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1. Quantum gases

Condensed matter physics presents us with an almost insurmountable

computational challenge. Even with the massive computational resources

of today, it remains an active research topic to solve efficiently approxi-

mate theoretical models, laid out to capture only the most essential qual-

itative features of the full quantum many-body problem.

In recent years, quantum gases have emerged as a promising testbed

of condensed matter theory [1, 2, 3]. At temperatures bordering absolute

zero, in the nanokelvin regime, the same quantum laws which operate in

condensed matter systems become manifest in a gas of atoms. The crucial

advantage that the experiments on atoms have is that the atomic systems

can be controlled very systematically, e.g. their interaction strength can

be tuned on a continuous scale from strongly attractive to strongly repul-

sive [4]. Even more so, the quantum gas systems can be tailored to realize

to a high precision physical models, which in condensed matter systems

are only crude approximations, such as the Hubbard model [5]. Thus, the

experiments with quantum gases can for instance address the question of

whether a particular phenomenon we observe in solid state systems can

be realized within the confinements of a given model or not. From another

point of view, computational results can be compared directly against ex-

periment, laying a basis for benchmarking and developing further these

methods. Finally, the vast array of experimental possibilities invites us

to attempt engineering completely new quantum many-body phenomena.

These aspects make quantum gases one of the most interesting venues of

science today.

In the following sections, we introduce the concept of quantum gases and

explore the conditions under which these system are realized, starting

from a discussion about the spin-statistics of composite particles.
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Quantum gases

1.1 Spin-statistics of composite particles

One of the most interesting features of quantum mechanics is that it is

not just a more accurate formulation of the laws of motion of Newtonian

mechanics. In the quantum realm, a completely new principle enters our

description of nature in the form of a symmetry constraint for identical

particles. Furthermore, the precise form of this symmetry constraint is

connected to the intrinsic angular momentum, the spin, of the particles.

This principle is known as the spin-statistics theorem [6]. Fundamen-

tally, the spin-statistics theorem describes only elementary particles, but

it can be extended to composite particles such as atoms to an often excel-

lent approximation. From the the theoretical point of view, this suggests

that fundamental implications of spin-statistics are important and can be

observed in systems of composite particles.

The spin-statistics theorem states that in a space-time with three space-

like and one time-like dimension only two kinds of elementary particles,

bosons and fermions, can exist. Particles with integer spin are bosons. A

field describing identical bosons obeys the following equal-time commuta-

tion relations

[
ψσ(r), ψσ′(r′)

]
= 0, (1.1)[

ψ†
σ(r), ψ

†
σ′(r

′)
]
= 0, (1.2)[

ψσ(r), ψ
†
σ′(r

′)
]
= δσσ′δ(r− r′). (1.3)

Particles with half-integer spin are fermions. A field of identical fermions

obeys the anticommutation relations given by

{
ψσ(r), ψσ′(r′)

}
= 0, (1.4){

ψ†
σ(r), ψ

†
σ′(r

′)
}
= 0, (1.5){

ψσ(r), ψ
†
σ′(r

′)
}
= δσσ′δ(r− r′). (1.6)

Here, the commutator of operators A and B is defined as [A,B] = AB−BA,

and the anticommutator as {A,B} = AB+BA. The operator ψσ(r) (ψ
†
σ(r))

annihilates (creates) a particle at the spin state σ and the position r. The

commutation relations above include the information that the wave func-

tion of identical bosons is symmetric under the exchange of two particles

and similarly that the wave function of identical fermions is antisymmet-

ric. The antisymmetry-property of Fermions leads to the renowned Pauli

exclusion principle, which states that two identical fermions cannot oc-

cupy the same quantum state [7].

2



Quantum gases

Regarding composite particles, in many applications it is well-justified

to assume that a particle consisting of an odd number of elementary fermions

and any number of elementary bosons is a fermion, while a composite of

an even number of fermions and any number of bosons is a boson. To il-

lustrate the nature of this approximation, we consider the spin-statistics

theorem in the case of a composite of two fermions.

Following reference [8], we begin by defining the composite particle as

a bound state of the two elementary fermions with the creation operator

Ψ†(R) defined as

Ψ†(R) =

∫
drφ(r)ψ†

1(R+ r/2)ψ†
2(R− r/2), (1.7)

where R is the center of mass coordinate of the system, r is the relative

coordinate between the two constituents, and φ(r) is the wave-function of

the bound state.

The commutation relations of the composite field at positions R and R′

can then be derived from the commutation relations of the elementary

fermions. For two annihilation operators and for two creation operators

we find the same form as for elementary particles

[
Ψ(R),Ψ(R′)

]
= 0, (1.8)[

Ψ†(R),Ψ†(R′)
]
= 0. (1.9)

The relations above imply that the wave function of a system of an arbi-

trary number of these composites is always symmetric. However, the com-

mutation relation between the creation and annihilation operator does

not reduce to the delta-function as it does with the elementary particles.

Instead, we obtain

[
Ψ(R),Ψ(R′)†

]
= δ(R−R′)

− 2

∫
drφ(r)φ∗(r+ 2(R−R′))ψ†

1(R
′ + r/2)ψ1(R

′ + r/2 + 2(R−R′))

− 2

∫
drφ(r)φ∗(r− 2(R−R′))ψ†

2(R
′ − r/2)ψ2(R

′ − r/2 + 2(R−R′)).

(1.10)

The expression above is sufficient to make the point that the commuta-

tion relations of composite particles are modified with respect to those of

elementary particles. In order to gain some more insight into when the

correction term above can safely be neglected, we compute the expected

value of the equation above for a many-body state |χ〉 with a homogeneous

number density n for the composites, which is the same as the number

3



Quantum gases

density of each component. In doing so, we assume that the wave func-

tion φ is sufficiently localized to approximate the matrix elements of the

remaining operators with the density. Finally, we integrate the result

over the coordinate R′ in order to have a meaningful comparison with the

delta-function and the correction term. We obtain∫
dR′ 〈χ|

[
Ψ(R),Ψ†(R′)

]
|χ〉 = 1− 2αr30n. (1.11)

Here r0 is the effective radius of the composite particle and α is dimen-

sionless factor on the order of one, remaining from the overlap integral.

For elementary particles the integral above is equal to unity, and this re-

sult is recovered if the total volume taken by all the composites is small

in comparison to the volume of the system, nr30 � 1. In other words, the

composite particles can be regarded as bosons if the system is dilute.

The treatment above generalizes to composites of an arbitrary number

of fermions and bosons. The expressions for the (anti)commutation rela-

tions contain more correction terms for larger composites, but the main

observation remains the same. A rather important assumption embedded

in the calculation is that it is valid only if the bound state φ remains well-

defined in the dynamical evolution of the system, i.e. that the composite

state is reasonable from the point of view of energetics. For instance, were

two composites to collide so strongly that a chemical reaction occurs, the

description in terms of composite particles as defined in Equation (1.7)

would be insufficient to begin with.

To illustrate the criterion on the diluteness, consider for example that

the number density of air is roughly n = 2.5 × 1019 1
cm3 while the ra-

dius of a nitrogen molecule is on the order of r0 = 1.5 × 10−10m yielding

r30n ≈ 8× 10−5 � 1. Thus, air can be safely regarded as a collection of ele-

mentary particles from the point of view of quantum statistics. However,

it is perfectly obvious that the quantum statistical effects are completely

absent in the air surrounding us, and air can in fact be regarded a classical

gas to an excellent approximation. In the following section, we examine

more thoroughly the conditions under which the exploration of the exit-

ing world of quantum statistics is possible and introduce the concept of

quantum gases.
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1.2 Reaching the quantum statistical regime

Quantum gases are vapors of atoms or molecules for which the effects

of quantum statistics are important – not only to account for the internal

structure of the constituents, but also to describe their collective behavior.

In the following, we explore under what conditions, and by which means,

such a requirement can be met.

A simple criterion for observing quantum statistical effects can be de-

duced from the de Broglie wavelength λ = h/p, where h is the Planck

constant and p the momentum. At interparticle distances below or com-

parable to λ one would expect quantum mechanical effects to be signifi-

cant. If the particles in question are also free to move about and change

their positions, as in a gas, one would expect for the symmetry proper-

ties to place restrictions on identical particles, and thus, to bring about

the effects of quantum statistics. We may also anticipate that quantum

statistics prevails at low momenta, or energies. Therefore, in thermal

equilibrium, we should expect to run into quantum statistics at low tem-

peratures. A somewhat more quantitative criterion is obtained by com-

paring the average wavelength at a given temperature, i.e. the thermal

de Broglie wavelength defined as

λT =
h√

2πmkbT
, (1.12)

to the average distance between particles

d = n−1/3. (1.13)

In the equations above, m is the mass of the particles, kb the Boltzmann

constant, T the temperature and n the number density. We thus arrive at

the following criterion for the appearance of quantum statistical effects:

d ≤ λT or kbT ≤ h2n2/3

2πm
. (1.14)

The criterion above turns out to be extremely demanding for any gas

made of atoms or molecules. Partly, the reason is simply that the large

mass of individual atoms or molecules amounts to a miniscule thermal

de Broglie wavelength in comparison to, say, electrons. More importantly,

the density of the gas in any experimental setup is very low, setting a

very stringent criterion for the temperature. Here, it needs to be pointed

out that at low temperatures a gas has a strong tendency to form a solid,

and in fact, the gaseous phase can only exist as a metastable state of

5
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the system in the quantum statistical regime. Now, the formation of the

solid requires three-body collisions to occur in the gas, and these colli-

sions become more likely with increasing density. Thus, the lifetime of

the metastable gas becomes the longer the more dilute the gas is – from

this point of view, the diluteness of the system is a desirable property.

On a further note, the suppression of three-body processes because of di-

luteness implies that in the theoretical description of quantum gases it is

typically sufficient to consider two-body interactions.

In experiments, the temperature of a quantum gas is typically well

below 1 μK, while the density would be somewhere in the vicinity of

1012 − 1015 1
cm3 . For instance for 6Li we have λT ≈ 0.7 μm at the tem-

perature of T = 1 μK, while an average density of n = 1014 1
cm3 would

yield an interparticle distance of d = 0.2 μm. The criterion for using the

spin-statistics of elemetary particles to atoms in such conditions is full-

filled by a wide margin – for instance with the atomic radius of lithium,

r0 = 150 pm, we have r30n ≈ 3× 10−10 � 1. However, it is noteworthy that

while the atoms can be regarded as elementary particles from the point

of view of quantum statistics, the atoms’ internal structure, in addition to

providing a pseudo-spin, offers the basis for e.g. confining them and con-

trolling their interactions. The usefulness of quantum gases as quantum

testbeds of condensed matter systems largely originates from this fact.

Reaching the extreme conditions quoted above is a magnificent feat

which has required the systematic effort of developing and combining

several completely new ways of manipulating atomic gases. Present day

quantum gas setups utilize magneto-optical trapping [9] and all-optical

trapping [10] to confine the system at different stages of the experiment,

while the most common cooling techniques consist of laser-cooling through

Doppler and Sisyphus mechanisms [11] and evaporative cooling [12]. The

cooling of fermionic systems contains additional difficulties in comparison

to bosons. The evaporative cooling requires the repeated thermalization

of the gas by two-body collisions. However, at low temperatures the two-

body scattering occurs predominantly through the s-partial wave channel,

which is not allowed for identical fermions because of its even symmetry.

Therefore, fermions have to be cooled either as multi-spin systems or by

means of symphatetic cooling through collisions with another, more easily

cooled gas [13]. In the multi-spin (or usually two-spin) experiments of a

single atomic isotope, the relative occupation of each spin-state after the

cooling process can be controlled very precisely by driving transitions be-

6
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tween these states with radio-frequency pulses [14, 15]. This technique

is a key motivation behind Publication II, Publication III and Publication

V which study exotic superfluidity in spin-population imbalanced Fermi

gases.

The first true demonstration of the experimental capabilities of quan-

tum gases took place in 1995 with the achievement of Bose-Einstein con-

densation (BEC) [16, 17, 18]. Subsequent experiments on Bose gases

demonstrated e.g. the macroscopic interference between two BECs [19]

and the superfluidity of a BEC [20, 21]. The first degenerate Fermi gas,

in turn, was prepared successfully in 1999 [22]. This was followed by a

series of experiments on two-component Fermi gases, which led to the ob-

servation of Fermion pairing and superfluidity [23, 24, 25, 26, 27, 28, 29].

Of particular relevance to this thesis are the realization of superfluidity

in the presence of spin-population imbalance [14, 15], and moreover, the

advances in experimental techniques with mass-imbalanced Fermi gases,

i.e. systems where the pseudo spin states correspond to different atomic

isotopes or elements [30, 31, 32, 33]. The examples listed here constitute

only a small fraction of the experimental work on quantum gases. Thus

far, we have in fact neglected an arrangement central to this thesis, and

more generally, to the task of constructing an experimental testbed for

condensed matter theory. The arrangement in question is of course the

optical lattice. We shall examine optical lattices more closely in the fol-

lowing chapter.
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2. Fermionic atoms in optical lattices

An optical lattice is a periodic potential acting on atoms and created by

the interference pattern of laser beams. It is the quantum gas counterpart

of the crystal lattice of a solid, with the notable difference that the typical

optical lattice does not have lattice defects or phonon excitations.

One of the hallmark achievements of quantum gases is the experimental

realization of the Hubbard model in optical lattices to an unprecedented

accuracy. This feat is a prime example of quantum gases offering an inter-

face between theory and experiment, in this case for studying the physics

of the Hubbard model as well as for the development and benchmarking

of new computational methods for lattice problems. Here, the first ma-

jor breakthrough was the realization of the superfluid-Mott transition of

a Bose gas [34, 35, 36]. More recently, the Mott transition has been ob-

served for fermionic systems as well [37, 38]. Other achievements include

the imaging of Fermi surfaces [39], single site resolved imaging [40, 41]

and the realization of the Dicke quantum phase transition [42]. At the

moment, the experiments are progressing towards the study of quantum

magnetism [43] and fermionic superfluidity in lattices.

In the following, we first introduce the concept of optical lattices and

then proceed with the Hubbard model. As the discussion involves mainly

single particle properties, it is to a large extent applicable to both bosons

and fermions. The main difference between the two statistics in this chap-

ter is in the form of the on-site interaction term of the Hubbard model. For

fermions, there is no local interaction between the same spin components

because of the Pauli exclusion principle, whereas for bosons, interaction

between all spin components would be allowed.

9
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2.1 Optical lattices

The optical lattice potential arises via the AC Stark effect, in which a

time-varying electric field polarizes the atom, while at the same time in-

teracting with this induced polarization and thus changing the energy of

the atom locally. Optical dipole traps are based on the same effect [13].

For typical electric field strengths, the effect can be described using sec-

ond order perturbation theory, and because of the fast oscillation of the

electric field the temporal average of the resulting potential can be used

instead of the time-dependent potential itself.

