeding of the 26th International conference on very
large databases, 2000.

[41] Mark Manasse, Marc Najork and Janet Wiener Dennis Fetterly, "A Large-Scale Study of
the Evolution of Web Pages," in In proceeding of the 12th International conference on
World Wide Web, 2003, pp. 669-678.

[42] Azer Bestavros and Mark E. Crovella Carlos R. Cunha, "Characteristics of WWW
Client-based Traes" Computer Science Department, Boston University, Technical report
BU-CS-95-010, 1995.

[43] G. K. Zipf, Human behaviour and the principle of least-effort.: Addison Wesley, 1949.
[44] Venkata N. Padmanabhan and Lili Qiu, "The content and access dynamics of a busy

Web site: findings and implications," in In Proceedings of the conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM), vol. 30(4), 2000, pp. 111-123.

[45] Pei Cao, Li Fan, Graham Philips and Scott Shenker Lee Breslau, "On the Implications
of Zipf's Law for Web Caching," in In Proceedings of the 3rd International WWW
Caching Workshop, Manchester, England, 1999.

[46] Pei Cue, Pei Cao, Li Fan, Graham Philips and Scott Shenker Lee Breslau, "Web
Caching and Zipf-like Distributions: Evidence and Implications," in In Proceedings of
the 18th Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), vol. 1, 1999, pp. 126-134.

[47] Harsha V. Madhyastha and Vyas Sekas Michael Butkiewicz, "Understanding Website
Complexity: Measurements, Metrics, and Implications," in In proceeding of the ACM
SIGCOMM conference on Internet measurement conference, 2011, pp. 313-328.

[48] Sunghwan Ihm and Vivek S. Pai, "Towards Understanding Modern Web Traffic," in In
proceeding of the ACM SIGCOMM conference on Internet measurement conference,
2011, pp. 295-312.

[49] I. Melve and G. Tomlinson T. Cooper, "Internet Web Replication & Caching
Taxonomy" The Internet Engineering Task Force, RFC 3040, 2010.

[50] Josh Cohen, Martin Dunsmir and Charles Perkins Paul Gauthier, "Web Proxy Auto-
Discovery Protocol" The Internet Engineering Task Force, DRAFT 1999.

[51] Marina Buzzi, Damir Pobric and Massimo Ianigro Laura Abba, "Introducing Trasparent
Web Caching in local area network," in Proceeding on the 26th International Computer

 58

Measurement Group Conference, 2000.
[52] Squid. Squid. [Online]. http://www.squid-cache.org Last visited on June, 2013.
[53] S. Floyd and V. Jacobson L. Zhang, "Adaptative Web Caching," in Proceedings of the

NLANR Web Cache Workshop, 1997.
[54] K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd and V. Jacobson S. Michel, "Adaptive

web caching: towards a new global caching architecture," in 3rd International WWW
Caching Workshop, 1998.

[55] Konstantinos Nikoloudakis, P. Reiher and L. Zhang B. Scott Michel, "URL forwarding
and compression in adaptive Web caching," in IEEE INFOCOM conference, 2000.

[56] M. Mikhailov and C. E. Wills, "Evaluating a New Approach to Strong Web Cache
Consistency with Snapshots of Collected Content," in 12th International World Wide
Web Conference, 2003.

[57] Brian E. Brewington and George Cybenko, "How dynamic is the web?," in In
Proceeding of the 9th International World Wide Web Conference, 2000.

[58] Craig E. Wills and Mikhail Mikhallov, "Studying the Impact of More Complete Server
Information on Web Caching ," in Proceeding of the 5th International Web Caching and
Content Delivery Workshoop, 2000.

[59] J. Zhang and K. Beach P. Cao, "Active Cache: Caching Dynamic Contents on the
Web," in Proceedings of the IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing, 1998, pp. 378-388.

[60] Manolis G. H. Katevenis, Dionisis Pnevmatikatos and Michail Flouris Evangelos P.
Markatos, "Secondary Storage Management for Web Proxies," in Proceeding fo the 1999
Usenix Symposium on Internet Technologies and Systems, 1999.

[61] J. Gwertzman, "Autonoums replication in wide-are internetworks," in Proceedings of the
15th ACM symposium on Operating systems principles, 1995, pp. 1-31, 60-65.

