
9HSTFMG*afgheg+

ISBN 978-952-60-5674-6
ISBN 978-952-60-5675-3 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Electrical Engineering
School of Electrical Engineering
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 6

2
/2

014

M
arek M

atusiak
O

ptim
izing W

arehouse O
rder B

atching w
hen R

outing Is P
recedence C

onstrained and P
ickers H

ave
V

arying Skills
A

alto
 U

n
ive

rsity

School of Electrical Engineering

Optimizing Warehouse
Order Batching when
Routing Is Precedence
Constrained and Pickers
Have Varying Skills

Marek Matusiak

DOCTORAL
DISSERTATIONS

Aalto University publication series
DOCTORAL DISSERTATIONS 62/2014

Optimizing Warehouse Order Batching
when Routing Is Precedence
Constrained and Pickers Have Varying
Skills

Marek Matusiak

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) to be defended, with the permission of the
Aalto University School of Electrical Engineering, at a public
examination held at the lecture hall AS1 of the school on the 6th of
June 2014 at 12.

Aalto University
School of Electrical Engineering
Department of Electrical Engineering and Automation
Generic Intelligent Machines

Supervising professor
Professor Emeritus Aarne Halme

Thesis advisors
D.Sc. (Tech) Jari Saarinen
Professor René de Koster

Preliminary examiners
Professor Wout Dullaert, Universiteit Antwerpen, Belgium
Assistant Professor Wilco van den Heuvel, Erasmus University
Rotterdam, the Netherlands

Opponent
Assistant Professor Adriana Gabor, Erasmus University Rotterdam,
the Netherlands

Aalto University publication series
DOCTORAL DISSERTATIONS 62/2014

© Marek Matusiak

ISBN 978-952-60-5674-6
ISBN 978-952-60-5675-3 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-5675-3

Unigrafia Oy
Helsinki 2014

Finland

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Marek Matusiak
Name of the doctoral dissertation
Optimizing Warehouse Order Batching when Routing Is Precedence
Constrained and Pickers Have Varying Skills
Publisher School of Electrical Engineering
Unit Department of Electrical Engineering and Automation

Series Aalto University publication series DOCTORAL DISSERTATIONS 62/2014

Field of research Automation Technology

Manuscript submitted 28 April 2014 Date of the defence 6 June 2014

Permission to publish granted (date) 24 April 2014 Language English

Monograph Article dissertation (summary + original articles)

Abstract
Warehouses are an important part of most supply chains. By batching customer orders and

routing pickers effectively, warehouses aim to increase the efficiency of the order picking
process. The contributions of this thesis are related to two extensions to the optimizing of
picker-to-parts order picking operations in warehouses.

First, precedence constraints are introduced to picker routing, which pose new challenges to
order batching algorithms. This is due to the relative complexity of precedence-constrained
routing when compared to standard methods for routing pickers. The complexity is mitigated
by the use of an effective savings estimate in calculating the properties of large batches, which
reduces computation time significantly. This savings estimate is used in a Large Neighborhood
Search algorithm, which outperforms heuristics from literature and compares well to optimal
solutions (1.2% mean error). An A* algorithm is used for precedence-constrained picker
routing. Compared to the performance of a reference warehouse, almost 16% (5000km) in total
travel distance can be saved during a three month period.

Second, forecasting models of order pickers' batch execution times are built with multilevel
modeling using a three-month set of operational data. It is shown that significant differences
in picker performance exist. The forecasting models are used in an Adaptive Large
Neighborhood Search algorithm in finding the right picker for the job. Compared to a state-of-
the-art batching algorithm and to the current practice of assigning work in most warehouses,
9% is saved in total order picking time. These results show that differences among order
pickers should be taken into account when optimizing order picking operations in warehouses.
This is the first work where forecasting models are used to predict the performance of
individual order pickers, and where such models are exploited with a job assigning algorithm.

Keywords warehousing, routing, order picking, metaheuristics, batching, multilevel modeling,
worker modeling, business analytics, combinatorial optimization

ISBN (printed) 978-952-60-5674-6 ISBN (pdf) 978-952-60-5675-3

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Helsinki Location of printing Helsinki Year 2014

Pages 137 urn http://urn.fi/URN:ISBN:978-952-60-5675-3

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Marek Matusiak
Väitöskirjan nimi
Keräilyvaraston tilausten yhdistämisen optimointi keräilijöiden ominaisuudet huomioiden ja
reitityksen ollessa etusijarajoitettua
Julkaisija Sähkötekniikan korkeakoulu
Yksikkö Sähkötekniikan ja automaation laitos

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 62/2014

Tutkimusala Automaatiotekniikka

Käsikirjoituksen pvm 28.04.2014 Väitöspäivä 06.06.2014

Julkaisuluvan myöntämispäivä 24.04.2014 Kieli Englanti

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit)

Tiivistelmä
Varastot ovat tärkeä osa teollisuuden ja vähittäismyynnin toimitusketjuja. Varastojen

keräilyprosessia on pyritty tehostamaan keruureittien optimoinnilla sekä yhdistämällä
tilauksia isommiksi kokonaisuuksiksi, jotka voidaan kerätä yhden keruureitin varrelta
lähtöpisteeseen välillä palaamatta. Tämän väitöskirjan tieteelliset kontribuutiot laajentavat
tieteen nykyisiä varastojen vähittäiskeräilyprosessin optimoinnin käytäntöjä.

Kerättävien tuotteiden välillä voi olla etusijarajoitteita, ts. jotkut tuotteet tulisi kerätä ennen
toisia. Perinteiset keräilijöiden reitittämiseen käytetyt algoritmit eivät ota tätä huomioon.
Etusijarajoitettu reitittäminen on laskennallisesti verraittain raskasta. Tilausten
yhdistämiseen käytetyt algoritmit kutsuvat reititysalgoritmia aina löytäessään uuden
tilausyhdistelmän. Reitityksen ollessa etusijarajoitettua, jatkuva reitittäminen tekee
kirjallisuudessa esitettyjen algoritmien käytöstä epäkäytännöllistä ratkaisuun kuluvan ajan
vuoksi. Tässä työssä esitetään tapa vähentää laskennallisesti raskasta reititystä käyttäen
säästettyyn matkaan perustuvia estimaatteja. Estimaatteja käytetään tilausten
yhdistämisalgoritmissa varsinaisen reitityksen sijaan. Tämä nopeuttaa ratkaisun löytämistä
laadusta tinkimättä: esitetty algoritmi löytää paremman ratkaisun tilausten
yhdistämisongelmaan nopeammin kuin mikään testatuista verrokkialgoritmeista, varsinkin
jos tilauksia on paljon. Optimaalisiin ratkaisuihin verrattuna, esitetty algoritmi pärjää hyvin,
saavuttaen keskimäärin 1,2% epätarkemman tuloksen. Referenssivaraston alkuperäisten
keruureittien kokonaismatkaan verrattuna säästöä kertyi 16%, eli noin 5000 km kolmen
kuukauden ajanjaksona.

Kolmen kuukauden keruudatan pohjalta monitasomallinusmenetelmän avulla luodaan
keruutehtävän kokonaisaikaa ennustavat kerääjäkohtaiset mallit. Ennuste riippuu kerääjästä
ja työtehtävän parametreistä. Työntekijöiden välisten erojen tilastollinen merkittävyys
osoitetaan varianssianalyysia käyttäen. Ennustemalleja käytetään adaptiivisessa
hakualgoritmissa, joka etsii parhaita keräilijä/tilaus/tilausyhdistelmä-kombinaatioita isosta
hakuavaruudesta. Verrattuna tieteen nykytilaan, jossa tilaukset yhdistetään kokonaismatkaa
minimoiden, mutta ei oteta keräilijöiden taitoja huomioon, saavutetaan 9% säästöt
kokonaiskeruuajassa. Nämä tulokset osoittavat, että keräilijöiden taidot tulisi ottaa huomioon
keräilyvaraston toimintojen optimoinnissa.
Avainsanat varastointi, reititys, keräily, metaheuristiikka, tilausten yhdistäminen,

monitasomallintaminen, työntekijöiden mallintaminen, liiketoimintatiedon
hallinta, kombinatorinen optimointi

ISBN (painettu) 978-952-60-5674-6 ISBN (pdf) 978-952-60-5675-3

ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942

Julkaisupaikka Helsinki Painopaikka Helsinki Vuosi 2014

Sivumäärä 137 urn http://urn.fi/URN:ISBN:978-952-60-5675-3

Preface

This research was conducted in the Centre of Excellence in Generic In-

telligent Machines Research, partly funded by the Finnish Academy of

Sciences, in the Department of Automation and Systems Technology dur-

ing the years 2010-2014. Funding was in part received from the Motti

project, which is a part of the Energy and Life Cycle Cost Efficient’ Ma-

chines (EFFIMA) research program, managed by the Finnish Metals and

Engineering Competence Cluster (FIMECC), and funded by the Finnish

Funding Agency for Technology and Innovation (TEKES), research insti-

tutes and companies. Their support is gratefully acknowledged.

I would like to thank Professor Aarne Halme for the opportunity to

pursue my Doctorate and for his role as my supervisor. Professor René

de Koster of Erasmus University has been integral to the content of his

thesis, you are a great mentor and an inspiration. My instructor Jari

Saarinen inspired me to pursue this subject: thank you for telling me

to leave the robots alone, and for the many ideas and discussions. The

pre-examiners of this thesis, Professor Wout Dullaert and Assistant Pro-

fessor Wilco van den Heuvel have my gratitude for taking the time to read

through the thesis and helping to make it better.

Second, I would like to thank the people who helped with work done

in this thesis. My father, Professor Jerzy Matusiak helped me to orga-

nize the thesis and supported me the whole way. My roommate at work,

Eemeli Aro, with whom I had numerous discussions on my research;

Janne Paanajärvi for being a fountain of knowledge in all things scientific;

Professor Leo Kroon for modelling the precedence constrained routing and

batching; my boss, Professor Ville Kyrki for his advice on things related to

the thesis; Antti Maula for his help on many coding issues; Johan Grön-

holm for his work on building the distance matrix for the warehouse; Jani

Mähönen of Rocla for presenting me with these warehousing problems

i

Preface

(and for the data!); Olli Haavisto for his regression analysis primer; and

Assistant Professor Murat Tarakci for the idea of using multilevel analy-

sis to model the pickers.

The research done in this thesis would not have been possible without

my periodic trips to the Erasmus University in Rotterdam to visit Profes-

sor René de Koster, funded by a generous and flexible travel grant from

Teknillisen korkeakoulun tukisäätiö. Thank you.

Finally, I would like to thank my family: my wife Salla, who has been

both amazing and amazingly supportive; my great kids for sleeping better

of late; and my mother for always being there for me.

Espoo, May 7, 2014,

Marek Matusiak

ii

Contents

Preface i

Contents iii

List of Figures vii

List of Tables xi

List of Symbols xiii

List of Acronyms xviii

Glossary xx

1. Introduction 1

1.1 Background and Motivation 1

1.2 Objectives . 7

1.3 Contributions of the Thesis 7

1.4 Related Work . 9

1.4.1 Routing in Picker-to-Parts Warehouses 9

1.4.2 Routing with Precedence Constraints 11

1.4.3 Order Batching . 12

1.4.4 Heterogeneous Workers and Jobs 15

1.4.5 Very Large Scale Neighborhood Search 16

1.4.6 Multilevel Modeling . 18

1.4.7 Forecasting Order Picking Time 18

1.5 Outline . 18

1.6 Author’s Contribution . 19

1.7 Assumptions . 19

2. Relevant Mathematical Models and Algorithms 21

iii

Contents

2.1 Mathematical Models . 21

2.1.1 Combinatorial Optimization Problems 21

2.1.2 Routing . 22

2.1.3 Order Batching . 23

2.1.4 Generalized Assignment Problem 24

2.2 Algorithms . 25

2.2.1 Dynamic Programming Algorithm for Optimal

Batching . 25

2.2.2 Clarke and Wright Based Algorithms 26

2.2.3 Variable Neighborhood Search 27

2.2.4 Attribute Based Hill Climber 29

2.2.5 Large Neighborhood Search 31

2.2.6 Adaptive Large Neighborhood Search 31

2.3 Summary . 32

3. Order Batching when Items Have to Be Picked in a Strict

Sequence 35

3.1 Problem Description . 36

3.1.1 Notation . 37

3.2 Solution Approach . 39

3.2.1 Estimating Savings from Batching More than Two

Customer Orders . 40

3.2.2 Pick Route Construction 43

3.2.3 Batching . 46

3.3 Validation and Results . 46

3.4 Discussion . 55

4. Batching when Routing with a Generic TSP Algorithm 59

4.1 Problem Description . 59

4.2 Results . 61

4.3 Discussion . 62

5. Forecasting Batch Execution Time for Individual Pickers 65

5.1 Warehouse and Dataset Description 66

5.2 Data Cleaning . 66

5.3 Multilevel Modeling . 68

5.4 Discussion . 77

6. Assigning Orders and Batches to Pickers of Varying Skill 79

6.1 Joint Batching and Generalized Assignment Problem 79

iv

Contents

6.2 Note on Problem Complexity 82

6.3 Solving the Joint Batching and Generalized Assignment

Problem . 82

6.3.1 Routing Heuristic . 82

6.3.2 Initial Assignment of Batches 83

6.3.3 Assignment of Customer Orders Based on Average

Picker Productivity . 84

6.3.4 Adaptive Large Neighborhood Search Algorithm . . . 84

6.4 Results . 87

6.4.1 Parameter Calibration 87

6.4.2 Data Preparation . 87

6.4.3 Experimental Setup . 88

6.4.4 Time Savings and Comparison to Original Solution . 89

6.4.5 Impact on Picker Productivity 91

6.4.6 Effect of Skill on Batch Assignment 94

6.5 Discussion . 103

7. Conclusions 105

Bibliography 107

v

Contents

vi

List of Figures

1.1 The Supply Chain Process. Adapted from Beamon (1998). . 2

1.2 An order picker towing two empty roll containers. Image

courtesy of Rocla. 3

1.3 Top view of a warehouse three cross-aisles (marked with ar-

rows). 10

1.4 S-shape (left) and largest-gap (right) routing (Roodbergen

and De Koster, 2001a). 10

1.5 Aisle-by-aisle (left) and optimal (right) routing (Roodbergen

and De Koster, 2001a). 11

2.1 VNS neighborhoods and search heuristics. Adapted from

Albareda-Sambola et al. (2009). 28

3.1 Top view of the warehouse with seven drop-off locations in-

dicated at the top (marked 1-7). The empty bin depot is

denoted with D. The 57 aisles are unidirectional, while the

three cross-aisles are bidirectional. The aisle-to-aisle dis-

tance is 5.5 m the slot-to-slot distance is 3.7 m, which is

also the width of the central cross-aisle. 36

3.2 Solution approach for solving the batching problem with es-

timated savings with PCES. 40

3.3 A truck picking three customer orders into three separate

bins. Items in bold have already been picked; the underlined

one denotes the last pick and italicized ones are possibilities

for the next transition, representing state (2,2,1,3). 44

vii

List of Figures

3.4 Left: a Hasse diagram of the state space formed by two cus-

tomer orders with two items to be picked into each of them.

Inside the circles, the state name is at the top, the state vec-

tor is at the bottom. The first member of the state vector

refers to the customer order where the last pick occurred,

the following two refer to the customer order location in-

dices. The highest location index (3 in this case) represents

the delivery location for the given customer order. Right:

possible transitions and distances from the state m9 in the

Hasse diagram. 44

3.5 Error % in comparing batch ranks, ordered by the batch

with the highest total rank for 10,000 batches of three cus-

tomer orders sampled from a set of 1,536 customer orders.

Only 4,900 are shown here so that small ranks can be dis-

tinguished. 50

3.6 Comparison of PCES to other heuristics and an optimal so-

lution for batch sizes of 3. The top figure shows the quality

of the solution when compared to the C&W(ii), while the

bottom one shows the computation time for each wave size

for solving an instance of 1,536 orders. 53

3.7 Comparison of PCES to other heuristics and an optimal so-

lution for batch sizes of 4. The top figure shows the quality

of the solution when compared to the C&W(i), while the bot-

tom one shows the computation time for each wave size for

solving an instance of 1,536 orders. 54

3.8 Percent of travel distance saved for optimal (solid lines) and

PCES based batching (dashed lines) as a function of the

wave size R in customer orders, for batches of size N = 2,

N = 3, and N = 4, in comparison to N = 1. The mean error

of PCES batching compared to optimal is 1.2% when N = 3. 55

4.1 Comparison of PCES to other heuristics and an optimal so-

lution for batch sizes of 3. The top figure shows the quality

of the solution when compared to the C&W(i), while the bot-

tom one shows the computational time for each wave size.

. 63

5.1 Cross-validation residuals for final full model vs. batch

time, grouped per picker. 73

viii

List of Figures

5.2 Dendogram of picker groups formed with hierachical clus-

tering . 75

6.1 Savings generated by different algorithms, compared to the

original batching with forecast execution times during a vir-

tual day. 7.15h minimum time to qualify, 29 pickers. The

real batch execution times for the original batching are 3%

smaller than the forecast in this case. 90

6.2 Savings generated by different algorithms, compared to the

original batching with forecast execution times during a vir-

tual day. 7.4h minimum time to qualify, 20 pickers. The

real batch execution times for the original batching are 1%

smaller than the forecast in this case. 90

6.3 Change in average productivity by picker category. 7.15h

minimum time to qualify, 29 pickers 92

6.4 Change in average productivity by picker category. 7.4h

minimum time to qualify, 20 pickers 93

6.5 Change in number of lines assigned by picker category.

7.15h minimum time to qualify, 29 pickers. 93

6.6 Change in number of lines assigned by picker category. 7.4h

minimum time to qualify, 20 pickers. 94

6.7 Picker categories after final assignment. 7.15h minimum

time to qualify, 29 pickers on average. 95

6.8 Picker categories after final assignment. 7.4h minimum

time to qualify, 20 pickers on average. 95

6.9 The average number of order lines in a batch assigned to

a picker vs. the corresponding ln(Lines) forecasting model

coefficient of that picker, for two different ways of solving

the BatchGAP. 98

6.10 The travel distance to pick a batch assigned to a picker vs.

the corresponding ln(Travel) forecasting model coefficient of

that picker, for two different ways of solving the BatchGAP. 99

6.11 The average mass of a batch assigned to a picker vs. the

corresponding ln(Mass) forecasting model coefficient of that

picker, for two different ways of solving the BatchGAP. . . . 100

6.12 The mean pick level of a batch assigned to a picker vs. the

corresponding ln(Level) forecasting model coefficient of that

picker, for two different ways of solving the BatchGAP. . . . 101

ix

List of Figures

6.13 The average volume of a batch assigned to a picker vs.

the corresponding V ol forecasting model coefficient of that

picker, for two different ways of solving the BatchGAP. . . . 102

x

List of Tables

3.1 Results from rerouting and combined rerouting and re-

batching of the original batches. 55

5.1 Summary of data cleaning. The cleaning categories are in

the order they are applied — thus Speed is first and Picker

out is last. 67

5.2 Mean values and coefficients of variation per batch before

and after data cleaning. 67

5.3 Multilevel model selection procedure 71

5.4 Model betas for 5LLLLX with scaled data, effects on ln(T ime). 74

5.5 Picker clusters, cluster sizes and mean coefficients ordered

by cluster height in Figure 5.2. 76

xi

List of Tables

xii

List of Symbols

Symbol Description

ar Zero-one vector indicating which orders from O are included

in batch r

ao,r Zero-one variable indicating whether order o is included in

batch r

b Bin (e.g., a roll container) to which a customer order is to be

picked into

ci The cost to pick order i

ci,j The cost to pick a batch containing orders i and j

cr The cost to pick all items in batch r

dg,k Distance between items g, k ∈ G
d(mi,V) Distance to state mi for a set of orders V
d̄(mi,V) Estimated distance from state mi to the goal for a set of

orders V
dr Travel distance for batch r

e(s) Destroy function for a large neighborhood search algorithm

for solution s

f(s) Function which maps a solution s to its cost

g An item (order line), contains information to which cus-

tomer order it belongs to, the pick location and the number

of units to be picked

h(s) Neighborhood search heuristic (a move), which enables

searching the neighborhood of s for new solutions

i(s) Repair function for a large neighborhood search algorithm

for partial solution s

lr Number of order lines (items) in batch r

mr State vector of the A∗-algorithm in Section 3.2.2

o Customer order

xiii

List of Symbols

o(g) Function indicating the customer order to which item g be-

longs to

pg Sequence number of item g

qh Probability of choosing heuristic h with the roulette wheel

method

r Batch (a combination of multiple customer orders)

r(b) Function returning the batch to which bin b belongs to

s Solution to a problem

s∗ Optimal solution to a problem

tr,w Batch execution time for picker w to complete batch r

u0,w Between group error term in a multilevel model for group

(picker) w

v Vector collecting adjustable parameters for an Adaptive

Large Neighborhood Search algorithm

vre Estimated batch rank for batch r

vrv Real batch rank for batch r

w An order picker

xr Parameter vector for batch r

B Distance matrix

C Number of possible batch combinations in a solution (or part

of it)

Cn+ Number of possible batch combinations in a solution for

batches of size larger than n

D Depot

E(eκw) The Smearing Estimate (Duan, 1983) for picker w

I Instance of a combinatorial optimization problem

J Number of iterations of an algorithm

Lw Productivity of picker w

Mmax Maximum working time during a virtual day

Mmin Minimum working time during a virtual day

Mw Maximum working time for picker w

N Maximum capacity of a picking device, i.e., the batch size

K0 Starting temperature of a simulated annealing algorithm

P Maximum number of items in a customer order

Q Random number with a uniform distribution

R Order picking wave size, i.e., the number of orders consid-

ered when running a batching algorithm

xiv

List of Symbols

R2 R-squared, the amount of variance explained by a regres-

sion model

R2
c Conditional r-squared, the amount of variance in a multi-

level model explained by fixed and random effects

R2
m Marginal r-squared, the amount of variance in a multilevel

model explained by fixed effects

Si,j Savings resulting from batching two customer orders i and

j

Smax Maximum savings

Snew New savings

Sorg Original savings

Stot Total savings

SP Savings resulting from batching the customer orders in set

P
Sr Savings of batch r

SS Sum of squared residuals

S̄i,j,k Estimated savings resulting from batching customer orders

i, j and k

S̄P Estimated savings resulting from batching the customer or-

ders in set P
T Temperature in a simulated annealing routine

T0 Initial temperature in a simulated annealing routine

Tn Temperature in a simulated annealing routine at iteration

no. n

V Time complexity of an algorithm (big-oh)

Ug Indicates the relative position of item g in the tour that

picks g

Xr Zero-one decision variable whether batch r is included in a

solution

Xg,k,r Zero-one decision variable whether batch r goes directly

from item g to item k

Xw,r Zero-one decision variable whether batch r assigned to

picker w

Yo,b Zero-one decision variable whether order o is picked to bin b

A Set of all aisles

B Set of all bins

G Set of all items (order lines)

Gf Set of first items

xv

List of Symbols

Gl Set of last items

Go Set of all items included in order o

H Set of all neighborhood search heuristics of an algorithm

N (s) The neighborhood of solution s

Nh(s) The neighborhood of solution s when searched with heuris-

tic h

Lr Set of drop-off locations for batch r

O Set of all customer orders

P Set of batches

R Set of all possible batches

R+ Set of all batches with positive savings

R+
e Set of all batches with positive estimated savings

R+
v Set of all batches with positive real savings

S Set of feasible solutions for a problem

V Subset of customer orders V ∈ O
W Set of all order pickers

Yr Set of all possible tours for batch r

Greek

βi,w Forecasting model coefficient i for picker w

δ Number of iterations after which an update occurs

εr Proportional batch rank error for batch r

γ0 Common intercept for a multilevel model

κr Within-group error term

λ Decay parameter

μ Mean value

φ Cooling rate in geometric simulated annealing schedule

σ1 Update to the score of a heuristic if a new solution is the

global best

σ2 Update to the score of a heuristic if a new solution is better

than a current one

σ3 Update to the score of a heuristic if a new solution is ac-

cepted

σ2 Variance (within group)

τ0 Between-group variation in intercepts

τ1 Between-group variation in slopes

θh The weight of a heuristic h

Ψh Score of a heuristic

xvi

List of Acronyms

Acronym Description

A* An extension of Dijkstra’s algorithm, which uses a cost-

to-goal heuristic to minimize exploration

ABHC Attribute Based Hillclimber

AGV Automated Guided Vehicle

ANOVA Analysis of Variance

ATSP Asymmetric Traveling Salesman Problem

AIC Akaike information criterion

ALNS Adaptive Large Neighborhood Search

AS/RS Automated storage and retrieval system

CPLEX Optimization software by IBM

CV Coefficient of variation, i.e., standard deviation divided

by the mean.

