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2 General predator-prey model

For a two-species system for which the growth rates of the species are func-
tions of the population sizes can be described with equations

ẋ = xf(x, y) (1)
ẏ = yg(x, y). (2)

These equations form what is called a Kolmogorov model for the predator-
prey system.[4] Kolmogorov postulated some general conditions for realistic
predator-prey interaction. Assuming that f(x, y) and g(x, y) are continu-
ously differentiable we can impose the following conditions.[31] Let x be the
population size for the prey, and y for the predator.

First,

fy < 0, (3)

where subscript means derivative with respect to that variable. This con-
dition means that the rate of increase for the prey decreases when more
predators are present. Second,

gy < 0, (4)

meaning that the rate for the predator decreases when more predators are
present. These are the two conditions that can be accepted in a very general
setting.

The third condition is

g(x, 0) > 0, (5)

which means that the growth rate of the predator is positive in such a position
where there are no predators and prey is at an equilibrium. What is implied
is that the prey alone has a positive equilibrium.

These three conditions don’t guarantee the existence of a single equilibrium.
Conditions
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fx < 0 (6)
gx > 0 (7)

would guarantee this. With (3)-(5) we know there exists a positive equilib-
rium with both species. When we add conditions (6) and (7) we can deduct
that the equilibrium is unique.[31]

The problem with these conditions is that they may not always hold. Kol-
mogorov already noticed that in small enough populations the rate of increase
may decrease or become negative if the population density is too low. This
is one example of the phenomena known as Allee effect.[7]

Another set of conditions could also be used. They are

xfx + ygy < 0 (8)
xgx + ygy > 0. (9)

These two conditions combined with the first three guarantee the existence
of a single positive equilibrium in this model.

The model studied in this thesis has basis on a predator-prey model with
functions

f(x, y) = v1(x)− µ1 − φy (10)
g(x, y) = v2(y)− µ2 + eφx, (11)

where v1 and v2 are functions describing an influx of new individuals, the so
called birth rate functions. φ defines the amount of predation and e describes
how much of the prey biomass (or some other suitable unit) is converted into
predator biomass. Because φ is a positive constant condition 3 holds. 4 holds
if v2(y) is assumed to be a decreasing function of y.
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3 Epidemiological models

The basic epidemiological SIR model was presented by W. O. Kermack and
A. G. McKendrick in 1927.[19]. The model is

Ṡ = −βSI (12a)

İ = βSI − γI (12b)

Ṙ = γI. (12c)

In this model S represents susceptibles that can be infected with the disease.
I are the infected and R are the recovered individuals that have suffered
the infection and cannot be infected anymore. β is a factor describing the
infectivity rate of the disease in the population. γ is the recovery rate from
the disease.

This model is very simplified and it doesn’t include deaths or births. What
is used in this thesis is a variant of this model. The model used is

Ṡ = −βSI
N

+ γI (13a)

İ = β
SI

N
− γI (13b)

that is, the recovered individuals return to the susceptible class. This means
there is no immunity from the disease. There is also another important
difference. The basic SIR-model uses so called law of the mass action where
every individual mixes with every other individual with a constant rate. This
law of the mass action was first proposed by chemists Guldberg and Waage
on reversible chemical reactions in 1864.[36][35][17]

In our model, however, individuals mix with a constant rate independent
from the size of the whole population.

The simple epidemiological model presented in (13) is supplemented with
cross-species epidemiological interaction and the previously mentioned predator-
prey dynamics.
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4 The model

This model was first presented by M. G. Roberts and J. A. P. Heesterbeek
in 2013.[27] The system is a predator-prey system where both species share
a common pathogen. The main result of their study was showing that there
exists a range of model parameters where the two species coexists only when
the pathogen is present.

The system is described as a system of differential equations. We let N1 be
the density, number of animals or biomass of class prey. Correspondingly
N2 is the amount of predators. Now some of these individuals might be
infected with the disease and we denote these with I1 and I2. The rest of the
individuals are healthy and are denoted by Si = Ni − Ii for i = 1, 2. These
are called susceptibles.

Ṅ1 = v1(N1)N1 − µ1N1 − α1I1 − φ(S1 + qI1)(S2 + pI2) (14a)

Ṅ2 = v2(N2)N2 − µ2N2 − α2I2 + eφ(S1 + qI1)(S2 + pI2) (14b)

İ1 = β1
S1I1

N1

− µ1I1 − α1I1 − φqI1(S2 + pI2) + κS1(I1 + rI2) (14c)

İ2 = β2
S2I2

N2

− µ2I2 − α2I2 + cqφI1S2 (14d)

Here vi(Ni) is a general birth function. Roberts and Heesterbeek used a
function of type Vi(Ni) = ρie

−kiNi in their calculations. Another choice could
be to take Vi(Ni) = Bi

Ni
leading to a constant influx of individuals. With only

one species and a constant death rate µ, this assumption leads to a stable
population with N = B

µ
. What we must assume about the birth function

is that it has a negative derivative everywhere. This might not make sense
in every situation. For example if there are too few individuals, they might
not be able to meet and mate. The assumption is however important for the
results that follow. For the prey the birth rate function can be thought of as
a representation of its food source. Similarly for the predator, the birth rate
function describes the alternative food sources for it.

As suggested earlier µi is the death rate of type i individuals.

The prey is eaten by the predator with rate φ(S1 + qI1)(S2 + pI2). φ denotes
the rate at which the predator hunts the prey. q denotes how the infection in
prey affects the catch rate. Sick prey could be easier to catch, in which case
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q > 1 or not as attractive, in which case q < 1. Similarly p tells how infec-
tion in predator affects hunting. In this case p ≤ 1 because it is unlikely that
infection would enhance the predator’s abilities to hunt. e tells us how much
of the prey biomass is converted to predator biomass. Only about 10 % (the
ten percent rule) of the amount of energy is actually transferred through a
food chain.[32] Thus usually e ≈ 0.1 when Ni is measured as biomass. κ de-
scribes the strength of environmental transmission. This means that infected
predators and prey leave infected material in the environment, from which
susceptible prey can get infected. r describes how much the predators spread
the infection through this mechanism compared to the prey. c describes how
much the infected prey causes predators to get infected through consuming.

The disease dynamics in this model are assumed to be of type SIS. There
is no recovered state. The infected individuals have an increased death rate
of αi and susceptibles are infected with a rate of βi. The infections are
not modelled here with mass action but with standard incidence, where the
number of contacts per unit of time per individual are independent from
the size of the population.[11] This is often thought to be a more suitable
approach when modeling animals in herds.[10] The model actually has no
recoveries at all. The usual recovery rate γ in equations 13 is zero in a sense.
Infected individuals remain infected until they die.

4.1 Next-generation matrix

We can find the next-generation matrix (NGM) for this system. It can be
used to derive the basic reproduction number and concerns the situation
where the disease is rare. NGM is defined as

K = −TΣ−1 (15)

where T is a matrix containing epidemiological transimission terms and Σ is
a matrix containing epidemiological transition terms.[34] We have only two
states-at-infection, infected prey and infected predator, and it is impossible
to get from one to the other. Therefore Σ is a diagonal matrix containing
the rates with which an individual is removed from an infective state. We
have

Σ = −
(
µ1 + α1 + φqN2 0

0 µ2 + α2

)
(16)
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For transmission we have a more complicated matrix

T =

(
β1 + κN1 rκN1

cφqN2 β2

)
(17)

From (15) we get

K = −TΣ−1 =

(
κN1+β1

qφN2+α1+µ1

rκN1

α2+µ2
cqφN2

qφN2+α1+µ1

β2
α2+µ2

)
(18)

From this matrix we can study the basic reproduction numbers for the
species. If we assume that the prey and the predator live in isolation from
each other, the predator doesn’t feed on the prey and φ = 0. With this
assumption we get basic reproduction numbers for the species as the eigen-
values of the next-generation matrix.[34] For the prey we have

R1
0 =

β1 + κN1

µ1 + α1

(19)

and for the predator

R2
0 =

β2

µ2 + α2

. (20)

It is worth noticing that φ = 0 means ecological isolations. However there is
still epidemiological connection through the environment when κ 6= 0. With
total isolation κ would be zero too, and basic reproduction number of the
prey would simplify. As it should, the next-generation matrix shows how κ
governs the flow from predator to prey and φ governs the flow from prey to
predator.

In an epidemiological setting, the increased death rate can vary a lot. In
some cases there are no or almost no increased deaths from the disease. In
such case we can use approximation µ � α. With this approximation we
can say

R1
0 ≈

β1 + κN1

µ1

(21)
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and for the predator

R2
0 ≈

β2

µ2

. (22)

For some other diseases increased death rate can be remarkable, even much
greater than the normal death rate. Then we, of course, can not use the
approximation above.

4.2 Stability of a steady state

Roberts and Heesterbeek study these steady states by reordering the model
equations. By exchanging equations 14b and 14c they get a Jacobian of form

J =

(
H D
0 C

)
(23)

when linearized for a stable state with only one species. Here H is a matrix
that controls the epidemiological stability, that is the stability of the system
with regards to the pathogen. C is a matrix that deals with ecological stabil-
ity. That means that stability exists when the other species is introduced to
the steady state. D is also a matrix, but it does not have a special meaning.

5 Simplified versions

With only two of the three elements present, the system reduces to a much
simpler system. Much of the work presented in this section has already been
covered by Roberts and Heesterbeek.

5.1 Prey and predator

Without the pathogen the system reduces to a normal predator-prey system.
The differential equations governing this are

Ṅ1 = v1(N1)N1 − µ1N1 − φN1N2 (24a)

Ṅ2 = v2(N2)N2 − µ2N2 + eφN1N2 (24b)
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This system has four kind of different steady states. One trivial state with
no individuals, one for each species only and one with both species. The
stability of the steady states can be examined with the help of the Jacobian
of the system. In this case we have

J =

(
v1(N1) + v′1(N1)N1 − µ1 − φN2 −φN1

eφN2 v2(N2) + v′2(N2)N2 − µ2 + eφN1

)
(25)

For the trivial steady state we have N1 = N2 = 0 and

J =

(
v1(0)− µ1 0

0 v2(0)− µ2

)
(26)

A steady state is stable only if the real parts of the eigenvalues of the Jacobian
matrix are all negative. Thus this steady state is stable when v1(0) ≤ µ1 and
v2(0) ≤ µ2. This means that the death rate with infinitesimal population
must be greater than birth rate.

