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The purpose of this thesis is to present the current needs and practices of additive 

manufacturing in the Finnish industry. To obtain the necessary information, a survey of 

eight companies was carried out. An introduction to additive manufacturing and its 

applications is given to give the reader a better understanding of the survey.  

A survey was designed and the process explained. The main tool, the questionnaire, 

was chosen to be the best option to conduct the survey and was designed to consist of a 

combination of open questions and scale questions. The questionnaire was presented to 

eight companies of varying size in the research and development industry. Fifteen 

people from these companies were chosen for the survey.  

All of the qualitative answers were analytically quantified and expanded upon. The 

findings of the survey were compared to the findings of other worldwide reports.  

The results obtained through this study include data regarding familiarity of AM 

technologies, ownership of machinery, outsourcing practices, and general perception of 

AM in Finnish companies.  

It was found that while the Finnish industry is somewhat lagging behind on some fronts 

of AM usage, the trend is showing that AM is becoming more widely understood and 

its usage in more advanced applications is on the rise. 

Keywords: Additive Manufacturing, Rapid Prototyping, Rapid Tooling, Rapid 

Manufacturing, Industry Survey 
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Tämän työn tarkoituksena on esittää Suomen teollisuuden nykytarpeet ja käytännöt 

materiaalia lisäävään valmistukseen liittyen. Työssä suoritettiin haastattelututkimus 

kahdeksassa yrityksessä vaaditun tiedon saamista varten. Työssä annetaan lyhyt 

johdatus materiaalia lisäävään valmistukseen tutkimuksen parempaa ymmärtämistä 

varten.  

Haastattelututkimus kehitettiin ja prosessi selitettiin. Pääasiallinen työkalu 

tutkimuksessa, kyselykaavake, valittiin parhaaksi tavaksi suorittaa tutkimus. 

Kyselykaavakkeeseen sisällytettiin avoimia kysymyksiä ja skaalakysymyksiä. Kysely 

suoritettiin kahdeksassa erikokoisessa tuotekehitysyrityksessä. Viisitoista ihmistä 

valittiin haastateltaviksi.  

Kaikki kvalitatiiviset vastaukset kvantifioitiin analyyttisesti. Tutkimuksen tuloksia 

verrattiin muihin maailmalla suoritettuihin tutkimuksiin. Tutkimuksen tulokset 

sisältävät tietoa suomalaisen teollisuuden AM-tekniikoiden tuntemuksesta, koneiden 

omistamisesta, ulkoistamiskäytännöistä, sekä yleisistä käsityksistä liittyen AM-

tekniikoihin. Tutkimuksesta ilmeni, että Suomi on jonkin verran muuta maailmaa 

jäljessä AM-tekniikoiden omaksumisessa, mutta trendi osoittaa, että adoptio on 

käynnissä ja kehittyneempien sovellutusten käyttö on nousussa. 

Avainsanat: Materiaalia lisäävä valmistus, Rapid Prototyping, Rapid Tooling, Rapid 

Manufacturing, teollisuuskysely 
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1 Introduction 
 

Additive manufacturing (AM) is a group of technologies that create physical objects 

using digital files containing a three-dimensional representation of parts without the use 

of traditional molding techniques. All AM technologies produce parts by constructing 

them layer by layer, but they can be divided into seven categories of processes, each 

using different materials and a unique way of producing the layers. [1] 

The invention of the first viable AM process, stereolithography, is credited to Charles 

W. Hull in 1986. Using that as a reference point AM technology is 27 years old at the 

time of writing, making it a relatively young technology. During the past decades AM 

has improved significantly from the state it was in at the beginning of its lifespan. In the 

past, using AM was only possible with polymer based materials, whereas now 

producing parts out of metallic and ceramic materials is possible. [2] 

Until the developments in the last decade, AM was considered a technology used 

exclusively for rapid prototyping (RP), causing it to be named after the application. 

Nowadays AM is not limited to producing prototypes but can also be employed in 

tooling purposes (rapid tooling, RT) and in direct part manufacturing (rapid 

manufacturing, RM). This development is important because it allows for a far wider 

range of applications for AM, and it is important that companies recognize these 

advancements. [1] 

The biggest technical challenges of AM are limited speed, accuracy, nonlinearity, build 

volume and cost. Due to these reasons, conventional manufacturing is more efficient in 

high volume production. In low level parts with high geometrical complexity, 

nevertheless, AM is rapidly gaining prominence as companies such as NASA, Boeing 

and Renault are starting to use it on a large scale [2]. Apart from speed, reasons to use 

AM are generally divided into four categories, which are user-fit requirement, improved 

functionality, parts consolidation, and aesthetics [3]. To use the full potential of AM, the 



2 

 

 

parts that are created using AM technology should be designed according to a new set 

of restrictions and possibilities. One such possibility is the geometrical optimization of 

parts from the perspective of stress distribution [4]. An example of AM usage is a re-

engineered latch that allows for tighter installation and optimized geometries, shown in 

Figure 1.  

 

 

Figure 1: Traditionally manufactured latch on top. Latch re-engineered for AM at bottom. [5] 

 

The goal of this thesis is to map out the extensity of the use of additive manufacturing 

(AM) in different sectors of the Finnish industry and compare them to that of other 

countries. Additionally, this thesis will evaluate the progress of the spreading of AM 

and provide guidelines to further speed up its creep. Global state of the art reviews are 

done on a yearly basis by several research centers [6]. However, the country specific 

information they provide is not extensive and commonly focuses on AM technology 

development companies and research centers. In order to review the actual use of AM, a 

survey consisting of a series of interviews was conducted. Eight Finnish companies 

were interviewed and the results were consolidated in order to preserve the non-

disclosure agreements.  
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A variety of factors were investigated in order to get a clear view of the current usage of 

AM. The ownership of machinery was looked into and reasons for owning and 

operating certain machinery in a certain way was examined. Reasons and criteria for 

outsourcing AM services were looked into.  
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2 Overview of Additive Manufacturing technologies 
 

Additive manufacturing is a term used to describe the technologies, process and use that 

makes possible the rapid production of parts from digital data. Using AM eliminates or 

radically diminishes the importance of pre-production planning and depending on the 

application reduces R&D cycle time or improves performance of the final product [1].  

While all AM technologies follow the same concept of delivering parts without the need 

of tooling, they differ from each other and are classified according to an ASTM 

standard. All of the technologies also have different characteristics that limit their use to 

different applications. The applications in the industry can be divided into three rough 

categories: rapid prototyping, rapid tooling, and rapid manufacturing, each divisible into 

subcategories. The need to divide the technologies into classes and the applications into 

categories is not solely academic. Companies rely on these denominations when 

considering adopting AM technology and when looking to produce a certain part. [7] 

The distribution of AM usage by industrial sectors is provided in Figure 2. 
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Figure 2: AM usage by industrial sector [6] 

 

Motor vehicles, aerospace, industrial/business machines, and consumer 

products/electronics amount to a total of 64% of all AM usage. This thesis will 

primarily focus on investigating the needs and practices of the industrial/business 

machines and consumer products/electronics sectors which together cover 35.2% of AM 

usage. 
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3 Classifications of AM 
 

Even though all of the current AM technologies produce parts by constructing one 

cross-section at a time, their work principle varies. The range of the way of producing 

layers on top of each other varies from using lasers to melt plastic powder to cutting and 

gluing sheets of paper. This has an effect on the main attributes of parts manufactured 

with additive manufacturing: size, cost, accuracy, and material. The technologies can be 

divided into classes according to their technical processes or according to their 

applications. [8] 

 

3.1 Classification of technologies 
 

The technical terminology of AM technologies has been standardized by dividing them 

into seven different categories. These categories are binder jetting, directed energy 

deposition, material extrusion, material jetting, powder bed fusion, sheet lamination, 

and vat photopolymerization [9].  

A short description of the seven categories is given in this chapter and the most 

common technologies associated with the categories are presented in table 1. 
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Table 1: Classification of AM technologies 

Technology Category 

Three Dimensional Printing (3DP) Binder jetting 

Laser-Engineered Net Shaping (LENS) Direct energy deposition 

Fused Deposition Modeling (FDM) Material extrusion 

Polyjet Material jetting 

Selective Laser Sintering (SLS) Powder bed fusion 

Selective Laser Melting (SLM) Powder bed fusion 

Electron Beam Melting (EBM) Powder bed fusion 

Selective Heat Sintering (SHS) Powder bed fusion 

Laminated Object Manufacturing (LOM) Sheet Lamination 

Stereolithography (SL) Vat photopolymerization 

Digital Light Processing (DLP) Vat photopolymerization 

 

The most common technology used by service providers worldwide is stereolithography 

(SL), the second most common is Fused Deposition Modeling (FDM) and third most 

common is Selective Laser Sintering (SLS) [6]. In order to better introduce the general 

idea of how AM technologies work and how severely they differ from each other, a 

description of each process is given, advantages and disadvantages are discussed and 

material choices presented. 

 

3.1.1 Binder jetting 
 

Binder jetting is a powder based process in which a liquid bonding agent is deposited 

according to the cross-section of an object [9]. Although most commonly used with 

gypsum, sand and metallic materials are also used. In the case of plastics a layer of 

colored ink can be deposited on top of the each powder to give the part a colored outer 

shell. When using binder jetting technologies that allow the use of metallic materials, 
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the final part needs to be sintered and infiltrated with another metal for the part to be 

durable. The commercial name for binder jetting is 3D Printing (3DP). [1] 

 

3.1.2 Direct energy deposition 
 

Direct energy deposition is a metallic process closely associated with welding. A stream 

of metallic powder or metallic wire is projected onto a pre-existing object and a heat 

source is used to melt the powder on top of it [9]. The most notable commercial brands 

using this approach include direct metal deposition (DMD), laser consolidation (LC), 

and laser-engineered net shaping (LENS) [1]. 