[62] J. Gwertzman and M. Seltzer, "The case for Geographical Push-Caching," in
Proceedings of the 5th Workshop on Hot Topics in Operating Systems, 1995.

[63] M. Seltzer and J. Gwertzman, "An Analysis of Geographical Push-Caching" Proceeding
of 5th IEEE Workshop on Hot Topics in Operating Systems, 1997.

[64] Udi Manber, "Finding Similar Files in a Large File System," in Winter USENIX
Technical Conference, 1994.

[65] Andrei Z. Broder, "On the resemblance and containment of documents," in In
Proceedings of the Compression and Complexity of Sequences 1997, 1997, pp. 21-29.

[66] Michael O. Rabin, "Fingerprinting by random polynomials" Center for Research in
Computing Technology, Harvard University, Technical Report CSE-03-01, 1981.

[67] Neil T. Spring and David Wetherall, "A Protocol-Independent Technique for
Eliminating Redundant Network Traffic ," in In Proceedings of the conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, 2000, pp. 87-95.

[68] Juniper. Juniper. [Online]. http://www.juniper.net Last visited on 2012.
[69] Riverbed. Riverbed. [Online].

http://www.riverbed.com/us/solutions/wan_optimization/ Last visited on 2012.
[70] Archit Gupta, Aditya Akella, Srinivasan Sesahn and Scott Shenker Ashok Anand,

"Packet Caches on Routers: The Implications of Universal Redundant Traffic
Elimination ," in In Proceedings of the ACM SIGCOMM Conference, 2008, pp. 219-230.

 59

[71] Chitra Muthukrishnan, Aditya Akella and Ramachandran Ramjee Ashok Anand,
"Redundancy in network traffic: findings and implications," in In Proceedings of the 11th
international joint conference on Measurement and modeling of computer systems, 2009,
pp. 37-48.

[72] Kevin Liang Sean C. Rhea, "Value-Based Web Caching," in In Proceedings of the 12th
International World Wide Web Conference, 2003, pp. 619-628.

[73] Marc Abrams, Charles R. Standridge, Chaleb Abdulla and Edward A. Fox Stephen
Williams, "Removal Policies in Network Caches for World-Wide Web Documents
(reviewed)," in Proceedings on ACM SIGCOMM, 1996.

[74] Charles R. Standridge, Chaleb Abdulla, Stephen Williams and Edward A. Fox Marc
Abrams, "Caching Proxies: Limitations and Potentials," in Proceeding on the 4th
International World Wide Web Conference, 1995.

[75] James E. Pitkow and Margaret M. Recker, "A Simple Yet Robust Caching Algorithm
Based on Dynamic Access Patterns ," in Proceedings on the 4th International World
Wide Web Conference, 1994.

[76] Alexa. Alexa: The Web Information Company. [Online]. http://www.alexa.com/topsites
Last visited on June, 2011.

[77] Jeffrey Dean and Sanjay Ghemawat, "Mapreduce: Simplified Data Processing on Large
Clusters," Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

[78] W. Eddy, "TCP SYN Flooding Attacks and Common Mitigations" Network Working
Group, IETF, RFC 4987, 2007.

[79] B. Hoehrmann, "Scripting Media Types" Network Working Group, RFC 4329, 2006.
[80] Kevin Jeffay and F. Donelson Smith Ferlix hernandex-Campos, "Tracking the Evolution

of Web Traffic: 1995-2003," in Proceeding of the 11th IEEE/ACM International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications System (MASCOTS), 2003, pp. 16-25.

[81] J. Mogul and S. Deering, "Path MTU Discovery" Network Working Group, RFC 1191,
1990.

[82] The Open Group Base Specifications, "Crontab- Schedule periodic background work"
IEEE, IEEE Std 1003.1, 2004.

[83] R Fundation. R Project. [Online]. http://www.r-project.org Last visited on April, 2013.
[84] Center for Science and Culture. CSC - IT Center for Science. [Online].

http://www.csc.fi/english/institutions/funet/ Last visited on 1984.
[85] Micah Cowan. GNU Wget. [Online]. http://www.gnu.org/software/wget/ Last visited

on August, 2012.
[86] Robin Wauters. Chrom rises: Google browser grabs 1/3 of the global market. [Online].

http://thenextweb.com/google/2012/08/06/chrome-rises-google-browser-grabs-13-of-the-
global-market-statcounter/ Last visited on August, 2012.

