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This thesis analyzes the performance of commonly used energy consumption es-
timation and classi�cation standards, guidelines, and models against actual con-
sumption data of elevators. The scope of this thesis is in the used and generated
active energy, in kWh, excluding the division of energy consumption between
di�erent components of the elevator system. The literature review of this �eld
revealed the lack of actual long-term measurement data. Thus, this thesis devel-
ops and tests suitable long-term energy consumption measuring systems that can
be remotely monitored. In addition, this thesis identi�es a typical daily energy
usage and travel pattern for both weekdays and weekends for elevators used in a
mid-rise o�ce building located in Espoo, Finland. Supporting statistics on the
elevator usage for analyzing the gathered consumption data, was attained from
KONE Elink, an elevator usage statistics reporting system. The results indicate
that the upcoming ISO/DIS 25745-2 standard will outperform the widely used
VDI 4707-1 guideline and the KONE EnerCal tool when estimating the annual
consumption of elevators. Nevertheless, both ISO/DIS 25745-2 and VDI 4707-1
yield to highly similar energy e�ciency classi�cations, which are also an impor-
tant aspect, especially for the prospective buyer and for the manufacturer of the
elevator in marketing perspective. The consumption ratio, or percentage of to-
tal consumption, of elevators in the pilot building was identi�ed to be under 2%,
which complies with other Finnish research, but is less than the widely recognized
E4 Project suggests. The results also con�rm the large dependence of the elec-
tricity consumption of elevators on the amount of tra�c, and especially on the
number of travels, as the correlation coe�cient was calculated to be 0.986. The
developed metering systems proved to be viable, and the research can be continued
in multiple locations with both elevators and escalators.
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1 Introduction

The EU [1] and other international organizations [2] are pursuing greenhouse gas
emission reductions to battle climate change. To achieve these reductions, the EU
aims to increase energy e�ciency by 20% by the end of this decade. The energy
e�ciency of buildings should be of main concern, as they currently contribute to
approximately one-third of the total �nal energy consumption [3]. With rising en-
ergy prices, improving the energy e�ciency of buildings also provides a monetary
incentive for the owners of buildings [4]. The energy consumption of elevators can
account for 3 to 8% of the total electricity consumption of a building, though these
�gures can widely vary depending on the use and type of building [5]. Moreover,
because of this variation, the building owner remains uncertain about the proportion
of total energy used by the elevator system [6, Sec. 5.1.2].

Elevators are categorized into seven classes in terms of their energy consump-
tion. These classi�cation schemes have been developed and proposed by di�erent
organizations [7], [8]. However, even though the energy e�ciency class is determined
according to the schemes, it is still di�cult to estimate the annual energy consump-
tion of the elevator system, as the utilization rate and the amount of people using
the appliances are uncertain prior to installation [9]. Moreover, much debate has
focused on whether the energy classi�cation should be based solely on the design of
the device, as with other household appliances, or whether the classi�cation should
also depend on the end-use [10].

Most studies examining the energy consumption of elevators have estimated the
annual consumption rates of elevators based on simple calculation models. These
models typically utilize consumption measurements from reference running cycles
which are derived from known standards or guidelines. The �nal energy consump-
tion, or energy class, is thus achieved by de�ning and estimating certain key factors.
Therefore, the �nal outcome of these models, especially the projected annual energy
usage, always has some degree of inaccuracy, justifying the need for comparing the
models against actual long-term measurement data.

1.1 Target of study

In order to determine the accuracy of these models, the aim of this thesis was to
compare the measured energy consumption of elevators with the models currently
in use. Additionally, the thesis develops and validates a measuring system designed
especially for this type of data gathering, as a major driver for this thesis was to
establish the basis for a long-term measurement project inside the Energizing Urban
Ecosystems (EUE) Program.

In addition, the thesis inspects the plausibility of using solar energy to ful�ll
the energy need of elevator systems during peak demand to reduce the costs of
electricity usage. To understand the need of power and energy, this thesis analyzes
the electricity consumption data of the building against the energy demand pattern
of the elevator system and energy production curve of a photovoltaic system.
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1.2 Scope of study

The speci�c aim of this study was to examine the energy usage of elevators used in
a mid-rise o�ce building located in Espoo region, Finland. This thesis focuses on
the consumed and generated energy in kilowatt-hours, kWh, and generally excludes
other measurable quantities of electrical systems.

This thesis does not examine the detailed construction of elevators, nor is the
segregation of energy consumption between the di�erent components in the electrical
or mechanical system of elevators measured or widely inspected in this thesis. The
scope of this thesis is in traction elevators, mostly excluding hydraulic elevators.

1.3 Structure of the thesis

The remainder of this thesis is structured as follows. Chapter 2 introduces the
typical methods currently used in energy consumption modeling and analyzes the
results of the previous measurement campaigns that have been implemented in vari-
ous countries to provide su�cient background information. Chapter 3 describes the
measuring equipment, their characteristics, and related devices. The chapter also
provides information on the measurement site, tra�c pattern of the elevators, the
electricity consumption of the building, and introduces a photovoltaic power genera-
tion model. Chapter 4 presents the readings gathered by the measuring system and
the estimates given by the models introduced in Chapter 2, and Chapter 5 analyzes
these results and factors a�ecting them. Chapters 6 and 7 conclude the �ndings and
success of this thesis and provide ideas for further studies.
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2 Background

This chapter focuses on describing the models, and the theories behind them, con-
cerning the energy consumption of elevators. The main focus of the �rst section is to
introduce three energy consumption estimation schemes that are used in this thesis.
First, Section 2.1.2 presents the energy e�ciency classi�cation scheme used today by
most elevator manufacturers, while Section 2.1.3 is dedicated to the second scheme,
which is an upcoming standard that has a more profound method to estimate the
energy usage. The third method of estimation is an energy calculation tool called
EnerCal, and the basic concept of its calculation model is discussed in Section 2.1.4.
The second part of this chapter introduces and brie�y analyzes some measurement
results from previous campaigns.

The European elevator manufacturers have typically based their energy clas-
si�cations on a scheme developed by VDI [7], the Association of German Engi-
neers (Verein Deutscher Ingenieure). Another standard, ISO 25745-1: 2012 [11],
describes a methodology for measuring the energy consumption in running mode
and in standby for both elevators and escalators. However, this standard lacks the
energy classi�cations, which will be introduced later in part two [8] for elevators
and part three for escalators and moving walks [12]. At the time of writing this
thesis, these parts of the standard were still under development. Nevertheless, some
descriptions of the calculation methods are already available, for example, in [10],
[13] and [14].

It is clear that the factors a�ecting the energy consumption for indoor transports
include the building type, tra�c pattern, total run time, number of start-ups, and
the design of the mechanical and control systems. However, the contribution of
these factors is uncertain, since some of the factors can be changed or improved,
such as the technology and control method, and some, such as the amount of tra�c,
cannot usually be controlled.

2.1 Energy consumption models of elevators

Elevators have many approaches regarding their energy consumption models. These
models use the amount of estimations, simulations, and measurement data in di�er-
ent proportions. The amount of executed measurement campaigns is still low, but
the interest in large measurement projects will increase in the future, due to the
lack of knowledge in this area.

Elevators are generally divided into two di�erent types: hydraulic elevators and
traction elevators. The basic structure of these can be seen in Figure 1 on the next
page. This thesis focuses mostly on the traction elevators, due to the nature of
elevators that will be included in the measurement campaign discussed in Chapter
1. The most signi�cant di�erence between the two elevator types is that the traction
elevators have a counterweight, commonly with a weight of the car and half of the
nominal load combined. The use of a counterweight produces interesting properties
to the electricity consumption of the elevator. In theory, with a small load, typical of
any passenger elevator, the elevator traveling up will not require any excess energy
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to produce the vertical shift, and the same situation occurs with a load heavier than
the counterweight that is going down. In these cases, the elevator can be seen to
generate electricity, and this energy is typically turned into heat in a brake resistor,
if the supply to the grid is not made plausible with a regenerative unit [15, Sec.
8.5]. Traditionally, traction elevators use ropes for hoisting, but belted systems are
increasing their popularity as well [16].

Figure 1: Diagram adapted from [17] showing basic construction of hydraulic and
traction elevators.

The following sections introduce the most common models used to estimate
the energy consumption of elevators. Most of the other studies published in this
�eld are based on pure mathematical calculations or simulations [18]. The aims
of these studies vary between energy consumption minimization, as in [19], and
energy e�ciency, as in [20], where the aim is to achieve energy savings without
degraded performance. The studies may also assume a certain type of elevator
system or tra�c distribution in their simulations [21]. Some simulations can be
used to emulate the daily operation of an elevator with speci�c parameters, such as
the number of �oors, the �oor height, and the population inside the building. These
simulations can indicate the contribution of the di�erent factors of building usage
to the energy consumption of elevators [10], [22]. The simulations are mostly run
on tra�c-simulation software, e.g., Elevate [23].
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2.1.1 ISO 25745-1 standard

This section provides some basic information on the ISO 25745-1 standard [11]
that provides a consistent method to measure the actual energy consumption of an
installed elevator, escalator or moving walk. This method forms the basis of the
current guidelines and upcoming standards classifying the devices by their energy
e�ciency. Furthermore, this standard provides guidance for examining the changes
in energy consumption over the lifetime of the measured system.

This standard guides to measure both main and ancillary power. The former
mainly consists of actual components related to mechanical movement, while the
latter includes lighting and ventilation. Figure 2.1.1 presents the measuring locations
for the main and ancillary power. It is also possible to measure only the main

Figure 2: Schematic diagram for energy demand of elevators [11].

coupling point in elevator systems where the ancillary equipment is behind the
same main switch [11]. This is the situation in many modern elevators, making the
measurement procedure more straightforward.
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Both the ancillary and the main power are measured when the elevator is running
and stationary. Stationary time consists of idle and standby states. Idle condition
refers to the situation when the elevator is left stationary after the run and before
the standby mode is entered. The standard de�nes standby as condition when the
elevator is stationary and has a reduced consumption level compared to plain idling.
Generally, the standby condition can be seen to start after �ve minutes of idling.
[11]

This standard demands that the measuring equipment must be compatible with
the technology of the measured system, including regenerative drives, which are
within the scope of this thesis. In addition, the accuracy of the measured value
must be at least ± 10%, i.e., the general accuracy of the measuring device should
be of good quality. This is basically achieved with the demand that the meters used
shall comply with IEC 62053 [24] or IEC 61000-4-30 [25]. [11]

When considering typical modern elevators with the ancillary equipment behind
the main switch, the measurements are basically separated into two parts: run-
ning energy and stationary energy. The ISO 25745-1 de�nes the running energy
measurement procedure as follows:

1. connect the energy meter to all phases at the main coupling point;

2. measure and record the supply voltages;

3. set the energy meter to measure energy;

4. set the elevator to cycle between terminal landings, automatically, or manually;

5. run the empty car to the bottom landing;

6. start the measurement;

7. start the terminal landings cycle (with door functioning);

8. stop the measurement after a minimum of 10 cycles;

9. record the energy value and the number of cycles executed;

10. divide the total energy with the number of cycles to produce an average value,
and record it.

As for the stationary energy usage, the standard de�nes this measurement procedure
to be the following:

1. connect the energy meter to all phases at the main coupling point;

2. measure and record the supply voltages;

3. run the car through a reference cycle;

4. record the idle energy for a period of 1 min starting immediately after �nishing
the reference cycle;
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5. maintain the empty car at the bottom landing for 5 min after the doors have
closed and record the standby energy for a period of 1 min;

6. calculate the idle power in watts by dividing the recorded energy value by the
measurement time and record the value;

7. calculate the standby power respectively.

This standard also suggests that additional measurements with various travel dis-
tances and loads could be executed, provided that these values are reported. The
actual measuring device connections are introduced later in this thesis in Chapter
3.

2.1.2 VDI 4707-1 guideline

This chapter takes a more detailed view to the model which is currently typically
used in classi�cation, the VDI 4707-1 guideline [7], [26, Sec. 5.2.9]. The method is
based on measurements described in the ISO 25745-1 [11]. The contents of the VDI
4707-1 are shortly demonstrated below.

This guideline states that the energy demand can be separated into two parts:
standby demand and travel demand. When calculating energy e�ciency classes with
the VDI, the standby demand refers to the average standby power value that is mea-
sured after the elevator has been inactive for �ve minutes, as instructed in the ISO
standard. Thus, the VDI guideline excludes the idle energy consumption and basi-
cally considers all inactivity as �ve-minute standby demand. As for travel demand,
the guideline considers it as the total demand during speci�c trip cycles with speci�c
loads. For this purpose, the guideline provides a load spectrum and another method
to utilize the ISO reference running cycle measurements in the travel demand cal-
culation process. The only clear di�erence in the guidance of the reference cycle is
that the VDI allows the trip to start also from the top landing. However, from the
energy perspective, this should not a�ect the total energy consumption, and this
possibility is also mentioned in the ISO 25745 part two. Another di�erence is in the
clearer instruction of the door functioning, as the VDI 4707-1 clearly states that the
door has to be open at the beginning of the running cycle, and when the elevator
has traveled to the other terminal landing, the doors will immeadiately open and
close. The cycle ends when the elevator returns to the starting landing and reopens
the door.