 

3.1.3 Material extrusion 
 

Material extrusion is an approach that melts solid material and extrudes it selectively 

onto an x-y plane [9]. As this type of technology has the largest installed base of AM 

machines, its working principle is explained in detail through commercial brands. 

Fused deposition modeling (FDM), or fused filament fabrication (FFF), is a material 

extrusion technology which uses filaments of plastics to extrude layers in order to create 

parts. An FDM or FFF process set-up consists of a movable build platform, extrusion 

nozzles, and a build material spool. 

Filament material is fed from the build material spool to the heated extrusion nozzles 

which proceed to melt the material on extrude it onto the build platform in the form of a 

2D cross-section of a part. If the machine is equipped with multiple nozzles, the 

secondary nozzle can extrude support material on the same layer. Once the layer is 

done, the build platform is lowered by the thickness of one layer, and the extrusion 

nozzles continue building the second layer.  
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Once all layers of the part are done, the part is removed from the machine. Post 

processing in FDM or FFF only requires the user to submerge the part in an ultrasonic 

bath to remove the water soluble support material. A variety of optional post processing 

methods exist for the technology, such as using acetone vapor to smooth the part from 

the outside [2]. A schematic of the set-up of and FDM or FFF machine is presented in 

Figure 3.  

 

 

Figure 3: A schematic of an FDM or FFF set-up [10] 

 

FDM or FFF technology ranges from very low end machines to high end machines. The 

technology operates in an open air environment which requires it to use supports in 
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order to build parts with overhang structures. The ease of the post processing is one of 

its advantages as it is completely hands-off. The materials for FDM or FFF include 

plastics such as ABS, PLA, PC, Nylon, HDPE, and PCL. [2] 

  

3.1.4 Material jetting 
 

Material jetting is based on selectively depositing droplets of ultraviolet-curable 

materials on a plane and subsequently curing them with ultraviolet light [9]. The 

materials compatible with the technology are photopolymers and wax-like materials. 

The commercial brands that use this approach are PolyJet and multi-jet modeling 

(MJM) [1]. 

 

3.1.5 Powder bed fusion 
 

Powder bed fusion works on the principle of selectively focusing energy on a cross-

section of powder to bind it together [9]. Powder bed fusion technologies represent 

some of the most widely spread technologies and is explained in detail through the 

commercial brand selective laser sintering (SLS). 

Selective laser sintering (SLS) is a powder bed fusion process in which plastic powder 

is sintered by a laser and bound to the layers of material below it. An SLS process 

consists of two or three chambers, one of which is the build chamber and one or two are 

powder supply chambers, pistons to raise or lower the powder in the chamber, a 

leveling roller or blade, lenses, and a scanning mirror. [2] 

At the beginning of the process the build chamber is empty and the powder feed 

supplies are full. The process starts by moving one of the feed pistons up by a distance 

that is equivalent to the desired thickness of one layer in the final part and lowering the 
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build piston an equal distance. A leveling roller or a blade moves from behind the 

elevated powder supply chamber, spreads the powder evenly on the build chamber and 

positions itself either behind the second powder supply or returns to the original 

position depending on the machine. A laser then activates and projects a beam into the 

lens system, which focuses the beam and sends it to the mirror which in its part projects 

the beam onto the build chamber surface and traces a cross-section of a part. Once the 

process reaches this stage the laser de-activates, the pistons move in their intended 

directions and the work starts on a new layer. This process is continued until all layers 

of the part are produced. Once the part is ready it is removed from the machine and all 

excess powder removed. [1] 

SLS is capable of using nylon 11 and nylon 12 powders and PEEK. Composites of 

nylon materials are created for the process by mixing the nylon with other powders such 

as glass, carbon, or aluminum. One of the most notable advantages of SLS is the fact 

that due to the part being surrounded by powder it does not need support structures. 

This allows for a greater degree of freedom in designing objects [11]. SLS is also the 

best technology to be used in order to produce parts with moving features, including 

joints [12]. The set-up of an SLS machine is presented in Figure 4. 
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Figure 4: A schematic of an SLS set-up [13]  

 

Other commercial brands based on powder bed fusion include selective laser melting 

(SLM), direct metal laser sintering (DMLS), electron beam melting (EBM) and 

selective heat sintering (SHS). SLM and DMLS work in the general same way as SLS 

but replace the carbon dioxide laser with an ytterbium fiber laser and work in an inert 

gas-filled environment which allows it to melt metallic powders. EBM follows the same 

concept but replaces the laser with an electron beam and the gas environment with a 

vacuum. SHS is very similar to SLS but replaces the laser with a heat thermal print head 

in order to lower the cost of the process. Parts produced with a powder bed fusion 

method require extensive post processing in the form of machining and placing the part 

in a furnace. [6] 
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3.1.6 Sheet lamination 
 

Sheet lamination is a method of AM in which sheets of material are placed on top of 

each other and bonded together [9]. This can be achieved by preparing the cross-

sections beforehand and stacking them or by stacking layers of material first and cutting 

a contour of a cross-section of the part on each layer. Notable commercial brands using 

this method are laminated object manufacturing (LOM) using paper, and ultrasonic 

additive manufacturing (UAM) using metal tapes and foils. [6] 

 

3.1.7 Vat photopolymerization 
 

Vat photopolymerization is a process in which liquid photopolymer in a vat is 

selectively cured by light-activated polymerization [9]. Stereolithography (SL) is a vat 

photopolymerization process in which a laser is used to cure photopolymer resin to for 

solid parts. The process set-up consists of a vat, a build platform, an elevator, a sweeper, 

a laser, lenses, and a scanning mirror. In some variations of the process, the elevator is 

replaced with a piston underneath the build platform.  

The build platform is lowered into the vat and the sweeper deposits photopolymer resin 

across the platform in the thickness of one layer of the final part. A laser then activates 

and sends a beam to be focused by the lenses and from there to a mirror that scans a 2D 

cross-section of the part.  

Once the layer is done, the laser de-activates, the build platform is lowered by the 

thickness of one layer, and the process starts again by adding more photopolymer resin. 

After all layers have been finished the build platform is raised and the part taken out of 

the machine. Stereolithography requires post processing in which the part is first 

submerged into a chemical bath to remove excess resin and then placed in an ultraviolet 

oven to cure it further. [1] 
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The schematic of the process of stereolithography is presented in Figure 5: 

 

Figure 5: Sterelithography process schematic [14] 

 

Stereolithography is one of the most accurate technologies available and it allows layer 

thicknesses as low as 0.05 mm. As the resin cannot physically support solidified parts of 

the build, support structures are needed for overhanging features. Stereolithography is 

one of the faster technologies but is also one of the more expensive ones. Materials used 

for stereolithography are proprietary resins manufactured exclusively for the process 

and varying in attributes from strength to flexibility. [15] 
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3.2 Classification of applications of AM in the industry 
 

Industrial applications of AM are generally divided into three categories: rapid 

prototyping (RP), rapid tooling (RT) and rapid manufacturing (RM). It should be noted 

that the classification of applications in this chapter only applies in industrial use and 

that it does not fit the applications in the medical field. [16] 

 

3.2.1 Rapid prototyping 
 

Prototyping is the action of producing an approximation of a product. A prototype can 

be analytical, digital, or physical. The scale of a prototype can be defined by its 

dimensions of interest which are singular features that are in the need to be examined 

and iterated before finalizing the product. In the field of product development and R&D 

it is common to create two separate prototypes, one which looks like the final product 

and one that works like the final product. [17] 

Rapid prototyping is producing a physical representation of an object in a manner that is 

rapid compared to conventional manufacturing. RP is mostly used in R&D where it 

serves to increase the iteration speed and produce tangible prototypes for verification of 

feel and proportion. [18] 

RP can be divided into visual prototyping and functional prototyping.  Visual 

prototyping entails using AM to produce parts solely for visual and limited tangible 

examination to physically present the design attributes such as dimensions. In functional 

prototyping a part is created to showcase its functionality. Assembly tests can be 

performed on both prototyping categories although functional prototypes tend to be 

more accurate. Visual prototypes typically do not contain moving parts whereas 

functional prototypes do. [6] 
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3.2.2 Rapid tooling 
 

Rapid tooling (RT) can be divided into indirect tooling and direct tooling. In indirect 

tooling a mold is manufactured using a master created using AM. An example of 

indirect tooling is investment casting. In direct tooling a tool is created directly using 

AM. An example of direct tooling is conformal cooling used widely in plastic injection 

molds to improve the geometry of cooling channels. [16] 

Conformal cooling is a method of creating cooling channels in a way that is challenging 

or impossible with traditional machining. Commonly, the cooling channels take the 

form of a spiral or, as the name suggests, conform to the shape of the object itself [19]. 

Traditionally cooling channels have to be created by drilling or boring, which means 

that the channels have to all be straight and in some designs the excess holes have to be 

plugged as shown in Figure 6.  

  

Figure 6: Traditional cooling channels in an injection mold. [20] 
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Conformal cooling can be used either in parts themselves, as shown in the example in 

Figure 7, or it can be used in production molds, as shown in Figure 8. 