C&W Clarke and Wright savings algorithm

GAP Generalized Assignment Problem

GLS Generalized Least Squares

ICC Intraclass Correlation Coefficient

LKH Lin-Kernighan-Helsgaun algorithm, capable of solving

TSP and ATSP problems

LNS Large Neighborhood Search

OLS Ordinary Least Squares

PCES Precedence Constrained Estimated Savings based

batching

REMIX A random destroy-random repair neighborhood search

heuristic

SA Simulated Annealing

xvii

List of Acronyms

SA-REMIX A Large Neighborhood Search algorithm, which uses

the REMIX neighborhood search heuristic and a sim-

ulated annealing search scheme

SKU Stock Keeping Unit

SOMB Self-organization Map batching algorithm

SOP Sequential Ordering Problem

TSP Travelling Salesman Problem

VIF Variance Inflation Factor

VLNS Variable Large Scale Neighborhood Search

VNS Variable Neighborhood Search

WMS Warehouse Management System

xviii

Glossary

batch execution time the total time to complete a batch of orders, start-

ing at the depot having empty roll containers on board the picking

truck, and ending ending at the depot after the delivery of the or-

ders.

batching the act of combining multiple customer orders that are to be

picked simultaneously during one pick tour, with the aim of saving

order picking time during a pick tour.

capability the ability of a worker to do a job (may be binary).

customer order consists of order lines, each line for a unique product or

stock keeping unit (SKU), in a specified quantity (De Koster et al.,

2007).

destroy a method for breaking apart some part of a solution.

distribution center an often large warehouse supplying one or multiple

retailers.

fixed effect in multilevel modeling, the average model of all groups.

high-level a level of picking items that is reachable by pickers only with

assistance (usually mechanical).

insertion see repair.

low-level a level of picking items that is reachable by pickers without

assistance (usually mechanical).

order short for customer order.

xix

Glossary

parts-to-picker an order picking method, where the picker remains sta-

tionary at a pick station and items are transported to him/her via

some, usually automated, method.

picker-to-parts an order picking method, where the picker travels be-

tween warehouse aisles to pick items.

precedence constraint a constraint specifying that a certain thing

must be dealt with before some other thing.

random effect in multilevel modeling, the deviation from the fixed effect

for a group.

removal see destroy.

repair a method for reinserting a destroyed part of a solution to form a

new solution.

roulette wheel method a method of randomly choosing a neighborhood

search heuristic from a set of heuristics based on the heuristic’s per-

formance scores.

skill the speed of at which a job can be carried out.

wave a set of orders that are processed together in an algorithm, see also

wave picking.

wave picking the act of picking a certain number of orders for a common

destination or a completion deadline, often started simultaneously

by multiple pickers.

zone picking an order picking method where a picker is responsible for

picks in a certain part, i.e., a "zone", in the warehouse.

xx

1. Introduction

1.1 Background and Motivation

Supply chains are networks that are composed of various business entities

(suppliers, manufacturers, distributors and retailers) who collaborate in

an effort to: (i) acquire raw materials, (ii) convert the acquired materials

to specified products, and (iii) deliver the products to retailers (Beamon,

1998). Traditionally, materials flow forward and information flows back-

ward in the supply chain.

A supply chain is composed of two basic processes: the Production Plan-

ning and Inventory Control Process and the Distribution and Logistic Pro-

cess, see Figure 1.1 (Beamon, 1998). Production planning describes the

design and planning of the entire manufacturing process. Inventory con-

trol describes design and management of storage policies and procedures

for raw materials and inventories of unfinished and finished products.

The Distribution and Logistic Process specifies how products are trans-

ported from the warehouse to retailers. Products can be transported di-

rectly to retailers, or to a warehouse supplying the retailer (a distribution

center).

Entities involved in a supply chain can use anticipatory or responsive

business models, or a combination of both (Bowersox, 2011). Anticipatory

business models are based on forecasting demand, producing or acquiring

and storing the goods first and hoping that the forecasts hold. Responsive

models sell first and manufacture and/or procure goods after the sale, de-

livering them to the customers as the goods become available. Most re-

tailers use anticipatory business models, as they try to offer goods based

on forecast demand (and sometimes the availability of goods).

Warehouses are an important part of most supply chains. More efficient

1

Introduction

Figure 1.1. The Supply Chain Process. Adapted from Beamon (1998).

supply chains have resulted in smaller warehouses being replaced with

fewer large warehouses. These distribution centers provide timely and

economical inventory replenishment for retailers (De Koster et al., 2007,

Bowersox, 2011). As warehouses become larger, companies are more re-

liant on their efficient functionality: in many cases, a company’s whole

supply chain is dependent on the performance of a single central ware-

house. Between the time an order arrives at a warehouse and its eventual

arrival at its destination, there is ample opportunity for errors and room

for improvement (De Koster et al., 2007).

Warehouses can employ humans as pickers and/or be automated to some

degree. When humans are employed, three picking methods can be distin-

guished: picker-to-parts, parts-to-picker, and put systems (De Koster et al.,

2007). In picker-to-parts order picking, the picker drives or walks among

the aisles to pick items. Parts-to-picker systems employ automated stor-

age and retrieval systems (AS/RS) to bring the goods to the picker who

works at the depot or a pick station. Finally, in put systems (order dis-

tribution systems), items for multiple orders are picked into a container

either in a picker-to-parts or parts-to-picker manner, offered to an order

picker for distribution over customer orders. Zone picking (Goetschalckx

and Ashayeri, 1989) is a scheme where the picker is responsible for all

picks in some area of the warehouse (such as a number of aisles) and

places the picked goods on an automated guided vehicle (AGV) or a con-

veyor belt. Bartholdi et al. (2001) propose Bucket Brigade picking system,

a type of work sharing zone picking system, where the pickers are not re-

stricted to a single zone, but may operate in many, with the restriction

that they may not pass each other. If the pickers are sequenced from

slowest to fastest, a balance of work will spontaneously emerge resulting

in high throughput.

2

Introduction

Figure 1.2. An order picker towing two empty roll containers. Image courtesy of Rocla.

This thesis focuses on optimizing processes in the type of warehouse

most common in the world today: the low-level picker-to-parts warehouse,

a type which, according to De Koster et al. (2007), forms a very large ma-

jority (approximately 80%) of all warehouses worldwide. The popularity of

such warehouses can be attributed to the relative ease of setting up such a

facility and the low initial capital cost when compared to AS/RS systems.

In low-level picker-to-parts warehouses, the order picker picks requested

items from storage racks or bins while traveling along the storage aisles

(see Figure 1.2). Conversely, in high-level picker-to-parts warehouses,

cranes or lifts mounted on order picking trucks are employed to lift the

picker up so that he or she can reach all of the stored items (De Koster

et al., 2007).

3

Introduction

Tasks in a Warehouse There are many activities that are needed to get

materials in and out of the warehouse. Listed roughly in the order of

execution from the arrival to the departure of goods, and according to

Tompkins et al. (2003), they are:

1. Receiving is a collection of the following activities: (i) the orderly receipt

of all materials coming to the warehouse; (ii) assuring the quantity and

quality of the items; and (iii) disbursing the materials.

2. Inspection and quality control are extensions of the receiving process

and are done, e.g., when suppliers are inconsistent in quality or the

goods must be inspected for some other reason.

3. Repackaging is done when goods are received in bulk and are to be

stored in some other manner, e.g., in smaller units or with other prod-

ucts.

4. Putaway is the act placing materials in the warehouse.

5. Storage is the physical containment of the goods while it is awaiting

demand.

6. Order picking is the process of removing items from storage to meet

demand. It is the basic service around which most warehouse designs

and processes are based.

7. Postponement is an optional step done after the picking process, where

items are repackaged for more convenient use. Instead of doing this in

the repackaging step, performing it after picking has the advantage of

allowing more flexibility in the use of on-hand inventory.

8. Sortation can be done by the picker by picking items directly to the

right customer order, or can be done after picking, if items are not picked

by order, but by type, for example.

9. Packing and shipping can include the following tasks: (i) checking or-

der completeness; (ii) packaging merchandise in containers appropri-

ate for shipping; (iii) preparation of shipping documents; (iv) weighing

4

Introduction

orders to determine shipping charges; (v) grouping orders to await an

outbound carrier; and (vi) loading trucks.

10. Cross docking is the act of moving inbound goods directly to the ship-

ping dock.

11. Replenishing involves moving items from reserve to primary picking

locations.

Order Picking To remain competitive, warehouses need to continuously

improve the efficiency of their processes. According to Gu et al. (2007),

research on improving warehouse operation efficiency has focused on four

areas: order picking, receiving, storage, and shipping. Of these four areas,

order picking is the most important, and it is the most expensive process

in distribution centers. De Koster et al. (2007) define order picking as "the

process of retrieving products from storage (or buffer areas) in response to

a specific customer request". In the literature, of the total cost of operating

a distribution center, the cost of order picking is estimated to be as high

as 55% (Drury, 1988) to 65% (Coyle et al., 1996). In spite of the advent of

highly mechanized warehouses, orders are still picked manually in most

warehouses, with pickers traveling in the warehouse to retrieve the items

for an order (De Koster et al., 2007). These manual picking processes are

increasingly supported by advanced technologies, such as pick-by-light

systems, supporting mobile terminals, and voice-picking systems, which

have made the order picking process more reliable and efficient (Berger

and Ludwig, 2007, Weaver et al., 2010, Baumann, 2013). These computer-

assisted picking processes generate extensive data logs, including who

performed what pick at which location and at what point in time.

Travel time is the largest component of the total time of the order pick-

ing process (batch execution time), with a contribution of up to 50% (Tomp-

kins et al., 2003). Much research has been devoted to methods reducing

order pickers’ travel times, including modifying the warehouse layout, us-

ing a different storage policy, batching orders, and routing pickers. For

this thesis, the most relevant literature is related to the batching of cus-

tomer orders. Customer orders consist of order lines, each line for a unique

product or stock-keeping unit (SKU), in a specified quantity (De Koster

et al., 2007). Order batching is defined as combining multiple customer or-

ders into a single assignment for an order picker with the goal of minimiz-

5

Introduction

ing travel or batch execution time. When optimizing for travel time, travel

speed is generally assumed to be constant to justify travel distance based

optimizations. Other components of total batch execution time, such as

pick and setup time, are also usually assumed to be constants, and thus

easily left out of optimization models. Wave picking is used if orders share

a common destination or completion deadline. Customer orders belonging

to a wave are processed, and often batched, together.

Customer orders can have precedence constraints, i.e., some items of the

order must be picked to the relevant container before others. The problem

of batching orders and routing pickers while respecting the precedence

constraints of products is common, particularly in retail organizations,

but such restrictions may also play a role in other warehouses (Dekker

et al., 2004, Chan and Kumar, 2008). Precedence constraints may vary

in nature. They may be due to weight restrictions (heavy products at the

bottom of the roll container), fragility (light at the top), shape and size

(big boxes at the bottom), stackability, but also preferred unloading se-

quence due to family grouping on the customer’s shelves. Although order

batching and picker routing have received attention in the literature, the

combined problem of order batching and picker routing while respecting

the precedence constraints of the products (and in this thesis, including

potential multiple drop-off points in a route) has not. In the sample ware-

house of this thesis, at most three customer orders (or orders for short)

can be batched in a single pick tour, each possibly for a different customer

(i.e., a store) and a different delivery location within the warehouse. Each

customer order is to be preferably picked in a fixed sequence, due to family

grouping in the company’s stores.

Order pickers are people with different skill sets and varying physical

capabilities. Some are experienced and others are new at their jobs. In-

terviews with warehouse managers and Warehouse Management System

(WMS) suppliers reveal that in addition to the skills and physical capabil-

ities of a picker, work motivation plays a key part in the picker’s produc-

tivity. Besides batching and routing, the second key question of this thesis

is how to make the most of the available workforce. Using regression anal-

ysis on detailed log data provides a way of modeling the pickers based on

past performance as the data contain timestamps of all the pick events,

travel distances, and the mass and volume of picked items. Using models

forecasting the pickers’ batch execution times based the on log data, the

standard way of just minimizing travel time can be extended to optimiz-

6

Introduction

ing the total order picking time. Furthermore, the models allow for better

assignment of work among the pickers based on the strong areas of their

past performances, and thus may motivate the pickers more.

1.2 Objectives

The general objectives of this thesis are to improve the efficiency of picker-

to-parts order picking where the batching of customer orders plays an

important part. In more detail, the objectives are:

• To include precedence-constrained routing in joint picker routing and

order batching problems.

• Improve the efficiency of state-of-the-art order batching algorithms in

the presence of precedence-constrained routing.

• To study order picker skill models based on operational data and to

show that pickers have significant differences in skills, which affect ex-

pected job completion times based on the job parameters.

• To develop a methodology for order and batch assignment based on

skills of individual pickers and to show that significant savings are

achieved when compared to the current state-of-the-art.

1.3 Contributions of the Thesis

In this thesis, the following extensions to the related work presented in

Section 1.4 are made.

This thesis introduces precedence constraints on picker routing.

Precedence-constrained routing is combined with batching customer or-

ders to find the combination of batches that maximizes the total travel

distance savings of pick waves. As new batches are explored, their travel

distance savings need to be calculated. This is usually done by routing

the batches and comparing batched travel distance to the travel distance

to pick individual orders in the batch. Items must be picked in a strict

sequence to the customer orders. However, the complexity of precedence-

7

Introduction

constrained routing poses new challenges to order batching. Thorough

exploration of combinatorial batch spaces with state-of-the-art batching

algorithms becomes impractical, as these algorithms need to route each

time a new batch is found. A new order batching algorithm is introduced

to counter the time complexity of optimal precedence-constrained routing:

a fast Large Neighborhood Search (LNS) algorithm, which uses an inno-

vative way of estimating batch savings for batches of three or more cus-

tomer orders to speed up the processing time. It is shown that this novel

way of estimating batch savings is accurate for those batches that save

the most in travel distance. Incidentally, the high-savings batches are

the ones that generate the best solutions. For the precedence-constrained

routing, an optimal A* algorithm is used.

In the presence of precedence constrained routing for medium to large

wave sizes, the batching algorithm, Precedence Constrained Estimated

Savings based batching (PCES), provides solutions of better quality than

any tested state-of-the-art order batching algorithm. Only one of the

tested algorithms, C&W(i) (Clarke and Wright, 1964, De Koster et al.,

1999), is consistently faster than PCES, but it is much worse in solution

quality in all cases. For small wave sizes, the mean error from optimal

is 1.2%; and for medium and large wave sizes, PCES outperforms other

methods by 1% to 3%. When compared to original batching and routing

by the company, more than 15% in total travel distance is saved. It is also

shown that the savings estimates and the batching part of PCES, SA-

REMIX, can be applied to batching problems when the routing does not

contain precedence constraints, with a similar solution quality as with the

precedences.

Second, using actual picking data, multilevel modeling is used to build

forecasting models for the pickers’ batch execution times. It is shown

that a significant amount of the total variance in batch execution time,

13%, results from differences in picker skill. To the author’s knowledge,

this is the first such application of using multilevel modeling to exploit

operational data, at least in the warehousing context.

Third, the varying skills of the order pickers are exploited by extend-

ing the standard set-partitioning model (Gademann and Van de Velde,

2005) for the batching of orders with a generalized assignment problem.

An Adaptive Large Neighborhood Search algorithm (ALNS) (Ropke and

Pisinger, 2006a) is used to search a very large combinatorial space for

solutions to assign orders and batches to the right pickers. Via the combi-

8

Introduction

nation of the forecasting models and the ALNS algorithm, it is shown

that almost 10% of total batch execution time can be saved by taking

the skills of the pickers into account when compared to a state-of-the-

art batching solution, but without considering picker skill. Compared to

assigning work based on picker productivity (picking speed), taking skill

into account saves 6% of the total time. To the author’s knowledge, this is

the first work where worker-specific forecasting models are used in con-

junction with a work-assigning algorithm. Also, the proposed model and

problem setup are novel. Finally, ALNS has not been previously applied

to order picking problems.

1.4 Related Work

This section presents relevant related work. First, routing methods in

picker-to-parts warehouses are presented, followed by routing with prece-

dence constraints. Second, an overview of order batching methods is pre-

sented. Third, research where differences among workers skills and fac-

tors affecting workers’ performances are discussed. Fourth, an overview

of the class of Very Large Scale Neighborhood Search algorithms is pre-

sented. Multilevel modeling is briefly touched upon. Finally, a study

where regression models of an order picking process have been built is

discussed.

1.4.1 Routing in Picker-to-Parts Warehouses

A classic algorithm for order picking tour construction is the exact and

polynomial time algorithm first presented in Ratliff and Rosenthal (1983)

and extended in De Koster and Van der Poort (1998) to include multiple

drop-offs. The algorithm presented in Ratliff and Rosenthal (1983) is fur-

ther extended in Roodbergen and De Koster (2001b) to include a middle

aisle. This extended version assumes a parallel-aisle warehouse with a

maximum of three cross-aisles (see Figure 1.3) and does not account for

precedence constraints or unidirectional travel.

Next to optimal routes, heuristics are often used. In S-shape routing

(Randolph, 1993), also known as traversal routing, an order picker travels

the whole subaisle if he or she needs to pick an item in the subaisle visited.

An exception is made for the last aisle if the number of aisles is odd. With

largest-gap routing (Randolph, 1993), each subaisle, except for the first

9

Introduction

Figure 1.3. Top view of a warehouse three cross-aisles (marked with arrows).

Figure 1.4. S-shape (left) and largest-gap (right) routing (Roodbergen and De Koster,
2001a).

and the last one visited, is exited on the entry side. Figure 1.4 shows

examples of the S-shape and largest-gap routing methods. The first and

the last visited aisles are traveled completely. A heuristic combining S-

shape and largest-gap routing is presented in Roodbergen and De Koster

(2001a). In aisle-by-aisle routing (Vaughan, 1999), each aisle is visited

only once, i.e., first all items in the first pick aisle are picked, then all

in the second, and so on. See Figure 1.5, with the optimal solution as a

reference.

Theys et al. (2010) consider the applicability of the Lin-Kernighan-

Helsgaun (LKH) TSP algorithm (Helsgaun, 2000) to routing order pickers.

They compare LKH with several routing heuristics and obtain savings of

up to 47% in travel distance. Helsgaun (2000) finds optimal solutions

with the LKH algorithm for all previously solved TSP instances available

at that time, including a 13,509-city problem, which was the largest prob-

lem instance solved to optimality at the time. LKH is used in Chapter 4 to

test the SA-REMIX batching algorithm with non-precedence-constrained

routing and as a reference algorithm in comparing the effectiveness of a

10

Introduction

Figure 1.5. Aisle-by-aisle (left) and optimal (right) routing (Roodbergen and De Koster,
2001a).

routing heuristic used in Chapter 6.

1.4.2 Routing with Precedence Constraints

A dynamic programming algorithm for solving the single-vehicle many-

to-many immediate request dial-a-ride problem (multiple customer desti-

nations, each with a possibly unique drop-off location), which is similar

to the A* routing algorithm presented in Section 3.2.2, is introduced in

Psaraftis (1980b, 1983). In Psaraftis (1980b) each customer has three

possible states: not picked up, picked up, and delivered. In Section 3.2.2,

a single customer order is analogous to the customer, but with many more

possible states than three. Furthermore, Psaraftis (1980b, 1983) does not

use an A* type heuristic to speed up the search. The time complexity of

Psaraftis’ algorithm is O(n23n) (where n is the total number of customers),

and it solves problems for up to ten customers.

Kubo and Kasugai (1991) introduce the Precedence-Constrained Travel-

ing Salesman Problem (PCTSP) and a branch-and-bound method for find-

ing exact solutions for cases of up to 49 locations with acceptable computa-

tion times. The precedence-constrained path construction problem can be

modeled as a case of the Sequential Ordering Problem (SOP) (Escudero,

1988). The SOP can be formulated as an Asymmetric Traveling Salesman

Problem (ATSP) with precedence constraints. In the SOP, paths usually

have a start and a finish position that differ from each other, while ATSP

paths finish where they started. In the general ATSP case, each of the

11

Introduction

non-visited cities can be the next target with each iteration, but in the

SOP, the set of the next possible cities is limited as defined by a directed

graph formed from the problem. The routing problem presented in Section

3.2.2 is a special case of the one presented in Kubo and Kasugai (1991)

since items in each customer order must be picked in a strict sequence.

1.4.3 Order Batching

The savings algorithm by Clarke and Wright (1964), C&W(i), as well as

an extension of it, C&W(ii), are used for batching orders in De Koster

et al. (1999). They are compared to seed algorithms using two routing

strategies: S-shape and largest-gap. Seed algorithms consist of two dis-

tinct steps: seed order selection and order addition. A single order is

selected as the seed order based on criteria, e.g., the largest number of

items, the longest travel time, or the farthest item. Additions can be done

using different rules such as adding the order that minimizes the sum of

the distances of every item of the seed and the closest item in the order,

or minimizing the additional number of aisles to be traveled. The au-

thors find that seed algorithms work best with S-shape routing and large

pick device capacity, while savings algorithms work best with largest-gap

and small pick capacity. C&W(ii) consistently outperforms C&W(i), but is

computationally more expensive.

Albareda-Sambola et al. (2009) use a Variable Neighborhood Search

(VNS) algorithm to batch orders. It uses six different local exchange

schemes incorporated into three different search neighborhoods of varying

sizes to find good batches. Within each neighborhood, all moves belong-

ing to that neighborhood are tried, and the one that results in the largest

savings is chosen. The larger neighborhoods are searched as needed. If a

current one fails to produce a better solution, the next (larger) neighbor-

hood is explored for a better solution until no improvement can be made.

Albareda-Sambola et al. (2009) compare VNS to the C&W(i), C&W(ii), and

seed algorithms, and it consistently outperforms them. The authors find

that the best performing algorithm from the literature is C&W(ii), which

is on average 2% worse than VNS. Solution quality comes with added com-

putational complexity. When compared to C&W(ii), a much larger part of

the combinatorial batch space is explored. For the most complex instance

run (250 orders), VNS took almost six times as much time to reach its

solution. For routing batches, the authors use the computationally inex-

pensive S-shape, largest-gap, and combined heuristics.

12

Introduction

Henn and Wäscher (2012) introduce an Attribute Based Hill Climber

(ABHC) order batching algorithm (Whittley and Smith, 2004). This

ABHC uses a set of attributes to guide the search out of local minima

and a set of moves to explore the neighborhood of a current solution. Two

moves are used to search for new solutions: shifting an order from one

batch to another batch and swapping two orders between two batches.

As the attribute that gave the best results, the authors used a pair of

customer orders. Each attribute is given a value, which initially equals

infinity. As a solution (a set of batches) is found, it will have a total travel

distance. That solution is accepted if at least one of the attributes has a

current value that is higher than the current solution’s value (the total

travel distance), after which that attribute’s value is set to the current

value. S-shape and largest-gap routing are used as routing algorithms.

Comparisons are made between three local search algorithms, a Tabu

Search heuristic, and C&W(ii). ABHC compares favourably to these al-

gorithms, with over 2% better results than those achieved with C&W(ii).

A method for batching orders is introduced in Gademann and Van de

Velde (2005). The order-batching problem is modeled as a set-partitioning

problem. A column-generation algorithm is used to solve the linear pro-

gramming relaxation. They rely on the polynomial time algorithm pre-

sented in Ratliff and Rosenthal (1983) to calculate the route length. They

find that the maximum batch size has the largest impact on the solution

time.

Large-scale order batching in parallel aisle warehouses is considered

by Hong et al. (2012b). The authors introduce a route-selecting order

batching (RSB) formulation, a route bin packing formulation for calcu-

lating lower bounds, and a heuristic route-packing based order batching

procedure (RBP). Instead of constructing routes for batches, they use the

S-shape routing method to construct a set of all possible routes given a

warehouse layout to which batches can be assigned. Given a batch, a best-

fit route can be selected with RSB. They assume that each order picker can

pick up to ten orders to ten bins, and an average order size is two lines. A

comparison of RBP is made to C&W(ii) and seed algorithms, with the RBP

dominating the other algorithms and C&W(ii) performing better than the

seed heuristics.

In comparison to the batching methods in the literature, which use mul-

tiple deterministic neighborhood search heuristics, the method presented

in Chapter 3, PCES, uses a single flexible stochastic heuristic based on

13

Introduction

random moves, and is not constrained to a set of deterministic moves.

Other similar methods (Gademann and Van de Velde, 2005, Albareda-

Sambola et al., 2009, Henn and Wäscher, 2012) do explicit batch evalua-

tion (and thus routing), which is computationally expensive, while PCES

estimates the best batches using information inherent in batches of one

and two customer orders. Furthermore, the problem in Chapter 3 also

includes precedence constraints in the routing. With computationally

more expensive routing algorithms, such as those used in Chapters 3 and

4, solving the batching with any such deterministic batching algorithm

becomes intractable due to exponential growth in calls to routing algo-

rithms. In combination, the flexible heuristic along with the estimate

enables escaping local minima and exploring larger parts of the set of

possible batches more thoroughly for good options. In addition to good

solution quality, PCES is also computationally fast. With precedence-

constrained routing, it is slower than C&W(i) but faster than C&W(ii)

and provides good solutions to instances that C&W(ii) cannot solve in a

reasonable time.

A simulated annealing (SA) algorithm for order batching is introduced

by Hong et al. (2012a). The authors deal with narrow-aisle systems with

the possibility of picker blocking. In addition to the batching problem, the

authors also deal with the sequencing problem, which is also NP-hard.