Elevators are assigned to di�erent energy e�ciency classes depending on their
calculated standby and travel demand values. The classi�cation process is conducted
as follows. First, the measured standby power is compared to Table 1 to get a so
called energy demand class for standby. For example, a standby demand of 30 W
corresponds to demand class A. Another table needed for the classi�cation process
is Table 2. It depicts the categorization of elevators by their usage according to the
guideline. This information is needed in the �nal calculation of the energy e�ciency
class.

The calculation procedure gets more challenging in the next step. The needed
values of the elevator are:
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Table 1: Energy demand classes for standby according to [7].

Power in W ≤ 50 ≤ 100 ≤ 200 ≤ 400 ≤ 800 ≤ 1600 > 1600
Class A B C D E F G

Table 2: Usage categories for elevators [7].

� Nominal load Q, in kg

� speci�c travel demand Etravel,spec, in mWh/(kgm)

� time of standby tstandby, in hours per day

� time of usage ttravel, in hours per day

� nominal speed vnom

The equation for the limiting values for speci�c energy e�ciency classes of the
elevator, in mWh/(kgm), can be expressed as found in [7]:
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Eelev,spec,max = Etravel,spec,max +
Pstandby,max · tstandby × 1000

Q · vnom · ttravel
(1)

where the Etravel,spec,max is the maximum value of a speci�c travel energy demand
class presented in Table 3 below. For instance, if the calculated value of Etravel,spec

is 0.6 mWh/(kgm), the energy demand class for travel is B for the elevator.

Table 3: Energy demand classes for travel according to [7].

Speci�c energy
consumption in
mWh/(kgm)

≤ 0.56 ≤ 0.84 ≤ 1.26 ≤ 1.89 ≤ 2.80 ≤ 4.20 > 4.20

Class A B C D E F G

If the elevator has, for example, the following characteristics:
� Type of building: large hotel
� Nominal load: 1000 kg
� Nominal speed: 2.0 m/s
� Average travel time: 3 h
� Average standby time: 21 h
� Full lifting height: 35 m

then, looking at Table 2, it can be stated that the usage category is 4. The limiting
value according to (1) for class A can be calculated as:

Eelev,spec,max = 0.56 mWh/(kg ·m) +
50 W · 21 h · 1000 mWh/Wh

1000 kg · 2.0 m/s · 3 h · 3600 s/h
= 0.61 mWh/(kg ·m)

and for class B it is respectively

Eelev,spec,max = 0.84 mWh/(kg ·m) +
100 W · 21 h · 1000 mWh/Wh

1000 kg · 2.0 m/s · 3 h · 3600 s/h
= 0.94 mWh/(kg ·m)

The rest of the class limiting values for a certain usage category are calculated in the
same fashion, i.e., the corresponding maximum values of the same class are taken
from Tables 1 and 3 and inserted to the equation.

The energy e�ciency class is determined by calculating the total speci�c energy
demand of the elevator and comparing it to limiting values. In this example, the
Pstandby was given as 30 W. Further, if the reference cycle energy demand for travel
is measured at 60 Wh with respect to the ISO standard, the speci�c energy demand
of the elevator when traveling is calculated from
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Etravel,spec =
k · Ereferencetrip

Q · 2 ·H
(2)

where the full lifting height, H, is doubled, because the reference trip includes the
full cycle up and down. The factor k represents a load factor typically used in
calculations to compensate the e�ect of not loading the elevator car during the mea-
surements. This example presumes a load factor of 0.7, a value determined by the
guideline to typical traction elevators with a counterbalance weight with a mass of
car plus 40 to 50 percent of the nominal load. The guideline also introduces a method
of adding up measured reference cycle demands with a certain load-dependable ra-
tio, instead of operating with this load factor. However, this method is far more
complex to execute and report. Nevertheless, this method is practical to use in var-
ious simulations and energy calculations tools one of which is introduced in Section
2.1.4.

With the values given, the speci�c energy demand of travel will be:

Etravel,spec =
0.7 · 60 Wh

1000 kg · 2 · 35 m

= 0.6 mWh/(kg ·m)

The total speci�c energy demand can be calculated similarly to (1):

Eelev,spec = 0.6 mWh/(kg ·m) +
30 W · 21 h · 1000 mWh/Wh

1000 kg · 2.0 m/s · 3 h · 3600 s/h
= 0.63 mWh/(kg ·m)

Then, comparing this value to the limiting values of this usage category 4, it can be
stated that the elevator belongs to the energy e�ciency class B, as the calculated
speci�c energy demand value is higher than the limiting maximum value of class A
but lower than that of class B.

Based on the calculations and speci�cations above, it is possible to estimate the
total annual energy used by the elevator. These are rough estimates due to the
nature of the speci�cations. For example, the e�ect of acceleration and deaccelera-
tion on the time or distance traveled by the elevator is not taken into account. The
energy consumed in standby throughout the year can be estimated by multiplying
the daily demand by 365:

Estandby,annual = 365
d
a
· 30 W · 21 h

d
(3)

= 230
kWh
a

Further, the energy used during travel can be estimated by multiplying the travel
speci�c demand value with the calculated distance traveled in a day and with the
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nominal load. The annual energy is achieved by multiplying this daily energy use
by 365, as was done with standby as well.

Etravel,annual = 365
d
a
· 0.6 mWh

kg ·m
· 3 h

d
· 3600 s

h
· 2.0 m

s︸ ︷︷ ︸
traveled distance per day

·1000 kg (4)

= 4730
kWh
a

The total estimated energy consumption can then be calculated:

Eannual = Etravel,annual + Estandby,annual

= 4960
kWh
a

The important aspect shown in this example is that the energy consumption
of an elevator has many factors, some of which are taken into account in the VDI
classi�cation guideline today. The energy consumption in di�erent operation modes
together with the usage pattern a�ect the annual energy demand. More examples
and details of determining the energy e�ciency classes can be found in the VDI
guideline, and are, therefore, not dealt with more thoroughly in this section.

The VDI has also published a second part for the VDI 4707 guideline [27]. Part
two addresses the energy e�ciency of elevator components and o�ers a calculation
procedure of energy demand for an elevator on the basis of the utilized components.
Thus, the aim of this guideline is to give a prediction of the energy consumption of
an elevator before the elevator is actually built or installed. This di�ers from part
one, where an already built elevator is assumed. However, the component based
energy e�ciency is not in the scope of this thesis; therefore, the VDI 4707-2 is not
inspected in more detail later in this study.

2.1.3 ISO/DIS 25745-2 standard

This section is dedicated to the upcoming ISO/DIS 25745-2 standard [8], which
is currently a draft and under international review. The ISO 25745 part two is
also based on the measurements introduced in the ISO 25745-1. The contents of
the part two are also explained by Lorente and Barney [10], [13], [14] with some
basic calculation examples. Lorente [26, Ch. 6] also demonstrates a wider theory
behind this standard, but this theory is not further investigated in this thesis. The
method proposed by this standard introduces a classi�cation system with more
parameters that need to be measured or estimated compared to the VDI 4707-1.
It also distinguishes idle and standby powers, and the power values after a certain
period of time, such as the power drawn in a so-called hibernation mode. This makes
the model with its new classi�cations very interesting from the accuracy respective
but at the same time more complex compared to the VDI guideline.

Similar to the VDI 4707-1 guideline, the ISO/DIS 25745-2 standard distinguishes
the daily energy consumption into running and standing consumption. The minor



12

di�erences in these two methods arise from the calculation procedure of these values.
This standard gives daily run mode consumption as

Erd =
nd ·%S · kL · Erc

2
(5)

where :

� nd is the number of trips per day
� %S is the average travel distance per trip in percentage of the

full height of the installed elevator
� kL is the load factor per trip
� Erc is the measured running energy consumption of the

ISO reference cycle

When comparing (5) to the VDI guideline and especially to (2) and (4) , the number
of trips gains a more signi�cant role by itself. However, the running and standby
hours used by the VDI could have also been derived using the number of trips and
average trip duration. The amount of travels used in this ISO method can either
be known from measurements or estimated or adapted from Table 4 shown below
[13]. The following tables introduce characteristics for usage categories from 1 to 5,
though the actual standard also de�nes values for usage category 6 [8]. However,
the number of travels considered by the sixth category is greater than 2000, a value
to arise only on rare occasions [14].

Table 4: Number of starts per day in di�erent usage categories according to [13].

Usage
category

1 2 3 4 5

Usage
intensity

very low low medium high very high

nd 50 125 300 750 1500
Typical range

in trips
< 75 75�200 200�500 500�1000 1000-2000

The average travel distance in percentage, %S, is generally taken from the follow-
ing Table 5, which clearly shows that the average travel distance is typically slightly
less than half of the total height of the elevator shaft in buildings that have more
than three stories.

Given with a rated load and a usage category, the load factor (kL) can be derived
using (6), (7), and Table 6 [13]. According to the standard, the load factor for 50%
counter balanced elevator is calculated as

kL = 1− (%Q · 0.0164) (6)

Range 0.97− 0.74.
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Table 5: Percentage of average travel distance according to [13].

Usage category 1 � 4 5
Number of stops Average travel distance in percentage

2 100%
3 68%
> 3 44% 33%

Table 6: Average car load in percentage of the rated load according to [13].

Usage category 1 � 3 4 5
Rated load (kg) Average car load in percentage (%Q)

≤ 800 7.5% 9.0% 16.0%
801 � 1275 4.5% 6.0% 11.0%
1276 � 2000 3.0% 3.5% 7.0%
> 2000 2.0% 2.2% 4.5%

For traction elevators with 40% counterbalance, a di�erent constant is used:

kL = 1− (%Q · 0.0192) (7)

Range 0.96− 0.69.

The standard also introduces a procedure to estimate the consumption of hydraulic
elevators, but as was previously mentioned, this is not in the scope of this thesis.

A larger di�erence compared to the VDI guideline is in the calculation procedure
of the standby energy consumption, which will be demonstrated next. The following
equation can be presented in many forms depending on the type of information that
is known from the elevator. Generally, the standby consumption comprises of three
parts: idle, 5-minute standby, and 30-minute standby energy demand [10]. The
power values that are used to determine these demands are measured and used in
calculations depending on the stationary modes of the elevator. Equation (8) below
is a combination of equations given in [10] and [13], and it can be declared to be
more accurate than (3) used by the VDI.

Esd = (24− nd

3600
· tav)(Pid ·Rid + Pst5 ·Rst5 + Pst30 ·Rst30) (8)

where :
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� Pid is the power demand in idle mode
� Pst5 is the power consumption measured after 5 minutes of inactivity
� Pst30 is the power consumption measured after 30 minutes of inactivity
� Rid is the ratio of idle time with respect to the overall time the

elevator is not running
� Rst5 is the ratio of 5-minute standby time with respect to the

overall time the elevator is not running
� Rst30 is the ratio of time that the elevator has been stationary over 30

minutes with respect to the overall time the elevator is not running
� tav is the time in seconds to travel the average travel distance,

including door opening/closing times

The average travel time can be estimated from the given or known information of
rated speed, v, acceleration, a, jerk, j, and door operation time td [13]. The �rst
term in (8) refers to the total standing time in hours, and naturally, if this is already
known, it is needless to calculate the average travel time for this speci�c purpose.
However, the average travel time becomes useful later in the calculation process,
especially when calculating the number of trips, if that is not taken directly from
Table 4. In this case, the average daily standing time of three hours is given in the
VDI calculation example in the previous section, and the number of trips can be
derived from this. A 35-m high elevator shaft certainly has more than three stops;
therefore, the average percentage of travel distance can be derived from Table 5, and
the %S will be 44%. Now, this information enables the estimation of the average
travel distance and sequently the average travel time:

sav = %S ·H
= 0.44 · 35 m = 15.4 m

tav =
sav

v
+
v

a
+
a

j
+ td

=
15.4 m
2 m/s

+
2 m/s
1 m/s2

+
1 m/s2

1 m/s3
+ 8 s

= 18.7 s

In the above, the magnitude of acceleration and jerk is known to be one, and the
combined time of door opening and closing at the landings is measured to be eight
seconds. Knowing the time of stationary to be three hours, the number of travels
can be calculated as

nd =
3600 s/h · 3 h

tav

=
3600 s/h · 3 h

18.7 s
= 578
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which is in the typical region of usage category 4, as can be seen in Table 4.
The ratios of di�erent consumption times can commonly be taken from the tables

provided by this standard. If the elevator is not equipped with a hibernation mode,
then the two lower rows of Table 7 can be added together to form a new �ve-minute
value.

Table 7: Standing time ratios by usage category according to [13].

Usage category 1 2 3 4 5 � 6

Time ratios (%)
Rid 13 23 36 45 42
Rst5 55 45 31 19 17
Rst30 32 32 33 36 41

The next part of this section focuses on calculating an energy usage example.
The same elevator is considered as the one introduced in the previous section. From
the usage category of 4, it could be presumed that the number of trips per day is
750, if no better information is available. However, now the value of 578 is calculated
from the known and estimated data and is used for this example.