 

Figure 7: Conformal cooling in a part. [21] 

 

   

Figure 8: Conformal cooling in an injection molding mold. [20] 

 

Silicone molding is an indirect method for producing low volume batches of silicone 

parts using AM. In silicone molding a master model is created using vat 

photopolymerization, which is post processed to achieve the required surface finish. 
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Liquid room temperature vulcanizing silicone (RTV silicone) is then poured on top of 

the master model and left to cure. Once cured, the silicone mold is split in half and is 

then ready to be used as a low volume injection mold. [22] 

The process of direct mold tooling includes creating a two-part negative mold directly 

with a sufficiently accurate technology, such as vat photopolymerization, post 

processing to achieve the desired surface properties, pouring liquid silicone inside the 

mold and closing it for curing. This process creates silicone parts. Using processes 

capable of producing metallic parts, metallic injection molds can be manufactured 

directly using AM. [23] Sand molds are possible to manufacture using binder jetting 

AM technologies [24]. Figure 9 demonstrates direct mold tooling.  

 

 

Figure 9: Direct mold tooling. [25] 

 

Investment casting is used in conjunction with AM to create metal parts with minimal 

molding. The process includes using a master created with AM using materials of low 

ash content such as wax and certain plastics. [26] The master is coated with ceramic 

slurry, gas exhaust channels added, and after a period of drying the master is burned out 

leaving a hollow ceramic shell to cast liquid metal into. After the casting, the shell is 
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cracked and excess material removed from the part by machining. [24] Figure 10 

demonstrates the process of investment casting.  

 

 

Figure 10: Investment casting. [27] 

 

3.2.3 Rapid manufacturing 
 

Rapid manufacturing (RM), also referred to as direct part production (DPP) and direct 

manufacturing (DM), is creating the part directly for end use using AM. Depending on 

the needs of the user, plastics or metals are used. In order to achieve the quality of a 

finished product, extensive post processing is usually required. In 2012 the share of 

direct part production was 28.3% which is a considerable percentage compared to 3.9% 

it was in 2003. While in the medical industry producing parts with AM is 

commonplace, it has only niche applications in the industry. [6] [28] 

 



20 

 

 

3.3 Previous surveys on AM 
 

In order to accurately assess the needs and practices of the Finnish industry it was 

essential to take a look at past research done in the field. The most relevant reports to 

this thesis were Wohlers report 2013 [6], Selvitys 3D-tulostuksen tilanteesta Suomessa 

[29], and Thinking ahead the Future of Additive Manufacturing [30]. 

 

3.3.1 “Wohlers report 2013”, 2013 
 

Wohlers 2013 conducted a survey on 74 service providers from 19 different countries, 

the closest one to Finland being Sweden. Additionally, Wohlers report 2013 contains 

state of the art reports from 23 countries written by AM experts from each country. 

Such information would prove useful for this thesis but it is unfortunately provided on a 

very large scale without going into details. The report contains information on the 

distribution of AM usage. This information is presented in Figure 11. 

 

Figure 11: distribution of AM usage. [6] 
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As can be seen from Figure 11 functional part production is at 28.1%, tooling 

components at 4.8%, patterns for prototype tooling at 11.3%, patterns for metal castings 

10.8%, fit and assembly 17.5%, presentation models 9.5%, visual aids 10.4%, education 

and research at 6.4%, and other uses at 1.3%.  

In order for this information to be relevant to the thesis, it needed to be formatted to 

correspond with the RP/RT/RM model presented earlier. Presentation models and fit 

and assembly can be seen to be rapid prototyping. Patterns for prototype tooling and 

metal castings and tooling components are rapid tooling and functional part production 

translates well into direct manufacturing. Taking this into consideration and leaving out 

educational and other use, the distribution of RP/RT/RM of AM according to Wohlers 

is shown in Figure 12. 

 

Figure 12: Distribution of applications of AM formatted in RP/RT/RM. 

 

Transformed into the RP/RT/RM format the distribution of applications according to 
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The data in the Wohlers report regarding the distribution of technologies employed by 

service providers is presented in Figure 13. 

 

Figure 13: Share of technologies used by service providers worldwide [6] 

 

Vat photopolymerization and powder bed fusion form a 61.3% share of all AM 

technologies used by AM companies. Using powder bed fusion processes such as SLS 

has many advantages for service providers that include high process stability, high 

accuracy, relatively low cost of material, and easy post processing. The large share of 

vat photopolymerization can be partially explained by the accuracy of the process and a 

large material library available for stereolithography but it should be noted that while 

stereolithography has currently the largest install base, it is in a steady decline. [6] 
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3.3.2 “An investigation of the state of the industry of 3D 
printing in Finland”, 2011 
 

In 2011 Oulu University of Applied Sciences released the thesis work of Jarkko 

Lohilahti with the topic of “Selvitys 3D-tulostamisen tilanteesta Suomessa” which 

translates to “An investigation of the state of the industry of 3D printing in Finland”. 

The goal of the thesis was to map out the AM service providers of the Oulu region and 

compare them to the service of Oulu PMC. Another goal of the thesis was to find a 

preparative way to monetize 3D printing and to create a draft of marketing material. The 

thesis compared five service providers including Oulu PMC. Financial information of 

the service providers was provided. A grading system was created to include evaluation 

of the web pages, marketing, machinery, utilization time and turnover of the service 

providers. No surveys were conducted that included the personnel of the service 

providers or industrial companies. [29] 

 

3.3.3 “Thinking ahead the Future of Additive Manufacturing”, 2013 
 

The Direct Manufacturing Research Center (DMRC) of the University of Paderborn 

released a study concerning the future prospects of AM. Two surveys were conducted 

for the study. The first survey was conducted on 325 experts in the field. The survey 

was completed by 56 of the experts amounting to a 17% response rate. The survey 

consisted of four parts; the first one addressing the professional background of the 

experts, the second asking the experts to assess multiple general requirements for AM, 

the third asking more specific questions concerning AM technologies, and the fourth 

outlining final statements of the experts.  

According to the results, 41% of the respondents were users but no distinction was 

made between service providers and industrial companies. It is indicated in the report 
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that 77.3% of the users used AM for direct manufacturing, 72.7% for rapid prototyping, 

54.5% for rapid tooling, and 4.5% for other purposes. Direct manufacturing is another 

term for rapid manufacturing. These figures are different compared to the ones in 

Wohlers report which can be explained by the fact that multiple choices were allowed in 

this questionnaire. These results are presented in Figure 14. 

 

 

Figure 14: Percentage of users using certain applications [30] 

 

According to the study, the experts valued high process stability, databases containing 

material properties, quality control processes, continuous certification, design rules, 

recyclability of materials, possibility to use carbon-fiber-reinforced polymers, fire 

resistance of AM materials, larger build chamber volumes, faster build speeds, better 

surface quality, higher dimensional accuracy, and lower maintenance costs. A large 

portion of the study focused on expert opinions on the future development of powder 

bed fusion processes. 
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The second survey was conducted on 395 experts out of which 75 answered which gave 

a 19% answer rate. In this study 50% of the respondents identified as users. This time 

78.6% of the users reported to be using direct manufacturing, 64.3% rapid prototyping, 

31.4% rapid tooling and 15.7% reported to be using AM for other purposes. While the 

amount of participants using direct manufacturing and rapid prototyping stayed roughly 

the same, the amount of participants using rapid tooling had declined by 23.1% and the 

amount of users using AM for other purposes rose by 18.6%. [30] 

 

3.3.4 “AM in South Africa: building on the foundations”, 2011 
 

In 2011 Ian Campbell, Deon de Beer and Eujin Pei from the Vaal University of 

Technology, Vanderbijlpark, South Africa, released an article in rapid prototyping 

journal concerning the state of the industry of AM in South Africa.  

The report states that South Africa had an install base of 138 AM machines at the time 

of writing of the report. Out of the 138 machines, 120 were low end FDM machines and 

18 unspecified high end AM machines. The report also states that 91% of the machines 

in the industry were low end FDM machines and 82% of the machines in universities 

and research centers were high end machines. [31]   
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4 Assessing the needs and practices of AM in the 
industry 
 

In order to understand the needs and practices of AM in the Finnish industry, an 

investigation into the steps required to run a survey was conducted. Appropriate works 

of literature were chosen as guides. 

The five stages in the development and completion of a survey according to Ronald 

Czaja [32] are the following: 

1. Survey design and preliminary planning 

2. Pretesting 

3. Final survey design and planning 

4. Data collection 

5. Data coding, data-file construction, analysis, and final report 

These first part of the process, designing the survey and planning its execution, includes 

going through the goals and methods of the survey, determining who and how many 

companies and people were to be surveyed, looking into available resources,  designing 

the questionnaire, and preparing guidelines to analyze the data. 

 

4.1 Goals 
 

The goal of the assessment was to find out how and how much the Finnish industry was 

using AM and what lead them to specific choices. The points of interest outlined for this 

goal are the following. 

- Mapping out how well different AM technologies are known and how they are 

being utilized 
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- Understanding how companies procure machinery, what machines they have, 

and how they use them 

- Understanding company practices in outsourcing, how much of their AM 

activity is outsourced, and what are the reasons behind this 

- Acquiring a hypothetical link between ownership of machinery and outsourcing 

of AM activity through the means of finding general information concerning 

both. 