For the steady state with prey only we have N2 = 0 and v1(N1) = µ1. In
this case the Jacobian is

J =

(
v′1(N1)N1 −φN1

0 eφN1 + v2(0)− µ2

)
(27)

From this matrix we get eigenvalues N1v1(N1)′ and eφN1 − µ2 + v2(0). The
first is negative if and only if the derivate of the birth function is negative.
This is exactly the assumption that was made earlier. The second condition
is eφN1 + v2(0) ≤ µ2. This means that the death rate for the predator must
be greater than the birth rate and the influx from hunted prey.

For the steady state with only the predator we have similar to the previous
case, N1 = 0 and v2(N2) = µ2. The Jacobian is now

J =

(
−φN2 − µ1 + v1(0) 0

eφN2 v′2(N2)N2

)
(28)

From this matrix we get eigenvalues N2v2(N2)′ and −φN2−µ1 + v1(0). The
first is negative if and only if the derivate of the birth function is negative.
This is the exact assumption that was made earlier. The second condition
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is v1(0) ≤ µ1 + φN2. This means that the death rate for the prey and its
outflux due to predation must be greater than the birth rate.

The steady state with both species has v1(N1) = µ1 + φN2 and v2(N2) =
µ2 − eφN1. This steady state has the Jacobian

J =

(
N1v

′
1(N1) −φN1

eφN2 N2v
′
2(N2)

)
(29)

From this matrix we see that the trace is negative. This is follows from
the fact that the birth rate functions are decreasing. We also see that the
determinant is positive. These together tell us that whenever a positive
equilibrium exists, it is stable.

5.2 Prey and pathogen

Lets consider a situation without the predator. The system then reduces to

Ṅ1 = v1(N1)N1 − µ1N1 − α1I1 (30)

İ1 = β1
S1I1

N1

− µ1I1 − α1I1 + κS1I1. (31)

The steady state of this solves to

I1 =
v1(N1)N1 − µ1N1

α1

(32)

and

I1 = N1(1− µ1 + α1

β1 + κN1

). (33)

We can see that this steady state exists only if

v1(N1) > µ1 (34)
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and

µ1 + α1

β1 + κN1

< 1 (35)

Condition (34) tells us that at the steady state, the input of individuals is
greater than the normal death rate when α1 > 0. By studying this at the
population level N1 = 0, we can see if the addition of the pathogen adds so
much pressure that it kills the whole population. This way we can see that
for the species and pathogen to coexist we need to have

µ1 + α1

β1 + κN1

< 1 (36)

Condition (35) is exactly the condition where R1
0 > 1.

The stability of this steady state is determined by the Jacobian (23). Roberts
and Heesterbeek give

H =

(
N1v

′
1(N1) + α1I1/N1 −α1

κI1 −β1I1/N1

)
(37)

and

C =

(
v2(0) + eφ(S1 + qI1)− µ2 −eφ(1− p)(S1 + qI1)− α2

cqφI1 β2 − µ2 − α2

)
(38)

H was the matrix that controls epidemiological stability. Roberts and Heester-
beek give the results that this state is stable whenever β1 > α1 which is a
result from R1

0 > 1. C controls the ecological stability. No simple condition
for stability of this matrix can be found.

5.3 Predator and pathogen

Consider a situation without the prey. The situation is very much similar to
the one with prey and pathogen. The system reduces to
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Ṅ2 = v2(N2)N2 − µ2N2 − α2I2 (39)

İ2 = β2
S2I2

N2

− µ2I2 − α2I2 (40)

Now we have a little simpler system because there is no environmental trans-
mission involved. We can solve this steady state analytically and get

S2

N2

= 1− I2

N2

=
µ2 + α2

β2

=
1

R2
0

(41)

for the ratio of susceptibles.

It should be clear that the ratio cannot be greater than one and thus a
condition for the existence of this state is that R2

0 > 1.

We can also present this equation as

I2

N2

=
v2(N2)− µ2

α2

. (42)

Another thing we have to consider is the increased death from infected indi-
viduals. It is possible that this effect drives the predator species extinct. By
studying this effect near zero we can deduce from I2α2 + N2µ2 < v2(N2)N2,
a condition

v2(0)− µ2

α2

> 1− 1

R2
0

(43)

for the survival of the species.

We can present for the predator and the pathogen, as we did for the prey
and the pathogen, the same matrices. Roberts and Heesterbeek give

H =

(
N2v

′
2(N2) + α2I2/N2 −α2

0 −β2I2/N2

)
(44)

and

C =

(
v1(0) + φ(S2 + pI2)− µ1 −φq(S2 + pI2)− α1

rκI2 β1 − µ1 − α1 − φq(S2 + pI2).

)
(45)
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Eigenvalues for H are now easy to study. We get eigenvalues − I2
N2
β2 and

I2
N2
α2 + N2v

′
2

(
N2

)
. We can see that the first one is always negative. Thus

the epidemiological stability of the state depends on the second eigenvalue.
If we were to have a birth rate function v2 = B2

N2
the condition would solve

to I2α2 < B2.

6 Critical consumption rate

Roberts and Heesterbeek present the existence of a critical value of φ. This is
the value φc such that for any φ > φc, a steady state with predator and prey
can not exist without the pathogen. They show that there exists at least
some parameter values, for which a steady state exists with the pathogen,
but not without it.

We can analyze φc further. It is evident that the value of φc depends on the
parameters of the model. We can easily see that the dependence is only on
the non-epidemiological parameters and the birth rate functions, which may
have multiple parameters.

We can calculate φc for arbitrary parameter values by dividing functions
(24a) and (24b) with N1 and N2, setting them equal to zero, and solving N1

and N2. By changing parameter φ we can examine when one or both of these
steady state values become zero and negative.

A straigthforward way to solve φc for the prey is to take the two equations
and set N1 = 0. Then we can solve these for φ and N2 to get

φc,prey =
v1(0)− µ1

v−1
2 (µ2)

, (46)

where v−1
2 is the inverse of v2 when it exists. For (46) to be meaningful v1(0)

must be finite.

It is assumed that v1(0) > µ1. This means that in order to have a positive
φc,prey we must have v2(0) > µ2 meaning that the predator survives on an
alternative food source alone.

A critical consumption rate might exist for the predator too. Similarly we
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get

φc,predator =
µ2 − v2(0)

ev−1
1 (µ1)

(47)

for the predator.

φc,predator is now positive if and only if v2(0) < µ2. This simply means that
the predator must hunt enough prey to stay alive since the alternative food
source is not enough.

It is now clear that only one species can and must have φc, because the
existence of φc,prey requires v2(0) > µ2 and the existence of φc,predator requires
v2(0) < µ2. This means that there does not exist such a combination of other
parameters that guarantees an equilibrium with both species for every φ.

6.1 Exponentially decaying birth rate

Figure 1: We can find φc by examining the system with different values of
φ. Here we use parameter values α1 = 0.02, α2 = 0.2, µ1 = 0.2, µ2 = 0.05,
ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744, k2 = 2.7489 and e = 2.6185. The graph
shows the steady state values for both species.

The critical value of φ exists for birth rate functions of type vi(Ni) = ρie
(−kiNi)
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where ρ1 > µ1. From (46) we get

φc,prey = k2
ρ1 − µ1

log ρ2
µ2

. (48)

It is worth noticing that the value of φc,prey does not depend on e or k1. We
also have a linear dependence on ρ1−µ1, which is the growth rate of the prey
in the positive limit at zero without the predator. In the divisor of φc,prey we
have log ρ2

µ2
, which can be written as log ρ2 − log µ2.

Figure 1 shows how we can determine the φc,prey. Somewhere around φ = 0.15
the prey population ceases to exists. This is the φc,prey. Using equation (48)
we can calculate the exact value. For parameter values α1 = 0.02, α2 = 0.2,
µ1 = 0.2, µ2 = 0.05, ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744, k2 = 2.7489 and
e = 2.6185 this is φc,prey = 0.150.

For the predator we have

φc,predator = k1
µ2 − ρ2

e log( ρ1
µ1

)
. (49)

6.2 Constant births

If the birth rate function is of type vi(Ni) = Bi
Ni
, there would not be a φc.

This can be seen from equation (24a), which becomes

B1

N1

= µ1 + φN2. (50)

If N1 were to approach zero now, we would observe φ or N2 approaching
infinity. This effect is due to the constant influx of prey in the model.

Simimarly the influx of predators is constant, and thus they cannot go ex-
tinct.

6.3 Linearly decreasing birth rate

The birth rate function can also be of type vi = Vi − ciNi for Ni <
vi
ci

and
vi = 0 for Ni ≥ vi

ci
. This choice of birth rate function leads us to a logistic
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Figure 2: We can find φc by examining the system with different values of
φ. Here we use parameter values α1 = 0.02, α2 = 0.2, µ1 = 0.2, µ2 = 0.05,
V1 = 0.6, V2 = 0.5, c1 = 0.4, c2 = 0.4 and e = 2.6185. The graph shows the
steady state values for both species.

equation.[14] We can again solve the equations 24a and 24b for φ to get

φc,prey = c2
V1 − µ1

V2 − µ2

. (51)

φc,prey now only depends on the constant c2 and the differences Vi−µi, which
are assumed to be positive.

Figure 2 shows how the steady state values of both species change with the
parameter φ. From the figure we can see that φc,prey is about 0.4. This is the
same that equation (51) gives.

For the predator we have

φc,predator = c1
µ2 − V2

V1 − µ1

. (52)
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6.4 Other cases

The three aforementioned birth-rate functions are commonly used in mod-
eling. It is possible for the prey and the predator to have different type
of functions for their respective birth-rates. For example the predator might
have an exponentially decreasing birth-rate function, whereas the prey would
have a constant number of births per time unit.

6.5 Critical consumption rate as a bifurcation

What happens at the critical consumption rate is a transcritical bifurcation.[33]
The normal form for the transcritical bifurcation is

dx

dt
= rx− x2. (53)

If the birth rate function is vi(Ni) = Vi − CiNi then we have equation

dN1

dt
= (V1 − µ1 − φN2)N1 − c1N

2
1 = rx− c1x

2 (54)

for the prey. To be precise, we should not treat N2 as a constant because it
depends on φ. But in this case approximating it with a constant works.

