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Data centers are known to consume substantial amounts of energy. Together
with the rising cost of energy, this has created a major concern. Server farms,
being integral parts of data centers, waste energy while they are idle. Turning
idle servers off may appear to eliminate this wastage. However, turning the server
back on at the arrival of the next service request incurs a setup cost in the form
of additional delays and energy consumption. Thus, a careful analysis is required
to come up with the optimal server control policy.

In this thesis, a queueing theoretic analysis of single server systems is carried out
to determine optimal server control policies. Additionally, multiple server systems
are also be studied through numerical methods. In this case, the task assignment
policies that define how incoming requests are routed among the servers are also
studied along with the control policies.

The results of this study illustrate that the optimal control policy for a single
server system leaves an idle server on or switches it off immediately when there is
no request to serve. This is a general result that does not depend on service, setup
and idling time distributions. However, in the case of multiserver systems, there
is a plethora of choices for task assignment and server control policies. Our study
indicates that the combination of the Join the Shortest Queue and Most Recently
Busy task assignment policies can save up to 30% of the system cost if the control
policy applied can wait for a specific amount of time before turning a server off.
Moreover, a similar gain can be achieved by the simple Join the Shortest Queue
task assignment policy when it is used along with a control policy that leaves an
optimized number of servers on while switching the remaining servers off when
they become idle.
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1 Introduction
Due to the ever growing demand for data storage and processing services, data
centers have become a vital element of a typical ICT system. Technology giants
like Google operate their own data centers, while small-scale businesses usually out-
source their data services to data center providers. In either case, there is a demand
for an almost instantaneous access to information stored in the data centers. This re-
sults in high performance and availability requirements on the data center providers.
To meet these requirements, the data centers should usually be over-dimensioned for
robustness and should also be equipped with backup power. Due to these factors,
data centers consume a considerable amount of energy which is estimated to be 1.5%
of the global electricity consumption [25]. This has created a global concern and
several measures were suggested to tackle it, see [37, 1].

Supporting facilities, such as the cooling and lighting systems, are known to con-
sume a large portion of the electrical energy. Hence, several innovative efforts, such
as those applied in [39, 12], are being widely considered. However, this thesis will
focus on the energy efficiency of the cluster of servers contained in the data center.
These clusters are commonly referred to as server farms because they are housed
in the same location with the ability to process service requests in a coordinated
manner.

Server farms of a typical data center consume peak energy while they are serving
requests and 60% of this peak power when idle [9]. Hence, a considerable amount
of energy is wasted during this idle period. This condition is aggravated by the fact
that the server farms are usually over-dimensioned. To tackle this problem, several
server control policies have been suggested. A server control policy considers a cer-
tain set of metrics out of which a cost function is defined for an optimization task.
The most commonly used metrics are the mean delay experienced by a request and
the mean energy consumed to serve it. Alternatively, the mean number of requests
in the system queue and the mean energy consumption per unit of time metrics can
also be used. The mean rate at which the servers change their energy states is also
another important metric.

In this thesis, control policies that utilize the aforementioned metrics will be
studied from a queueing theoretic perspective. In the following discussion the control
policy to be studied will be introduced and the task will be defined more precisely.

1.1 Problem Formulation

Once turned on, a traditional single server queueing system would stay idle if there
is no job to serve without regard to energy wasted in this state. A tempting solution
for this problem would be to switch a server off whenever it becomes idle and to
turn it back on when the next job arrives. Although this simple approach may solve
the problem in some cases, it can as well end up wasting more energy. This is due to
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the fact that turning a server off introduces additional energy states to the system
which makes the problem more complicated. Hence, the system needs to be modeled
and studied carefully, to ensure energy efficiency.

1.1.1 System Model

As already mentioned, turning the server off results in additional states. That is,
while turned off, a server needs to be setup before it can start to serve requests.
Altogether, the system will have four energy states, off, setup, busy and idle. Each
state is characterized by the associated energy consumption level and the time it
takes to transition to the next possible state. In the off state the system does not
consume energy but it needs to be setup before it starts serving requests. The setup
state is a transient state between the off and busy states with its own energy con-
sumption level. Jobs that arrive while the system is in this state need to wait until
setup is finished in addition to whatever delay might be introduced by the service
discipline.

In the busy state, the queued jobs are served according to the chosen service
discipline, consuming the highest level of energy in the process. Once there are no
more jobs to serve, there are three main options for choosing the next possible state.
We might choose to turn the server off immediately after the last job leaves the
system, hence eliminating the idle state completely, or to leave it idle until the next
job arrives. In between these two extremes there exists one other option - letting
the server idle for some time and then turn it off if no job arrives. The transition
from idle to busy state is immediate while that of the off state is not, as already
discussed. A server control policy is responsible for choosing between these options
and applying it on the system.

1.1.2 Server Control Policy

A server control policy, also known as server management policy, is a set of rules that
define the normal operation of the system. It can be designed to address a specific
requirement such as load balancing or maximizing throughput. A control policy
defines a cost function out of relevant system metrics and tries to minimize this cost
function by varying system parameters. In this thesis, control policies that target
energy efficiency of server farms will be studied. Therefore, the obvious choices as
system metrics are the mean delay experienced by a job and the mean energy con-
sumed in serving it. In addition, the mean rate at which the server changes state
can also be of interest. Utilizing these metrics, the goal of a control policy is to come
up with an operation rule that results in the optimal combination of performance
and energy consumption.

Control policies can be categorized into three major groups based on what they
emphasize to achieve.



Idling control policies: These policies leave the server idle while it becomes idle,
allowing energy to be wasted in this state but maximizing performance.

Turn-off control policies: These sets of policies try to determine the right time
to turn an idle server off so as to balance between the energy and delay costs.

Turn-on control policies: These sets of control policies emphasize on determining
the right time to turn a server on. One possible rule under this policy is allowing a
certain number of jobs to accumulate before turning the server on. This approach
will have a negative effect on the performance by increasing the mean delay but it
might reduce the mean energy consumed.

There is no straightforward rule in choosing between these policies. Even the
idling control policy, which leaves a server idle while it is not processing jobs, might
out-perform the others under some conditions. Generally, system parameters such
as the load, the time it takes to setup a server, the relative energy consumption of
the idle and setup states and the proportion of time spent in these states are the
deciding factors on which policy is optimal.

In this thesis, a hybrid of these policies is applied on a single server system and
the resulting cost function is optimized. Starting from the off state the server waits
for a threshold number of jobs to accumulate before it is setup. Once setting up is
finished, the queued jobs will be served according to the FIFO service discipline and
on the departure of the last job, the server will go into the idle state. The length of
this idle state is left for optimization and might range from 0 to ∞. If we choose to
turn the server off, then the same cycle repeats starting from the off state.

1.1.3 Task Assignment Policies

In practice, data centers contain multiple servers. With each server usually having its
own queue, a dispatching decision needs to be made in addition to the control policies
discussed above. The task assignment policy makes these decisions by routing an
incoming job to one of the available queues based on a predefined rule.

Figure 1 illustrates the model used in this thesis. The random routing, most
recently busy (MRB) and join shortest queue (JSQ) task assignment policies will be
studied from the energy efficiency perspective.

1.2 Outline of the thesis

In Section 2, queueing theoretic and technological backgrounds relevant to the task
at hand will be summarized while Section 3 will cover a review of the state-of-the-art
solutions proposed for energy efficient server farms. With the problem formulated,
Section 4 gives a detailed analysis of the single server system followed by the multi-
server system discussion in Section 5. Section 6 will provide a numerical illustration
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Task assignment 

policy  

Server control 

policy  

Arrivals 

Figure 1: A task assignment policy, modeled by the red square, routs arriving jobs
according to predefined set of rules. Once the job is in one of the queues, it will be
handled by the respective server control policy and service discipline.

of the system, and Section 7 will conclude the thesis.
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2 Background
The basic technological and theoretical knowledge required for this thesis will be
provided in this section.

2.1 Technological background

A high level discussion of the technological aspects of server farms would provide a
better intuition ahead of the stochastic analysis of the energy-aware control policies.
For this reason, data center architectures and system level energy-aware designs that
are relevant to our model will be summarized in the subsequent discussion.

2.1.1 Data Center Architecture

A data center is composed of several networked ICT equipments for data transmis-
sion, processing and storage. Server farms, also known as server clusters, lying at
the heart of this network are responsible for processing incoming service requests. A
server cluster is defined as “a parallel or distributed system that consists of a collec-
tion of interconnected whole computers, that is utilized as a single unified computing
resource´´ in [32]. Server clusters are known to enhance the availability, scalability
and manageability of the system [14]. Figure 2 illustrates the logical overview of a
simplified data center, with the main components briefly described below.

Gigabit Ethernet or Fiber-channel switches 

Data storage 

Server farm 

Public Interface (Front End) 

Private Network of the server farm 

Storage Path  

Figure 2: Data Center: A simplified architecture

Front End: This component provides external access to/from the server farm. It
is an interface for inbound and outbound traffic.
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Server(s): Service requests are handled in these servers. Depending on the data
center design, they may or may not have a direct interface to the public network.

Data Storage: This is a common file system where data is stored which is con-
nected to servers by a high speed storage path.

Storage Path: This component is responsible for providing high speed connection
between the common storage and the servers. It can either be implemented using a
gigabit ethernet or fiber-channel.

This discussion is only an overview of a simple data center architecture. More
detailed explanation can be found in [4, 13, 14].

2.1.2 Energy-aware system level designs

Modern computing systems are designed to couple energy awareness with high per-
formance and server farms are not any different. In the succeeding discussion, an
overview of the most common models and engineering efforts that address this issue
will be discussed at system level.

Model

Power dissipation in a typical processor can take on two forms: dynamic and leakage
power. Dynamic power is consumed due to the normal operation of the processor
which needs the switching of gates which in turn needs a power source. On the other
hand, leakage power is caused by leakage current at a transistor level and accounts
for about 20− 30% of the total power consumed [23]. The stochastic models in this
thesis are targetted at reducing the dynamic power, more detailed studies about
leakage power can be found in [23].

Dynamic power consumption, as discussed in [23], can be modeled by

P = CL · V 2 · A · f, (1)

where CL is the load capacitance, V is the supply voltage required for normal oper-
ation and A is the measure of circuit switches per clock cycle. In other words, it is a
fraction between 0 and 1 that measures how active a circuit component is. Finally, f
denotes the clock frequency which dictates the speed at which the processor operates.

At first glance, based on (1), the dynamic power might seem to have a quadratic
relationship with voltage (V ) and a linear relationship with frequency (f). However,
the clock frequency is also proportional to the supply voltage. Thus, for a processor
running at speed s, the proportionality can be given by

P ∝ sα,



7

where α represents the degree of proportionality which usually is in the range (1, 3)
[42].

Energy-aware designs

A brief review of the main design techniques applied to reduce dynamic power con-
sumption is provided below.

Dynamic Voltage Scaling (DVS): DVS is a popular mechanism for reducing
energy consumption in modern designs [45, 38, 5, 23]. Under DVS, the processor of
a computing system does not always operate at full speed. When the task at hand
does not require peak performance, energy can be saved by reducing the supply
voltage, and hence reducing the clock frequency. Figure 3 shows a comparison of
a DVS system with one that processes its tasks at full speed. It can be seen that
the DVS system introduces additional delay to the completion time of a task, that
is the processor will need to work for additional time, tadd, in order to complete the
task. However, the energy reduction achieved by reducing the voltage, Vmax−Vi, has
much more significance. The speed scaling control policy, which will be discussed in
Section 3, is implemented using the DVS technique.

Clock Gating: Circuit components require clock signals for their normal operation.
However, sending the clock signal to idle components will cause wastage of energy by
increasing the activity factor, A, as shown in (1). This mechanism aims at reducing
the power consumption by selectively sending the clock signal to only active circuit
components. This will result in an activity factor, A, of 0 at that particular time for
that unit which in turn saves power that would have been consumed by the unit as
given by (1). The gated control policy, a stochastic representation of this technique,
is going to be discussed in Section 3 and studies thereafter [23].

Other efforts: Many studies have been done aiming to achieve energy efficiency of
computing systems. Intra-task DVS, a mechanism that brings energy-awareness to
the application level is studied in [5] and references therein. Finally, a more complete
survey of energy-aware mechanisms, including efforts on memory organization and
input/output devices, can be found in [38].

2.2 Server farms: calculating energy consumption

As discussed in Section 1, a server in a server farm might have up to four energy
states depending on the control policy. These are off, setup, busy and idle. Obvi-
ously, the total energy consumption of the server farm is the sum of energy con-
sumptions at each state. If we are interested in computing the energy consumption
in an interval (0, T ), then the total energy consumption, E, would read as

E = Esetup + Ebusy + Eidle,
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Vmax 

V2 

V1 

t1 t1 t2 t2 

tadd tadd 

t 

V 

Task 1 Task 2 

(a) Supply voltage of a DVS system
varies depending on the workload

fmax 

f2 

f1 

t1 t1 t2 t2 

tadd tadd 

t 

f 

Task 1 Task 2 

(b) Clock frequency varies propor-
tionally to supply voltage

Figure 3: Operation of a DVS system as compared to a system that operates at peak
performance. The DVS sytem, shaded in red, achieves lower energy consumption
by introducing addtional delay to the completion time of a task.

with each term representing energy consumption at the respective state. Each term
in this calculation is a product of the power consumption at that state and the time
spent in the respective state. For example, if Psetup and Tsetup represent the power
consumption and the time spent in the setup state then, Esetup = TsetupPsetup.

However, one may also compute the total energy by first calculating the ex-
pected power consumption. If the proportion of time spent in each state is given by
πoff , πsetup, πbusy and πidle, then the total expected power consumption can be given
as

E[P ] = πsetupPsetup + πbusyPbusy + πidlePidle.

Then the mean energy consumption over the entire period will be

E[E] = E[P ]T = TsetupPsetup + TbusyPbusy + TidlePidle. (2)

In this thesis, the power consumption values of Psetup = 240W,Pbusy = 240W ,
Pidle = 150W and TSetup = 200s will be employed. These values are attained from
measurements on the Intel Xeon E5320 server as performed in [16]. In addition to
the actual value for the setup time, its relative value compared to the mean service
and idling times is of interest [16].

2.3 Theoretical background

Many phenomena have some degree of uncertainty associated with them. Some ex-
amples of stochastic phenomena in communications systems are: the number and
duration of call requests coming to a call center, the number of users being served
by a base transceiver station at a given time and the number of visits to a webpage.
Designing and analysis of such systems involves the modeling of the underlying phe-
nomena as stochastic processes.
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A stochastic process is a set of random variables, Xt, representing one aspect
of such a phenomenon, with the subscript t often referring to a time instant in the
evolution of the process [36]. A random variable, as its name indicates, is a variable
that can take on any value within a possible set of values, with each of these values
having a corresponding probability of occurrence. The set containing all the possible
values of the random variable is referred to as the state space of that random variable.