The simplest scenario is the one-dimensional optical lattice created by

the standing wave of two counter-propagating laser beams with frequency

ωL and wave-vector kL. Assuming that the lasers couple significantly only

to a single optical transition of the atom with frequency ω0, the atom can

be treated in a two level approximation. With these assumptions the time-

averaged second order Stark shift of the ground state energy of the atom,

i.e. the optical potential, can be written as

VL(r) =
ωL

2ε0

| 〈e|d |g〉 |2
ωL − ω0

I(r). (2.1)

Here ε0 is the permittivity of vacuum, and 〈e|d |g〉 is the matrix element of

the dipole operator d = −er̂ between the ground state |g〉 and the excited

state |e〉 of the atom. The laser intensity is given by I(r) = 1
2cε0|E(r)|2

where c is the speed of light and E(r) the electric field strength. Notice

that the optical potential can either repel or attract the atoms depending

on the detuning of the laser with respect to the transition frequency. For

blue detuned lasers (ωL > ω0) the optical potential is repulsive and the

atoms are pushed towards the minima of the intensity, while conversely,

for red detuned lasers (ωL < ω0) the atoms are drawn to the intensity

maxima.

Now, for a standing wave, we may rewrite the intensity as I(r) = I0 sin
2(kL·

r) with I0 the maximum intensity. Finally, upon defining

V0 =
ωL

2ε0

| 〈e|d |g〉 |2
ωL − ω0

I0, (2.2)

we have

VL(r) = V0 sin
2(kL · r). (2.3)

Since the counterpropagating lasers form a standing wave, the lattice con-

stant a is half of the laser wavelength, a = 1/(2kL) = λL/2. With two

10
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Figure 2.1. The potential landscape of a 2D square optical lattice. Here, the intensity of
the standing laser wave along the y-axis is twice as strong as of that along the
x-axis. In the resulting lattice, the tunneling of atoms from one lattice site to
another is substantially easier along the x-axis (blue arrow) than the y-axis
(green arrow). The possibility to have optical lattices of such intermediate
dimensionality motivated the studies on the 1D-3D dimensional crossover
reported in Publication III and Publication V.

counterpropagating lasers, say directed along the x-axis, the system is

still translation invariant in the y- and z-directions.1 If a pair of coun-

terpropagating laser beams is added also along the y- and z-directions, a

cubic lattice is formed. While the majority of the pioneering experiments

in optical lattices have been carried out in rectangular geometries [5], the

variety of lattices has increased recently to include for example triangular

and hexagonal lattices [44, 45]. In addition to this, a technique based on

holographic masks holds promises for creating arbitrary two-dimensional

optical potentials [40].

Typically, the lattice depth V0 is given in the units of the recoil energy

ER = h̄2k2L/2m, where m is the mass of the atom. The lattice depth can

be tuned very flexibly through the laser intensity I0, and in typical exper-

imental setups V0 is in the range of V0 = 1ER . . . 30ER. In the following

section on the Hubbard model, we will examine in more detail the differ-

ent regimes of the lattice depth.

On a final note, the versatility of optical lattices is not restricted only

to creating static geometries. Quite the contrary, the lattice itself can be

utilized in several ways to actively probe and manipulate the many-body

1The terminology here is somewhat ambiguous, as this configuration is indeed
known as a 1D optical lattice. If strong confinement is introduced in the y- and
z-directions a lattice with effectively only one spatial dimension is formed. This
is also called a 1D optical lattice.
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system [46]. To give some examples of this, varying the lattice intensity

can be exploited in the form of lattice modulation spectroscopy [47], and

lattice configurations which allow the merging of adjacent lattice sites

facilitate the measurement of non-local correlations [48]. The flexibility

of optical lattices is an essential ingredient also in Publication IV of this

thesis in the form of offering a possibility to switch on a spin-dependent

superlattice.

2.2 Hubbard model

The Hubbard model is arguably the simplest possible model to describe

interacting quantum mechanical particles on a lattice. It consists of a

single energy band occupied by particles which can interact with other

particles on the same lattice site and tunnel between neighboring lat-

tice sites [49, 50]. This is the simplest possible improvement of the tight

binding model to include an interaction between particles. The Hubbard

model was originally conceived to describe materials with localized elec-

trons on the outermost band, such as transition and rare-earth metals. In

such materials the on-site term of the Coulomb interaction is dominant,

and other interaction terms can be neglected. The model has been par-

ticularly useful in gaining insight to the Mott-transition. Despite some-

times taunted a spherical cow by the experimental physicist because of

its qualitative nature, the Hubbard model is complex to the degree that

even its equilibrium phase diagram remains an active research topic, and

a serious computational challenge at that. An exception to this rule are

one dimensional systems, where an analytical equilibrium solution is of-

fered by the Bethe ansatz and the dynamics of the model can be simu-

lated with remarkably efficient numerical methods such as density matrix

renormalization group (DMRG) [51] and time evolving block decimation

(TEBD) [52].

Let us begin the construction of the Hubbard model from the Bloch the-

orem which states that the non-interacting single-particle eigenfunctions

in a periodic potential VL can be written in the form

ψnk(r) = eik·runk(r). (2.4)

In the expression above, k is a wave vector, n is the band index and unk

is a function with the same periodicity as the potential VL(r). For a given

band n, the corresponding eigenenergies εn(k) are continuous functions of
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k and periodic with respect to any reciprocal lattice vector.

The Wannier functions are a complementary set of (non-interacting)

single-particle eigenfunctions which can be defined with the help of the

Bloch basis as

wni(r) =
1√
NL

∑
k

e−ik·riψnk(r). (2.5)

The Wannier function wni is localized around a single lattice site i, with

the localization becoming stronger with increasing lattice depth. Thus,

in deep lattices the Wannier functions give the closest possible formal

description to the intuitive notion of having “well-defined point-wise par-

ticles” in the lattice.

The Hamiltonian of interacting fermions subjected to a lattice potential

VL(r) is

H =
∑
σ

∫
drΨ†

σ(r)

(
− h̄2∇2

r

2m
+ VL(r)− μσ

)
Ψσ(r)

+ g

∫
drΨ†

↑(r)Ψ
†
↓(r)Ψ↓(r)Ψ↑(r). (2.6)

Here, the interaction is described by a contact potential characterized by

its strength g = 2πh̄2as
m , where as is the s-wave scattering length and m

the mass of the atoms (or twice the reduced mass for mass-imbalanced

mixtures) [53]. A basic assumption of the Hubbard model is the reduction

of the problem to a single (i.e. lowest) band. This assumption is valid if

the band gap between the lowest and the first excited band is large in

comparison to the width of the lowest band, the temperature, and the

interaction energy scale set by the on-site interaction U which we define

more precisely in the following. Under these criteria, we may rewrite the

field operators Ψ in the Wannier basis and truncate the representation to

the lowest band, i.e. take

Ψσ(r) =
∑
i

w0,ri(r)ĉi,σ, (2.7)

where ĉi,σ now is the annihilation operator corresponding to the Wannier

state w0,ri . As a result, the the Hamiltonian reduces to

H = −
∑
i �=j,σ

Jij ĉ
†
iσ ĉjσ −

∑
iσ

μσ ĉ
†
iσ ĉiσ +

∑
ijmn

Uijmnĉ
†
i↑ĉ

†
j↓ĉm↓ĉn↑, (2.8)

where the hopping Jij and the interaction Uijmn are defined as

Jij = −
∫

drw∗
0,i(r)

(
− h̄2∇2

r

2m
+ VL(r)− μσ

)
w0,j(r), (2.9)

Uijmn = g

∫
drw∗

0,i(r)w
∗
0,j(r)w0,m(r)w0,n(r). (2.10)
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In Equation (2.8), the term Jii has been redefined as the chemical poten-

tial μσ. Assuming that the lattice is sufficiently deep and the Wannier

functions sufficiently localized, only the hopping term between nearest

neighbouring lattice sites, the chemical potential, and the on-site interac-

tion term are significant, resulting in the Hubbard Hamiltonian

H = −
∑
〈ij〉σ

Jij ĉ
†
iσ ĉjσ −

∑
iσ

μσc
†
iσciσ + U

∑
i

c†i↑c
†
i↓ci↓ci↑, (2.11)

where U = Uiiii and 〈ij〉 restricts the indices to nearest neighboring lattice

sites. In typical experiments on quantum gases, the first discarded kinetic

and interaction terms are at least an order of magnitude smaller than

U and J above. Here, the fact that the interaction in an atomic gas is

described by a contact potential is a significant difference to electrons with

Coulomb interaction with regard to truncating the interaction to the local

term.

In the context of quantum gases the external trapping potential VT (r) is

typically described by adding to the Hubbard Hamiltonian a site-dependent

local potential Vi defined as

Vi =

∫
drVT (r)w

∗
0,i(r)w0,i(r). (2.12)

To a very good approximation Vi = VT (ri).

In general, the computation of the Hubbard model parameters is a nu-

merical task largely dependent on finding the set of maximally localized

Wannier functions from the Bloch wave-functions of the lattice. However,

for a sufficiently deep optical lattice analytical formulae for J and U can

be given. Consider a cubic lattice pontential of the form

VL(r) =
∑

i=x,y,z

ViER sin2(kLêi · r), (2.13)

where êi with i ∈ {x, y, z} are the Cartesian unit vectors. The hopping

parameter can be estimated by mapping the single particle Schrödinger

equation to the Matthieu equation, for which asymptotic expressions for

the widths of the eigenvalue bands are known. This approach yields the

following expression

Ji =
4√
π
ER

(
Vi

ER

)3/4

exp
(
−2

√
Vi/ER

)
. (2.14)

Alternatively, the band-width can be computed numerically from the sin-

gle particle Schrödinger equation. For the on-site interaction U , an ana-

lytical estimate can be obtained by approximating the lattice potential of
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Figure 2.2. The Hubbard model parameters hopping J and interaction strength U as a
function of the lattice depth for 6Li in a cubic optical lattice with laser wave
length λL = 1064 nm. We also give the band width W and the band gap G.
The recoil energy is here Er/kb = 1.4 μK and the scattering length is fixed at
as = −200a0 with a0 the Bohr radius. Above Vx = 3.0ER, the lattice potential
is deep in the sense that the higher bands can be neglected and the Hubbard
model regarded as a good approximation.

a single site with a harmonic oscillator with the frequency ωi = 2
√
Vi

ER
h̄ ,

resulting in

U =

√
8

π
kLas(VxVyVz)

1/4ER. (2.15)

The approximate formulae above illustrate how the Hubbard model pa-

rameters can be tuned experimentally. The hopping is tuned by the lattice

potential height Vi. Increasing Vi creates a tighter confinement at each

lattice site. Therefore, the individual Wannier functions are narrowed

down towards a single lattice site, their overlap is reduced, and as a re-

sult the hopping decreases. The on-site interaction U is affected both by

the potential height Vi and the s-wave scattering length as. The effect of

the potential height is again understood from the fact that the Wannier

functions are more localized in deeper lattices. Thus, particles at the same

lattice site have a stronger overlap, and hence, a stronger interaction. The

s-wave scattering length as, which characterizes the interaction strength

of two atoms in free space appears as a multiplicative factor in the expres-

sion of U . The scattering length can be tuned by controlling the Feshbach

resonance of the two-body scattering, typically by the external magnetic

field strength [4]. In Figure 2.2 we plot the Hubbard model parameters

for a cubic lattice containing a two-component gas of 6Li.

In the discussion above, the hopping parameter J and the local potential
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Vi are given as spin-independent, but in general it is possible that these

quantities depend on the spin state σ. There are essentially two different

possible sources for such state-dependence. Firstly, if the spin states have

different optical properties then according to Equation 2.1 the same laser

field induces a different potential for these states. If the relevant optical

transitions are well-separated, a technically more involved arrangement

of a separate laser for each state is also a possibility. Moreover, if the sys-

tem is constructed of two different elements or isotopes, then the mass dif-

ference of the components also affects the parametrization of the Hubbard

model. The possibility of the spin-dependent Hubbard model is relevant

to realizing the spin-asymmetric Josephson effect in optical lattices as dis-

cussed in Publication IV. Finally, let us note that the spin-dependence of

the hopping is not a necessary consequence of the mass imbalance alone,

as this difference can be canceled by the state-dependent optical potential

with a specific laser frequency.
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3. Superfluidity

Superfluidity refers to a state of matter in which a fluid has zero viscos-

ity. It is a truly fascinating macroscopic consequence of quantum many

body physics. Superconductivity, which is defined as the zero electrical

resistance of a solid, is very closely related to superfluidity, and can es-

sentially be regarded as the superfluidity of charged particles. In fact,

there is a deeper connection between these two phenomena, as it is well-

established that certain forms of superconductivity and superfluidity are

caused by the same microscopic mechanism. [54]

All forms of superfluidity owe their origins to quantum mechanical and

quantum statistical effects, and here, the discussion may essentially be

divided to two cases according to the quantum statistics of the particles

making up the superfluid. Thus, we have bosonic and fermionic superflu-

idity.

For roughly half a century, liquid 4He was the only known bosonic su-

perfluid [54], but during the past twenty years, the phenomenon has also

been observed in ultracold Bose gases [1, 2, 3, 13] and exciton-polariton

condensates [55]. Superfluidity of bosons is related to Bose-Einstein con-

densation (BEC), the macroscopic occuption of a single particle eigenstate

– typically this eigenstate is the lowest one in energy, and unique. Very

simplistically, the condensate then corresponds to a single macroscopic

wave-function whose dynamics all the particles in the system follow with-

out dissipation, giving rise to superfluidity. Under closer scrutiny, the

connection of Bose-Einstein condensation to superfluidity turns out to be

rather more delicate. To illustrate this, define the condensate fraction

as the number of particles in the macroscopically occupied state relative

to the total particle number, and similarly, define the superfluid fraction

as the relative number of particles participating in a dissipationless flow.

Now, in a weakly interacting Bose gas these two quantities are equal, as
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has been demonstrated e.g. in a BEC of 87Rb. However, in superfluid 4He

the condensate fraction is only about 10 % though the entire system is

superfluid, and on the other hand, a BEC of a non-interacting Bose gas

would not demonstrate superfluidity at all.

In fermionic systems, the Pauli exclusion principle prevents the multiple

occupation of any single particle eigenstate, and thus, a BEC of single

particles is strictly forbidden. Yet, there are several known examples of

fermionic superfluidity. Superconductivity of electrons, arguably the most

useful form of superfluidity, is the most obvious example. Superfluidity

has also been observed in liquid 3He [54] and ultracold Fermi gases [1, 2,

3, 13], and there is also a substantial amount of evidence for superfluidity

in nuclear matter and neutron stars [56].