Figure 2 shows how the prey becomes extinct at φ = 0.4. In this situation
r = 0 in the system, and a transcritical bifurcation happens. When r is
positive the system is biologically meaningful, the positive equilibrium is
stable and the equilibrium at zero unstable. When r is negative we have an
unstable negative equilibrium and a stable equilibrium at zero.

The exponentially decreasing birth rate gives a transcritical bifurcation too.
This can be confirmed by studying the Taylor expansion of it. We get

dN1

dt
≈ (ρ1 − µ1 − φN2)N1 − k1ρ1N

2
1 = rx− k1ρ1x

2. (55)

The situation is similar for the predator, −φN2 is just replaced with +eφN1.
As long as the critical consumption rates for the prey and the predator are
not the same, a transcritical bifurcation happens. We saw earlier that in any
case, both critical values can’t exist simultaneously.
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7 Properties of an equilibrium

The predator-prey-pathogen system may or may not have an equilibrium
which is or is not stable.

7.1 Population sizes

As can be seen from figures 1 and 2 increasing consumption rate does not
mean that the predator population grows in size in the equilibrium. We can
study the effect of φ on equilibrium sizes with implicit differentiation. Let
population sizes be functions of φ. Then at an equilibrium we have

v1(N1(φ))N1(φ)− µ1N1(φ)− φN1(φ)N2(φ) = 0 (56a)
v2(N2(φ))N2(φ)− µ2N2(φ) + eφN1(φ)N2(φ) = 0. (56b)

Dividing (56a) by N1 and (56b) by N2 and using implicit differentiation we
get

v′1(N1(φ))N ′1(φ)− φN ′2(φ)−N2(φ) = 0 (57a)
v′2(N2(φ))N ′2(φ) + eφN ′1(φ) + eN1(φ) = 0. (57b)

We can solve this system of equations for N ′1 and N ′2. In the next part the
arguments are not written out. We get

N ′1 =
v′2(N2)N2 − eφN1

eφ2 + v′1(N1)v′2(N2)
(58)

and

N ′2 = eφ
−v′1(N1)N1 − φN2

eφ2 + v′1(N1)v′2(N2)
. (59)

We can see that N ′1 is always negative since the birth rate functions are
decreasing and N1 and N2 are assumed to be positive equilibrium values.
N ′2 is more complicated. N ′2 is positive whenever −v′1(N1)N1 > φN2. This
holds at least at φ = 0 which means that when starting from a situation of no
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predation, the equilibrium population size of the predator increases initially
with the consumption rate.

Earlier we saw that with with certain assumptions the model has a critical
consumption rate where the prey goes extinct. It is clear that at this point
the equilibrium value of the predator is equal to that where the consumption
rate is zero. From (59) we can see that the derivative of N2 is negative at the
critical consumption rate, which is to be expected. We can expect to find a
unique global maximum for the equilibrium value of the predator.

The birth rate of the prey might be such that the critical consumption rate
does not exist. One example of a situation like this is when the birth rate
function for the prey is (50). Now for the predator we have N2 = B1

φN1
− µ1

φ
.

N ′2 = eφ
−v′1(N1)− φN2

eφ2 + v′1(N1)v′2(N2)
=

eφµ1

eφ2 + v′1(N1)v′2(N2)
(60)

which is always positive. In this case the predator population keeps grow-
ing with the consumption rate. The population does not grow indefinitely,
however. It has a limit when the consumption rate approaches infinity. To
see why this is, we must study the equilibrium values at infinity. When the
consumption rate is high enough, practically every prey dies because of the
predation. This gives us the approximation

N1 ≈
B1

φN2

. (61)

We can now solve the equilibrium value of the predator implicitly from the
equation

N2 =
eB1

µ2 − v2(N2)
. (62)

If we were to have v2(N2) = B2

N2
, the solution would be

N2 =
eB1 +B2

µ2

. (63)

We can do this with respect to any parameter. Letting population sizes be
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functions of e, we find that

N ′1 =
−φ2N1

eφ2 + v′1(N1)v′2(N2)
(64)

and

N ′2 = v′1(N1)N ′1 (65)

We can see that N ′1 < 0 and N ′2 > 0. These results are as expected. The
better the predator is in turning prey into offspring, the more it gains in
population sizes and thus decreases the prey population.

With death rates, we find that increasing µ1 decreases both populations and
increasing µ2 decreases predator population, but increases prey population.

These properties carry on to infected equilibriums in some extent. The parts
regarding other factors than the consumption rate also hold for the cases
with trade-offs.

7.2 Proportion of infected

The proportion of infected individuals is interesting. All susceptible indi-
viduals die at the same rate µ, but the infected have additional death rate
α. It is clear that higher α drives the number of infected individuals down.
Both of these factors have to be compared to birth-rates, which produce only
healthy individuals. In addition to this birth-death mechanism, there is also
predation and environmental transmission acting in the system. In the end,
the final ratio of infected individuals is a complex result of these mechanisms.

In the following examples the exponentially decreasing birth-rate function is
used.

Predation is dependent on parameters p, q, e and φ. φ increases the removal
of preys. This has the effect of lowering the ratio of infected prey in popu-
lation. The effect of φ is very much dependent on p and q. When studying
the ratio of infected prey, q is important. The higher the q the more infected
prey are removed due to predation. This effect is shown in figure 3. The
figure shows how the ratio of infected individuals changes in the equilibrium
when φ varies. It can be seen that change in q only affects significantly the
ratio in prey. The higher the q, the faster the decrease.
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Figure 3: Parameter values used here are α1 = 0.02, α2 = 0.2, β1 = 0.209,
β2 = 0.6, µ1 = 0.2, µ2 = 0.1, κ = 1, ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744,
k2 = 2.7489, c = 0.1, p = r = 1 and e = 1.2. The ratio of the infected in
prey population decreases faster with a higher value of q.

Changing the value of p has the same kind of an effect as q. It has no
other effect on the equilibrium ratio,s other than on the ratio of infected
prey. r relates the output of infectious material to the environment of prey
and predators. If r > 1, the predators output relatively more material to
the environment than the prey. κ then describes the strength of the whole
environmental transmission. It should be clear that increasing these factors
increases the ratio of infected prey. They should, however, have no other than
secondary effects on the ratio of infected predators since predators can not
get infected through the environment. The relation of the ratio of infected
prey to e, however, is somewhat more complicated. When e is low, the
predator population does not grow so much from predation, and the predator
population settles for a smaller value. Thus the prey gets hunted less and
the φN2 is effectively smaller than it would be for a larger e. Thus the ratio
of infected prey decreases with increasing e, regardless of q. This effect is
demonstrated in figure 5.

The previous example shed light on the ratio of the infected in the prey
population. The predator population was only a little or not at all affected.
Important factors for the predator are c, which describes how the infection
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Figure 4: Parameter values used here are α1 = 0.02, α2 = 0.2, β1 = 0.209,
β2 = 0.6, µ1 = 0.2, µ2 = 0.1, κ = 1, ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744,
k2 = 2.7489, c = 0.1, q = r = 1 and e = 1.2. The ratio of the infected in
prey population decreases faster with a higher value of p.

spreads through consuming infected prey, and possibly e.

Figure 6 shows how, quite naturally, the ratio of infected predators increases
with c. The effect is strengthened by a high q, which tells how much infected
prey are being preyd upon. When studying e, it can be seen that this does
not affect the ratio of infected predators much. Other than c, parameters α,
β and µ determine the equilibrium value of infected predators.

8 Adaptive dynamics

Adaptive dynamics (AD) is a framework, which has been developed since
1990s and is used to study evolution. It uses evolutionary game theory to
implement and to study ecological systems realistically. The foundation of
adaptive dynamics is laid in papers by Metz et al.[25] Dieckmann and Law[9],
Metz et al.[24] and Geritz et al.[16] [3]

Adaptive dynamics investigates the evolution of a single or multiple traits
that individuals carry. The first assumption in adaptive dynamics is that the
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Figure 5: Parameter values used here are α1 = 0.02, α2 = 0.2, β1 = 0.209,
β2 = 0.6, µ1 = 0.2, µ2 = 0.1, κ = 1, ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744,
k2 = 2.7489, c = 0.1 and q = p = r = 1. The ratio of the infected in prey
population decreases faster with a higher value of e.

evolution is slow compared to population dynamics. Therefore the population
is always at an equilibrium, when a new mutant is introduced. When a
mutant is introduced, its fate is determined by its initial growth rate. The
initial growth rate is called invasion fitness.[3] The evolution is assumed to
progress in small, but discrete steps. The trait of the mutant is thus always
close to that of the resident population’s trait value.

The following is the formal representation of adaptive dynamics by Geritz et
al.[16]

Let Ex be the environment in a population with only traits x. In our model
this environment would mean the amount of infected prey and predators,
which is determined by the trait of the predator. Also let r(x,Ex) be the
long-term exponential growth rate for the population. In an equilibrium we
have

r(x,Ex) = 0. (66)

We then want to study what happens when a mutant with trait y is in-
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Figure 6: Parameter values used here are α1 = 0.02, α2 = 0.2, β1 = 0.209,
β2 = 0.6, µ1 = 0.2, µ2 = 0.1, κ = 1, ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744,
k2 = 2.7489, e = 0.3 and p = r = 1. The ratio of infected in prey population
decreases faster with higher value of e.

troduced into this population. The exponential growth rate, fitness, of the
mutant is

sx(y) = r(y, Ex). (67)

The environment is a function of x only because the size of the mutant
population in the beginning is so small it does not affect the environment yet.
Now, depending on the sign of sx(y) the mutant either spreads (sx(y) > 0)
or dies out (sx(y) < 0). We can define the local fitness gradient as

D(x) =

[
∂sx(y)

∂y

]
y=x

. (68)

When D(x) > 0 (D(x) < 0) only mutants with y > x (y < x) can invade
the resident population. The interesting trait values are those that have
D(x) = 0. These are called evolutionary singular strategies. The full story
about what can happen at an evolutionary singular strategy is presented
in Geritz et al.[16] One thing that can happen is that no other strategy
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can invade it and the evolution stops. With certain conditions a dimorphic
population with two adapting traits can arise.