[87] BBC News. BBC News. [Online]. http://news.bbc.co.uk/2/hi/science/nature/409980.stm
Last visited on August, 1999.

[88] Jennifer Kahn, "The Homeless Hacker v. The New York Times," The Wired, vol. 12, no.
04, pp. 1-4, April 2004.

[89] Henry S. Baird and Mark Luk, "Protecting Websites with Reading-Based CAPTCHAs,"
in Proceeding of the 2th Web Document Analysis, 2003, pp. 50-56.

[90] M. Koster. A standard for robots exclusion. [Online].

 60

http://www.robotstxt.org/orig.html Last visited on March, 2012.
[91] Google. Google TrendsGoogle Trends. [Online]. http://www.google.com/trends/
[92] cURL. cURL. [Online]. http://curl.haxx.se Last visited on September, 2012.
[93] Xavier Roche. HTTrack online. [Online]. http://www.httrack.com Last visited on

December, 2000.
[94] TIBCO Software. Spotfire (S-Plus). [Online]. http://spotfire.tibco.com/discover-spotfire

Last visited on November, 2010.
[95] GNU Project. PSPP. [Online]. http://www.gnu.org/software/pspp/pspp.html Last

visited on October, 2009.
[96] Wesley Hales, HTML5 and JavaScript Web Apps, First edition ed., Simon St. Laurent

and Meghan Blanchette, Ed.: O'Reilly Media, 2013, ISBN: 978-1-449-32051-5.
[97] Google. Google Developers. [Online]. https://developers.google.com/closure/compiler/

Last visited on 2012.
[98] Yahoo! YUI LIbrary. [Online]. http://yuilibrary.com Last visited on 2011.
[99] Cisco Systems, "Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update" Cisco Systems, White paper 2012.
[100] Arun Iyengar, Junehwa Song and Daniel Dias Eric Levy-Abegnoli, "Desing and

Performance of a Web Server Accelerator" Proceedings of the INFOCOM conference,
1999.

[101] T. Berners-Lee, "Hypertext Markup Language" The Internet Engineering Task Force,
RFC 1866, 1995.

[102] P. Allen and S. Black V. Varadharajan, "An Analysis of the Proxy Problem in
Distributed Systems ," in In Proceedings of the 19991 IEEE Computer Society
Symposium on Research in Security and Privacy, 1991, pp. 255-275.

[103] Robert Auger, "Socket Capable Browser Plugins Result In Transparent Proxy Abuse
"Paypal Information Risk Management Team, Vulnerability note 2009.

 1

Appendix A

URL Category URL Category
www.google.fi Search engine www.fc2.com Service portal
www.facebook.com Social network www.go.com Content sharing
www.youtube.com Video streaming www.bing.com Search engine
www.wikipedia.org Content sharing www.bbc.com Video streaming
www.yahoo.com Service portal www.cnn.com Video streaming
www.photobucket.com Social network www.myspace.com Service portal
www.badoo.com Social network www.vimeo.com Video streaming
www.imgur.com Social network www.nytimes.com News
www.twitpic.com Social network www.aol.com Service portal
www.amazon.com E-Commerce www.mediafire.com Content sharing
www.linkedin.com Social network www.baidu.com Search engine
www.msn.com Service portal www.qq.com Service portal
www.imageshack.us Content sharing www.ebay.com E-Commerce
www.dailymotion.com Video streaming www.alibaba.com E-Commerce
www.reddit.com Video streaming www.huffingtonpost.com News
www.retuters.com News www.globo.com News
www.spiegel.de News www.twitter.com Social network
www.paypal.com E-Commerce www.netflix.com Video streaming
www.flickr.com Social network www.4shared.com Content sharing
www.craiglist.com E-Commerce www.blogspot.com Content sharing
www.taobao.com E-Commerce www.espn.go.com Video streaming
www.imdb.com Content sharing www.dropbox.com Content sharing
www.weather.com News www.wordpress.com Content sharing
www.rapidshare.com Content sharing www.tumblr.com Social network
www.cnet.com Content sharing www.ask.com Search engine