The key concept in understanding fermionic superfluidity is that of Cooper

pairing which refers to the formation of a specific type of bound state be-

tween two fermions. In Cooper pairing, the presence of the Fermi sea

contributes significantly to the bound state formation by making some of

the possible scattering states inaccessible because of Pauli exclusion. The

simplest way to explain the superfluidity of Cooper paired fermions would

then be to regard Cooper pairs as elementary bosons forming a BEC which

in turn leads to superfluidity. However, we find that this analogy needs to

be taken with a grain of salt, if we examine the distinction between Cooper

pairs and elementary bosons in the spirit of section 1.1. The Cooper pair

radius in superconducting metals is known to be typically on the order of

r0 = 1 μm, whereas their density, i.e. half the condensate fraction times

electron density, is on the order of n = 0.5 × 10−3...−4 × 1023 1
cm3 , in which

case we have nr30 = 0.5 × 107 and the Cooper pairs overlap significantly.

Thus, Cooper pairs in metals may not in general be regarded as elemen-

tary bosons. This picture coincides well with the fact that the pair is held

together by the Pauli blocking of scattering states by other fermions in the

system. Thus, the notion of Cooper pairing needs to be generalized very

carefully from the two-body problem to the many-body problem, and this

generalization is achieved by the celebrated Bardeen-Cooper-Schrieffer

(BCS) theory [57].

3.1 Spin-polarized fermionic superfluidity

Superconductivity and magnetization are usually thought to be natural

enemies. The superconductivity of metals originates from BCS pairing
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Figure 3.1. In the BCS state Cooper pairing occurs between fermions of opposite spin
and momentum, predominantly in the vicinity of the Fermi surface. The
introduction of spin-polarization creates a difference between the Fermi mo-
menta of the spin components, kF↑ > kF↓, which is detrimental to the pairing
at opposite momenta. In the FFLO mechanism, a finite pairing momentum is
introduced to connect the Fermi surfaces better. The finite center of mass mo-
mentum of the Cooper pairs is visible in the spatial modulation of the order
parameter.

of the s-wave singlet type, i.e. a Cooper pair in a metal is formed by two

electrons with opposite spins. On the other hand, the magnetization of

a metal would predominantly require an excess of electrons in one of the

spin-eigenstates, a spin-polarization, which of course should not occur in

a system consisting of spin-singlet pairs [58, 59].

The implications of the coexistence of superconductivity and magneti-

zation were first considered by Fulde and Ferrell [60], and Larkin and

Ovchinnikov [61, 62]. The main idea of both works was that giving Cooper

pairs a finite center of mass momentum alleviates the Fermi surface mis-

match between spin-up and spin-down electrons caused by magnetization,

making the coexistence of magnetization and superfluidity possible. This

principle which results in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)

state is illustrated in Figure 3.1.

The finite center of mass momentum leads to a spatially non-uniform or-

der parameter. Originally, Fulde and Ferrell studied an order parameter

of the plane wave form, Δ(r) = Δ0e
2iq·r, which involves exactly one pos-

sible momentum for the pairing. Larkin and Ovchinnikov, on the other

hand, studied a broader set of order parameters and concluded that an

order parameter of the cosine form, Δ(r) = Δ0 cos(2q · r), would quite gen-
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erally be the optimal one. Now, the detailed form of the order parameter

leads to some important physical differences. In the Fulde-Ferrell (FF)

scenario, the condensate would carry a finite current as a direct result

of all Cooper pairs having the same momentum. On the other hand, the

Bloch theorem stipulates that the equilibrium state of the system cannot

carry any current. In the FF scenario, the excess spin-population is also

carrying a finite momentum directed on average opposite to the conden-

sate momentum. At equilibrium there is a balance between these two

currents. On the other hand, the Larkin-Ovchinnikov (LO) order param-

eter Δ(r) = Δ0 cos(2q · r) corresponds to two pairing momenta in opposite

directions and on this merit alone, there is no net current in the system.

However, there is another interesting feature associated with this order

parameter. Namely, corrections to the density are proportional to the ab-

solute value squared of the order parameter, and thus, in such a state the

density would obtain a periodic modulation with half the wavelength of

the order parameter.

As already stated, in general an order parameter of the cosine form is

the energetically more favorable than the plane wave. However, the plane

wave ansatz does represent some of the qualitative properties of a polar-

ized superfluid fairly well, and can be dealt with in an analytically closed

form. Therefore the plane wave ansatz is a reasonable choice for many

theoretical considerations. In this context, it is interesting to note that

in recent theoretical works it has been suggested that the presence of

spin-orbit coupling could tip the scale in favor of the plane wave order

parameter [63, 64].

So far, the experimental evidence for the existence of the FFLO state

has been inconclusive. The main reason is that in metallic superconduc-

tors the FFLO state would emerge as a function of the external magnetic

field only very close to the Pauli paramagnetic limit (also known as the

Chandrasekhar-Clogston limit), i.e. the magnetic field strength where the

Zeeman splitting of the spin-states is sufficiently large for pair breaking.

However, in the vast majority of superconducting materials the transition

to normal state in an external magnetic field is caused by orbital effects

far below the paramagnetic limit. Moreover, any candidate system should

be extremely clean as the FFLO state is very sensitive to impurities.1

1An additional hurdle in finding the FFLO state is that the majority of supercon-
ducting materials are type-II superconductors, in which the transition to normal
state is preceded by a transition to the Abrikosov vortex lattice state where a
finite magnetic flux passes through the superconductor through vortex cores.
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Based on these arguments, the search for the FFLO state has been most

active in heavy fermion systems, where the paramagnetic limit is more

relevant because of the large effective mass of the electrons, and in sys-

tems where orbital effects are suppressed due to reduced dimensionality

such as organic superconductors. The most promising results have been

reported for the heavy fermion compound CeCoIn5 [65, 66, 67, 68] and

certain organic fulvalene-superconductors [69, 70].

The criteria above show up in a very different light in the context of

quantum gases. In a quantum gas, the occupation number of each pseudo

spin component can be fixed independently, which corresponds to fixing

the chemical potential of each component. Thus, the chemical potential

difference is the analogy of the Zeeman splitting of electrons, with the

exception that there are no orbital effects caused by the external mag-

netic field in the system. Moreover, the quantum gas setups are extremely

clean. This suggests that quantum gases offer a very promising testbed

for the FFLO scenario, and while the state itself has not yet been real-

ized important milestones with population imbalanced systems have been

achieved [14, 15, 71]. Moreover, strong arguments have been presented to

indicate that in deep optical lattices the nesting of Fermi surfaces would

make the FFLO state significantly more stable, and realizable in a much

broader parameter region than in continuum [72, 73].

In the following, we present the mean-field formalism for the Fulde-

Ferrell ansatz with the plane wave order parameter Δ(r) = Δ0e
2iq·r. This

discussion provides the starting point for Publication II. Here, we assume

that the system is described by the Hubbard model (2.11) on a cubic lattice

with NL lattice sites and a periodic boundary condition.

The single particle Green’s function is defined in the finite temperature

Matsubara Green’s function formalism as follows [74, 75, 76]

G(1, 1′) = −
〈
Tτ

(
ĉ(1)ĉ†(1′)

)〉
. (3.1)

Here, use the notation 1 for the variables r1τ1σ1, while Tτ is the time

ordering operator and the brackets denote the thermodynamic average

defined for the operator Ô as

〈
Ô
〉
=

Tr
{
e−βHÔ

}
Tr {e−βH} , (3.2)

where β = 1
kbT

is the inverse temperature with kb the Boltzmann constant

and T the temperature. We describe the system in Nambu formalism

with an extended spin index σ ∈ {1, 2, 3, 4} by setting ĉ3 = ĉ†1 and ĉ4 = ĉ†2.
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Thus, the anomalous Green’s functions with two creation or two annihila-

tion operators are also defined by Equation (3.1). These are essential for

describing pairing correlations on the mean field level.

The single particle Green’s function has the following equation of motion∫
G−1

0 (1, 1̄)G(1̄, 1′) = δ(1, 1′) +
∫

Σ(1, 1̄)G(1̄, 1′). (3.3)

The integral sign is a shorthand notation for summation over position

and spin as well as integration over time, while variables of summation

and integration are indicated by the overbar. The inverse non-interacting

single particle Green’s function is

G−1
0 (1, 1′) =

(
− ∂

∂τ
+ μ(1)

)
δ(1, 1′) + Jσ,rr′δ(τ1 − τ ′1)δσσ′ , (3.4)

where the hopping Jσ is in matrix form over position, and for the extended

spin index we have μ3 = −μ1 + U12, μ4 = −μ2 + U12, J3 = −J1 and J4 =

−J2. Furthermore, δ(1, 1′) stands for the Dirac and Kronecker delta for

continuous and discrete variables, respectively. For a general two-body

interaction the self-energy Σ is defined as

Σ(1, 1′) = −
∫

V (1, 1̄)G2(1, 1̄
−, 2̄, 1̄+)G−1(2̄, 1′). (3.5)

Here the notations τ+ and τ− specify the time-ordering τ+ > τ > τ− and

imply taking the limit τ± → τ , while the two particle Green’s function G2

is defined as

G2(1, 2, 3, 4) = −
〈
Tτ

(
ĉ(1)ĉ(2)ĉ†(4)ĉ†(3)

)〉
. (3.6)

In the Hubbard model the interaction is local both in time and space,

i.e. V (1, 2) = Uσ1σ2δ(r1, r2)δ(τ1 − τ2), with U34 = U12 = U for the extended

index.

In the Hartree-Fock-Gor’kov mean-field approximation the self energy

is

Σ =− Uδ(r1τ1, r
′
1τ

′
1)

⎡
⎢⎢⎢⎢⎢⎣

−G22 G12 0 −G14

G21 −G11 −G23 0

0 −G32 −G44 G34

−G41 0 G43 −G33

⎤
⎥⎥⎥⎥⎥⎦ . (3.7)

Here, the Green’s functions appearing in Σ have the variables (r1τ1, r1τ
+
1 ).

We may include the Hartree terms on the diagonal of the self-energy ma-

trix to the chemical potentials if the density of the system is uniform. The

Fock-exchange terms G12, G21, G34 and G43 can be neglected in the case
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of the Fermi gas, since spin-flipping is energetically highly unfavorable

at experimentally relevant magnetic field strengths. Finally we introduce

the key element of the mean field FFLO theory. We assume that the pair-

ing fields of the self-energy have an oscillating structure

Σ =δ(r1τ1, r
′
1τ

′
1)Δ

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 e2iq·r1

0 0 −e2iq·r1 0

0 −e−2iq·r1 0 0

e−2iq·r1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (3.8)

Here, the FFLO pairing vector is denoted by q. In the special case of q = 0

and N1 = N2 the system is reduced to the standard BCS description. The

case with q = 0 and N1 �= N2 is referred to as the breached pair (BP)

state [77, 78].

The quantity Δe−2iq·r1 is the order parameter of the FFLO state. Its

magnitude Δ is related to the energy gap of pair breaking excitations. The

definition of the self-energy can also be interpreted as the self-consistency

condition of the mean field solution. Because of the symmetries of the

self-energy, this condition can be expressed with a single equation

G32(1, 1
+) = − 1

U
Δe−2iq·r1 , (3.9)

from which the FFLO gap equation can be derived. The particle number

of each spin component, i.e. the number equation, is given by

Nσ =
∑

Gσσ(r̄τ, r̄τ
+), (3.10)

while the filling fraction is defined as nσ = Nσ/NL.

We now proceed to derive a closed algebraic form for the FFLO Green’s

function in momentum and frequency space. Here, in order to find an

algebraically closed set of Fourier components we have to pay particular

attention to the broken spatial translation invariance of the self-energy.

We define the Fourier transform of the Green’s function as

G(p1,p2, ω) =
∑
r1,r2

β∫
0

d (τ1 − τ2) e
iω(τ1−τ2)

F(p1 · r1)G(r1, r2, τ1 − τ2)F†(p2 · r2), (3.11)

where the Fourier transfrom matrix F is given by

F(p1 · r1) =

⎡
⎢⎢⎢⎢⎢⎣

e−ip1·r1 0 0 0

0 e−ip1·r1 0 0

0 0 eip1·r1 0

0 0 0 eip1·r1

⎤
⎥⎥⎥⎥⎥⎦ . (3.12)
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Here, p1 and p2 are momenta and ω is the Matsubara frequency ω =
(2n+1)π

β where n is an integer. The inverse Fourier transformation is

G(r1, r2, τ1 − τ2) =
1

βNL

∑
p1,p2,ω

e−iω(τ1−τ2)F†(p1 · r1)G(p1,p2, ω)F(p2 · r2). (3.13)

Taking Fourier transform the equation of motion (3.3) for G in the FFLO

state we find in the σ1, σ2 ∈ {1, 4} spin-block⎡
⎣iω − ξ1(p1) 0

0 iω + ξ2(p1)

⎤
⎦G(p1,p2, ω)

= δp1,p2I +Δ

⎡
⎣0 1

1 0

⎤
⎦G(2q− p1,p2, ω). (3.14)

Here ξσ(p) = ε(p)− μσ is the single particle dispertion ε(p) relative to the

chemical potential. After a relabeling of the momenta, the equation above

is inverted as⎡
⎣ G11(p1,p2, ω) G14(p1, 2q− p2, ω)

G41(2q− p1,p2, ω) G44(2q− p1, 2q− p2, ω)

⎤
⎦

=
δp1,p2

(iω − ξ1(p1))(iω + ξ2(2q− p1))−Δ2

×
⎡
⎣iω + ξ2(2q− p1) Δ

Δ iω − ξ1(p1)

⎤
⎦ . (3.15)

After this, we define the quasiparticle energies E± [60] as

E±(p) = ±ξ1(p)− ξ2(2q− p)

2
+

√(
ξ1(p) + ξ2(2q− p)

2

)2

+Δ2, (3.16)

and the coherence factors u and v as

u(p) =

√
E+(p) + ξ2(2q− p)

E+(p) + E−(p)
, (3.17)

v(p) =

√
E−(p)− ξ2(2q− p)

E+(p) + E−(p)
. (3.18)

The FFLO quasiparticle dispersions are plotted in Figure 3.2.