Table 6 shows that the average percentage of the rated load is 6%. Furthermore,
when considering a traction elevator that is counterbalanced to 50% of the maximum
load, the load factor can be calculated:

kL = 1− (6 · 0.0164)
= 0.9

When these values, along with the measured energy consumption of the reference
cycle, are put to (5), the daily running consumption becomes

Erd =
578 · 0.44 · 0.9 · 60 Wh

2
= 6.87 kWh

The daily standing energy consumption can in turn be calculated with (8). If the idle
power consumption is measured to be 200 W and the hibernation mode consumes
20 W, then the daily standing energy usage will become the following:

Esd = (24− 578

3600
· 18.7)(200 · 0.45 + 30 · 0.19 + 20 · 0.36)

= 2.16 kWh

The total energy consumption per day will then be

Ed = Esd + Erd

= 9.03 kWh
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If the same amount of operating days is used as with the VDI, the annual energy
usage estimation of the ISO 25745 part two comes signi�cantly lower than predicted
by the VDI guideline:

Eannual = 365 · Ed

= 3296 kWh

However, it should be noted that depending on the elevator system and usage pat-
tern, the two calculation methods give greatly varying results, and this example
should not be considered as a rule of thumb. The ISO/DIS 25745-2 also provides
an annex that informs typical annual operating days, such as 260 for large o�ces,
and 360 for large hotels. However, using 360 instead of 365 in the example above,
would not have a large impact on the end result.

The important aspect of the standard shown in this example, was the amount
of details in comparison to the VDI 4707-1, which should imply better accuracy
in the consumption calculations. Furthermore, Barney and Lorente [13] have also
discussed the error that is caused by the variation of the number of trips inside a
certain usage category. They found that the use of the median value instead of an
actual value naturally induces some error in the daily consumption estimate, but
the e�ect of this was only found to be approximately 10% in the case study.

The energy classi�cation of the ISO/DIS 25745-2 has a similar structure than
the VDI 4707-1. Both standards introduce energy classes, or performance levels as
referred in the ISO standard, for both running and standing. The idle and standing
performance levels have exactly the same limit values than the VDI guideline had
for standby, with levels going from one to seven instead of from A to G, as can be
seen in Table 8 below.

Table 8: Performance levels for idle/standby according to [8].

Idle/standby
power (W)

≤ 50 ≤ 100 ≤ 200 ≤ 400 ≤ 800 ≤ 1600 > 1600

Performance
level

1 2 3 4 5 6 7

The running performance level limits of the ISO/DIS 25745-2 are provided in
Table 9, and the speci�c running energy of an elevator is calculated with (9)

Espr =
1000 · kL · Ereferencetrip

2 ·Q ·H
(9)

where the only possible di�erence is in the load factor when compared to the VDI
guideline and (2). When calculating this value for the given elevator, the speci�c
running energy becomes
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Table 9: Performance levels for running according to [8].

Speci�c
running energy
for the average
running cycle
(mWh/kgm)

≤ 0.72 ≤ 1.08 ≤ 1.62 ≤ 2.43 ≤ 3.65 ≤ 5.47 > 5.47

Performance
level

1 2 3 4 5 6 7

Espr =
1000 mWh/Wh · 0.9 · 60 Wh

2 · 1000 kg · 35m
= 0.77 mWh/(kg · m)

which means a performance level of 2 for running.
The overall energy e�ciency classi�cation limits proposed by this standard are

shown in Table 10 below and they can be seen to depend on both the running and
standing limiting values.

Table 10: De�nitions of energy e�ciency classes according to [8].

Energy
e�ciency class

Energy consumption per day (Wh)

A Ed ≤ 0.72*Q*nd*sav/1000 + 50*tnr

B Ed ≤ 1.08*Q*nd*sav/1000 + 100*tnr

C Ed ≤ 1.62*Q*nd*sav/1000 + 200*tnr

D Ed ≤ 2.43*Q*nd*sav/1000 + 400*tnr

E Ed ≤ 3.65*Q*nd*sav/1000 + 800*tnr

F Ed ≤ 5.47*Q*nd*sav/1000 + 1600*tnr

G Ed > 5.47*Q*nd*sav/1000 + 1600*tnr

There are many conventions to calculate the time of not running, tnr, found in
the table. One method, which was also discussed earlier, is shown below:

tnr = 24− nd ·
tav

3600

= 24 h− 578 · 18.7 s
3600 s/h

= 21 h
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For the example elevator, the limiting value for energy e�ciency class A would then
be

EAlimit
=

0.72 · 1000 · 578 · 15.4
1000

+ 50 · 21

= 7.46 kWh

and for B respectively

EBlimit
=

1.08 · 1000 · 578 · 15.4
1000

+ 100 · 21

= 11.71 kWh

per day. Consequently, the energy e�ciency class of the example elevator is deter-
mined to be B, as the daily consumption of the respective elevator is between the
limiting values of classes A and B.

It should be noted that the ISO/DIS 25745-2 standard, which was used as the
basis of this example, is currently under public evaluation; thus, it can change in
the future, resulting in di�erent calculations and classi�cations. Nevertheless, the
main content is expected to retain.

The energy classes are important both for the manufacturer from the marketing
perspective and for the buyer who wants be sure that the building has energy e�-
cient appliances [26, Ch. 13]. The buyer aims to minimize the used annual energy
to achieve lower costs of operation. The energy e�ciency class with the usage cate-
gory provides maybe the most valuable information regarding the buyer's purchase
decision.

2.1.4 KONE EnerCal tool

KONE EnerCal is an energy calculation tool which provides fast estimation of the
energy consumption of elevators. It generates lifecycle energy cost assesments from
the input data given by the user. This data includes the new elevator type, infor-
mation on the possible replaceable elevator system, and the characteristics of the
building. Similar to the ISO 25745-1 standard, the tool excludes energy consumed
by the shaft and machine room. [56]

KONE EnerCal is a hybrid system with a calculation methodology comprising
multiple steps utilizing various information sources. One of the sources embeds the
the e�ciencies and energy consumption properties of various components used in
the speci�c elevator set-up to the calculations. Thus, the methodology includes
the energy consumption model of the elevator. To calculate the energy usage, the
methodology also requires information on the building type, i.e., the volume of tra�c
and the structure of the shaft. The estimated or known annual trip amount is set
by the user, and the methodology presumes the share of up-and-down trips to be
equal. The load spectrum, presented in Table 11, is considered to be the same as
suggested by the VDI guideline. [56]

The tool calculates the total annual energy consumption as the sum of energy
used by hoisting, brake, control panel, and car lighting:

Etotal = Ehoist + Ebrake + Econtrol + Elight (10)
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Table 11: Trip ratio by various loads according to [7].

Load in % of
the nominal

load
Trip ratio in %

0 50
25 30
50 10
75 10
100 0

Typically, when computing the savings in cost of energy with EnerCal in a case
of modernization, the clearest percentual energy saving comes from replacing the
lighting system with more energy e�cient technology, such as light emitting diodes
(LEDs).

2.2 Previous consumption reports and studies on elevators

Multiple studies and reports have been conducted on the energy consumption of
elevators, but they have been regional and not comprehensive. The most known
monitoring campaign in Europe, called the Energy-E�cient Elevators and Escalators
(E4) Project [5], has shown that there is quite a lot of variation both regionally and
elevatorwise [28]. For example, the measurements done in this project show that
the variation in the ratio of standby energy is large with measured ratios ranging
from 4 to 90 percent. The E4 Project also suggests that elevators can account for
three to eight percent of the total electricity consumption of a building, but these
values have large variance between buildings. The large dependence on the building
type, used technologies, and region speci�c factors is shown when examining two not
E4-related case studies from Norway [29] and Shanghai [30]. In a low-energy o�ce
building in Trondheim, Norway, the elevators were measured to consume around 0.3
kWh per square meter of the building, contributing to a near 0.6 percent of the total
electrity consumption of the building [29]. An opposite result was found in a case of
a commercial building in Shanghai, where the elevators accounted for 14 to 22% of
the total energy consumption depending on the time of the year. This high �gure
most likely results from the older elevator technology, and the high-rise properties
of the building, as the speci�c energy consumption could be calculated to be close
to 19 kWh/m2. However, the elevators in Shanghai were only measured for one
day, and the yearly consumption was derived from this, leaving some uncertainty
to the results. Though the E4 Project was conducted in multiple countries with
di�erent types of elevators, it still does not present completely satis�able results
regarding the annual consumption of elevators. This is due to consumption values
being extrapolated from short-time measurements, which may be the reason for the
large variances in their measurements between di�erent measurement sites.
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Another wide research project [31], executed in Switzerland, was concluded in
2005 with 33 measured elevators from a variety of manufacturers. The project
�nding was that the standby energy accounted for 25 to 80 percent of the total
consumption. These �gures are in line with the E4 �ndings and prove that the
standby demand is a notable factor in the overall consumption of an elevator. High
standby usage ratio derives from the typically low usage of an elevator, as can be
realized from Table 2 on page 8. However, modern elevators tend to have low
standby consumption ratio in usage categories four and up, as can be seen in [26,
Annex B], but these elevators have been scarce in the previous measurement projects.
The project paper [31] also presents some energy consumptions of typical traction
elevators in certain type of buildings based on the research �ndings. These can be
seen in Table 12 below. A typical traction elevator technology in this case has a
permanent magnet motor with frequency converter and a gearless drive. However,

Table 12: Energy consumptions of typical traction elevators according to [31].

Type of building/purpose kWh p.a.
Small apartment building 950

O�ce or medium sized apartment building 4350
Hospital or large o�ce building 17 700

it should be taken into account that these values are also projections based on a
calculation method of a Swiss standard [32] using a travel-cycle meter. Thus, the
energy consumption is not actually measured over the year. Despite of this, when
comparing the last two values with �gures presented in a case study by Schindler
[33] for elevators with corresponding usages, it can be seen that the values are quite
close to each other. The case study presents kWh values of 4246 and 25 267, which
are calculated with the VDI process introduced earlier.

A short study report [34] on the energy consumption of three measurement sites
in British Columbia, Canada, is one of the few reports to study the e�ect of regen-
erative drives on the energy usage pro�le. The paper shows that in some elevator
systems there are trips where the overall energy consumption is negative, that is,
the elevator is producing energy. Naturally, the elevator cannot be a net producer
of energy in normal tra�c conditions, due to the losses in the mechanical and elec-
trical system. If there were no losses, and the same people would go up and down,
the net consumed energy would be zero [35]. The study report also shows, that
the technology used in an elevator has a crucial impact on the energy consump-
tion behavior. In this case, the measurements were taken both before and after
retro�tting the control and drive system. When comparing the measurements, two
of the retro�tted sites were noticed to generate energy during upward travels, while
before they were always consuming. However, the e�ect of the retro�t on the trip
down was negligible. Instead, the third site was measured to use over 200% more
energy going up, while saving 40% going down, when comparing to the situation
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before the retro�tting. One possible explanation to the di�erence may be the used
traction machine technology, because the third site was the only one with gearless
direct current (DC) machinery. However, all the elevators had signi�cantly improved
their standby energy e�ciency.

A paper analyzing the energy e�ciency potentials of elevators and escalators [36]
concludes from the basis of the E4 Project that if all the elevators currently installed
in Europe would be modernized or replaced with the best available technology, the
savings in energy consumption would be around 60% or 11.5 TWh. This is equivalent
to around 14% of the entire electricity consumption of Finland in 2012 [37]. In other
words, though the electricity consumption of elevators can be seen as relatively low,
it is still considerable, and the energy consumption should not be neglected. In
addition, as other energy users, such as lighting, Heating, Ventilation, and Air-
Conditioning (HVAC) reduce their demand in the future, the percentage used by
elevators will rise, attracting attention [38], [39].

The literature review done for this thesis revealed that there is no strong long-
time measurement data of the energy consumption of elevators easily available.
Nevertheless, the estimates and projections given by di�erent studies are in line
with each other, suggesting that the long-time measurements should indeed give
similar results compared to calculation methods based on short-time measurements.
However, regional studies include local usage patterns making, for example, the
correction factors given in the studies not completely applicable worldwide [38].
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3 Materials and methods

This chapter de�nes the methods and materials used in the process of gathering
and modifying the needed data from the metering sites. In addition, the elevators
selected for the measurement campaign are introduced to provide background in-
formation to the energy classi�cation process and annual consumption calculations.
The last sections present useful data that is applied to the results part of this thesis.
This data includes the usage statistics of the elevators under examination, energy
consumption pro�les of the pilot building, and solar energy production curves.

This chapter also introduces the chosen meters, their accuracy and method of
installation. There was a clear need to analyze the energy consumption in two
di�erent time scales: short-term and long-term, as both of them have their bene�ts
and drawbacks regarding di�erent requirements in the measured data. Both short-
and long-term measuring devices were tested against a calibrated NORMA D6100
Power Analyzer at the laboratory of the university. The short-term readings can
be considered to be more accurate and are used to �nd the error in the readings
of the long-term measuring system. The error in the long-term data can then be
compensated with this information.

3.1 Measuring technology

Suitable equipment was carefully selected to carry out the measurements. Elevators
are equipped with variety of technologies from di�erent eras, a�ecting the charac-
teristics of the electrical system, which causes a challenge to the measuring system.
Moreover, the practical issues concerning installation and data transfer vary from
one building to another.