They use four neighborhood search heuristics in their SA-algorithm: the

first one exchanges two orders from different batches; the second swaps

the sequence of two batches; the third and fourth impose an acceptance

condition on the order exchange to limit the size of neighborhoods to be

searched. Their method aims to minimize total retrieval time, which is the

sum of pick and travel time and time due to delays. The algorithm uses

a geometric cooling schedule (Cohn and Fielding, 1999), while the criteria

for accepting a worse batch are the same as PCES. Hong et al. (2012a) use

computationally light traversal routing, and thus have no need to make

use of savings estimates. Similarly, as in Chapter 6, the simulated an-

nealing algorithm presented in Hong et al. (2012a) solves a combination

of two NP-hard problems. They consider assignments to a set of homoge-

neous pickers, while the main contribution of Chapter 6 is to extend the

order batching problem to include the (generalized) assignment of orders

and batches to order pickers of varying skills.

Hsieh and Huang (2011) introduce two batch-construction heuristics

based on data-clustering methods: K-means Batching based on the

14

Introduction

K-means algorithm by MacQueen (1967); and Self-organisation Map

(SOMB) based on the Self-Organizing Map (Kohonen, 1990). The K-

means algorithm can be classified as a seed algorithm. It uses a selec-

tion rule of selecting the order with the minimum travel distance and an

addition rule of adding an order which causes the minimum increment

in travel distance when combined with the existing batch. The process

is greedy and sequential and very similar to seed rules presented previ-

ously in De Koster et al. (1999). The SOMB algorithm groups orders by an

order-relativity measure using the SOM. The measure is a weighted sum

of the number stock-keeping units (SKUs) in an order and the number of

the same aisles covered between two orders.

Of these algorithms, C&W(i) and C&W(ii), the VNS of Albareda-

Sambola et al. (2009), and the ALNS by Henn and Wäscher (2012) are

used in comparison algorithms to the batching algorithm in Chapter 3.

C&W(i) is used in constructing initial batching solutions in chapters 3

and 6, and the VNS in Chapter 6. These algorithms are presented in

more detail in Chapter 2.

1.4.4 Heterogeneous Workers and Jobs

Assigning jobs to workers based on their capabilities has been studied

relatively well. A distinction is made between capability (the degree to

which a person is able to carry out a certain task, regardless of the time

it takes) and skills (the speed at which such a task can be carried out).

In this thesis, all pickers have the capability to pick the batches, albeit

at different speeds. Differences in skills may be caused by, the ability

to lift heavy objects, motivation, stacking ability, and knowledge of the

warehouse — many of which are not directly quantifiable.

Taking advantage of workers’ capabilities has been studied and modeled

as a generalized assignment problem (GAP). For extensive surveys on the

subject, see Cattrysse and Van Wassenhove (1992) and Pentico (2007).

Campbell and Diaby (2002) solve a GAP for cross-trained workers with

an assignment heuristic. Each worker has a predetermined value from

zero to one, characterizing his or her ability to work in a department (to

do a job). Chapter 6 extends the order batching problem with the GAP to

include knowledge of the pickers’ skills in batching and assigning orders

to pickers.

Another stream of research investigates how worker speed depends on

endogenous and exogenous factors (Bendoly et al., 2006). Powell and

15

Introduction

Schultz (2004) show that workers increase speed in the presence of a visi-

ble backlog. Doerr and Arreola-Risa (2000) investigate how the variability

of task completion times is affected by different tasks and workers. They

find that the most significant factors affecting the variability are: (1) the

worker who did the work and (2) the interaction effect between the worker

and the task, while the task type in question had no significant influence

on its own. Juran and Schruben (2004) use personality and demographic

data to predict task execution times of a collaborative two-worker task.

They find that including information on individual workers has signifi-

cant impact on simulation accuracy compared to assuming no differences

among workers. Bartholdi and Eisenstein (1996) show that if workers

are sequenced from slowest to fastest in typical production line, a sta-

ble partition of work will spontaneously emerge, with the production rate

converging to the maximum possible value. These studies reinforce the

hypothesis of picker skills playing a significant role in total batch execu-

tion time, which is further studied in chapters 5 and 6.

1.4.5 Very Large Scale Neighborhood Search

Very Large Scale Neighborhood Search (VLSN) is a class of neighborhood

search algorithms, where the searchable neighborhood size grows expo-

nentially with the instance size or the neighborhood is too large to be

searched explicitly (Pisinger and Ropke, 2010). Ahuja et al. (1998) classify

VLSN methods into three categories: variable-depth methods, network-

flow based improvement methods, and methods based on subclasses solv-

able in polynomial time. Pisinger and Ropke (2010) extend these cate-

gories by including Large Neighborhood Search (LNS) algorithms.

The joint batching and generalized assignment problem dealt in Chap-

ter 6 belongs to this class, as does the order batching problem when batch

size grows, especially when batch evaluation is computationally expen-

sive, which imposes a practical limit on explicitly searching the whole

neighborhood (see Chapter 3). To solve the order batching part in Chap-

ter 3, a LNS-type algorithm is applied. In Chapter 6, an Adaptive Large

Neighborhood Search (ALNS) algorithm (an extension of LNS) is used to

solve a joint batching and generalized assignment problem. The LNS and

ALNS algorithms are detailed more thoroughly in sections 2.2.5 and 2.2.6,

respectively.

16

Introduction

Large Neighborhood Search

According to Pisinger and Ropke (2010), neighborhoods in LNS (Shaw,

1997) methods are defined by destroy and repair methods. They are also

called in removal and insertion methods in other sources, e.g., in Ropke

and Pisinger (2006a) and Gharehgozli et al. (2013). The destroy methods

of neighborhood search heuristics break down a part of a solution in a pre-

defined manner, while the repair methods try to find good alternatives to

a solution by constructing another feasible solution in the neighborhood

of the solution based on the repair method associated with the neighbor-

hood search heuristic. These methods typically contain some element of

randomness in choosing what parts of a solution to modify. The degree of

destruction (Pisinger and Ropke, 2010) of the destroy method should be

carefully chosen. Destroying too small parts of a solution can result in

myopic exploration, while too large changes can result in suboptimality

and repeated re-optimization.

Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search, first proposed in Ropke and

Pisinger (2006a) to solve the Pickup and Delivery Problem with Time

Windows, extends the LNS by adding a learning component to the search.

Typically, ALNS uses several heuristics to form the search neighborhood.

Details of each heuristic’s runtime performance are kept in memory. Each

heuristic has a score, which gets updated positively if good solutions are

found and/or the heuristic finds new interesting solutions. One heuristic

is selected with each iteration, with a weighted random selection crite-

rion called the roulette wheel method (Pisinger and Ropke, 2010). As with

the LNS, a heuristic is generally composed of a combination of destroy

and repair methods. However, in Section 6.3.4, dedicated heuristics are

used, which are not naturally divisible into both destroy- and repair-type

methods. The set of all heuristics H is formed by (not necessarily all)

combinations of the destroy and repair methods and the possible dedi-

cated heuristics. ALNS has been shown to work very effectively on a wide

variety of computationally hard problems, such as container scheduling

(Gharehgozli et al., 2013), vehicle routing (Ropke and Pisinger, 2006a)

and scheduling technicians and tasks with varying skills (Cordeau et al.,

2010).

17

Introduction

1.4.6 Multilevel Modeling

Multilevel modeling is a regression analysis technique, that can be used

to distinguish group level effects in some population. A standard linear

multivariate regression can be extended to a linear multilevel model by

considering varying intercepts and slopes for each group. Fixed effects

of a multilevel model contain the overall (mean) model encompassing in-

formation from all groups, quite similarly as a single multivariate model

would. In linear multilevel regression, the random effects or variations to

the fixed effect intercept and slope are calculated for each group. In this

manner, forecasting models with group-specific parameters can be found.

1.4.7 Forecasting Order Picking Time

Larco Martinelli (2010) studies the problem of how to assign products

to different storage locations, with the objective to minimize both or-

der picking cycle time and worker discomfort. By reducing discomfort

felt by the workers, the well-being of the workers increases, and may

also yield the long-term benefits of increased productivity (Kuijt-Evers

et al., 2007). Larco Martinelli (2010) uses extensive warehouse log data

to build regression models for both objectives. Subsequently, the models

are used in a dual-objective assignment model to optimize product place-

ment. Larco Martinelli (2010) finds that there is an efficient frontier be-

tween the two objectives. If either cycle time is solely prioritized, worker

discomfort is high and vice versa.

1.5 Outline

Chapter 2 presents algorithm descriptions and mathematical models re-

lated to the subject. Chapters 3 to 6 contain the scientific contributions of

this thesis. Chapter 7 concludes the thesis.

The main contribution in Chapter 3 is the modeling and solving of a

joint precedence-constrained picker routing and order batching problem.

A journal article based on this chapter has been published: (Matusiak

et al., 2014). These results are extended in Chapter 4 by relaxing the

precedence constraints in the routing. In Chapter 5, the large order pick-

ing data-set obtained from the Finnish retailer is processed and used to

form forecasting models for the execution times of batches for pickers. The

18

Introduction

forecasting models constructed in Chapter 5 are utilized in Chapter 6 to

solve a joint-routing, order batching and generalized assignment problem.

1.6 Author’s Contribution

Chapter 2 presents mathematical models and algorithms relevant to this

thesis. All the models in that chapter are from the literature. The al-

gorithm in Section 2.2.1 has been developed by the author. The other

algorithms presented in Chapter 2 have been implemented by the author,

as detailed in the relevant references. Chapters 3 to 7 hold the main con-

tributions of the thesis. These chapters are the work of the author, apart

from the exceptions noted below. The problem description and mathemat-

ical model presented in Section 3.1 and the CPLEX code used in a part

of the experiments in Chapter 3.3 were formulated and coded by Profes-

sor Leo Kroon. The Lin-Kernighan-Helsgaun algorithm for solving the

Traveling Salesman Problem, used in Chapter 4 and Chapter 6, has been

developed by Keld Helsgaun and is free for research use.

1.7 Assumptions

There are number of assumptions made in this thesis. In Chapter 3, the

pickers are always assumed to travel with a constant speed, the time to

pick an item to the container is assumed constant, as is the setup time

(getting on and off the truck). Congestion is not considered in the opti-

mization, as are no other dynamic factors. Also, it is assumed that the

order pickers are alike. The mathematical model does not consider time

windows for the deliveries’ of the orders, as the log data does not contain

information on the truck departures.

In Chapter 5, the standard assumptions of non-multicollinearity, nor-

mality, and non-heteroscedasticity are made in the regression. However,

the data are heteroscedastic, which is partly compensated by the logarith-

mic transformations applied to the data.

Some of the assumptions in Chapter 6 are the same as in 3: conges-

tion, deadlines for orders and system dynamics are not considered. While

batches are assigned, they are not sequenced in any manner. Stochastic-

ity in the picking process is not taken into account, i.e., the problem is

solved in a deterministic manner not considering the uncertainties that

19

Introduction

could be extracted from the regression model.

20

2. Relevant Mathematical Models and
Algorithms

This chapter is organized as follows. In the first part of this chapter,

combinatorial optimization problems are formally defined. The presented

nomenclature is used in problem definitions later. Three separate com-

binatorial optimization problems are described to illustrate subproblems,

each of which plays a part in the joint models presented in chapters 3,

4 and 6. These are the traveling salesman problem, the order batching

problem, and the generalized assignment problem.

The second part of this chapter starts with descriptions and pseudocode

of some of the algorithms implemented for comparison purposes and ini-

tial solutions. Finally, Large Neighborhood Search and Adaptive Large

Neighborhood Search metaheuristics are detailed, which are later applied

to order picking problems in chapters 3, 4 and 6.

2.1 Mathematical Models

2.1.1 Combinatorial Optimization Problems

Following Pisinger and Ropke (2010), let I be an instance of a combina-

torial optimization problem, where S is the set of feasible solutions for

the problem. Let f : S → R be a function which maps a solution to

its cost. A globally optimal solution s∗ is such that cost is minimized:

f(s∗) ≤ f(s), ∀s, s∗ ∈ S. A neighborhood of a solution s ∈ S is defined

as N (s) ∈ S. N is function which maps s to a set of solutions S ′ ⊆ S. If

f(s′) ≤ f(s), ∀s′ ∈ N (s), then s′ is said to be a locally optimal solution for

neighborhood N (s).

A neighborhood search heuristic h(s) ∈ H, or a move, is a function which

enables searching of the neighborhood Nh(s) of a solution s ∈ S. H is the

set of all neighborhood search heuristics of an algorithm.

21

Relevant Mathematical Models and Algorithms

A steepest descent algorithm is an algorithm explores N (s) for solution

s. In this case, N (s) is searched for the best solution s′ ∈ N (s), i.e., s′ =

argmaxs′′∈N (s′′) f(s
′′). If f(s′) < f(s), an update s = s′ is performed.

2.1.2 Routing

The problem of routing order pickers in conventional multi-parallel-aisle

warehouses is often modeled as a Steiner Traveling Salesman Problem

(Steiner-TSP) (Cornuéjols et al., 1985, De Koster et al., 2007, Theys et al.,

2010). The Steiner-TSP includes Steiner and non-Steiner nodes: Steiner

nodes can be visited multiple times, and are typically located at the end of

aisles. Each non-Steiner node represents a Stock Keeping Unit’s (SKU) lo-

cation from which items need to be picked during the current tour. Theys

et al. (2010) propose that for warehouses with unconventional layouts, the

Steiner nodes can be discarded. Let G′ be the set of items to picked during

a tour. Among other things, an item contains information about location

of the products to be picked. Let D denote the depot in the warehouse,

and let G = G′ ∪ D. Also, let Xi,j be a binary decision variable, which

equals one if item i is picked directly before item j, and zero otherwise.

The problem can now be represented as a standard TSP:

min
∑
i∈G

∑
j∈G\i

ci,jXi,j , (2.1)

subject to
∑
i∈G

Xi,j = 1 ∀j ∈ G \ i, (2.2)

∑
j∈G

Xi,j = 1 ∀i ∈ G \ j, (2.3)

U1 = 1, (2.4)

2 ≤ Ui ≤ |G| ∀i �= 1, (2.5)

Ui − Uj + 1 ≤ (G − 1)(1−Xi,j), (2.6)

Xi,j ∈ {0, 1} ∀i, j ∈ G, (2.7)

where (2.2) and (2.3) guarantee that each item location is entered and

exited once, respectively. Equations (2.4), (2.5), and (2.6) are the subtour

elimination constraints of Miller et al. (1960). If for some i, j ∈ G, ci,j �=
cj,i, the problem is said to be asymmetric; otherwise it is symmetric.

22

Relevant Mathematical Models and Algorithms

2.1.3 Order Batching

A customer order o ∈ O consists of a subset Go of the set of all items (or-

der lines) G to be picked during some period of time, where O is the set

of all customer orders. The items in each order have to be picked to the

same container, or in the case of the sample retailer, to a roll container.

A combination of customer orders that can be picked together during a

pick tour by one order picker is a batch, and the set of all possible batches

is denoted by R. For each feasible batch r ∈ R, a version of a Traveling

Salesman Problem (TSP, see Section 2.1.2) can be defined. These TSPs

are usually solved with heuristics (Ratliff and Rosenthal, 1983, Randolph,

1993, Theys et al., 2010), or in some special cases with optimal algorithms

(Ratliff and Rosenthal, 1983, De Koster and Van der Poort, 1998, Rood-

bergen and De Koster, 2001b). In the commonly used order batching

model of Gademann and Van de Velde (2005), presented below, solving

the TSP is included implicitly only as the travel cost. This is not exactly

correct, but it does make the model much simpler when the focus is not

so much on the routing, but on the order batching algorithm. In Chapter

3, a joint precedence-constrained TSP and order batching problem is pre-

sented, while in the model of Chapter 6 the TSP is similarly absent from

the model as below.

Following Gademann and Van de Velde (2005), the order batching prob-

lem, which is central for the research presented in this thesis, can be mod-

elled as a set partitioning problem. Every batch r ∈ R is characterized by

a zero-one vector ar = (a1,r, ..., a|O|,r), where ao,r = 1 if and only if order

o ∈ O is included in batch r. Batch r is feasible only if
∑

o∈O ao,r ≤ N ,

where N is the maximum customer order capacity of the picking device

(the maximum batch size). Let cr be the cost to pick all items of batch r.

Furthermore, let Xr be a zero-one variable, such that

Xr =

⎧⎪⎨
⎪⎩
1 if batch r is selected

0 otherwise.
(2.8)

In order to minimize the total cost to pick all batches, the model can be

23

Relevant Mathematical Models and Algorithms

described as follows:

min
∑
r∈R

crXr, (2.9)

subject to
∑
r∈R

ao,rXr ∀o ∈ O, (2.10)

Xr ∈ {0, 1} ∀r ∈ R, (2.11)

where (2.10) guarantees that each order is assigned to one batch and one

batch only. Gademann and Van de Velde (2005) show that for batch sizes

larger than two (N > 2), the order batching problem is NP-hard.

2.1.4 Generalized Assignment Problem

The Generalized Assignment Problem (GAP) is an NP-hard optimization

problem (Fisher et al., 1986). Let tw,r be the cost for agent w ∈ W to

complete job r ∈ R. Let Xw,r be a binary decision variable, which is one

if agent w is assigned to job r, and zero otherwise. Furthermore, let aw,r

be the capacity absorption when assigning job r to agent w, and Mw is the

maximum capacity of agent w. The objective is to minimize the total cost

of assigning all jobs to agents. The problem can be formulated as follows:

min
∑
w∈W

∑
r∈R

tw,rXw,r, (2.12)

subject to
∑
r∈R

aw,rXw,r ≤ Mw ∀w ∈ W, (2.13)

∑
w∈W

Xw,r = 1 ∀r ∈ R, (2.14)

Xw,r ∈ {0, 1} ∀w ∈ W, ∀r ∈ R, (2.15)

where (2.13) is to enforce the capacity constraints for each agent and

(2.14) guarantees that all jobs are assigned each to one agent. In the

context of assigning batches to pickers, each job is a batch, and an agent

is a picker. Furthermore, in this thesis, aw,r = tw,r, i.e., the capacity ab-

sorption for an agent to complete a job is the same as the cost to complete

it.

24

Relevant Mathematical Models and Algorithms

2.2 Algorithms

2.2.1 Dynamic Programming Algorithm for Optimal Batching

This algorithm searches for an optimal assignment of orders to batches.

It is used to find optimal batching solutions for instances of limited size in

sections 3.3 and 4.2. Let O be the set of orders to be processed, and N the

maximum batch size, with |O| being the total number of orders. Each node

in the algorithm is a pair composed of a state a, indicating which orders

are included in a solution, and the state’s cost ca. The algorithm operates

using a priority queue-memory structure. As new nodes are added, the

priority queue is sorted in ascending order by cost. Thus the lowest cost

node is always on top. As the state, a binary vector a = {a1, ..., a|O|}, is

used. If ai = 1, order i is included in a node’s solution, otherwise not. As

the algorithm runs, and a new state an+1 is reached, a map data struc-

ture m is used to keep track of the state of the entering state an so that

m(an+1) = an. To find the (binary) batch r that was added to an to reach

an+1, the following formula is used: r = an ⊕ an+1, where ⊕ is the binary

exclusive-or operator. The steps of the algorithm are detailed below.

Step 0. Add a node with zero cost and state a = {0, ..., 0} to the priority

queue.

Step 1. Read the top node p, and its state a.

Step 2. If p contains all orders, extract the batch combinations in the

found solution from m, return p and exit.

Step 3. Find the smallest index i in a that equals zero.

Step 4. Find the set of feasible batches Ri that include order no. i, but

are not yet included in a (up to batch size of N).

Step 5. ∀r ∈ Ri generate new states ar.

Step 6. ∀r ∈ Ri find the costs car of ar.

Step 7. Remove p from the priority queue.

Step 8. ∀r ∈ Ri add new nodes pr = {ar, car} to the priority queue, and

set m(ar) = a Go to Step 1.

25

Relevant Mathematical Models and Algorithms

2.2.2 Clarke and Wright Based Algorithms

The order batching variants of the Clarke and Wright (1964) routing algo-

rithm, C&W(i) and C&W(ii) (De Koster et al., 1999), are presented below.

Both algorithms operate by updating a savings matrix, iteratively adding

feasible pairs of orders or order clusters to the current solution. The sav-

ings matrices indicate the savings if two orders or groups of orders are

batched together. Generally, the algorithms aim to add a pair of orders

or order clusters with the maximum savings value in the matrix to the

current solution, if feasible.

Basic variant: C&W(i)

This basic variant of the C&W algorithm provides a fast solution for the

batching problem, which is very usable for initial solutions and subse-

quent local search. It requires the routing of all combinations of one and

two customer orders from the set of all orders O, which is usually compu-

tationally manageable (see Section 3.2.1). The algorithm consists of the

following steps (De Koster et al., 1999):

Step 1. Calculate the savings for all possible customer order pairs

{i, j} ∈ O, where O is the set of all customer orders.

Step 2. Sort the savings in descending order.

Step 3. Select the pair with the highest savings.

Step 4. Three cases can be distinguished:

(i) Neither order has been previously included in the current

solution s. Add a batch consisting of orders i and j to solution

s.

(ii) Either i or j is included in s, but not both. Maximum batch

capacity permitting, add the as-of-yet unincluded order to the

batch of the included order. Otherwise proceed to Step 5.

(iii) Both orders have already been included in batches: proceed to

Step 5.

Step 5. Select the order combination with the next highest savings, and

proceed to Step 4.

If all customer orders o ∈ O are not yet present in solution s, add a single

order batch for each remaining order. Finally, to get the total routing cost,

the batches in the final solution are routed.

26

Relevant Mathematical Models and Algorithms

Recalculation of the Distance Matrix: C&W(ii)

The C&W(ii) algorithm considers order clusters as orders and replaces

steps 4 and 5 with the following:

Step 4. Combine order clusters to form a new cluster, if allowed by the

maximum batch size. If not, choose the next combination and

repeat Step 4.

Step 5. If all orders have not been included in the current solution,

proceed with Step 1, otherwise finish.

C&W(ii) is computationally much heavier than C&W(i), as it requires

evaluation (and thus routing) of batches consisting of more than two cus-

tomer orders inside the procedure to recalculate the distance matrix, in-

stead of just routing batches as the algorithm finishes.

2.2.3 Variable Neighborhood Search

The VNS algorithm presented in Albareda-Sambola et al. (2009) uses

three neighborhoods of different sizes to search a new solution in the

neighborhood of solution s ∈ S. The first neighborhood, N1, is composed

of a single heuristic move, which moves one order from a batch to an-

other. The second neighborhood, N2, is composed of N1 and two additional

moves: one that transfers two orders from one batch to another, and one

that transfers two orders to different batches. Neighborhood N3 includes

N2 in addition to three other moves: the first swaps orders between two

batches, the second transfers two orders from two separate batches to one

other batch, and the third moves an order from batch a to batch b and an

order from b to batch c. For a given instance I of a combinatorial prob-

lem, the VNS always reaches the same solution; there is no randomness

involved in the search. See Figure 2.1 for an illustration: ra, rb, rc ∈ R rep-

resent batches involved in each iteration of a search heuristic, oi, oj ∈ O
the related orders, while the heuristics are denoted by hi ∈ H, where

i ∈ {1, ..., 6}.

When the algorithm runs, there must exist at least one empty batch so

that it is always possible to transfer an order from a batch. Batch capacity

constraints are always maintained, and the feasibility of the solution is

preserved throughout the search. The flow of the algorithm is detailed

below in the following steps.

Step 0. Form an initial solution s0 by including one batch per order in

27

Relevant Mathematical Models and Algorithms

Figure 2.1. VNS neighborhoods and search heuristics. Adapted from Albareda-Sambola
et al. (2009).

addition to an empty batch. Set s = s0.

Step 1. Find the best neighboring solution s′ in N1(s). If f(s′) < f(s), set

s = s′, repeat Step 1; otherwise go to Step 2.

Step 2. Compute the savings values for merging all batch combinations.

If a solution with positive savings values exists among all

combinations, find the solution s′ where the merging of two batches

will result in the biggest savings, set s = s′, and repeat Step 2.

Otherwise proceed to Step 3. This step is similar to applying

C&W(ii) to the batching problem.

Step 3. Find the best neighboring solution s′ in N1(s). If f(s′) < f(s), set

s = s′, repeat Step 3; otherwise go to Step 4.

Step 4. Find the best neighboring solution s′ in N2(s). If f(s′) < f(s), set

s = s′, repeat Step 4; otherwise go to Step 5.

Step 5. Find the best neighboring solution s′ in N3(s). If f(s′) < f(s), set

s = s′, go to Step 4; otherwise exit.

To find the total routing cost, the sum of all costs of the batches batches

present in s is calculated.

28

Relevant Mathematical Models and Algorithms

2.2.4 Attribute Based Hill Climber

The Attribute Based Hill Climber (Whittley and Smith, 2004) can be clas-

sified as a Tabu Search-type algorithm. Instead of using a classic Tabu-list

of visited solutions which should be avoided, a memory of attributes and

their corresponding values is maintained.

Let s ∈ S be the current solution, and s′ ∈ S be the new candidate solu-

tion. For each problem, a set of neighborhood search heuristics (moves) is

defined. Two sets of attributes can be distinguished by applying a move

to reach solution s′ from solution s: the entering (s′ − s) and the leaving

(s−s′). The entering attributes form the set of attributes that do not exist

in solution s but are present s′, and vice versa for the leaving attributes.

Regardless of the type of combinatorial problem, the ABHC can be im-

plemented with three algorithms, presented below (Whittley and Smith,

2004). Algorithm 1 returns a boolean value for the acceptance of candi-

date solution s′, Algorithm 2 contains the attribute memory update func-

tion, and Algorithm 3 is a "steepest ascent/mildest descent" local search

algorithm.