 

4.2 Determining sampling decisions 
 

As it was not viable to investigate every single company in Finland to determine how 

they are using AM or if they are using AM at all, a decision had to be made to narrow 

down the list of companies to those that potentially use AM. The first criterion for being 

accepted to the list of potentially surveyed companies was that they should be in one of 

the fields cited as users of AM in Wohlers report 2013 which meant that companies in 

the following fields qualified: 

• Motor vehicles 

• Aerospace 

• Industrial/business machines 

• Consumer products/electronics 

• Medical/dental 

• Academic institutions 

• Government/military 

• Architectural 

Because the goal of the survey is to find out how AM is used for industrial purposes in 

Finland, a second criterion was put into place demanding that the companies must be 

industrial, leaving the following fields as acceptable categories for companies to survey: 
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• Motor vehicles 

• Aerospace 

• Industrial/business machines 

• Consumer products/electronics 

Keeping the two criteria in mind, AM experts were consulted on which companies 

would fit the profile. The list of potential companies consisted initially of 28 companies, 

of which eight agreed to be interviewed, which gives a reply rate of 29% which is 

slightly higher than the 19% response rate cited in University of Paderborn’s survey. [6] 

[30] 

The hesitant approach of the companies is explained through a variety of reasons. Most 

of the companies did not agree to be interviewed because of their lack usage of AM. 

Some companies refused to participate on the grounds that their practices in usage of 

AM are sensitive. Others declined citing lack of time.  

The remaining eight consisted of both small and medium-large companies. The majority 

of the companies were in the field of consumer products and electronics and the rest 

were in the field of industrial and business machines. No companies from the motor 

vehicles and aerospace fields chose to participate. 

 

4.3 Choice of interviewees 
 

The interviewees within the companies were chosen on the grounds of being close to 

the usage of AM or being decision makers regarding the technologies in use. Fifteen 

employees spread as evenly as possible between the companies were chosen to be 

interviewed. Among occupations of the interviewees were machine operators, 

production managers, project managers, industrial designers, CAD specialists, and 

CEOs.  
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4.4 Determining available resources 
 

In order to properly plan the scope of the survey an evaluation of available resources 

was necessary. The resources needed to conduct the survey were the amount of people 

working on the survey, the cost of conducting the survey, and the duration of time until 

the survey had to be done. The staff of the survey consisted of a master’s thesis worker 

whose salary was covered by the budget of the survey, and the duration of time until 

delivering final results was five months. 

 

4.5 Questionnaire 
 

One of the most important decisions to make when constructing a questionnaire is to 

decide whether to make the questions open-ended or closed-ended, which roughly 

correspond with qualitative and quantitative methods. The United States department of 

energy uses the comparison chart shown in Table 2 to determine how their surveys 

should be structured.  
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Table 2: Qualitative/quantitative comparison chart [33] 

Qualitative Methods Quantitative Methods 
Methods include focus groups, in-depth 

interviews, and reviews 
Surveys 

Primarily inductive process used to 

formulate theory 
Primarily deductive process used to test 

pre-specified concepts, constructs, and 

hypotheses that make up a theory 
More subjective: describes a problem or 

condition from the point of view of those 

experiencing it 

More objective: provides observed 

effects (interpreted by researchers) of a 

program on a problem or condition  
Text-based  Number-based  
More in-depth information on a few 

cases  
Less in-depth but more breadth of 

information across a large number of 

cases  
Unstructured or semi-structured 

response options  
Fixed response options  

No statistical tests  Statistical tests are used for analysis 
Can be valid and reliable: largely 

depends on skill and rigor of the 

researcher 

Can be valid and reliable: largely 

depends on the measurement device or 

instrument used 
Time expenditure lighter on the 

planning end and heavier during the 

analysis phase  

Time expenditure heavier on the 

planning phase and lighter on the 

analysis phase  
Less generalizable  More generalizable  
 

While quantitative methods are more objective, cover a large number of cases, and are 

more generalizable, qualitative methods provide more in-depth information. 

In order to produce results that are easily comparable to each other and scientifically 

valid, the method of data acquisition had to be of a quantitative nature. However, many 

of the goals were too ambiguous to be answered with a closed-ended question. 
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As a result of evaluation between different types of assessment methods, a multi-part 

questionnaire consisting of both qualitative and quantitative questions was devised in 

order to gather data. The qualitative answers would then be converted into quantitative 

data. Because of the fact that the resulting questionnaire contained open-ended 

questions, the best approach was seen to be a personal interview with each interviewee. 

This approach consumes more time in the data gathering and analysis stages but as there 

were enough resources it was deemed acceptable. 

Questionnaires are typically organized into sections that follow the logic of the pursuit 

of the survey’s goal. [32] The questionnaire was made to consist of five parts. The first 

and fifth parts were completely quantitative and second, third, and fourth part contained 

multiple qualitative questions. Each interview lasted between an hour and two hours. 

The introductory first part consisted of assessing how familiar the interviewee was with 

certain technology brands. This was deemed to be a good way to introduce the 

interviewee to the goals of the survey and to make them more inclined to give more 

straightforward answers in the content heavier parts of the interview. The familiarity of 

technology brands was graded in binary. The technology brands examined were: 

• Three dimensional printing  

• Laser cladding 

• Fused deposition modeling  

• PolyJet 

• Selective laser sintering  

• Selective laser melting 

• Electron beam melting  

• Selective heat sintering  

• Laminated object manufacturing  

• Stereolithography 

• Digital light processing 
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The second part focused on the ownership of machinery inside the company and 

consisted of the following questions: 

1. Do you own AM machinery? 

a. Which technologies/machines do you own? 

b. On what grounds were they chosen? 

2. Who operates the machinery? 

3. What are the practices of maintenance of the machines and are the machines 

upgraded? 

4. How high is the utilization rate of the machines? 

The third part focused on the outsourcing of AM parts and consisted of the following 

questions: 

1. Do you outsource manufacturing of AM parts? 

2. Could a part of the manipulation of CAD parts be outsourced? 

3. How secret are the CAD files? 

4. How is it decided what to outsource? 

5. Is secrecy a deciding factor in outsourcing? 

6. Is quality assurance carried out on the outsourced parts? 

7. Are the costs of outsourced parts monitored? 

8. Are there technologies that the company would like to use but the investment 

costs are too high? 

9. Is there a need to use a certain technology but they are not available? 

The fourth part focused on information relevant to both outsourcing and producing parts 

in-house and contained the following questions: 

1. How fast do you receive parts from the moment you have a finished CAD file 

and intend to print it or outsource it? 

a. Less than a day 

b. Approximately a day 

c. Multiple days 
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d. Approximately a week 

2. Is there a need to shorten this time or is a slower time acceptable? 

3. In which distribution do you use RP/RT/RM? 

The fifth part examined the perceived importance of different factors related to AM, 

which were: 

1. Receiving the part quickly 

2. Accuracy of the part 

3. Suitability of the material 

4. Security of CAD files 

5. Optimality of processes 

6. General knowledge in the field of AM 

The questionnaire was tested on AM experts to verify that the questions were valid and 

the potential data extracted using them was useful.  

 

4.6 Collecting data 
 

Once the companies were selected and contacted to participate in the survey, the data 

collection process was straightforward. A time slot of two hours was reserved with each 

employee and a place for the interview was set.  The location of the interview varied 

from interview to interview using Business Innovation Technology’s meeting rooms or 

available spaces in companies’ premises. If convenient, multiple employees from the 

same company were interviewed in one session. The data collection period lasted three 

months. 
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4.7 Analyzing data and writing a report 
 

It is important to decide what questions are being sought answers for before the actual 

implementation stage [32]. As was listed in the goals and methods of this chapter, 

analyzing the data should be from the perspective of technologies, machinery 

ownership, outsourcing, and general information. These sub-goals were further broken 

down into topics of interest and data analyzed from their perspective. Quantitative 

information was to be sorted into tables and charts and qualitative information was to be 

presented as is and quantified wherever possible. 

Mapping out the knowledge and usage of AM technologies was to be divided into a 

section describing the familiarity of technologies and ranking them according to how 

many interviewees were familiar with a technology, and a section where each 

technology was examined and all information given by interviewees explained. A 

further analysis of the ratio of usage of AM applications was also to be written. The list 

of viewpoints used to analyze the data was the following: 

• Familiarity of technologies 

• Individual view of each technology 

• Distribution of applications 

Analyzing ownership of machinery was to be done by listing how many machines 

companies owned in average, what their practices were in procuring machinery, who 

they employed to operate the machines, what was the utilization rate of the machines, 

how they maintained the machines, what was the average build time, and how they 

monitored the costs of using the machinery. The list produced to analyze the ownership 

was the following: 

• Practices in procuring AM machinery 

• Operating AM machinery 

• Utilization rate 
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• Maintenance of machinery 

• Build time 

• Monitoring costs 

Outsourcing of AM parts was to be analyzed through the viewpoints of how much of 

their AM activity was outsourced by percentage and its cost, how their quality 

assurance works when outsourcing, how they monitor costs inflicted by outsourcing, 

how important the security of their intellectual property is, what is their average lead 

time, and what is their maximum benefit threshold. The viewpoints used for analyzing 

this data were: 

• Quality assurance 

• Information security of CAD files 

• Order lead time 

• Maximum benefit threshold 

• Monitoring costs 

The general factors to connect ownership of machinery and outsourcing were to be 

presented as a table and expanded upon. A report of the analyzed data was written in 

Finnish and is appended to the thesis as appendix 1. This report was sent to the 

participating companies immediately after completion.  
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5 Results 
 

Fifteen people from eight companies were interviewed and each gave a separate answer 

to the questions in the questionnaire. The interviews were stored separately and later 

combined into single file consisting of the questionnaire and each individual answer 

under every question. The quantitative answers were analyzed through statistical means 

by listing the answers and calculating the percentage of interviewees to give a certain 

answer and calculating the average and percentiles where applicable. Qualitative 

answers were quantified where possible and given the same statistical analysis as 

quantitative answers. In the case of qualitative answers that could not be quantified, 

they were arranged together and an impartial interpretation conducted. 