3.1.1 Challenges in measuring the energy consumption of elevators

Actual measuring principle of elevators can be considered to be fairly simple, but,
in practice, the overall functioning of the system and its installation raises many
challenges. With modern lighting and control equipment, the elevators have a rela-
tively low standby power demand, and typically for a large proportion of the time,
the elevators are in some sort of standby mode [5]. Measuring low electric currents
would not be an issue by itself, but the high demand during travel, and especially
when the elevator is accelerating, causes very high currents. Therefore, the current
measuring unit needs to be capable of handling both situations with suitable accu-
racy. Moreover, standby modes typically introduce high amounts of harmonics in
electric currents particularly in modern elevator systems that have frequency con-
verters and other power electronics [56]. These harmonics cause ripple in the electric
current waveform, inducing uncertainty to the measurements. Furthermore, the �rst
on-site measurements revealed that in standby the elevators may have most of the
electrical load on one phase, while the rest of the phases are only slightly loaded,
and the consumption in these phases may not be noticed by the measuring device
at all. Nevertheless, the absolute error in the energy consumption readings will still
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remain in accectable boundaries. In addition to measuring the energy consumption,
the measuring system needs to be able to act with negative electric powers, if the
elevator is equipped with a regenerative unit and line braking capabilities [11].

Naturally, safety issues have to be considered when installing the measuring sys-
tem. For example, the measuring equipment is typically placed inside an enclosure
to protect users from electric shocks, and the access of people into the elevators must
be prevented when undergoing the reference cycle runs [11]. One aspect to notice
when planning the installation is to secure the power supply to the elevators, i.e.,
the normal operation and especially malfunctioning of the measuring system must
not interfere with the usability of the elevator system.

Another part of the measurements is the data itself. Vast amounts of data are
needed �rst of all to be recorded, transferred, processed, and �nally interpreted.
The recording rate needs to be set to a level which allows storing enough useful
information, while keeping the amount of data workable and analyzable. The remote
monitoring and reading of the recorded values raises an issue as the machine or the
electrical room may not o�er suitable communication systems or is located in an area
that has a low quality or no mobile network available. Establishing a reliable and
robust communication network requires much designing, and even with the remote
features, the system should also be equipped with a local data storage, such as a
memory card.

3.1.2 Short-term measurements

An accurate three-phase power quality monitor with fast sampling and recording
rate was needed for the short-term measurements. Fluke 1760 Three-Phase Power
Quality Recorder was chosen and tested to be suitable for the power and energy
monitoring task. Furthermore, the Fluke complies to the IEC 61000-4-30 Class-A,
ful�lling the accuracy requirements set by the ISO 25745-1. Laboratory testing in
various situations against high-end equipment con�rmed the error to be clearly under
1% in active and reactive energies. The laboratory testing process and equipment are
further introduced in Appendix A. Another conclusion found by testing was that the
low demand in standby mode may not be an issue as there was no clear di�erence in
measuring currents, power, or energy with current clamps having 5 or 50 A primary
winding. Therefore, measuring low powers with the higher current clamp introduces
no signi�cant error to the readings of the chosen short-term measuring device.

Fluke 1760 was planned to monitor one elevator for a few days storing high-
quality data on power and energy. It would also provide the reference cycle energy
consumption readings executed after the installation of the measuring equipment.
The data gathered from the Fluke at the installation site was considered to be with-
out error and could be used to determine the error in the long-term measurement
device. This error-determining process would contain the comparison of concurrent
readings stored by the Fluke and lower-end measuring equipment that are installed
to the supply of the same elevator. This type of procedure, demonstrated in Figure
3, was considered to allow the compensation of error introduced by the elevator envi-
ronment to the lower-end measuring equipment. Short-term reading was decided to
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Figure 3: General measuring plan for determining the accuracy and behavior of the
metering devices.

be performed on-site, though Fluke 1760 o�ers multiple communication possibilities.

Figure 4: Fluke 1760 measuring principle on one elevator [40].

The basic measuring principle used with the Fluke is demonstrated in Figure 4.
If protective earth (PE), and zero conductor (N) are not separated but form a PEN
wire, the fourth voltage probe can be removed. Measuring the electric current in the
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zero conductor is optional but might o�er some useful knowledge on the functioning
of the elevator. However, zero conductor currents are not examined in this thesis.

3.1.3 Long-term measurements

In this thesis, the major focus is on the long-term measurements when estimating
the annual energy consumption of the elevators. Long-term measurements require
equipment that is cost-e�cient, reasonably accurate, and has suitable communica-
tion systems and data storing capabilities.

The aim of this thesis was to design, install, and verify the functioning of the
long-term measuring system and create a measuring concept that could be modi�ed
to be used in an international elevator consumption measuring campaign. The
equipment gathered at the university prior to the project was found to be insu�cient
in terms of data recording and readability. Moreover, the cost of the measuring units
and the required supporting systems proved to be expensive, which would hinder
the expansion of the measuring campaign. An idea was considered to develop a
cost-friendly system that could be left at the site for multiple months or years.
At the early stage of the project, it was decided that after extensive laboratory
testing, the long-term measuring system would be installed to the �rst o�ce building,
demonstrated in Section 3.2, as a pilot.

After extensive development with Asema Electronics Ltd, a meter manufacturer,
a cost-friendly meter was tested at the laboratory, and the accuracy proved to be
suitable for long-term active energy metering. Appendix B introduces some of the
test results of Asema M2 meters and the basic concept of the designed measuring
system. Due to the uncertainty of capabilities of the created system in actual elevator
environment, a backup plan was taken into action to use more expensive meters in
series with the created measuring equipment in order to verify the functioning of the
designed metering system or at least to collect actual energy consumption readings
of elevators in the �rst building.

EMU Professional three-phase kWh meters were purchased and their basic func-
tionality and accuracy were veri�ed at the laboratory of the university. Due to
�exibility and communication aspects, an M-Bus version of the meters was chosen
with M-Bus datalogger [41]. In addition, 100 A current clamps were attained to
be used at the �rst measurement site. The basic principle of operation is presented
in Figure 5. The M-Bus can be constructed using basic paired cable or similar,
and the communication between the router and the server can be established using,
for example, a 3G modem. The M-Bus Logger was set to send the measurement
data to the server using Smart Message Language (SML). The smart-me.com server
then provides reports and statistics of the connected meters to the users. More de-
tailed data can be fetched directly from the M-Bus Logger using a Dynamic Domain
Name System (DDNS). DDNS was enabled, due to the likely change in the public
IP address of the 3G router after every restart of the router.

Both the developed meters and the meters from EMU have cumulative energy
registers. Therefore, the energy consumption or generation within a certain period of
time is found by calculating the di�erence in the register values. The logging interval
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Figure 5: An example diagram of the basic structure of the measuring system built
around EMU Professionals using an M-Bus data logger. Meter and logger �gures
fetched from [41].

of the developed and EMU meters was set to two and �ve minutes, respectively. The
timely segregation of energy usage in the smart-me service is built automatically
depending on the type of consumption. Thus, the energy consumption pro�les can
appear to be slightly di�erent when comparing to the plain M-Bus Logger data.

A shorter test run, similar to the one presented in Appendix B, was conducted
also for the EMU Professional meters. Table 13 introduces the overall accuracy of
the EMU devices compared to the developed low-end metering system. The EMU
meters can be seen to have less variation between the readings but somewhat more
error in certain data registers than the developed system. The larger error can be
explained with not calibrating the meter for the testing setup or due to the fact that
larger current clamps were used with relatively low testing electric currents. Thus,
the EMU meters are thought to be more stable in their accuracy between di�er-
ent electrical devices, and they could o�er a more realiable reading in the elevator
environment and ful�ll the 10%-accuracy requirement proposed by [24] in various
situations. Furthermore, the variation in accuracy between phases was noticed to
be clearly smaller with EMU devices than with the Asema devices, which could de-
rive from the di�erence in the method of measuring the voltages of the second and
third phases. EMU Professional measures every phase voltage, while the developed
meter only measures voltage in the �rst phase. More detailed description of this is
presented in Appendix B. Both metering systems are capable of recording inductive
and capacitive reactive energies, but these measurements are not included in this
thesis. Therefore, the accuracy comparison of these registers is not introduced. Both
measuring systems were equipped with openable-core current transformers (CTs),
inducing some excess error compared to solid-core current transformers [42], but
simplifying the installation procedure at the measurement site.
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Table 13: Error percentages in total energy of the tested meters

Developed
meter

Phase sum
error%

EMU
Professional

Phase sum
error%

Consumed energy (inductive load)
M1 -2.0 EMU1 2.9
M2 2.1 EMU2 1.0
M3 4.6 EMU3 1.6
M4 -0.2 EMU4 0.2

Consumed energy (capacitive load)
M1 -9.3 EMU1 -5.6
M2 -6.2 EMU2 -5.8
M3 -8.0 EMU3 -5.3
M4 -7.0 EMU4 -4.9

Generated energy (inductive load)
M1 0.5 EMU1 -10.2
M2 -1.5 EMU2 -8.0
M3 -21.6 EMU3 -8.1
M4 0.7 EMU4 -5.8

Generated energy (capacitive load)
M1 8.4 EMU1 -0.1
M2 10.6 EMU2 -0.3
M3 2.6 EMU3 -0.5
M4 10.6 EMU4 -0.6

3.2 Measurement sites

The time period reserved for this thesis allowed the elevator measurements of one
mid-rise o�ce building in Espoo. The building, later denoted as Building 1, was
mostly occupied by only one company and acted as a pilot site for the metering
systems introduced in Section 3.1.3. A plan was to verify the functionality of the
developed and EMU measuring systems in both consumption and generation states.
However, the �rst installation site was discovered not to have a regenerative unit;
therefore, this thesis does not identify the prospects of energy production of elevators
based on actual measurements but discusses them in general.

Building 1 is equipped with an elevator group with four elevator cars, and the
usage can be considered to be evenly distributed between the cars. One of the
elevators is fed from a reserve power supply enabling service use. Table 14 shows
the characteristics of the elevator group in Building 1. This information enables the
calculation and estimation of key parameters requested by the VDI 4707-1 [7] and
ISO/DIS 25745-2 [8] energy classi�cation schemes introduced in Sections 2.1.2 and
2.1.3, respectively. The de�ned parameters are presented in Table 15.

The �rst three elevators were fed through a common three-phase electricity sup-
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Table 14: Characteristics of the elevator group in Building 1.

Number of cars 4
Nominal load 1500 kg
Counterbalance 50%
Nominal speed 2.5 m/s
Full lifting
height

59.1 m

Number of
�oors

16

Machinery Gearless PMSM

Table 15: VDI 4707-1 and ISO/DIS 25745-2 parameters derived from elevator char-
acteristics of Building 1.

Scheme VDI ISO
Usage category 4 4
Load factor 0.7 0.9426

Average travel distance n/a 26 m
Number of travels per day n/a 750
Average standby time 21 h n/a
Average travel time 3 h n/a

ply, limiting the voltage measurement points to only three. The fourth elevator
required another three voltage measuring points, as it was connected to a separate
supply. One EMU and one developed meter were installed to each elevator supply.
The EMU devices were set to measure voltages from every phase, but the developed
meters were only connected to the �rst phase voltage.

The VDI guideline states that the energy usage of the group dispatching system
should be measured and evenly distributed between the elevators. In addition,
the consumption of car cooling, heating, and, for example, call panels should be
determined and documented. However, Building 1 caused a challenge in verifying
whether these consumers were behind the elevator supply or whether they were fed
by some other supply. Furthermore, the ISO/DIS 25745-2 does not cover these
consumers when determing the energy consumption of elevators.

3.3 Comparison material

This section presents material that is required when inspecting the results of this
thesis. The �rst two sections introduce the usage patterns of the elevators in Build-
ing 1 as well as the total electricity consumption statistics of the building. The
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third section examines solar power generation characteristics in Finland, and this
information is later, in Chapter 4 and Chapter 5, used to identify the prospects of
utilizing solar power with elevator systems.

3.3.1 Usage statistics of elevators

A critical source of information for this thesis and the project in general was KONE
Elink, an application reporting the operation statistics of the elevators. Reports can
include the number of starts in total, the number of starts with di�erent loads, and
travel time. This information is later utilized in Chapter 4, where the consumption
data is analyzed against travel statistics.

Typically, the arrival rate of passengers or the usage rate is distributed to �ve-
minute sections [15, Sec. 3.2], and this method is also used in this thesis. Figure 6
presents a common arrival rate in an o�ce building, and the amount of arrivals can
be seen to peak around �ve minutes before the deadline, for example, start of work
or lunch. However, presently, many work places have �exible working hours, but as

Figure 6: Typical arrival rate in an o�ce building [15].