2.3.1 Markov processes

Let (t0, t1, t2, ..., tn, tn+1...) represent an increasing sequence of time values. A stochas-
tic process X is said to be a Markov process if the possible outcome of X(tn+1) solely
depends on X(tn), without regard to how the process reached there [36]. Formally,
a stochastic process is a Markov process if it satisfies the property

P{X(tn+1) = x|X(t0) = x0, X(t1) = x1, ..., X(tn) = xn} = P{X(tn+1) = x|X(tn) = xn},

where {x0, x1, · · · , xn+1} is a subset of the state space of the random variable X.

If any state is reachable from any other state, either directly or through other
states, the process is said to be an irreducible Markov process. Let πi(t) denote
the probability of being in state i at time t for such an irreducible Markov process.
Then, the set of values πi, i referring to any state in the state space, is said to be
the equilibrium distribution of the random variable X if

πi = lim
t→∞

πi(t).

Since these values are representing probabilities of being in the respective states, it
holds that∑

i

πi = 1. (3)

Moreover, for a system at equilibrium, the rate out of each state should be balanced
with the rate into that state which leads us to the global balance equations,∑

i

πjqji =
∑
i

πiqij, (4)

where qij denotes the transition rate from state i to j for all states i and j in the
state space. The equilibrium distribution of the system can be solved by combining
(3) and (4).

2.3.2 Birth-death processes

Simple queueing systems can often be represented by birth-death processes. Once ex-
ponential assumptions are taken, many stochastic processes fall into the birth-death
category. A Markov process X(t) defined on the state space {0, 1, ..., N,N + 1, ...}
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is said to be a birth-death process if state transition is possible only between two
adjacent states [36]. In other words qi,j = 0 for all non-neighboring states i and j.

Therefore, the state transition rate matrix, Q, of a birth-death process takes the
form

Q =


−q0,1 q0,1 0 0 . . .
q1,0 −(q1,0 + q1,2) q1,2 0 . . .
0 q2,1 −(q2,1 + q2,3) q2,3 . . .
...

...
...

...

 .

2.3.3 The M/M/1 queue

Being one of the simplest models in queueing theory, the M/M/1 queue provides
the basis for performance analysis and design of single server systems. The term
M/M/1 refers to Kendall’s notation of the system. In general, Kendall’s notation
of a queueing system is given by A/B/n/k. The first letter, A, represents the
distribution of the interarrival time while the second letter shows the service time
distribution. The third and fourth letters represent the number of servers and the
total capacity of the system respectively [21].

In an M/M/1 system, jobs arrive according to a Poisson process. Hence, the in-
terarrival time is exponentially distributed. Moreover, service times are independent
with exponential distribution. This is also depicted by the letter ’M ’ in Kendall’s
notation, which stands for ’Memoryless’ [21]. Figure 4 illustrates a Markov process
representing an M/M/1 queue with arrival rate λ and service rate µ.

0 1 2 

  µ   µ    µ 

 

   λ 

 

   λ 

 

   λ 

Figure 4: An M/M/1 queue with service rate µ and arrival rate λ.

Steady state analysis of the system yields the basic, yet very important, expres-
sion for the expected number of jobs in the system as

E[N ] =
ρ

1− ρ
,

where the load ρ = λ/µ. Using Little’s formula, the expected time a job spends in
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the system, E[T ], is given as

E[T ] =
E[N ]

λ
=

1

µ− λ
.

2.3.4 The M/G/1 queue

The M/G/1 queue is a basic part of queueing theory in which jobs arrive to the
single server system according to a Poisson process with rate λ. Service times are
independent and can assume any distribution with mean 1/µ. Throughout this
thesis the service discipline is assumed to be FIFO, hence relevant results for the
M/G/1− FIFO system will be summarized in the following discussion.

The performance of an M/G/1 cannot be studied by a simple Markov process,
as was the case withM/M/1 queue. This is due to the fact that the Markov process
representing the number of jobs in the system needs to keep track of the remaining
service time of the job in service as well. This turns out to be a two dimensional
Markov process which is not simple to analyze. For this reason, the study of an
M/G/1 queue often involves the analysis of the imbedded Markov chain [24].

The expected waiting time of a job before it starts being served, E[W ], can be
given by

E[W ] =
ρ

1− ρ
E[SR] (5)

where E[SR] is the mean remaining service time of the job in service, provided that
the test job finds the server busy on its arrival [21]. However, the mean remaining
service time is given by

E[SR] =
E[S2]

2E[S]
.

Using this in (5) will give the Pollaczek-Khinchin formula for he mean waiting time,

E[W ] =
λE[S2]

2(1− ρ)
.

Once the waiting time is determined, the mean total delay of a job, E[T ], can simply
be calculated as

E[T ] = E[W ] + E[S].

2.3.5 Renewal theory and regenerative processes

Queueing systems, such as the M/G/1 queue, are usually characterized by points in
time beyond which the behavior of the system can be studied without regard to how
it evolved to that point. Such time instants are referred to as regeneration points
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and the process being studied as regenerative process. The work cycle analysis per-
formed in this thesis applies such properties. Hence, regenerative processes and the
associated renewal theory will be discussed briefly.

Let {Xn, n = 1, 2, ...} be a sequence of random variables with Xn > 0. Further-
more, let the random variables be independent and identically distributed. If Sn
and N(t) represent the sum sequence and counter process of the random variable
X, that is, if

S0 = 0, Sn =
n∑
i=1

Xi and N(t) = sup{n : Sn ≤ t},

then the process N(t) is a renewal process [34, 21].

For example, let X represent the interarrival times in a Poisson arrival process
with rate λ shown in Figure 5. The interarrival times, Xn, are independent and
identically distributed. Hence, the process N(t) that keeps track of the number of
arrivals up to time t is a renewal process. Here, Sn would simply be the summation
of n interarrival times. Clearly, one can see that

N(t)

t
→ λ as t→∞ and

n

Sn
→ λ as n→∞.

See [34] for a complete discussion.

A random variable N is said to be the stopping time of the renewal sequence
{Xn, n = 1, 2, ...} if the event N = n does not depend on Xn+1, Xn+2, ˙... Taking
the arrival process in Figure 5 as an example, the stopping time related to t1 is
N(t1) + 1 = 3 and that of t2 is N(t2) + 1 = 4 [34]. This is intuitive since the event
that we have 3 arrivals does not depend on the arrival time of the 4th job.

Wald’s equation
Let {Xn, n = 1, 2, ...} be independent and identically distributed random variables
with finite mean. In addition, let N be a stopping time for the renewal process
X1, X2, ... then

E[
N∑
i=1

Xi] = E[N ] · E[X], (6)

where E[N ] <∞ [34, 21]. This result is known as Wald’s equation.

Regenerative processes
A stochastic process X(t) is said to be a regenerative process if its probabilistic
characteristics repeat accross time spans T1, T2, ... That is, the stochastic nature of
the random variable X during time period T1 is identical to, but does not depend
on, that of T2 and so on [34]. Here, we should note that the sequence {T1, T2, ...}
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Figure 5: Interarrival times as renewal process .

is a renewal process. The steady state expectation of the regenerative process X(t)
can be computed as

E[X] =
E[
∫ T

0
X(t)dt]

E[T ]

where E[T ] = E[T1] is the expected length of the renewal cycle.
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3 Literature review
In the past few years, the optimization problem between performance and energy in
server farms has gained the attention of the research community and in this section
a brief summary of the proposed solutions will be provided. There are a number
of suggested design considerations and server farm management schemes so we will
categorize them according to the models they utilize, namely:

• Single server models with a central queue,

• Multiple server models with a central queue and

• Multiple server models with parallel queues and task assignment policies.

But before starting the review on the models, let us discuss the cost models involved
and the metrics utilized in these models.

3.1 Cost Models

Obviously, the task is an optimization problem involving a trade-off between energy
and performance. For this, one should choose a cost model for the system. The
goal of the task will be to determine the optimal server control policy based on the
chosen cost model. Hence we need to define metrics with respect to which the op-
timization is going to be done. Different cost models with their associated metrics
are discussed below.

Weighted sum cost function

As its name indicates, weighted sum of delay and energy consumption metrics is
used in this cost model, see [20, 8, 6, 42, 3, 31, 27]. The cost function is given as

E[T ] +
E[E]

β
, (7)

where E[T ] is the mean delay of a job, E[E] is the average energy consumed per job
and β is a weighting parameter that can be manipulated according to our need to
emphasize the importance of delay or energy1.

Energy-Delay Product (EDP)

The Energy-Delay Product (EDP) is another cost function proposed in [23, 16].
The product of mean power consumption, E[P ], and mean delay is used in this cost
function. Here, the main concern over not using the weighted sum cost function is
that although it captures changes in magnitude of the metrics, it does not capture

1It is easy to see that this equation can readily be converted to contain mean number of jobs
instead of mean delay by utilizing Little’s Formula, E[N ] = λE[T ]. In this case, the second term
will become mean energy consumption per unit of time (power), E[P ] = λE[E].
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the relative change of the magnitudes. For example, mean response time improve-
ment from 10s to 5s and from 1000s to 995s are regarded equally by the weighted
sum objective function. However, it is intuitively clear that the former has a more
significant improvement. One can also use the mean energy consumption instead of
power by applying the simple relationship E[P ] = λE[E]. If we choose to use the
mean power consumption instead, the cost function will read as,

E[P ]E[T ]. (8)

Hybrid cost function

An objective function that can be seen as a hybrid of the above two is also proposed
in [28]. This approach has an additional metric to the two already discussed. This
is the expected rate at which a server switches between two energy states, more
specifically from a higher energy state to a lower one. The objective function is a
sum of weigthed terms with each of them containing a product of mean delay, mean
energy consumption and mean switching rate,

M∑
i=1

βiE[T ]wT,iE[E]wE,iE[C]−ws,i , (9)

where βi, wT,i, wE,i and ws,i are the weighting factors for a cost function with M
terms. The mean switching rate is just the inverse of the mean time it takes a
server to toggle between the lowest and highest energy states, which simply is the
mean busy cycle of the system. Thus, if we denote the mean busy cycle by E[C],
then the mean switching rate will be 1/E[C]. The cost function in (9) can easily
be converted into (7) or (8) by adjusting the choice of βi, wT,i, wE,i and ws,i. For
example, if we set β1 = 1, wT,1 = 1, β2 = 1/β and wE,2 = 1 while leaving the
rest of the weights to be zero, we will have the weighted sum cost function given
in (7). On the other hand, if we set β1 = λ, wT,1 = 1, wE,1 = 1 and set all the
rest weight parameters to zero, we will get a product form cost function given in (8).

Constrained optimization

In some practical scenario such as CPU scheduling of an operating system or any
QoS service, the metrics under consideration might only be able to take on val-
ues limited within a specific interval. For example, there might be a service level
agreement (SLA) between a data center provider and its customer that specifies
the maximum acceptable delay. Depending on which metric is constrained, the op-
timization task can be divided into performance or energy constrained optimization.

Performance constrained optimization: In the above example, the data center
operator will try to minimize its energy costs while guaranteeing the delay limits
specified in the SLA, thus, falling into the performance constrained optimization
category. In [44, 2] a similar constrained optimization scenario is discussed where
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all jobs in the system have their own maximum acceptable delay. Under this cost
function, an arriving job is specified by three variables: its arrival time, the deadline
time before which the job must be processed fully and its service requirement which
can be expressed in terms of number of CPU cycles required, size of data to be
processed or by any other appropriate metric. Any feasible control policy shall
allocate enough processing resources to jobs such that they will at least be completed
before their deadline expires. In other words, the optimization of the control policy
is constrained by the performance requirement of the jobs being processed. To
illustrate this mathematically, let j be one of the jobs in the system at time t while
J(t) represents the current job being serviced. In addition, let aj and dj be the
arrival and deadline times for job j with the time dependent service rate µ(t). Then
a control policy S is feasible if∫ dj

aj

µ(t)1{J(t)=j}dt = Rj,

for all j, where Rj is resource requirement of job j. In this case, the objective of
the constrained optimization is to find a control policy among the feasible set which
minimizes the mean energy consumption of the system.

Energy constrained optimization: Contrary to the above discussion, one might
need to determine the best performance possible for a certain energy budget. This
type of optimization might become more practical since most systems do not set
delay requirement at job level [33]. Energy constrained optimization has recently
gained more attention due to the popularity of battery-powered systems in which
available energy is limited, see [11, 33].

Pareto optimality

Let vector C contain all possible combinations of energy and delay metrics incurred
by a family of server management policies. That is, C contains all possible vectors c
such that c = [cE, cT ], where cE and cT are the energy and delay metrics that define
the vector c . Then a vector p ∈ C is said to be Pareto optimal if there does not
exist another vector q ∈ C that satisfies one of the following two conditions

• qE ≤ pE and qT < pT or

• qT ≤ pT and qE < pE

In other words, a certain delay and energy combination is said to be Pareto optimal
if it is not possible to further reduce either delay or the energy consumption without
causing the other one to increase [10]. A set of such Pareto optimal points constitute
the Pareto frontier of the server management policy under study. Figure 6 illustrates
an ideal example of a Pareto optimality study of an energy aware server. The dark
points are Pareto optimal whereas the lightly shaded ones are not. The lightly
shaded points on the vertical and horizontal part of the red line are not optimal
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E[T]

E[E]

Figure 6: Pareto optimality for an energy aware server

because further reduction of either delay or energy consumption is possible. The
part of the red line that connects the dark points constitutes the Pareto frontier.

The Pareto optimality method will narrow down the choice of system parameter
values greatly by considering only those values that result in a point that is in the
Pareto frontier. Here the energy and delay metrics can also be weighted to take the
associated costs into consideration. The points obtained from the Pareto optimality
cost model can be used for further study of the system in combination with either
the weighted sum cost model or the EDP cost model discussed above.

3.2 Queuing Models

The energy-performance trade-off can be seen from different view points depending
on the number of servers involved. Even in a single server case, the task can get
quite complicated. One may think of to switch or not to switch the server off while
it becomes idle depending on several factors such as system load and energy budget.
In the case where we decide to switch the server off, we are faced with yet another
decision to make. Should we wait for some time interval before switching off or not?
If yes how should this interval be chosen? Now that the server is off, should we start
it up at the arrival of the first job in the next busy period or should we wait till a
certain amount of work accumulates? If yes how should we choose this amount of
work? A separate question can be, should we have multiple energy states between
on and off or not? In addition to these there can be speed scaling mechanism that
tries to minimize energy consumption by varying the speed at which the server runs
based on the amount of jobs at hand.

In the case of multiple servers, in addition to issues already mentioned above,
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one may also come up with lots of server management questions, such as should we
turn all the servers off if they are all idle or should we leave some of them idle. The
question of using staggered bootup can also be asked here. Staggered bootup is a
mechanism in which servers are restricted to bootup one by one in order to prevent
huge amounts of power being drawn in case of bursty arrivals. That is, a job that
arrives to a system that uses staggered bootup will first look for an idle server, if it
does not find one it will look for an off server and start it up only if there is no other
server in the bootup state. If there is already a server in the bootup state, then the
job should wait in the queue.