 

5.1 Familiarity of technologies 
 

In the first part of the survey, the familiarity of the chosen technologies was 

investigated. The results of this part of the questionnaire are listed in Table 3. The 

results are given as the amount of interviewees familiar with the technology divided by 

the total amount of interviewees. A technology by technology breakdown in the 

familiarity is given in subsequent subchapters. 
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Table 3: Familiarity of technologies 

Place Commercial name Familiarity (%) 

1. FDM 88.9 

- SLS 88.9 

- SL 88.9 

4. SLM 77.8 

- LOM 77.8 

6. Polyjet 55.6 

7. 3DP 22.2 

- DLP 22.2 

9. EBM 11.1 

- SHS 11.1 

11. LENS 0 

 

88.9% of the interviewees were familiar with FDM, SLS, and SLA. 77.8% were 

familiar with SLM and LOM. 55.6% were familiar with Polyjet. 22.2% were familiar 

with 3DP and DLP. 11.1% were familiar with EBM and SHS. None of the interviewees 

were familiar with LENS. Generally, only FDM, SLS and SLA were widely known and 

the rest of the technologies were more obscure. It can be expected that the familiarity of 

technology would directly relate to the distribution of usage of technologies.  

 

5.1.1 Fused Deposition Modeling 
 

In order to produce clarity, Fused Deposition Modeling (FDM) technology is divided 

into consumer devices and industrial devices. Devices manufactured by Stratasys can be 

seen as industrial devices and the ones based on the RepRap project can be seen as 

consumer devices. Approximately 15% of the companies owned several consumer FDM 

devices. These have been acquired to try out accelerating R&D in-house. Generally 
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these devices have been considered very inaccurate and unreliable among the 

interviewed companies. 

25% of the companies owned an industrial FDM device and utilized them 

approximately 19 hours per week. Approximately 8% of the companies outsourced the 

creation of FDM parts but the amount of outsourced FDM parts compared to the total 

amount of outsourced parts is minimal. The selection of materials, which is adequately 

strong and durable according to the users, was noted to be a positive factor in FDM. The 

ease of post processing was also seen as a positive aspect. 

High end devices of 100,000 euros and up were not well known. The improved 

accuracy and an expanded material library of the high end machines were received as 

news. 

 

5.1.2 Selective Laser Sintering 
 

None of the participating companies owned a Selective Laser Sintering (SLS) machine. 

However, companies outsource SLS models heavily. The durability of the material was 

seen as positive and the accuracy divided opinions. Out of the companies that outsource 

SLS models, half have been satisfied with the accuracy of SLS and the other half only 

employ SLS when the accuracy does not need to be high. The rough surface quality was 

universally seen as a problem. 

As it is faster and more cost efficient to produce more than singular parts at once with 

SLS, companies with less usage tend to avoid buying an SLS machine and outsourcing 

the part instead. SLS also requires special facilities for usage because the plastic powder 

it uses to produce parts has a tendency to spread around and disturb a work space. A 

post processing station is needed and material handling planned for an SLS process. 

These are also contributing factors to why SLS machines are not acquired by companies 

looking for an office friendly solution for AM.  
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5.1.2 Stereolithography 
 

12.5% of the companies owned a stereolithography (SL) machine. 50% of the 

companies outsource SLA models with the main suppliers being a well-known German 

service provider with a subsidiary in Finland, and several foreign suppliers from China. 

Stereolithography continues being the one technology associated with outsourced 

quality parts. While it is partially true that stereolithography is one of the most accurate 

AM technologies, its popularity can also be attributed to the fact that it was widely 

spread at an early stage of AM development in the 1990s. Several more affordable 

technologies have surfaced since and have been proven to be as effective as SL in select 

applications. According to Wohlers report 2013 SL is the most profitable technology for 

service providers yet it is not anymore the most acquired machine type in the industry. 

[6] This supports the hypothesis that the use of SL will diminish in the coming years 

and gradually lose its share to other technologies. 

 

5.1.3 Selective Laser Melting 
 

None of the companies owned Selective Laser Melting (SLM) machines or actively 

outsource SLM models. The technology has been attempted in some projects with 

differing levels of success. The major problems were seen to be the cost, quality, and 

slowness of the technology. Smaller problems were the removal of supports and the 

accuracy of the technology. 75% of the companies showed interest in using SLM in the 

future. 

A restricting factor in acquiring SLM machines is the abundant need for post 

processing. In order to produce parts of desired quality, the part needs to be heat treated 

in an industrial oven and machined afterwards. This not only discourages companies 

from acquiring this type of machines but also service providers are vary, because it 
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would mean a large investment and either training or hiring of staff in order to be able 

to carry out the post processing tasks. This limits the availablility of the technology and 

drives up the cost. However, as there is considerable interest in producing metallic parts 

through the use of AM, it can be seen as a gap in the market for service providers. 

 

5.1.4 Laminated Object Manufacturing 
 

None of the companies owned a Laminated Object Manufacturing (LOM) machine or 

outsourced LOM models. The high familiarity of the technology is caused by its wide 

use in the 1990s. When working with paper, the biggest restriction of LOM is the 

limitation of the mechanical properties of paper. If the machine used can handle 

plastics, the loss of material in the form of excess in each sheet is an issue. However, 

the material in the newest iteration of LOM is commonly available A4 paper, which 

makes it a tempting option for companies that produce a lot of visual prototypes. These 

companies are commonly architectural or planning offices which were not included in 

the survey and thus do not show up in the results. 

 

5.1.5 PolyJet 
 

37.5% of the companies owned a Polyjet or a comparable Multijet Modeling (MJM) 

machine. The machinery has been perceived as very sensitive and as needing a lot of 

continuous preventive maintenance.  

The users have noted that the need for a consistently high utilization rate to prevent 

degradation of the build quality is a problem. With Polyjet, the manually intensive post 

processing process is another problem. With MJM the warping of the parts during post 

processing is a problem. The shrinkage effect inherent to the technology is also seen as 

problematic. Positive factors included the accuracy of the parts and the excellent 
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flatness was cited. The materials have been generally adequate for their intended use. 

PolyJet machines are well adopted by industrial companies due to its ability to produce 

high quality parts quickly and the simplicity of post processing.   

 

5.1.6 Three-Dimensional Printing 
 

None of the companies owned a Three-Dimensional Printing (3DP) machine or 

outsourced 3DP models. The biggest problem was seen to be the fragility of the parts. 

Producing colored parts was not seen as a value adding factor. As with LOM, 3DP is 

generally used for visual prototypes in the fields of planning and architecture which are 

not represented in this survey. 

 

5.1.7 Digital Light Processing 
 

None of the companies owned a Digital Light Processing (DLP) machine or outsourced 

DLP models. The familiarity of the technology is low. Major factors preventing the 

penetration of DLP are the relatively small build volume and the fragility of the parts. 

As it is a very accurate technology, DLP is well applied in the fields of jewelry and 

dentistry which were not present in this survey. 

 

5.1.8 Electron Beam Melting 
 

None of the companies owned an Electron Beam Melting (EBM) machine or 

outsourced EBM models. The familiarity of the technology is low. EBM is generally 

used for the production of implants and as there were no medical companies involved in 

this survey, the technology is not well known.  
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5.1.9 Selective Heat Sintering 
 

While the only machine using Selective Heat Sintering (SHS) is already on the market 

and has a Finnish importer [34], it is not yet widespread. None of the companies owned 

an SHS machine or outsourced SHS models. The recognizability of the technology is 

low. After becoming familiar with the technology, a few companies showed interest in 

using the technology in R&D once the details of the technology are made available. The 

major attraction of SHS is its low price but it comes at the cost of reduced quality and 

mechanical properties which concerns companies. 

 

5.1.10 Laser-Engineered Net Shaping 
 

None of the companies owned a Laser-Engineered Net Shaping (LENS) machine or 

outsourced LENS models. None of the interviewees were familiar with the technology. 

LENS is largely used in the aerospace and automotive industries in niche applications 

and repairs which give reason for it not to be popular among the participants of this 

survey. 

 

5.2 Distribution of applications 
 

The applications of AM are divided into rapid prototyping (RP), rapid tooling (RT), and 

rapid manufacturing (RM). When outsourcing the application is determined by the end 

product ordered by and delivered to the outsourcing company. If the product is a 

prototype producer through silicon molding, the application is seen as RP. If the product 

delivered is the silicon mold itself, the application is seen as RT. 37.5% of the 
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companies use silicon molds but most of these molds do not leave the service provider. 

The obtained data on the distribution of applications of AM in the companies is 

presented in Table 5. 