[15] states, the use of �ve-minute periods for studying the peak tra�c of elevators
has been found suitable in every building type. In addition, the pro�le provided
by Figure 7 supports the passenger behavior suggested by the arrival rate theory.
The �gure also reveals the average loading pro�le of one elevator in Building 1 on
both weekdays and weekend based on data derived from Elink start load statistics
in March 2014. If an average person is presumed to have a mass of 80 kg, then
the highest peak of the �gure shows that the average amount of people traveling
on a weekday between 10:55 and 11:00 is almost 18. A similar pro�le, in Figure 8,
but without any knowledge of cargo, is formed by plotting the average number of
travels for one elevator. The pro�les seem to have similarities in peaking, but the
e�ect of transporting di�erent amount of people during certain periods is clear. For
example, the morning peak has around the same amount of trips as the lunch hour,
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Figure 7: Average mass carried during a 5-minute period per elevator in March:
Building 1.

but has, on average, less people inside the elevator. This may derive from people
having a tendency to go for lunch in larger groups.

Figure 8: Average number of trips per elevator based on 5-minute averages in March:
Building 1.

Other important values given by the Elink were the average travel time and the
amount of total starts derived from statistics of over nine months. The variables
required by the standards then became as follows:

tav = 24.2 s

nd = 400

tnr/standby = 21.3 h

tr/travel = 2.7 h

for each elevator in the group. The average daily travel value of 400 is calculated
for every day not just for working days. The average weekday value was noticed to



31

be 550. Another piece of statistics provided by the nine-month data is the ratio of
travels under certain loads presented by Table 16, showing that a major portion of
the travels is performed on near-empty cargo.

Table 16: Ratios of travels with di�erent loads according to 9-month data from
Elink in Building 1.

Percentage of
maximum
load Q

0�20% 20�40% 40�60% 60�80% 80�100%

Ratio of starts 96.46% 3.29% 0.23% 0.02% 0.0002%

3.3.2 Energy consumption of pilot building

One aim of this thesis is to analyze the correlation of energy consumption of buildings
and elevators within them. This section introduces the electrical energy consumption
pro�les of the �rst building under elevator measurements. This data is gathered by
the kWh meters that electricity companies use to bill the user of the building.

The monthly electricity consumption of Building 1 is provided in Figure 9, where
the monthly usage has been calculated as an average based on years 2012 and 2013.
Variation between months can be seen to be minor, and is most likely dependent on

Figure 9: Electricity consumption of Building 1 by month as average values based
on years 2012 and 2013.

the number of days, especially working days, in a month. The average annual total
electrical energy usage by Building 1 during these two years was calculated as 1.42
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GWh. The monthly variation between the two years was noticed to be considerable
(between -15% and +9%), but the total annual usages did not di�er greatly.

Figure 10 shows the electricity usage pro�le of the building in February prior to
the elevator measurements. Weekdays can be seen to resemble each others, while
the weekend clearly has, on average, low consumption, not much di�erent from the
night time demand. This type of pro�le is typical of o�ce buildings [43, Sec. 6.1].
A more detailed daily consumption pro�le of a normal weekday is presented in the

Figure 10: Energy consumption pro�le in February 2014 of Building 1.

results section of this thesis.

3.3.3 Photovoltaic power generation model

This section introduces some results of a power generation model [44] for photo-
voltaics in Southern Finland to provide background for the analysis of the prospec-
tive uses of photovoltaics in elevator systems. Three di�erent tilt angles are inves-
tigated: 0◦ (horizontal), 42◦ , and 90◦ (vertical).

Figure 11 reveals that the vertically mounted panel will yield a more stable
monthly production over a year, while the horizontal panel will produce most of the
energy during the summer months and negligible amounts during the winter. For
most of the year, a 42◦ tilted panel is between these two options in terms of power
generation. According to the model, most electricity is annually produced by the
42◦ system although the di�erences are minor, as can be seen in Table 17.

Most likely, the wisest mounting angle for a building from these three options
is the 42-degree angle because it o�ers the most annual energy and the peak pro-
duction is during hot summer months that require much electricity for cooling. The
production potential pro�le of the tilted panel is investigated next. The focus is on
the shape of a theoretical energy production curve, which is presented in the form
of power indices. The actual power can be derived when the power index values
are divided by thousand and multiplied by the nominal power of the solar module
system [44]:
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Figure 11: Monthly generated energy for horizontal, tilted, and vertical 1-kW panel
systems adapted from [44].

Table 17: Annual electricity production of 1-kW nominal power photovoltaic systems
in di�erent tilt angles adapted from [44].

Panel mounting angle kWh p.a.
0◦ 999
42◦ 1136
90◦ 1046

Pm,h = ηeff · Pmax
pindex

1000
(11)

When comparing the Figures 11�12 to the plots presented in [44], it can be seen
that there are some minor di�erences which arise from the use of sunshine hour ratio
denoted as sunshine hour value, tssh. This thesis uses a sunshine hour value of 0.437
for every month, which produces a realistic average value of annual energy [44].
Figure 12 shows that a halfway tilted panel brings the monthly curves relatively
close to each other with peak power around noon. However, the winter months can
be clearly seen to yield little energy and have a peak power of about half of the
summer months.
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Figure 12: Hourly power index values by month for 42◦ tilted panel adapted from
[44].
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4 Results

This chapter presents the results gathered from the �rst measurement site. Readings
from the short-term measuring device are introduced �rst, and they form the base
for calculating the estimates and energy e�ciency classes according to the VDI
guideline and ISO/DIS-25745-2 standard. The long-term energy consumption data
is then utilized to identify the di�erences and similarities of the estimates and actual
readings. Furthermore, this chapter identi�es the proportion of the elevators in the
total consumption of the building, designs a plausible photovoltaic system to be
used with the elevator group, and determines the correlation between energy usage
and passenger tra�c.

4.1 Short-term measuring device readings

Fluke 1760 was installed as depicted in Chapter 3, and read after a reference cycle
and a couple of days, depending on the data need. The Fluke recordings include
phase voltages and currents, harmonics, and reactive and active powers and energies
per phase. However, only the active powers and energies are presented below, as
they are in the scope of this thesis.

4.1.1 Reference cycle measurement

Reference cycle, depicted in Section 2.1.1, was performed with elevator 1 in Building
1, and the power pro�le during 11 travel cycles is shown in Figure 13, where the
high peaks are caused by the car traveling downwards, as the drive system has to
lift the counterweight. The ISO 25745-1 standard suggests the test to be run with
no load, but due to the nature of the elevator controllers, the test in Building 1 was
conducted with one person weighing 75 kg inside the car. Nevertheless, this only
comprises �ve percent of the nominal load and should not be a signi�cant factor in
the end results. The elevator was seen not to have any energy saving modes; thus
the idle and standby demand were measured to be equal. Table 18 presents all the
results identi�ed with the reference readings. Every elevator in the same group was
considered to have the same consumption properties, and this presumption was seen
relatively accurate by measurements from long-term measuring devices.

Table 18: Results of ISO 25745-1 reference cycle measurements in Building 1.

Idle demand 172 W
Standby
demand

172 W

Average
reference cycle
consumption

140 Wh
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Figure 13: Power pro�le of one elevator in Building 1 attained from Fluke 1760.
Yellow color represents the total power of the three phases.

4.1.2 Simple projection of annual consumption

Fluke 1760 was left at the pilot site to measure elevator 4 for three days, and after
that elevator 1 for another three days. A simple annual projection estimate for the
entire elevator group was calculated on the basis of the information provided by these
six days, by multiplying the average weekday and daily weekend consumption with
260 and 104, respectively. Naturally, the number of working days is somewhat lower
than the number of weekdays, but some weekends also have more activity balancing
this de�ciency in the presumption. The following short-term annual consumption
estimate was derived for the entire elevator group:

Ea = 4 · (260 · Eweekday + 104 · Eweekend)

= 4 · (260 · 20.0 kWh+ 104 · 5.2 kWh)

= 22 963 kWh

Section 4.3 compares this �gure to estimates provided by the VDI guideline, ISO/DIS
25745-2 standard, and to the annual consumption projection provided by long-term
measurements. The annual projection value of the Fluke could have been slightly
improved by checking the amount of travels on the measurement dates to the av-
erage daily amount of travels of a year. However, this would not have been so
straightforward because the elevators always have a large standby consumption as
well.

4.2 Long-term measurements

This section introduces energy consumption readings gathered by the long-term
measurement setups. The �rst part determines the plausible error in the measured
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�gures and proposes a compensation method that is used to calculate the actual
energy consumptions of elevators.

4.2.1 Reliability analysis of long-term consumption results

In order to determine the functionality and performance of the long-term measuring
equipment, the accuracy testing, mentioned in Section 3.1.2, was performed with
elevator number four in Building 1, and the register values were proven to ful�ll
the accuracy requirements of 10% in long-term energy consumption measurements,
as can be seen in Table 19. The overall accuracy was performed during the �rst
day and night after the installation. The standby readings during the night were
seen to have a relatively constant error of -13 to -18 percent, which ampli�es the
assumption of the di�culty of measuring low standby demand. Nevertheless, the
signi�cance of the standby error was mitigated during peak demand hours, as the
error during morning peak demand was determined to be between -3 to -6 percent.
A plausible reason for the registers having values below the actual amounts may
be the issue of measuring low currents discussed previously in Section 3.1.1. In
addition, low-end measuring equipment commonly have a cut limit in low power
situations, where the measured value is set to 0 W instead of, for example, 9 W.
This scenario was identi�ed in the laboratory testing, but it does not fully explain
the di�erence, especially during the peak demand. The result of gaining moderately
lower values at the installation site is reasserted by the laboratory testing, as the
Fluke revealed the elevators in Building 1 to be slightly capacitive in standby, and
only shortly inductive during travel, and all of the installed meters were tested to
have a negative error in consumed energy register with capacitive load, which was
already seen in Table 13 in the previous chapter.

Table 19: Error percentages in total energy consumption against Fluke 1760.

Developed
meter

Phase sum
error%

EMU
Professional

Phase sum
error%

M4 -5.2 EMU4 -6.9

The metering units in elevators one to three in Building 1 were considered to
have similar accuracy properties as the units installed to fourth elevator, since the
EMU devices were determined to have similar error behavior in laboratory testing as
was shown in the previous chapter. Table 20 shows the reading comparisons of the
developed and EMU meters in elevators one to three and reveals that both metering
systems are capable of reliable long-term measuring. However, the following result
sections are based on data gathered by EMU devices, as M2 had some issue of
determining the positive direction in the setup phase, due to the low standby electric
current. This issue was resolved for the next measuremement site by �xing the
positive and negative power directions to be based on the direction of the clamps.
The M2 register value for Table 20 was taken from the negative energy side, i.e.,
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the generated active energy register. The following method was performed in the
subsequent long-term result sections to compensate the determined error in the
readings of the EMU Professional meters: the power values of under 300 W were
divided by a factor of 0.865, while other results were divided by a factor of 0.948.
The accuracy determining and error compensation process is further discussed in
Chapter 7 which recommends possible �ne tuning aspects to the process.

Table 20: Consumption energy register values after �rst overnight reading.

Developed
meter

Phase sum
(kWh)

EMU Pro-
fessional

Phase sum
(kWh)

Ratio
Mx/EMUx

M1 14.89 EMU1 14.85 1.003
M2 18.62 EMU2 17.38 1.071
M3 16.56 EMU3 16.61 0.997

As mentioned in Section 3.2, it was slightly uncertain whether the energy con-
sumption of heating, cooling, call panels and the group controller were included in
the measurements as required by the VDI, and on the contrary, excluded by the
ISO 25745 part two. Nevertheless, the electric schematics indicated that nearly
everything associated with the elevator group was fed from the supplies that were
under measurement. For example, the Elink tra�c reporting tool was noticed to be
connected to an uninterruptible power supply (UPS) device that was powered by
the elevator system. Though the following results may lack some information, the
di�erence in consumption �gures should not be signi�cant. Futhermore, this di�er-
ence should not a�ect the analysis of utilizing the energy consumption standards.
A major e�ect could plausibly be the change in the energy e�ciency class.

4.2.2 Consumption over examining period

As was presumed, the elevators in Building 1 were used in quite equal amounts, as
can be seen in Figure 14 that shows the consumption division in a seven-day period.
This thesis used a �ve-week examining period for the long-term measurement data
gathering, and this length can be considered relatively long when compared to most
studies but is far from a 52-week year. Nevertheless, the extrapolation method
should give good preliminary results of the annual consumption of the elevators
that were measured. The long-term reading equipment was left at the measurement
sites to gather more information for further studies.

EMU Professional devices installed at Building 1 recorded a kWh value of 2350
kWh during the �ve-week measuring period in March and early April 2014. This
�gure has been error compensated with the method described in the previous section,
and can, therefore, be considered as the best knowledge available when projecting
the annual consumption of the elevator group.
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Figure 14: Division of energy consumption inside the elevator group of Building 1
as given by smart-me.com.

4.2.3 Energy demand pattern

In order to identify the energy usage behavior of elevators, an energy demand pro�le
is needed. Depending on the type of the building, the pro�les can be constructed
in various forms. This thesis uses a basic weekday�weekend segregation, which is a
viable option in o�ce buildings. Lorente Lafuente [26] used eight di�erent day types
in her models, but for the measuring period of Building 1, the use of Monday�Friday
and Saturday�Sunday segregation proved to be su�cient, since the days within the
same group were seen very identical.