In Algorithm 1, line 1, a candidate solution s′ is accepted if it contains an

attribute for which a bigger value has previously been stored in memory.

Otherwise if the new solution has a bigger cost (line 3), the new solution is

rejected. Finally, if the cost of s′ is higher than that of the biggest (worst)

cost in s, it is rejected. Otherwise, if moving from solution s to s′ deletes

one of the worst attributes in solution s (lines 6-11), s′ is accepted.

Input: Solutions s, s′, attribute memory amem
Output: Acceptance of solution s′

1 if ∃a ∈ (s′ − s) s.t. f(s′) < amem[a] then
2 return true;
3 else if f(s′) ≥ f(s) then
4 return false;
5 else
6 for i = 1 to |s− s′|+ 1 do
7 a = worst(i, s);
8 if f(s′) ≥ amem[a] then
9 return false;

10 else if a /∈ (s− s′) then
11 return true;
12 end
13 end
14 end

Algorithm 1: ABHC acceptance

Algorithm 2 updates the attribute memory as needed only: if the cost of

29

Relevant Mathematical Models and Algorithms

s′ is higher than that of s, only the new (entering) attribute values need

to be updated (lines 1-2). Otherwise, all of the attributes are updated.

Input: Solutions s, s′, attribute memory amem
1 if f(s′) ≥ f(s) then
2 amem[a] = min(amem[a], f(s′)) ∀a ∈ (s′ − s);
3 else
4 amem[a] = min(amem[a], f(s′)) ∀a ∈ s′;
5 end

Algorithm 2: ABHC memory update

A single local search iteration of the ABHC is described in Algorithm 3.

On line 1, the worst |s − s′| + 1 attributes in s are identified and stored.

The cost of the current best solution (best) is initialized infinity on line

2. The neighborhood of s is iterated through updating the best solution

when a better solution is found and accepted (lines 3-7). Finally, updates

to the attribute memory are done on line 9 if a new candidate solution is

found in N (s).

Input: Current solution s, attribute memory amem
Output: Updated solution s

1 identifyWorstAttributes(s)
2 best = null {initialize f(best) = ∞}
3 for all s′ ∈ N (s) do
4 if f(s′) < f(best) and accepts(s′, s) then
5 best = s′

6 end
7 end
8 if best �= null then
9 update(s, best)

10 s = best

11 end
Algorithm 3: ABHC main routine

Henn and Wäscher (2012) use ABHC to solve the order batching prob-

lem. Two types of attributes are explored: the presence of a pair of orders

{o1, o2} in any batch, and the assignment of an order o to a batch r (i.e.,

the pair {o, r}). They find that using the pair of orders as the attribute

leads to better performance in their algorithm. Two deterministic heuris-

tics form the neighborhood of a solution s: a swap of two orders between

batches and a move of an order from one batch to another (h4 and h1 in

Figure 2.1, respectively).

30

Relevant Mathematical Models and Algorithms

2.2.5 Large Neighborhood Search

According to Pisinger and Ropke (2010), neighborhoods in LNS (Shaw,

1997) methods are defined by destroy and repair methods. They are also

called in removal and insertion methods in other sources, e.g., in Ropke

and Pisinger (2006a) and Gharehgozli et al. (2013). The destroy method of

a neighborhood search heuristic h ∈ H breaks down a part of a solution s

in a predefined manner, while the repair methods try to find good alterna-

tives to s by constructing another feasible solution s′ in the neighborhood

of s based on the repair method associated with h. These methods typi-

cally contain some element of randomness in choosing what parts of s to

modify.

Let i(s′) denote a repair and e(s) destroy function of a LNS algorithm

for a partial solution s′ /∈ S and solution s ∈ S, respectively. Algorithm

4 shows the pseudocode implementation of a LNS algorithm. As input,

a feasible starting solution is needed. The algorithm iteratively applies

destroy and repair methods in succession, and it stores new best known

solutions until an exit criterion is met (such as a cap on the number of it-

erations). The acceptance function on line 4 can take the form of a greedy

heuristic or something else, e.g., a simulated annealing acceptance crite-

rion (see Section 6.3.4).

Input: Feasible solution s
Output: Best found solution s

1 sbest = s
2 while Stop criterion is not met do
3 s′ = i(e(s))
4 if accept(s, s′) then
5 s = s′

6 end
7 if f(s′) < f(sbest) then
8 sbest = s′

9 end
10 end
11 return sbest

Algorithm 4: Large Neighborhood Search (Pisinger and Ropke, 2010)

2.2.6 Adaptive Large Neighborhood Search

The probability of choosing heuristic h ∈ H with the roulette wheel

method is

qh =
θh∑

h′∈H θh′
, (2.16)

31

Relevant Mathematical Models and Algorithms

where θh ∈ R
+ is the weight of heuristic h. As the algorithm runs, some

heuristics will perform better than others. Good performance of a heuris-

tic will increase its weight and thus the probability of it being selected

again by (2.16). Each of the heuristics has a score, which is updated when-

ever the heuristic is selected based on the heuristic’s search success. Each

score Ψh is updated by:

Ψh = Ψh +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ1 if the new solution is the global best.

σ2 if the new solution is better than the current one.

σ3 if the new solution is accepted.
(2.17)

An update to a heuristic’s weight θh is done every δ iterations by

θh = λ/ζhθh + (1− λ)Ψh, (2.18)

where λ is the decay parameter, which controls the rate of change in the

weights, and ζh ≥ 1 is a normalization factor which reflects the computa-

tional effort that h requires (Ropke and Pisinger, 2006b). At the beginning

and after an update of the scores, i.e., every δ iterations, the values Ψh are

set to zero ∀h ∈ H. If a hill climbing scheme is not used in the algorithm

updates to the scores occur only when a new global best solution is found,

i.e., Ψh can only get the value σ1.

A pseudocode for the ALNS is shown in Algorithm 5 (Pisinger and

Ropke, 2010). The main differences between algorithms 5 and 4 are the

inclusion and updates of the heuristics’ selection probabilities on lines 2

and 12, respectively. Additionally, instead of explicitly referring to each

pair of destroy and repair methods, their combinations are marked more

generally with h.

2.3 Summary

Each of the presented combinatorial optimization problems is NP-hard

by itself. Combining this with the realistic instance sizes dealt with in

this thesis, which in most cases result in very large search spaces and/or

long computational times, local non-optimal methods are in practice the

only option to solve the problems. The presented algorithms, apart from

the C&W methods and the optimal batching algorithm, can be classified

as local search methods. All the other algorithms are deterministic in

32

Relevant Mathematical Models and Algorithms

Input: Feasible solution s
Output: Best found solution s

1 sbest = s
2 ph = {1, ..., 1}
3 while Stop criterion is not met do
4 select neighborhood search heuristic h ∈ H using ph
5 s′ = h(s)
6 if accept(s, s′) then
7 s = s′

8 end
9 if f(s′) < f(sbest) then

10 sbest = s′

11 end
12 update ph
13 end
14 return sbest

Algorithm 5: Adaptive Large Neighborhood Search (Pisinger and
Ropke, 2010)

the sense that their exploration does not depend on any random routine.

For reasonably sized problems with no computationally expensive sub-

procedures that must be run when new solutions are found, they function

very well, as can be seen from the following chapters. However, when

search spaces grow in size, such as when considering two of the presented

problems in unison, or if they have expensive subprocedures, determinis-

tic search algorithms cannot explore the space of solutions in reasonable

time.

33

Relevant Mathematical Models and Algorithms

34

3. Order Batching when Items Have to
Be Picked in a Strict Sequence

Batching orders and routing pickers while respecting precedence con-

straints is complex. Order batching is NP-hard for batches of size

three or higher (Gademann and Van de Velde, 2005). Routing pickers

while respecting precedence constraints has complexity of O(N2(P +1)N)

(Psaraftis, 1980a), where N is the number of customer orders in the batch

and P is the maximum number of items in an order. Finding exact so-

lutions for large orders and large batches becomes rapidly intractable.

The company used as a reference in this thesis has 2,000 orders per day

and up to 50 products per order, which have to be batched in batches of

three orders. Batching aims to reduce total travel distance by combin-

ing multiple similar orders (which have to visit overlapping parts of the

warehouse). As the problem has to be solved multiple times per day and

because of large and exponentially growing search spaces and relatively

time consuming routing exact computation of the order batching is not

feasible and thus a heuristic method is used.

The problem is solved using a generic solution method. For the batch-

ing, a simulated annealing-based combinatorial search algorithm based

on maximizing total savings in travel distance is used. Selecting the

orders to be batched is based on comparing all pairs of orders and es-

timating the savings due to combining a larger number of orders. This

reduces computation times substantially, while the error compared to op-

timal combinations is within 1.2%. The routing can be solved using an

A∗-type shortest path algorithm. The method is exact and general, not

constrained by the particular warehouse layout. The method is readily

applicable to any warehouse where batch picking is applied in waves and

the orders have strict internal precedence constraints.

The contribution of the research presented in this chapter is a struc-

tured approach for the joint order batching and picker routing problem

35

Order Batching when Items Have to Be Picked in a Strict Sequence

Figure 3.1. Top view of the warehouse with seven drop-off locations indicated at the top
(marked 1-7). The empty bin depot is denoted with D. The 57 aisles are
unidirectional, while the three cross-aisles are bidirectional. The aisle-to-
aisle distance is 5.5 m the slot-to-slot distance is 3.7 m, which is also the
width of the central cross-aisle.

in warehouses with any layout or any strict sequence constraint using

an innovative way of estimating batch savings. The method is fast, and

compares well to optimal solutions and heuristics from literature. In the

reference case, travel distance savings of nearly 16% could be achieved.

3.1 Problem Description

In this section the combined batching and routing problem as a variant

of the precedence-constrained Traveling Salesman Problem is described.

The process is as follows. A given number of trucks pick the customer

orders. Each customer order represents a roll container (a bin in this con-

text) to which items must picked to in a strict pre-specified sequence. The

items do not have to be stacked on top of each other in this order, if there

is space in the bin to do otherwise. Each truck starts completely empty

and then receives a set of orders to be picked. The number of received

orders per truck does not exceed N , the number of bins carried by a truck.

Before the items of an order can be picked, for each order an empty bin

has to be collected at the empty bin depot (see Figure 3.1). Subsequently,

each truck travels through the warehouse to pick the items of the orders

in the pre-specified sequence per order. Once all items of an order have

been picked, the truck delivers the order at its drop-off location. Once all

orders have been completed and the truck is empty again, it receives a

new batch of orders. A batch is the set of orders handled in a route by a

truck between the moment the truck receives this set and the moment it

has dropped off all orders and is empty again.

Given the assignment of orders to batches, the sequence in which the

batches are carried out is not relevant for the total picking time.

36

Order Batching when Items Have to Be Picked in a Strict Sequence

3.1.1 Notation

There is a set O of orders to be carried out. Each order consists of a

number of items that have to be picked at specific pick locations. All items

of an order are picked in a roll container of one of the available trucks

(see Figure 1.2). Once all items of an order have been picked, it must be

delivered at its pre-specified drop-off location (one of the locations marked

with 1-7 in Figure 3.1).

The set of all ordered items is indicated by G. Every item g ∈ G is

characterized by three attributes: pick location; the customer order to

which it belongs to; and the number of the units that need to be picked.

The order to which item g belongs is indicated by o(g) ∈ O. The items

of each order must be picked in a pre-specified sequence. The sequence

number of item g ∈ G of order o(g) ∈ O is indicated by pg. The distance

between items g and k ∈ G is equivalent with the distance between the

corresponding pick locations. This distance is denoted by dg,k.

The first item of an order corresponds with picking up an empty roll

container at the empty roll container depot. The last item of an order

corresponds with the delivery of the order at its drop-off location. The

sets of first and last items are denoted by Gf and Gl, respectively.

Note that the model described in this section is only meant to explain

the combined batching and precedence-constrained routing problems in

detail. For computational purposes other models and techniques that are

described later on in this chapter are used.

Model In order to model the batching and routing problem, (i) the orders

have to assigned to the batches, and (ii) the sequence of the items of each

order needs to be kept track of. To that end, a set P of potential batches is

introduced. The number of potential batches should be sufficient to carry

out all orders. For example, |P| = |O| is certainly enough (but often much

too large), since this corresponds to the situation that each order is picked

on its own. Each batch can contain up to N bins. The set of bins is denoted

by B. The batch to which bin b ∈ B belongs is denoted by r(b) ∈ P.

For each order o ∈ O and bin b ∈ B a binary decision variable Yo,b is intro-

duced to indicate whether or not order o is picked in bin b. Furthermore,

let Xg,k,r be a binary decision variable indicating whether batch r ∈ P
goes directly from item g ∈ G to item k ∈ G. Finally, let Ug ∈ N indicate

the relative position of item g ∈ G in the tour that picks the order of item

g. The relative position is the integer position of g in the tour.

37

Order Batching when Items Have to Be Picked in a Strict Sequence

Now the model can be described as follows:

min
∑
g∈G

∑
k∈G\{g}

dg,k
∑
r∈P

Xg,k,r (3.1)

subject to
∑
b∈B

Yo,b = 1 ∀o ∈ O (3.2)

∑
o∈O

Yo,b ≤ 1 ∀b ∈ B (3.3)

∑
k∈G\{g}

Xg,k,r =
∑

b∈B:r(b)=r

Yo(g),b ∀g ∈ G \ Gl ∀r ∈ P (3.4)

∑
g∈G\{k}

Xg,k,r =
∑

b∈B:r(b)=r

Yo(k),b ∀k ∈ G \ Gf ∀r ∈ P (3.5)

Ug − Uk + |G| ·
∑
r∈R

Xg,k,r ≤ |G| − 1 ∀g, k ∈ G : g �= k (3.6)

Ug − Uk ≥ pg − ph ∀g, k ∈ G : o(g) = o(k) ∧ pg > pk (3.7)

Yo,b ∈ {0, 1} ∀o ∈ O ∀b ∈ B (3.8)

Xg,k,r ∈ {0, 1} ∀g, k ∈ G : g �= k ∀r ∈ P (3.9)

Ug ∈ N ∀g ∈ G (3.10)

According to (3.2), each order is assigned to exactly one bin, and (3.3)

states that each bin covers at most one order. Thus the orders are correctly

assigned to the bins.

According to (3.4), each location related to an item (except a drop-off)

is exited so that the corresponding order has been assigned to one of the

bins in the batch. Similarly, constraints (3.5) state that each item, except

a first location of an order, is entered so that the corresponding order is

assigned to one of the bins of the batch. It follows that all items of an

order are picked by the same batch.

Furthermore, constraints (3.6) are based on the TSP subtour elimina-

tion constraints of (Miller et al., 1960). According to (3.6), the values Ug

represent the (relative) positions of the items in each batch: if a batch

goes directly from item g to item k, then (3.6) implies Uk ≥ Ug + 1. The

values Ug need not be consecutive integers within a batch. Anyway, for

two items g and k of the same batch, Ug < Uk stands if and only if item

g is picked before item k. It also follows that the sequence of items of a

batch does not contain subtours.

Furthermore, constraints (3.7) state that two items belonging to the

38

Order Batching when Items Have to Be Picked in a Strict Sequence

same order are picked by the same batch in such a way that their (rel-

ative) positions in the batch are at least the a priori specified difference.

Thus Ug < Uk if and only if pg < pk. It follows that the precedence con-

straints of the items of each order are satisfied.

Constraints (3.8), (3.9) and (3.10) specify the binary and non-negative

character of the decision variables.

The objective function (3.1) represents the total routing costs of the

batches. Thus the optimal solution of (3.1)–(3.10) is the solution with

minimum total routing costs.

3.2 Solution Approach

The algorithm presented in this section, Precedence-Constrained Esti-

mated Savings based batching, or PCES for short, incorporates two dis-

tinct sub-algorithms:

1. an optimal A∗-algorithm for the routing;

2. a simulated annealing-based combinatorial search algorithm, SA-

REMIX, for searching the space of possible batches.

Figure 3.2 shows the flow diagram of PCES. The initialization is per-

formed by inputting a selected set of customer orders O, in step 1, usually

more than can be processed at once. In step 2, the next set of R customer

orders is selected for batching. Then batches with two customer orders are

constructed and routed in steps 3 and 4. In step 5, estimates of savings for

batches larger than two are calculated. To find the best batch allocation,

a combinatorial search is performed in the space of batches with real and

estimated savings in step 6. Estimated savings are calculated as needed

in steps 5 and 6. In step 7, optimal routes are found for those batches that

maximize the savings. Steps 5 and 6 are repeated for a fixed number of

iterations to find a good solution for the order-batching problem. If some

customer orders are left in O, the algorithm returns to step 2, otherwise

it terminates with its solution in step 8.

39

Order Batching when Items Have to Be Picked in a Strict Sequence

Figure 3.2. Solution approach for solving the batching problem with estimated savings
with PCES.

3.2.1 Estimating Savings from Batching More than Two
Customer Orders

The main reason for batching customer orders is to generate savings in

travel distance compared to picking these customer orders independently.

If computationally feasible, all possible routes can explicitly and exhaus-

tively be constructed from all possible customer order combinations and

a combinatorial search performed in the exhaustive space, thus minimiz-

ing the travel distance. The number of possible combinations C up to

the maximum batch size N of all R customer orders can be calculated by

40

Order Batching when Items Have to Be Picked in a Strict Sequence

Equation (6.9), below.

C =

N∑
i=1

⎛
⎝ R

i

⎞
⎠ (3.11)

subject to R ≥ N and C,R,N ∈ N.

Especially with larger batch sizes (N ≥ 3), explicitly evaluating all pos-

sible batch combinations quickly becomes intractable due to the large

number of combinations and the complexity of the routing. This is coun-

tered by estimating the savings made for batches of more than two cus-

tomer orders.

Instead of performing a combinatorial search in the explicitly evaluated

search space of all batch travel distances, only a part of the space con-

sisting of batches each with real or estimated savings is searched. Real

savings are found by constructing routes for batches of size two and sub-

tracting their travel distances from the respective single-order travel dis-

tances. Estimates for savings of batches of size three or larger are cal-

culated on the basis of the real travel distances of batches of sizes one

and two. With PCES based batching, in addition to routing all batches of

size two and one, only those batches with three or more customer orders

which are found using SA-REMIX need to be routed. Compared to routing

all batches with three or more orders, the number of calls to the routing

algorithm for batches of size three or more is reduced from

C3+ =

N∑
i=3

⎛
⎝ R

i

⎞
⎠ (3.12)

to R/N (plus a possible remainder if N > 3).

In the following the way to estimate the travel savings for batches of

three and more orders is explained. Let i, j and k be three orders that can

be batched together. If by batching order i with j, some travel distance is

saved when compared to picking them independently, batching is benefi-

cial. The savings resulting from batching the two customer orders i and j

can be calculated by:

Si,j = ci + cj − ci,j (3.13)

where ci,j is the batched travel distance of customer orders i and j, ci

and cj the travel distances for picking customer orders i and j indepen-

dently. The travel distances in Equation (3.13) are the real travel dis-

41

Order Batching when Items Have to Be Picked in a Strict Sequence

tances which have been evaluated with the routing algorithm presented

in Section 3.2.2.

Likewise, let batching i with k and j with k be beneficial. This would

then imply that batching all three of these customer orders into a batch

of size three would also be beneficial. If these three customer orders are

batched, the savings can be calculated by:

Si,j,k = ci + cj + ck − ci,j,k (3.14)

Expanding from this, if i, j and k are batched, the savings can be estimated

by:

S̄i,j,k = Si,j + Si,k + Sj,k (3.15)

Double counting can be eliminated by dividing (3.15) by two. However,

as these three order batch savings estimates are used in the same search

space with the real two order batch savings, an added emphasis is given

to the larger batches by not eliminating the double counting. By combin-

ing (3.13) and (3.15), the estimated savings of a size three batch can be

calculated:

S̄i,j,k = 2ci + 2cj + 2ck − ci,j − ci,k − cj,k (3.16)

Let V be a set of n arbitrary customer orders {1...n} and cn be the travel

distance of customer order n. Using this notation, if a batch is formed

from the customer orders in V, the savings can be found by:

SV =
∑
i∈V

ci − cV (3.17)

Using the same notation as above, the total savings resulting from batch-

ing N customer orders can be estimated:

S̄V =

N−1∑
i=1

(

N∑
j=i+1

(ci + cj − ci,j)) (3.18)

Using (3.18), estimates can be calculated for all possible combinations up

to a given batch size. To use this equation, only the batch tour distances of

batches of size one and two are needed. The real savings for batches of size

two are calculated, while for size three and more they are estimated. For

batches of size one, the savings value is set to zero. In practice, estimates

are calculated as they are needed, i.e., in steps 5 and 6 of Figure 3.2.

42

Order Batching when Items Have to Be Picked in a Strict Sequence

3.2.2 Pick Route Construction

The A∗-algorithm introduced by Hart et al. (1968) is used to find the op-

timal pick route. This algorithm’s states are organised in a lattice, as

states can be reached through multiple paths. The A∗-algorithm’s state

is defined by the vector m = (m0,m1, ...,mN), similar to Psaraftis (1980b)

and Psaraftis (1983). m0 ∈ {1, ..., N} defines the customer order in which

the last product was placed. mi, i ∈ {1, ..., N}, is the number of locations

visited for customer order i (including the delivery location).

An example is shown in Figure 3.3. The algorithm’s state starts with

empty bins, and the picker at the depot. The state in the starting location

is m1 = (m0, 0, ..., 0), where m0 is an arbitrary customer order. To pick

an item to customer order i, mi is incremented by one and set m0 = i.

Keeping track of m0 is important, as the decision of which of the orders

to pick next depends on the location of the storage slot of the item that

was last picked. Otherwise there would be up to N possible locations

where the picker could be when calculating distances to the next possible

pick locations instead of just one. Figure 3.4 gives an example of the state

space for two customer orders with two items to be picked in each of them.

The arcs between two adjacent states represent possible state transitions

by moving to the next location and picking the item required. The A∗-

algorithm searches the lattice by using the exact travel distance to reach

a state plus an estimate for the distance to reach the final state, where

all customer orders have been picked and delivered and the picker is at

the depot. As long as the estimate underestimates the remaining travel

distance, the algorithm is guaranteed to find the optimal solution as it

progresses through the lattice (Hart et al., 1968). Psaraftis (1980b) uses

a dynamic programming approach with no estimated distances to prune

the search space. He also considers additional constraints which are not

used here, such as customer preferences between waiting and riding, and

time windows (Psaraftis, 1983).

The shortest total travel distance to reach a state m for a given set of

customer orders V is denoted by d(m,V) . For each state and the selected

set of customer orders, an estimate for the remaining travel distance from

state m to the depot and add it to the state cost is calculated by d̄(m,V).
The single customer order with the longest remaining travel distance to

the goal is found and d̄(m,V) is set to equal that distance. Let d̄i(m,Vi) be

the travel distance to goal by only visiting the locations of customer order

43

Order Batching when Items Have to Be Picked in a Strict Sequence

Figure 3.3. A truck picking three customer orders into three separate bins. Items in
bold have already been picked; the underlined one denotes the last pick and
italicized ones are possibilities for the next transition, representing state
(2,2,1,3).

Figure 3.4. Left: a Hasse diagram of the state space formed by two customer orders
with two items to be picked into each of them. Inside the circles, the state
name is at the top, the state vector is at the bottom. The first member of
the state vector refers to the customer order where the last pick occurred,
the following two refer to the customer order location indices. The highest
location index (3 in this case) represents the delivery location for the given
customer order. Right: possible transitions and distances from the state m9

in the Hasse diagram.

44

Order Batching when Items Have to Be Picked in a Strict Sequence

i, i ∈ {1, ..., N}. The estimate is calculated by:

d̄(m,V) = max
i∈{1,...,N}

d̄i(m,Vi). (3.19)

The estimate of the total distance to the goal state is calculated from

ē(m,V) = d(m,V) + d̄(m,V). Doing this prevents some of the unnecessary

exploration of states that are not part of the optimal tour.

As an example, if there are two customer orders with two products to be

picked in each and a delivery location for both orders, a lattice is formed

by all the possible states mi, ∀i ∈ {1, ..., 26}. In Figure 3.4, all states

are enumerated with m1 being the starting state and m26 being the end

state. Arrows indicate the reachability of states. The number of states

in the lattice and the time complexity for the algorithm (Psaraftis, 1980a)

can be found from (3.20) and (3.21), respectively. Note that in (3.21) the

product is preceded by N2, and not by N as in (3.20). This is due to the

fact that all states in the lattice have at most N incoming arcs (see Figure

3.4).

M = O(N
N∏
i=1

|Vi + 1|), (3.20)

V = O(N2
N∏
i=1

|Vi + 1|). (3.21)

where the sum term removes all states that are infeasible such as [1, 0, 1].

|Vi| is incremented with one as the delivery location is included.

In Figure 3.4 on the right side, the possible transitions and distances

from state m9 are shown. Let the total distance to that state be a9. To

calculate the heuristic distance to goal, all remaining items can either be

added to bin 1 or 2, but not to both. The heuristic distances are thus

d̄1(m9,V) = 1 (as only one item can be added to order 1) and d̄2(m9,V) =
2 + 4 = 6 (as two items can be added to order 2). d̄2(m9,V) is chosen for

the heuristic as per (3.19). Then the estimate of the total cost of the goal

state is ē(m9,V) = a9 + d̄2(m9,V). The estimate for the total distance to

goal is very optimistic. If a better estimate were to be used, the running

times of the algorithm might decrease.