 

Table 5: Distribution of applications 

Application Average 25th percentile 50th percentile 75th percentile 

RP 84% 80% 90% 90% 

RT 6% 0% 0% 5% 

RM 10% 1% 10% 20% 

 

RP is overwhelmingly the largest application of AM in the companies. 90% of the 

companies do almost exclusively RP. Compared to the rest of the world, RT is used to a 

very small extent in Finland. Silicon molding is common but usually the company only 

sees the end product. Investment casting has been experimented with but abandoned due 

to high expenses. The demand for RM would be large but its high price and insufficient 

quality have thus far been restricting factors. In companies with production facilities 

fixtures are being made for facilitating production. For some companies AM is the only 

type of production they have in Finland with everything else being outsourced to other 

countries. Compared to the data provided by Wohlers Report 2013, the distribution of 

applications in Finnish companies is highly skewed towards RP. A visual representation 

of the comparison of the distributions is given in Figure 15. 
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Figure 15: Distribution of AM applications in Wohlers Report 2013 and this survey 

 

There are several points to consider as to why the distribution of applications in Finland 

is so drastically different from the worldwide one. The major reason is that the 

companies surveyed for Wohlers Report 2013 were service providers, whereas in this 

survey they were the companies that needed AM parts. The rising awareness of AM and 

the reduction of the cost of machinery has driven many industrial companies to procure 

their own AM machines which they use for prototyping, hence diminishing the amount 

of prototypes manufactured by service providers. The second reason is that the 

companies surveyed for this thesis were mostly in the field of consumer electronics 

which is heavily slanted towards RP. In addition, there is not as much automotive and 

aerospace engineering in Finland, which are big users of RM.  

Even when taking all of the above reasons into consideration, the difference in the 

distributions is too large to fit into the margin of error. While RP is well understood and 

used in Finland, RT and RM are novel applications and the industry has not yet adapted 

to their usage. 
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5.4 Ownership and usage of AM machinery 
 

The share of companies owning an AM machine is shown in Table 6. The amount of 

companies owning a machine is equal to the amount of companies with no machine. 

25% of the companies own several machines. The quantity of machines by percentage 

of companies is given in Figure 16. 

 

Figure 16: Quantity of machines in companies by percentage 

 

Figure 16 shows the distribution of companies that own machinery. While this is 

important information from the point of view of companies showing interest toward 

AM and having a high probability of investing in it later, a representation of the 

distribution of industrial machine gives a better picture of how many companies are able 

to produce AM parts in-house. This information is given In Figure 17. 
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Figure 17: Distribution of companies by machine type 

 

A company that owns an industrial machine is less likely to outsource the manufacture 

of AM parts. The ownership also improves their speed of obtaining a part and offers 

better protection of the secrecy of their CAD files. According to Figure 17, 62.5% of the 

companies own a machine and 37.5% do not and instead rely solely on outsourcing. 

 

5.4.1 Practices in procuring AM machinery 
 

The procurement of an in-house machine has typically been preceded by heavy 

outsourcing of AM parts. Companies have wanted to get an in-house machine in order 

to remove delivery times, speed up R&D iterations and to incentivize the use of AM 

machines for the R&D personnel. Another reason for procuring an in-house machine 

has been cost efficiency because producing parts with an in-house machine is cheaper 
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than outsourcing and there are no hidden costs. The technologies of owned machines 

are shown in Figure 18 

 

 

Figure 18: Technologies of owned machines by percentage 

 

Purchasing any sort of machinery should be preceded by a careful examination of needs 

of the company and the options available to fulfill those needs. In the case of procuring 

machinery, the need is usually the ability to produce prototypes quickly and cost-

effectively. A solution that leads to the procurement of an AM machine is that the 

company decides that the best solution to the need is to buy an AM machine. Further, 

the type of machine has to be decided on, which is where knowledge of the AM field 

becomes very important.  

A general understanding of all AM technological categories is required along with an 

in-depth knowledge on the possibilities of their applications. After an AM technology 

category has been selected, it is equally important to know what kind of machines exist 

in that category, who manufactures them, how much do they cost to procure and 
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maintain, what sort of maintenance and warranty deals does the manufacturer offer, 

what materials can the machine use, what special abilities do different machines offer 

and a complete view of its technical specification. 

As an example of such a process, the AM category of powder bed fusion can be divided 

into subcategories by material or power source. The material subcategory can be 

divided into plastics and metals. The plastic sub-subcategory can be divided into 

machines that are able to create parts out of Nylon 11 and 12 mixed with fibers of 

different sorts, machines that can only handle Nylon 11 and machines that work with all 

the aforementioned plastics and PEEK in addition. In the metal sub-subcategory the 

choice is larger with machines that can handle everything from gold to titanium to 

machines that only work with certain types of metallic powder. 

The power source category can be divided into laser, thermal printhead, and electron 

beam power sources. While machines that use a thermal printhead and an electron beam 

are proprietary and manufactured only by Blueprinter ApS [35] and Arcam AB  [36] 

respectively, machines that use a laser are provided by EOS GmbH [37], 3D Systems 

[38], ReaLizer GmbH [39], SLM Solutions [40], Concept Laser GmbH [41], AFS Co. 

Ltd. [42], Shaanxi Hengtong [43], Trump Precision Machinery Co. [44] Wuhan Binhu 

Mech. & Elec. [45], Renishaw [46], and Matsuura [47]. A company has to look into 

each machine provider and evaluate it and its product. This includes finding the 

machines’ speed, power consumption, maintenance rate among other technological 

specifications. 

As can be seen, the process of procuring an AM machine is fairly long and requires a lot 

of information on the field of AM and specific technological knowledge. As AM as a 

field is relatively new and progressing fast, companies are hard pressed to find 

employees among their ranks with enough knowledge to be able to make an educated 

procurement. This is where familiarity of technologies plays a large role as, according 

to the interviews, companies often buy a machine from a technology category they are 

familiar with. Low levels of knowledge of AM also make the companies more 

susceptible to the marketing of AM machine manufacturers. Some companies are 
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satisfied with the amount of information they get from a machine importer at a trade 

show to purchase an AM machine. 

 

5.4.2 Operating AM machinery 
 

AM machinery is highly automatized when it is operating but can also be labor 

intensive during set-up and part removal phases. The presence of a machine operator is 

needed in the phase of machine set-up, when the machine is inspected and made sure 

that it is completely operational, .STL files are prepared to be included in the build, and 

the machine is started. The presence of an operator is also required when the build is 

finished. The parts have to be taken out of the machine and the machine has to be 

cleaned and maintenance conducted. The demand of post processing varies greatly 

between technologies but more often than not it takes several hours to remove all the 

support material from a full build and to finalize the parts. Operator presence is also 

required during the time a machine is running in case it stops or produces an error for 

any reason. Failure to intervene in such cases often means the loss of the entire build 

and damage to the machine. 

The question of who is operating the AM machine is vital. The two most common ways 

to organize the usage of an AM machine are: 

1. Letting the personnel responsible for 3D modeling use the machine themselves 

2. Appointing an operator for the machine 

The amount of companies using an appointed person to operate the machines is equal to 

the amount of companies using an open access policy. According to the interviews, the 

companies using the open access policy have been having frequent stand-stills, lowered 

build success rate, and an overall drop in appreciation of AM among the users. 
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5.4.3 Utilization rate 
 

As AM machines are fully automatic during operation save for failures and errors, they 

should be able to run close to 24 hours per day. Companies owning an AM machine 

have a utilization rate averaging 47.25 hours per week. This utilization rate is relatively 

low presuming that the machine could be operated without a break except for 

maintenance and setup breaks. The percentage per week has been calculated for a full 

168 hour week. 

 

Table 5: Utilization rate 

Utilization rate Average 25th percentile 50th percentile 75th percentile 

Hours per week 47 h 25 h 38 h  60 h 

Percentage of 

week (168 h) 

28% 15% 23% 36% 

 

It is worth noting that the utilization rate alone does not represent how efficiently the 

company is running it. In most AM technologies the amount of time needed to produce 

one part cannot be linearly interpolated to calculate the time needed to produce multiple 

parts. In fact, the more parts there are in the build the less time the process takes to 

manufacture each part. This is due to the fact that the process time does not consist only 

of directly solidifying, growing, or cutting out a cross-section of the part on a layer, but 

it also takes time to go from one layer to another. An example of this is distributing a 

new layer of powder in selective laser sintering, which requires the build platform to 

move down, the material reservoir to move up, and a roller or blade to take the powder 

from the reservoir to the build bed. This process of moving from one layer to another 

takes an equal amount of time regardless of how many parts are in the build or how 

much of the surface needs to be worked. Thus, the time is calculated for each part 

decreases as their amount increases. Some technologies are less prone to this effect, 
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such as fused deposition modeling, in which an extruder works on each piece 

individually and the only common process is lowering the bed by the thickness of a 

layer but even in this case the effect is noticeable enough for it to be worth to maximize 

the build. The set-up time needed for starting the machine is also approximately the 

same regardless of the amount of parts to be produced. 

Let us call the time needed to produce the cross-sections of part 1 Tp1, part 2 Tp2, the 

accumulated time to move from one layer to another Tl, the set-up time Ts and the 

amount of time needed for the entire build Tb. The formula for calculating the time 

needed to produce an entire build is (1). 

                                           𝑇𝑝1 + 𝑇𝑝2 + 𝑇𝑠 +  𝑇𝑙 = 𝑇𝑏         (1) 

In case only one part is printed, Formula (2) applies to calculate the relative time used to 

produce a part compared to how long the entire build took. Fp1 is defined as the fraction 

of total build time part 1 is being produced. 

𝑇𝑝1
𝑇𝑝1+𝑇𝑠+𝑇𝑙

= 𝐹𝑝1          (2) 

If two parts are being produced, Fpb is the fraction of total time both parts are being 

produced and the following applies: 

                                           𝑇𝑝1+𝑇𝑝2
𝑇𝑝1+𝑇𝑝2+𝑇𝑠+𝑇𝑙

= 𝐹𝑝𝑏                (3) 

Even though in the second case the build time is longer, the time used on directly 

producing parts is higher in comparison to the entire process. The range of the fraction 

of time used on parts compared to the total build time is from 0 to 1. The closer the 

result is to 1, the more efficient the process. 