Figure 15 presents the average weekday (working days) and weekend (out-of-
o�ce days) power demand pro�les of one elevator. The pro�les have been derived
from error compensated �ve-minute averages measured by the EMU Professional
devices during March 2014. Hence, the pro�les are more jagged than a common
pro�le based on hourly averages, but the overall shape of the weekday pro�le can
be seen to resemble the hourly �gure presented and explained in more detail later
in Sections 4.4.1 and 4.4.2.

Researchers and literature have been discussing the ratio of weekend consumption
in relation to weekdays [26], [57]. Previously, the usage of elevators in o�ce buildings
on a weekend day have been considered to be around half of that of a weekday [26].
Naturally, this ratio depends on the work customs of a region the elevator is located
in. For the elevators in Building 1, located in Finland, the ratio of travels during
weekends was only around �ve percent according to the Elink statistics. The energy
usage ratio of weekends was calculated to be 20%, and this result is also supported by
the Figure 15. The larger energy consumption ratio compared to travel ratio derives
from the standby demand which is always present in the current con�guration of
the elevator group in the pilot measurement site.
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Figure 15: Electricity power demand pro�le per elevator based on 5-minute averages:
Building 1.

4.3 Projections and estimates provided by consumption

models

Table 21 on the next page presents the annual estimates provided by the VDI guide-
line and ISO/DIS 25745-2 standard with various calculation methods based on dif-
ferent source knowledge from the usage statistics of Building 1. As mentioned on
page 16, the VDI typically utilizes 365 operating days in its calculations, while the
ISO standard also discusses using 260 operating days for large o�ces. Elink data
was used to calculate average standby and travel times more accurately than stan-
dards provide as default values. The average travel time has also been used in the
default ISO/DIS 25745-2 calculations, as the jerk and door operation times of the
elevators in Building 1 were not known. However, the average travel distance was
calculated as guided in the standard. The e�ect of using Elink average travel time
with the number of travels suggested by the ISO 25745-2 for elevators in category
4 buildings resulted in both absolutely and relatively lower standby energy usage
than with the default standard values, as the time of not running, tnr, became as 19
h instead of 21 or 21.3 h that were introduced earlier.

EnerCal estimated annual electricity usage with input elevator characteristics
and a yearly travel amount of 146000 per elevator, a �gure derived from Elink
statistics over a period of nine months. EMU readings have been compensated with
the method presented in Section 4.2.1, and the Asema M2 value has been extrapo-
lated from a kWh consumption �gure after 16 days and divided by a compensation
factor of 0.948 based on the error percentage introduced in Table 19 previously. The
di�erence in the annual projections of the long-term devices seems to be notable.
The largest reliability issue to Asema devices resulted from the meter in the second
elevator having di�culties determining the positive power direction, as discussed
earlier. If Asema consumption data would have been compensated with the same
power method as EMU readings, the Asema M2 estimate would have also slightly
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Table 21: Annual consumption estimates and projections for elevator group in Build-
ing 1.

Method
Operating
days used in
calculation

Eannual (kWh)
Ratio

Eannual/EEMU

VDI 365 37 957 1.553
VDIISO2 260 27 038 1.106
VDIElink 365 34 764 1.422
ISO 260 26 036 1.065
ISOVDI 365 36 551 1.496
ISOElink 365 22 306 0.913

Tool Usage method Eannual (kWh)
Ratio

Eannual/EEMU

EnerCal 146000 trips/a 33 852 1.385
Fluke 6-day projection 22 963 0.9460
Asema M2 16-day extrap. 20 990 0.859
EMU 5-week extrap. 24 440 1.000

risen, as the low consumption values during weekends would have increased relatively
more than on weekdays when the error percentage was determined. Furthermore,
the 16 days used in the extrapolation included two extra weekend days, lowering
the simple projection outcome by nine percent, if the weekend consumption ratio is
presumed to be 20%, a �gure presented in the previous section. Thus, the actual
di�erence in recorded annual energy usage between the two long-term measuring
systems can be considered to be minor. On the other hand, also the short-term
projection method, demonstrated in Section 4.1.2, seems to o�er a good alternative
to long-term readings, as discussed on page 21.

The estimation method of the ISO standard seems to give the best result both
with basic presumptions and with Elink travel information. Instead, the VDI guide-
line provides near accurate estimate when used with operating days suggested by
the ISO standard, but fails with the basic presumptions and with the Elink travel
information. Moreover, EnerCal provided a greatly higher estimate than actual for
the elevator group in Building 1. One plausible factor may have been a mistake
in choosing the right components and features of the elevator for the EnerCal in-
put data. Nevertheless, both EnerCal and VDI estimates with Elink travel amount
provided similar �gures. The results are analyzed in Section 5.1 in more detail.

Figure 16 reveals the standby and travel ratios calculated by the standards and
the average daily (including weekdays and weekends) kWh value in both modes
for one elevator. EMU Professional and Fluke values were derived by categorizing
all �ve-minute average power values as standby, if the power value was under 200
W. As the �ve-minute values that were categorized as travel generally still contain
times of standing, the EMU and Fluke travel consumption ratios will yield to a
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relatively higher �gure than actual. Furthermore, if the standby demand is con-

Figure 16: The ratio of standby and travel consumption with average daily kWh
values for an elevator in Building 1.

sidered to be always present as the base demand, and the travel consumption is
seen to be the consumption that exceeds the standby threshold, here 172 W, the
standby consumption ratio becomes signi�cantly higher. With EMU readings, this
ratio in total becomes as 25%. For a weekday and weekend, this ratio was found to
be 19% and 94%, respectively. All of the ratios determined by this process yield to
higher ratios than proposed by Figure 16 for EMU. Nevertheless, the average ratio
of 25% is approximately the same as the ratio provided by the ISO standard with
Elink statistics, which is no surprise, as it uses actual travel amounts with actual
measured consumptions from the reference cycle.

Travel and standby ratios of the EnerCal tool have not been introduced here,
as the tool does not provide these �gures. However, similar tools providing similar
annual estimates seem to present the ratios in reverse compared to the above �gure:
travel 0.3 and standby 0.7, for example. This di�erence may result from componen-
twise calculation methods dividing the consumption of individual components into
standby and travel or from the di�erence in de�ning various operating modes as
standby or travel. Moreover, EnerCal considers only one elevator, and the electric-
ity usage of the control system is calculated for the elevator. However, Building 1
having four elevators results in the energy usage of the control system to be divided
between four units, decreasing the total consumption in comparison to multiplying
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the EnerCal estimate by four. However, this e�ect is presumed to be minor.
With regards to the energy e�ciency classes, all six VDI and ISO calculations

produced almost equal classi�cations in Building 1. This is due to travel and energy
e�ciency classes having dynamic border de�nitions. Naturally, the standby class was
the third best (C or 3) because of the stationary demand being between 100 and
200 W, and both of the energy classi�cation schemes having same border values for
standby power. The total energy e�ciency classes were determined to be category B
in every scenario. The only minor di�erence was in running classi�cation, as the VDI
suggested class A for travel, while, as with the ISO/DIS 25745-2 method, the class
was calculated one performance level worse (2). Nevertheless, when examining the
calculated �gures, both of the VDI and ISO standards were very near to their class A
border, and the di�erence of the determined classes may change if the intermediate
values were rounded di�erently.

4.4 Comparing the energy pro�les of buildings, elevators, and

solar panels

This section is dedicated to examine the correlation between the energy consumption
of buildings and elevators. In addition, the section utilizes the solar energy produc-
tion curves presented in Section 3.3.3 to see similarities to the energy consumption
behavior of elevators.

4.4.1 Energy consumption of buildings against elevator data

To determine the portion of elevators in the total electricity usage of buildings, this
section uses the electricity data from Building 1, introduced in Section 3.3.2, along
with the energy consumption readings of the EMU Professional meters installed to
the electricity supplies of the elevator group in Building 1. Figure 17 compares the
concurrent electricity usage by hourly averages of Building 1 against the consump-
tion of the elevator group. The pro�les can be seen to peak within the same hours,
but at the same time, the e�ect of elevator usage can be stated to be minor on
the overall consumption of the building. This statement is supported by Figure 18
showing the average hourly ratio of the elevator group in total consumption. The
momentary power ratios can be considered to �uctuate from the average, as the to-
tal demand of the building is typically more stable than the usage of the elevators.
The hourly ratio is at its largest during peak tra�c hours at the start and end of
the workday and during lunch time when people are moving from their �oor to the
restaurant. The overall consumption ratio on this particular Monday was calculated
to be 2.35%, a value little less than determined by the E4 Project. When regarding
the entire month of March 2014, the ratio of elevators in the total consumption was
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Figure 17: Electricity usage in Building 1 with concurrent total consumption of the
elevator group on one Monday in March.

Figure 18: Ratio of elevators in the total consumption of Building 1 on one Monday
in March.

calculated to be

rel.group =
Eel.group,March

Ebuilding,March

· 100

rel.group =
1996 kWh

104 338 kWh
· 100

rel.group = 1.9%,



45

which signals an even lower consumption ratio for elevators in Building 1. The
consumption of the elevator group was attained from error compensated EMU Pro-
fessional �gures during March 2014, and the concurrent Building 1 data was collected
from an application provided by the electricity company. Electricity usage in March
2014 can be noticed to be clearly smaller than presented in Section 3.3.2; therefore,
the ratio could be even less in another year.

If the annual electricity consumption of Building 1 is presumed to be as de�ned in
Section 3.3.2, and the annual estimate given by EMU Professional meters presented
earlier in Table 21 is considered, the annual consumption ratio of the elevator group
in Building 1 can be determined to be

rel.group =
EEMU

Ebuilding,a

· 100

rel.group =
24 440 kWh

1.42 · 106 kWh
· 100

rel.group = 1.7%

When inspecting all the three ratios identi�ed in this section, they are all in the
same region, and most likely the actual ratio is, on average, slightly under two
percent annually, if the usage of the elevators or the consumption of the building
would not substantially change in long-term. Though this �gure is slightly lower
than suggested by the E4 Project, it is in line with �ndings from Finland [45].

4.4.2 Solar power production against elevator data

This section identi�es the needed battery sizes in terms of electrical energy in a
situation where the consumption of the elevator group in Building 1 is powered
totally by photovoltaics (PVs). The energy storage e�ciency of the battery system
is presumed to be 100% [46], which may be considered exaggerated but serves as a
best-case situation. This calculation also considers the PVs to perform as depicted
in Section 3.3.3 and the elevator consumption pattern to be recurrent. The example
examines energy production of three months: March, June, and December. These
months resemble the average, the best, and the worst times of the year for a PV
with a 42-degree tilt in terms of electricity production.

The total average weekly consumption of the elevator group in Building 1 was
measured to be 470 kWh, and to ful�ll this demand, the needed photovoltaic sizes
in kilowatts for March, June, and December should be 19, 15, and 59 kW, respec-
tively. If the nominal power of the installed photovoltaic system is 20 kW, it will be
su�cient for half of the year between March and August, with the lowest produc-
tion in March, as can be seen in previous Figure 11. Figure 19 presents an average
weekday consumption of the elevator group in Building 1, and the PV power pro-
�le for a 20-kW system in March. With this setup, the PV system is not capable
of generating enough energy within the same day, though the lunch hour peak is
satis�ed. Nevertheless, when the battery system is scaled to enable the utilization
of sunshine during weekends, a 20-kW system is clearly su�cient, which can also be
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Figure 19: Photovoltaic power generation pro�le for a 20-kW system and elevator
group consumption on a weekday in March.

Figure 20: An illustration of a net zero PV (20-kW) and battery system (82-kWh)
in March for elevators in Building 1.

seen in Figure 20, which reveals that the net zero system is achieved with 82-kWh
battery storage. This amount of storage equals to nearly �ve Opel Amperas having
a common 16-kWh battery capacity [47].

4.5 Impact of tra�c on the energy usage of elevators

To analyze the e�ect of passenger tra�c on the energy consumption of elevators,
this section utilizes the loading and travel pro�les introduced in Section 3.3.1 having
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characteristics similar to the consumption pro�le presented on page 40 and identi�es
their resemblance.

When the loading and consumption pro�les are put on top of each other, in
Figure 21, the resemblance between the two is clear, though the time syncronization
caused some challenge to the data handling process. Standby power demand causes
the base level of the power pro�le to be around 172 W, while, naturally, the loading
during standby is zero. With �ve-minute average values, the correlation coe�cient

Figure 21: Weekday 5-minute averages of power demand and loading per elevator
in Building 1.

was calculated to be 0.96, which veri�es the large dependence of energy consumption
on passenger volume. The �gure also indicates the e�ect of using a heavy (50%)
counterbalance, as the lunch hour peaks of the pro�les are more similar than start
or end of workday peaks. Though the lunch hour loading is signi�cantly higher than
during the rest of the day, the energy consumption is less than in the morning peak.
This results from the morning having generally always an empty car traveling down
to pick up only a few passengers, while at lunch time, more people are traveling with
the same car, lowering the net mass that is needed to be moved by the motor of the
elevator. Therefore, the impact of the counterbalance on the correlation of tra�c
and energy usage of elevators could explain some of the 0.04 gap in the correlation
coe�cient.