The A∗-algorithm is used to route batches of two customer orders, as

well as the final batches after batching has been finished, in steps 4 and

7 of the PCES algorithm, as explained in Figure 3.2, respectively.

45

Order Batching when Items Have to Be Picked in a Strict Sequence

3.2.3 Batching

After all savings and travel distances for batches of size two have been

determined, orders have have to be batched in batches of size up to N .

The batching algorithm presented in this section, SA-REMIX, is a Large

Neighborhood Search algorithm (see Section 1.4.5) consisting of a con-

struction phase followed by improvements embedded in a simulated an-

nealing scheme to avoid local optima. The decision to use a simulated

annealing metaheuristic in the algorithm was made based on it being

previously incorporated into Large Neighborhood Search-type methods in

Ropke and Pisinger (2006a) and Pisinger and Ropke (2010). C&W(i) is

used to form an initial solution. This starting solution gives an upper

bound for the total travel distance. Next, a REMIX (a random destroy-

random repair) procedure is applied.

REMIX This procedure randomly selects a fixed number of batches from

the ones that are currently selected (steps 5 and 6 in Figure 3.2). The

orders contained in the batches are mixed and randomly sampled again

to form a number of new batches. The REMIX procedure is embedded

in a simulated annealing routine. The size of the new batches is limited

to N . The total travel distance savings of these new batches (Snew) are

estimated and compared with those of the original batches (Sorg). Let

Q ∼ U [0, 1] be a uniformly distributed random variable and Tn be the

current temperature, where n is the current iteration. New batches are

accepted if one of the following two criteria is met:

1. if their savings are larger than those of the original batches, i.e., Snew >

Sorg;

2. or, otherwise, if Q < exp((Snew − Sorg)/Tn).

The initial temperature T0 is set to equal the highest savings value of the

batches with two customer orders. Updates to Tn are done using Lundy’s

(Lundy and Mees, 1986) temperature schedule: Tn+1 = Tn/(1 + Tn/n).

3.3 Validation and Results

In this section, the results of batching with the method presented in Sec-

tion 3.2.3 are compared both with company results and with optimal and

46

Order Batching when Items Have to Be Picked in a Strict Sequence

heuristic batching, while using the A∗-routing. The company data is used

as input for the experiments. Data consisting of voice-picking logs of al-

most 35,000 batches (approximately 100,000 customer orders) was ana-

lyzed, each consisting of up to three customer orders and an approximate

total of 1.8 million log entries (i.e. pick locations to be visited), spanning

the first three months of 2011. Each log entry includes a slot address, pick

time, batch number, customer order number and picker number. Also the

sequence in which each customer order should be picked is given. Cur-

rently the batches are created by grouping the customer orders per truck

delivery route in a FCFS sequence. The pick routes are constructed using

the S-shape heuristic, preserving single-directional aisle travel and strict

item precedence.

The experiments are carried out with 1,536 customer orders sampled

from the data set (about one day’s work). The customer orders of each day

are grouped in waves. Each wave represents a number of truck delivery

routes with scheduled departure times within a certain time interval. To

make a meaningful comparison between different algorithms, the number

of customer orders per wave, or wave size R, is set to vary between 12 and

150. As most of the orders arrive early before the morning shift starts,

it is possible to do order batching for much larger instances, especially if

truck departure times overlap. Due to the relatively long computational

time of the routing, such instances are impractical to solve with most of

the tested algorithms from the literature. The results show, that after

the wave size of 126 the differences in relative performance between the

different algorithms do not change much, only the computational time

grows.

All experiments were run single-threaded on an Intel(R) Core(TM) i7

920 CPU running at 2.67 GHz and with 12 GB of memory. Due to the

exponential complexity of most algorithms that solve the order batching

problem for a maximum batch size of three or more orders, the time to

solve a given problem instance is considered in addition to the solution

quality. The space of possible batch combinations when maximum batch

size is three or more increases exponentially with the wavesize R. Thus

the number of simulated annealing iterations run with PCES is increased

with wavesize. A good number of iterations for the SA-routine that scales

with both wave and batch sizes was found to be J = 500, 000+ (2N − 5)R2.

This was determined ad-hoc fashion. Other amounts should work as well,

but this amount produced consistently good results and proved scalable.

47

Order Batching when Items Have to Be Picked in a Strict Sequence

Case Description The warehouse is operated by a retail store chain sell-

ing non-food products and supplying 148 stores mostly on a daily basis.

Orders arrive online and can be processed in five or six waves per day of R

customer orders each. Orders are picked manually from pallet racks into

customer orders using a picker-to-parts order picking system (De Koster

et al., 2007). Pickers have to travel long distances as the warehouse has

57 aisles of 104 meters each and three cross-aisles, see Figure 3.1. The to-

tal warehouse area is 75,000 m2, the average pick tour is 880 meters, and

a warehouse picker travels an average of 7300 meters a day. The company

sells and stores over 50,000 SKUs. Each warehouse aisle has 52 pick slots,

which are divided into four subslots and two storage levels. This amounts

to a total of 23,296 different pick locations in the warehouse. These lo-

cations are condensed into 2912 locations and corresponding items. The

distance between two locations is measured using Manhattan distances,

taking into account that pickers can only travel along the aisles in one

direction, for safety reasons, and to avoid congestion. If the next pick is

from a slot which is in the same aisle but in opposite travel direction, the

travel distance is calculated respecting these traffic rules.

The warehouse uses a family grouping strategy to allocate items to stor-

age slots, similar to the stores. Such a storage strategy is common in

many retail warehouses. Efficiency losses in the warehouse by not using

class-based storage are traded-off against efficiency gains in the stores

by faster customer order unloading and shelf replenishment (De Koster

et al., 2007). The customer orders must be filled in a predefined sequence,

primarily due to the family grouping. Each item has a unique pick lo-

cation in the warehouse. The contents and pick sequences for each of

the customer orders are generated a priori by a Warehouse Management

System (WMS). Every pick route contains up to three customer orders (a

batch), currently all for the same store, in one tour of the warehouse (see

Figure 3.1), but this might change, depending on potential travel time sav-

ings. A picker drives an order picking truck (see Figure 1.2) and follows

a tour determined by the on-board customer orders, directed by a truck-

mounted RF terminal. In addition to the truck terminals, the company

uses a pick-by-voice system, which is not used for guiding the pickers, but

only for pick confirmation (De Koster et al., 2007). Pickers can overtake

each other. The warehouse layout can be seen in Figure 3.1. The delivery

location of each completed customer order is known in advance: it is the

one closest to the dock door from which the outbound truck will depart to

48

Order Batching when Items Have to Be Picked in a Strict Sequence

the store.

Each order picking tour related to a single batch starts from the depot,

see Figure 3.1. Before returning to the depot, all relevant pick locations

and drop-off points must be visited. There are seven drop-off locations in

the warehouse.

Validation of the Estimation Method To speed up batch evaluation, all

batches of three customer orders or more are not explicitly routed in PCES

but estimated using (3.16) or (3.18). To validate this approach, a set of

10,000 batches (P) of three customer orders is sampled from the previ-

ously sampled data set of 1,536 customer orders. The 10,000 batches are

all routed, and real and estimated savings are calculated for all r ∈ P
using (3.14) and (3.16), respectively. Thus when calculating real sav-

ings, explicit routing is done for batches size three or more as well. All

batches with negative estimated savings are discarded, as they would

never be chosen by SA-REMIX, resulting in just over 5000 batches or

the set P+ ⊂ P. Both sets of savings, i.e., real and estimated (P+
v and

P+
e , respectively), are then ordered in descending order to establish real

and estimated integer batch ranks vrv and vre , ∀r ∈ P+. For validation of

the estimate of a batch r, a proportional batch rank error calculated by

εr = |vre − vrv|/|P+| is used.

Figure 3.5 shows a moving average over 20 values of εr, ∀r ∈ P+, sorted

by real batch rank (with 1 being the batch with the highest savings). For

the best batch, the average is over batches ranked 1,..,20, for the second

best, it is over 2,...,21 and so on. In SA-REMIX, the interest lies in batches

with the highest savings, i.e., finding the best feasible combination of the

best ranked batches. Figure 3.5 shows that the savings estimates for the

best batches are much better than for the rest of the batches. This vali-

dates the performance of PCES as seen later in the results.

Comparison to Batching Heuristics from Literature The solution quality

and the computation time of PCES are both compared to the following

heuristics for maximum batch sizes three and four: C&W(i) and C&W(ii)

from De Koster et al. (1999); the VNS-batching algorithm by Albareda-

Sambola et al. (2009); ABHC by Henn and Wäscher (2012) which uses ei-

ther C&W(i) (a new variant of the ABHC used in this chapter) or C&W(ii)

(as in Henn and Wäscher (2012)) as the initial solution; and the generally

best performing seed algorithm combination from De Koster et al. (1999)

(seed selection by finding the order with the longest travel time, and or-

der addition by the order that minimizes the sum of the distances from

49

Order Batching when Items Have to Be Picked in a Strict Sequence

Figure 3.5. Error % in comparing batch ranks, ordered by the batch with the highest
total rank for 10,000 batches of three customer orders sampled from a set of
1,536 customer orders. Only 4,900 are shown here so that small ranks can
be distinguished.

the closest item in the seed to every item in the order). A 240 minute time

limit is imposed for each wave size.

The results are shown in Figure 3.6. Figure 3.6a shows the percent-

age improvement compared to C&W(ii) in travel distance for wave sizes

between 12-150, for all the other heuristics for a maximum batch size of

three customer orders. C&W(i) is the weakest heuristic and always infe-

rior to C&W(ii), as has been shown in the literature previously, see, e.g.,

De Koster et al. (1999) and Albareda-Sambola et al. (2009). However,

C&W(i) is computationally light. The seed selection heuristic did not per-

form well, so it was left out of the results. Both the VNS and ABHC

base their good results on detailed exploration of the combinatorial batch

space, thus requiring a lot of batch evaluations. As the space gets larger

with larger wave sizes, the number of batch evaluations increases expo-

nentially. Initially, up to wave size 30, the VNS heuristic comes out on

top — after this, the time limit for solving the problem kicks in, and the

solution quality degrades rapidly, see Figure 3.6a. This is partly due to

the fact that no initial solution is used - the search starts from each order

being in a separate batch.

A similar effect imposed by the time limit and the computationally ex-

pensive batch evaluation can be seen with ABHC. Initially, it is the second

best algorithm, but within the given time limit it can only make some im-

50

Order Batching when Items Have to Be Picked in a Strict Sequence

provements to the initial solution found with C&W(ii). Henn and Wäscher

(2012) suggested that they got comparable results with initial solutions

found with a FCFS-algorithm. However, during the tests it was found

that using C&W(ii) to obtain a decent initial solution requires less com-

putation time and produces better results. In general, PCES has bet-

ter solution quality than C&W(ii) with less computation time (see Figure

3.6b). Also, for medium to large wavesizes, its solution quality is better

than those of all the other methods, while simulataneously being much

faster.

In Figure 3.7a the solution qualities of PCES and ABHC (initial solu-

tion with C&W(i)) are compared to C&W(i) for batches of four customer

orders. The number of possible batch combinations is much larger than

for batches of size three (see (6.9)). The routing is also computationally

much more expensive. C&W(ii), VNS and thus also ABHC with C&W(ii)

all fail to reach a proper solution result withing the time limit and are

thus left out from the results. Using PCES yields a mean improvement

of 2.3% compared to the batching of C&W(i), while ABHC is able to im-

prove the C&W(i) initial solution by 0.01% on average, mostly because of

the timelimit. Computational times of C&W(i) and PCES are similar for

small wave sizes. PCES nears the timelimit as the number of iterations of

SA-REMIX is increased quadratically with wave size, while ABHC always

hits the time limit.

In both instances of three and four customer orders, PCES exhibits simi-

lar behaviour. For small wavesizes (up to 24) the error in the batch savings

estimate dominates, and a good result is not reached reliably. However,

recall that the estimate (Equations (3.16) and (3.18)) is quite good in es-

timating batches with high savings (see Figure 3.5), so as the number of

such batches increases exponentially with both wave and batch size, the

probability of finding a good solution increases with it.

Furthermore, it was found that the solution time is proportional to the

number of batch evaluations of maximum batch size (three or four in this

study).

Comparison to optimal batching It is possible to compare the results of

the batching procedure presented in this chapter, SA-REMIX, with opti-

mal batching for up to 27 customer orders and batches of size three. The

optimal routing algorithm is based on the A∗-routing method presented

earlier in this chapter, while the order batching part uses dynamic pro-

gramming, with all possible customer order combinations as state space.

51

Order Batching when Items Have to Be Picked in a Strict Sequence

For the optimal batching the wave size R is varied between 12 and 27,

in steps of three customer orders. Figure 3.6a shows the results. For

the optimal algorithm (opt in Figure 3.6a, see also Section 2.2.1 for the

algorithm), the solution time increases exponentially with the wave size

— calculating the optimal solution for the whole dataset of 1,536 orders

with 27 customer orders per wave and N = 3 took over 23 hours. When

compared to optimal solutions of waves of sizes between 12 and 27, PCES

based batching gives results with less than a 1.2% error on average com-

pared to the optimal solution for N = 3. Using PCES, when R increases,

the time to solve the problem instance decreases. This is due to a reduc-

tion in calls to SA-REMIX. Note also the differences in computation time

in Figure 3.6b.

Effect of wave and batch size For batches of one customer order, wave

size does not matter as each customer order is picked separately. For

the batches of size two, travel distances are calculated with the package

CPLEX 12.4 using the order-batching model presented by Gademann and

Van de Velde (2005).

Figure 3.8 shows the benefits of different wave and batch sizes. Hav-

ing more customer orders per wave reduces the total travel distance. For

waves larger than 150 customer orders, there are no major changes in

the different algoritms’ relative performance. When comparing optimal

batching for two customer orders to three customer orders, with a wave

size of 27 customer orders, two customer order batches appear to lead to

19.4% longer travel distances. If the batch size is increased to four, there

are still considerable savings to be had in travel distance when compared

to those of batches of three customer orders. However, routing for these

four-order instances is much more time consuming, and in practice this

rules out the computation of an optimal baseline, as well as the applica-

tion of most of the tested order batching heuristics from literature, apart

from C&W(i).

Re-routing and rebatching of original batches Now the effect of PCES

batching is compared with the company’s current method, including the

mandatory travel directions. Since the company’s routing method is not

optimal, an additional comparison is made to see how total travel distance

is affected by just rerouting the original batches using the A*-routing

method presented in Section 3.2.2. The results can be found in Table

3.1. By rerouting the original batches with a wave size of 126 customer

orders, 3.1% or 980 km is saved, while rebatching and rerouting together

52

Order Batching when Items Have to Be Picked in a Strict Sequence

(a)

(b)

Figure 3.6. Comparison of PCES to other heuristics and an optimal solution for batch
sizes of 3. The top figure shows the quality of the solution when compared to
the C&W(ii), while the bottom one shows the computation time for each wave
size for solving an instance of 1,536 orders.

53

Order Batching when Items Have to Be Picked in a Strict Sequence

(a)

(b)

Figure 3.7. Comparison of PCES to other heuristics and an optimal solution for batch
sizes of 4. The top figure shows the quality of the solution when compared to
the C&W(i), while the bottom one shows the computation time for each wave
size for solving an instance of 1,536 orders.

54

Order Batching when Items Have to Be Picked in a Strict Sequence

Figure 3.8. Percent of travel distance saved for optimal (solid lines) and PCES based
batching (dashed lines) as a function of the wave size R in customer orders,
for batches of size N = 2, N = 3, and N = 4, in comparison to N = 1. The
mean error of PCES batching compared to optimal is 1.2% when N = 3.

Table 3.1. Results from rerouting and combined rerouting and rebatching of the original
batches.

Month ORG [km]1 RR [km]2 RRS [km]3 RRS %4 RB [km]5 RBS [km]6 RBS %7

Jan 9698 9381 317 3.3% 8168 1530 15.8%
Feb 10189 9722 467 4.6% 8437 1752 17.2%
Mar 12060 11873 187 1.6% 10313 1748 14.5%
Total 31947 30967 980 3.1% 26918 5029 15.7%

1 ORG is the travel distance resulting from the original batching and routing.
2 RR is the rerouted travel distance with the original batching.
3 RRS is the savings using the rerouted travel distance with the original batching.
4 RRS % is the percentage of saved travel distance using the rerouted travel distances with the

original batching.
5 RB is the rerouted travel distance with PCES batching.
6 RBS is the savings using the rerouted travel distance with PCES batching.
7 RBS % is the percentage saved in travel distance with rerouting and PCES batching.

give savings of 15.7% or 5029 km.

3.4 Discussion

This chapter presents PCES batching based on optimal precedence-

constrained routing in combination with a simulated annealing algorithm

which uses estimated travel distance savings to group orders in batches.

This chapter’s contribution are in developing a generic method for solving

the difficult problem of batching orders with strict sequence constraints.

The method uses an estimate for savings generated by combining or-

ders, which appears to perform remarkably well. The estimate uses exact

savings from forming batches of size two to generate savings for larger

55

Order Batching when Items Have to Be Picked in a Strict Sequence

batches. By using the estimate, the number of routings to be calculated

reduces dramatically, particularly for larger batches.

The PCES algorithm is able to generate significant savings of up to

15.7% compared to the original batching, or over 5000 km for a three-

month period. These savings can be achieved without having to make

any changes to the warehouse layout or customer order composition. If

the cost of order picking is 55% of total warehouse expenses (Drury, 1988)

and 50 % (Tompkins et al., 2003) of this is due to travelling between picks,

the savings on the total operating costs of the sample warehouse would be

4.3%.

The core idea behind PCES is to minimize the number of computation-

ally complex batch evaluations. This makes it very competitive with other

state-of-the-art batching heuristics, especially in solution time, but also

in quality. Compared to other algorithms, which use a set of determin-

istic neighbourhood heuristics, the randomness inherent to the REMIX

heuristic allows it to be flexible and perform well. For batches of three

customer orders, PCES generally finds better solutions than the C&W(ii)

algorithm, while its computational complexity is between C&W(i) and

C&W(ii), and beating out other algorithms from literature for medium

to large sized waves. When comparing performance to C&W(i), previous

studies (Albareda-Sambola et al., 2009, Henn and Wäscher, 2012) have

achieved proportionally higher savings than presented in this chapter.

This is probably due to a larger maximum batch size and the fact that

real orders are used in this study, whose composition is already somewhat

optimized. However, as can be seen from the results in this chapter, PCES

compares favorably to both the VNS and ABHC algorithms presented in

Albareda-Sambola et al. (2009) and Henn and Wäscher (2012). For four

order batches, PCES is peerless in solution quality with a 2.0% improve-

ment over the next best algorithm. However, with small wave sizes of

up to 30 customer orders, one would get better results using either of the

VNS or ABHC heuristics, due to the inconsistent behaviour of PCES in

that range (see Figure 3.6). This inconsistency is most likely due to fact

that the probability for the estimate to be accurate is much smaller for

small waves. As the number of good batches increases exponentially with

wave size, so does the probability of the estimate being accurate.

When compared to optimal batching for small wave sizes of up to 27

customer orders and a maximum batch size of three, PCES performs de-

cently, with a 1.2% mean error compared to the optimal solution. Savings

56

Order Batching when Items Have to Be Picked in a Strict Sequence

in travel distance that are comparable to optimal batching and routing

can be achieved with much less computation time. When compared to just

picking one bin at a time, Figure 3.8 shows that increasing the batch size

can result in substantial travel distance savings. Depending on the wave

size, for batches of two orders, 30% to 40% is saved, while for batches

of size three and four the savings range from 40% to 54% and 45% to

61%, respectively. Larger wave sizes seem to have a considerable effect on

the total travel distance for up to about 100 customer orders. Wave sizes

larger than this do not seem to affect solution quality very much.

Another benefit of the PCES batching method is that it allows us to eval-

uate the effect of different batch sizes in any warehouse with precedence-

constrained routing. In case a different routing scheme is followed, it is

rather straightforward to replace the routing algorithm presented in sec-

tion 3.2.2 with this other method.

In practice, there may be further opportunities to reduce travel distance

even more. New storage policies were not considered (see Dekker et al.

(2004)), which might lead to additional savings. In addition, pickers’

skills appear to vary significantly. Assigning the right pickers to the right

batches (orders and products) will also impact total time. This is dealt

with in Chapters 5 and 6.

57

Order Batching when Items Have to Be Picked in a Strict Sequence

58

4. Batching when Routing with a
Generic TSP Algorithm

This chapter explores the performance of the batching part of PCES, the

SA-REMIX algorithm, (see Chapter 3) when the precedence constrained

routing is relaxed. The A* routing is replaced with a general-purpose

TSP-solver, the Lin-Kernighan-Helsgaun algorithm (LKH) (Helsgaun,

2000). Theys et al. (2010) show that LKH is applicable to order picking

problems irrespective of the warehouse layout, and that it provides good

solutions (with a gap of 0.1%). SA-REMIX uses estimated savings for

batches composed of three customer orders or more, as shown in Section

3.2.1. The results presented in Chapter 3 show that the algorithm per-

forms very well when compared to other heuristics and optimal solutions.

Central to this performance are the estimated savings, which are accu-

rate for the most important part of the batches — those with high savings

values (see Section 3.3). This chapter deals with the followin research

question: how will SA-REMIX perform if the precedence constraints are

relaxed and the A* algorithm is replaced with another routing algorithm?

The results in this chapter show that SA-REMIX batching can be applied

to any picker-to-parts order picking process in any warehouse not con-

strained by a particular layout or a specific routing method.

This chapter is organized as follows. First, the (non-precedence con-

strained) joint routing and batching problem is presented. Second, the

experimental setup is detailed, followed by the results. The chapter con-

cludes with a summary. LKH can be downloaded from Keld Helsgaun’s

website: http://akira.ruc.dk/~keld/research/LKH/.

4.1 Problem Description

In this section, the model presented in Section 3.1 is modified by eliminat-

ing the strict internal precedences. Furthermore, it is now assumed that

59

Batching when Routing with a Generic TSP Algorithm

no set drop-off locations exist, but all orders are dropped off at the depot

(see Figure 3.1). This is done because LKH does not handle precedences.

The model presented in Section 3.1 is modified as follows. Equation (3.7)

is left out, and sets of first of and last items Gf and Gl, used in (3.4) and

(3.5), are not substracted from from the set of all items G. Gf existed be-

cause each tour began by visiting one of the first items in each order, and

this condition no longer applies due to the lack of precedence constraints.

Gl is not used as it was composed of the drop-off locations, which are not

used in this model. As with the previous model, each pick truck has a

number of bins, to which orders can be assigned to. The objective is to

minimize total travel distance.

Model Similarly as in Section 3.1, in order to model the batching and

routing problem, all of the orders have to assigned to the batches. How-

ever, this time the sequence of items to be picked to each order is not

relevant. To that end, let P be a set of potential batches. The number of

potential batches should be sufficient to carry out all orders. Each batch

can contain up to N bins. The set of bins is denoted by B. The batch to

which bin b ∈ B belongs is denoted by r(b) ∈ P.

For each order o ∈ O and bin b ∈ B a binary decision variable Yo,b is intro-

duced to indicate whether or not order o is picked in bin b. Furthermore,

let Xg,k,r be a binary decision variable indicating whether batch r ∈ P
goes directly from item g ∈ G to item k ∈ G. Finally, let Ug ∈ N indicate

the relative position of item g ∈ G in the tour that picks the order of item

g.

60

Batching when Routing with a Generic TSP Algorithm

min
∑
g∈G

∑
k∈G\{g}

dg,k
∑
r∈P

Xg,k,r (4.1)

subject to
∑
b∈B

Yo,b = 1 ∀o ∈ O (4.2)

∑
o∈O

Yo,b ≤ 1 ∀b ∈ B (4.3)

∑
k∈G\{g}

Xg,k,r =
∑

b∈B:r(b)=r

Yo(g),b ∀g ∈ G ∀r ∈ P (4.4)

∑
g∈G\{k}

Xg,k,r =
∑

b∈B:r(b)=r

Yo(k),b ∀k ∈ G ∀r ∈ P (4.5)

Ug − Uk + |G| ·
∑
r∈R

Xg,k,r ≤ |G| − 1 ∀g, k ∈ G : g �= k (4.6)

Yo,b ∈ {0, 1} ∀o ∈ O ∀b ∈ B (4.7)

Xg,k,r ∈ {0, 1} ∀g, k ∈ G : g �= k ∀r ∈ P (4.8)

Ug ∈ N ∀g ∈ G (4.9)

Constraints (4.2) enforce the assignment of each order to exactly one

bin, and (4.3) states that each bin covers at most one order. This results

in a correct assignment of orders to bins.

Each location related to an item g ∈ G is exited so that the corresponding

order is assigned to one of the bins in the batch as in (4.4). Equation

(4.5) enforces that each item is entered so that the corresponding order

is assigned to one of the bins in the batch. Thus, all items of an order

are picked by the same batch. Constraints (4.6) are based on the subtour

elimination constraints of (Miller et al., 1960). Constraints (4.7), (4.8) and

(4.9) enforce non-negativity and binary qualities of the decision variables.