8.1 Properties of a singular strategy

The singular strategy is evolutionarily stable if

∂2sφ(φmut)

∂φ2
mut

< 0. (69)

In our model in the absence of the pathogen we have always ∂2sφ(φmut)

∂φ2mut
= 0

because the fitness depends on φmut linearly making the second derivative
zero.

The singular strategy is convergence stable if

∂2sφ(φmut)

∂φ2
>
∂2sφ(φmut)

∂φ2
mut

(70)

Without the pathogen we had ∂2sφ(φmut)

∂φ2mut
= 0 making the condition

∂2sφ(φmut)

∂φ2
> 0. (71)

This cannot be calculated analytically, because even the equilibrium values
cannot be solved other than numerically.

9 Evolution of consumption rate

The evolution of traits is complicated and hard to study in nature.[2] Cur-
rently the most popular view about predator-prey coevolution sees it as an
arms race.

In our model we only have the predator as an evolutionary agent. The prey
does not evolve at all. Models that give similar predictions for the evolution of
the trait as our model without the pathogen have been presented by Schaffer
and Rosenzweig.[30][28]
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Some examples on how trade-offs in traits are used to control the evolution
have been presented by Brodie[6] and Kraaijeveld and Godfray[20]. Evolution
with trade-offs is considered in later sections.

9.1 Without pathogen

In section 6 it was shown that for a certain type of birth-rate functions,
there exists a threshold value for consumption rate φ. It is convenient to use
adaptive dynamics to study if the evolution of the consumption rate brings
it over the critical value driving the prey species into extinction.

Let φ be the trait the evolution of which we study. In a situation without the
pathogen the population reaches a stable equilibrium as long as φ < φc. The
stability of this equilibrium can be seen from 29. The steady state values N1

and N2 can be solved from (24a) and (24b). Then the growth rate of and
individual with a trait value of φmut, can be solved from (24b) with φ = φmut
and Ni = N i. We get for the change of the mutant population M per time
unit

dM

dt
= v2(N2)M + eφmutN1M − µ2M. (72)

It is clear that (72) is an increasing function of φmut. This leads us to see that
the selection gradient D(x) from (68) is always positive. Evolutionarily this
means that if there is nothing stopping the increase of the consumption rate
φ, it will continue evolve to higher values. Eventually this leads to φ > φc,prey
in situations that have the critical value, and therefore to the extinction of the
prey. The extinction of the prey then stops the increase in the consumption
rate as consumption becomes meaningless. Even in the model with constant
births, the prey is practically driven to extinction, because the equilibrium
value of N1 decreases with increasing φ. When φ approaches infinity, N1

approaches zero.

If we have v2(0) < µ2 and thus φc,predator exists, we don’t see prey going
extinct.

9.2 With pathogen

A similar process happens with the pathogen. In this case we have a struc-
tured population and the system is therefore a bit more complicated. We can,
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of course, reach all the similiar situations as before by choosing pathogen re-
lated parameters, so that the effect of the pathogen disappears.

We have to study the eigenvalues of the matrix for the growth of the mu-
tant. For a rare mutant we have initially the following system of differential
equations

ds

dt
= −cqφmutI1s−

β2

N2 + n
(i+ I2)s− µ2s

+eφmut(S1 + qI1)(s+ pi) + v2(N2 + n)(i+ s) (73a)
di

dt
= cqφmutI1s+

β2

N2 + n
(i+ I2)s− µ2i− α2i. (73b)

Linearizing this system around (s, i) = (0, 0) we get a linear system

dM

dt
= AM, (74)

where M = [s, i]T and

A =

(
am bm
cm dm

)
. (75)

where

• am = v2(N2) + eφmut(S1 + qI1)− µ2 − cqφmutI1 − β2I2
N2

• bm = v2(N2) + epφmut(S1 + qI1)

• cm = cqφmutI1 + β2I2
N2

• dm = −α2 − µ2

Whether or not the mutant can invade depends now on the eigenvalues of
this matrix. We can, however, study the invasion fitness by calculating only
the trace and determinant. For the equilibrium of a linearized system to be
stable we must have trace(A) < 0 and det(A) > 0.[18]

Figure 7 shows the characterization of equilibria by trace and determinant of
the linear system. There are two ways to leave the upper west area, which is
stable. We can leave it by going down to the saddle area, or by going right to
the unstable foci. What we are studying is a linear system of two variables,



30

Figure 7: The trace-determinant plane and the classification of equilibria.
The grey area is the stable area. The area above the curve has foci and thus
cannot be achieved in this biological system.

infected mutants and susceptible mutants. These can be only positive or zero.
It is then clear that the system cannot have foci. This is usually the case
in biological settings because we are dealing with non-negative population
levels.

Thus the only way for the system to transform from stable to unstable is for
the determinant to change its sign. This doesn’t mean that a change in the
sign of the determinant necessarily means a change in eigenvalues. We could
have a positive trace and think that having a change of the determinant
means no change in system dynamics. But we must remember that the
determinant crosses zero when changing from positive to negative and this
induces a bifurcation in the system.

If we can show that the determinant being positive implies that the trace is
negative, we can see that the determinant is a valid fitness proxy. Because
we have dm < 0 to have amdm positive, we must have am < 0. Now, if this
is true, the trace of the matrix is negative. We can see that bmcm > 0 since
both bm and cm are positive. The effect of this product is negative on the
determinant and if we have a positive determinant, we must have positive
product amdm. This was the same condition that implied that the trace is
negative. Thus, we can conclude that the determinant is a proper fitness
proxy.

We can study simpler cases of this easier than the whole system. If the
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pathogen does not harm the predator in any way, we have α2 = 0 and p = 1.
In this case we have eigenvalues

λ1 = − 1

N2

(cqφmutI1N2 + µ2S2 + (β2 + µ2)I2) (76a)

λ2 = v2(N2)− µ2 + eφmut(S1 + qI1). (76b)

The first of these is always negative and the second one is positive whenever
φmut > φ. This leads to uncontrolled increase in the consumption rate simi-
larly as before. We can conclude that a harmless pathogen can’t negate the
increase in consumption rate.

With α2 > 0 or p < 1 we have a more complicated system. It is possible
that the pathogen transmitted through consumption reduces the predators
capability and increases death rate so much that at some point, increasing
consumption rate would not be good for the predator. The pathogen offers
more possibilities for the system. We can study the whole system with the
help of the determinant

det(A) = amdm − bmcm. (77)

We can calculate det(A) and see that it is a polynomial of φmut of second
degree. (69) gives the condition for a singular strategy to be evolutionarily
stable. Now, using (77) as our invasion fitness we get

∂2sφ(φmut)

∂φ2
mut

= −2cepqI1(S1 + qI1). (78)

This is either zero or negative meaning that the singular strategy is always
an ESS. Having (78) equal to zero means having a degenerate case with a
vertical line in the pairwise invadability plot. This happens when c, e, p or
q equals zero or in the absence of the pathogen. However in the absence of
the pathogen, we don’t even have a singular strategy. The same goes for
some of the other cases. If we have e = 0, the predator achieves nothing
from consuming the prey and if there is a possibility of getting infected from
consuming, the evolutionary drives should be towards zero.

Figure 8 shows the equilibrium values for predator and prey with different
values of φ with chosen parameters. What is interesting is that the total
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Figure 8: Parameter values used here are α1 = 0.02, α2 = 0.2, β1 = 0.209,
β2 = 0.2, µ1 = 0.15, µ2 = 0.1, κ = 0.1, ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744,
k2 = 2.7489, e = 0.1, q = 0.3, p = 0.05, r = 1 and c = 0.95. Equilibrium
values are for sick and healthy predator and prey with different values of φ.

amount of predators decreases with the consumption rate. This is a conse-
quence of both the disease spreading to the predator through prey and the
total amount of prey decreasing, which affects the consumption. Keeping
this in mind it would seem unwise for the predator to increase its consump-
tion rate. This is something that could be seen in a situation without the
pathogen, too. With high enough consumption the predator population de-
creases. In that case the evolutionary drive was for higher consumptions
anyway, because a single predator wants what is best for it, not what is best
for the population.

Figure 9 shows the pairwise invadability plot of the situation. Combining the
information from figures 8 and 9 it is possible to determine what happens in
this case. With any given original value of φ, the population goes to a steady
state. Then with successive mutations and invasions φ decreases to zero.
At zero the infected part of the predator population vanishes. Effectively
the prey and predator population start to live in isolation. Predator could
still infect prey through environmental transmission if only there were any
infected predators. As figure 8 shows, with φ = 0 there are no sick predators.
This is due to the fact that we have R2

0 = β2
µ2+α2

= 0.2
0.1+0.2

= 2
3
< 1. In prey
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Figure 9: The pairwise invadability plot for the system with a pathogen
related to figure 8. Parameter values used here are α1 = 0.02, α2 = 0.2,
β1 = 0.209, β2 = 0.2, µ1 = 0.15, µ2 = 0.1, κ = 0.1, ρ1 = 0.25, ρ2 = 0.25,
k1 = 0.0744, k2 = 2.7489, e = 0.1, q = 0.3, p = 0.05, r = 1 and c = 0.95.
The direction of evolution is always negative.

population the disease persists. When the consumption rate is positive, the
infection in the predator population is maintained with incoming infection
from the prey population.

Seeing this model can have both decrease and increase in consumption, it
might be possible to have both of these at the same time leading to a single
evolutionary stable value of φ.

Figure 10 shows the equilibrium values of the populations for certain param-
eters. When consumption rate is zero, the predator population is healthy.
With a high enough consumption rate the predator hunts the prey to ex-
tinction. Before this happens, the sick prey are hunted to extinction and for
a certain interval of φ both species are healthy. Hunting the sick preys to
extinction does not mean that only the prey that is sick is being hunted, but
that the pathogen is not viable in that parameter range. The amount of prey
decreases with increasing φ and the amount of prey is a factor in the basic
reproduction number (19). Even though the basic reproduction numbers for
the isolation case don’t represent the situation exactly, they offer an approxi-
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Figure 10: Parameter values used here are α1 = 0.02, α2 = 0.3, β1 = 0.209,
β2 = 0.2, µ1 = 0.2, µ2 = 0.1, κ = 0.1, ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744,
k2 = 2.7489, e = 0.1, q = 0.3, p = 0.05, r = 1 and c = 0.95. The equilibrium
values are for the sick and the healthy predator, and prey, with different
values of φ.

mation. We now see that we have R1
0 = β1+κN1

µ1+α1
≈ 0.209+0.1×0.3

0.2+0.02
= 1.086, where

the pathogen disappears from the prey.