When examing plain travel amount data against the consumption pro�le, in
Figure 22, even clearer resemblance can be identi�ed between the pro�les than by
examing loading statistics. One factor may be the counterbalance which a�ects the
energy consumption depending on concurrent loading and the direction the elevator
is traveling; thus, the loading itself is not the only variable a�ecting the consumption.
Moreover, high correlation between travel and energy consumption, 0.986, can be
easily accepted, as the loading is commonly minor in contrast to the nominal load,
as explained in the following paragraph, and due to the tendency of the elevator to
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travel equally upwards and downwards. Therefore, the travels, on average, tend to
consume the same amount of energy, resulting the consumption to depend highly
on the number of trips.

Figure 22: Weekday 5-minute averages of power demand and amount of travels per
elevator in Building 1.

The use of a heavy counterbalance can be questioned when investigating the
statisctics recorded by the Elink. Table 16 on page 31 clearly veri�es that a ma-
jor share of the travels is done with a near-empty cargo, and the high loads are
encountered in negligible amounts. This piece of information suggests that the
counterweight could be chosen signi�cantly smaller, reducing the energy consumed
by the empty car traveling down, which comprises about a quarter of the total
travels [7], and is responsible for a major portion of the energy demand during the
weekday morning peak consumption, for example. Nevertheless, the use of a large
counterbalance lessens the requirements set to the drive and motor, enabling cost-
e�cient sizing without compromising reliability of the elevator systems in high-load
situations [48].
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5 Discussion

This chapter analyzes the possible factors a�ecting the presented annual consump-
tion estimates and projections and inspects the prospects of utilizing photovoltaics
and energy storages in elevator systems.

5.1 Analysis of annual consumption estimates

On the basis of the precision and reliability analyses, it can be stated that when the
errors have been compensated as described earlier, the readings from EMU devices
can be consired to be of good quality, while the Asema devices have some issues
with data logging in Building 1 a�ecting their results.

As a presumption, the method proposed by the ISO 25745 part two can be
considered to be the most accurate one, especially if used with the actual statistics
of elevator usage. Therefore, annual energy consumption by the ISO standard using
Elink data is seen as the most promising estimation method in general. However, the
VDI should not di�er greatly from the ISO estimate, as the elevators in Building 1
possessed no energy saving modes, and the largest di�erence could be considered to
derive from the used load factor k or kL. However, though the load factor of the ISO
standard has been calculated higher than the factor of the VDI, the ISO standard
suggests a slightly lower energy usage for travel, as was shown in Figure 16 in the
results section, though (5) reveals that the e�ect is the opposite. Therefore, probably
the most signi�cant factors a�ecting this di�erence are the use of the average travel
distance, %S, in (5) and the negligence of acceleration and door operation times
by (4). Furthermore, a trip based calculation method, such as suggested by the
ISO/DIS 25745-2, can easily be accepted according to the results which veri�ed
high correlation between travels and energy usage of elevators. Actually, the ISOElink

estimate would become even closer to the annual projection calculated from EMU
readings, if the amount of average daily travels in March is used instead of the nine-
month Elink data. The number of daily travels (weighted by �ve weekdays and two
weekend days) in March 2014 was 440, and with this �gure, the ISOElink estimate
would be 23 934 kWh, and the error would only be -2.1% instead of -8.7% presented
in Table 21. On the other hand, the VDIElink estimate would increase, worsening
its accuracy. Due to March having higher average daily travel value than derived
from the nine-month Elink data, the annual projections calculated on the basis of
the meter readings, especially of EMU devices, have yielded to somewhat higher
�gures than maybe the actual. This further proves the observation that most of the
estimates overshoot in the case of Building 1.

The VDI guideline generally presumes 365 similar days, and this concept is
viable, if the average number of trips per day is actually known. The VDI states
that this �gure is calculated by dividing the number of annual trips by 365. The
suggestion by the ISO/DIS 25745-2 to use 260 days with o�ce buildings may be
fundamentally incorrect, due to the nature of most elevators consuming standby
energies throughout nights and weekends. Nevertheless, the standard also allows
applying any number of days, but does not clearly state the calculation method
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for elevators that are mostly in standby on certain days of the week. This thesis
indicates that when applying the basic calculation methods given by the ISO/DIS
25745-2 standard, the use of 365 days can be seen proper, if the actual long-term
travel amount is known. On the other hand, the VDI guideline performed more
accurately with plain multiplier change from 365 to 260 than with known travel
amount, at least in the case of Building 1. In fact, the ISO and VDI estimates
with basic presumptions and the same amount of operating days yield to relatively
similar �gures.

The VDI and ISO methods also generally consider only one elevator. Thus,
Building 1 having four elevators results in overcapacity and a lower travel amount
value than standards suggest as default presumptions, as the amount of total travels
is divided between four units. Therefore, both the VDI and the ISO standard
with basic presumptions were noticed to overestimate the travel consumption, and,
consequently, the annual energy usage of the elevator group in Building 1.

EnerCal did not agree with the actual results of Building 1, though the amount
of trips per year was derived from Elink statistics and used also with the VDI and
ISO estimation methods. The VDI with Elink information and EnerCal delivered
similar estimates, which was expected, due to EnerCal utilizing certain calculations
provided by the VDI guideline. However, both estimates were further from the most
probable value than the ISO part two with Elink travel data.

The presented EMU Professional values may have been overcompensated on high
demand �ve-minute periods, as the accuracy was determined from a longer time
period containing more standby. Moreover, the Asema and Fluke projections seem
to support this overshoot. However, their projections are formed from less data,
and cannot be directly compared. Another aspect to be noted is that the error
compensation factors were presumed to be the same for each elevator, which may
have induced some additional error to the overall results of the EMU Professional
devices at the pilot measurement site, though this e�ect is expected to be minor.
Nevertheless, regardless of which metering system or estimate is utilized, the result
seems to be in line with �ndings of [31], reporting elevators in a large o�ce building
to consume 17 700 kWh a year.

5.2 Prospects of using solar power and energy storages with

elevators

Solar energy can clearly be used to supply most of the consumption needs of ele-
vators, especially during summer months, and the use of energy storages, mainly
batteries, would clearly emphasize that the solar energy is actually used by the el-
evator system. However, in the example calculation presented in Section 4.4.2, the
power generation of the PV system can never exceed the power demand of the entire
building. Thus, the use of energy storages can be questioned because even though
the utilization of the locally produced energy is more cost-e�cient than selling it
back to the grid and purchasing it later, a large o�ce building is generally always
capable of consuming the produced local energy instantly. However, line braking
and selling the energy back to the grid may require some additional equipment or
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contracts with the electricity distribution company.
The variation of solar irradiance throughout the year should be noted when

considering the use of solar energy. Furthermore, the solar panel generation model
introduced by this thesis presumed the sunshine hour ratio to be constant through
the year, though actually the ratio is clearly smaller in winter than in summer [44].
With regards to the calculation example and the graphs presented in Section 3.3.3,
this alternating ratio would mean that the production would increase in April�
August and decrease during other months.

Another local generation prospect rises from elevators with regenerative capa-
bilities. This thesis did not inspect the actual production pro�les of regenerative
elevator systems but they have been analyzed, for example in [45] and [49]. The
energy savings induced by a regenerative drive have been measured to be 30% by
[49]. However, the savings potential naturally varies between buildings, elevators,
and storage methods. Due to the nature of the power generation pro�le having
fast but high-power production peaks, the usefulness of a supercapacitor cannot be
neglected. However, electric vehicles (EVs), possessing similar braking capabilities
as an elevator, are commonly equipped only with batteries, and is seen as a more
proven technology. Moreover, as with photovoltaics, the building is typically more
than capable of utilizing the generated energy, diminishing the need for any energy
storage, presuming that line-braking has been enabled. Nevertheless, an integrated
supercapacitor [50] or battery system could bring added value to the elevator, mak-
ing it more appealing to customers.
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6 Conclusions

This chapter sums up the �ndings of this thesis and analyzes the overall situation
regarding the energy consumption of elevators. This thesis revealed many issues in
the actual energy consumption measuring process of elevators, discovered multiple
di�erencies in the current consumption models, and also achieved its main targets.

Elevator itself is a very energy e�cient device as the mass moved up also tends to
come down. The net electricity demand derives from a process where the energy is
turned into heat with the e�ect of brakings or losses in the mechanical and electrical
system. With regenerative drives, the energy generated in braking modes can be
utilized more e�ectively. It can be stored, transformed to another form of energy,
used inside of the building by another appliance demanding power at the same time,
or fed back to the grid, if the momentary generated power exceeds the concurrent
consumption of the building, a situation unlikely to occur. The �rst installation site
was measured for �ve weeks giving an annual electricity consumption projection of
24 440 kWh, which resembles the consumption of a standard Finnish detached house
using electric heating [51]. The determined electricity usage can be considered to be
small in comparison to the entire o�ce building, as the annual consumption ratio
of elevators was estimated to remain under two percent.

The energy consumption in standby is a major factor in the total energy con-
sumption of an elevator in the currently installed elevator stock. Previous studies
suggest that the excess lighting may account for most of this usage. Modern eleva-
tors are equipped with frequency converters and control systems that also contribute
to the standby demand and typically use energy saving LEDs. This means that the
ratio of lighting is decreased. However, the fact that a large share of the energy
consumption of an elevator goes to lighting in the currently installed stock of ele-
vators just ampli�es the importance of lighting as one of the major contributors to
the energy consumption of buildings [52]. The elevators measured during this thesis
were calculated to use 75% of the used electricity for travels and 25% for standby,
if the standby consumption is considered to be always present as the bottom layer
of usage. However, the energy usage of elevators almost directly correlates with its
travel pattern, as the correlation coe�cient between travel amount and consumption
was calculated to be 0.986 in Building 1.

During this thesis, the use of a heavy (40 to 50%) counterweight was questioned
in terms of energy e�ciency, as the actual cargo inside a large o�ce elevator rarely
exceeds even 25 percent of the nominal load. Especially in upward travels, elevators
without any regenerative properties cannot turn the excess mass into useful energy
other than heat, which is rarely utilized. Furthermore, downward trips require
more energy with a heavy counterweight and a low cargo. Nevertheless, the heavy
counterbalance allows lower nominal requirements for the motor and drive of the
elevator, as the peak resultative load can only be around half of the nominal load
of the elevator [48]. Therefore, the heavy counterbalance is justi�ed, enabling lower
starting currents and smaller, less expensive motor and drive units.

Determining the energy classes with di�erent usage characteristics did not seem
to cause issues to the energy classi�cation schemes, as they both produced almost
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equal energy classes to the elevator group in Building 1. However, more measuring
locations with various usage should be analyzed in the future to verify the resem-
blance of the two schemes in terms of classi�cation. Moreover, the results from
the �rst measuring site indicate that the upcoming ISO/DIS 25745-2 provides more
accurate results than the VDI 4707-1 guideline and the EnerCal tool but to con�rm
this and to �nd the actual di�erences, the research needs to be continued in multi-
ple locations with di�erent shaft heights, technology, and travel patterns. Currently,
this thesis indicates that the VDI and ISO methods provide highly similar travel
and standby ratios and daily energy usage estimates with their basic presumptions,
whereas EnerCal may use ratios that are almost reverse in its calculations. Nev-
ertheless, the annual energy consumption estimate provided by the EnerCal tool is
close to the VDI estimate with the same travel amount input, indicating that the
di�erence in the travel and standby ratios may merely derive from the de�nitions of
the operating states.

When comparing the functionality of the standards and the EnerCal tool, the
standards can quite easily be utilized by examining the building type, basic char-
acteristics of the elevator, and performing the reference cycle measurements; thus,
the standards provide energy consumption estimates and performance classi�cations
even without any knowledge of the used elevator technology. On the other hand,
EnerCal calculations can be performed without any measurements, if the elevator
type, characteristics, and features are known and a reasonable trip amount value is
used.

This thesis succeeded to create a low-end measuring system that could be left
at the measurement site for long-term measurements and also found a commercial
solution with similar functioning. The research will continue in the o�ce building
measured for this thesis, while the measuring campaign keeps expanding to other
locations utilizing both of the long-term metering systems. The following chapter
examines some plausible points of improvement, raises issues to be considered, and
suggests future areas of research.
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7 Recommendations

During this thesis, multiple bene�cial pieces of knowledge were attained of choosing
and installing measuring equipment and handling and interpreting the gathered
data. This chapter raises some of the key aspects of these observations and suggests
a policy to continue the measurement project and the research in general.

Two di�erent 3G routers were used during the pilot testing: a 3G Wi� router
with an integrated SIM card reader and a normal router with capability of using an
external 3G modem. The latter seemed to be more reliable and is equipped with
LAN ports, which are used by the EMU system. However, both of these routers
are designed to be used in a normal household and did not prove to be completely
robust in longer use. EMU Data Logger stores data even without any ethernet or
internet connection, but should a more stable remote monitoring system be needed,
an industrial router with multiple SIM card slots or self-booting capabilities may be
an alternative. In addition, at measurement sites located abroad, the functionality
of the remote monitoring systems needs to be checked. Most likely, in some areas,
the mobile connection calls for rethinking, i.e., the 3G modem needs to have correct
technologies and frequency areas, and the SIM card could be attained from a local
operator to prevent high transmission costs.