Several models are proposed, in the literature, in an attempt to determine the
optimal control policies under different scenarios. In the following section these
models will be summarized.

3.2.1 Single Server Models

Here we are going to discuss prior studies that considered the energy-performance
trade-off utilizing a single server with a central queue model. Mainly, three control
policies have drawn the attention of researchers in the single server case. These are,

• Optimized static service speed

• Gated static speed

• Dynamic speed scaling

Optimized static service speed

This is the simplest of the three control policies. Under this policy, a server runs on
a static speed and is never turned off even if it is idle. Hence, it will only have the
busy and idle states. However, its speed is optimized taking both performance and
energy consumption into consideration. If the offered traffic can be modeled by a
Poisson process, then the mean delay is given by that of a standard M/G/1 system,
E[T ] = E[TM/G/1]. On the other hand, the mean power consumption will simply be

E[P ] = ρPbusy + (1− ρ)Pidle,

where ρ is the fraction of time the server is busy and πbusy, πidle are the respective
power consumptions in the idle and busy states. With the mean values of delay
and energy metrics determined, the optimization can be done by taking the service
speed that minimizes the cost function of our choice. A case of the weighted sum
cost function can be found in [42, 27].

Gated static speed

This control policy tries to reduce energy consumption by turning the server off
when there is no job to serve. Hence, the server will have three states: busy, off
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and setup. In the busy state jobs will be served with an optimized static speed
and when there are no more jobs to serve, the server will instantly be turned off
changing its state to off. The time it takes to turn the server off and the associated
energy consumptions are assumed to be negligible. However, on the arrival of the
first job the server will go into the setup state. Once setup is completed, the system
state will once again change to busy in which the queued jobs will be serviced. Even
though turning an idle server off might seem to reduce the energy cost of the server,
the system should be studied in more detail before drawing any conclusion. This is
due to the fact that turning the server on incurs an additional cost known as the
setup cost, see [18, 19, 17, 27]. The setup cost may have two components, energy
consumed to turn the server on and the additional delay experienced by the jobs
that arrive while the server is in the setup state. Stochastic analysis of such a system
in [18, 19, 17, 27] showed that the total mean delay can be decomposed into the
mean delay of a standard M/G/1 system and the mean setup time of the server,
that is,

E[T ] = E[TM/G/1] +
1

γ
, (10)

for exponentially distributed setup time with mean 1/γ. In fact, this decomposition
property is a well known result from previous studies for a general system in [41]
and for vacation models in [26, 29, 30]. If the exponential assumption for setup time
is relaxed to a more general distribution, [41] showed that (10) will have the form

E[T ] = E[TM/G/1] +
E[Tsetup] + λ

2
E[T 2

setup]

1 + λE[Tsetup]
. (11)

The mean power consumption of this system will simply be

E[P ] = ρPbusy + πsetupPsetup,

where πsetup is the fraction of time the system spends in the setup state and Psetup

is the corresponding power consumption.

Dynamic speed scaling

The dynamic speed scaling control policy, as studied in [44, 45, 7, 42, 3, 27], adjusts
the speed of the server as a function of the number of jobs in the system. At
system level, this policy is implemented by the dynamic voltage scaling mechanism
discussed in Section 2. Due to the complex nature of this control policy, one needs
to first define the associated cost function and perform the optimization based on
that. That is, the aim will be to determine the optimal service speed in terms of
the minimum achievable average cost. For this, we need to determine a vector of
service rates µ = (µ1, µ2, ..., µn, ...) that result in the minimum achievable average
cost. The subscript n indicates the number of jobs in the system. Based on the
general form given in [20], the average cost of the system can be modeled using the
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weighted sum cost function as

∞∑
n=0

πn(µ)(n+
f(µn)

β
),

where πn(µ) is the steady state probability of having n jobs when the vector of ser-
vice rates µ is chosen and f(µn) represents the power required to run the server at
speed µn. This model assumes that there are no delay and power costs for changing
the processing speed of the server.

A comparison of the dynamic speed scaling and gated control policies in [42, 27]
illustrates that the gated system performs almost as good as the dynamically scaled
one for a sufficiently small setup time. However, even in the case of sufficiently small
setup time, system load may vary from the design load or the system might have to
handle bursty traffic. In such cases, the gated system will suffer from being either
wasteful or unstable depending on the volume of the actual load with respect to
the design load. On the contrary, dynamic speed scaling is oblivious to this kind
of load mis-estimation and it is also known to be robust as compared to its gated
counterpart.

In addition to this, the impact of speed scaling on fairness, robustness and op-
timality is studied in [3] for the Processor Sharing (PS) and Shortest Remaining
Processing Time (SRPT) disciplines. Therein, it is noted that it is impossible to
achieve all three objectives at the same time with the speed scaling scheme.

Gated system with turn-on threshold and idling time

In the above discussion of the system with a gated static speed, the aim of the control
policy was to determine the optimal static speed under the specified conditions.
However, the optimization task can also be seen from a different perspective. For
example, from the above studies it is not clear whether it pays off to switch the
server off at the instant it becomes idle or not. Once the server is off another thing
to consider can be, whether we should allow a certain number of jobs to accumulate
before turning the server on. To address these issues a system with an idling time
and turn-on threshold is studied in [28]. The hybrid cost function given in (9) is
used to study the behavior of the system with the following model assumptions:

• The server is assumed to have four different energy states: off, setup, busy and
idle with their respective mean energy consumptions Poff = 0, Psetup, Pbusy and
Pidle.

• The system has a threshold of k jobs up to which the server is not going to be
turned on if it has been off. We will refer to this value as Turn-on threshold
throughout the succeeding discussion.
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• As the kth job arrives and the server is off, then it will enter the setup state.
Once setting up the server is completed, it will go into the busy state, in which
state the queued jobs are served.

• When there is no job to serve the system goes to the idle state. Once the server
is in the idle state, it will stay idle for a certain time interval and goes to the off
state. This time interval will be named as idling time in the following sections.
This interval will initially be assumed to have exponential distribution with a
rate parameter α.

• Setup time is also exponentially distributed with a rate γ.

• Transition from high energy state to low energy state is assumed to be instan-
taneous.

Taking a weighted sum of mean delay, mean power consumption and mean
switching rate metrics as an objective function, an important result of [28] is that
once the server becomes idle, the optimal scheme will be to either turn it off imme-
diately (α → ∞) or to leave it idle (α = 0). We will study this and other related
results in more detail in the following sections.

3.2.2 Multiple server models with a central queue

In this section we will discuss policies related to multiple server models with a
central queue. We assume k homogeneous servers each of which has an exponentially
distributed service time with rate µ. The load on the system will be denoted by ρ
where 0 ≤ ρ < k. We also assume the setup time of the servers to be exponentially
distributed with rate γ. Figure 7 illustrates the model of the system for which we
will discuss policies proposed to study the energy-performance trade-off under the
given assumptions.

BUSY/IDLE policy

When this policy is applied, all the k servers will be either in the busy or idle
states, see [19, 16]. The BUSY/IDLE policy is the multiserver analogy of the static
service speed policy mentioned for the single server case. As one can expect, the
BUSY/IDLE policy gives the lower bound for delay but will waste energy while it is
in the idle state.This wastage will be worsened if the system is lightly loaded. This
policy can simply be modeled by a standard M/M/K system from which the mean
delay and energy consumption metrics can be computed accordingly [19].

BUSY/SLEEP policy

In this control policy, jobs are served in the busy state, and whenever a server finishes
serving a job and there are no more jobs in the queue it goes in to a sleep state
[16]. In this state, the energy consumption is considerably lower than that of the
idle state. However, the server needs to be setup on the arrival of new jobs before
it starts normal service.
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Figure 7: Multiserver system with central queue

BUSY/OFF policy

This policy can be regarded as the multi-server extension of the gated static speed
policy studied for the single server systems. Under this policy, only busy servers are
left on while all the idle ones are turned off instantly [19, 16, 15]. Hence, the servers
will be in one of the busy, off or setup states and they will be turned on/off indi-
vidually as opposed to another variant of this policy we will discuss shortly. When
a new job arrives, it turns a switched off server on if it finds one, otherwise it will
join the queue.

As already discussed earlier there will be a penalty for turning a server on in the
form of extra delay and energy consumption. For a small setup time or lighter load,
the BUSY/OFF policy outperforms the BUSY/IDLE policy while the advantage
is turned around in the case both setup time and load are higher [19]. A more
detailed explanation on how to choose between the BUSY/IDLE, BUSY/SLEEP
and BUSY/OFF policies is also presented in [16].

DELAYEDOFF policy

The DELAYEDOFF policy, as studied in [16, 15] is a hybrid of the BUSY/IDLE
and BUSY/OFF policies in which a server that becomes idle will wait for some time,
twait, before being turned off. If a job is routed to this server during its idling time,
its timer will be reset and the server will be working on the job. This policy can
further be enhanced by routing the arriving jobs to the most recently busy (MRB)
server [16].
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BUSY/IDLE(t) policy

This policy, as proposed in [19], can also be seen as a hybrid of the BUSY/IDLE and
BUSY/OFF policies. Under the BUSY/IDLE(t) policy we allow a certain number,
t, of the servers to be in idle or on state. Once this threshold is reached, the next
server that becomes idle is switched off. It is obvious that the mean delay, E[T ], will
decrease as t increases from 0 to k. However, the behavior of E[P ] needs a closer
observation as t goes from 0 to k. E[P ] is found to decrease until it reaches some
threshold value t∗ and increases afterwards (this observation is done for a load value
ρ = k/2). This can be reasoned as follows:

• For t = 0 the policy simply reduces to BUSY/OFF which is known to waste
energy by turning on and off if the load on the system is not low enough

• For t = k the policy becomes BUSY/IDLE which causes wastage of energy
while the servers are not processing jobs.

Hence, the optimal value t∗ gives the right amount of servers that consume the
lowest energy. Therefore, depending on the weighting factor for energy in our cost
function, the threshold can be chosen to be at t∗ or somewhere near it. With this
optimally choosen value of t, the BUSY/IDLE(t) policy is shown, in [19], to have
a superior performance (in terms of both delay and energy consumption) than the
BUSY/IDLE and BUSY/OFF policies.

BUSY/OFF with group turn-on policy

This is another variant of the BUSY/OFF policy studied in [35]. Contrary to the
BUSY/OFF policy, servers are turned on/off in groups. For this purpose, the servers
are divided into two groups: base-line and reserved. The base-line servers (kb) are
always on independent of the number of jobs in the system while the reserve servers
will only be turned on if number of jobs in the system queue reaches a certain thresh-
old, kon. Once turned on, the reserve servers will remain in this state as long as the
number of jobs in service does not drop below another threshold value koff .

Assuming other traffic parameters to be constant, optimization of this policy
can be done with respect to the {kb, kon, koff} parameters. Pareto optimization of
this policy is presented in [35] with the parameter values that result in the Pareto
optimal values being further studied. As can be expected, the number of base-
line servers, kb, required decreases as the waiting time increases. This is found to
happen in a batch-like character. That is, kb decreases across non regular intervals of
waiting time while it remains the same within these intervals. Another observation
is that the threshold for turning servers on, kb, shows a drastic increase within these
intervals. Even though optimization of the system parameters under this policy is
studied in [35], its performance compared to the other policies discussed above is
not known.
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BUSY/OFF with staggered setup policy

This is yet another variant of the BUSY/OFF policy in which only one server is
allowed to be in the setup state at a time [19, 17]. This policy can particularly
be helpful in systems where energy consumed in the setup state is considerably
large because it limits the number of servers that can be started at the same time.
Assuming that inter-arrival, service and setup times are exponentially distributed,
the decomposition result given in (10) for the mean delay of a single server system
still holds for this policy [18]. That is, for a multiserver controlled by this policy,

E[T ] = E[TM/M/k] +
1

γ
,

where 1/γ refers to the mean setup time. Furthermore, [17] shows that this decom-
position result provides a very good approximation on the total delay for anM/G/K
system with an exponentially distributed setup time. Although the staggered setup
mechanism may prevent excessive power from being drawn in the case of bursty
arrivals, this advantage is diminished by the extra delay introduced [19]. Therefore,
when both delay and energy metrics are considered in the system cost, this policy
is outperformed by the others mentioned above.

3.2.3 Multiple server models with parallel queues

Up to this point, we have considered server farms with a single central queue. How-
ever, in a more practical setup, jobs will be routed instantly to the servers where
they might have to queue independent of the queues of the other servers. Hence if
we have k servers, we will also have k parallel queues feeding to these servers. Now
we are faced with a new type of challenge, that is - how to assign an incoming job
to one of the k queues. Some of these task assignment policies as discussed in [21]
are:

• Random: As its name indicates, this policy assigns tasks to the k parallel
queues in a random fashion.

• Round Robin: Tasks are assigned to the queues sequentially. In other words,
an incoming task is assigned to the queue that has stayed the longest time
without taking a task.

• JSQ (Join Shortest Queue): An arriving task is routed to the queue that
has the fewest number of jobs.

• LWL (Least Work Left): A task is routed to a queue where it is supposed to
wait the least. Obviously, this works only for FIFO since knowing the amount
of workload at present does not necessarily determine the amount of delay
experienced by an arriving job.

• SITA (Size Interval Task Assignment): Each server takes care of jobs of
a certain size interval only, incoming tasks are assigned to the corresponding
server according to their size.
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JSQ, LWL and SITA are known to be optimal under certain conditions when
the metric in question is only performance, that is E[T ]. But little is known about
which one is optimal when both energy and performance should be considerded.
For example, in the case where servers can be turned OFF if they are idle, would it
benefit to use JSQ so that every arriving task that sees a server in the OFF state
would try to start the server up, or should we route it to a server that is already
serving customers and hence avoiding the energy penality of setting up the server
in the OFF state?

Similar task assignment problems are discussed in [31]. The model considerations
in this paper are multiple servers with their own queues, each of which has a constant
speed, s, and a constant power consumption at this speed. Servers are turned off
whenever they are idle. A weighted sum of power and mean number of jobs at
each server is used as an objective function2. The following dispatching policies are
discussed in this paper

• Myopic Policy: This policy tries to make dispatching decisions based only
on the instantaneous effect it will have on the cost function, ignoring the future
behavior of the system.

• FPI dispatcher: As opposed to the myopic policy, this policy takes the future
behaviour of the system into account. This is achieved by trying to minimize
the change in relative values caused by inserting the arriving customer to a
queue.

An important result in this work is that the advantage of the FPI dispatcher
over the myopic one is marginal.

2Note: [31] does not consider the setup delay introduced by turning a server off. However, [28]
takes the setup delay in to consideration, providing a brief study on the parallel servers model.
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4 Analysis of the turn-on threshold and idling time
policy

In this section the results of [28] will be discussed in more detail as an extension of
what is already discussed in Section 3. In addition, we will also extend the results
of this work by considering the idling time to reset every time the system comes out
of the idling state.