Figure 11 shows the pairwise invadability plot of the situation. We can see
that there is a singular strategy at value φs = 0.09. This time the strategy
is not attracting. With any trait value evolution drives the consumption
rate away from φs. If the consumption rate is originally lower than this
it is driven to zero and species become isolated. If the consumption rate
is originally higher than φs, it is driven higher and the prey is hunted to
extinction. The repelling singular strategy is also an ESS. This is sometimes
called "The garden of Eden" after Nowak and Sigmund.[26] It cannot be
reached in any way once it is lost.

The disease in these cases helps controlling the consumption rate in a sense.
It makes it possible to make hunting the prey harmful to the predator so that
the predator stops the hunting for good. It doesn’t, however, bring a stable
positive value for the consumption rate. The possible outcomes only include
constantly increasing consumption rate or constantly decreasing consumption
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Figure 11: The pairwise invadability plot for the system with a pathogen
related to figure 10. Parameter values used here are α1 = 0.02, α2 = 0.3,
β1 = 0.209, β2 = 0.2, µ1 = 0.2, µ2 = 0.1, κ = 0.1, ρ1 = 0.25, ρ2 = 0.25,
k1 = 0.0744, k2 = 2.7489, e = 0.1, q = 0.3, p = 0.05, r = 1 and c = 0.95. The
tilting of the line is exaggerated. In reality the slope is very close to vertical.

rate. The latter, of course, leads to the case with no predation.

10 Trade-off between consumption rate and birth
rate

More interesting situations arise when φ is connected to other qualities of
the predator. These qualities could be the birth-rate or the death-rate. In-
creasing the consumption rate could bring more dangerous situations to the
predator or be exhausting enough to increase death rate. It would be more
natural that increased consumption of the prey would decrease the predators
capability to take advantage of alternative food sources. Thus increasing the
consumption rate would be countered with a decreasing birth-rate function.
Finding a proper connection with these rates is a difficult modeling task.

Trade-offs in adaptive dynamics have been discussed in depth by Rueffler at.
al.[29] When dealing with trade-off functions, performing a critical function
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analysis is sometimes of use. It is a method introduced by de Mazancourt
and Dieckmann.[8] The method can help uncover evolutionary scenarios that
would otherwise be overlooked.[15]

One way to build a trade-off between consumption rate and birth rate of the
predator is to think of them as exclusive activities. Whatever time is used to
hunt the prey can not be used to consume the alternative food source. This
leads us to equations

Ṅ1 = v1(N1)N1 − µ1N1 − α1I1 − φΦ(S1 + qI1)(S2 + pI2) (79a)

Ṅ2 = (1− φ)v2(N2)N2 − µ2N2 − α2I2 + eφΦ(S1 + qI1)(S2 + pI2) (79b)

İ1 = β1
S1I1

N1

− µ1I1 − α1I1 − φΦqI1(S2 + pI2) + κS1(I1 + rI2) (79c)

İ2 = β2
S2I2

N2

− µ2I2 − α2I2 + cqφΦI1S2. (79d)

Here Φ is a constant describing the effect of the consumption at its maximum.
φ ∈ [0, 1] is now the proportion of time the predator uses to hunt the prey.
The rest of the time is used to feed on the alternative food source. Without
the pathogen this system reduces to

Ṅ1 = v1(N1)N1 − µ1N1 − φΦN1N2 (80a)

Ṅ2 = (1− φ)v2(N2)N2 − µ2N2 + eφΦN1N2 (80b)

Systems (79) and (80) are fundamentally different from the previous from an
evolutionary point of view.

Now for the system (79) there are many possible outcomes when considering
the evolution of the predator and its trait φ. Two possibilities are the end-
points φ = 0 and φ = 1. Another would be to have any number of singular
strategies inside the interval. In fact, it is possible to have any of these three
different cases to exist for different parameter values.

10.1 Next-generation matrix

The next-generation matrix for this model is only a little different from the
previous. The transition matrix T stays the same and the rate of predation
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is changed in the transmission matrix Σ. We get

K = −TΣ−1 =

(
κN1+β1

qφΦN2+α1+µ1

rκN1

α2+µ2
cqφΦN2

qφΦN2+α1+µ1

β2
α2+µ2

)
(81)

The basic reproduction numbers are different from previous, but with ecologi-
cal isolation they are identical. We see that if the strength of the consumption
(φΦ) is equal to the strength of the consumption without the trade-off, the
next-generation matrix is equal to (18).

10.2 Critical consumption rate

Critical consumption rate is somewhat different in this system. Both the
prey and the predator can be driven to extinction with certain parameters.
Previously the prey could only be driven to extinction with a high enough
consumption rate and the predator with low enough consumption rate. The
following shows that in this case the prey can be driven to extinction if the
predator uses less of its time hunting the prey and the predator can go extinct
if it spends too much time hunting.

The critical consumption rate can be calculated from (80) by dividing both
equations by N1 or N2, setting them equal to zero and choosing N1 or N2

equal to zero. For the predator we have

φc,predator =
v2(0)− µ2

v2(0)− eΦv−1
1 (µ1)

. (82)

We now have two possibilities. If v2(0)− µ2 > 0 the predator survives using
the alternative food source only. In this case φc,predator exists and is between
zero and one if eΦv−1

1 (µ1) < µ2.

Figure 12 shows the equilibrium values for both species with different values
of φ. It can be seen from the figure and calculated from (82) that φc,predator =
0.6818.

When v2(0)− µ2 < 0 the predator cannot survive using the alternative food
source only. In this case the only possibility for it is to hunt the prey enough
to survive. In this case we must have eΦv−1

1 (µ1) > µ2 for the φc,predator and
the predator population to exist for φ > φc,predator.
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Figure 12: System with trade-off between birth rate and consumption rate
without the pathogen. Parameter values used here are µ1 = 0.2, µ2 = 0.1,
ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744, k2 = 2.7489, e = 0.1 and Φ = 0.1.
φc,predator can be seen to be around 0.68.

Figure 13: A system with trade-off between birth rate and consumption
rate without the pathogen. The parameter values used here are µ1 = 0.2,
µ2 = 0.4, ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744, k2 = 2.7489, e = 0.5 and Φ = 1.
φc,predator can be seen to be around 0.12.
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Figure 13 shows such a situation. The predator population exists only for
φ > φc,predator = 0.12 since the alternative food source is not enough to keep
the predator alive.

Prey can go extinct in this system, too. Sadly, solving φc,prey for this is
impossible analytically. φc,preyis implicitly determined by the equation

φc,prey =
v1(0)− µ1

Φv−1
2 ( µ2

1−φc,prey )
. (83)

Now equation (83) can have an even number of solutions in interval [0, 1]
depending on parameters and birth rate functions. Usually this means zero
or two solutions. The equation can not have only one solution because with
φ = 0 we have a positive equilibrium value for N1 = v−1

1 (µ1). Similarly
on the other end of the interval we have N1 = µ2

eΦ
, which is positive. The

solutions to (83) occur when the equilibrium value reaches zero and goes
beneath it. Because both end points are positive, the zero must be crossed
an even number of times. The exception to this rule is iif the root is a double
root. In this case the zero is not crossed and the prey would go extinct
in only this one point. Because birth-rate functions are well behaving and
non-increasing we usually have two solutions at most.

Figure 14 shows a situation with three different φc values. The prey goes
extinct with 0.23 < φ < 0.35 and the predator with φ > 0.83.

Without the trade-off it was clear that both populations could not go extinct
at the same consumption rate. Now it is not that trivial because of the
multiple critical values, but from the equation (80a) for the prey we can see
that in order for that to happen, we should have v1(0) − µ1 = 0 because at
the critical consumption rate there are no predators consuming the prey and
thus all the deaths must come from natural causes. This, of course, does not
hold and thus critical consumption rates are always different for the prey and
the predator.

10.3 Evolution without pathogen

Evolution without the pathogen can be solved with the tools of adaptive
dynamics. Fitness of an invader in a population in an equilibrium is

sφ(φmut) = (1− φmut)v2(N2) + φmuteΦN1 − µ2. (84)
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Figure 14: A system with trade-off between birth rate and consumption
rate without the pathogen. The parameter values used here are µ1 = 0.2,
µ2 = 0.1, ρ1 = 0.25, ρ2 = 0.5, V1 = 1, V2 = 0.2, c1 = 0.5, c2 = 0.2, e = 0.005
and Φ = 10. For the extinction of the predator φc,predator = 0.83 and for the
prey φc,prey = 0.23 and φc,prey = 0.35.

We can present this with the help of change of variables. Let x = φmut − φ.
Then fitness reduces to

sφ(φmut) = (1−φ−x)v2(N2)+(φ+x)eΦN1−µ2 = x[eΦN1−v2(N2)]. (85)

We can define the deciding factor, which is the selection gradient

A := eΦN1 − v2(N2). (86)

We can now represent this in another way. Solving v2(N2) from the equilib-
rium equation for the predator we get v2(N2) = µ2−eφΦN1

1−φ . Inserting this to
(86) and multiplying both sides with (1− φ) we get

(1− φ)A = eΦN1 − µ2. (87)
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Now, this is maximized when N1 achieves its maximum. N1 is maximized
when φ = 0 and then N1 = v−1

1 (µ1). Now we have A = eΦv−1
1 (µ1)− µ2.

Earlier we saw that the critical consumption rate exists for the predator and
is between 0 and 1 if we have v2(0) > µ2 > eΦv−1

1 (µ1). In this case the
maximum of A is negative, which means that A is always negative. We can
then make the conclusion that if the critical consumption rate exists between
zero and one and the predator survives with the alternative food source, the
evolution drives the consumption rate to zero.

Figure 14 shows an example of this situation. The predator cannot survive
with prey only and the evolutionary drive is to φ = 0. However, if the
starting value is above φ = 0.35, the predator will drive the prey extinct
as the trait value lowers. After that, the trait value would keep decreasing,
because there would not be any prey. With values lower than φ = 0.23, this
would not happen.

The other case for the existence of the critical consumption rate of the preda-
tor was when we had eΦv−1

1 (µ1) > µ2 > v2(0).