4.2 Results

Similarly as in Section 3.3, a set of 1536 orders is sampled from the data

set of the Finnish retailer. The customer orders are grouped in waves,

with the wave size R varying between 12 and 150 orders. The maximum

batch size N is set to three. From (6.9), the total number of possible batch

combinations per wave ranges from 298 (12 orders per wave) to 562625

(150 orders per wave). C&W(i) is used as the baseline algorithm for com-

parisons. It is compared to C&W(ii), SA-REMIX, the VNS by Albareda-

61

Batching when Routing with a Generic TSP Algorithm

Sambola et al. (2009), and an optimal solution for small instances. C&W(i)

is used as the initial solution for SA-REMIX. The number of iterations J

used in the experiments is J = 500, 000 + R2, as the number of possible

combinations increases with wavesize. For the algorithms to process all

1536 orders, a maximum timelimit of 10h is imposed.

Solution quality Figure 4.1a shows the solution quality of the algorithms.

As in Section 3.3, VNS is the algorithm with the best solution quality for

wave sizes smaller than 60. From that point on, SA-REMIX provides

the best solutions, being on average 2.6% better than C&W(i). For waves

equal or larger or than 60 orders is the next best algorithm is VNS (up to

114 orders, after which the timelimit kicks in), followed by C&W(ii). When

compared to optimal batching and routing with LKH, the combination of

LKH and SA-REMIX provides solutions that are on average 1.2% worse,

which is in line with the results in Chapter 3.

Computational time Due to the complexity of the algorithms that are

used to solve joint picker routing and order batching problem, compu-

tational time was considered. Figure 4.1 shows the results for the tested

algorithms by wave size. The C&W(i) and C&W(ii) algorithms are the

faster ones, in that order, followed by SA-REMIX. This is a bit surprising,

as previously in Chapter 3 the computational effort of SA-REMIX was

seen to be somewhere in between the two C&W-algorithms. Undoubtedly

the reason for this is the changing of the routing algorithm, at least in-

directly. Moreover, the C++ implementation of the SA-REMIX algorithm

can be further optimized, but this is left as future work. The VNS exhibits

similar behavior as in Chapter 3, with steadily increasing computation

time. Eventually finding a good solution to the batching problem with

VNS becomes impossible due to the time constraint of 10h.

4.3 Discussion

The results show that using SA-REMIX, which is the batching part of

the PCES algorithm, can also be used to solve batching problems without

precedence constraints. Moreover, the algorithm provides good overall

solution quality and the best performance within the comparison group

with large wave sizes.

62

Batching when Routing with a Generic TSP Algorithm

(a) Solution quality per wave size for different order batching algorithms com-
pared to C&W(i).

(b) Computational time per wave size for different order batching algorithms.

Figure 4.1. Comparison of PCES to other heuristics and an optimal solution for batch
sizes of 3. The top figure shows the quality of the solution when compared
to the C&W(i), while the bottom one shows the computational time for each
wave size.

63

Batching when Routing with a Generic TSP Algorithm

64

5. Forecasting Batch Execution Time
for Individual Pickers

Most warehouse management systems (WMS) store order picking logs,

which are captured at a very detailed level by advanced picking tools. In

this section, such log data are used to construct models to forecast the

batch execution time for individual pickers. Batch execution time may

depend on many factors, such as the details of the batch to be picked, but

also on behavioral factors, such as intrinsic and extrinsic motivation and

ability (Larco Martinelli, 2010). However, rather than explicitly including

behavioral factors, they are implicitly included by only considering the

past performance of each picker, as this is what can be found in the WMS

data. WMS data of a picked order in a batch typically contain: picker ID,

roll cage IDs in which the items are picked, drop-off locations of the roll

containers, time-stamp of each order line (a part of customer order that

has to be picked, also called an item or pick line), slot address per line,

item IDs, number of units picked, etc. These data are used in a multi-

level model, where the pickers form the "groups". Multilevel modeling is

naturally suited for distinguishing between-group (i.e., between-picker)

differences. It also scales well for groups of different amounts of input

data. A group’s random effects are allowed to deviate more from the fixed

effects if it has a large amount of input data. As potential independent

variables, the following are selected: number of pick lines in a batch, to-

tal batch travel distance, total pick item mass, and volume in a batch, as

well as the mean pick height level at which items are picked during the

picking tour.

First, the dataset is briefly described, followed by an explanation of the

used regression method and the data cleaning. Finally, the regression re-

sults are shown. Cluster analysis is done on the picker models to illustrate

the differences between the pickers.

65

Forecasting Batch Execution Time for Individual Pickers

5.1 Warehouse and Dataset Description

The sample warehouse in this chapter is a large picker-to-parts ware-

house in Finland. Three months of extensive pick data from the ware-

house’s pick-by-voice system were obtained and processed. The warehouse

has three cross-aisles, 57 aisles, seven drop-off locations, unidirectional

travel in the aisles, and a single depot storing empty roll containers (see

Figure 3.1 for the layout). Each customer order contains a maximum of 50

order lines, and is picked to a single roll container using a motorized truck

that can transport a maximum of three roll containers. Thus batches con-

sist of a maximum of three customer orders.

The data-set allows the extraction of original customer orders and

batches and the identification of the picker who did the work. The batch

execution time depends on: (1) picker ID, (2) total number of lines, (3) total

travel distance calculated from the distance between all sequentially vis-

ited locations in a tour [m], (4) total mass [kg], (5) mean pick level, where

1 is low and 2 is high, and (6) total volume [m3].

The models are then used in an ALNS algorithm (as explained in sec-

tions 6.1, 6.3, and 6.4) to assign orders and batches to pickers. The whole

dataset consists of 37,841 batches handled by 229 pickers during a three-

month period.

5.2 Data Cleaning

To find possible outliers, the data were preprocessed. The results are

summarized in Table 5.1.

Three different ways of picking were found: (i) multiple orders in a batch

(pick tour), (ii) individual orders, and (iii) multiple orders with no appar-

ent routing, and all lines with the same timestamp. The second and third

methods can occur in exceptional situations and represent non-standard

ways of working. The second occurs when picking heavy items to pallets

instead of roll containers (Pallet), and the third occurs when the ware-

house manager signs off previously picked orders by a single press of a

button (Timestamp). The large majority of the batches (83%), represented

by (i), is used in the regression modeling; (ii) and (iii) were not considered

due to their representing a different way of working.

In some cases, trucks seemed to exceed the maximum speed of 10 km/h.

Such batches are filtered out (Speed). Some items could not be mixed

66

Forecasting Batch Execution Time for Individual Pickers

Table 5.1. Summary of data cleaning. The cleaning categories are in the order they are
applied — thus Speed is first and Picker out is last.

To
ta

l

Pa
lle

t

T
im

es
ta

m
p

Sp
ee

d

M
as

s

L
on

g
ti

m
e

M
an

y
pi

ck
er

s

Ze
ro

es

P
ic

ke
r

ou
t

R
em

ai
ni

ng

Batches 37841 3257 3148 852 553 146 146 34 4070 24669
Percentage 100% 8.6 % 8.3 % 2.3% 0.1% <0.1% <0.1% <0.1% 10.8% 65.2%

Table 5.2. Mean values and coefficients of variation per batch before and after data
cleaning.

Time [min] Lines Travel [m] Mass [kg] Level Vol [m3]
Before clean-up
μ 29.6 46.3 598.5 206.5 1.1 1.0
CV 1.21 0.77 0.96 0.78 0.12 0.53
After clean-up
μ 31.7 51.8 620.3 224.0 1.1 1.0
CV 0.69 0.65 0.63 0.67 0.11 0.40

with other products, e.g., because they were highly fragile. The weight

of such line items is artificially inflated to reach the threshold weight of

600 kg per order. Orders containing such lines were discarded (Mass). In

addition, batches that took too long to execute were also discarded. This

can be caused by breaks, shift changes in the picking process, or task

interruptions with other causes. Based on experience in warehouses with

similar picking processes, the threshold was set at a maximum of 2 hours

net picking time per batch (Long time). Batches that were picked by more

than one picker were also excluded (Many pickers).

Neither the output nor the inputs were allowed to contain zero values

— all such batches were omitted from consideration (Zeroes). Finally, to

construct a reasonably large set of cross-validation data, it is required for

each picker included in the model to have at least 75 batches of input data

(80% of which are used for tuning the model) (Picker out).

After the data cleaning and the requirement on the number of data lines,

99 pickers out of 229 qualified. Table 5.1 shows a summary of the results

of the data cleaning. After completing the data cleaning, 24,669 batches

remained to be used for the modeling of the pickers.

Table 5.2 lists the means and coefficients of variation (CV) for the inputs

and outputs. Most of the CV values are smaller than one: this suggests

that many of the tasks (batches) that the pickers have done are quite sim-

ilar, or at least comparable. In the non-cleaned data, batch execution time

can vary quite a bit, most probably due to breaks, etc., that are filtered

out in the data cleaning. Batch parameters Lines, Travel and Mass seem

to vary the most, while Level seems to vary very little: most of the picking

is done from the low level.

67

Forecasting Batch Execution Time for Individual Pickers

5.3 Multilevel Modeling

Let w ∈ W denote the groups (the pickers) and r ∈ R are indices to the

data (the batches). Furthermore, let vector βw contain the model param-

eters for group w and let tr,w be the output for a forecasting model, which

forecasts total batch processing time, for some r and w. Using the notation

of Bryk and Raudenbush (1992), a linear multilevel forecasting model can

be formulated as in equations (5.1).

tr,w = β0,w +

n∑
i=1

βi,wxi,r + κw,r (5.1a)

βi,w = γi + ui,w ∀i ∈ {0, ..., n}, (5.1b)

where xi,r is the i:th element of input vector xr, κw,r is the within group

error term, and γi is the slope effect of the dependent variable i ∈ {1, ..., n}.

For group w, u0,w is the intercept error and ui,w are slope errors ∀i ∈
{1, ..., n}.

A two-level multilevel model is used to forecast each picker’s pick time

per batch. Following Bliese (2002), three important sources of variation

are found: within group (σ2), between-group variation in intercepts (τ0),

and between-group variation in slopes (τ1). The models are built using R

software and its packages, multilevel and nlme.

The data is divided in two parts. For each picker, a random 80% of the

batches are used for regression, and the rest (20%) for cross-validation

purposes only. By making this division, values for the cross-validation

residuals can be found for all batches used in the validation. These residu-

als give us an idea of the accuracy of the model along with other measures,

such as the Akaike Information Criterion (AIC) and applicable versions of

R2. As the forecasting models are directly used to calculate estimates of

batch execution times in Section 6.4, the forecasts should be as accurate

as possible. In regressing, the batches are ordered by timestamp to ac-

commodate possible learning-based autocorrelations in the data.

Plots of batch execution times and independent variables show that

variance increases with total batch execution time, i.e., there is het-

eroscedasticity in the data, which appears to be largely remedied by ap-

plying a logarithmic transform of the output data (batch execution times).

First a level-1 model is constructed, i.e., a model with between-pickers

variability only in the intercept. Second, the level-1 model is extended to

68

Forecasting Batch Execution Time for Individual Pickers

level-2 by allowing between-picker variability in the slopes.

Step 1: intercept variation. In this section, a test is made for significance

of between-picker variation in the intercept. If the variation is not signifi-

cant, it will not matter which picker gets a job — everyone will perform in

a similar manner. Hence, solving any assignment problem will be point-

less. However, if there are between-pickers differences, one should strive

for a better assignment of work.

Independents are added to the model stepwise and tested whether there

is significant variation between pickers. The variability of the intercept

term is examined with a level-1 Null Model (Bryk and Raudenbush, 1992):

tr,w = e(β0,w+κw,r)E(eκw,r) (5.2a)

β0,w = γ0 + u0,w. (5.2b)

where tr,w is batch execution time of batch r for picker (group) w, γ0 is the

common intercept, κw,r the within-group error term and u0,w the between-

group error term, and E(eκw,r) is the Smearing Estimate (Duan, 1983) of

picker w (i.e., the expected value of the retransformed residuals) used to

correct the model bias resulting from the non-linearity of retransforming

the logarithmic dependent tr,w. In combined form, the model is tr,w =

e(γ0+u0,w+κw,r)E(eκw,r).

The Null Model has two possible sources of variance, τ0 for how much

the groups’ intercept varies from the overall intercept (γ0), and σ2 for the

within-group variance. The Intraclass Correlation Coefficient ICC(1) =

τ0/(τ0 + σ2) (Bryk and Raudenbush, 1992, Kreft and De Leeuw, 1998)

equals 0.103, implying 10.3% of the total variance in the natural loga-

rithm of time is due or related to differences between pickers. This sug-

gests that it is beneficial to assign the right batches to the right pickers.

Analysis of variance (ANOVA) is used to test for the significant differ-

ence in -2 log-likelihood ratios between a model with and a model without

a random error term in the intercept (Bliese, 2002). A model with a high

-2 log-likelihood is better than one with a low one, and the statistical sig-

nificance of the difference is tested. To achieve this, a comparison is made

between the Null Model and a generalized least squares (GLS) fit of a

similar intercept-only model which does not contain the between-group

error term. The null hypothesis that no significant difference in the -2

log-likelihood scores exists is rejected (p < 0.0001), so individual aspects

69

Forecasting Batch Execution Time for Individual Pickers

explain up to 10.3% of the total variance in log-transformed batch execu-

tion time.

A Null Model can be built for non-transformed time, similarly as above.

In this case ICC(1) = 0.131, i.e., 13.1% of the total variance in time is

due to differences among pickers. The null hypothesis is rejected as well,

so the result is significant. Such differences among pickers can arise

from different physical or mental characteristics of the pickers, such as

strength or height, motivation, experience or stacking ability.

Step 2: slope variation and model selection. The level 1 multilevel model

is now extended into a level-2 model by including group level errors for

slope. For n independent variables the model can be formulated as in

equations (5.3) with the similar notation as in (5.1).

tr,w = e(β0,w+
∑n

i=1 βi,wxi,r+κw,r)E(eκw,r) (5.3a)

βi,w = γi + ui,w ∀i ∈ {0, ..., n} (5.3b)

A model is selected using a stepwise procedure. The selection procedure

is summarized in Table 5.3.

Each iteration, a new independent term is added to the current model.

ANOVA is used to test whether a random effect should be added to the

new model. This is done by comparing the -2 log-likelihoods of two ver-

sions of the new model: the first with only a fixed effect for the new term,

the second with both fixed and random effects. Models are selected based

first on the AIC and second on the sum of squared-error residuals (SS) of

the set of batches used for cross-validation.

The procedure begins by adding the first term, number of lines (Lines)

to the Null Model (see Table 5.3). To better fit the data to a normal

distribution, two models are compared: one with log-transformed input

data (Model 1L) and one with non-transformed data (Model 1X). Com-

paring AIC and SS for both models shows that Model 1L is better. A

random effect cannot be excluded (p < 0.0001). Next, the second inde-

pendent variable (Travel) is added to Model 1L, resulting in models 2LX

(non-transformed variable) and 2LL (transformed variable). Both models

are also tested for inclusion of random effects. The transformed input is

better in terms AIC and SS for Model 2LL than for Model 2LX; there-

fore Model 2LL is chosen. The process continues by adding each of the

70

Forecasting Batch Execution Time for Individual Pickers

Ta
bl

e
5.

3.
M

ul
ti

le
ve

lm
od

el
se

le
ct

io
n

pr
oc

ed
ur

e

M
od

el
1

In
t(

0)
L

in
es

(1
)

T
ra

ve
l(

2)
M

as
s(

3)
L

ev
el

(4
)

V
ol

um
e(

5)
A

IC
4

S
S

5
R

2 m
6

R
2 c

6
p(

ra
nd

)7

0
**

*2
N

A
3

N
A

N
A

N
A

N
A

46
00

6
5.

67
19

e+
09

0
0.

10
<0

.0
00

1
1X

**
*

**
*

N
A

N
A

N
A

N
A

26
63

1
4.

69
86

e+
09

0.
59

0.
68

<0
.0

00
1

1L
**

*
**

*
N

A
N

A
N

A
N

A
16

83
4

2.
20

53
e+

09
0.

68
0.

82
<0

.0
00

1
2L

X
**

*
**

*
**

*
N

A
N

A
N

A
13

92
2

2.
04

28
e+

09
0.

71
0.

84
0.

04
98

2L
L

**
*

**
*

**
*

N
A

N
A

N
A

13
22

5
1.

89
63

e+
09

0.
64

0.
86

<0
.0

00
1

3L
L

X
**

*
**

*
**

*
**

*
N

A
N

A
12

67
5

1.
91

43
e+

09
0.

65
0.

85
<0

.0
00

1
3L

L
L

**
*

**
*

**
*

**
*

N
A

N
A

12
34

5
1.

87
27

e+
09

0.
61

0.
87

<0
.0

00
1

4L
L

L
X

**
*

**
*

**
*

**
*

**
*

N
A

11
99

6
1.

85
17

e+
09

0.
55

0.
89

<0
.0

00
1

4L
L

L
L

**
*

**
*

**
*

**
*

**
*

N
A

11
99

2
1.

85
10

e+
09

0.
66

0.
87

<0
.0

00
1

5L
L

L
L

X
**

*
**

*
**

*
**

*
**

*
**

*
11

68
8

1.
82

90
e+

09
0.

66
0.

87
<0

.0
00

1
5L

L
L

L
L

8

O
L

S/
G

L
S9

**
*

**
*

**
*

**
*

**
*

**
*

17
78

0
2.

58
47

e+
09

0.
79

-
-

1
T

he
m

od
el

nu
m

be
r.

Ze
ro

in
di

ca
te

s
th

e
in

te
rc

ep
t-

on
ly

m
od

el
.

T
he

ch
ar

ac
te

rs
fo

llo
w

in
g

th
e

m
od

el
nu

m
be

r
in

di
ca

te
th

e
m

od
ifi

ca
ti

on
do

ne
to

a
pr

ev
io

us
m

od
el

.
If

an
in

de
pe

nd
en

t
is

ad
de

d,
th

e
no

ta
ti

on
is

:n
ot

in
cl

ud
ed

(N
);

in
a

no
n-

tr
an

sf
or

m
ed

fo
rm

w
it

h
a

ra
nd

om
ef

fe
ct

(X
);

or
lo

g-
tr

an
sf

or
m

ed
fo

rm
w

it
h

a
ra

nd
om

ef
fe

ct
(L

).
T

he
ad

di
ti

on
of

an
au

to
co

rr
el

at
io

n
m

od
el

is
de

no
te

d
by

(A
).

T
he

la
st

ad
di

ti
on

is
th

e
ri

gh
tm

os
t

ch
ar

ac
te

r.
2

C
on

fid
en

ce
in

th
e

fix
ed

-e
ff

ec
t

in
de

pe
nd

en
t,

"*
**

"
in

di
ca

te
s
p
≤

0
.0
0
1
,"

-"
th

at
th

e
in

de
pe

nd
en

t
is

no
t

si
gn

ifi
ca

nt
.

3
In

de
pe

nd
en

t
no

t
in

cl
ud

ed
in

th
e

m
od

el
.

4
T

he
A

ka
ik

e
in

fo
rm

at
io

n
cr

it
er

io
n

of
th

e
m

od
el

,a
m

ea
su

re
of

in
fo

rm
at

io
n

lo
st

if
th

e
m

od
el

is
us

ed
to

re
pr

es
en

t
th

e
da

ta
.L

ow
er

is
be

tt
er

.
5

Su
m

of
sq

ua
re

d
re

si
du

al
s

re
su

lt
in

g
fr

om
th

e
cr

os
s-

va
lid

at
io

n
of

th
e

m
od

el
s.

6
R

2 m
is

us
ed

to
de

sc
ri

be
th

e
pr

op
or

ti
on

of
va

ri
an

ce
ex

pl
ai

ne
d

on
ly

by
fix

ed
fa

ct
or

s,
w

hi
le

R
2 c

is
us

ed
to

de
sc

ri
be

th
e

va
ri

an
ce

ex
pl

ai
ne

d
by

bo
th

fix
ed

an
d

ra
nd

om
(b

et
w

ee
n-

pi
ck

er
)f

ac
to

rs
(N

ak
ag

aw
a

an
d

Sc
hi

el
ze

th
,2

01
3)

.
7

A
N

O
V

A
te

st
re

su
lt

on
w

he
th

er
a

be
tw

ee
n-

pi
ck

er
s

er
ro

r
te

rm
(r

an
do

m
ef

fe
ct

)s
ho

ul
d

no
t

be
in

cl
ud

ed
in

th
e

m
od

el
.

8
T

he
re

gr
es

si
on

di
d

no
t

co
nv

er
ge

fo
r

th
is

m
od

el
.

9
A

n
O

L
S/

G
L

S
m

ul
ti

va
ri

at
e

re
gr

es
si

on
ov

er
th

e
w

ho
le

da
ta

,w
it

h
so

m
e

of
th

e
va

ri
ab

le
s

lo
g-

tr
an

sf
or

m
ed

as
w

it
h

th
e

be
st

m
od

el
5L

L
L

L
X

(t
he

co
ef

fic
ie

nt
s

of
bo

th
th

e
O

L
S

an
d

G
L

S
m

od
el

s
ar

e
th

e
sa

m
e)

.

71

Forecasting Batch Execution Time for Individual Pickers

log-transformed independent variables and the non-transformed ones, al-

ways testing for the significance of the random effect. The tested models

are shown after Model 1L in Table 5.3. This results in Model 5LLLLX,

which has logarithmic inputs for all other terms apart from Volume.

The addition of interaction terms between the independent variables to

Model 5LLLLX did not significantly improve any fit or error measure, or

the regression did not converge. The final model in the notation of Bryk

and Raudenbush (1992) is

a(βw,xr) =β0,w + β1,w ln(x1,r) + β2,w ln(x2,r) + β3,w ln(x3,r)

+ β4,w ln(x4,r) + β5,wx5,r + κw,r (5.4a)

tr,w =ea(βw,xr)E(eκw,r) (5.4b)

βi,w =γi + ui,w ∀i ∈ {0, ..., 5} (5.4c)

To test for multicollinearity, a single multiple linear regression model

was built with the variables of Model 5LLLLX and run over all data.

The maximum VIF value was 4.4 (for ln(Lines)) suggesting that multi-

collinearity is not a major issue.

Figure 5.1 shows the cross-validation residuals grouped per picker. The

pickers’ residuals appear to be zero mean, and for approximately half of

the pickers, the models seem to relatively accurate. However, there is still

clear heteroscedasticity in approximately half of the pickers — batch time

residuals are mainly skewed to the right, as is the case with the original

data. However, the consistent reduction of the sum of squares of cross-

validation residuals SS as the model selection progresses in Table 5.3 is

encouraging, despite the apparent heteroscedasticity.

Multivariate OLS and GLS models are fitted using all independent vari-

ables, some log-transformed as in Model 5LLLLX, over the whole data set.

Between-picker differences are not taken into account. The model coeffi-

cients in the fitted OLS and GLS models coincide. ANOVA is used to test

the null hypothesis of Model 5LLLLX not having a significantly better -2

log-likelihood value compared to the GLS model. The null hypothesis is

rejected with p < 0.0001.