Now, using the notations above we may rewrite Equation (3.15) as⎡
⎣ G11(p1,p2, ω) G14(p1, 2q− p2, ω)

G41(2q− p1,p2, ω) G44(2q− p1, 2q− p2, ω)

⎤
⎦

=
δp1,p2

iω − E+(p1)

⎡
⎣ u(p1)

2 u(p1)v(p1)

u(p1)v(p1) v(p1)
2

⎤
⎦

+
δp1,p2

iω + E−(p1)

⎡
⎣ v(p1)

2 −u(p1)v(p1)

−u(p1)v(p1) u(p1)
2

⎤
⎦ . (3.19)
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Figure 3.2. The FFLO quasi-particle dispersions (a) E+(k) and (b) E−(k) for the plane
wave ansatz as given by Equation (3.16) in the kz = 0 plane. Panel (c) gives
both the dispersions E+(k) and E−(k) for ky = kz = 0. The negative energies
are plotted in blue color and positive in green. The states with E+(k) < 0

are occupied even at zero temperature, and carry the excess particle number
of the majority component. The current carried by these quasi-particles is
balanced by the current carried by the condensate so that the total current
in the system is zero.
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In the spin-block σ1, σ2 ∈ {2, 3}, a similar calculation yields the expression⎡
⎣G22(2q− p1, 2q− p2, ω) G23(2q− p1,p2, ω)

G32(p1, 2q− p2, ω) G33(p1,p2, ω)

⎤
⎦

=
δp1,p2

iω − E−(p1)

⎡
⎣ u(p1)

2 −u(p1)v(p1)

−u(p1)v(p1) v(p1)
2

⎤
⎦

+
δp1,p2

iω + E+(p1)

⎡
⎣ v(p1)

2 u(p1)v(p1)

u(p1)v(p1) u(p1)
2

⎤
⎦ . (3.20)

Thus, the normal Green’s functions are diagonal in momentum space,

and one could revert back to the more simple notation of Gσσ(p1, ω) =

Gσσ(p1,p2, ω) for p1 = p2. However, the anomalous functions are non-

diagonal because of the oscillatory structure of the pairing field, and one

has to carry the FFLO pairing momentum in the equations involving

Green’s functions of this type. Notice that the remaining eight Green’s

functions Gσν vanish in the adopted approximation.

Using the results above, we may write down the gap Equation (3.9) and

the number Equations (3.10) in a self-contained form. The inverse Fourier

transform of G32(1, 1
+) is

G32(rτ, rτ
+) =

1

NL

∑
p

e−2iq·ru(p)v(p)[1− nF (E+(p))− nF (E−(p))],

(3.21)

in which the Fermi distribution nF has been obtained from the Matsubara

summation

nF (E) =
1

β

∑
ω

eiω(τ
+−τ)

iω − E
. (3.22)

Therefore, we may write the gap Equation as

−Δ

U
=

1

NL

∑
p

u(p)v(p)[1− nF (E+(p))− nF (E−(p))]. (3.23)

Similarly, we obtain the number Equations

n1 = G11(rτ, rτ
+) =

1

NL

∑
p

u(p)2nF (E+(p)) + v(p)2[1− nF (E−(p))],

(3.24)

and

n2 = G22(rτ, rτ
+) =

1

NL

∑
p

u(p)2nF (E−(p)) + v(p)2[1− nF (E+(p))].

(3.25)
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Finally, we give an expression for the expected value of the current. Using

this expression, it is possible to fix the value of the FFLO vector q from

the condition that the total current must vanish at equilibrium.2 The

expected value of the current along each axis is [74]

ji = iJ
∑
r,σ

∑
λ=±1

λGσ(r, r+ λaêi, 0
−), (3.26)

where a is the lattice constant and êi a unit vector along the i-axis with

i ∈ {x, y, z}. This equation can be written in terms of the quasiparticle

energies and coherence factors as

ji = 2J
∑
p

sin(p · aêi)
{
u(p)2[nF (E+(p)) + nF (E−(p))]

+v(p)2[2− nF (E+(p))− nF (E−(p))]
}
. (3.27)

The results above are utilized to describe the FFLO ground state in the

linear response calculations of Publication II. From the point of view of

numerics, the accurate implementation of the gap equation (3.23) consis-

tently with the numerical implementation of the linear response formulae

is of particular importance – even small inconsistencies may lead to the

qualitatively wrong result of a gapped collective mode dispersion. This

detail is connected to the self-consistency of the linear response theory as

discussed in Chapter 4, and in particular, to section 4.2.1 where we show

analytically that the collective mode spectrum is always gapless. The con-

cepts related to spin-polarized superfluidity discussed in this chapter are

also central to Publication III and Publication V. In these works we utilize

numerically heavier methods to go beyond the static mean-field approach.

The FFLO state found in these works is much more similar to the LO state

with an approximately sinusoidal order parameter and oscillating density

profile than to the FF state examined above. The mean-field treatment of

fermionic superfluidity above contains the BCS theory as a limiting case,

and this of course offers the starting point for the studies of the Josephson

effect presented in Publication I and Publication IV.

2However, in computing the phase diagram of the system, an alternate approach
based on minimizing the free energy of the system is preferable.
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4. Linear response theory

Perturbation theory is a very general approach to describe physical sys-

tems that cannot be solved with exact analytical methods. The main idea

is to divide the problem at hand into a more easily described system and

a perturbation acting on this simpler system, and then, to estimate how

this perturbation changes the solution. In linear response theory it is

assumed that the change in the system is directly proportional to the

strength of the perturbation. This approach is particularly useful if the

unperturbed system is independent of time, and moreover, can be con-

sidered to be in thermodynamic equilibrium. In such cases determining

the non-equilibrium properties of the perturbed system can be reduced

to equilibrium quantities which typically are substantially easier to com-

pute. However, it is worth emphasizing that in spite of the apparent sim-

plicity of the unperturbed equilibrium system, its solution may still be

known only up to an approximation. This in turn implies that the the

perturbation theory has to be constructed consistently with respect to the

approximations taken for the equilibrium system. In the following, we

outline the linear response formalism with a particular focus on the self-

consistency of the theory as defined by Kadanoff and Baym [79, 80].

For a quantum many-body system initially in thermodynamic equilib-

rium, the linear change in the expected value of an observable Ô in re-

sponse to a perturbation represented by the operator H ′(t) follows the

Kubo formula [74, 75, 76]

δ
〈
Ô(t)

〉
= −i

∞∫
−∞

dt′Θ(t− t′)
〈[

Ô(t), H ′(t′)
]〉

. (4.1)

Here, the perturbation H ′(t) is assumed zero for t < 0, and Θ(t) is the

Heaviside step function. The time evolution of the operators inside the

commutator is given in the interaction picture. In the following, both H ′
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and Ô are single-particle operators of the generic form

H ′ =
∫

φ(1̄, 2̄)ψ†(1̄)ψ(2̄), (4.2)

Ô =

∫
φ̃(1̄, 2̄)ψ†(1̄)ψ(2̄). (4.3)

For instance in the FFLO density response study of Publication II, the

perturbing field is diagonal in position and spin, i.e. couples locally to

the density of the system, and there are two observables of interest, the

densities of each spin component in the system:

H ′ =
∫ (

φ1(r̄, t)ψ
†
1(r̄, t)ψ1(r̄, t) + φ2(r̄, t)ψ

†
2(r̄, t)ψ2(r̄, t)

)
,

Ô1 = ψ†
1(r, t)ψ1(r, t),

Ô2 = ψ†
2(r, t)ψ2(r, t). (4.4)

In the case of single particle operators the integrand of the Kubo formula

is a retarded two-body correlation function, or linear response function,

multiplied by the strength of the perturbing field. The retarded linear

response function is defined as

Lσ1σ2σ3σ4(r, r
′, t− t′) = −iθ(t− t′)

〈[
ψ†
σ3
(r, t)ψσ1

(r, t), ψ†
σ4
(r′, t′)ψσ2

(r′, t′)
]〉

.

(4.5)

The standard strategy for computing the linear response function is to

first solve the corresponding time-ordered Matsubara correlation func-

tion. From this function, the real-time retarded correlation function can

be obtained by means of analytical continuation. From here on we con-

tinue using the Matsubara formalism.

In Publication I and Publication II we employ the Kadanoff-Baym for-

malism [79, 80] to derive the linear response function. This formalism

provides a rigorous framework for deriving conserving and thermodynam-

ically consistent approximations for the many-body problem. Here, a con-

serving approximation is such that it obeys the conservation laws arising

from the symmetries of the physical system while thermodynamical con-

sistency means that the partition function is unique, or in other words,

that the direct evaluation of observables and their calculation by differ-

entiating the partition function yield the same result. These important

properties are not necessarily true for any approximation. In fact, the

construction of such a theory is possible if and only if the self-energy of the

system is Φ-derivable. This means that there exists a closed functional of

the Green’s function Φ(G) from which the self-energy can be obtained as
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a variational derivative as follows

Σ(1, 1′) =
δΦ(G)

δG(1′, 1)
. (4.6)

This definition of Φ-derivability is equivalent with the following vanishing

curl condition for the self-energy

δΣ(1, 1′)
δG(2′, 2)

=
δΣ(2, 2′)
δG(1′, 1)

. (4.7)

From this condition, one can directly inspect that for instance the Hartree-

Fock-Bogoliubov mean-field approximation introduced in Section 3.1 is in-

deed Φ-derivable. Thus, conserving Linear response theories can be con-

structed for this approximation.

For all Φ-derivable theories, the linear response function can be ex-

pressed as the variational derivative of the Green’s function with respect

to the external field φ evaluated at φ = 0

L(12, 1′2′) =
(
δG(1, 1′)
δφ(2′, 2)

)
φ=0

. (4.8)

For example the density is given by nσ1(r1τ1) = G(1, 1+) so L(12, 1+2+)

would give the density response function. Rather than solving the non-

equilibrium G(U) to solve this derivative, one can utilize the Dyson equa-

tion

G−1(1, 1′) = G−1
0 (1, 1′)− φ(1, 1′)− Σ(1, 1′) (4.9)

to obtain the variational derivative of the inverse propagator. Now, by tak-

ing the variational derivative of the identity
∫
G(1, 1̄)G(1̄, 1′)−1 = δ(1, 1′)

one obtains the linear response function as

L(12, 1′2′) =
∫ (

G(1, 3̄)

(
δφ(3̄, 4̄)

δφ(2′, 2)
+

δΣ(3̄, 4̄)

δφ(2′, 2)

)
G(4̄, 1′)

)
φ=0

. (4.10)

This equation is still an implicit equation for the linear response function

as the self-energy is expressed in terms of the Green’s function and thus

derivatives of the Green’s function appear on the right hand side as well.

Indeed, using the chain rule of differentiantion this equation is rewritten

as

L(12, 1′2′) =
∫

G(1, 3̄)φ=0G(4̄, 1′)φ=0

(
δφ(3̄, 4̄)

δφ(2′, 2)

)
φ=0

+

∫
G(1, 3̄)φ=0G(4̄, 1′)φ=0

(
δΣ(3̄, 4̄)

δG(5̄, 6̄)

)
φ=0

L(5̄2, 6̄2′). (4.11)

In the case of the Hartree-Fock-Bogoliubov mean field approximations,

the functional derivative
(
δΣ(3̄,4̄)
δG(5,6)

)
φ=0

is a combination of delta-functions
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and no further Green’s functions enter the equation. For translation in-

variant systems it is typically advantageous to rewrite this equation in

momentum space.

The equation above can also be considered an implicit expansion and

resummation in diagrams. The diagrammatic series is recovered by re-

peated nesting of the rigth hand side of Equation (4.11). Conversely, the

linear response function can be derived using diagrammatic perturbation

theory. Notice however that depending on the choice of diagrams for re-

summation, the diagrammatic derivation can lead to a result which is not

self-consistent. In the case of the Hartree-Fock-Bogoliubov theory, the re-

sult of the self-consistent approach above is equivalent to the generalized

random phase approximation (GRPA) [81].

The linear response function can be given two slightly different physical

interpretations. On the one hand, it can be used to describe the time-

evolution of the system under a specific perturbation, as is the case in

the following section on the spin-asymmetric Josephson effect. On the

other hand, one can find from the linear response function all possible

single particle transitions of the system. Moreover, it is possible that the

for some specific perturbations the linear response function diverges, for-

mally implying that for a vanishingly small perturbation strength the sys-

tem can have a non-trivial time-evolution. Such a resonance is in fact a

signal of a collective excitation in the system. Therefore, in the frequency

space, the poles of the linear response function can be interpreted as the

collective excitation spectrum of the system. Thus, the response function

contains information about the excitation spectrum of the system at equi-

librium. This point of view can be taken with the results of Section 4.2

concerning the collective mode spectrum of the FFLO state.

4.1 Spin-asymmetric Josephson effect

The Josephson effect is a coherent tunneling phenomenon between two

superconductors or superfluids. The Josephson effect can be divided to a

direct current (DC) effect in which a finite supercurrent flows through the

system at zero voltage, and an alternating current (AC) effect in which a

constant voltage gives rise to an alternating current at a precisely defined

Josephson frequency [82].

In the following, we discuss the spin-asymmetric Josephson effect, in

which the two spin-components forming a Cooper pair are subjected to
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different potentials [83]. This study is motivated by the possibility of hav-

ing spin-dependent potentials in a quantum gas analogue of a Josephson

junction. In fact, there are many different possibilities of creating such

an experimental setup. In Publication I, our main focus was on a setup

in which two superfluid Fermi gases are connected by a radio frequency

(RF) fields. We will use this notation in the equations below. The for-

malism translates directly to the case of another possible experimental

setup, a spin-dependent double well. In Publication IV we showed that

also a spin-dependent superlattice can be used to produce the effect, and

we return to this case after the introduction of the key features of the

Josephson effect.

In the RF coupling case, the basic system is a four component Fermi

gas in which the spin-states |1〉 and |2〉 form a BCS superfluid, as do the

spin-states |3〉 and |4〉. The unperturbed Hamiltonian H0 of the system is

H0 =

∫
dr
∑
i

ψ†
i (r)

(
−∇2

2m
− μi

)
ψi(r) +

1

2

∫
dr
∑
i �=j

Uijψ
†
i (r)ψ

†
j(r)ψj(r)ψi(r).

(4.12)

Here, we assume equal chemical potentials for all states μi ≡ μ, and fur-

thermore, equal interaction strength for the paired states, i.e. U12 = U34,

whence the resulting two BCS states are identical. We then introduce a

RF coupling between states |1〉 and |3〉, as well as between states |3〉 and

|4〉. The tunneling coupling between states |i〉 and |j〉 can be described in

the rotating wave approximation [84], and is characterized by the Rabi

frequency Ωij and the detuning δij = νij − ωij . Here νij and ωij are the

frequencies of the RF field and the atomic transition, respectively. The

Hamiltonian of the RF coupling is

HRF =
δ13
2

∫
dr(ψ†

1(r)ψ1(r)− ψ†
3(r)ψ3(r))

+
δ24
2

∫
dr(ψ†

2(r)ψ2(r)− ψ†
4(r)ψ4(r))

+ Ω13

∫
drψ†

1(r)ψ3(r) + h.c. +Ω24

∫
drψ†

2(r)ψ4(r) + h.c. (4.13)

In the case of a double well (with labels left and right assigned to the

two wells) the states |1〉 and |2〉 would correspond to the spin up and spin

down fermions in the left well, and states |3〉 and |4〉 to the spin up and

spin down fermions in the right well. The detunings δ13 and δ24 would

then be the spin-dependent potential differences between the two wells.

A more detailed description of these two setups is given in Publication

I. Note that if the time-dependence of the original electromagnetic field
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is defined as a sine-wave, and not a complex exponential, an additional

factor of one half has to be added to the Rabi frequency terms.