From the equilibrium equations we can solve

eφΦN1 = µ2 − (1− φ)v2(N2) (88)

Multiplying (87) by φ we get

φ(1− φ)A = eφΦN1 − φµ2. (89)

Now subsituting from (88) gives

φ(1− φ)A = eφΦN1 − φµ2 = (1− φ)µ2 − (1− φ)v2(N2). (90)

Finally we can show this as

φA = µ2 − v2(N2) (91)

This is just another way to represent the selection gradient A with no ad-
ditional assumptions yet. We want to show that with the assumptions
eΦv−1

1 (µ1) > µ2 > v2(0) we have always A > 0. φA is minimized when
v2 is maximized, which happens when N2 is the smallest it can be. This
happens with N2 = 0 and we would have φA = µ2 − v2(0). Now we see
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from our assumptions that this is positive since µ2 > v2(0). Therefore A is
positive at every point with these assumptions. In this case φ is driven to
one.

If φc does not exist in the interval of [0, 1], we can have more interesting
results. With critical consumption rate values, we had only evolution to the
extreme. A drive to the extreme is still possible in the absence of critical
consumption rates, but we can have a singular strategy in the middle of the
interval, too.

10.3.1 The singular strategy

Figure 15: A system with trade-off between birth rate and consumption
rate without the pathogen. The parameter values used here are µ1 = 0.2,
µ2 = 0.1, V1 = 2, V2 = 0.4, c1 = 0.5, c2 = 0.2, e = 0.3 and Φ = 2. The
singular strategy in this case is φ = 0.57.

We can solve the value φ of a singular strategy by solving equations Ṅ1 = 0,
Ṅ2 = 0 and A = 0 when N1, N2 > 0. If N1 = 0, we would have A < 0 and
the predator should concentrate all its efforts to the alternative food source.

By solving the equations we get
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Figure 16: The pairwise invadability plot associated with figure 15. For φ
smaller than the singular value of 0.57, any invader with a higher φ can
invade and for values higher than 0.57, any invader with a lower value can
invade. A trait value of 0.57 is a borderline case of an evolutionarily stable
strategy, since any other strategy has fitness equal to zero against it.

N1 =
µ2

eΦ
(92a)

N2 = v−1
2 (µ2) (92b)

φ =
v1( µ2

eΦ
)− µ1

Φv−1
2 (µ2)

(92c)

From (92c) we can easily see when a singular strategy exists with φ ∈ [0, 1].
We must have

Φv−1
2 (µ2) > v1(

µ2

eΦ
)− µ1 > 0. (93)

Earlier we had the equation (82) for φc,predator of the predator. We showed
that if a critical consumption rate for the predator φc,predator exists, no singu-
lar strategy exists. Equation (82) then provides us with necessary conditions
for the existence of a singular strategy. These are
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Figure 17: The mutual invadability plot associated with figures 15 and 16.
The system has areas of dimorphism where two different predator populations
can coexist with different trait values. These areas are marked with plus
signs, whereas areas of no coexistance are marked with minus signs.

v2(0) > µ2 (94a)
eΦv−1

1 (µ1) > µ2 (94b)

We can alternatively derive (94a) by setting the first term of (93) to greater
than zero. Same way (94b) is derived by setting the second term of (93) to
greater than zero. This leaves us the first inequality of (93) unused. Adding
this to conditions (94) gives us sufficient conditions (the whole (93)) for the
existence of a singular value.

Figure 15 shows the equilibrium densities for both species as functions of
φ. With this information the values for A can be calculated and the root
determined. It can be seen that the singular value is φ = 0.57. With the
help of the sign of A we can draw a pairwise indadability plot. This is shown
in figure 16. It can be seen that with small mutation steps the trait φ is
driven to the singular value. Figure 17 shows the areas of coexistence for
two strategies. One example of such strategies could be φ1 = 0.5, φ2 = 0.6
where stable population sizes would be for prey N1 = 0.167 and for predators



45

N2,1 = 0.4167 and N2,2 = 1.0833.

As before, the singular strategy is a borderline ESS without the pathogen
because the invasion fitness is a linear function of φmut. The convergence
stability of the singular strategy is then defined by (71). In this case the
singular strategy is convergence stable.

10.4 Evolution with pathogen

Figure 18: The system with trade-off between birth rate and consumption
rate with pathogen. The equilibrium values for both species as a function of
φ. Parameters used are µ1 = 0.2, µ2 = 0.1, α1 = 0.02, α2 = 0.1, β1 = 0.209,
β2 = 0.6, ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744, k2 = 2.7489, Φ = 0.3, κ = 0.1,
e = q = r = 1, c = 0.9 and p = 0.1. The singular strategy in this case is
φ = 0.57

The evolution without pathogen was fairly simple. Dimorphism was possi-
ble, but achieving it through evolution not. Pathogen offers us with more
possibilities as was shown in the situation without a tradeoff. In situations
without the pathogen, the evolutionary view is always similar.

The invasion fitness must be again calculated from the determinant of the
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Figure 19: The pairwise invadability plot associated with figure 18. In this
case the singular strategy is a real ESS. If φ = 0.53 no other strategy can
invade the population.

linearized system. The matrix is now

A =

(
am bm
cm dm

)
. (95)

where

• am = (1− φmut)v2(N2) + eφmutΦ(S1 + qI1)− µ2 − cqφmutΦI1 − β2I2
N2

• bm = (1− φmut)v2(N2) + epφmutΦ(S1 + qI1)

• cm = cqφmutΦI1 + β2I2
N2

• dm = −α2 − µ2

Figure 18 shows the equilibrium values for both species as a function of φ with
chosen parameters. The pairwise invadability plot of this situation is shown
in figure 19. We can see that the singular trait value is an ESS. Evolution
drives the value to φ = 0.53 and after that it stays there.

Studying dimorphic populations in this case is not necessary, because they
cannot become to existence.
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11 Trade-off between consumption rate and death
rate

Hunting the prey is sometimes a dangerous sport. It would be reasonable
to think that hunting causes some extra deaths to predators. We can model
this dependecy of death rate from time used to hunt the prey with a function
f(φ)N2. Total amount of non-disease related deaths for the predator would in
this case be (µ2+f(φ))N2. We assume that f(0) = 0. If we had f(0) = C > 0
we could include this in the natural death rate µ2.

This gives us the following system

Ṅ1 = v1(N1)N1 − µ1N1 − α1I1 − φ(S1 + qI1)(S2 + pI2) (96a)

Ṅ2 = v2(N2)N2 − (µ2 + f(φ))N2 − α2I2 + eφ(S1 + qI1)(S2 + pI2) (96b)

İ1 = β1
S1I1

N1

− (µ1 + α1)I1 − φqI1(S2 + pI2) + κS1(I1 + rI2) (96c)

İ2 = β2
S2I2

N2

− (µ2 + f(φ) + α2)I2 + cqφI1S2. (96d)

In the absence of the pathogen the system reduces to

Ṅ1 = v1(N1)N1 − µ1N1 − φN1N2 (97a)

Ṅ2 = v2(N2)N2 − (µ2 + f(φ))N2 + eφN1N2 (97b)

A simple choice is f(φ) = kφ. This means that hunting has a constant death
rate cost to the predator. Other choices for the function are possible too.
One could argue that more the predator hunts, the more skilled it becomes
in hunting and thus the increase in additional deaths should lower with φ.
This would mean that we have f ′′(φ) < 0. On the other hand hunting can
be exhausting and more hunting would make the predator tired causing the
increase in the additional deaths to be higher with higher values of φ. This
would mean that f ′′(φ) > 0. Both approaches could be true and the sign of
f ′′(φ) could at first be negative when the predator learns to hunt better and
with higher values positive when fatigue plays bigger role.
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11.1 Next-generation matrix

The next-generation matrix for this model is only a little different from the
previous. The transition matrix T stays the same and extra death rate is
added to the transmission matrix Σ. We get

K = −TΣ−1 =

(
κN1+β1

qφN2+α1+µ1

rκN1

α2+µ2+f(φ)
cqφN2

qφN2+α1+µ1

β2
α2+µ2+f(φ)

)
(98)

The basic reproduction numbers are different from previous but with ecolog-
ical isolation they are identical. We see that if there is no additional death
rate, the next-generation matrix is equal to (16)

11.2 Critical consumption rate

Like before we can solve the critical consumption rate for the extinction of
the prey and the predator when the pathogen is not present. For the prey
we get

φc,prey =
v1(0)− µ1

v−1
2 (µ2 + f(φc,prey))

. (99)

The number of solutions depends on the characteristics of f(φ). No analytical
solution is available unless f(φ) is a constant in which case it should be
included in µ2 and the trade-off doesn’t really exist.

For predator we have

φc,predator =
f(φc,predator)− v2(0) + µ2

ev−1
1 (µ1)

. (100)

With f(φ) = kφ this solves to

φc,predator =
v2(0) + µ2

k − ev−1
1 (µ1)

. (101)

Without the trade-off it was clear that the both populations could not go
extinct at the same consumption rate. Again from the equation for the prey
we can see that in order for that to happen, we should have v1(0)− µ1 = 0.
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This of course does not hold and thus critical consumption rates are always
different for the prey and the predator.

11.3 Evolution without pathogen

Without the pathogen the initial growth rate of a mutant is determined by

dM

dt
= (v2(N2)− µ2 − f(φmut) + eφmutN1)M. (102)

Fitness is described by the factor multiplying M . With change of variables
x = φmut − φ the fitness reduces to

sφ(φmut) = x(eN1 −
f(φ+ x)− f(φ)

x
) := xA (103)

Taking the limit x→ 0 we see that the last term of A goes to f ′(φ). We then
get

A = eN1 − f ′(φ). (104)

We must remember when taking the limit that adaptive dynamics has dis-
crete and finite steps in trait values. In this sense the limit is too precise and
we must remember where it comes from.

11.3.1 Singular strategy

Without the pathogen singular strategies are solvable to some extent. The
singular strategy can be solved similarly to the previous cases. From (97a)
we can solve φ in the equilibrium

φ =
v1(N1)− µ1

N2

. (105)

From equations (97b) and (104) we get values for N1 and N2. The equation
becomes

φ =
v1(f

′(φ)
e

)− µ1

v−1
2 (f(φ)− φf ′(φ) + µ2)

. (106)
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With f(φ) = kφ we have f(φ) = φf ′(φ). This simplifies the equation giving
us an analytical solution

φ =
v1(k

e
)− µ1

v−1
2 (µ2)

. (107)

Now, this positive whenever v1(k
e
) > µ1 and v2(0) > µ2.