The developed cost-e�cient energy monitoring system presented good promise,
and the Asema devices should be further tested at a measuring site that also pos-
sesses regenerative properties. If the system is decided to be used in the measurement
campaign in the future, the overall realibility of the system should be improved. The
functioning of the router should not a�ect the data storing, and seemingly the only
way to secure the data logging was to develop the central unit to store the values.
This update will be performed on Asema E at the second installation location, which
is not discussed in this thesis, and the data backup will be gathered to a standard
memory card. If the central unit would also be cabable of opening the VPN con-
nection, introduced in Appendix B, the external laptop would become redundant,
decreasing the system costs. In the current situation, the requirement of external
knowhow in establishing suitable connections and installing proper software proved
to increase the costs of the developed metering system to a level close to the EMU
devices in measurement sites with only a few elevators.

With the above circumstances and options, the EMU devices are to be preferred
at most of the measurement locations, as they are also easier to use and more stable
than the developed system. At one-elevator locations, a TCP/IP version of the EMU
Professional should be installed, if its functioning is �rst veri�ed regarding the data
reading, as it will become far cheaper than acquiring the expensive data logger in
addition to the EMU Professional with M-Bus connectivity. The plausibility of
using TCP/IP version in systems with two or three elevators or escalators could
also be examined. EMU also provides another metering unit, EMU Allrounder,
whose capabilities in plain energy consumption monitoring should be investigated,
as Allrounder is more a�ordable for sites with simpler measurement requirements.
Surely, for basic kWh-energy monitoring with one-hour resolution, a number of cost-
friendly meters can be found on the market, but this thesis did not inspect these
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devices, as it was not in the scope of this thesis.
The error compensation methods, introduced in Section 4.2.1, should be revised

to determine whether they should be based on power or on energy. One-week ac-
curacy determination of energy may be a solution, though on the other hand, the
power method can be performed faster and perhaps even at the same time the in-
stallations are implemented. To achieve the most reliable determination of accuracy,
the determination process should include all the devices that are analyzed. How-
ever, moving the reference meter, for example Fluke 1760, to every device can be
burdensome or even impossible.

Though this thesis identi�ed several sources inducing large di�erences in the
estimates given by the standards, more thorough sensitivity analyses should be per-
formed for multiple variables to see their actual e�ect on the end-results. Also
statistical techniques, such as correlation of various variables and the consumption
pattern of the elevators, should be utilized in the data sets to deepen the under-
standing of the shape of the energy consumption pro�le.

The measuring campaign needs to be expanded greatly to achieve more data
and knowledge of the electricity usage behavior. A quali�ed electrician should be
contacted to perform the installation, in case the KONE group service people are not
capable or quali�ed to install the measuring equipment. The measurement campaign
can also be extented to escalators and moving walks, as the pilot tested devices can
also be used in them. The escalators can be considered as simple versions of elevators
in terms of modeling [53], [54], and they have a classi�cation standard [12] that is
planned to be published in 2015.
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A Laboratory testing equipment

This appendix introduces the laboratory equipment that was used in the testing
process of the used meters. Figure A1 presents the basic structure of the laboratory
equipment used to test the energy meters. The three-phase line supply voltage was
controlled by using a variable-voltage transformer and was typically set between 220
and 230 volts. A recently calibrated NORMA D6100 Power Analyzer attached to a
PC was used to gain reference values that were used in �nding out the accuracy of
the tested meters. Simple testing to examine the basic functionality of the meters
was executed with a three-phase resistor whose resistance could be varied. More
thorough testing was done with an induction motor assembly where the load could
be varied using a voltage-controlled frequency converter. The control voltage could
also be set so that the induction machine was driven as a generator, allowing the
testing of negative powers and exported energy. The operation of the meters under
capacitive situations was examined by adding a desirable amount of capacitance by
a three-phase adjustable capacitor.

Figure A1: Illustration of the laboratory setup used during testing of the energy
meters.
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B Designed low-end long-term metering setup

This appendix gives detailed information on the built long-term measurement setup.
The testing and building of the measurement device setup, for the purpose of this
research, was a joint e�ort by the meter manufacturer and the university. The
devices from Asema Electronics Ltd were reprogrammed and optimized for this
speci�c research.

B.1 Structure and working principle

This setup has one 3-phase power meter for each elevator. The Asema M2 power
meter measures the phase currents from all three phases and one phase voltage.
Therefore, the meter presumes that the magnitude of the phase voltages is the same
with 120-degree phase shifts between phases, adding some inaccuracy to the power
measurement reading of the phases whose voltages are not actually measured.

The basic working principle of the created low-end measuring system is shown
in Figure B1. The �gure demonstrates the use of radiowaves as the communication
method between the energy meters and the central controller, Asema E, and the
actual data is stored in a laptop computer acting as a data logger. The readings
can be remotely monitored or fetched from a work station via the SSH connection
through the server. A future area of development would be to modify the central
controller to act as the data logger with SSH functionality to prevent the use of an
external laptop.

Figure B1: Diagram of the basic functionality of the designed long-term metering
system.

The system is designed to work with a plug-in principle, i.e., the connections
are established automatically as the meters, central controller, 3G modem, and the
laptop are switched on. Establishing a connection to a device behind a mobile
network is a challenging task. This issue has been solved by setting the laptop to
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contact the server with �xed IP address to open a Virtual Private Network (VPN)
between the laptop and the server. The user of a regular work station can then
gather the wanted information from the data logger using basic SSH commands.

B.2 Testing the accuracy

The accuracy of the device was tested on multiple levels. The values given by the
tested meters, later denoted as M1, M2, M3, and M4, were compared with the
reference value measured by NORMA D6100 power analyzer, which was considered
to be without error. The readings from the NORMA D6100 and meters M1 to M4
were stored to separate �les at di�erent stages of testing to achieve a high amount
of comparable results.

The last tests with the �nal product focused on the energy readings, and the next
part of this appendix introduces the contents and the results of these tests. During
the test, the meters had current clamps capable of measuring electric current up to
80 amperes. Clamps with nominal current of 150 A were not tested as extensively
at the laboratory, but their performance was planned to be analyzed at the second
measurement site.

B.2.1 Inductive test

The inductive test was performed with the inductive motor setup, and the capacitive
load was adjusted to zero. Figure B2 shows the used repeating active and reactive
power cycle achieved with a sinusoidal waveform set for the arbitrary waveform
generator introduced in Appendix A. It can be seen that there was some �uctuation
in the reactive power, but it remained constantly around 550 var. The active power,
instead, was set to cycle between negative and positive values. Therefore, one aspect
of the test was to see the performance of the meters with the varying power sign
commonly found in, for example, elevators equipped with a regenerative unit.

Figure B2: Active and reactive power cycles used during the inductive test.
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The following error percentages, shown in Table B1, were derived from the test
that lasted over 17 hours. These can be considered to represent the accuracy of
the device in the laboratory environment with the speci�c test setup. The most
signi�cant value to examine in the table is the error in the sum of the phase registers,
as that reveals the total error introduced by the measurement setup. Commonly,
issues in the phase accuracy can be seen to even out in the calculation of the total
energy. Large variation between the �rst and the second phase in generated energy
registers may derive from the calibration or from some yet unknown programming
issue. This issue was not considered to be major because the elevators at the pilot
installation site were said not to have regenerative capabilities, and the calibration
could be performed later.

Table B1: Error percentages of di�erent energy registers in the tested meters with
inductive load.

Meter Phase 1
error%

Phase 2
error%

Phase 3
error%

Phase sum
error%

Consumed energy
M1 6.6 -9.9 -1.9 -1.9
M2 10.8 -5.7 1.5 2
M3 13.9 -0.6 1.0 4.6
M4 5.6 -5.8 0.2 -0.2

Generated energy
M1 -30.6 43.6 -5.3 0.5
M2 -33.6 42.9 -7.1 -1.5
M3 -52.5 0.5 -5.8 -21.6
M4 -26.7 40.0 3.6 0.7

Inductive energy
M1 2.6 -6.0 -1.6 -1.7
M2 0.9 0.5 -0.6 0.3
M3 -2.1 -0.6 -0.2 -1.0
M4 2.9 0.7 1.3 1.6

Meter number three seems to have a clear problem with calibration, as the pos-
itive and especially the negative active energy register has a signi�cant error in
phase 1 that also contributes to the sum of the phases. Despite of this, the meter
was decided to be installed, as the calibration parameters could be changed at site
if needed. Moreover, the capacitive test, introduced in the next section, for M3
was clearly successful, signifying that the calibration process cannot be considered
necessarily so straightforward. Common calibration issues are explained, e.g., in
[55].

One aspect examined during the test was the development of the error in time.
The error should not increase percentagewise, as this would mean exponential in-
crease in the absolute error. Figure B3 depicts the positive energy register values of
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M1 against the values recorded by the PC connected to the NORMA D6100 within
one hour of the inductive test run. The �gure con�rms that the absolute errors

Figure B3: Positive energy register values of M1 against the reference meter of the
laboratory within an example hour.

seem to be constant or slowly linearly changing, and this is also supported by the
the �ndings of Table B1.

B.2.2 Capacitive test

In capacitive test, a suitable amount of capacitance was added to achieve the power
cycles shown in Figure B4. The �gure reveals that the reactive power remained on
the negative side, i.e., all the reactive energy was capacitive in nature. The active
power was cycling with a higher amplitude than in the inductive test, but the shape
of the waveform remained the same.

Table B2 presents the calculated accuracies of the tested meters in a four-hour
test. During this test, the M3 meter was set to measure the same equipment as
the rest of the meters, but it had seven times the current compared to the others,
and this was achieved with looping the conductor seven times around the clamps.
The higher current enables more accurate determination between capacitive and
inductive current, and this clearly shows in the table of accuracies. Despite of
this, even M3 still had also recorded a considerable amount of inductive energy,
and the sum of capacitive and inductive energy registers was clearly higher than it
should have been. Nevertheless, as the primary task was to develop a two-way kWh
meter, this issue was not further tackled in this thesis. Furthermore, the consumed
and generated energy registers were discovered to work su�ciently enough with
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Figure B4: Active and reactive power cycles used during the capacitive test.

capacitive loads, and prior to the �rst installation, elevators were presumed to be
only slightly capacitive during standby, and highly inductive during travel [56].

Table B2: Error percentages of di�erent energy registers in the tested meters with
capacitive load.

Meter Phase 1
error%

Phase 2
error%

Phase 3
error%

Phase sum
error%

Consumed energy
M1 -18.7 -2.8 -7.0 -9.3
M2 -15.8 0.3 -3.4 -6.1
M3 -21.7 -0.9 -2.4 -8.0
M4 -18.2 -0.1 -3.5 -7.0

Generated energy
M1 7.8 13.3 4.1 8.4
M2 9.9 18.1 3.8 10.6
M3 4.4 1.7 1.3 2.6
M4 9.5 15.1 7.5 10.6

Capacitive energy
M1 -38.2 -68.8 -60.9 -56.2
M2 -37.0 -45.3 -61.5 -47.5
M3 1.7 2.7 -5.8 -2.2
M4 -52.5 -63.4 -65.7 -60.4

In theory, the �rst phase should, on average, be the most accurate one, as the
other phase voltages are not actually measured. However, as Table B2 revealed,
the consumed energy registers of phase one had considerably more error than other
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phases, and this error remained in the overall sum of the phases. This is most likely
a calibrational issue, as the devices were calibrated with an inductive load. Further-
more, the laboratory test could not emulate an actual elevator environment, and
the power peaks were signi�cantly lower than in actual elevator systems. Therefore,
the success of the pilot testing at the �rst installation site was considered to be the
de�ning factor for the use of the developed measuring system in the future.


	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	List of figures
	List of tables
	Symbols and abbreviations
	Introduction
	Target of study
	Scope of study
	Structure of the thesis

	Background
	Energy consumption models of elevators
	ISO 25745-1 standard
	VDI 4707-1 guideline
	ISO/DIS 25745-2 standard
	KONE EnerCal tool

	Previous consumption reports and studies on elevators

	Materials and methods
	Measuring technology
	Challenges in measuring the energy consumption of elevators
	Short-term measurements
	Long-term measurements

	Measurement sites
	Comparison material
	Usage statistics of elevators
	Energy consumption of pilot building
	Photovoltaic power generation model


	Results
	Short-term measuring device readings
	Reference cycle measurement
	Simple projection of annual consumption

	Long-term measurements
	Reliability analysis of long-term consumption results
	Consumption over examining period
	Energy demand pattern

	Projections and estimates provided by consumption models
	Comparing the energy profiles of buildings, elevators, and solar panels
	Energy consumption of buildings against elevator data
	Solar power production against elevator data

	Impact of traffic on the energy usage of elevators

	Discussion
	Analysis of annual consumption estimates
	Prospects of using solar power and energy storages with elevators

	Conclusions
	Recommendations
	References
	Appendix Laboratory testing equipment
	Appendix Designed low-end long-term metering setup 
	Structure and working principle
	Testing the accuracy
	Inductive test
	Capacitive test