4.1 System Model

In the succeeding analysis, a single server system is considered, with jobs arriving
according to a Poisson process with rate λ. The server has four different operational
states, which are off, setup, busy and idle. These states are characterized by their
power consumption values Poff = 0, Psetup, Pbusy and Pidle. Once the system is in
the off state, k jobs need to be accumulated before the server is put in the setup
state. At the arrival of the kth job, the server will enter the setup state and at
the completion of setup, it will go into the busy state, in which the queued jobs
are served according to the FIFO discipline. When there are no jobs to serve, the
system goes into the idle state. Once the server is in the idle state, it will stay
idle for a certain time interval and if no job arrives within this interval it will be
turned off, thus, completing one cycle. This time interval will be named as idling
time in the following sections. Initially, all the service, setup and idling times are
assumed to have exponential distribution with E[S], 1/γ and 1/α being their re-
spective mean values. However, these assumptions will be relaxed later on. Finally,
transition from high energy state to low energy state is assumed to be instantaneous,
while the reverse will incur setting up cost in the form of delay and energy consumed.

4.1.1 Notation

Throughout this thesis, the composition notation introduced in [28] will be used to
denote the system being analyzed. This composition consists of two sets of Kendall’s
notation as {}◦{}. The first set is just the standard Kendall’s notation of the system
while the second set is introduced due to the possibility to turn off the server. For
example, {M/G/1} ◦ {M/G/k} would represent an M/G/1 system having an expo-
nentially distributed setup time with an idling time that has a general distribution
and a threshold of k jobs. Furthermore, service requests processed by the server will
be referred to as jobs.
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4.2 {M/M/1} ◦ {M/M/k} system

Due to the exponential assumptions, the system can be modeled as a Markov process
and analyzed to yield the following result for the mean delay metric:

E[T ] = E[T ]M/M/1 +
1

γ

α(λ+ kγ)

kαγ + αλ+ λγ
+

1

2λ

kαγ(k − 1)

kαγ + αλ+ λγ
, (12)

which reduces to (10) by letting the turn-on threshold k = 1 and α → ∞. On the
other hand, if we set α = 0 keeping k = 1, the mean delay of the system will reduce
to that of a standard M/M/1. Thus, for any other combination of α and γ, keeping
k = 1 will bound the delay as

E[TM/M/1] ≤ E[T ] ≤ E[TM/M/1] +
1

γ
.

The mean power consumption is then computed based on the limiting probabil-
ities as

E[P ] = ρPbusy +
(1− ρ)λ

kαγ + αλ+ λγ
(Pidleγ + Psetupα). (13)

In addition, the mean switching rate, which is just the inverse of the mean busy
cycle of the server E[C], is given as

E[C]−1 = (1− ρ)
αγλ

λγ + αλ+ αγk
. (14)

The mean delay and mean power consumption of the single server system are
given by (12) and (13) respectively. However, for a standard M/M/1 system the
mean power consumption is computed as E[PM/M/1] = ρPbusy + (1− ρ)Pidle. Substi-
tuting ρPbusy = E[PM/M/1]− (1− ρ)Pidle in (13) we will have,

E[P ] = E[PM/M/1] +
(1− ρ)α

kαγ + αλ+ λγ
(λPsetup − (λ+ kγ)Pidle). (15)

One can note that letting α = 0 will reduce the system to a standard M/M/1
system. However, when

Pidle >
λ

λ+ kγ
Psetup,

the second term of (15) will become negative which means we can save energy
by turning the server off while it is idle. In this case, letting α → ∞ will give the
maximum possible magnitude for the second term, which in turn gives the minimum
power consumption. For the case where

Pidle <
λ

λ+ kγ
Psetup,

the second term will become positive. Hence, the smallest possible value is when
α = 0 which will leave us with the power consumption of a standardM/M/1. In this
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case, turning the server off when it is idle will only increase the energy consumption
because the setup state consumes considerably more energy than the idle state.
Another observation which can be made from (13) is that when ρ → 1, the second
term will diminish which is an intuitive result since the system will rarely be idle
for a larger load. This also means it will rarely be in the setup state since it will not
be turned off in the first place.

4.2.1 Optimization with respect to the threshold and idling time values

With the closed form expressions already determined for E[T ], E[P ] and E[C−1]
optimization can be done using the cost function given in (9). Giving appropriate
values to the weights assigned to each metric, we can get a simple cost function such
as

f = E[T ] + βE[E] + β
′
E[C]−1. (16)

For example, setting WT,1 = 1 and WT,i = 0 for all the remaining terms will result
in the first term of (16) 3. As discussed earlier, the optimal values for α depend on
the sign of the second term in E[P ]. That is, for

Pidle <
λ

λ+ kγ
Psetup,

setting α = 0 will minimize our cost function given in (16). In this case, since the
server is never going to be switched off, there is no need to optimize with respect to
k. For the other case where

Pidle >
λ

λ+ kγ
Psetup,

while α = 0 will still give minimal results for E[T ] and E[C]−1, E[E] will suffer from
it. Hence performing a partial derivative of the cost function with respect to α gives
us

∂f

∂α
=

λ(λ+ kγ)

(kαγ + αλ+ λγ)2
+

γ2k(k − 1)

2(kαγ + αλ+ λγ)2
+

β

λ
((1− ρ)γ

Psetupλ− Pidle(λ+ kγ)

(kαγ + αλ+ λγ)2
) +

β
′
((1− ρ)

λ2γ2

(kαγ + αλ+ λγ)2
)

Parameter α exists only in the denominator of each term. So as long as the
partial derivative stays positive, that is as long as the inequality

β(1− ρ)Pidle(1 +
kγ

λ
)γ ≤ λ(λ+ kγ) + γ2k(k − 1)

2
+ β(1− ρ)γPsetup + β

′
(1− ρ)λ2γ2

3Note that in the second term, E[E] = E[P ]/λ.
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holds, α = 0 minimizes the cost function. If this inequality does not hold then
α→∞ will be the optimal choice.

To determine the optimal value for k, α→∞ is assumed and partial derivative
of the resulting cost function is done with respect to k which gives us the following
quadratic equation,

γ2

2λ
k2 + γk −

(
γ

2
+ (1− ρ)λγ(β

Psetup

λ
+ β′γ)

)
= 0.

Solving this quadratic equation will be the final task of the optimization with re-
spect to the idling time and turning-on threshold under the given assumptions.

The above analysis, based on the weighted sum cost function, showed that the
optimal policy for the {M/M/1}◦{M/M/k} system is to either switch the server off
immediately when it becomes idle or to leave it idle until the next job arrives. In [16]
a similar analysis showed that this result also holds for the Energy-Delay-Product
(EDP) cost function.

4.3 {M/G/1} ◦ {G/G/k} system

Up to this point, we have covered the analysis of the system based on the expo-
nential assumptions for service time, setup and idling times in order to model the
system as a Markov process. However, a more general approach is also introduced
in [28] by modeling the behavior of the system in the long run, which the authors
named the work-cycle analysis of the system. In this analysis there are three main
assumptions, which are: jobs arrive to the system as a Poisson process, queued jobs
are served according to the FIFO service discipline and the idling time will be drawn
once and will be remembered if a job arrives before it expires.

In this analysis, the service, setup and idling times are generally distributed.
Hence, the system can be modeled as an M/G/1 queue with generally distributed
setup and idling times and turn on threshold. While mean values for energy and
switching rate were obtained based on a general assumption in [28], exponentially
distributed setup time had to be assumed in the mean delay analysis of the system.
However, we will relax this assumption on setup time to general distributions in this
work.

In one complete work-cycle, the system goes through the off and setup states,
iterates between the busy and idle states and finally goes back to the off state. If
we represent the length of a single work-cycle by C, then obviously

C = Toff + Tsetup + Tbusy + Tidle,

where Toff , Tsetup, Tbusy and Tidle are random variables represeting time spent in the
respective states. Therefore, the mean length of the work cycle can be given as

E[C] = E[Toff ] + E[Tsetup] + E[Tbusy] + E[Tidle].
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It is clear that the mean time spent in each of the off, setup and idle states is

E[Toff ] =
k

λ
,

E[Tsetup] =
1

γ
,

E[Tidle] =
1

α
.

To determine the fraction of time spent in each state let us denote each proportion
as πoff , πsetup, πbusy and πidle. Then,

πoff = E[Toff ]
E[C]

=
k
λ

E[C]
,

πsetup = E[Tsetup]

E[C]
=

1
γ

E[C]
,

πidle = E[Tidle]
E[C]

=
1
α

E[C]
,

πbusy =
E[Tbusy]

E[C]
= ρ.

Adding up all the proportions we will have

ρ+
k
λ

E[C]
+

1
γ

E[C]
+

1
α

E[C]
= 1. (17)

Rearranging this we will get

E[C] =
λγ + αλ+ αγk

λαγ(1− ρ)
.

Once the mean length of the work cycle is determined, the mean delay of the
system can be studied using a heuristic treatment as discussed in [29] for M/G/1-
FIFO vacation models. The mean delay, E[T ], can be given as

E[T ] = E[S] + E[W ],

where S and W are the service and waiting time random variables. Furthermore,
let ω denote the state of the system at the time a test customer arrives. Obviously,
the set of possible values for ω is {off, setup, busy, idle}.

Hence, the waiting time of an arbitrary test job can be given as

W =

NW∑
i=1

Si + SR1{ω=busy} + (TRoff + Tsetup)1{ω=off} + TRsetup1{ω=setup}, (18)

where NW denotes the mean number of jobs in the queue waiting for service and
the superscript R denotes the remaining lifetime of the respective variable. For
example, SR is the remaining service time of the job in service at the arrival time of
the test job. In the steady state, indicator functions in (18) can be replaced by the



31

probabilities of being in the respective states. Clearly, these probabilities are just
the proportions discussed above. Therefore, the mean waiting time of the system is

E[W ] = E[NW ]E[S]+πbusyE[SR]+πoff(E[TRoff ]+E[Tsetup])+πsetupE[TRsetup]. (19)

Utilizing Little’s formula, the mean number of waiting jobs, E[NW ], can be re-
written as E[NW ] = λE[W ]. Now the remaining work is to determine the mean
residual lifetimes in each state. The mean remaining service time, given that the
server is busy, is known to be

E[SR] =
E[S2]

2E[S]
.

The mean remaining time in the off state can be determined by considering the
mean interarrival times of the number of threshold jobs required to accumulate
before the server is put in the setup state. This value can be calculated as

E[TRoff ] =
1

k
(
k − 1

λ
+
k − 2

λ
+
k − 3

λ
+ · · ·+ 1

λ
) =

k − 1

2λ
.

To determine the mean remaining setup time, let us regard this state as a special job
that arrives at the beginning of every work cycle of the server as illustrated in Figure
8. As already given earlier for the remaining service time, the mean remaining setup
time can be given by

E[TR
setup] =

E[T 2
setup]

2E[Tsetup]

With all the required values derived, the E[W ] will read as

E[W ] =
λE[S2]

2(1− ρ)
+

λαγ

kαγ + αλ+ λγ

(
k

λ
(
k − 1

2λ
+

1

γ
) +

E[T 2
setup]

2

)
.

Using this result to calculate the total mean delay of a job will yield,

E[T ] = E[TM/G/1] +
λαγ

kαγ + αλ+ λγ

(
k

λ
(
k − 1

2λ
+

1

γ
) +

E[T 2
setup]

2

)
. (20)

From (20) one can see that setting α = 0 will simply give the mean delay of a
standard M/G/1-FIFO system. Furthermore, if the server is turned off immediately
after becoming idle and it can be turned on instantly on the arrival of a job, that is
if α→∞ and γ →∞, then (20) will reduce to

E[T ] = E[TM/G/1] +
k − 1

2λ
,

which is just the standard delay plus the time required to accumulate the threshold
number of jobs. Setting k = 1 in this case will again leave us with the mean delay
of a standard M/G/1-FIFO system.



32

R(t) 

Setup1      S1 

    … 
Setup2  

C1 

t 

Figure 8: Mean remaining service time of the system considering the setup time as
a special job at the beginning of each cycle. The setup jobs are drawn in red.

Using the appropriate proportions, the mean power consumption can be com-
puted as

E[P ] = ρPbusy + πsetupPsetup + πidlePidle, (21)

which will give the same result as (13). The mean switching rate, which is just the
inverse of E[C], will also have the same form as (14).

Theorem 1. For an {M/G/1}◦{G/G/k} the mean delay, mean power consumption
and mean switching rate metrics are given by:

E[T ] = E[TM/G/1] +
λαγ

kαγ + αλ+ λγ

(
k

λ
(
k − 1

2λ
+

1

γ
) +

E[T 2
setup]

2

)
,

E[P ] = E[PM/M/1] +
(1− ρ)α

kαγ + αλ+ λγ
(λPsetup − (λ+ kγ)Pidle)

and
E[C]−1 = (1− ρ)

αγλ

λγ + αλ+ αγk

provided that idling time is remembered.

Remark 1. The mean power consumption and mean switching rates are insensitive
to the service, setup and idling time distributions. One can see that the mean delay
of the system is sensitive to the setup time distribution in addition to the well known
sensitivity of FIFO systems to service time distribution.

Rearranging the mean delay equation in Theorem 1 will result in the following
remark.
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Remark 2. The mean delay of an {M/G/1} ◦ {G/G/k} system, that applies the
FIFO service discipline with the idling time remembered, can be rewritten as

E[T ] = E[TM/G/1] +
k(k−1)

2
1
λ

+ kE[Tsetup] + λ
2
E[T 2

setup]

λE[Tidle] + k + λE[Tsetup]
.

It can be seen from Theorem 1 and Remark 2 that E[Tidle]→∞, or α = 0, will
minimize E[T ] and E[C−1] while its effect on E[P ] depends on the sign of the second
term in the E[P ] equation. This brings us to the next corollary:

Corollary 1. For an {M/G/1} ◦ {G/G/k} system with a remembered idling time,
the optimal idling time value is either Tidle →∞ or Tidle = 0. The rule for choosing
between these values is:

1. If Pidle <
λ

λ+kγ
Psetup, then Tidle →∞ is the optimal value

2. If Pidle >
λ

λ+kγ
Psetup and the first derivative of the weighted sum cost function

with respect to α is positive, then Tidle → ∞, or α = 0 is the optimal choice.
If the derivative is negative then Tidle = 0, or α→∞ is the optimal choice.

4.3.1 Optimization with deterministic setup time

Corollary 1 provides the general set of rules for choosing the optimal control policy.
Assuming a deterministic setup time, these rules can further be refined explicitly.
In this case, the cost function given in (16) will read as

f = E[TM/G/1] +
λαγ

kαγ + αλ+ λγ

(
k

λ
(
k − 1

2λ
+

1

γ
) +

1

2γ2

)
+

β

λ

(
E[PM/M/1] +

α(1− ρ)

kαγ + αλ+ λγ
(λPsetup − (λ+ γk)Pidle)

)
+

β
′
(

(1− ρ)
αλγ

kαγ + αλ+ λγ

)
.