Additionally, in processes such as SLS, all material that is not used for the part cannot 

be recycled, thus producing more waste the less of the build volume is used for parts. In 

the process, it is general practice to mix 50% of fresh powder with 50% used powder 

until the powder is no longer usable due to causing faults in parts [48]. 
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It is possible to calculate the amount of powder not used in the process that suffers from 

degradation. Let us assume two parts of the same height and call the volume of part Vp1, 

volume of part 2 Vp2, the volume of the build Vb, and the unused volume Vu. The 

following formulae apply: 

𝑉𝑝1 + 𝑉𝑝2 + 𝑉𝑢 = 𝑉𝑏          (4) 

𝑉𝑢 = 𝑉𝑏 − 𝑉𝑝1 − 𝑉𝑝2               (5) 

As Vb remains the same regardless if one or two parts are included in it, the following is 

true: 

  𝑉𝑏 − 𝑉𝑝1 > 𝑉𝑏 − 𝑉𝑝1 − 𝑉𝑝2         (6) 

Even though SLS is the most extreme example of the economies of scale of producing 

multiple parts with AM simultaneously, they apply to every other technology in the 

form of used electricity and operator wages.  

As there are considerable time and cost benefits in producing more parts at once, 

downtime for the machine is acceptable if the operator is in the process of waiting for 

more CAD files to come to maximize the efficiency of the machine. Therefore, it is 

important to look into how companies handle gathering enough parts to run the machine 

at full capacity, or indeed if they have enough parts to fill an entire build.  

The companies that do not have an operator do not have a formal build filling program 

in place. As many people are allowed to use the machine without informing others, the 

machines are often running few parts and any parts that arrive during the machine 

running are placed in a queue. 

The companies that employ an operator for their AM machines have rules on how and 

when the machine should be run. Most commonly the machine is run in two cycles: one 

starting in the morning and one starting in the afternoon. The intention is to make sure 

that one cycle ends before the other one begins and that there is sufficient time between 

them to make the set-up preparations. In case there are not enough parts to warrant such 
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a rigid program, a certain volume limit can be set and it could be prohibited to start the 

machine until it is reached. If there is a recurring problem reaching the limit it can be 

lowered or a timer can be put in place to allow starting the machine after a certain time 

the first part has been submitted. 

  

5.4.4 Maintenance of machinery 
 

In order for any machine to function properly it needs to be maintained on regular basis. 

It is noteworthy that preventive maintenance of AM machinery is extremely important 

due to their sensitivity to failure. Preventive maintenance and upgrades of AM machines 

is usually done by the manufacturer or by a certified retailer or maintenance bureau 

closer to the customer. It is common to make a yearly service contract with one of these 

entities that includes a finite number of upgrades and visits. These contracts are 

generally perceived as expensive but worth the investment as in some cases they cost 

less than even a single fatal machine failure. 80% of the companies are doing preventive 

maintenance which is a relatively high percentage. However, only 40% of the 

companies report having a service agreement for preventive maintenance. The 

preventive maintenance practices by percentage are presented in Figure 19. 
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Figure 19: Preventive maintenance practices by percentage 

 

According to the interviews, companies that do not perform preventive maintenance on 

their machines suffer from prolonged down times and constant failures in parts. This 

has led to frustration among the users and degradation in confidence that users have in 

AM. When a machine is not performing properly, the company either outsources the 

AM parts or avoids the usage of AM altogether.  

 

5.4.5 Part production time 
 

As explained in subchapter 5.4.3, the build time in AM consists of the actual part 

production and of time spent on general process actions such as set-up and moving from 

one layer to another. This means that a high utilization rate can be interpreted as 

detrimental and beneficial to the part production. In case of a high utilization rate, the 

machine is running often but there is a possibility of a queue forming thus extending the 

part production time. Nevertheless, if the utilization rate is low due to the fact that the 
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machine is often waiting for a certain volume limit to be fulfilled, parts have a better 

chance to enter the build making the part production time of some parts longer but 

lowering it on average. However, if there is heavy demand for AM parts to be produced 

with the machine, which would be signified by a constant high utilization rate, the 

average part production time would grow longer. 50% of the companies report the 

average part production time to be less than a day and another half report it being 

approximately a day. Both times are extremely good with current technologies and 

imply a very low waiting time. This means that there is no case of a high demand and 

high utilization rate, and it is backed by the fact that the average utilization rate is 

relatively low. The distribution of average part production times is shown in Figure 20. 

 

Figure 20: Part production time 

 

5.4.6 Monitoring production costs 
 

Costs of AM machinery can be divided into fixed costs and variable costs. Fixed costs 

consist of the initial investment cost of the machine and peripherals, post processing 

equipment, a yearly service agreement and rent of space needed for the machine. 
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Variable costs include material costs, labor, and electricity. Oftentimes the only costs 

companies consider when procuring machinery is the costs of the machine, post 

processing and the material cost. The costs of the service agreement and labor are often 

ignored or understated. This can lead to not hiring a separate operator for the machines 

which in its part leads to downtime and raised costs. 

Monitoring costs of parts built with in-house AM machinery is strongly in relation to 

the size of the company. Smaller companies monitor the price of every part and the 

production decision is made based on that. In bigger companies the fabrication costs are 

either budgeted annually or not monitored at all. Commonly the costs are only 

calculated at the investment stage and not calculated at a later point. Nevertheless, the 

only companies reporting to suffer from inflated costs in relation to AM are the ones 

that do not perform preventive maintenance and suffer from constant breakdowns of 

machinery and lost labor caused by them. Figure 21 presents the distribution of 

companies’ different monitoring practices.  

 

Figure 21: Monitoring costs in own production 
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5.5 Practices in outsourcing of AM services 
 

Companies are increasing the amount of outsourcing because the opportunities of AM 

have become more widely known and accessible. In the case a machine is overloaded 

and the company does not own a second machine, outsourcing is a faster way to get all 

the parts. Oftentimes the quality of the in-house machine is insufficient in regards to the 

surface quality, the durability of the material, or producing finer details such as snap on 

parts. Usually outsourcing also includes post processing as it is perceived that service 

bureau employees are more capable of handling it than company employees.  

Larger quantity series consisting of over twenty parts are usually outsourced. The size 

of the part intended for production matters if its size exceeds the maximum build 

envelope of the in-house machine. Silicon molds and parts made using silicon molds are 

outsourced in the majority of cases. On rarer occasions, especially when a company is 

thinking of buying a machine of their own, it is willing to try out a new to technology 

which leads to the outsourcing of test parts. 

Several companies outsource higher quality parts and produce lower quality parts in-

house. The same distinction applies with functional prototypes and visual prototypes. 

 

Table 6: Outsourcing compared to all AM usage 

Type of 

measurement 

Average 25th percentile 50th percentile 75th percentile 

Percentage of 

all AM usage 

56% 25% 53% 100% 

Currency 41,000 € 10,500 € 25,000 € 45,000 € 
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5.5.1 Quality assurance 
 

Unlike the practice of specifying surface quality and dimensional tolerances in 

traditional manufacturing, companies often order parts from service providers according 

to the specifications of the machines. It is reasonable to expect outsourced parts to 

represent the specifications given by the machine supplier but as with all manufacturing 

processes, producing parts with AM is subject to many variables that affect the quality 

of the product. For example, the heat distribution in SLS builds is not even and can vary 

from build to build which leads to varying results in material strength and dimensional 

accuracy of the part. Therefore, it is not always guaranteed that the produced part is 

exactly of as high a quality as advertised.  

In the case of outsourcing parts without post processing, companies trust the service 

provider to perform quality assurance tests in order to comply with the requirements, 

but as there often are no explicit requirements the test commonly consist of only 

verifying if a fault in the process caused a defect in the part. 

When ordering parts with post processing, or with the use of rapid tooling, companies 

are more precise in defining the desired qualities of the part. These processes require 

manual labor and as such are subject to more variables than a part that is produced 

directly with a machine. 

Most companies trust that the service providers perform the quality assurance tests and 

perform simple visual checks of the ordered parts. This applies especially to service 

providers that have been used extensively in the past. When ordering from less known 

service providers,  a more rigid approach to quality assurance is taken. A small 

percentage of the companies inspect the parts’ dimensions and material properties. The 

distribution of companies’ practices in quality assurance of outsourced parts is 

presented in Figure 22.  
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Figure 22: Distribution of quality assurance in outsourcing 

 

5.5.2 Information security of CAD files 
 

The importance of CAD file security varies from field to field. In consumer electronics, 

a part the company is working on can contain several innovations and be crucial to the 

overall value perceived by the customer. A leak of the design of such a part can be 

damaging to the company so strict measures are taken to protect them. In the machine 

building industry, a part is a part of a much larger assembly and a leak of a CAD file of 

a part of the machine, while not desired, is not detrimental to the success of the final 

product. 

Most companies rate their service providers and only work with those who are 

trustworthy and willing to sign an NDA agreement. A problem with security on the 

service providers’ side can lead to a leak and subsequent copies of the product being 

made. 
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Sending CAD files to a trusted service provider is not a problem but sending the files to 

anyone else is avoided in case of leaks. If the files are secret, the company produces the 

part in-house with available technologies.  