Let us define the current as Iσ(t) ≡ 〈Ṅσ〉. Following the standard deriva-

tion of the Josephson effect [85, 86, 87], which is essentially the derivation

of the Kubo formula with the time-dependence of the supercurrent taken

as a prefactor, the current I1(t) becomes

I1(t) = IS1 + IJ1 (t)

IS1 (t) = −2Ω2
13Im

(
L1331(p = 0, δ13 + iη+)

)
,

IJ1 (t) = 2Ω13Ω24|L1234(p = 0,−δ24 + iη+)| sin[(δ13 + δ24)t+ ϕ]. (4.14)

The term IS1 in the equation above is the normal (or dissipative) current.

In the following discussion we assume that the temperature is zero and

that the detunings are smaller than the BCS gap, |δ| < 2Δ, in which case

IS is zero. The term IJ1 is the Josephson current and its amplitude defines

the critical current IC13(δ24). Thus, the Josephson current for each spin-

component is

IJ1 (t) = IC1 (δ24) sin[(δ13 + δ24)t+ ϕ],

IJ2 (t) = IC2 (δ13) sin[(δ13 + δ24)t+ ϕ],

IC1 (δ24) = 2Ω13Ω24|L1234(p = 0,−δ24 + iη+)|,
IC2 (δ13) = 2Ω13Ω24|L2143(p = 0,−δ13 + iη+)|. (4.15)

In Publication I, the linear response functions above were solved self-

consistently in a general case when the two superfluids are interacting,

as would be appropriate in the RF-frequency setup. There, it was shown

that while the interactions modify the result quantitatively, the qualita-

tive picture of the spin-asymmetric Josephson effect remains the same.

Thus, in the following discussion we may assume that there are no direct

interactions between the two superfluids. In this case, the critical cur-

rent IC13 is the same function as IC24, and their only difference is in their

dependence on the detunings.

Figure 4.1 demonstrates the main features of the result. The magnitude

of the critical current for each spin component can be tuned independently

with the choice of the detuning. However, the Josephson frequency is

the same for both the spin components, δ13 + δ24. Thus, the Josephson

currents of the spin components oscillate at the same frequency, but with

different amplitudes. The conventional interpretation of the Josephson

effect is that it is caused by the coherent tunneling of Cooper pairs. This

picture of pair tunneling seems to be in complete contradiction with the
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Figure 4.1. (a) The critical Josephson current as a function of the detuning. The critical
current of each spin-component can be tuned individually with the choice of
the detunings. The critical current diverges when the detuning is equal to
2Δ, where Δ is the superfluid gap. This structure is known as the Riedel
peak. (b) The current of each spin-component oscillates at the Josephson
frequency δ13 + δ24. However, when δ13 �= δ24, the amplitudes of the currents
are different, suggesting that there is more to the Josephson effect than just
the tunneling of Cooper pairs. Figure (a) adapted from Publication I.
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Figure 4.2. The level diagram of the four-state system, which can be used as the sim-
plest possible model system for the spin-asymmetric Josephson effect. The
parameter U is the energy gained by pairing. Figure originally published
in Publication I.

spin-asymmetric result. In fact, it turns out that the resolution of this

intriguing paradox leads to a new interpretation of the entire Josephon

effect, as first discussed in Publication I.

The initial state of the system is a product of two BCS states

|Ψ〉 = |BCS〉12 ⊗ |BCS〉34
=
∏
k

(
uk + vk ĉ

†
1,k ĉ

†
2,−k

)∏
k′

(
uk′ + vk′ ĉ

†
3,k′ ĉ

†
4,−k′

)
|∅〉 . (4.16)

Let us simplify the situation by focusing on a single momentum state k:

|Ψk〉 = (uk + vk ĉ
†
1,k ĉ

†
2,−k)(uk + vk ĉ

†
3,k ĉ

†
4,−k) |∅〉

= u2k |∅〉+ v2k ĉ
†
1,k ĉ

†
2,−k ĉ

†
3,k ĉ

†
4,−k |∅〉+ ukvk

(
ĉ†1,k ĉ

†
2,−k + ĉ†3,k ĉ

†
4,−k

)
|∅〉 .
(4.17)

The empty state and the completely filled state cannot contribute to the
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current, and therefore, the dynamics of the system follows from the ini-

tial superposition of the states |12〉 = ĉ†1,k ĉ
†
2,−k |∅〉 and |34〉 = ĉ†3,k ĉ

†
4,−k |∅〉.

Now, the tunneling matrix elements couple these states through single

particle transitions, and therefore the description of the dynamics must

also inlude the states |14〉 = ĉ†1,k ĉ
†
4,−k |∅〉 and |23〉 = ĉ†2,−k ĉ

†
3,k |∅〉 which are

analogous to single particle excitations within the BCS formalism.

The resulting four level system is described in Figure 4.2. Solving the

time-evolution of this system to second order in the tunneling matrix ele-

ment we find the following current for σ = 1 at the Josephson frequency

IJ1 = 2Ω13Ω24 (Mpair +Msingle) sin[(δ13 + δ24)t] (4.18)

Here, we have grouped the various terms in the perturbation expansion

to two coefficients, Mpair and Msingle. The term Mpair is given by

Mpair =
1

U + δ13
+

1

U + δ24
, (4.19)

where the pairing energy is denoted by U . This term arises from the sec-

ond order tunneling processes which start from the paired state |34〉, pass

through either one of the broken pair states |14〉 or |23〉, and end in the

state |12〉, i.e. the pair interference processes. The term is symmetric in

the detunings and an identical term is found in the current of the second

spin component IJ2 .

The term Msingle is defined as

Msingle =
1

U − δ24
− 1

U + δ13
. (4.20)

This contribution corresponds to interference on state |14〉 and was first

identified in Publication I. In other words, this is an interference term

of two first order tunneling processes in which a paired state is broken,

i.e. |12〉 → |14〉 and |34〉 → |14〉. This interference of broken pairs explains

the asymmetry of the Josephson current, since the corresponding contri-

bution to IJ2 originates from state |23〉 and is of the form

M̃single =
1

U − δ13
− 1

U + δ24
. (4.21)

Thus, the spin-asymmetric Josephson effect is ultimately caused by the

fact that the spin-asymmteric potential leads to an energy difference be-

tween the intermediate states |14〉 and |23〉. The many-body result can

be recovered from the four-state formulation by summing over the mo-

mentum with the appropriate pre-factors from the BCS ansatz. Here,

one notices the importance of the phase coherence in the initial state; all
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Figure 4.3. When a spin-dependent superlattice potential is imposed on a regular optical
lattice, the spin-asymmetric Josephson effect occurs between the odd and
even lattice sites. In this configuration, each pair of adjacent lattice sites
can be compared to a small Josephson junction. Figure originally published
in Publication IV.

of the four-state systems corresponding to differenct momenta have the

same initial condition. Moreover, the Josephson frequency is the same

for all sub-systems. Notice, that for a momentum conserving tunneling

matrix such as the RF coupling, the four-state picture holds exactly to all

orders of perturbation theory, whereas in the case of a general tunneling

matrix, it is valid to the second order in perturbation theory, as shown in

Publication IV.

The discussion above suggests that the Josephson effect in general can

be interpreted as Rabi oscillations in a four-state system. Now, the in-

teresting point here is that the broken pair interference term above is

present, and equally important as the pair tunneling term, also in the case

of the conventional Josephson effect with no spin-dependence, i.e. δ13 =

δ24. Therefore, the interpretation of the Josephson effect as tunneling of

Cooper pairs is insufficient.

In Publication IV we considered an alternate approach to the experi-

mental realization of the Josephson effect using a spin-dependent super-

lattice, see Figure 4.3. Here, the Josephson effect occurs in fact within one

single superfluid, between the odd and even sites of the superlattice. Also

in this configuration, the individual control of the potentials for each spin

component leads to the spin-asymmetric Josephson effect, as we demon-

strated utilizing the time-evolving block decimation (TEBD) algorithm for

essentially exact simulations of the dynamics of the system. However, we

also showed that in the superlattice system there are subtle differences

to the standard Josephson effect. The hopping, which in this setup is the

equivalent of the tunneling coupling between the two superfluids, is typ-

ically comparable to the other energy scales in the system, and there are

corrections to the second order perturbation theory results: The Joseph-

son frequency is shifted from its weak-coupling limit value δ13+ δ24 and is
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split to several adjacent frequencies.

Finally, in Publication IV we discussed the connection of the spin-asymmetric

Josephson effect to various solid-state Josephson junction configurations.

Here, the limiting case of the DC Josephson effect is of particular inter-

est. In the spin-asymmetric case, the DC limit is given by the condition

of zero Josephson frequency, δ13 + δ24 = 0. Now, this condition leaves

undetermined one degree of freedom, δ = |δ13| = |δ24|, which affects the

critical Josephson current. Therefore, we find that the critical DC cur-

rent can be tuned by having opposite, but non-zero detunings. In fact,

this leads to the enhancement of the critical current, as is evident from

Figure 4.1, since the spin-symmetric case corresponds to δ = 0. A similar

enhancement has been predicted to occur in a Josephson junction with a

specific ferromagnetic layer structure, the SFIFS junction, where S, F and

I stand for superconducting, ferromagnetic and insulating layers [88, 89].

Here, a key assumption of the SFIFS junction is that it is short in the

sense that the SF-bilayer can be considered a uniform magnetic super-

conductor, whereas in the opposite limit of a long junction, the system

demonstrates a different behavior [90]. In Publication IV we show that

the enhancement of the critical current is analogous to the tunable DC ef-

fect and explain the origin of this effect in terms of the formalism outlined

above.

4.2 Collective modes in the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state

The FFLO state demonstrates a very peculiar form of symmetry breaking.

In the FFLO state, the order parameter has a preferred direction, and

the state is therefore anisotropic. Thus, it is interesting to ask whether

this anisotropy would leave its mark on the response properties and the

collective mode spectrum of the system. Moreover, the interplay of the

Cooper pairs and the substantial number of unpaired particles may also

have important consequences to these properties. These questions were

studied in Publication II in the case of the plane wave order parameter.

The mean-field approximation for the FFLO state was described in de-

tail in Section 3.1 and provides the starting point for the derivation of

the self-consistent FFLO density response function. Now, the density re-

sponse function is of the form χ1(k, ω) = L1111(k, ω) + L1212(k, ω) where

L1111 and L1212 are the linear response functions of density n1 to the po-
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tentials φ1 and φ2, which are typically assumed equal in strength. As

discussed in the beginning of this chapter the collective modes of the sys-

tem appear as the poles of the density response function. The general

self-consistent formalism presented above can be followed to obtain the

response functions L1111 and L1212. The non-trivial step of the derivation

is again, as in Section 3.1, the transformation to momentum basis with

proper treatment of the FFLO pairing momentum q. In the momentum

basis, the problem separates after some algebra to a block-diagonal form,

where each block contains two momenta connected by the FFLO pairing

momentum. When symmetries with respect to the spin-index are taken

into account, each momentum block can be reduced to the following 4× 4

matrix equation. The following result was derived in Publication II.

The linear response function L1111 is obtained from the equation

L(1)(p1,p2) = δp1,p2 [M
(1)(p1)]

−1Π(1)(p1). (4.22)

Here, all the quantities are have the same Matsubara frequency ω. The

vector of linear response functions, L(1), is defined as

L(1)(p1,p2) =[
L1111(p1,p2) L1141(2q+ p1,−p2) L4111(2q− p1,p2) L4141(−p1,−p2)

]T
,

(4.23)

while Π(1) is

Π(1)(p1) =
[
Π1111(p1) Π1114(p1) Π4111(p1) Π4114(p1)

]T
. (4.24)

Here, we have defined Πσ1σ2σ3σ4(p1) as

Πσ1σ2σ3σ4(p, ω) =
1

βNL

∑
s,χ

Gσ1σ2(λσ1(p+ s), λσ2(p+ s), χ+ ω)

×Gσ3σ4(λσ3(s), λσ4(s), χ), (4.25)

where NL is the number of lattice sites and λσ(p) is defined so that

λσ(p) = p, σ ∈ {1, 2}, λσ(p) = 2q− p, σ ∈ {3, 4}. (4.26)

The matrix M (1) is

M (1)(p1) = I − U

⎡
⎢⎢⎢⎢⎢⎣

−Π1441(p1) Π1141(p1) Π1411(p1) −Π1111(p1)

−Π1444(p1) Π1144(p1) Π1414(p1) −Π1114(p1)

−Π4441(p1) Π4141(p1) Π4411(p1) −Π4111(p1)

−Π4444(p1) Π4144(p1) Π4414(p1) −Π4114(p1)

⎤
⎥⎥⎥⎥⎥⎦ .

(4.27)
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Figure 4.4. The dispersion relation of the collective density modes in the FFLO state
when the wave vector is parallel to the the FFLO vector q (ωx), and perpen-
dicular to it (ωy). The speed of sound is given by the slope of the dispersion
at k = 0. The anisotropic nature of the FFLO state leads to an anisotropy in
the speed of sound. Figure originally published in Publication II.

One derives similarly for L1212 the equation

L(2)(p1,p2) = −δp1,p2 [M
(2)(p1)]

−1Π(2)(p1), (4.28)

where L(2) is given by

L(2)(p1,p2) =[
L1212(p1,p2) L1242(2q+ p1,−p2) L4212(2q− p1,p2) L4242(−p1,−p2)

]T
,

(4.29)

and Π(2) is

Π(2)(p1) =
[
Π1441(p1) Π1444(p1) Π4441(p1) Π4444(p1)

]T
. (4.30)

The matrix M (2) is the same as M (1). This implies that the same collec-

tive mode spectrum would be found in either of the response functions

L1111 and L1212, or indeed their sum χ1(k, ω). Notice though that the non-

resonant, or finite, values of these response functions are in general dif-

ferent.

In Publication II this set of equations was solved numerically. The ana-

lytical continuation of the response function was carried out using a Padé

approximant in a form described in [91]. This approach was particularly

useful in that it allowed the solution of the real and imaginary parts of

the poles of the response function, i.e. the collective mode resonance fre-

quency and the damping rate, on equal footing. The main result presented
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in Publication II was that the collective mode dispersion in the FFLO

state depends on the direction relative to the FFLO vector as shown in

Figure 4.4. Since this collective mode is soundlike, i.e. gapless and linear

at the long wave length limit, the result can be summarized by the fact

that the speed of sound in the FFLO state is anisotropic. The analysis of

the damping rate indicated that the collective mode is well-defined in the

sense that the damping rate is small compared to the mode frequency.

The GRPA formalism has also been utilized for the case of a 1D Fermi

gas in the LO state in reference [92, 93], where a density response with

two collective mode branches was reported. Similar results have been

found for the LO state also in higher dimensions using a Ginzburg-Landau

model [94]. Interstingly, in Publication II we showed that a very similar

response function arises also in the case of the FF ansatz in a quasi-1D

geometry, since the response of the unpaired quasiparticles is restricted to

a very narrow momentum band when the dimensionality is reduced. Fi-

nally, the back-bending of the collective mode dispersion at large momenta

in 2D and 3D systems has been interpreted as roton-like behavior [95, 96].