Taking the partial derivative with respect to α,

∂f

∂α
=

γλ

(kαγ + αλ+ λγ)2

(
kγ(

k − 1

2λ
+

1

γ
) +

λ

2γ
+

β

λ
(1− ρ)(λPsetup − (λ+ kγ)Pidle) + β

′
γλ(1− ρ)

)
.

All α values reside in the denominator of the first derivative. Hence, if

∂f

∂α
> 0,
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that is if

kγ(
k − 1

2λ
+

1

γ
) +

λ

2γ
+ β(1− ρ)Psetup + β

′
γλ(1− ρ) > β(1− ρ)(1 +

kγ

λ
)Pidle,

then f is a non-decreasing function of α. Therefore setting α = 0 (Tidle → ∞) will
be optimal. On the other hand, if

∂f

∂α
< 0,

that is if

kγ(
k − 1

2λ
+

1

γ
) +

λ

2γ
+ β(1− ρ)Psetup + β

′
γλ(1− ρ) < β(1− ρ)(1 +

kγ

λ
)Pidle,

the cost function is decreasing with α, hence, making α→∞ (Tidle = 0) the optimal
choice.

Corollary 2. For an {M/G/1} ◦ {D/G/k} system with a remembered idling
time:

1. If Pidle < λ
λ+kγ

Psetup, then BUSY/IDLE policy (Tidle → ∞) is the optimal
control policy.

2. If Pidle >
λ

λ+kγ
Psetup and

kγ(
k − 1

2λ
+

1

γ
) +

λ

2γ
+ β(1− ρ)Psetup + β

′
γλ(1− ρ) > β(1− ρ)(1 +

kγ

λ
)Pidle,

then BUSY/IDLE policy (Tidle →∞) will still be optimal.

On the other hand, if

kγ(
k − 1

2λ
+

1

γ
) +

λ

2γ
+ β(1− ρ)Psetup + β

′
γλ(1− ρ) < β(1− ρ)(1 +

kγ

λ
)Pidle,

then BUSY/OFF policy (Tidle = 0 ) will be optimal.

4.4 The impact of resetting idling time

The mean value equations determined up to this point are based on an assumption
that the idling time of a server is remembered. That is, once a server becomes idle,
it will wait for a certain amount of time, with mean 1

α
, and turn off if there is no

arrival. If a job arrives before the idling time expires, the residual idling time is
remembered for the next idle period. However, it would be more realistic if the
idling time is reset every time the idling period is interrupted by an arriving job.
Therefore, we will extend the results in [28] to incorporate such scenarios.
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The length of every idle period in a single busy cycle of a work cycle is given by

min{Tidle, A},

where Tidle is a random variable representing the idling time and A is a random
variable representing the interarrival time which is exponentially distributed with
rate λ. If min{Tidle, A} = A, then an arrival has occurred before the server’s idling
time expires. Otherwise, if min{Tidle, A} = Tidle, the idling time of the server expires
before the next arrival. This will determine the end of the current work cycle as
the server is switched off. Let N denote the number of idle periods in a work cycle.
Then it is clear that it has a geometric distribution with success probability

p = P{Tidle < A} =

∫ ∞
0

P{Tidle < x}λe−λxdx.

Hence, the probability of having n idle periods is given by

P{N = n} = p(1− p)n−1.

Now let us denote the total length of all the idle periods as IT , which can be
calculated as

IT =
N∑
i=1

min{T iidle, Ai}.

Since N is a stopping time for the work cycle process, we have

E[IT ] = E[min{Tidle, A}]E[N ]. (22)

Since N has a geometric distribution, we know that

E[N ] =
1

p
.

To determine E[min{Tidle, A}], we will use the property P{min{Tidle, A} > t} =
P{Tidle > t}P{A > t} because of the independence of Tidle and A. Hence,

E[min{Tidle, A}] =

∫ ∞
0

P{Tidle > t}P{A > t}dt =

∫ ∞
0

P{Tidle > t}e−λtdt.

Adopting the total mean idling time of (22) into the time proportion calculations
will yield the general form of the mean delay, power and switching rate metrics as
given by the following theorem.

Theorem 2. For an {M/G/1} ◦ {G/G/k} system the mean delay, mean power
consumption and mean switching rate metrics are given by:

E[T ] = E[TM/G/1] +
λγ

λγE[IT ] + λ+ kγ

(
k

λ
(
k − 1

2λ
+

1

γ
) +

E[T 2
setup]

2

)
,
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E[P ] = E[PM/M/1] + (1− ρ)
1

λγE[IT ] + λ+ kγ
(λPsetup − (λ+ γk)Pidle),

and
E[C]−1 = (1− ρ)

λγ

λγE[IT ] + λ+ kγ

provided that idling time is reset everytime the system comes out of the idle state.

Remark 3. The mean value metrics exhibit the same sensitivity property as given
by Remark 1.

Similar to the case in which the idling time is remembered, this will lead to the
following remark.

Remark 4. The mean delay of an {M/G/1} ◦ {G/G/k} system, that utilizes the
FIFO service discipline with the idling time reset every time the server goes out of
the idle state, is given by

E[T ] = E[TM/G/1] +
k(k−1)

2
1
λ

+ kE[Tsetup] + λ
2
E[T 2

setup]

λE[IT ] + k + λE[Tsetup]
.

From Remark 4, we can see that setting k = 1 and E[IT ] = 0 will give the
same mean delay as given in (11) for a gated system. On the other hand, based on
Theorem 2 and Remark 4 we can see that IT → ∞ minimizes the mean delay and
switching rate while its effect on the power metric depends on the sign of the second
term. This will lead us to the following corollary.

Corollary 3. For an {M/G/1} ◦ {G/G/k} system that resets the idling time, the
optimal idling time value is still either Tidle →∞ or Tidle = 0. The rule for choosing
between these values is:

1. If Pidle <
λ

λ+kγ
Psetup, then Tidle →∞ is the optimal value

2. If Pidle >
λ

λ+kγ
Psetup and the first derivative of the weighted sum cost function

with respect to α is positive, then Tidle → ∞, or α = 0 is the optimal choice.
If the derivative is negative then Tidle = 0, or α→∞ is the optimal choice.

4.4.1 Exponentially distributed idling time

If idling time is assumed to be exponentially distributed with rate α, then p = α
λ+α

and
E[min{Tidle, A}] =

∫ ∞
0

e−αte−λtdt =
1

α + λ
.

Substituting this in (22) the total idling period will be,

E[IT ] =
1

α + λ

α + λ

α
=

1

α
.

We know this to be true due to the memoryless property of exponential distributions.
Substituting this value in Theorem 2 will give us the mean value equations given
in Theorem 1 since resetting of the idling time will not have any effect in this case.



37

4.4.2 Deterministic idling time

Now let us assume that when the server becomes idle, it will wait for a deterministic
amount of time, 1

α
, and switch off if there are no jobs arriving within this interval.

If a job arrives within this interval, then the idling time is reset and the server starts
serving the job. In this case, since the length of the idling period is known, the
probability of the idling period expiring before the next arrival is simply

p = P{A >
1

α
} = e−

λ
α .

Substituting this in the E[N ] equation and using it to determine total idling period,
we will get

E[IT ] = eλ/α
∫ 1

α

0

e−λtdt =
1

λ
(eλ/α − 1) (23)

From (23), one can see that as α→∞, E[IT ]→ 0 and as α→ 0, E[IT ]→∞, both
of which are intuitive results. Now by Theorem 2, we will get the following result
for the mean switching rate:

E[C]−1 = (1− ρ)
λγ

γ(eλ/α − 1) + λ+ kγ
.

Using (23) to calculate the mean power consumption will result in

E[P ] = E[PM/M/1] +
(1− ρ)

γ(eλ/α − 1) + λ+ kγ
(λPsetup − (λ+ γk)Pidle). (24)

The mean power consumption reduces to that of a standard M/M/1 system at
α = 0 while for α→∞ it will become

E[P ] = E[PM/M/1]− (1− ρ)(Pidle −
λ

λ+ γk
Psetup).

Similarly, the mean delay can be calculated by substituting the total idling time
in Theorem 2 and it will read as

E[T ] = E[TM/G/1] +
λγ

γ(eλ/α − 1) + λ+ kγ

(
k

λ
(
k − 1

2λ
+

1

γ
) +

E[T 2
setup]

2

)
. (25)

From (25) it is clear that for α = 0 the second term will disappear which makes
the delay to be that of a standard M/G/1 system. On the other hand, for α→∞,
the mean delay will reduce to

E[T ] = E[TM/G/1] +
λγ

λ+ kγ

(
k

λ
(
k − 1

2λ
+

1

γ
) +

E[T 2
setup]

2

)
.
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4.4.3 Optimization of a {M/G/1} ◦ {D/D/k} system

Here, we assume deterministic idling and setup times equal to 1
α
and 1

µ
, respectively.

The system level cost function, using the form given in (16), can be written as

f = E[TM/G/1] +
λγ

γ(eλ/α − 1) + λ+ kγ

(
k

λ
(
k − 1

2λ
+

1

γ
) +

1

2γ2

)
+

β

λ

(
E[PM/M/1] +

(1− ρ)

γ(eλ/α − 1) + λ+ kγ
(λPsetup − (λ+ γk)Pidle)

)
+

β
′
(

(1− ρ)
λγ

γ(eλ/α − 1) + λ+ kγ

)
.

Taking the partial derivative of the cost function with respect to α gives us

∂f

∂α
=

γλeλ/α

α2(γ(eλ/α − 1) + λ+ kγ)2

(
kγ(

k − 1

2λ
+

1

γ
) +

λ

2γ
+

β

λ
(1− ρ)(λPsetup − (λ+ kγ)Pidle) + β

′
γλ(1− ρ)

)
.

Once again, all the α values are in the denominator, meaning no α value can
equate the partial derivative to zero. Therefore, if

∂f

∂α
> 0,

that is, if

kγ(
k − 1

2λ
+

1

γ
) +

λ

2γ
+ β(1− ρ)λPsetup + β

′
γλ(1− ρ) > β(1− ρ)(λ+ kγ)Pidle,

then f is a non-decreasing function of α. Therefore setting α = 0 will be optimal.
In the other case where

kγ(
k − 1

2λ
+

1

γ
) +

λ

2γ
+ β(1− ρ)λPsetup + β

′
γλ(1− ρ) < β(1− ρ)(λ+ kγ)Pidle,

setting α→∞ will be optimal.

Corollary 4. For an {M/G/1} ◦ {D/D/k} system with the idling time reset
every time the server comes out of the idle state:

1. If Pidle < λ
λ+kγ

Psetup, then Tidle → ∞ (BUSY/IDLE policy) is the optimal
choice.

2. If Pidle >
λ

λ+kγ
Psetup and

kγ(
k − 1

2λ
+

1

γ
) +

λ

2γ
+ β(1− ρ)Psetup + β

′
γλ(1− ρ) > β(1− ρ)(1 +

kγ

λ
)Pidle,
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then Tidle →∞ (BUSY/IDLE policy) will still be optimal.

On the other hand, if

kγ(
k − 1

2λ
+

1

γ
) +

λ

2γ
+ β(1− ρ)Psetup + β

′
γλ(1− ρ) < β(1− ρ)(1 +

kγ

λ
)Pidle,

then Tidle = 0 (BUSY/OFF policy) will be optimal.

One can note that the conditions given in Corollary 4 for determining the optimal
control policy are identical to those given in Corollary 2, where the idling time of the
server is remembered. Hence, we can conclude that regardless to whether the idling
time is remembered or not, the optimal control policy for a single server system
should either leave the server idle or turn it off immediately when there is no job to
serve.

4.5 {M/G/1} ◦ {G/G/k} conclusions

As discussed above, the rules for choosing the optimal control policy remain the
same irrespective of whether the idling time is remembered or not. Based on The-
orem 2, similar rules can be produced for a {M/G/1} ◦ {G/G/k} system applying
either of the idling time schemes.

Using the mean value equations in Theorem 2, the cost function (16) can be
given as

f = E[TM/G/1] +
λγ

λγE[IT ] + λ+ kγ

(
k

λ
(
k − 1

2λ
+

1

γ
) +

E[T 2
setup]

2

)
+

β

λ

(
E[PM/M/1] +

(1− ρ)

λγE[IT ] + λ+ kγ
(λPsetup − (λ+ γk)Pidle)

)
+

β
′
(

(1− ρ)
λγ

λγE[IT ] + λ+ kγ

)
.

To gain a clearer intuition, this can be rewritten as

f = E[TM/G/1] +
β

λ
E[PM/M/1] +

1

λγE[IT ] + λ+ kγ

(
kγ(

k − 1

2λ
+

1

γ
) + λγ

E[T 2
setup]

2
+

β(1− ρ)Psetup + β
′
γλ(1− ρ)− β(1− ρ)(1 +

kγ

λ
)Pidle

)
.

The expression for the total idling time, E[IT ], appears only on the denominator
of the cost function. Thus, if the last term is positive, that is if

kγ(
k − 1

2λ
+

1

γ
) + λγ

E[T 2
setup]

2
+ β(1− ρ)Psetup + β

′
γλ(1− ρ) > β(1− ρ)(1 +

kγ

λ
)Pidle,
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then letting E[IT ] → ∞ (BUSY/IDLE policy) minimizes the total system cost. If
this inequality does not hold,that is if

kγ(
k − 1

2λ
+

1

γ
) + λγ

E[T 2
setup]

2
+ β(1− ρ)Psetup + β

′
γλ(1− ρ) < β(1− ρ)(1 +

kγ

λ
)Pidle,

then setting E[IT ] = 0 (BUSY/OFF policy) gives the minimum system cost.
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5 Task Assignment Policies
In the previous section, we have determined the optimal control policies for a single
server system under the given conditions. However, in a multiserver system, the task
assignment policy will affect the delay and power consumption metrics, in addition
to the control policy. A task assignment policy routes incoming jobs to the available
servers using a predefined rule.

In the single server case, the optimal control policy is shown to be in the set
{BUSY/IDLE, BUSY/OFF}. However, for a multiserver system this might not
hold depending on which task assignment policy is applied. For this reason, we
will examine three different task assignment policies and try to develop rules for
determining the optimal control policy in each case. The task assignment policies
will also be compared with each other.

5.1 Random Routing (RND)

As its name indicates, under this task assignment policy arriving requests are ran-
domly assigned to the servers. Assuming n servers, an arriving job will be routed
to the ith server with probability pi. Obviously,

n∑
i=1

pi = 1

should hold with 0 ≤ pi ≤ 1. The task assignment policy does not need to know the
state of the servers for making routing decisions.

Due to the random nature of this policy, each queue can be regarded as a single
server system with the arrival rate determined using the Poisson splitting property.
That is, the aggregate arrival rate to the system, λ, can be split in to n Poisson
arrival processes with values piλ.