The resulting elasticities and standard deviations of model 5LLLLX and

the corresponding random effects can be found in Table 5.4. The betas

(elasticities) show that the number of lines in a batch is the most im-

portant factor in the model. The second row shows the between-picker

72

Forecasting Batch Execution Time for Individual Pickers

Residual [min]

R
ea

l t
im

e
[m

in
]

0
40
80

120

−20 20

●
●
●

● ●

●

●

●

●

●

●●
●●●

●

●●

●
●

●
●● ●

●

1

●
●
●●
●●●
●●
●

●●●

2

−20 20

●
●●●
●

●●●●
●●●●●
●●●●●
●
●●●

●

●

●
●●●
●
●●●
●
●
●
●●●●●●●●●

●
●
●●●
●
●●●●
●
●
●
●●●●●

3

●

●

●●●

●
●

●
●

●

●●
●

4

−20 20

●●
●●
●●

●

●

●

●
●

●

●
●●
●●
●
●●
●●
●
●
●

●
●●
●●
●
●

5

●
●

●
●

●
●● ●●●●
●
●

●

●

●

●
●● ●

●
●●●
●

●

●

6

−20 20

●

● ●

●

●

●
●
●● ●

●

●

●

●

●

●

●●

●

●

●
●

●●

7

●
●●
●
●●●
●●●
●
●

●●●
●●●●
●●
●

●

●
●
●
● ●

●
●
●
●

●●●●●●
●●
●●

●

●●

●

●
●

8

−20 20

●
●

●

●

●
●

●

●●
●

●

●●●

●

●

●
●●
●

●
●
●●

●

●

●
●

●

●

●

●●

●
●●●●

●

9

●
●
●
●

●
●

●●●

●

●●●●
●
●

●
● ●●

●

●●
●

10

●●●
●●
●●

●
●

●●

●

●

●

●●
●
●●●●

● ●
●

●●●
●
●

●

●●●

●●

11

●
● ●●●●

●
●
●●●●
●
●

●

●
●
●
●

●
●

●●

●

●

●

●●

●

●●

●
●●
●●

●● ●

●
●●●●●

12

●

●

●

●

●
●
●
●●

●
●
●

●

●
●

●

● ●
●

●
●●●●●

●
●

●

13

●●●
●●●●●●
●●
●

●●
●●
●

●
●
●●
●
●●●
●●
●●●●●●●

●

●
●

●●●
●

●

●
●
●
●●
●●●

●

●
●

●

●●

●

●
●

●●
●
●●
●●

●
●●
●

●

●●
●●
●●
●●●
●●
●●●

14

●●

●●
●
●●
●
●●●
●●
●

●●●●
●
●●
●●●
●

●
●● ●
●

●

●●●
●
●●●
●●
●
●●

●
●

15

●● ●●●
●
●
●

●

●●●
●●●

●●

●
●

●●

●●●

●●
●

●
●●

●
●

●

●
●
●●

●
●
● ●
●●●
●●●
●
●●
●
●

16

●
●●●●
●●●●
●
●●
●
●●●●●

●

●
●
●
●
●
●●●●
●
●●
●
●●●
●

●●

17

0
40
80
120

●
● ●●
●●

●
●
●●

●●
●
●

●
●
●

●
●

●

●

●

●
●

●

●
●

●●
●
●
●
●●

●

18
0

40
80

120

●

●
●●
●●

●
●●●
●
●●
●

●●
●●
●●●●●
●●
●
●●●●●●

●●●
●
●●
●●
●
●●

●

●●●●●●
●●●●
●
●
●
●
●●
●
●●

●

19

●
●
●●●

●

●
●
●
●
●

●

●
●●●

20

●●
●
●

●
●

●●
●●●●●

●

●●● ●
●●

●

21

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●●

●

●●
●

● ●
●
●

●

●

●
● ●

22

●

●

●

●●
●

●

●●●●●●

●
●
●●●●

● ●●
●

●

●
●●

●

●●

●

●●●●●
●
●●

●●●

23

●
●●●●

●
●
●

●

●
●

●

●
●●●●

●●

●
●●
●

●

●
●

●●

●

●●
● ●

●
●
●
●
●

●●
●
●●●

24

●
●
●●●
●●
●
●

●

●

●

●●●●●
●
●

●

●●●●●●●

●

●
●

●
●

●

●
●

●
●
●
●

25

●●
●●
● ●
●
●●●
●

●
●
●●

●
●

●

●

●
●
●
●●
●

●
●

●
●
●

●

●●
●
●

●

●

26

●
●●
●●
●
●●●●
●
●
●
●
●
●
●
●

●

●
●●●●
●
●●●●
●●●

●
●
●

●
●
●

●
●●
●●

●

●
●
●

●
●
●●
●
●●

27

●

●●
●

●
●

●●
●●
●
●●
●
●●
●
●●
●
●●

●
●
●
●●
●
●●
●
●

●
●
●●
●
●
●
●●●
●
●●

●

●

●

●

28

●

●

●●●
●●
●

●

●
●●●

●

●●●
●

29

●●

●

●
●

●

●●●●●●●
●

●

●
●
●

●
●●
●

●

●
●
●●

●
●
●
●●●
●

●

30

●
●

●
●●●

●

●
●●
●
●
●
●

31

●
●

●

●

●
●

●

●

●

●
●

●●

●
●
●●

●

●●
●●●

●

●

●●
●

●

●

●
●
●

●

●

● ●

●

●

●
●

●

●●

●

●
●●●●●
●

●

●

●

32

●
●

●●●
●
●

●

●●
●●
●●

●

●●
●
●●
●●●
●

●

●●

●●
●●
●

●
●

33

●●
●
●●
●●

●

●●

●
●
●
●
●●
●

●
●●●●

●
●
●●●● ●
●
●

●
●

●●
●
●
●

●

●

●

●
●●

●●●
●

●

●●
●

●●

34

●●

●

●

●
●
●●
●

●
●

●●

●

●

●●●

35

0
40
80
120

●
●●●●
●
●

●

●

●

●
●●●●●●●
●●●●

●
●

●●
●

●

●
●●●●●
●
●
●●

●
●●
●●●

●
●
●
●●●●

●●

36
0

40
80

120

●
●●●●●

●

●●●● ●●
●●

●
●

●

●

●●●
●

● ●
●●●●

●

●
●
●●

●
●
●●
●

●●

●

●
●
●

●

●●●
●
●

37

●●
●
●

●
●●●●●●
●
●●●●●●●●●

●

●●●●●●●●●
●
●●●●
●
●
●●
●●●

●
●
●●●●
●
●
●●●●●
●
●●●●●

●●
●●●●●●●●●●
●
●●●●●
●
●
●

●

●

●●

●

●●
●
●
●
●●●
●●
●●
●
●●

●
●●●●●●●●●●●●
●

●
●
●
●
●

●
●●
●
●
●
●
●
●●

38

●●●●
●●
●

●
●●
●●
●
●●

39

●
●

●
●
●

●●

●●●

●

●●●

●

●●●●
●
●

●●●
●●
●●

●●●
●
●
●●●●●●●

●
●

●

●●
●
●
●●●●●

●

40

●●
●●
● ●● ●

●●●●●●
●

●
●

●●●●●
●●●
●

●

●
●● ●●●

●

●
●●
●●●
●

●
●
●●

●

●●
●●
●
●
●
●●●

41

●●
● ●
●

●

●
●●

●●
●
●
●●
●●● ●●
●
●●

●●

●

●●
●●
●●
●
●

42

●
●●●●

●

●

●●

●

●
●
●
●

●

●●
●

43

●
●
●●●
●

●

●

●
●●●●●●

44

●
●
●
●●●●
●●●●

●

●
●
●
●
●●●●

●●●
●●●●●●

45
●●●●
●●●●
●

●●
●
●
●
●●

●
●

●
●●●
●●●●
●●

●
●●
●●

●

●
●

●●
●●●●

●

●●
●

●
●●

●

●●

●

●
●●
●●

46

●●●
●●●
●
●●●
●●●●
●●
●
●●
●

●

●●●
●
●
●
●●

●●●●●
●●
●

●
●
●●
●●●●●●●
●●
●

●●
●
●
●
●●●●

●

●●●
●
●●●
●

●

●

●●

●

47

●●●●●●●●●
●●

●

●●●●●●●
●● ●
●●

●●●
●
●
●
●
●
●●

●
●
●●
●
●●●●
●
●
●
●●●●
●
●●
●
●●●
●●●●●
●
●●●●●●
●

●●
●●

●

●●●
●●

●

●
●
●

48

●●
●●

●●

●●●
●
●●●●

●

●
●●●●
●

●
●● ●
●●
●●●
●

●●
●●
●●●●●

●●

●●●
●●●
●●
●
●
●
●●
●

●

●
●
●
●●●●●●
●●●●●

●
●●●

49

●

●●

●

●
●

●

● ●
●
●●●
●
●
●

●

50

●●●●
●
●●

●●
●
●●●

●

51

●
●
●●
●●
●●●
●
●
●●
●●

●

●
●

●●
● ●
●
●
●
●●

●

●
●●
●
●●
●

●

●
●●●●
●●
●●
●●

52

●● ●
●
●
●●
●
●
● ●
●●
●
●
●

●
●

53

0
40
80
120

●●
●
●

●

●●
●●●●

●

●●●●●●

●
●
●●●●●

●●

●●
●●●

●

●

●
●

●
●●
●●●
●
●
●●
●●●
●●

●

●●

●

●●

●

●

54
0

40
80

120

●
●●
●●
●
●
●●

●
●
●
●
●

●
●●●●
●
●
●●
●
●●
●
●
●

●●●●●

●
●
●

●
●
●●●

●

●●
●

55

●

●

●●

●
●●

●

●

●
●●
●

●●

●●

56

●
●

●
●

●●
●
●
●

●

●
●
●●
●

57

●
●●
●●●●●●●●●●●●●●

58

●
●●●●●●●●
●●●●●●●

59

●●●●
●
●
●●
●

●

●

●●
●
●●●

●

●
●
●
●

●●●

60

●●●●
●●
●
●

●●
●
●●●

61

●
●●●
●●●
●

●

●●
●

●

●
●●●
●
●
●●

●
●
●
●

●

●

●
●●●
●●●
●
●
●

●
●
●
●

●

●
●
●

●

●

●●

●
●

62

●
●●

●●●
●
●
●●
●●
●●●

63
●●●●●
●●●
●
●
●
●
●●

64

−20 20

● ●
●●●●●

●●
●●●
●

65

●

●
●● ●●
●

●
●
●

●●●●

●

●

●
●
●●●
●●

66

−20 20

●●

●

●
●
●●●
●
●
●●
●●●●●
●

●

●●●
●
●
●●

●

●

67

●
●
●●
●●
●
●

●

●
●●●●●

●
●

●
●

68

−20 20

●●●●●●●
●
●●●●●
●●●
●●●●
●
●●
●●
●

●●

●

●
●●●●●●●●●●●
●
●●

69

●
●●●
●●●●

●

●
●
●●●
●

●
●●●
●●
●
●●

70

−20 20

0
40
80
120

●●●
●
●

●
●●
●●●●●

71

Figure 5.1. Cross-validation residuals for final full model vs. batch time, grouped per
picker.

standard deviation of the model. The standard deviation of ln(Lines),

ln(Travel) and ln(Mass) are quite similar. The effect of mean picking

level seems to vary the most among the picker models.

The effect of increasing any of the log-transformed inputs is proportional

to the (re-transformed) output in this model. The dependent variable is

log-transformed, as are most of the independent variables, apart from Vol-

ume. In the case, when both are log-transformed, the scaled model beta

can directly be used to calculate the effect of an independent variable on

the dependent variable. For example, for the fixed effect model, an 1%

increase in the number of lines in a batch (Lines) results in an 0.66%

increase in total batch execution time. For the non-transformed indepen-

dent variable, Volume, a unit increase (1m3) will reduce the batch exe-

cution time by 0.16%. For Model 5LLLLX, the standard deviation of the

residual is 0.32, which means that if the forecasted time for a picker to

pick a batch is tw,r, there is an approximate 68% chance that it is accu-

rate by a factor of e0.32 = 1.37, i.e, it is in the range [tw,r/1.37 1.37tw,r]

73

Forecasting Batch Execution Time for Individual Pickers

Table 5.4. Model betas for 5LLLLX with scaled data, effects on ln(T ime).

Intercept ln(Lines) ln(Travel) ln(Mass) ln(Level) Vol
β 3.2 0.66 0.16 0.17 -0.44 -0.16
Random effect stdev 0.40 0.09 0.04 0.08 0.38 0.12

(Gelman and Hill, 2007, p. 62). Variance of batch execution time thus

increases proportionally to the value of time.

Table 5.4 shows that the batch execution time of the average picker

grows with the number of order lines, the distance traveled and total

batch mass, all of which seem reasonable: as the amount of work, travel

or mass increases, it is natural that time increases as well. A higher pick

level seems to make picking quicker, which suggests that currently the

pickers might be mostly picking from a non-optimal height. The negative

coefficient in volume is somewhat more difficult to explain. This might

result from the effect that some of the batches that contain relatively few

items of high volume are fast to stack. In some sense, the volume coeffi-

cient can also reflect the stacking skill of the picker.

Picker clusters Each of the pickers has their own forecasting model.

Generalizing a bit, and to explain the coefficients in terms of individual

skill, one could characterize the pickers based on on the model coefficients

in the following way:

• a low ln(Lines) represents a generally good worker;

• a picker with a low ln(Travel) is most likely a quick driver;

• a low ln(Mass) represents strenght;

• a low ln(Level) most likely means that the picker is tall, or has an easier

time picking items from the high level;

• a low V ol represents a picker with good stacking ability.

To group and illustrate similarities among pickers, hierarchical clustering

is performed on the forecasting models using R software and the function

hclust. Euclidian distance between the picker coefficients is used as the

metric, and chosen mainly for its simplicity. The hierarchical clustering

routine is agglomerative, i.e., it first assigns a cluster for each of the pick-

ers and then iteratively proceeds to merge the most similar clusters. In

74

Forecasting Batch Execution Time for Individual Pickers

Figure 5.2. Dendogram of picker groups formed with hierachical clustering

Figure 5.2 the results are illustrated with a dendogram. Picker clusters

are numbered by size: 1 and 2 indicate the two largest clusters. If a clus-

ter is divided, a minor number is added to the current clusters id, e.g.,

cluster 1 is split into two subclusters indicated by 1.1 and 1.2 in Figure

5.2.

75

Forecasting Batch Execution Time for Individual Pickers

Table 5.5. Picker clusters, cluster sizes and mean coefficients ordered by cluster height
in Figure 5.2.

Cluster id size ln(Lines) ln(Travel) ln(Mass) ln(Level) Vol
1 26 0.69 0.17 0.18 -0.04 -0.15
2 73 0.65 0.16 0.17 -0.59 -0.16

2.1 1 0.70 0.15 0.15 -1.42 -0.48
2.2 72 0.65 0.16 0.17 -0.57 -0.15

2.2.1 35 0.65 0.16 0.17 -0.71 -0.17
2.2.2 37 0.65 0.16 0.18 -0.45 -0.14
1.1 10 0.72 0.16 0.17 -0.20 -0.22
1.2 16 0.67 0.18 0.19 0.05 -0.10

2.2.2.1 7 0.75 0.17 0.09 -0.52 -0.11
2.2.2.2 30 0.63 0.16 0.20 -0.43 -0.14
1.2.1 7 0.60 0.17 0.22 -0.05 -0.05
1.2.2 9 0.73 0.18 0.17 -0.13 -0.14

2.2.1.1 12 0.71 0.14 0.17 -0.66 -0.26
2.2.1.2 23 0.62 0.17 0.17 -0.74 -0.13
Overall 99 0.66 0.16 0.17 -0.44 -0.16

Table 5.5 shows the mean picker coefficients for each numbered cluster

in Figure 5.2 and the number of pickers present in each cluster. The pick-

ers in cluster 2 are in general faster than those in cluster 1. In particular,

this can be seen from the differences in by the coefficients for ln(Lines)

and ln(Level). It could be said, that the pickers in cluster 2 are more

adept in picking batches with larger numbers of order lines and benefit

from more from the items being on a higher level. Continuing to follow

the dendogram from top to bottom, it can be observed that the next clus-

ter split occurs to cluster 2: a single picker deviates from this cluster to

form 2.1. He/she seems adept in picking items from a high elevation,

and batches with relatively high volume. Cluster 2.2 contains the rest

of cluster 2, and is further split to 2.2.1 and 2.2.2, where the pickers in

2.2.1 seem to benefit more from picking from a higher elevation when

compared to 2.2.2. Next, cluster 1, which contains (at least some of) the

slow pickers, splits to 1.1 and 1.2: the pickers in 1.1 are slower in picking

batches with many order lines but the pickers in 1.2 are slower to travel

and adversely affected by pick level, where they have the only positive

coefficient in ln(Level) among all the clusters. Cluster 1.2 also benefits

less from batches with high volume. Clusters 2.2.2.1 and 2.2.2.2 are sep-

arated next. The pickers in 2.2.2.1 are less affected by batches with high

mass than any of the other groups, but are not particularly fast in picking

batches with many order lines, while opposite is true for 2.2.2.2. Cluster

1.2.1 contains pickers that are good with batches with many order lines

but are affected heavily by batch mass and benefit less from pick level

and batch volume. Cluster 1.2.2 contains pickers who are slow in picking

most batches with many lines, and don’t benefit much from the pick level

or batch volume. Finally, clusters 2.2.1.1 and 2.2.1.2 contain the pickers

76

Forecasting Batch Execution Time for Individual Pickers

that benefit most from the high pick level but are either slow with batches

with many orders and fast to travel (2.2.1.1) or are fast with many order

batches (2.2.1.2).

From the analysis above, it can be seen that differences among the

picker clusters exist in all factors. The pickers have different strengths

and weaknesses that become apparent when comparing to the mean

picker (coefficients).

5.4 Discussion

In this chapter, it has been shown that a significant part, i.e., 13.1%, of

the total batch execution time is due to differences in pickers. This im-

plies that it can be possible to find the right picker for each batch. The

coefficients of variation of the input data are all less than one suggesting

that batches are in general quite similar. A higher variance in the batch

parameters in the data (see Table 5.2) would most likely lead to a worse

fit. This would result in less accurate picker models, and consequently to

more inaccurate forecasts. However, analysis of variance tests should in

this case indicate that something is amiss. Inaccuracies in the forecasting

models would carry over to the optimization presented in the next chap-

ter. A multilevel model is fit to the cleaned-up data, using log-transformed

data to counter heteroscedasticity. The model is systematically built us-

ing a stepwise procedure based on improvements in both cross-validation

criteria and AIC. As AIC decreases, the cross-validation criteria generally

does as well. This confirms the sanity of the model selection procedure.

All possible inputs (or their transformed versions) are shown to be statisti-

cally significant. Furthermore, when comparing the sum-of-squares cross-

validation residuals between the OLS/GLS and final multilevel models, it

is apparent that the multilevel model is superior. This reinforces the hy-

pothesis that differences among pickers are significant. Generally, trans-

formed variables provide a better fit than non-transformed ones. This

is perhaps partly due to increased error probability in task execution as

the complexity of the task increases. In practice, the forecasting models

should be periodically updated to account for possible learning of pickers.

77

Forecasting Batch Execution Time for Individual Pickers

78

6. Assigning Orders and Batches to
Pickers of Varying Skill

Data on the picking process and individual order pickers, readily available

in many warehouses, can be used to significantly improve the efficiency of

the order-picking process. This is illustrated for the case of a Finnish re-

tailer operating a single large order picking warehouse supplying all of its

stores. By optimizing travel distance of order pickers, some savings in to-

tal batch execution time can be gained. Instead of considering just travel

time, if factors such as setup, search, and picking time are also included,

process efficiency can be significantly improved. The results of Chapter 5

show that significant differences exist among pickers. In this light, and as

no previous work has included picker skills in optimizing order picking op-

erations, the forecasting models built in Chapter 5 are used to determine

which orders should be combined in a pick tour (i.e., a batch) and formu-

late the problem as a joint order batching and generalized assignment

(BatchGAP) model. In this model, batches are assigned to pickers with

the objective of minimizing the sum of total batch execution times. Com-

parisons to the current state-of-the-art in order picking show that over

9% of total batch execution time can be saved by considering picker skill

and work assignment. These results can be used by warehouse managers

to either dispatch the right order to the best from the available pickers,

or in the case of hiring flex pickers, to consult past log data and hire those

pickers matching the current orders.

6.1 Joint Batching and Generalized Assignment Problem

As the objective of the optimization presented in this section, customer

orders and batches are assigned to those order pickers who have the best

skills to execute them, thus minimizing the total batch execution time

(including pick, travel, and setup time).

79

Assigning Orders and Batches to Pickers of Varying Skill

Order batching for batch sizes of three or more orders has been shown

to be NP-hard (Gademann and Van de Velde, 2005). To further assign

batches to pickers, the order batching model from Gademann and Van de

Velde (2005) is extended to include a generalized assignment problem,

which is also NP-hard (Fisher et al., 1986). This results in a joint batching

and generalized assignment problem (BatchGAP), which is sufficiently

complex to justify the use of a heuristic.

The problem is defined as follows. Let R be the set of all possible batch

combinations from the set of orders O, each batch consisting of a maxi-

mum of N orders. The orders that are to be picked during a day arrive

early each morning. Let Rs ⊆ R be the set of batches present in solution

s ∈ S, where S is the set of feasible and complete solutions to the Batch-

GAP. Furthermore, let W be the set of modeled pickers. The mapping of

each customer order in O to a batch r ∈ R is characterized with a zero-one

vector ar of length |O|. If aor = 1, order o is included in batch r, otherwise

it is not. Each batch r ∈ R has multiple order lines that need to be picked

in no particular order during a picking tour y ∈ Yr, where Yr is the set of

all possible tours for batch r.

After picking all lines of an order, the order must be left at an order-

specific drop-off location in the warehouse. All pick and drop-off locations

must be visited at least once. Thus a tour is a solution to a TSP, where the

drop-off locations have to be visited after the last pick in the batch (see

Figure 3.1). All picking tours start and end at a depot. Each batch r ∈ R
has a travel distance of dr associated with the tour-construction method

used. The forecast total batch execution time, tw,r, depends on the param-

eters of batch r and the forecasting model of picker w. When calculating

the forecast tw,r, a TSP corresponding to the batch r to get the travel dis-

tance dr needs to be solved. The TSP is solved separately with a heuristic

(see Section 6.3.1). The TSP constraints are not included in the model be-

low, as the model is mainly illustrative of the problem, and the additional

constraints would unnecessarily complicate it. A heuristic is used to solve

the TSP as no fast optimal solution to a precedence-constrained TSP (note

that the last location of each order is fixed) exists for a warehouse with a

middle cross-aisle and unidirectional travel. The tour length of a TSP re-

lated to a particular batch is used as one of the inputs when forecasting

tw,r using equations (5.4). Each picker w ∈ W has a maximum working

time during a shift, Mw.

The following optimization model can be formulated for the BatchGAP:

80

Assigning Orders and Batches to Pickers of Varying Skill

min
∑
w∈W

∑
r∈R

tw,rXw,r (6.1)

subject to
∑
w∈W

Xw,r ≤ 1 ∀r ∈ R (6.2)

∑
r∈R

tw,rXw,r ≤ Mw ∀w ∈ W (6.3)

∑
o∈O

ao,r ≤ N ∀r ∈ R (6.4)

∑
w∈W

∑
r∈R

ao,rXw,r = 1 ∀o ∈ O (6.5)

Xw,r ∈ {0, 1} (6.6)

The goal is to find a solution s∗ such that the set of batches Rs∗ ⊆ R form

a complete partitioning of O and have a feasible assignment to the pickers

W, such that the sum of costs of all pickers is minimized and constraints

(6.2, 6.3, 6.4 and 6.5) are upheld.

The objective function (6.1) minimizes the sum of all the pickers’ batch

execution times. The binary decision variable Xw,r is one if batch r is

assigned to picker w, otherwise it is zero. Constraints (6.2) enforce that

each batch is picked at most once. Each pickers’ maximum working time,

Mw is enforced by (6.3). Constraints (6.4) enforce that no more than N

orders are contained in any one batch. Each order must be allocated once

to any chosen batch (6.5) and integrality of the decision variable Xw,r is

enforced by (6.6).

As a by-product of the optimization, the effect on picker productivity is

also of interest. Let lr be the number of order lines in batch r. Productivity

of a picker w ∈ W is defined as

Lw =
∑
r∈R

Xw,rlr/
∑
r∈R

Xw,rtw,r (6.7)

or the average number of order lines picked per unit of time worked (usu-

ally minutes). Notice that the total work time differs from maximum shift

length. This study aims to model the maximum the maximum total time

that can be saved — salary models are not considered.

81

Assigning Orders and Batches to Pickers of Varying Skill

6.2 Note on Problem Complexity

The complexity of assigning orders to batches and batches to pickers can

be illustrated by the number of combinations of a related bin-packing

problem, where batches and pickers are both homogeneous. The num-

ber of possible batch combinations of up to the maximum batch size of N

can be found from (6.9). Let |P| be the total number of batches, and let L

be the number of batches a picker can complete during a shift. Assuming

|P| = |W|L, the total number of possible bin-packing combinations for |W|
pickers is

Cassign =

|W|∑
i=1

⎛
⎝ |P| − iL

L

⎞
⎠ . (6.8)

A regular shift at the sample warehouse deploys by 30 pickers. Let one

picker take half an hour to process one batch, and work 8h each shift, for

a maximum of 16 batches/shift. If all pickers and batches are to filled to

capacity, there are 480 batches and 1440 orders (the maximum batch size

is thus 3), and the number of joint bin-packing and order combinations is

Ctotal =

⎛
⎝ 1440

3

⎞
⎠

29∑
i=0

⎛
⎝ 480− i16

16

⎞
⎠ , (6.9)

which is a very big number, approximately 10152. To ground this number

somewhat, the total number of atoms in the universe is estimated to be

1082. Optimally solving the joint problem is impractical even for a small

number of pickers.

6.3 Solving the Joint Batching and Generalized Assignment
Problem

6.3.1 Routing Heuristic

To calculate total batch time, total travel distance of a picking tour is

needed. The travel distance is assumed to be independent of the picker.

The sample warehouse has multiple drop-off locations (more than one of

which can be visited during a tour) and a middle cross-aisle (see Figure

3.1). The drop-off locations can only be visited after all items of an order

have been collected. Each aisle can only be traveled in a single direction,

while the cross-aisles are bidirectional. Tours start and end at the depot.

82

Assigning Orders and Batches to Pickers of Varying Skill

The number of potential batch evaluations for the problem introduced

in Section 6.1 is potentially very large. For each batch evaluation, the

routing problem needs to be solved. To calculate total travel distance, a

computationally light heuristic is introduced.

In Algorithm 6, a version of the aisle-by-aisle routing heuristic

(Vaughan, 1999) for warehouses with unidirectional travel in the aisles

is presented. In this version of the algorithm, aisles do not need to be

traveled completely if there are no picks past the middle aisle. It also

incorporates drop-offs before the eventual return to the depot. The basic

idea is to take advantage of the unidirectional travel in the warehouse

and the middle cross-aisle. Once a path to pick all order lines has been

formed (steps 1-4 and 6-8), the tour is optimally completed by adding the

drop-off locations with Dijkstra’s algorithm.

Input: A batch r, order drop-off locations Lr, depot D, distance matrix
B, set of aisles A

Output: A tour y, travel distance dr
1 Sort all orders in r according to the aisle index.
2 Make a vector va of corresponding order lines for each relevant aisle
a ∈ A to batch r.