4.2.1 Connection to the Goldstone theorem

The Goldstone theorem states that the spontaneous breaking of a global

continuous symmetry results in a Nambu-Goldstone mode, which is a

bosonic excitation of the ground state with a gapless dispersion at the long

wave length limit [97]. The crude explanation for this is that a long wave

length transformation of the order parameter can smoothly interpolate

between different possible ground state values of the order parameter, all

equally optimal in the free energy.

The collective mode discussed in the preceding section is known as the

Anderson-Bogoliubov phonon in the case of the BCS state. The Anderson-

Bogoliubov phonon can be interpreted as the Nambu-Goldstone mode re-

lated to the spontaneous symmetry breaking of the phase of the super-

fluid order parameter. Here, an essential point is that the Anderson-

Bogoliubov phonon occurs in a neutral system, such as a superfluid quan-

tum gas. However, in a charged system, i.e. a superconductor, a notable

exception occurs. In this case, we have in fact a local symmetry breaking

of the gauge field. The condensate phase is coupled to the vector potential

which absorbs the Goldstone mode, and as a result, the collective mode

spectrum of the system is gapped (or massive). This is an example of the
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famous Higgs mechanism.1

In the following, we give a detailed analytical proof that the collective

mode predicted for the FFLO state using the GRPA formalism is gap-

less, and as a result, the physical picture is consistent with the Gold-

stone theorem. Technically, we show that the linear response function

of Equation (4.22) diverges at the limit of zero momentum and energy

(p = 0, ω = 0), or in other words, we show that the matrix M (1) of Equa-

tion (4.27) is singular at this limit. Technically, we show that the determi-

nant of M (1) is zero in this limit. In fact, we shall see that the crucial step

in the proof is to identify that the gap equation (3.23) is self-consistently

included to this matrix.

We begin by calculating the general term Πabcd(p, ω) in the limit p =

0, ω = 0. We take the limit p = 0 at the very beginning of the calculation

but postpone taking the limit ω = 0. The Green’s functions of the matrix

block a, b ∈ {1, 4} are needed for p1 = p2 = s, and for the calculation ahead

we restate the FFLO Green’s functions of Equation (3.19) in the form

Gab(λa(s), λb(s), ω) =
Xab(s)

iω − E+(s)
+

Yab(s)

iω + E−(s)
. (4.31)

From here on we simplify the notation by leaving out the momentum vari-

able s from the terms in the sum. The term Πabcd(p = 0, ω) is

Πabcd(p = 0, ω) =
1

βNL

∑
χ,s

Gab(ω + χ)Gcd(χ)

=
1

βNL

∑
χ,s

XabXcd

(iω + iχ− E+)(iχ− E+)
+

XabYcd
(iω + iχ− E+)(iχ+ E−)

+
YabXcd

(iω + iχ+ E−)(iχ− E+)
+

YabYcd
(iω + iχ+ E−)(iχ+ E−)

. (4.32)

The general Matsubara sum in the equation above is evaluated as [74, 75,

76]

1

β

∑
χ

1

i(ω + χ)− E1
· 1

iχ− E2
=

nF (E1)− nF (E2)

E1 − E2 − iω
. (4.33)

Noticing that the first and fourth terms of Equation (4.32) vanish identi-

cally, and taking into account that nF (−x) = 1− nF (x), we find

Πabcd(p = 0, ω) = − 1

NL

∑
s

XabYcd(1− nF (E+)− nF (E−))
E+ + E− − iω

+
YabXcd(1− nF (E−)− nF (E+))

E− + E+ + iω
. (4.34)

1In both the neutral and the charged system, there can also exist a gapped mode
related to the oscillation of the amplitude of the order parameter. This is referred
to as the amplitude mode or the Higgs mode.

42



Linear response theory

We may now carry out the analytical continuation to real frequencies via

the substitution iω → ω+ i0+ and the identity 1
x−i0+

= P 1
x + iπδ(x). Since

E+ + E− > 2Δ, the analytical continuation yields for |ω| < 2Δ only the

principal value with no imaginary part which would be proportional to a

delta function of E+ + E− − ω in the first term and of E+ + E− + ω in the

second one. Finally, upon taking the limit ω = 0 we have

Πabcd(p = 0, ω = 0) = − 1

NL

∑
s

(XabYcd + YabXcd)
(1− nF (E+)− nF (E−))

E+ + E−
.

(4.35)

Since E+ + E− = Δ/(uv) this can be rewritten as

Πabcd = − 1

ΔNL

∑
s

uv(XabYcd + YabXcd)(1− nF (E+)− nF (E−)). (4.36)

The insertion of the FFLO Green’s functions of Equation (3.19) to Equa-

tion (4.36) yields the following identities which are needed to complete the

derivation.

Π1144 = − 1

ΔNL

∑
s

uv(u4 + v4)(1− nF (E+)− nF (E−)),

Π1414 = − 1

ΔNL

∑
s

uv(−2u2v2)(1− nF (E+)− nF (E−)),

Π1141 = Π1411 = − 1

ΔNL

∑
s

uv(−u3v + uv3)(1− nF (E+)− nF (E−)). (4.37)

One shows similarly to above that Π4144 = Π4414.

Now, we are ready to show that the determinant of M (1) is zero for p =

0, ω = 0. Recall that the value of a determinant is invariant under the

operation of subtracting a single matrix column from any other column.

Subtracting the third column of M (1) from the second column, we have

|M (1)| =

∣∣∣∣∣∣∣∣∣∣∣

1 + UΠ1441 −UΠ1141 + UΠ1411 −UΠ1411 UΠ1111

UΠ1444 1− UΠ1144 + UΠ1414 −UΠ1414 UΠ1114

UΠ4441 −UΠ4141 + UΠ4411 − 1 1− UΠ4411 UΠ4111

UΠ4444 −UΠ4144 + UΠ4414 −UΠ4414 1 + UΠ4114

∣∣∣∣∣∣∣∣∣∣∣
.

(4.38)

Now, on the second column the first and fourth terms vanish as we have

concluded that Π1141 = Π1411 and Π4144 = Π4414. The second term in the
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second column is

1− UΠ1144 + UΠ1414 = 1 +
U

ΔNL

∑
s

uv(u4 + v4 + 2u2v2)(1− nF (E+)− nF (E−))

= 1 +
U

ΔNL

∑
s

uv(u2 + v2)2(1− nF (E+)− nF (E−))

= 1 +
U

ΔNL

∑
s

uv(1− nF (E+)− nF (E−))

= 0. (4.39)

The last equality above follows directly from the gap equation (3.23). One

shows similarly that because of the gap equation the third term of the

second column vanishes, and as a result we finally obtain

|M (1)| =

∣∣∣∣∣∣∣∣∣∣∣

1 + UΠ1441 0 −UΠ1411 UΠ1111

UΠ1444 0 −UΠ1414 UΠ1114

UΠ4441 0 1− UΠ4411 UΠ4111

UΠ4444 0 −UΠ4414 1 + UΠ4114

∣∣∣∣∣∣∣∣∣∣∣
= 0. (4.40)

We have now shown that the matrix M (1) is singular for q = 0, ω = 0.

Firstly, this means that the collective mode is gapless. Secondly, this oc-

curs precisely because of the fact that the gap equation is included con-

sistently into the formalism of calculating the collective mode spectrum.

Consequently, the collective mode described by the formalism can be iden-

tified as the Nambu-Goldstone mode of the FFLO state.
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5. Dynamical mean-field theory

Dynamical mean-field theory (DMFT) [98] is a widely used framework

for solving quantum many-body problems on a lattice at thermodynamic

equilibrium. DMFT is non-perturbative, and therefore, it can be applied

to strongly correlated systems. Arguably the most renowned example of

the power of DMFT is the correct description of the Mott insulating tran-

sition. While the method was originally conceived for fermions, recently

it has been implemented for bosonic systems as well [99, 100]. Here, we

will keep with the main theme of this thesis and focus on fermions.

The main idea of DMFT is a self-consistent mapping of the many-body

problem to a quantum impurity problem as described in Figure 5.1. In

the construction of this mapping it is assumed that the self-energy of the

system is local

Σjl(iωn) ≈ δjlΣj(iωn). (5.1)

DMFT effectively splits the original problem to two halves, solving the

lattice Dyson equation for a given self-energy and solving a quantum im-

purity problem for a given mapping. Though the impurity problem is

computationally far more tractable than the full problem, it is still a de-

manding quantum many-body problem in its own right, and in general,

sophisticated numerical techniques are required for its solution. In Sec-

tion 5.3 we discuss how the impurity problem can be solved. Before this,

we introduce DMFT in more detail in Section 5.1 using real-space for-

malism [101, 102, 103, 104] which is relevant for spatially non-uniform

systems such as quantum gases in a trap, and outline in Section 5.2 how

cluster DMFT formalism can be utilized to find systematic corrections to

the DMFT approximation. Finally, in Section 5.4 we present key results

from our studies on spin-polarized superfluidity using these methods.
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Figure 5.1. The concept of dynamical mean field theory (DMFT). The system is mapped
to an impurity problem which has one lattice site with interaction. The rest
of the system is represented as a bath of non-interacting particles which tun-
nel in and out of the chosen lattice site. The local self-energy can be solved
from the impurity problem and fed back to the original lattice geometry. The
physically correct solution satisfies a self-consistency condition, i.e. is repre-
sented by a self-energy which creates its own bath, and is found by means of
fixed point iteration.

5.1 Real-space dynamical mean-field theory (DMFT)

The study of quantum gas systems motivates the formulation of the DMFT

method in a way which accommodates spatially inhomogeneous systems.

Our focus is also on the phenomenon of superfluidity. In order to describe

the superfluid symmetry breaking, the anomalous pairing correlations

need to be incorporated to DMFT, and the standard approach here is to

utilize Nambu formalism. The Nambu Green’s function is defined in a

2× 2 block form as follows

Gij =

⎡
⎣G↑,ij(τ) Fij(τ)

F †
ij(τ) −G↓,ji(−τ)

⎤
⎦ =

⎡
⎣−

〈
Tτ ĉi,↑(τ)ĉ

†
j,↑(0)

〉
−
〈
Tτ ĉi,↑(τ)ĉj,↓(0)

〉
−
〈
Tτ ĉ

†
i,↓(τ)ĉ

†
j,↑(0)

〉
−
〈
Tτ ĉ

†
i,↓(τ)ĉj,↓(0)

〉
⎤
⎦

(5.2)

This is equivalent to the σ = {1, 4} matrix block of Section 3.1. As the

notation above suggests, we have F †
ij(τ) = [Fij(τ)]

†; note here that in Mat-

subara time-evolution we have [Ô(τ)]† = Ô†(−τ). The self-energy of the

system has the same block structure as the Green’s function, while the

non-interacting Green’s function is given in Nambu formalism as follows

G−1
0,ij(iωn) =

⎡
⎣iωn + tij + (μ↑ − Vi,↑)δij 0

0 iωn − tij − (μ↓ − Vi,↓)δij

⎤
⎦ . (5.3)

Here, tij is the hopping and Vi,σ the single-particle potential. Moreover,

the order parameter of the superfluid phase is defined as

Δi = −U
〈
ĉ†i,↑ĉ

†
i,↓
〉
. (5.4)

For a given self-energy, the Green’s function can be defined through the
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Figure 5.2. In real-space dynamical mean field theory a quantum impurity problem is
solved for each lattice site in order to describe a spatially non-uniform sys-
tem.

Dyson equation

Gjl(iωn) = [G−1
0 (iωn)−Σ(iωn)]

−1
jl (5.5)

where in the case of DMFT the self-energy is site-diagonal, Σjl(iωn) ≈
δjlΣj(iωn). In real-space DMFT the Dyson equation is solved directly via

matrix inversion.

Let us now define the quantum impurity problem of lattice site j as the

problem of solving the full local Green’s function Gj for the interaction

strength U and a local bath Green’s function GBath,j . In a diagrammatic

expansion this is equivalent to the summation of all connected diagrams

of GBath,j and U .1 For a given impurity problem, we may then calculate

the local self-energy Σj(iωn) from the Dyson equation

Σj,σ(iωn) = G−1
Bath,j(iωn)− G−1

j (iωn). (5.6)

Now, the crucial point is how to connect the full lattice problem (5.5) to

the quantum impurity problem (5.6). The connection is that the bath of

the impurity problem is formed by removing the self-energy of site j from

the local Green’s function Gjj(iωn). The bath Green’s function is then

defined by the equation

G−1
Bath,j(iωn) = [Gjj(iωn)]

−1 +Σj(iωn). (5.7)

Notice that on the right hand side of this equation we have specifically

the inverse of the local component of G and not the jj-element of G−1. To

1The problem is of the same form as that of solving the Green’s function G in a
system of just one lattice site for a given non-interacting Green’s function G0 and
the interaction strength U . In this case the local and global Green’s functions are
the same.
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clarify the structure of the bath Green’s function above, let us see explic-

itly what the removal of the local self-energy Σj means starting from the

series expansion of the Dyson equation (5.5)

Gjl = G0,jl +G0,jn1Σn1n2G0,n2l +G0,jn1Σn1n2G0,n2n3Σn3n4G0,n4l + . . .

= G0,jl +G0,jn1Σn1G0,n1l +G0,jn1Σn1G0,n1n2Σn2G0,n2l + . . . (5.8)

Here, we have left out the Matsubara frequency for brevity and have an

implied summation over repeated indices. On the second line, we have in-

voked the DMFT approximation of local self-energy. For the local problem

at site j we then have

Gjj = G0,jj +G0,jn1Σn1G0,n1j +G0,jn1Σn1G0,n1n2Σn2G0,n2j + . . . (5.9)

Now, we can define the bath Green’s function by removing the self-energy

component Σj from every term of the series of Gjj above

GBath,j = G0,jj +
∑
n1 �=j

G0,jn1Σn1G0,n1j

+
∑

n1 �=j,n2 �=j

G0,jn1Σn1G0,n1n2Σn2G0,n2j + . . . (5.10)

To see that this really is the bath Green’s function of Equation (5.7), we

re-write the series expansion of Equation (5.9) with the help of the bath

Green’s function defined above as

Gjj = GBath,j + GBath,jΣjGBath,j + GBath,jΣjGBath,jΣjGBath,j + . . .