The associated cost function given in (16) can be rewritten as

f =
n∑
i=1

fi

where fi is the cost of each individual queue. Similar to the single server analysis in
the previous section, the optimal control policy will still be either of the BUSY/OFF
or BUSY/IDLE policies. In either case, one can still optimize with respect to the
routing probabilities. In the following section, this kind of optimization will be nu-
merically illustrated for a two server system.
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5.2 Join Shortest Queue (JSQ)

Under this policy, an incoming job is routed to the server that has the shortest
queue, in other words, to the queue with the fewest jobs. For this to happen, the
task scheduler needs to know the state of each server at the arrival time of each job.
Thus, unlike the RND task assignment policy, JSQ dynamically adapts to changes
of state in the whole system [21].

Earlier studies have discussed the optimality of the JSQ policy with the FIFO
service discipline and service time with non-decreasing hazard rate [43, 40, 22]. How-
ever, the system cost in these discussions is restricted to that of delay experienced
by a job.

5.3 Most Recently Busy Routing (MRB)

The MRB task assignment policy, like JSQ, needs to know the state of all the servers
for its routing decision. Upon the arrival of a job, the state of all servers is checked
and if only one server is found to be idle, the job is routed to that server. If two
or more servers are found to be idle, then the job is assigned to the most recently
busy server. In other words, to the server with the largest remaining idling time,
allowing the other server(s) to run down their idling time and be turned off.

However, there might not be an idle server on the arrival of a job. In this case,
we will look into two varieties of the MRB task assignment policy:

MRB-RND: This policy applies the MRB routing if one or more servers are in the
idle state at the arrival time of a job. If there is no idle server, the arriving job will
be routed randomly.

MRB-JSQ: In a similar way to the MRB-RND policy, MRB routing is applied first.
If there is no idle server, an arriving job is assigned to the queue with the fewest jobs.

Leaving an idle server on (BUSY/IDLE) or turning it off immediately (BUSY/OFF)
are shown to be optimal in a single server, as well as in a parallel server system with
the random routing task assignment policy. However, this might not necessarily be
true for MRB routing. In fact, the DELAYEDOFF control policy is shown to be
near-optimal for a central queue multiserver system with MRB routing used as a
task assignment policy [16].

In Section 6, the RND, JSQ and MRB task assignment policies will be studied
for an energy-aware system with parallel servers. Bound with the RND and JSQ
task assignment policies, the BUSY/IDLE(t) control policy will also be studied. The
BUSY/IDLE(t) policy, as defined in Section 3.2.2, allows a maximum of t servers to
stay in the idle state. Once this threshold is reached all non-busy servers are turned
off immediately.
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6 Numerical results
In the preceding sections, a queueing-theoretic analysis of energy-aware server(s) is
performed. To gain even more intuition to the trade-off involved, numerical illustra-
tion of some specific examples is provided in this section. The system cost, in the
subsequent numerical analysis, is modeled by the weighted sum objective function

f = E[T ] + βE[P ].

6.1 Single server system

In this numerical illustration, the focus will be on the {M/M/1} ◦ {M/D/k} and
{M/M/1}◦{D/D/k} systems. However, the distribution of the idling time has little
or no significance since the optimal choice is either α = 0 or α → ∞. In Section
6.1.1 we will compare the BUSY/IDLE and BUSY/OFF policies while Section 6.1.2
provides Pareto optimization of mean delay and power with respect to the threshold
k.

6.1.1 BUSY/IDLE vs BUSY/OFF

In the forthcoming discussion, the {M/M/1} ◦ {M/D/k} system will be studied
with the following parameters: E[S] = 1s, Pbusy = Psetup = 240W,Pidle = 150W and
β = 0.1. While the mean service time and power consumption values are taken from
[16], β can be chosen arbitrarily depending on how much we want to emphasize the
energy cost relative to that of delay. Based on these values, Figure 9 depicts the
system cost incurred by the BUSY/IDLE and BUSY/OFF policies for different load
values as a function of the setup time.

In the lightly loaded systems of Figure 9a and 9b, the BUSY/OFF policy emerges
as the optimal policy for setup time values up to around 20E[S] and 10E[S] respec-
tively. Within this range, one can still minimize cost by optimizing with respect
to the threshold, k. It can be seen that in both systems high threshold values
(k = 7, 10) are not favored. One reason for this can be, coupled with the light load
(larger inter-arrival times), higher threshold induces a considerable amount of wait-
ing time for those jobs that arrive while the server is turned off. It can be observed
from Figure 9c and 9d that this effect diminishes as the load increases.

The system with medium load, shown in Figure 9c, has somehow similar char-
acteristics as those discussed above. However, for the system in Figure 9d the
BUSY/OFF policy is no longer optimal even for low setup time values due to the
high load.
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Figure 9: System cost of different control policies normalized with respect to the
idling policy. Pbusy = Psetup = 240W , Pidle = 150W and β = 0.1

6.1.2 Pareto optimization

In an {M/M/1} ◦ {D/D/k} system with both the setup and idling times fixed, one
can optimize with respect to the threshold k. The result of such optimization for
the system given in Figure 9c is given in Figure 10. In each of the three figures, a
curve of the same color is obtained by varying the threshold from 1 to 20. As can
be expected, points closer to the Y-axis (E[P ] axis) correspond to lower values of
k while those closer to the X-axis (E[T ] axis) represent higher k values. Once the
setup time and idling time values are fixed, all the resulting set of points happen to
be Pareto optimal. That is, by varying the value of the threshold we can alleviate
the cost caused by one component only at the expense of increasing the cost induced
by the other.

6.2 Two servers with random task assignment

In [28] the random task assignment policy is studied by considering a system with
two parallel {M/M/1} ◦ {M/M/k} queues. In this section, we will reconstruct the
results and provide detailed analysis on the optimal choices for the parameters of
the energy-aware system.
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Figure 10: Pareto optimization of the single server system.

When a job arrives to the system, it will be routed to the first server’s queue with
probability p and routed to the second one with probability 1− p. The servers are
assumed to be homogeneous with the same service rate, setup rate and energy costs.
We already know that for an optimal performance we should set αi =0 or αi =∞.
Thus, for the three different cases (α1 = α2 = 0, α1 = α2 = ∞ or α1 = ∞, α2 = 0
) the optimization is done with respect to k1, k2 and p. The other case, where
α1 = 0, α2 =∞, is ignored due to symmetry. The objective is to minimize the sys-
tem cost modeled by the weighted sum of energy and delay. Several examples of the
system cost, for the three different conditions given above, are presented in Figure 11.

In Figure 11a, a load that can be handled by one of the servers is considered.
The system load, if handled by only one of the servers will be ρ = 0.95. For p = 0,
all the jobs are served by the second server. Therefore, keeping the first server on
will only increase the cost, which explains the higher cost of setting α1 = α2 = 0 for
p = 0. Comparing the result for the other two conditions, in which we can turn the
first server off, one can see that turning the second server off will only increase our
cost. This is due to the fact that the server will have to be started shortly after it is
turned off due to the high load. The low setup rate will make the penalty for turning
the server off even worse. The same logic will make the cost of setting α1 =∞ and



46

α2 = 0 a lot worse when p = 1. For p ≤ 0.453, letting the first server to turn off
and keeping the second one always on pays off. The minimum cost incurred for this
setup being 34.627 when p = 0.1. It is also shown that if we are going to route jobs
to either of the servers with equal probabilities, then leaving both servers on will
produce the minimum cost.

In Figure 11b the cost function of the three different conditions is illustrated for
a lighter load. The load is considerably smaller so that even with only one of the
servers on, the load on the system will be ρ = 0.5. Obviously, directing all the jobs
to the second server and turning the first server off will be more efficient. Another
non-trivial result is that letting the second server to switch off while it is idle will only
increase the cost. This is partly due to the fact that the load is not so small for one
server to handle all the load and also partly due to the low setup rate and choice of β.

Figures 11c and 11d show the cost function of the system under a heavy load
such that both servers need to be in working state for the system to be stable4. The
result is intuitive since leaving both servers on will give the minimum cost for a low
setup rate while letting both servers to turn off will be optimal when the setup rate
is higher.

In Figure 11e we are neglecting the energy cost, β = 0. Leaving both servers on
will clearly give the minimum cost. For p = 0, all the jobs are directed to the second
server, therefore setting α2 = 0 will be optimal regardless of the state of the first
server. This is because we are neglecting the energy cost. One can see that letting
the second server to turn off will have a higher cost in this case.

Figure 11f illustrates the cost of the system when even more attention is given
to the energy cost, β = 100. Obviously, allowing both servers to turn off when there
is no job to serve will minimize our cost in this setup.

4In the corresponding figure for Figure 2(d) in [28] there is a misprint of the value of λ, which
otherwise would give a lighter load.
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Figure 11: Random Routing: Optimization of a two server system with respect to
p.
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6.2.1 Optimization with respect to k and p

In the preceding discussion, we have seen how the cost of the two-server-system is
affected by the choice of control policy, mainly by varying the routing probability p.
Now we will focus on the k values and try to find the optimal combination (k1, k2)
that minimizes the cost of the system in Figure 11a with both servers applying the
BUSY/OFF policy. The value set {1, 10} is assumed and for each value of k1, k2 is
iterated from 1 to 10 leading to 100 possible combinations. For each value of k1, the
k2 value that produces the minimum cost within that iteration is illustrated by the
blue points in Figure 12 along with the associated p value. The red points provide
the (k1, k2) combinations that result in minimum values for the entire iterations.
Comparing this result to that of 11a, one can see that the cost improvement achieved
by optimization with respect to the threshold values is marginal.

p=0.18, Cost=42.41

p=0.81, Cost=42.41

0 2 4 6 8 10

k1

2

4

6

8

10

k2

Figure 12: Random routing: Optimization of a two server system with respect to k
and p, taking system parameters in Figure 11a.

6.3 Multiserver system

In a practical configuration, a server farm contains multiple servers to which a task
assignment policy routes incoming jobs by applying a specific set of rules. To come
up with energy-aware control and task assignment policies for this kind of setup,
a server farm composed of 10 servers will be studied in this section. The RND,
MRB-RND and MRB-JSQ task assignment policies will be examined along with
the BUSY/IDLE, BUSY/OFF, DELAYEDOFF and BUSY/IDLE(t) control poli-
cies. For instance, a server farm that employs the RND task assignment policy
together with the BUSY/IDLE control policy will route incoming jobs randomly
while keeping both busy and idle servers turned on all the time.

When the task assignment policy under consideration is different from RND,
closed form expressions can not be derived for the mean delay and mean energy
metrics using simple stochastic models. Thus, the simulator provided in Appendix
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A is used to produce the results in this illustration.
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Figure 13: Total cost of the system under the RND, MRB-RND, MRB-JSQ and
BUSY/IDLE(t) policies with load = 3. The BUSY/IDLE(t) control policy allows
t servers to be idle at a time and applies the JSQ task assignment policy while the
BUSY/IDLE∗(t) policy applies the RND task assignment policy.

Power consumption values of Pbusy = Psetup = 240W and Pidle = 150W with
exponentially distributed service times with mean E[S] = 1 s are used. These values
are based on practical measurements conducted in [16]. Both setup and idling time
are assumed to be deterministic with idling time reset every time the server goes
out of the idle state while in all cases the turn-on threshold is k = 1. Additionally,
jobs arrive to the system according to a Poisson process, with rate λ, while each
server has its own queue on which the FIFO discipline is applied. The total system
cost is modeled by the weighted sum of mean delay and mean power consumption
with β = 0.1.

For a systematic study of each task assignment and control policy combination,
the total cost of the system is computed by varying the load, setup and idling
times. The result, as shown in Figures 13 - 15, is plotted as a function of the idling
time. In each of these figures, there are two lines with labels BUSY/IDLE(t) and
BUSY/IDLE∗(t). The difference between these lies only on the task assignment
policy used to produce each curve. That is, the BUSY/IDLE(t) allows t servers
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to be idle at the same time and applies the JSQ task assignment policy while the
BUSY/IDLE∗(t) policy uses the RND policy with the same threshold t for idle
servers. Clearly, the value of the threshold t impacts the total cost of the system.
Hence, a separate simulation was run to determine the optimal value of t that mini-
mizes the system cost under the BUSY/IDLE(t) policy for each combination of load
and setup time.

The BUSY/IDLE(t) policy has t BUSY/IDLE and 10 − t BUSY/OFF servers,
and hence it has only two possible values of idling time. In the figures, it is plotted
as a function of idling time only for the sake of comparison.

Simulation results of the RND, MRB-RND and MRB-JSQ task assignment poli-
cies and that of the BUSY/IDLE(t) control are labeled explicitly in all of these
figures. However, those of BUSY/OFF and DELAYEDOFF policies can also be
observed by considering specific coordinates in the X-axis (the Idling Time axis).
That is, when Idling Time = 0, we have the BUSY/OFF policy whereas non-zero
values of idling time give the DELAYEDOFF policy.

The total system cost for load values of 3, 5 and 8 are depicted in Figures 13, 14
and 15 respectively. Within each of these figures, setup time is varied from 0.5E[S]
to 6E[S]. In all cases, the cost of the random task assignment policy is monotonous,
indicating that the optimal control policy is either the BUSY/OFF or BUSY/IDLE.
This is in line with what was discussed in Section 5.1.

However, in the case of the MRB-JSQ and MRB-RND task assignment poli-
cies, the choice of the optimal control policy is not straightforward. For a lighter
load, {3, 5}, and low setup time compared to service time, the cost of using the
BUSY/OFF and DELAYEDOFF control policies is slightly lower than that of the
BUSY/IDLE, with up to 9% improvement. However, when the setup time becomes
higher compared to service time (1.5E[S], 3E[S], 6E[S]), the BUSY/OFF policy be-
comes inefficient for all the load values under consideration. By applying the DE-
LAYEDOFF or BUSY/IDLE control policies instead of BUSY/OFF, the total cost
of the system can be reduced by 20 − 30%. Moreover, beyond a certain value of
idling time, the system cost becomes flat which implies that further cost reduction
can not be achieved by letting longer idling times.

Finally, for all load and setup time values, the MRB-JSQ task assignment pol-
icy combined with the DELAYEDOFF control or the JSQ task assignment policy
combined with the BUSY/IDLE(t) control policy emerge as the two most efficient
policies among the others. Although there is no clear winner between these two,
it can be seen that the JSQ - BUSY/IDLE(t) combination has a marginal gain in
some of the configurations.
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Figure 14: Total cost of the system under the RND, MRB-RND, MRB-JSQ and
BUSY/IDLE(t) policies with load = 5.
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Figure 15: Total cost of the system under the RND, MRB-RND, MRB-JSQ and
BUSY/IDLE(t) policies with load = 8.
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7 Conclusion
Energy consumption of server farms has caused a major concern which required the
attention of the ICT community. To contribute to this cause, a queueing theoretic
study of server control and task assignment policies was conducted in this thesis.