We can again use the determinant of the linearized system to study the
properties of the singular strategy. Given that the linearized system has A
equal to (75) subtracted by f(φmut)I, where I is the identity matrix, we can
say whether the singular strategy is an ESS, or not. The formula for the
general case is complex, but in the absence of the pathogen by differentiating
the fitness proxy we get from (104)

∂2sφ(φmut)

∂φ2
mut

= −f ′′(φmut). (108)

This could be positive or negative. However with the choice of f(φ) = kφ we
have f ′(φ) = k and f ′′(φ) = 0 and therefore

∂2sφ(φmut)

∂φ2
mut

= 0. (109)

This means that with a linear trade-off in the death rate we always have a
borderline ESS. This is seen in figure 21.

Choosing, for example, f(φ) = kφz, where z is not equal to one, we can get
singular strategies that are ESS or not. Equation (108) is a simple condition
for the singular strategy being an ESS. We can see that the singular strategy
is an ESS if and only if the trade-off function in death rate is convex at the
current value of φ.

Without the pathogen the course of evolution is decided by the factor A.
When f(φ) ≡ 0 also f ′(φ) = 0. This would mean that hunting causes no
extra death rate, simplifying the situation to that of the earlier where φ is
always increasing.

Assuming f(φ) = kφ the invasion fitness is

A = eN1 − k (110)
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Figure 20: The system with trade-off between birth rate and death rate
without the pathogen. Equilibrium values for the predator and the prey
and the invasion gradient. Parameter values used are µ1 = 0.2, µ2 = 0.2,
ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744, k2 = 2.7489, e = 0.5 and k = 0.2.

Figure 20 shows an example of evolution of φ in the absence of the pathogen.
The invasion gradient is first positive and changes to negative at the singular
strategy φ = 0.53. The singular strategy is convergence stable like before.
The pairwise invadability plot is shown in figure 21. The convergence stability
can be seen from the fact that with values lower than φ = 0.53 the plus region
is above the y = x line and with values higher than φ = 0.53 the plus region
is below the line. Evolution is towards the singular strategy φ = 0.53, which
is a borderline ESS. The effect of the trade-off is very similar to the trade-off
in the consumption rate and the birth rate in the absence of the pathogen.

11.4 Evolution with pathogen

As usual, evolution with pathogen offers more diverse situations. Introduc-
tion of the pathogen in this model makes it possible to have singular strategies
that are not convergence stable. The invasion fitness must again be calcu-
lated from the determinant of the linearized system. The matrix is now
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Figure 21: The pairwise invadability plot associated with figure 20. The
parameters used are µ1 = 0.2, µ2 = 0.2, ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744,
k2 = 2.7489, e = 0.5 and k = 0.2.

simply equal to (75) subtracted by f(φmut)I where I is the identity matrix.

A =

(
am bm
cm dm

)
. (111)

where

• am = v2(N2) + eφmut(S1 + qI1)− µ2 − cqφmutI1 − β2I2
N2
− f(φ)

• bm = v2(N2) + epφmut(S1 + qI1)

• cm = cqφmutI1 + β2I2
N2

• dm = −α2 − µ2 − f(φ)

Figure 22 shows the equilibrium values for the predator and the prey with
parameters much like in figure 10. Adjusting parameters a little and adding
the added death rate with parameter k = 0.11 the pairwise invadability plot
gets a very different shape. This is shown in figure 23.

We now have two singular strategies. One is convergence stable and one is
not. From figure 22 we can see that if the consumption rate is greater than
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Figure 22: The equilibrium values for the predator and the prey with pa-
rameters µ1 = 0.2, µ2 = 0.1, ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744, k2 = 2.7489,
α1 = 0.02, α2 = 0.3, β1 = 0.209, β2 = 0.2, e = 0.21, k = 0.11, c = 0.95,
κ = 0.1, p = 0.05, q = 0.3 and r = 1.

0.15 the sick prey is hunted to extinction and at 0.19 the healthy prey, too.
Fortunately for the prey this will not happen, since the evolutionary drive
decreases the consumption. φ = 0.12 is a singular value for the consumption
rate. This is also an ESS and convergence stable. φ = 0.07 is not convergence
stable and population evolves away from it. φ = 0.07 is not convergence
stable, but it is an ESS. The third interesting value is φ = 0, which is
convergence stable from above. We can conclude that if the original value
for the consumption is below 0.07, the final value is φ = 0 with no predation,
and if the original value for consumption is above 0.07, the final value is
φ = 0.12.

All in all, figure 22 shows the combined effect of the pathogen driving the
consumption down, because the predator is better off not getting sick from
the prey and the effect of the trade-off in the death rate. The pairwise
invadability plot is a combination of figures 11 and 21. The additional death
rate moves the first singular strategy down and introduces the second singular
strategy. The presence of the pathogen is what makes the strategies ESS.
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Figure 23: The pairwise invadability plot associated with figure 22. The
parameters used are µ1 = 0.2, µ2 = 0.1, ρ1 = 0.25, ρ2 = 0.25, k1 = 0.0744,
k2 = 2.7489, α1 = 0.02, α2 = 0.3, β1 = 0.209, β2 = 0.2, e = 0.21, k = 0.11,
c = 0.95, κ = 0.1, p = 0.05, q = 0.3 and r = 1.

12 Trade-off between consumption rate, birth
rate and death rate

The previous two trade-offs can be combined to one. This gives us the
following system

Ṅ1 = v1(N1)N1 − µ1N1 − α1I1 − φΦ(S1 + qI1)(S2 + pI2) (112a)

Ṅ2 = (1− φ)v2(N2)N2 − (µ2 + f(φ))N2 − α2I2 + eφΦ(S1 + qI1)(S2 + pI2)
(112b)

İ1 = β1
S1I1

N1

− (µ1 + α1)I1 − φΦqI1(S2 + pI2) + κS1(I1 + rI2) (112c)

İ2 = β2
S2I2

N2

− (µ2 + f(φ) + α2)I2 + cqφΦI1S2. (112d)

Here Φ is again a constant describing the effect of the consumption at its
maximum and φ ∈ [0, 1] is the proportion of time predator uses to hunt the
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prey. Without the pathogen this system reduces to

Ṅ1 = v1(N1)N1 − µ1N1 − φΦN1N2 (113a)

Ṅ2 = (1− φ)v2(N2)N2 − (µ2 + f(φ))N2 + eφΦN1N2 (113b)

12.1 Next-generation matrix

The next-generation matrix for this model is only a little different from the
previous. The transition matrix T stays the same and the transmission ma-
trix Σ is a combination of what is seen in the case of single trade-offs. We
get

K = −TΣ−1 =

(
κN1+β1

qφΦN2+α1+µ1

rκN1

α2+µ2+f(φ)
cqφΦN2

qφΦN2+α1+µ1

β2
α2+µ2+f(φ)

)
(114)

The basic reproduction numbers are different from previous but with ecologi-
cal isolation they are identical. We see that if the strength of the consumption
(φ×Φ) is equal to the strength of the consumption without the trade-off, the
next-generation matrix is equal to (98) and if there is no additional death
rate, it is equal to (81).

12.2 Critical consumption rate

We can solve critical consumption rates for the prey and the predator at least
numerically.

For the prey we have

φc =
v1(0)− µ1

Φv−1
2 (µ2+f(φc)

1−φc )
. (115)

We can see that with f(φ) = 0 this reduces to (83) as it should.

For the predator we have

φc =
v2(0)− µ2

v2(0) + f(φ)
φ
− eΦv−1

1 (µ1)
. (116)
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With f(φ) = kφ we have an analytical solution for this

φc =
v2(0)− µ2

v2(0) + k − eΦv−1
1 (µ1)

. (117)

With f(φ) = 0 the solution equals (82).

12.3 Evolution without pathogen

Without the pathogen the initial growth rate of a mutant is determined by

dM

dt
= ((1− φmut)v2(N2)− µ2 − f(φmut) + eφmutΦN1)M. (118)

Fitness is described by the factor multiplying M . With change of variables
x = φmut − φ the fitness reduces to

sφ(φmut) = x(eΦN1 − v2(N2)− f(φ+ x)− f(φ)

x
) := xA (119)

Taking the limit x→ 0 we see that the last term of A goes to f ′(φ). We then
get

A = eΦN1 − v2(N2)− f ′(φ). (120)

Figure 24 shows the equilibrium values for the prey and the predator with
chosen parameters. We have now chosen the additional death rate function to
be of form f(φ) = kφ4/5. This means that the addition in death rate becomes
smaller as the predator hunts more. Both the prey and the predator have
positive equilibria for every possible value of φ.

Figure 25 shows the pairwise invadability plot of the situation. One singular
strategy exists approximately at φ = 0.5. The singular strategy is conver-
gence stable and thus the trait value tends to it. In this case the convergence
stable strategy, however, is not an ESS. This means that the trait value acts
as a branching point.

Figure 26 shows what happens at the singular strategy. First, evolution
drives the trait value close to the branching point. Then a mutation occurs
such that there exists two different traits from different sides of the branching
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Figure 24: The equilibrium values for the predator and the prey with trade-
off between the consumption rate, birth rate, and death rate. The parameters
used are µ1 = 0.2, µ2 = 0.1, V1 = 2, V2 = 0.4, c1 = 0.5, c2 = 0.2, e = 0.21,
k = 0.8 and f(φ) = kφ4/5.

point. In this case neither of the strategies goes extinct creating a dimorphic
population. Afterwards mutations occur in the dimorphic population chang-
ing the two resident trait values. The fitness of a mutant can be determined
similarly to the situation with a monomorphic population. The evolution in
the dimorphic population is simple. The strategies evolve away from each
other and finally the result is one strategy with φ = 0 and other with φ = 1.
This is an case of speciation. One species concentrates on feeding on the
prey while the other uses the alternative food source.

The specialization of predators has been studied before. In one model a
weakly concave trade-off was required for the possibility of brancing to exist.[37]
In our case the trade-off in death rate was concave when the branching hap-
pened too.