= [G−1
Bath,j −Σj ]

−1. (5.11)

The last expression above is equivalent to Equation (5.7). To conclude, the

self-energy of all lattice sites aside for site j is included in the resulting

bath Green’s function, and thus, this object contains the information of

how the interactions modify the non-interacting Green’s function in all

the other lattice sites.2

The physically correct solution to the equations above is defined by a

self-consistency condition which is that the local Green’s function Gjj(iωn)

and the impurity Green’s function Gj are equal. This is equivalent to

finding a self-energy Σj(iωn) which is the outcome of the impurity problem

when given as input to the lattice Dyson Equation (5.5). The solution can

be found by the means of a fixed point iteration starting from a given

2Notice that from the point of view of introducing DMFT in general, the Nambu
formalism does not change the structure of the DMFT equations, and they can
be readily interpreted as equations for the normal Green’s function alone.
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initial guess. We may then summarize the real-space DMFT algorithm as

follows:

1. Guess the self-energy Σj .

2. Calculate the lattice Green’s function from Equation (5.5).

3. Form the bath for the impurity problem of each lattice site from Equa-

tion (5.7).

4. Solve the impurity problem for each lattice site to obtain Gj .

5. Compute new Σj from Equation (5.6).

6. Check for convergence: Finish if converged, else go to 2.

The bulk of the computational time is consumed in solving the impurity

problem, but this part of the problem is parallelized efficiently, as each

impurity problem can be solved independently. Notice that the lattice

Dyson equation is diagonal in the Matsubara frequency, also allowing for

a straightforward parallelization. Typically, the quantum Monte Carlo

(QMC) solvers applicable to the impurity problem are implemented di-

rectly in terms of the bath Green’s function, as explained in Section 5.3.

However, for example the continuous-time auxiliary-field algorithm is for-

mulated in complex time rather than Matsubara frequency space. There-

fore, the initialization of the impurity problem requires a Fourier trans-

formation from frequency space to complex time, and in this task, it is

useful to take advantage of analytically soluble high frequency asymp-

totics [105].

The impurity problem can also be solved with methods other than QMC.

For example it is possible to utilize exact diagonalization. In this case, the

impurity problem has to be represented in a Hamiltonian form (with a fi-

nite number of orbitals), for instance using the Anderson impurity model.

The parametrization of the impurity Hamiltonian is determined by a fit

to the bath Green’s function, and only after this additional step, the im-

purity problem itself can be solved.

There are two clear special cases where DMFT is exact. These are the

non-interacting limit, and the atomic limit. In the non-interacting sys-
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tem, the self-energy is identically zero. In the atomic limit defined by

J = 0 or equivalently |U | = ∞ the system consists of isolated lattice sites,

and therefore, the self-energy must be local as well. A slightly more non-

trivial result is that the approximation Σjl(iωn) = δjlΣj(iωn) is exact at

the limit of an infinite dimensional system, or inifinite coordination num-

ber, provided that the hopping matrix is scaled with dimension so as to

keep the kinetic energy scale of the system comparable to the interaction

strength.

For completeness, let us compare the real-space DMFT formulation above

to the original formulation of DMFT for translation invariant systems. If

the system under consideration is translation invariant and its solution

is assumed to be uniform, it is advantageous to rewrite the DMFT equa-

tions in the momentum space. This is the original formulation of DMFT.

In the momentum space the local self-energy becomes is independent of

momentum, and thus, the approximation is given by Σ(k, iωn) = Σ(iωn),

while the whole lattice Dyson equation is

G(k, iωn) = [G−1
0 (k, iωn)−Σ(iωn)]

−1. (5.12)

The local Green’s function is now the same at every lattice site, and ob-

tained as the inverse Fourier transformation of the lattice Green’s func-

tion

Glocal(iωn) = Gii(iωn) =
∑
k

G(k, iωn). (5.13)

Finally, the bath Green’s function of the impurity problem is of the same

form as above

G−1
Bath(iωn) = [Glocal(iωn)]

−1 +Σ(iωn) (5.14)

Thus, in the translation invariant case, there is only one impurity prob-

lem to solve instead of one for each lattice site as in real-space DMFT.3

Typically, a change of variables from momentum to energy is made in

Equation (5.13) leading to an integration over the density of states.

In Publication III a chain variant of the real-space DMFT method was

incorporated to study the dimensional crossover of a spin-polarized Fermi

gas. In this approach, the real-space formalism was used in one spatial

dimension, while in the other two dimensions the system was assumed

translation invariant. Thus, in the transverse dimensions, it was possible

3Note that the size of the real-space problem can also be reduced if the lattice
and the external potential have symmetries in common, e.g. mirror symmetry.
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Figure 5.3. Real-space DMFT can describe non-uniform systems such as quantum gases
in a trap. In this example case, we have computed the density and order
parameter profiles of a balanced two-component Fermi gas in the BCS state
in a 2D lattice with 16×16 lattice sites and a spherically symmetric harmonic
trapping potential. Here, N↑ is the density of up spins (here N↑ = N↓) and Δ

denotes the order parameter.

to recast the lattice problem as an integration over the transverse momen-

tum. The benefit of this approach was that it facilitated the study of large

traps containing a Fermi gas with a shell structure of multiple different

phases.

The trapped, attractively interacting two-component Fermi gas in an

optical lattice of 1D chains which are coupled to form an anisotropic cubic

lattice is described by the following Hubbard Hamiltonian

H =− t‖
∑
ilσ

(c†ilσc(i+1)lσ + h.c.)− t⊥
∑
〈ll′〉

∑
iσ

c†ilσcil′σ

+ U
∑
il

n̂il↑n̂il↓ +
∑
ilσ

(Vi − μσ)n̂ilσ. (5.15)

Here, the hopping within a single 1D chain is denoted by t‖, and these

chains are connected in the transverse direction by the hopping t⊥. If t⊥ =

0 the system consists of independent 1D chains, whereas the case t‖ = t⊥
corresponds to a 3D cubic lattice. In the region 0 < t⊥ < t‖ the model

describes a crossover between 1D and 3D geometries. The indices l and i

denote the 1D chain and the lattice site within the 1D chain, respectively.

We consider a harmonic potential Vi = ω2
‖i

2/2 along the chains with the

trap frequency ω‖.

To formulate the DMFT method for this model, we assume again that

the self-energy of the system is site diagonal, i.e. Σii′;ll′(iωn) = δi,i′δl,l′Σi;l(iωn).

On the assumption that the system is homogeneous in the interchain di-

rection, the self-energy is independent of the chain index l, and as a result

the Nambu Green’s function of the system is of the following form

[G−1(k⊥; iωn)]ij = [G0
‖(iωn)]

−1
ij − [εk⊥σ3 +Σi(iωn)]δij . (5.16)
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Figure 5.4. In cluster DMFT methods the impurity problem contains more than one in-
teracting lattice site, enabling the study of non-local quantum fluctuations.

Above, G0
‖ is the non-interacting Nambu Green’s function for a 1D chain

and σ is the Pauli matrix. We have the notation εk⊥ for the transverse

kinetic term εk⊥ ≡ −2t⊥(cos kx + cos ky) where k⊥ = (kx, ky) is the trans-

verse quasi-momentum. The equation above is obtained by starting from

the standard real-space formulation of the Dyson equation and by tak-

ing the Fourier transformation in the transverse position space. In this

notation, the bath Green’s function of the DMFT calculations is given as

[GBath,i(iωn)]
−1 = [

∑
k⊥

Gii(k⊥; iωn)]
−1 +Σi(iωn). (5.17)

We discuss the results obtained in this model in Section 5.4 together

with the results of the cluster DMFT calculations.

5.2 Cluster DMFT

Cluster DMFT is a generic name for a group of methods which aim for

a systematic improvement of the DMFT method by the inclusion of non-

local quantum fluctuations, i.e. including more terms to the self-energy

than just the local one [106]. As illustrated in Figure 5.4, in these meth-

ods the impurity problem is no more a single site problem, but instead a

cluster of several interacting lattice sites. Typically, these methods con-

verge to the exact result when the cluster size grows to infinity.

There are several different variants of cluster DMFT, and arguably the

most widespread ones are cellular dynamical mean field theory (CDMFT)

and dynamical cluster approximation (DCA). Of these methods, CDMFT

corresponds to the idea of defining the cluster on the real-space lattice,

whereas DCA can be characterized as a coarse graining in the momentum

space. Nonetheless, both methods lead to a formally similar impurity

problem. The cluster selection of the CDMFT method breaks the transla-
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tion invariance of the original lattice, while DCA is specifically laid out to

enforce the translation invariance.

In Publication V there were two physical aspects of the problem, which

motivated an approach different from either of the alternatives above to

the formulation of the cluster DMFT problem. In this work the cluster

approximation was constructed by defining a 1D chain with a periodic

boundary condition as the cluster, and forming the bath in the transverse

2D plane. Firstly, in Publication V our interest was directed at the quasi-

1D regime of the anisotropic Hubbard model, which motivates the choice

of the 1D chain as the cluster [107, 108, 109]. Secondly, one of our objec-

tives in Publication V was to describe the superfluid state in the most gen-

eral form possible, i.e. allowing also the description of systems with spon-

taneously broken spatial translation invariance, in particular the FFLO

state. Now, the need to describe such spatially non-uniform solutions ren-

dered a DCA based approach with enforced translation invariance unde-

sirable. On the other hand, in CDMFT the translation invariance is in

effect broken by construction, and this may exaggerate the stability of

spatially non-uniform solutions. The virtue of the periodic boundary con-

dition for the cluster is precisely that it allows for solutions with broken

translation invariance without an explicit bias in their favor. With the no-

tations introduced in Section 5.1, the self-energy of this model is defined

as

Σii′;ll′(iωn) = δl,l′Σii′;l(iωn), (5.18)

i.e. the self-energy is block diagonal in the interchain index l, while all the

indices i and i′ run through all the self-energy terms, both local and non-

local, within the 1D chain. Since we again consider the system and all

physical quantities as homogeneous in the interchain direction, the self-

energy is independent of the chain index l. Thus, the Green’s function of

the system can be written as

[G(k⊥; iωn)]
−1
ij = [G0

‖(iωn)]
−1
ij − εk⊥σ3δij −Σij(iωn) (5.19)

in which G0
‖ is the non-interacting Green’s function of a single chain, and

εk⊥ is the transverse kinetic energy defined as εk⊥ ≡ −2t⊥(cos kx + cos ky)

with the transverse quasi-momentum k⊥ = (kx, ky). The bath Green’s

function of the DMFT calculations is then given by

[GBath(iωn)]
−1
ij =

⎡
⎣∑

k⊥

G(k⊥; iωn)

⎤
⎦
−1

ij

+Σij(iωn). (5.20)

53



Dynamical mean-field theory

Again, the bath Green’s function together with the interaction strength

defines the impurity problem of this cluster DMFT formulation. Also in

the case of the cluster problem, the physical solution is the fixed point of

this mapping, and is found by an iteration in which the impurity problem

is repeatedly solved, and the self-energy given by it fed back to form the

next bath Green’s function. In the following section we will take a closer

look at how this impurity problem can be solved.

5.3 Continuous-time auxiliary-field quantum Monte Carlo

Markov chain Monte Carlo (MCMC) is a class of methods which produce

a sample {Xi}Ni=1 from a given probability distribution p(X) via the con-

struction of a Markov chain whose equilibrium distribution is p(X). A

Markov chain is a discrete-time stochastic process without memory, and

can be characterized by the transition probabilities w(X,Y ) from configu-

ration X to configuration Y . The Markov Chain converges to its equilib-

rium distribution, assumed as above p(X), if it is ergodic and satisfies the

balance condition. Here, ergodicity means that it is possible to reach ev-

ery configuration in a finite number of steps and without a periodic cycle,

while the balance condition is given by∫
p(X)w(X,Y ) dX = p(Y ). (5.21)

In most MCMC schemes the balance condition is replaced with the more

strict detailed balance condition, which is given by

p(X)w(X,Y ) = p(Y )w(Y,X). (5.22)

Arguably, the most common way to implement the MCMC method is the

Metropolis-Hastings algorithm. In the Metropolis-Hastings algorithm,

the idea is to divide the transition from X to Y to two parts: proposing

the configuration Y with probability wp(X,Y ) and accepting Y as the next

configuration of the chain with probability wa(X,Y ) so that w(X,Y ) =

wp(X,Y )wa(X,Y ). The acceptance probability is defined as

wa(X,Y ) = min

(
1,

p(Y )wp(Y,X)

p(X)wp(X,Y )

)
, (5.23)

while the proposal probability wp(X,Y ) is specific to the implementation

and fixed by the rule chosen for forming the candidate configuration Y .

The term p(Y )wp(Y,X)/(p(X)wp(X,Y )) is called the acceptance ratio. No-

tice that to produce the sample {Xi}Ni=1 by means of this algorithm, only
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ratios of probabilities are required, and therefore, the distribution p(X)

need not be normalized.

In general, the sample {Xi}Ni=1 can be utilized further for a number of

different applications, but in the context of this section, the most relevant

of these is the evaluation of the expected value of an observable M(X)

with respect to the probability distribution p(X) as follows

E[M ] =

∫
M(X)p(X) dX =

1

N

N∑
i=1

M(Xi) +O
(

1√
N

)
(5.24)

The equation above can also be interpreted as the numerical evaluation

of a definite integral. Here, it is notable that the convergence rate of the

numerical estimate 1/
√
N does not depend on the dimension of the inte-

gral, which is the case for deterministic quadratures. Hence, the Monte

Carlo method is the preferred choice over deterministic quadratures for

high-dimensional integrals.

The basic idea of quantum Monte Carlo (QMC) methods is to re-express

the quantum problem at hand as a multidimensional integral where the

integrand is weighted by a probability measure, and then, to apply the

Markov chain Monte Carlo method to the problem. Quite commonly, this

involves mapping the quantum partition function Z to a classical proba-

bility distribution defined on a set of configurations X

Z = Tr{exp(−βH)} =
∑
X

p(X), (5.25)

and finding a form for the observables of interest, such as the Green’s

function, in terms of this probability distribution

G =
∑
X

G(X)p(X). (5.26)

An example of such a mapping would be to express the Hamiltonian H in

matrix form and diagonalize it, in which case the configurations X would

simply correspond to the eigenstates of H, and p(X) would be the Boltz-

mann weight calculated from the eigenenergy of the state. However, this

particular mapping is viable in practice only for very small systems, as

the size of the Hilbert space scales exponentially with e.g. the particle

number. On the other hand, we know from experience that if this route

can be taken, there is no need to perform any Monte Carlo sampling to

compute the observables. Therefore, the central question is if a computa-

tionally efficient mapping can be found. To give a glimpse of how broad

this question is, we point out that there is no reason for the configurations
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X to be physically meaningful objects such as individual quantum states,

any possible way the chop up the quantum partition function into compu-

tationally tractable pieces is allowed. Moreover, it is perfectly reasonable

to look into approximate mappings and not only exact representations of

the partition function.

It turns out that while such computationally viable mappings have been

conceived, there is no single universal solution to this question. Instead,

there are many different types of quantum Monte Carlo algorithms avail-

able to us for different physical systems, depending for instance on whether

we are dealing with bosons or fermions, or with continuum or lattice.

Moreover, there can be several different methods available for the same

physical system, in which case the choice of method could depend for in-

stance on the scaling of the computational cost with respect to a control

parameter of interest.