An attempt to reduce energy consumption often comes with a decline in perfor-
mance. Thus, any applicable solution should strike the right balance between energy
and performance. To ensure this, the weighted sum of delay and energy metrics was
used as a representation of the system cost. In our study of a single server system,
closed form expressions for the system cost were developed and applied to determine
the optimal server control policies.In the multiserver setting, numerical analysis was
done to come up with energy-aware task assignment and server control policies.

Turning an idle server off induces a setup cost which has energy and delay com-
ponents. This introduces the off, setup, busy and idle energy states to the system.
Analysis of the general {M/G/1}◦{G/G/k} system, which has a turn-on threshold
of k jobs, showed that the optimal control policy for a single server system lies in
the set {BUSY/IDLE,BUSY/OFF}. That is, we should either turn the server off
immediately after the last job leaves the system or keep it idle until the next job
arrives. This result holds irrespective of whether idling time is remembered or reset
every time the server comes out of the idle state.

In a multiserver system, the applied task assignment policy impacts the energy
efficiency of the system in addition to the control policy. A numerical analysis of the
RND, MRB-RND and MRB-JSQ task assignment policies was performed along with
the BUSY/IDLE, BUSY/IDLE(t), BUSY/OFF and DELAYEDOFF control poli-
cies. In addition to low, medium and high load values, setup time was varied relative
to service time requirements and the resulting system was studied. The combina-
tion of the MRB-JSQ task assignment policy and the DELAYEDOFF control policy
or that of JSQ and BUSY/IDLE(t) are found to reduce up to 30% of the system cost.

7.1 Future work

As already mentioned, we have studied energy efficiency of server farms by applying
the weighted sum of mean energy and mean delay as a system cost. However, the
value of the weighting factor in this model is purely subjective and can be varied
depending on how much one wants to emphasize energy cost. Therefore, other cost
models also need to be considered for a complete study of energy efficiency in server
farms.

Moreover, the analysis throughout this thesis was based on the assumption that
the service discipline is FIFO. Hence, the results may not hold for other service
disciplines. Finally, our study of multiserver systems was restricted to the numerical
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simulation of selected policies. Hence, the optimality problem remains to be solved
for a multiserver setting.
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A Simulation code
We have seen that single server systems with energy-aware control policies can be
modeled and analyzed with relative ease. However, server farms, with multiple
servers, are complicated to model mathematically. In addition to this, the need for
a task assignment policy makes the problem more complicated. For this reason, a
C++ based simulator is used to study the behavior of the control and task assign-
ment policies introduced in this thesis.

A C++ class library called CNCL5 is used to implement the RND, MRB-RND
and MRB-JSQ task assignment policies combined with the BUSY/OFF, BUSY/I-
DLE and BUSY/IDLE(t) control policies. An example M/M/1 queue simulator is
extended to implement the aforementioned policies. Each implementation has three
main parts as shown in Figure 16.
The entire code for the random task assignment simulator is provided in the fol-

Generator Class 

 Generates jobs 

 routes jobs using the 

appropriate task 

assignment policy 

Server Class 

 Manages jobs 

 Turns on/off servers 

based on the applied 

control policy 

Main Function 

 Creates generator and 

server objects 

 Manage statistics from 

independent 

simulations 

Figure 16: Logical structure of the simulator.

lowing section while only the generator classes of the MRB-RND and MRB-JSQ are
given in the subsequent sections to avoid repetition.

5CNCL (Communication Netowrks Class Library) is a collection of C++ classes developed in
Aachen University of Technology for event driven simulations of Communication Networks.
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A.1 Random task assignment

#include <string>
#include <iostream>
#include <strstream>

#include <CNCL/QueueFIFO.h>
#include <CNCL/EventScheduler.h>
#include <CNCL/MT.h>
#include <CNCL/NegExp.h>
#include <CNCL/Moments.h>
#include <CNCL/Uniform.h>
#include <CNCL/Job.h>
#include <fstream>

ofstream Rnd_Srv;
int Random_flag = 0;

#define Num_of_Servers 10
#define Beta 0.1 //Weighting Factor for energy
#define SETUP 3
#define P_on 240
#define P_idle 150
#define K 1 // Threshold number of jobs to turn the server ON

// Limit for jobs to be processed
enum { NJOBS=100000 };

// CNEvent types for energy-aware simulation
enum { EV_JOB, EV_TIMER_G, EV_TIMER_S, EV_TIMER_I, EV_TIMER_SET };

class Server : public CNEventHandler
{
private:

unsigned long ID; // Event ID
CNJob *job; // Served job
//ofstream Statistics;
//CNQueueFIFO queue; // CNQueue
CNRandom &rnd_b; // Distribution of service time b
//CNRandom &rnd_s; // Distribution of setup time s
float DET_IDLE;

int flag; // used between the SETUP and SERVING states
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enum { ST_IDLING, ST_SERVING, ST_SETUP, ST_OFF };

public:
CNQueueFIFO queue;
virtual void event_handler(const CNEvent *ev);
void print_results();
void eval_job(CNJob *job);

CNMoments t_w, t_b; // Evaluation tau_w, tau_b
// mean time spent in each state: off, setup, serving and idle

CNMoments t_off, t_setup, t_serving, t_idling, t_workcycle;
// Used to capture the time at which a new workcycle is started

CNSimTime WorkCycle_Started;
//Used to capture the time at which a new idling perios is started
CNSimTime Idling_Started;
CNSimTime Setup_Started;
CNSimTime Serving_Started;
// Just to check completeness/correctness of work-cycle
CNSimTime Off_Started;
CNSimTime Setup_Temp;
// captures intermediate values in the busy period calculation
CNSimTime Serving_Temp;
// captures intermediate values in the idle period calculation
CNSimTime Idling_Temp;
//CNSimTime Work_Cycle;
// state of server used in Generator(OFF=0,SETUP=1,SERVING=2,IDLING=3)
int STATUS;
int WC_Counter;
Server(CNRandom &rnd, float IDLE)

: job(NIL), rnd_b(rnd), DET_IDLE(IDLE), flag(0), t_w("tau_w"),
t_b("tau_b"), t_off("Turned Off"), t_setup("Setup_Time"),
t_serving("Serving_Time"), t_idling("Idle_Time"),
t_workcycle("Work Cycle"), WorkCycle_Started(0),
Idling_Started(0), Setup_Started(0), Serving_Started(0),
Off_Started(0), Setup_Temp(0), Serving_Temp(0), Idling_Temp(0),
STATUS(0), WC_Counter(1)
{

state(ST_OFF);
}

};

class Generator : public CNEventHandler
{
private:

float prob;
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CNUniform rnd_p; //routing probability
CNRandom &rnd_a; // Distribution of arrival time a

// Connected queues/servers
Server (&server_farm)[Num_of_Servers];

int temp;
int Index;
long n;

public:
virtual void event_handler(const CNEvent *ev);
Generator(float p, CNUniform rndP, CNRandom &rnd,
Server (*serv)[Num_of_Servers]) : prob(p), rnd_p(rndP), rnd_a(rnd),
server_farm(*serv), temp(0), Index(0),

n(0){}
};

void Generator::event_handler(const CNEvent *)
{

if(n == NJOBS)
// Stop simulation
return;

// Incoming event -> generate new Job
temp = int( (Num_of_Servers) * rnd_p.draw() );

send_now(new CNEvent(EV_JOB, &server_farm[temp], new CNJob));
// CNRandom delay
send_delay(new CNEvent(EV_TIMER_G), rnd_a());
n++;

}

void Server::event_handler(const CNEvent *ev)
{

switch(state())
{

case ST_OFF:
switch(ev->type())
{

case EV_JOB:
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CNJob *job;
job = (CNJob *)ev->object();
job->in = now();
queue.put(job);
if(queue.length() == K)
{

t_off.put(now() - Off_Started);
Off_Started = 0;
send_delay(new CNEvent(EV_TIMER_SET), SETUP);
Setup_Started = now();
STATUS=1;
state(ST_SETUP);

}
else

state(ST_OFF);
break;

case EV_TIMER_I:
error("illegal event ’IDLING’ in state ST_OFF");

break;

case EV_TIMER_SET:
error("illegal event ’SETUP’ in state ST_OFF");

break;

default:
error("illegal event in state ST_OFF");

break;

}
break;

case ST_SETUP:
switch(ev->type())
{

case EV_JOB:
CNJob *job;
job = (CNJob *)ev->object();
job->in = now();
queue.put(job);
break;

case EV_TIMER_SET: //Setup completed
flag = 1;
Setup_Temp = now() - Setup_Started;



64

Setup_Started = 0;
send_now(new CNEvent(EV_TIMER_S));

Serving_Started = now();
STATUS = 2;
state(ST_SERVING);

break;

case EV_TIMER_I:
error("illegal event ’IDLING’ in state ST_SETUP");

break;

case EV_TIMER_S:
error("illegal event ’IDLING’ in state ST_SETUP");

break;

default:
error("illegal event in state ST_SETUP");

break;
}
break;

case ST_SERVING:
switch(ev->type())
{

case EV_JOB:
// Incoming job, put into queue

CNJob *job;
job = (CNJob *)ev->object();
job->in = now();
queue.put(job);

break;

case EV_TIMER_S:

// Timer event, service time run down
switch(flag)
{

case 0:
job->out = now();
// Evaluate job if transient is over
if(now() > 1000)
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{
eval_job(job);

}
delete job;
job = NIL;

break;

case 1:
flag = 0;

break;

default:
error("mm1: ", "incorrect value for flag");

break;
}
// Get new job from queue
if(!queue.empty())
{

job = (CNJob *)queue.get();
job->start = now();
// CNRandom service time
send_delay(new CNEvent(EV_TIMER_S), rnd_b());
STATUS = 2;
state(ST_SERVING);

}
else if(queue.empty())
{

Serving_Temp = Serving_Temp +
(now() - Serving_Started);

Serving_Started = 0;
ID=send_delay(new CNEvent(EV_TIMER_I), DET_IDLE);
Idling_Started = now();
STATUS = 3;
state(ST_IDLING);

}
break;

case EV_TIMER_I:
error("illegal event ’IDLING’ in state ST_SERVING");

break;

case EV_TIMER_SET:
error("illegal event ’SETUP’ in state ST_SERVING");

break;



66

default:
error("illegal event in state ST_SERVING");

break;
}

break;

case ST_IDLING:
switch(ev->type())
{

case EV_JOB:
// Incoming job
delete_event(ID);
Idling_Temp = Idling_Temp +
(now() - Idling_Started);
Idling_Started = 0;
job = (CNJob *)ev->object();
job->in = now();
job->start = now();

// CNRandom service time
send_delay(new CNEvent(EV_TIMER_S), rnd_b());
Serving_Started = now();
STATUS = 2;
state(ST_SERVING);

break;

case EV_TIMER_I:
//Idling time expired
Idling_Temp = Idling_Temp +
(now() - Idling_Started);
t_idling.put(Idling_Temp);
t_serving.put(Serving_Temp);
t_setup.put(Setup_Temp);
t_workcycle.put(now() - WorkCycle_Started);
Idling_Started = 0;
Idling_Temp = 0;
Serving_Temp = 0;
Setup_Temp = 0;
WorkCycle_Started = now();
Off_Started = now();
STATUS = 0;

state(ST_OFF);
break;
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case EV_TIMER_S:
error("illegal event ’SERVING’ in state ST_IDLING");

break;

case EV_TIMER_SET:
error("illegal event ’SETUP’ in state ST_IDLING");

break;

default:
error("illegal event in state ST_IDLING");

break;
}
break;

default:
error("mm1: ", "illegal state");

break;

}

}
void Server::eval_job(CNJob *job)
{

t_w.put(job->start - job->in);
t_b.put(job->out - job->in);

}

void Server::print_results()
{

cout <<"Mean Delay: "<< t_b.mean() << endl;
cout <<"OFF State: " <<t_off.mean() <<endl

<<"SETUP State: "<<t_setup.mean()<<endl
<<"BUSY State: " <<t_serving.mean()<< endl
<<"IDLE State: " <<t_idling.mean()<<endl
<<"Work-cycle: " <<t_workcycle.mean()<<endl
<<"============================"<<endl;

}

int main()
{
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float mu = 1;
float lambda = 5;
float DET_IDLE;
ofstream RandomResult;

float Mean_Energy = 0;
float Mean_Delay_Sum = 0;

float p = 0.5;
float Idling_array[]={0, 0.5, 1, 1.5, 2, 3, 5, 7, 10, 15, 20};

CNMoments delay("Delay");
CNMoments off_period("off_period");
CNMoments setup_period("setup_period");
CNMoments busy_period("busy_period");
CNMoments idle_period("idle_priod");
CNMoments work_cycle("work_cycle");
CNMoments total_energy_cost("Total_Cost");
CNMoments total_delay("Total_delay");

long arrival_seed[]={ 1192722770, 1641327678,
316473, 616180309,
1988517235, 279103050,
2017655168, 1705001958,
403982381, 1729728974 };

long service_seed[]={ 774252441, 256809583,
1650965283, 17001471,
805103753, 952596788,
749036158, 885527052,
1622578158, 1279399464 };

long prob_seed[]={ 1077708736, 1187340440,
1534916643, 958842836,
1227253782, 1617293094,
1732296971, 1592394575,
373268907, 576387424 };

for(int a = 0; a < 11; a++)
{
DET_IDLE = Idling_array[a];
for(int i = 0; i<10; i++)
{
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Mean_Energy = 0;
Mean_Delay_Sum = 0;

CNRNG *rng_arr = new CNMT;
CNRNG *rng_ser = new CNMT;
//CNRNG *rng_set = new CNMT;
CNRNG *rng_prob = new CNMT;

rng_arr->seed(arrival_seed[i]);
rng_ser->seed(service_seed[i]);
//rng_set->seed(setup_seed[i]);
rng_prob->seed(prob_seed[i]);

CNNegExp rnd_a(1/lambda, rng_arr);
CNNegExp rnd_b(1/mu, rng_ser);
//CNNegExp rnd_s(SETUP, rng_set);
CNUniform rndP(0, 1, rng_prob);

Server server_farm[Num_of_Servers] = { Server(rnd_b, DET_IDLE),
Server(rnd_b, DET_IDLE),
Server(rnd_b, DET_IDLE),
Server(rnd_b, DET_IDLE),
Server(rnd_b, DET_IDLE),
Server(rnd_b, DET_IDLE),
Server(rnd_b, DET_IDLE),
Server(rnd_b, DET_IDLE),
Server(rnd_b, DET_IDLE),
Server(rnd_b, DET_IDLE) };

Generator generator(p, rndP, rnd_a, &server_farm);

CNEventScheduler scheduler;
scheduler.start(new CNEvent(EV_TIMER_G, &generator, 0.));

//Statistics calculation per simulation

for(int j = 0; j < Num_of_Servers; j++)
if((server_farm[j].t_workcycle).mean() != 0)

{
Mean_Delay_Sum = Mean_Delay_Sum + (server_farm[j].t_b).mean();