To present the situation, a simulation was made with the same parameters as
in figure 24. The simulation starts with only one type of predator. Equations
(113) are used to simulate the dynamics of the predator-prey system and
every once in a while a mutation close to one of the residents is introduced
to the system. Figure 27 shows how the existing trait values change in time.
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Figure 25: The pairwise invadability plot associated with figure 24. The
parameters used are µ1 = 0.2, µ2 = 0.1, V1 = 2, V2 = 0.4, c1 = 0.5, c2 = 0.2,
e = 0.21, k = 0.8 and f(φ) = kφ4/5.

The trait value is φ = 0.1 in the beginning. It evolves to φ = 0.5, where
branching occurs. In the end we have two traits, φ = 0 and φ = 1.

12.3.1 Singular strategy

Singular strategies can be solved by setting (113a), (113b) and (120) equal
to zero. This system of equations cannot be solved analytically.

12.4 Evolution with pathogen

As usual, evolution with pathogen offers more diverse situations. Introduc-
tion of the pathogen in this model makes it possible to have singular strategies
that are not convergence stable. The invasion fitness must be again calcu-
lated from the determinant of the linearized system. The matrix is now
simply (95) subtracted byf(φmut)I where I is the identity matrix.

A =

(
am bm
cm dm

)
. (121)
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Figure 26: The mutual invadability plot associated with figures 24 and 25.
The parameters used are µ1 = 0.2, µ2 = 0.1, V1 = 2, V2 = 0.4, c1 = 0.5,
c2 = 0.2, e = 0.21, k = 0.8 and f(φ) = kφ4/5. The vector field shows the
direction of evolution.

where

• am = (1−φmut)v2(N2)+eφmutΦ(S1+qI1)−µ2−cqφmutΦI1− β2I2
N2
−f(φ)

• bm = (1− φmut)v2(N2) + epφmutΦ(S1 + qI1)

• cm = cqφmutΦI1 + β2I2
N2

• dm = −α2 − µ2 − f(φ)

The addition of the pathogen has been shown previously. Without any trade-
offs it created in some cases a singular strategy, which was an ESS and not
convergence stable. With the trade-off in consumption rate and death rate it
had the same effect. With trade-off in consumption rate and birth rate the
effect was similar. The singular strategy became an ESS. This tendency to
make singular strategies ESS can be observed when we have both trade-offs,
too. We must keep in mind that this tendecy was observed in borderline ESS
case only and should not be expected to generalize to situation with no ESS
without further proof. In all of these cases we have had a harmful pathogen,
which is usually the case.
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Figure 27: A simulation associated with figures 24, 25 and 26. The trait
value first approaches φ = 0.5 and after branching diverges to φ = 0 and
φ = 1.

13 Birth rate functions and resource dynamics

Instead of birth rate functions the dynamics of the alternative food source
can be dealt with resource-consumer dynamics. Generally consumer-resource
dynamics can be represented as

dR

dt
= v(R)− f(R,C), (122)

where R is the resource and C the consumer. v(R) describes how the resource
is born in the absence of the consumer and f(R,C) how it is consumed. A
simple choice for the functions could be v(R) = A and f(R,C) = BRC,
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where A and B are constants. Generally the growth of the consumer could be
a function g(R,C), different from f(R,C), but choosing f(R,C) ∝ g(R,C)
is a natural choice.

Using this for our predator-prey system without trade-offs we get the follow-
ing system

Ṅ1 = g1(R1, N1)− µ1N1 − α1I1 − φ(S1 + qI1)(S2 + pI2) (123a)

Ṅ2 = g2(R2, N2)− µ2N2 − α2I2 + eφ(S1 + qI1)(S2 + pI2) (123b)

İ1 = β1
S1I1

N1

− µ1I1 − α1I1 − φqI1(S2 + pI2) + κS1(I1 + rI2) (123c)

İ2 = β2
S2I2

N2

− µ2I2 − α2I2 + cqφI1S2 (123d)

Ṙ1 = v1(R1)− f1(R,N1) (123e)

Ṙ2 = v2(R2)− f2(R,N2) (123f)

It is assumed that healthy and sick predator and prey consume the resource
at a similar rate.

This system is in a way a predator-prey model with two preys. In the eyes of
the predator the resource acts like another prey. Models with multiple types
of prey have been studied by Abrams [1], Fryxell [13] and Křivan [21] [23]
[22].

13.1 Separation of time scales

We can analyze this system with the help of fast and slow dynamics. This
is called separating the timescales. We assume that the resource R has
considerably faster dynamics compared to the predator or the prey. This
way we can assume that the resource always reaches its equilibrium associated
with N1 and N2 and we can analyze the system in parts.

In biochemistry this method is called the quasi-steady-state approximation
(QSSA). It is the standard practice in reducing the number of differential eu-
qations in the system.[12] Perhaps the most widely known example is Briggs’
and Haldanes work on Michaelis-Menten kinetics.[5]

First we calculate the equilibria for R1 and R2 from equation vi(Ri) =
f(Ri, Ni). This equilibrium is now a function of Ni and can be inserted
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back to equations (123a)-(123d). Resource then becomes invisible to the
system and is only shown in the form of a birth-rate function.

If we choose the resource dynamics to be of the form of the logistic equation
and the consuming to be linear we get

dRi

dt
= vi(Ri)− fi(Ri, Ni) = rRi(1−

Ri

K
)− ΓRiNi, (124)

where K is the carrying capacity of the logistic equation, r is the initial
growth rate and Γ describes the power of the consuming. We can scale the
resource so that we get rid of Γ if we want to. The equilibrium for the
resource solves now to

Ri = K(1− Γ

r
Ni). (125)

With a large enough Ni this could be negative. On the fast time scale this
would lead to a trivial equilibrium of Ri = 0 for the resource giving the follow-
ing results with a sort of a truncation. If the amount of the resource became
zero, it would stay there forever. If we choose gi(Ri, Ni) = fi(Ri, Ni) = ΓRiNi

growth of the consumer due to resource is

dNi

dt
= ΓRiNi = ΓK(1− Γ

r
Ni)Ni. (126)

This is equal to having a birth-rate function vi(Ni) = ΓK − Γ2K
r
Ni. This is

the linearly decreasing birth-rate function.

With the choice vi(Ri) = Bi − ciRi and fi(Ri, Ni) = gi(Ri, Ni) = AiRiNi for
the resource we get Ri = Bi

ci+AiNi
. For the consumer we get

dNi

dt
= AiRiNi =

AiBi

ci + AiNi

Ni. (127)

If ci = 0, we get the constant births model with Bi births per time unit.
With a positive ci the birth rate would approach a constant value with large
values of Ni anyway but near zero ci = 0 would produce more realistic results
with the birth rate going to zero when Ni = 0.

Exponentially decreasing birth-rate function can be formulated this way, too.
We get it by choosing vi(Ri) = Bi, fi(Ri, Ni) = ekiNi and gi(Ri, Ni) =
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AiRiNi. In this context this would be a dubious choice because the behaviour
of f and g are fundamentally different. Such a difference is very hard to
justify biologically. This doesn’t mean that exponentially decreasing birth
rate function is not biologically acceptable. It could arise from another kind
of formulation.

Using the approximation above is a drastic matter. A more careful approach
can be made with the help of singular approximation theory. The shortcom-
ings of the approximation are shown in the following model. Lets say the
following model describes the system fully.

Ṅ1 = a1R1N1 − µ1N1 − α1I1 − φ(S1 + qI1)(S2 + pI2) (128a)

Ṅ2 = a2R2N2 − µ2N2 − α2I2 + eφ(S1 + qI1)(S2 + pI2) (128b)

İ1 = β1
S1I1

N1

− µ1I1 − α1I1 − φqI1(S2 + pI2) + κS1(I1 + rI2) (128c)

İ2 = β2
S2I2

N2

− µ2I2 − α2I2 + cqφI1S2 (128d)

Ṙ1 = v1R1 − b1N1R1 (128e)

Ṙ2 = v2R2 − b1N2R2 (128f)

This is a real model with proper equilibrium. If we study this by separating
time scales, what we get for the resource is exponential growth with rate r =
vi−biNi with no equilibrium unless bi = viNi. In this case the approximation
would be completely wrong. In reality the system can have complex dynamics
evolving away from an unstable equilibrium.

In light of this we can say that it is possible that the birth rate function we
used has its basis in reality. Using a birth-rate function is much simpler for
analysis, and keeping the whole resource-dynamics in place when it is of no
interest would be useless.
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14 Conclusions

This thesis studied a predator-prey model with a shared disease. In addition
to the prey, the predator has an alternative food source, which it consumes.
Both species are vulnerable to a pathogen that spreads not only from prey to
prey or from predator to predator. Predators can get infected when consum-
ing infected prey and prey can get infected from environmental transmission.

Properties of the model and its behaviour was studied. This includes the
basic reproduction number, the next-generation matrix and the stability of
equilibria. Factors affecting the properties of the equilibria are identified.
Consumption rate, the rate at which the predator consumes the prey, is stud-
ied and critical consumption rate, where the prey or the predator population
ceases to exist, is identified.

Evolution of the consumpion rate was studied within the adaptive dynamics
framework. Without the presence of the pathogen the consumption rate
increases indefinitely, but introducing the pathogen to the system can change
the course of evolution and make a decrease in the consumption rate possible.

The evolution of the consumption rate was explored further with help of
trade-offs. Taking into account that increase in consumption rate might be
costly to the predator provides alternative outcomes. Two trade-offs that are
studied are trade-off between consumption rate and the consumption of the
alternative food source, and trade-off between consumption and death rate.
These trade-offs can exist concurrently or independently.

Having both of the trade-offs in place we can identify situations where we
have a branching point. In such a situation the consumption rate evolves
first to this brancing point, where two different branches arise and disruptive
evolution takes place. The end result is two different types of predator, one
using only the alternative food source and one using only the prey as its
source of food.

A lot is still left to explore. The model is easily modified to include multiple
preys and predators. Different preys could spread different diseases to the
predator. The consumption part of the model was simple and thus allowed
for many analytical solutions. A more realistic model could represent the
conversion factor e as a decreasing function of φ. The decrease would be nat-
ural if we accept that the predator uses the nutrients more efficiently when
starving. The trade-off between consumption rate and birth rate was linear
and based on very intuitive reasoning. In some situations a nonlinear con-
nection between these two could be useful similarly to the case of the death
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rate. Focusing on hunting might make the predator a better hunter creating
a nonlinearity, which alone could be enough for branching and speciation.
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