In the following, we will focus on a particular QMC method, the continuous-

time auxiliary-field algorithm (CT-AUX), which is suitable for the types of

impurity problems the DMFT method outlined above calls for us to solve,

i.e. interacting fermions on a lattice in the presence of a bath [110]. We

give here the formulae in Nambu formalism, which contains the anoma-

lous bath Green’s function F and thus can incorporate a superfluid sym-

metry breaking [111].

Consider now a cluster impurity model with total the Hamiltonian

H = H0 +HU . (5.27)

Here HU is the Hubbard interaction term defined on Nc cluster sites shifted

by a density type term to accommodate later manipulations

HU = U

Nc∑
i=1

[ni↑ni↓ − 1

2
(ni↑ + ni↓ − 1)], (5.28)

and H0 represents the non-interacting part of the system with a corre-

sponding shift.

In the CT-AUX method the partition function is written as follows

Z =
∞∑
k=0

∑
s1,...,sk=±1

Nc∑
r1,...,rk

β∫
0

dτ1 · · ·
β∫

τk−1

dτk

(
K

2βNc

)k

e−γ
∑

siZ0Zk(Xk).

(5.29)

Here the vector Xk is a shorthand notation for all the variables of sum-

mation and integration at order k, X = {s1, τ1, r1, s2, τ2, r2, . . . , sk, τk, rk}
where si, ri and τi are the auxiliary field, cluster site and complex time,
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respectively. Here, Z0 = Tr{exp(−βH0)} and the function Zk(Xk) is de-

fined as a determinant

Zk(X) = det(N−1
k ), (5.30)

where Nk is a 2k × 2k-matrix with defined as

N−1
k = Γ− g(Γ− I). (5.31)

Above, I is the identity matrix, and Γ and and g are k×k matrices of 2×2

Nambu blocks, which are defined as follows.

Γij = δije
γsi

⎡
⎣1 0

0 1

⎤
⎦ ,

gij =

⎡
⎣ Grirj↑(τi − τj) Frirj (τi − τj)

−F∗
rirj (τi − τj) Grjri↓(τj − τi)

⎤
⎦ . (5.32)

The Green’s functions appearing above are the components of the 2 × 2

Nambu bath Green’s function. Note that the Bath-subscript has been left

out for clarity and that we follow here the typical QMC sign convention of

the Green’s function, Griri↑(0
+) ≥ 0. Now, let us try to clarify the content

of Equation (5.29). In this equation the partition function is expanded in

the interaction picture as a series with respect to HU + K/β where K is

a positive constant. The series in k and multiple integrals over τ are a

result of this expansion. Now, the auxiliary field s (often called spin) is

a result of decoupling the interaction term with a Hubbard-Stratonovich

transformation

HU +K/β =
K

2βNc

∑
i,si=±1

eγsi(ni↑+ni↓−1), (5.33)

where γ = cosh−1
(
1− βU

2K

)
. The determinant form (5.30) can then be

derived by using the standard machinery of determinantal Monte Carlo

introduced originally in the context of the Blankenbecler-Scalapino-Sugar

and Hirsch-Fye algorithms.

The observables, i.e. the Nambu Green’s functions can be expressed sim-

ilarly to the partition function as a summation over the auxiliary field,

cluster index and integration over complex time. We illustrate this for the

Grr′↑ Green’s function which has the expression

Grr′↑(τ, τ ′) =
1

Z

∞∑
k=0

∑
s1,...,sk=±1

Nc∑
r1,...,rk

β∫
0

dτ1 · · ·
β∫

τk−1

dτk

(
K

2β

)k

e−γ
∑

siZ0Zk(Xk)Grr′↑(τ, τ ′, Xk). (5.34)
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Here, the Green’s function of a single configuration Xk is

Grr′↑(τ, τ ′, Xk) = Grr′↑(τ, τ ′)−Rk(r, τ)NkQk(r
′, τ ′). (5.35)

Here, Rk(r, τ) is a row vector consisting of k Nambu blocks whereas Qk(r
′, τ ′)

is the corresponding column vector, and their components are

Ri(r, τ) = (e(γsi) − 1)[Grri(τ, τi) Frri(τ, τi)],

Qj(r
′, τ ′) = [−Grjr′(τj , τ

′) F†
rjr′(τj , τ

′)]T . (5.36)

In the numerics, it is preferrable to use the following Fourier transforma-

tion of the measurement formula

Grr′↑(iωn, Xk) = Grr′↑(iωn)−Rk(r, iωn)Nk(iωn)Qk(r
′, iωn), (5.37)

where Qk and Rk contain now the Green’s functions evaluated at the in-

dicated Matsubara frequency and Nk(iωn) is defined in each Nambu block

as

{Nk(iωn)}pq = eiωnτp{Nk}pqe−iωnτq . (5.38)

There are two main benefits one obtains by the frequency space measure-

ment. Firstly, the DMFT self-consistency equation is written in Matsub-

ara frequency space, so the result is eventually needed in this form. Sec-

ondly, the numerical noise is reduced in the frequency space measure-

ment, since the term containing the QMC matrix Nk is multiplied by two

Green’s functions proportional to 1/iωn at high frequencies, where the nu-

merical noise is typically the most severe. Notice also that the instanta-

neous Green’s function of the QMC simulation is not physical, and in par-

ticular, not time-translation invariant. Time translation invariance would

be restored only in the Monte Carlo average. However, in frequency space

it is possible to exploit the fact that the bath is time translation invariant

and measure only the part of the Green’s function which is diagonal in

frequency (i.e. the physical part).

Now, we may outline how the formalism above is utilized in the MCMC

sampling. Equation (5.34) is the expected value (or multidimensional in-

tegral) of Grr′↑(Xk) with the remaining expression giving the probability

density for the configurations Xk. Possible updates of Xk would be to

remove from or add to the configuration a point (si, τi, ri), or alternately

to flip one of the auxiliary spins while keeping the configuration other-

wise the same. The crucial trick behind the whole algorithm is that the

non-trivial part of the computation of the acceptance ratios is the com-

putation of ratios of two determinants, which only differ by one row and
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column vector (or a 2 × 2k matrix in the Nambu formulation). Utilizing

standard formulae for determinants of block matrices, this calculation is

reduced to a simple vector-matrix-vector multiplication, making the sam-

pling tremendously more efficient. In the case of the spin-flip acceptance

ratio, a further simplification to a 2 × 2 determinant occurs. Similar ma-

nipulations can also be used to recompute the matrix Nk, if an update is

accepted. The Green’s function is then measured at given intervals fol-

lowing Equation (5.37).

The total computational cost of the algorithm scales as (βUNC)
3, es-

sentially since the average expansion order 〈k〉 (and average matrix size)

scales with βUNC . For large problems the performance of the algorithm

can be improved by optimizing its cache usage with delayed spin-flip up-

date [112] and submatrix update [113] techniques.

An important benefit of the CT-AUX algorithm is that it is formally ex-

act, and the only error in the result is that of Monte Carlo sampling. This

can be compared to the earlier determinantal Monte Carlo methods such

as the Hirsch-Fye algorithm, which involves a discretization of the com-

plex time. In fact, the emphasis on the continuous time in the name of

the method originates from this improvement. Another benefit of the CT-

AUX algorithm is its reasonable scaling with cluster size. The cubic scal-

ing of CT-AUX can be contrasted e.g. with the exponential scaling of the

continuous-time hybridization expansion solver (CT-HYB) [110]. It needs

to be pointed out though, that in multi-orbital problems the scaling com-

parison of these two algorithms favors the CT-HYB algorithm.

5.4 Spin-polarized superfluidity in real-space DMFT and cluster
DMFT calculations

Now, let us turn to the DMFT based results about spin-polarized super-

fluidity in the 1D-3D dimensional crossover. Consider first the real-space

DMFT model for the trapped system presented in Publication III. In

the calculations, we used the trap frequency of ω‖ = 1.1 × 10−2. The

spin-populations were controlled with the choice of the chemical poten-

tials so that the total particle number was held approximately constant

while varying the polarization P = (N↑ −N↓)/(N↑ +N↓). The interaction

strength U was chosen for each value of the transverse hopping t⊥ such

that it corresponded to the lattice equivalent of the unitarity limit [114].

Figure 5.5 demonstrates the main findings of this study. The FFLO
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Figure 5.5. The phase diagram of a trapped, spin-polarized Fermi gas in a 1D-3D dimen-
sional crossover as predicted by the real-space DMFT method. The inset of
panel (a) depicts the geometry of the system. The label pSF refers to a polar-
ized superfluid phase. In the cN shell structure there is a normal state at the
center of the trap with a superfluid state towards the edges. In the cFFLO
shell structure we have FFLO in the middle and superfluid at the edges. The
polarization is defined as P = (N↑ − N↓)/(N↑ + N↓). Panel (a) contains the
phase diagram for quasi-1D lattice with t⊥ = 0.2, and in panels (b) and (c)
we have an example of the FFLO and the cFFLO. In panel (d) we have the
phase diagram for t⊥ = 0.4. Panels (e) and (f) compare the FFLO and the
polarized superfluid phases at constant polarization for t⊥ = 0.4. The phase
diagram in quasi-3D geometry with t⊥ = 0.8 is given in (g) Panels (h) and
(i) demonstrate how the FFLO state is affected by the increasing tempera-
ture. All energies and temperatures are in units of t‖ = 1. Figure originally
published in Publication III.
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state is stable in a broad parameter region throughout the dimensional

crossover. In the quasi-1D geometry, the FFLO state appears first at the

trap center when temperature is lowered. For larger transverse hopping

strength the system demonstrates a 3D-like behavior, and the FFLO in-

stability appears first at the trap edges. This behavior is reflected also

in the fact that in 3D-like systems the amplitude maximum of the order

parameter is at the trap center, whereas in the quasi-1D regime it resides

close to cloud edge. At zero temperature the polarized superfluid region

would be fully paired with zero spin polarization. However, at finite tem-

peratures also the conventional BCS superfluid can accommodate a non-

zero polarization. This can be thought of as having the population imbal-

ance in the thermal excitations of the BCS state. Now, the experimental

control parameter is the total polarization of the system. The previous

argument means that at finite temperatures the polarized superfluid re-

gion in the shell structure reduces the size of the FFLO region, since a

part of the spin-imbalance reuquired to drive the FFLO mechanism is re-

distributed to the polarized superfluid (pSF) region. In Publication III we

also showed that at turning point between 1D-like and 3D-like behavior,

at t⊥ = 0.3t‖, the FFLO order parameter demonstrates a behavior par-

ticularly amenable to experimental probes: The amplitude of the order

parameter remains uniform over several oscillation periods despite the

harmonic confinement and variation of the density profile.

We then turn to study the role of the non-local quantum fluctuations.

This was the central question studied in Publication V and the main re-

sults of this study are summarized by the phase diagram of Figure 5.6.

The very first observation is that the BCS transition temperature as pre-

dicted by cluster DMFT decreases monotonously towards the 1D-limit.

This is drastically different from the critical temperature given by the

single-site DMFT method which remains roughly constant over the pa-

rameter range of Figure 5.6. Now, one can immediately deduce that the

behavior of the cluster DMFT result can not be accounted for by single

particle effects, i.e. the changes to the non-interacting density of states

brought on by the dimensionality – these effects would also be visible in

the single-site DMFT results. A further investigation of the self-energy of

the system as a function of the dimensionality confirms that indeed the

rapid decline of superfluidity at the 1D limit is caused by the non-local

quantum fluctuations, for details see Publication V.

Judging by their crucial impact on the BCS physics, one might antic-
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Figure 5.6. The phase diagram of the attractive Hubbard model with strong lattice
anisotropy. Here the system is at half-filling with the interaction strength
U = −3. The solid line with square marks gives the BCS critical tempera-
ture for the balanced system at half-filling as predicted by cluster DMFT [c],
while the dashed line with crosses is the single-site DMFT result [s]. The pre-
diction of the static mean-field method [m] is also given for comparison, and
is plotted with the black line with triangles. The FFLO critical temperature
is found by varying the polarization of the system at a given temperature
while maintaining the total density at half-filling. The cluster size is Nc = 36

at and above t⊥ = 0.15. At t⊥ = 0.1 a cluster of Nc = 42 lattice sites is needed
to have good convergence. The BCS transition becomes computationally too
expensive to study below t⊥ = 0.1 because of the decreasing temperature
combined with the increase in cluster size required for convergence. With
the FFLO transition, this limit is reached below t⊥ = 0.2. Figure adapted
from Publication V.
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ipate that the non-local quantum fluctuations would be able to destroy

entirely the delicate spatial structure of the FFLO state. It turns out,

on the contrary, that when the system is subjected to spin-polarization

the oscillating order parameter and density profile of the FFLO state pre-

vail over the spatially uniform pairing. However, there is a correction to

the critical temperature, and for instance at t⊥ = 0.2 the cluster model

predicts a reduction of the critical temperature by a factor of 0.67 in com-

parison to single-site calculations. At the FFLO critical temperature, the

polarization of the system varies from P = 3 % at t⊥ = 0.2 to P = 5 %

at t⊥ = 0.3 in the cluster model whereas the single-site model predicts a

polarization of P = 6 % in the corresponding parameter region. A further

noteworthy result of Publication V is that the oscillatory FFLO-structure

dominates the self-energy of the system at all frequencies, which in turn

suggests that the FFLO character of the state is very robust and experi-

mentally discernible even when non-local quantum fluctuations are taken

into account.
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6. Conclusions

The application of a spin-dependent potential to a Josephson junction or

an analogous physical system leads to Josephson oscillations at the same

frequency but with different amplitudes – the spin-asymmetric Joseph-

son effect. The phenomenon is explained by a careful breakdown of the

Josephson tunneling to elementary processes and the subsequent identifi-

cation of an interference contribution from intermediate states of broken

Cooper pairs. This previously unnoticed interference term is significant

also in the conventional Josephson effect, leading to the conclusion that

the conventional view of the Josephson effect as the tunneling of bosonic

Cooper pairs is inadequate. In the context of quantum gases, the spin-

asymmetric Josephson effect could be realized in a spin-dependent double

well or superlattice, or possibly utilizing radio frequency pulses to couple

two superfluids.

The Fulde-Ferrell-Larkin-Ovchinnikov state is a result of the interplay

of spin-polarization and Cooper pairing. The state is characterized by a

spatially non-uniform, anisotropic order parameter which leads to a direc-

tionally dependent density response, and in particular, anisotropic speed

of sound. Our real-space DMFT studies of the FFLO state in a 1D-3D

dimensional crossover suggest that the phase is stable in a broad region

of parameters and that the mean field predictions concerning the shell

structure of FFLO, polarized superfluid and normal phases are qualita-

tively speaking reasonable. The FFLO state is strong enough to survive

even at the presence of non-local quantum fluctuations as indicated by our

cluster DMFT investigations, though the non-local fluctuations do lower

the critical temperature of the state.
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