Mean_Energy = Mean_Energy +
(((server_farm[j].t_serving).mean()/
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(server_farm[j].t_workcycle).mean())*P_on +
((server_farm[j].t_setup).mean()/
(server_farm[j].t_workcycle).mean()) * P_on +
((server_farm[j].t_idling).mean()/
(server_farm[j].t_workcycle).mean()) * P_idle);

}

//Statistics collection for total energy and delay costs

total_energy_cost.put( Mean_Energy);
total_delay.put(Mean_Delay_Sum);

}

cout<<" "<<endl;
cout<<" "<<endl;

cout<<"****************************************************"<<endl;
cout<<"IDLING TIME: "<<DET_IDLE<<" SETUP TIME: "<<SETUP<<endl;
cout<<"MEAN TOTAL DELAY COST : "<<total_delay.mean()<<endl;
cout<<"MEAN TOTAL ENERGY COST : "<<total_energy_cost.mean()<<endl;
cout<<"TOTAL COST: "<<total_delay.mean() +

Beta * total_energy_cost.mean()<<endl;
cout<<"****************************************************"<<endl;
RandomResult.open("RandomResult.txt", ios::app);
RandomResult<<"{"<<DET_IDLE<<","<<total_delay.mean() +

Beta * total_energy_cost.mean()<<"},";
RandomResult.close();
}
RandomResult.open("RandomResult.txt", ios::app);
RandomResult<<"\nLOAD: "<<lambda/mu<<" SETUP: "<<SETUP<<endl;
RandomResult.close();
return 0;

}
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A.2 MRB-RND task assignment policy

class Generator : public CNEventHandler
{
private:

float prob;
CNUniform rnd_p; //routing probability
CNRandom &rnd_a; // Distribution of arrival time a
// Connected queue/server
Server (&server_farm)[Num_of_Servers];

CNSimTime MRB;
unsigned int temp;
int Index;
int state_flag;
long n;

public:
virtual void event_handler(const CNEvent *ev);
Generator(float pr, CNUniform rndP, CNRandom &rnd,
Server (*serv)[Num_of_Servers]) : prob(pr), rnd_p(rndP),
rnd_a(rnd), server_farm(*serv), MRB(0), temp(0), Index(0), state_flag(0),

n(0){}
};

void Generator::event_handler(const CNEvent *)
{

if(n == NJOBS)
// Stop simulation
return;

// Incoming event -> generate new Job
else
{

for(int j=0; j < Num_of_Servers; j++)
{

if(server_farm[j].STATUS == 3)
{

MRB = server_farm[j].Idling_Started;
state_flag = 1;
break;

}
}
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if(state_flag == 1) // MRB part
{

Index = 0;
for(int k = 0; k < Num_of_Servers; k++)

if( server_farm[k].STATUS ==3 &&
server_farm[k].Idling_Started >= MRB )

{
Index = k;
MRB = server_farm[k].Idling_Started;

}
send_now(new CNEvent(EV_JOB, &server_farm[Index], new CNJob));

}
else // Random part
{

Index = int( (Num_of_Servers) * rnd_p.draw() );
send_now(new CNEvent(EV_JOB, &server_farm[Index], new CNJob));

}
state_flag = 0;

}

// CNRandom delay
send_delay(new CNEvent(EV_TIMER_G), rnd_a());
n++;

}
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A.3 MRB-JSQ task assignment

class Generator : public CNEventHandler
{
private:

float prob;
CNUniform rnd_p; //routing probability
CNRandom &rnd_a; // Distribution of arrival time a
// Connected queue/server
Server (&server_farm)[Num_of_Servers];

CNSimTime MRB;
unsigned int temp;
int Index;
int state_flag;
long n;

public:
virtual void event_handler(const CNEvent *ev);
Generator(float pr, CNUniform rndP, CNRandom &rnd,
Server (*serv)[Num_of_Servers]) : prob(pr), rnd_p(rndP),
rnd_a(rnd), server_farm(*serv), MRB(0), temp(0), Index(0), state_flag(0),

n(0){}
};

void Generator::event_handler(const CNEvent *)
{

if(n == NJOBS)
// Stop simulation
return;

// Incoming event -> generate new Job
else
{

for(int j=0; j < Num_of_Servers; j++)
{

if(server_farm[j].STATUS == 3)
{

MRB = server_farm[j].Idling_Started;
state_flag = 1;
break;

}
}
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if(state_flag == 1) // MRB part
{

Index = 0;
for(int k = 0; k < Num_of_Servers; k++)

if( server_farm[k].STATUS ==3 &&
server_farm[k].Idling_Started >= MRB )

{
Index = k;
MRB = server_farm[k].Idling_Started;

}
send_now(new CNEvent(EV_JOB, &server_farm[Index], new CNJob));

}
else if(state_flag == 0)
{

temp = (server_farm[0].queue).length();
Index = 0;
for(int k = 0; k < Num_of_Servers; k++)

if((server_farm[k].queue).length() < temp)
{

Index = k;
temp = (server_farm[k].queue).length();

}

send_now(new CNEvent(EV_JOB, &server_farm[Index], new CNJob));
}
state_flag = 0;

}

send_delay(new CNEvent(EV_TIMER_G), rnd_a());
n++;

}
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A.4 BUSY/IDLE(t) with JSQ

int Idle_counter = 0;

enum { NJOBS=100000 }; // Limit for jobs to be processed

//event types
enum { EV_JOB, EV_TIMER_G, EV_TIMER_S, EV_TIMER_I, EV_TIMER_SET };

class Server : public CNEventHandler
{
private:

unsigned long ID; // Event ID
CNJob *job; // Served job
//ofstream Statistics;
//CNQueueFIFO queue; // CNQueue
CNRandom &rnd_b; // Distribution of service time b
//CNRandom &rnd_s; // Distribution of setup time s
int IDLE; // the threshold t, passed from main function (1 to 10)

int flag; // used between the SETUP and SERVING states
enum { ST_IDLING, ST_SERVING, ST_SETUP, ST_OFF };

public:
CNQueueFIFO queue;
virtual void event_handler(const CNEvent *ev);
void print_results();
void eval_job(CNJob *job);

CNMoments t_w, t_b; // Evaluation tau_w, tau_b
// mean time spent in each state: off, setup, serving and idle

CNMoments t_off, t_setup, t_serving, t_idling, t_workcycle;
// Used to capture the time at which a new workcycle is started

CNSimTime WorkCycle_Started;
//Used to capture the time at which a new idling perios is started
CNSimTime Idling_Started;
CNSimTime Setup_Started;
CNSimTime Serving_Started;
// Just to check completeness/correctness of work-cycle
CNSimTime Off_Started;
CNSimTime Setup_Temp;
// captures intermediate values in the busy period calculation
CNSimTime Serving_Temp;
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// captures intermediate values in the idle period calculation
CNSimTime Idling_Temp;
//CNSimTime Work_Cycle;
//state of server used in Generator(OFF=0,SETUP=1,SERVING=2,
//IDLING=3)
int STATUS;
int WC_Counter;
Server(CNRandom &rnd, int IDLE_n)

: job(NIL), rnd_b(rnd), IDLE(IDLE_n), flag(0), t_w("tau_w"),
t_b("tau_b"), t_off("Turned Off"), t_setup("Setup_Time"),
t_serving("Serving_Time"), t_idling("Idle_Time"),
t_workcycle("Work Cycle"), WorkCycle_Started(0),
Idling_Started(0), Setup_Started(0), Serving_Started(0),
Off_Started(0), Setup_Temp(0), Serving_Temp(0), Idling_Temp(0),
STATUS(0), WC_Counter(1)
{

state(ST_OFF);
}

};

class Generator : public CNEventHandler
{
private:

float prob;
CNUniform rnd_p; //routing probability
CNRandom &rnd_a; // Distribution of arrival time a
// Connected queue/server
Server (&server_farm)[Num_of_Servers];

CNSimTime MRB;
unsigned int temp;
int Index;
int state_flag;
long n;

public:
virtual void event_handler(const CNEvent *ev);
Generator(float pr, CNUniform rndP, CNRandom &rnd,
Server (*serv)[Num_of_Servers]) : prob(pr), rnd_p(rndP),
rnd_a(rnd), server_farm(*serv), MRB(0), temp(0), Index(0),
state_flag(0),
n(0){}

};

void Generator::event_handler(const CNEvent *)
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{
if(n == NJOBS)
{

for(int i=0; i < Num_of_Servers; i++)
{

server_farm[i].t_workcycle.put(now() -
server_farm[i].WorkCycle_Started);
server_farm[i].t_idling.put( server_farm[i].Idling_Temp);
server_farm[i].t_serving.put( server_farm[i].Serving_Temp);

}

// Stop simulation
return;

}

else
{

for(int j=0; j < Num_of_Servers; j++)
{

if(server_farm[j].STATUS == 3)
{

//cout<<server_farm[j].STATUS<<endl;
Index = j;
state_flag = 1;
break;
}
}

if(state_flag == 1)
{

send_now(new CNEvent(EV_JOB, &server_farm[Index], new CNJob));

}
else if(state_flag == 0)

{
temp = (server_farm[0].queue).length();
Index = 0;
for(int k = 0; k < Num_of_Servers; k++)

if((server_farm[k].queue).length() < temp)
{

Index = k;
temp = (server_farm[k].queue).length();

}

send_now(new CNEvent(EV_JOB, &server_farm[Index], new CNJob));
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}
state_flag = 0;

}

send_delay(new CNEvent(EV_TIMER_G), rnd_a());
n++;

}

void Server::event_handler(const CNEvent *ev)
{

switch(state())
{

case ST_OFF:

switch(ev->type())
{

case EV_JOB:
CNJob *job;
job = (CNJob *)ev->object();
job->in = now();
queue.put(job);
if(queue.length() == K)
{

t_off.put(now() - Off_Started);
Off_Started = 0;
send_delay(new CNEvent(EV_TIMER_SET), SETUP);
Setup_Started = now();
STATUS=1;
state(ST_SETUP);

}

else
state(ST_OFF);

break;

case EV_TIMER_I:
error("illegal event ’IDLING’ in state ST_OFF");

break;

case EV_TIMER_SET:
error("illegal event ’SETUP’ in state ST_OFF");

break;

default:
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error("illegal event in state ST_OFF");
break;

}
break;

case ST_SETUP:

switch(ev->type())
{

case EV_JOB:
CNJob *job;
job = (CNJob *)ev->object();
job->in = now();
queue.put(job);

break;

case EV_TIMER_SET: //Setup completed
flag = 1;
Setup_Temp = now() - Setup_Started;
Setup_Started = 0;
send_now(new CNEvent(EV_TIMER_S));
t_setup.put(Setup_Temp);

Serving_Started = now();
STATUS = 2;
state(ST_SERVING);

break;

case EV_TIMER_I:
error("illegal event ’IDLING’ in state ST_SETUP");

break;

case EV_TIMER_S:
error("illegal event ’IDLING’ in state ST_SETUP");

break;

default:
error("illegal event in state ST_SETUP");

break;
}

break;

case ST_SERVING:
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switch(ev->type())
{

case EV_JOB:
// Incoming job, put into queue

CNJob *job;
job = (CNJob *)ev->object();
job->in = now();
queue.put(job);

break;

case EV_TIMER_S:

// Timer event, service time run down
switch(flag)
{

case 0:
job->out = now();
// Evaluate job if transient is over
if(now() > 1000)
{

eval_job(job);
}
delete job;
job = NIL;

break;

case 1:
flag = 0;

break;

default:
error("incorrect value for flag");

break;
}

// Get new job from queue
if(!queue.empty())
{

job = (CNJob *)queue.get();
job->start = now();
// CNRandom service time
send_delay(new CNEvent(EV_TIMER_S), rnd_b());
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STATUS = 2;
state(ST_SERVING);

}

else if(queue.empty())
{

Serving_Temp = Serving_Temp +
(now() - Serving_Started);
Serving_Started = 0;
if(Idle_counter < IDLE)
{

Idle_counter++;
Idling_Started = now();
STATUS = 3;
state(ST_IDLING);

}

else
{

t_idling.put(Idling_Temp);
t_serving.put(Serving_Temp);
Idling_Temp = 0;
Serving_Temp = 0;
t_workcycle.put(now() - WorkCycle_Started);
Idling_Started = 0;
Idling_Temp = 0;
Serving_Temp = 0;
Setup_Temp = 0;
WorkCycle_Started = now();
Off_Started = now();
STATUS = 0;
state(ST_OFF);

}
}

break;

case EV_TIMER_I:
error("illegal event ’IDLING’ in state ST_SERVING");

break;

case EV_TIMER_SET:
error("illegal event ’SETUP’ in state ST_SERVING");

break;

default:



82

error("illegal event in state ST_SERVING");
break;

}

break;

case ST_IDLING:

switch(ev->type())
{

case EV_JOB:
// Incoming job
Idling_Temp = Idling_Temp + (now() - Idling_Started);
Idling_Started = 0;
Idle_counter--;
job = (CNJob *)ev->object();
job->in = now();
job->start = now();

// CNRandom service time
send_delay(new CNEvent(EV_TIMER_S), rnd_b());
Serving_Started = now();
STATUS = 2;
state(ST_SERVING);

break;

case EV_TIMER_S:
error("illegal event ’SERVING’ in state ST_IDLING");

break;

case EV_TIMER_SET:
error("illegal event ’SETUP’ in state ST_IDLING");

break;

default:
error("illegal event in state ST_IDLING");

break;
}

break;

default:
error("illegal state");

break;
}

}


	Abstract
	Acknowledgement
	Contents
	Abbreviations
	Introduction
	Problem Formulation
	System Model
	Server Control Policy
	Task Assignment Policies

	Outline of the thesis

	Background
	Technological background
	Data Center Architecture
	Energy-aware system level designs

	Server farms: calculating energy consumption
	Theoretical background
	Markov processes
	Birth-death processes
	The M/M/1 queue
	The M/G/1 queue
	Renewal theory and regenerative processes


	Literature review
	Cost Models
	Queuing Models
	Single Server Models
	Multiple server models with a central queue
	Multiple server models with parallel queues


	Analysis of the turn-on threshold and idling time policy
	System Model
	Notation

	 {M/M/1}{M/M/k} system
	Optimization with respect to the threshold and idling time values

	 {M/G/1}{G/G/k} system
	Optimization with deterministic setup time

	The impact of resetting idling time
	Exponentially distributed idling time
	Deterministic idling time
	Optimization of a {M/G/1}{D/D/k} system

	{M/G/1}{G/G/k} conclusions

	Task Assignment Policies
	Random Routing (RND)
	Join Shortest Queue (JSQ)
	Most Recently Busy Routing (MRB)

	Numerical results
	Single server system
	BUSY/IDLE vs BUSY/OFF
	Pareto optimization

	Two servers with random task assignment
	Optimization with respect to k and p

	Multiserver system

	Conclusion
	Future work

	Simulation code
	Random task assignment
	MRB-RND task assignment policy
	MRB-JSQ task assignment
	BUSY/IDLE(t) with JSQ