In order to produce parts with AM machines, the CAD files have to be transformed into 

.STL format. In many cases the change of file format causes unexpected errors and the 

file needs to be processed for it to be accepted by the machine. Most service providers 

in the AM field offer a service of transforming CAD files into .STL or fixing them. The 

Additive Manufacturing File Format (.AMF) has attracted the interest of a small 

percentage of the companies because of its ability to store color, materials, lattices and 

constellations unlike the .STL file format. 

An equal amount of interviewees perceived outsourcing of post processing of .STL files 

as useful. The distribution of the degree of secrecy in the companies is shown in Figure 

23. 

 

Figure 23: Degree of secrecy of CAD files 

 

25% 

37.50% 

25% 

12.50% 

Not secret at all

Secret to a low degree

Secret to a high degree

Highly secret



61 

 

 

5.5.3 Order lead time 
 

The order lead time is the time it takes from the order being placed to the customer 

receiving the part. This time includes the service provider processing the order, 

evaluating the CAD file or .STL and producing the part, and the time it takes to ship the 

part from the service provider to the customer. 

A small part of the companies receive parts from the supplier in approximately a day. 

86% of the companies receive the parts from days to approximately a week. The 

distribution of the average order lead time is presented in Figure 24. 

 

Figure 24: Order lead time 

The times presented in Figure 24 are much longer than when companies produce parts 

with their own machines. A comparison of part production time and outsourcing lead 

time is presented in Figure 25. 
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Figure 25: Comparison of part production time in-house and outsourcing lead time 

 

5.5.4 Maximum benefit threshold 
 

The maximum benefit is the threshold in delivery time after which there is no benefit in 

being faster. For most of the companies the threshold is set at approximately days to a 

week. Some companies have the threshold set at approximately a day. At the moment 

the delivery times are slightly longer than the maximum benefit threshold but according 

to the interviews it is not seen as problematic. The maximum threshold distributed by 

company is shown in Figure 26. 
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Figure 26: Maximum benefit threshold 

 

5.5.5 Monitoring outsourcing costs 
 

Most companies monitor costs for each order separately. Larger companies have a 

budget for the usage of AM on a yearly level. None of the companies reported being 

surprised by hidden costs of outsourcing and have been satisfied with the pricing. The 

practices of monitoring costs in outsourcing are presented in Figure 27. 
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Figure 27: Monitoring costs in outsourcing 

 

5.6 Importance of factors related to AM 
 

In the last part of the questionnaire, general factors that are related to AM were 

examined. The interviewees were told to rate the importance of the listed factors from 1 

to 5 and to expand on their answer. The acquired data is presented in Table 7. 

Fast access to AM parts and their accuracy were seen to be the most important factors 

among the interviewed companies. The suitability of material and general knowledge of 

AM were seen as relatively important on average but the spread between companies 

was large. For some companies it is very important to have the part created out of a 

certain material for it to perform as wanted and for some is it of no real importance. The 

need for parts to have a certain material commonly comes from their functionality and 

for this reason the companies that rated the importance of material low are highly likely 

to be the ones that generally produce or outsource visual prototypes.  
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Security of CAD files was not an issue for most of the companies either because they 

are in a business where the leak of one file does not pose a threat to the final assembled 

product, or they are confident enough in their service providers. The optimality of 

technology was rated low among all but a few companies. This means that most 

companies are not concerned with which methods are used to produce the parts as long 

as they are made of the correct material and are able to serve the desired purpose. 

Additive manufacturing is seen as an important tool in presenting conceptual models to 

engineers but showcasing AM models to shareholders is not perceived as useful as the 

parts are too rough to present the commercial value of the final product.  

Table 7: Importance of factors related to AM, range 1-5, 1 is lowest, 5 is highest 

Factor Average 25th percentile 50th percentile 75th percentile 

Fast access to part 4,09 4 4 5 

Accuracy of part 4,27 4 4 5 

Suitability of 

material 

3,64 2,5 4 5 

Security of CAD 

files 

3,18 2,5 3 3,5 

Optimality of 

technology 

2,82 1,5 3 4 

General knowledge 

of AM 

3,64 2,5 4 4,5 
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6 Summary and conclusions 
 

A need was identified to examine of the needs and practices of AM in the Finnish 

industry in order to understand what the situation is and how it is in relation to the rest 

of the world. In order to accomplish this, a survey consisting of eight companies and 

fifteen persons was conducted. 

The surveyed fields were chosen according to the criterion that they needed to be 

industrial and with potential in AM usage, which led to the selection of the automotive, 

aerospace, industrial machines, and consumer products fields. From these fields 28 

companies were asked to participate out of which eight agreed to be a part of the survey, 

giving a 29% response rate. The companies that decided to participate were from the 

industrial machines and consumer products fields. The position in the company of the 

interviewed persons ranged from CAD designer to CEO. 

The goals set for the survey were mapping out the usage and familiarity of different AM 

technologies, understanding how companies procure machinery, and understanding 

their practices in outsourcing AM parts. 

A five-part questionnaire consisting of qualitative and quantitative questions was 

designed and presented to the interviewees during the interviews which lasted from one 

to two hours each. The questionnaire was laid out in the way that would draw 

information to the subchapters of Chapter 5.  

The results to the question of how familiar different technologies were were close to 

expectations and previous research worldwide considering the restrictions of the 

surveyed fields. FDM, SLS, and stereolithography were the most recognized and used 

technologies, SLM and LOM were known but not used, PolyJet was used to a moderate 

degree, and the rest of the technologies were poorly recognized and not used.  

The knowledge of FDM machines was heavily skewed towards the lower end and mid 

range machines and higher end machines did not have a large presence in the industry. 
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SLS was known for its material properties and high degree of freedom in design and 

was often used for outsourcing even though none of the companies owned an SLS 

machine. Stereolithography was the most associated with high quality AM parts but a 

trend can be seen according to which it is losing ground to other AM technologies. 

PolyJet machines were seen as sufficient for the purposes for the companies but costly 

to maintain. 

The average distribution of applications of AM, rapid prototyping, rapid tooling, and 

rapid manufacturing, were 84%, 6%, and 10% respectively. These results are radically 

different from the previous surveys, which was partly due to the different approach 

taken in this survey. In the previous surveys service providers were surveyed whereas in 

this survey it was the companies that needed AM parts. As some companies use their 

machines for the faster rapid prototyping applications more than for rapid 

manufacturing, the percentaged is skewed in the favor of the former. Additionally, the 

majority of the companies were from the consumer products field in which the volumes 

are so high that rapid manufacturing is not viable. However, these factors are not 

enough to account for the entire difference in the distribution between the surveys 

leading to the conclusion that Finland is behind other countries in rapid tooling and 

rapid manufacturing.  

62.5% of the surveyed companies owned at least one AM machine and 50% of the 

companies owned an industrial AM machine. 43% of the machines were using FDM 

technology, 43% Polyjet or MJM, and 14% stereolithography. Procurement of an AM 

machine is a lengthy process due to the wide spectrum of technologies and it was found 

that most companies do not do enough preparations and evaluate their needs in enough 

detail to acquire a machine best suited for them.  

The practices in operating AM machinery turned out to be an important topic as two 

ways of operation were identified. The first one was to let the designers use the 

machines themselves and the second one to appoint an employee to exclusively operate 

the machinery. There were multiple problems found with the first approach including 
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lack of maintenance and lowered build success rates. The second approach is 

recommended to be used. 

The average utilization rate of AM machinery was found to be 47 hours per week. A 

28% utilization rate was calculated using a full 168 hour week as the machines can 

theoretically be used around the clock with the exception of set-up times and 

maintenance breaks. As was demonstrated in Subchapter 5.4.3, the utilization rate is not 

the direct measure for the efficiency of AM machinery usage, as the duration of a build 

is not linearly dependent of the amount of parts in the build. 

Maintenance of machinery was found to be very important and according to the 

interviews the lack of it led to prolonged down times and constant failures in parts. 80% 

of the companies reported doing preventive maintenance and 20% reported only doing 

corrective maintenance. 

Part production time varied from less than a day to approximately a day. The part 

production time is related to the utilization rate and because it is fast, implies that the 

waiting times and a utilization rates are low. When outsourcing, the lead time was found 

to be between several days and approximately a week on average. This presents a 

difference between the two but companies reported that they are willing to wait for 

outsourced parts longer than in-house parts. The maximum benefit threshold for 

outsourced parts was divided between approximately a day, several days, and 

approximately a week in the distribution of 29%, 43%, and 29% respectively.  

The amount of  outsourced parts differs between companies as some prefer to do all of 

their own production and some prefer to outsource all of it. The average percentage of 

outsourcing was found to be 56% with the 25th percentile being 25% and the 75th 

percentile being 100%. The average annual budget for outsourcing was 41,000€.  

Rigorous quality assurance was not performed on most parts in most companies because 

the service providers were trusted to handle the process. For the most part, companies 

settled on inspecting the parts visually in case of major failures. It was also discovered 

that most parts are not ordered with specifications to quality. The matter of CAD file 
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security concerns some companies and is seen as non-consequential by others. The 

perceived benefit of post processing of .STL files by service providers is equally 

divided as some companies prefer to do finalize their own files and others would pay for 

the post-processing.    

The practices of monitoring costs of AM vary depending on the size of the company 

and generally do not depend on outsourcing or producing parts in-house. 25% of the 

companies have a budget for outsourcing, 40% monitor the cost of every part, and 40% 

do not perform any sort of monitoring. Smaller companies monitor their AM 

expenditure more than larger companies.  
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