3 Sort each aisle vector va according to the travel direction of the aisle.
4 Insert all vectors from the smallest aisle index to the largest index to a

path ysmall.
5 Use Dijkstra’s algorithm to make ysmall into a tour by adding Lr and D

to it.
6 Store the total path of ysmall cost in dsmall using B.
7 As in 4 but iterate from big to small aisle index and store the path in
ybig.

8 Store the total path of ybig cost in dbig using B.
9 Use Dijkstra’s algorithm to make ybig into a tour by adding Rr and D

to it.
10 if dbig < dsmall then
11 y ← ybig
12 dr ← dbig
13 else
14 y ← ysmall

15 dr ← dsmall

16 end
Algorithm 6: Middle aisle multi-dropoff routing heuristic

6.3.2 Initial Assignment of Batches

In many warehouses, the current practice is to assign the next batch in

the queue to a picker who is first available to execute it. No planning or

scheduling is involved. This method of assigning jobs to pickers is hence-

83

Assigning Orders and Batches to Pickers of Varying Skill

forth called the first-free assignment method. It assumed that first-free is

used in the example warehouse.

Before assigning batches, an initial feasible solution must be found.

This is done with a combination of a batching and an assignment algo-

rithm. As the batching algorithm, either C&W(i) (Clarke and Wright,

1964) or VNS (Albareda-Sambola et al., 2009) is used. For assigning

batches to pickers, first-free is applied.

6.3.3 Assignment of Customer Orders Based on Average Picker
Productivity

Based on the data, the average picker productivity can be calculated using

(6.7). This statistic is tracked in many warehouses already. A warehouse

manager can choose to prioritize assigning work to the most productive

pickers. To reflect this, and to try to justify the benefits of skill based

assignment, the following heuristic, fastest-first, is used to assign work

to the most productive pickers first. It will usually result in the slowest

pickers being left out of the assignment. This algorithm assumes that

there are as many pickers available as needed.

Step 1. Batch all orders based on travel distance using VNS.

Step 2. Sort all available picker based on productivity in descending

order.

Step 3. Sort all batches based on the number of order lines in

descending order.

Step 4. Assign the first unassigned batch to the picker who has the

highest productivity value and so that the picker’s maximum

worktime is not exceeded. Repeat until all batches are assigned,

otherwise exit.

6.3.4 Adaptive Large Neighborhood Search Algorithm

After forming a feasible initial solution, Adaptive Large Neighborhood

Search (ALNS) (Ropke and Pisinger, 2006a) is used to search for good

local optima. Pisinger and Ropke (2010) offer guidelines for designing

ALNS algorithms, which have been mostly followed in this section. The

ALNS algorithm uses a set of neighborhood heuristics H. For the ALNS

presented in this section, H is composed of five different heuristics. See

Section 2.2.6 for more details of ALNS heuristics.

84

Assigning Orders and Batches to Pickers of Varying Skill

Following Ropke and Pisinger (2006a), a simulated annealing-type hill

climbing scheme is implemented to complement the search. This sim-

ulated annealing scheme uses a geometric cooling schedule (Cohn and

Fielding, 1999). At each iteration, the temperature is updated by T ← φT ,

where T is the temperature variable and φ the cooling coefficient.

A vector collecting all the adjustable parameters of the ALNS algorithm

is defined as v = (σ1, σ2, σ3, λ, δ, φ). The actual parameter set is given in

Section 6.4.1.

Next, the neighborhood search heuristics are detailed. All of them main-

tain the feasibility of the solution by enforcing tw,Rw ≤ Mw, where tw,Rw

is the total time to pick the set of batches Rw ⊆ R assigned to picker

w and Mw is the maximum working time for picker w. Only those solu-

tions that are feasible according to the model in Section 6.1 are accepted.

These heuristics are used to minimize total batch execution time, and an

allocation can result in some of the pickers being left without work.

1 Random destroy, random repair

Step 1. Randomly choose Q ∼ U(2, 7) batches to be destroyed from any

of the pickers, resulting in the set of Od customer orders, where

|Od| ≥ Q.

Step 2. Form a set Wd of pickers currently assigned to Od.

Step 3. Randomly choose a number of orders up to the maximum batch

size of N orders from Od. Form a new batch from the chosen orders

and assign it to a random worker w ∈ Wd if constraints (6.3) can be

upheld. Remove the chosen orders from Od..

Step 4. Repeat Step 3 until there are no orders left to assign.

Step 5. Calculate the tour costs using Algorithm 6 for the new batches

and form completion time forecasts for each new picker batch pair.

2 Savings-based destroy, random repair The aim of this heuristic is to

destroy those batches that have the least savings value (the time differ-

ence of picking each order separately minus picking them together in a

batch). Let s be a current solution to the BatchGAP and Stot ∈ R be the

sum of time-savings of all batches in s. Furthermore, let Smax ∈ R be the

maximum batch savings value in s, and Sr be the savings of batch r ∈ Rs.

Then the probability of destroying a batch r is

pr = (Smax − Sr)/Stot. (6.10)

85

Assigning Orders and Batches to Pickers of Varying Skill

Step 1. Calculate the batch savings for all batches in s.

Step 2. Use the roulette wheel method from (2.16) with batch

probabilities calculated from Equation (6.10) to choose Q ∼ U(2, 7)

batches to destroy from any of the pickers, resulting in M ≥ Q total

customer orders.

Step 3. Form a set Wd of pickers currently assigned to the batches to be

destroyed.

Step 4. Randomly choose a maximum of N orders from the destroyed

batches, form a new batch and assign it to a random worker w ∈ Wd

if constraint (6.3) can be upheld.

Step 5. Repeat Step 4 until there are no orders left to assign.

Step 6. Get the tour costs for the new batches and form completion time

estimates for each new picker batch pair.

3 Move batches This heuristic tries to move a set of batches T ⊆ R be-

tween pickers while leaving the order composition of the batches intact. A

batch r ∈ T from picker wi ∈ W is moved to another picker wj ∈ W−{wi}.

No routing of batches is necessary, the work time estimates of the involved

pickers just need to be calculated.

4 Empty picker and greedy repair With this heuristic, all batches are

moved from a single picker to other workers. First, the picker is selected

randomly from all pickers with batches. Then, each of the selected picker’s

batches is iteratively assigned to the picker who based on the forecast will

execute it the fastest, and so that the capacity constraints for each picker

are upheld.

5 Move all batches from a picker to another This final heuristic moves

all batches from one random picker to the picker that executes them the

fastest.

Acceptance of new solutions

After applying a neighborhood search heuristic to a current solution s, a

new solution s′ is found. Let s∗ be the best solution found so far. Fur-

thermore, let f(s) be the cost of solution s. If f(s′) < f(s∗), the solution is

accepted setting s∗ = s′ and s = s′ The current score of the active heuris-

tic is updated by Ψh = Ψh + σ1. Otherwise, if f(s′) < f(s), the solution is

86

Assigning Orders and Batches to Pickers of Varying Skill

accepted as the current best one setting s = s′ and Ψh = Ψh + σ2. A worse

solution than the current one can be accepted by the simulated annealing

rule. Let Q ∼ U(0, 1) and T be the current temperature of the algorithm.

If Q ≤ exp(f(s
′)−f(s)
T), a hill climb is performed and setting s = s′ and

Ψh = Ψh + σ3.

6.4 Results

In this section, it is shown how original batch times relate to the modeled

ones and compute new batching, routing and assignment solutions which

are compared to the original ones. All algorithms were coded in C++ and

run single-threaded on an Intel Xeon 3.2 GHz with 16GB of memory.

6.4.1 Parameter Calibration

Following Ropke and Pisinger (2006a), the calibration parameter vector

is initialized to v = (σ1, σ2, σ3, λ, δ, φ) = (33, 13, 9, 0.95, 200, 0.999995) with

the exception of δ, which was not used by these authors; its value was set

according to Gharehgozli et al. (2013). In order to calibrate the parame-

ters, two sample instances were run of 3 pickers with 78 orders, and 10

pickers with 360 orders. One parameter was varied at a time on a uniform

interval for each parameter around the initial value. The best perform-

ing parameters were chosen and set as v = (65, 13, 9, 0.95, 91, 0.999995).

The scaling factor of the computational complexity of heuristic h, ζh from

(2.18), is not used, as no significant improvement in solution quality or

time was found when it was used. The starting temperature T0 is set

such that the probability of an uphill climb is 0.5 if the new solution is 3%

worse than the sum of batch execution times in the starting solution s0 by

T0 = −0.03f(s0)/ ln 0.5.

6.4.2 Data Preparation

During a daily 8h shift in the sample warehouse, the number of avail-

able pickers can vary between 20 and 40. Since the data do not contain

due times for the batches, and only a part of all the pickers appearing in

the data can be used due to data cleaning, comparing the allocations and

batches of the real shifts and the ones reconstructed by the ALNS is not

necessarily meaningful. To still allow a comparison, virtual days are con-

structed by partitioning the data of 24,669 batches into 12 (about) equally

87

Assigning Orders and Batches to Pickers of Varying Skill

sized subsets. Each partition forms one virtual day, resulting in approxi-

mately 2056 orders (685 batches) per day. A picker qualifies for inclusion

in the workforce of the virtual day if both the sum of real execution times

of the batches he or she performed and the sum of the forecast batch ex-

ecution times exceed the minimum threshold of Mmin. This is done to

guarantee that each picker included carries out sufficient work. The total

execution time of all the batches executed by a picker should not exceed

the maximum threshold time Mmax. If adding a batch were to exceed this

threshold, it would be discarded for this picker.

The used data only contain Hamiltonian Paths starting from the first

pick line to the last line, leaving out the roll container drop-offs and even-

tual return of the picker to the depot. Each order has its own unique

drop-off location. Figure 3.1 shows the different locations of these drop-

offs. Dijkstra’s algorithm is applied to find the combined minimum dis-

tance of visiting the order drop-off locations and further traveling from

the last drop-off location to the depot and from the depot to the first pick

location. Using this distance, the extra time to complete the pick tour

is now calculated, assuming an average truck speed of 1 m/s, and taken

into consideration when calculating sums of batch execution times in con-

structing a virtual day.

Now the real batch execution times and their forecasts for these newly

created virtual days are known. These can be used to compare the ALNS

batching, routing, and assignment results with the original solutions.

6.4.3 Experimental Setup

Virtual days are constructed as detailed in Section 6.4.2. For each virtual

day, the constraints in (6.3) are set to 8h. Two different instances are run

by setting Mmin to 7.15h or 7.4h and Mmax to 7.75h in both real time and

forecast time. This results in 29 and 20 pickers working on the virtual

days on average, respectively. Out of the possible 99 pickers, 93 qualify

for the simulations with Mmin = 7.15h and 86 for Mmin = 7.4h. The ALNS

is run for 5,000,000 iterations in both cases.

Work is currently issued according to the first-free allocation. Two

batching algorithms, C&W(i) and the Variable Neighborhood Search

(VNS) by Albareda-Sambola et al. (2009), are used to generate an initial

solution for the ALNS. C&W(i) provides a quick solution to the batch-

ing problem, while the VNS method is shown to provide good results

with the tradeoff of exploring large parts of the solution space (Albareda-

88

Assigning Orders and Batches to Pickers of Varying Skill

Sambola et al., 2009, Matusiak et al., 2014). Using these initial solu-

tions, the ALNS is used in two ways: (1) including all neighborhood search

heuristics, and (2) allowing only those heuristics which do not break down

batches (i.e., excluding heuristics 1 and 2).

In the ALNS heuristic presented in this chapter, a computationally light

routing heuristic (see Section 6.3.1) is used, as it has to be invoked nu-

merous times. In order to understand how far this routing is off a near

heuristic, it is compared with LKH (Helsgaun, 2000, Theys et al., 2010)

for 10,000 random batches constructed from customer orders from the

data-set. LKH has a gap of about 0.1% with optimal routing (Theys et al.,

2010), at the expense of much longer computation times. LKH does not

handle precedence constraints, so drop-offs are left out of the tours for this

comparison. That is, in this experiment the tours of both the light rout-

ing heuristic LKH lack precedence constraints. On average, LKH leads to

solutions of about 11.7% shorter tours.

6.4.4 Time Savings and Comparison to Original Solution

In this section, the algorithmic solutions are compared to the original and

initial batching allocation, as well as to each other. The following abbrevi-

ations are used for the solutions in Figures 6.1 and 6.2. Unless otherwise

noted, batch execution times are forecast:

BF batching done with VNS and allocation using fastest-first;

CWI batching done with C&W(i) and allocation using first-free;

CWR improvement of CWI using the ALNS algorithm with no further

rebatching (only heuristics 3, 4, and 5 are used);

CWF as CWR, but with all neighborhood search heuristics used in the

ALNS;

VNSI batching done with VNS and allocation using first-free;

VNSR improvement of VNSI using the ALNS algorithm with no further

rebatching (only heuristics 3, 4, and 5 are used);

VNSF as VNSR, but with all neighborhood search heuristics used in the

ALNS.

The comparison baselines in figures 6.1 and 6.2 are the forecast batch

execution times with real batches during a virtual day. Both figures are

89

Assigning Orders and Batches to Pickers of Varying Skill

BF CWI CWR CWF VNSI VNSR VNSF
0

1

2

3

4

5

6

7

8

9

10

11

12

13

%
 ti

m
e

sa
ve

d
co

m
pa

re
d

to
 fo

re
ca

st
ed

Solution type

Figure 6.1. Savings generated by different algorithms, compared to the original batching
with forecast execution times during a virtual day. 7.15h minimum time to
qualify, 29 pickers. The real batch execution times for the original batching
are 3% smaller than the forecast in this case.

BF CWI CWR CWF VNSI VNSR VNSF
0

1

2

3

4

5

6

7

8

9

10

11

12

13

%
 ti

m
e

sa
ve

d
co

m
pa

re
d

to
 fo

re
ca

st
ed

Solution type

Figure 6.2. Savings generated by different algorithms, compared to the original batching
with forecast execution times during a virtual day. 7.4h minimum time to
qualify, 20 pickers. The real batch execution times for the original batching
are 1% smaller than the forecast in this case.

90

Assigning Orders and Batches to Pickers of Varying Skill

quite similar, so the amount of spare time in the virtual day set-ups or

the number of pickers does not affect the performance of the algorithms

much. The forecast in Figure 6.1 gives a pessimistic estimate, since the

real times are about 3% smaller. In Figure 6.2 the real times are 1%

smaller. If jobs are assigned based on the average productivity (category

BF), savings of around 6% can be achieved in both cases. The initial so-

lution CWI gives improvements of over 2% compared to forecast batch

execution times with real batches. The best solution is provided by the

combination of VNS batching and the ALNS, i.e., solution VNSF. How-

ever, CWF is very close in terms of solution quality and much faster to

execute. In the 29-picker case, CWF took on average 80 minutes to solve

the problem of batching and assigning 2048 orders, whereas VNSF took

120 minutes. For the 20-picker case, these times are 35 minutes and 70

minutes, respectively. In the sample warehouse, orders arrive early in

the morning a couple of hours before the morning shift starts, so there is

ample time to run the algorithm. Both figures show that it is beneficial to

rebatch using the neighborhood search heuristics 1 and 2 in addition to 3,

4, and 5, which just move batches between pickers.

Most importantly, Figures 6.1 and 6.2 show that significant savings in

total batch execution time can be obtained by assigning the right batches

to the right pickers. Almost 10% more time can be saved when compar-

ing VNSF to CWI and to VNSI. Compared to the forecast and real time

for the original allocation, between 10% and 12% can be saved. Finally,

when comparing VNSF with BF, i.e., assigning based on picker skill vs. on

productivity, savings of 6% in total batch execution time can be achieved.

6.4.5 Impact on Picker Productivity

Figures 6.3 and 6.4 show the effect of the VNSF solution compared to a

VNSI solution, which implies state-of-the art batching with a first-free

picker assignment. Pickers are divided into three categories based on

their productivity (lines picked per time unit worked) in the VNSI solu-

tion: the slowest 20%, the medium 60%, and the fastest 20%, with a total

of 20, 53, and 20 pickers, and 15 pickers (19, 48, and 19 in Figure 6.4),

respectively. However, as noted below, the slowest pickers receive much

less work. Here productivity is calculated by the total number of assigned

lines divided by the total time to process all assigned batches, i.e., actual

work time.

All categories improve productivity, while most improvements can be ob-

91

Assigning Orders and Batches to Pickers of Varying Skill

Slow (20) Medium (53) Fast (20)
0

5

10

15

20

25

Slowest 20%, medium 60%, fastest 20% picker

V
N

S
F

 im
pr

ov
em

en
t i

n
pr

od
uc

tiv
ity

 o
ve

r
V

N
S

I [
%

]

Figure 6.3. Change in average productivity by picker category. 7.15h minimum time to
qualify, 29 pickers

served in the slow and medium picker categories. For pickers in the slow,

medium, and fast categories for the case of 29 pickers (Figure 6.3), the

initial average productivity values are 1.14, 1.43, and 1.81 lines/minute,

respectively. The VNSF solution improved productivity by 19%, 7%, and

12% on average compared to the VNSI for the same categories. For the

20 picker case, VNSI productivities are 1.12, 1.44, and 1.83 lines/minute,

which improve by 17%, 5%, and 15% (Figure 6.4). The improvement in all

categories is a result a reduction in total working time compared to the

initial allocation as picker skills are taken into consideration. Addition-

ally, some pickers, particularly those in the slow category, are assigned

less work, and in many cases do not get to work full shifts.

Since VNSI is used as a reference, this improvement in productivity

must result from better picker assignment. However, the slowest pickers

receive fewer orders to be picked, resulting in 40% to 60% fewer pick lines,

as can be seen from figures 6.5 and 6.6. The medium and fast pickers tend

to get more work in both the 29- and the 20-picker cases.

To better understand which of the pickers are included in the ALNS

assignment over the entire horizon of eight virtual days, the picker cate-

gories used above are divided into subcategories, indicated by two charac-

ters, XY. X stands for the main categories S, M, F (Slow, Medium, Fast),

92

Assigning Orders and Batches to Pickers of Varying Skill

Slow (19) Medium (48) Fast (19)
0

5

10

15

20

25

Slowest 20%, medium 60%, fastest 20% picker

V
N

S
F

 im
pr

ov
em

en
t i

n
pr

od
uc

tiv
ity

 o
ve

r
V

N
S

I [
%

]

Figure 6.4. Change in average productivity by picker category. 7.4h minimum time to
qualify, 20 pickers

Slow (20) Medium (53) Fast (20)
−70

−60

−50

−40

−30

−20

−10

0

10

20

Slowest 20%, medium 60%, fastest 20% picker

%
 c

ha
ng

e
in

 n
o.

 o
f p

ic
k

lin
es

 a
ss

ig
ne

d

Figure 6.5. Change in number of lines assigned by picker category. 7.15h minimum time
to qualify, 29 pickers.

93

Assigning Orders and Batches to Pickers of Varying Skill

Slow (19) Medium (48) Fast (19)
−70

−60

−50

−40

−30

−20

−10

0

10

20

Slowest 20%, medium 60%, fastest 20% picker

%
 c

ha
ng

e
in

 n
o.

 o
f p

ic
k

lin
es

 a
ss

ig
ne

d

Figure 6.6. Change in number of lines assigned by picker category. 7.4h minimum time
to qualify, 20 pickers.

based on the productivity in the VNSI solution. Y has three categories,

0, 1, 2, indicating whether the picker: is left out of the assignment com-

pletely, or receives less than a fifth of his or her total number of order lines

assigned in the VNSI solution, or receives more than a fifth of his or her

total number of order lines assigned in the VNSI solution, respectively.

Figures 6.7 and 6.8 show the division of pickers over these categories

compared to VNSI. The pickers in the slow category are the most affected:

in the 29-picker per day case, two out of 15 pickers are completely left

without work for all eight days. In the 20-picker case, one picker is left

out. In the medium category, five and four pickers left out of the assign-

ment, whereas all pickers in the fast category are assigned to work. Ap-

parently, it pays off not to use some of the workers at all and to use some

of the workers as little as possible.

6.4.6 Effect of Skill on Batch Assignment

Forecasting the time for a picker to pick a batch is done by using the model

described in Section 5.3. By including the knowledge of the batch param-

eters in the optimization process of the joint batching and generalized

assignment problem, a better result can be achieved than optimizing by

94

Assigning Orders and Batches to Pickers of Varying Skill

S0 S1 S2 M0 M1 M2 F0 F1 F2
0

5

10

15

20

25

30

35

40

45

50

N
um

be
r

of
 p

ic
ke

rs
 in

 c
at

eg
or

y

Figure 6.7. Picker categories after final assignment. 7.15h minimum time to qualify, 29
pickers on average.

S0 S1 S2 M0 M1 M2 F0 F1 F2
0

5

10

15

20

25

30

35

40

45

N
um

be
r

of
 p

ic
ke

rs
 in

 c
at

eg
or

y

Figure 6.8. Picker categories after final assignment. 7.4h minimum time to qualify, 20
pickers on average.

95

Assigning Orders and Batches to Pickers of Varying Skill

travel distance and statistical productivity (picking speed). The produc-

tivity of a picker is a statistic already tracked in many picking processes.

However, to the author’s knowledge, it is not extensively used in assigning

work: but neither are other statistics. It is common to treat order pickers

as a homogeneous unit.

Setup This following experiment tries to provide an insight to how much

total order picking time can be saved by taking into account the addi-

tional information of batch parameters and picker models when compared

to good travel distance-based batching and assigning work based on the

pickers’ productivity. If slow pickers are left out, it will improve the over-

all performance of the process, as seen previously in sections 6.4.4 and

6.4.5.

To start, 12 virtual days with a 7.4h initial threshold are constructed,

similarly as explained in Section 6.4.2. Based on this, a combination of

two algorithms is used to optimize the order batching and to assign work.

For the batching, the state-of-the-art VNS algorithm of Albareda-Sambola

et al. (2009) is used. Fastest-first, which optimizes total batch time based

on the most commonly measured statistic of picker productivity, is applied

to assign batches to the most productive pickers. This setup will leave out

the least productive pickers. Finally, if any pickers exist that work for

less than 7.4h after the fastest-first assignment, they are left out of this

experiment. This results in an allocation where only the statistically most

productive pickers are selected, with each of the pickers being assigned a

minimum of 7.4h of work. It is relatively tight in terms of free time so

that not many pickers will be left out when improving it with the ALNS.

After constructing the initial allocation with the VNS batching and

fastest-first assignment, the ALNS algorithm is run to improve upon this

initial solution. Both the ALNS and fastest-first try to minimize total

batch execution time over all batches and thus are comparable. The re-

sulting allocation takes into account the additional information of batch

parameters and picker coefficients that affect the output time.

Results The average number of qualifying pickers per 2048-order virtual

day is 19. Total time savings after applying the ALNS are over 5.5%. As a

result of applying the ALNS, two pickers of the 80 that participate in these

virtual days are always left out work: the first on two separate days, and

the second on one day.

On average, productivity of the remaining pickers increases by 4.6%.

The average time to complete an order line is decreases from 39.8s to

96

Assigning Orders and Batches to Pickers of Varying Skill

37.8s, or 5.5%. As picker productivity is defined as the number of order

lines picked per time unit in (6.7), its increase fails to explain the savings

completely. Thus it can be concluded that 0.9% of the time savings result

from leaving out the two pickers. The increase in picker productivity must

therefore come from a better assignment of orders (and batches) between

the participating pickers.

To illustrate how orders and batches are assigned to the most suitable

pickers, the batch parameters (i.e., Lines, Travel, etc.) of each batch as-

signed to the pickers are logged for both the initial allocation constructed

with fastest-first and the final allocation after applying the ALNS. These

data are then used to calculate the average batch assigned to each picker.

A low forecasting model coefficient corresponds to that particular picker

being skilled in that category (see Section 5.3). The hypothesis was made

that savings that are found by applying the ALNS-algorithm are at least

in part due to difference in picker skill: pickers with low coefficients in

a particular category will generally be assigned batches with high val-

ues in the same category. For example, if a picker is more skilled in

picking heavy items, i.e., he/she has a low model coefficient in ln(Mass),

and he/she should be generally assigned heavier batches. For each of the

model inputs (batch parameters), this hypothesis can be verified from fig-

ures 6.9-6.13. In these figures, each of the model coefficients of the par-

ticipating pickers is plotted against the average batch parameter of the

batches that are assigned to those pickers. Figures 6.9 show how ln(Lines)

relates to the number of lines of in a batch and figures 6.10 show the rela-

tion of ln(Travel) to the average travel distance of a corresponding batch,

and so on. In the top figures, marked (a), batch assignment is done with

fastest-first, and in the bottom ones, marked (b), ALNS is applied to the

BatchGAP. The line in each of the figures shows an OLS fit with the picker

model coefficients as the dependent variables and the batch parameter as

the independent variables. These figures indicate that the ALNS tends to

assign batches with high values in a particular parameter to those pick-

ers with a corresponding low model coefficient, while the combination of

VNS order batching and fastest-first does not take into account skill. Most

of the savings gained from applying the ALNS result from assigning the

right orders and batches to the right pickers, as they cannot come solely

from leaving out the slowest pickers.

97

Assigning Orders and Batches to Pickers of Varying Skill

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100 120 140

0.
5

0.
6

0.
7

0.
8

Number of order lines, fastest−first allocation of batches

lo
g(

lin
es

) p
ic

ke
r m

od
el

 c
oe

ffi
ci

en
t

(a) VNS batching and fastest-first assignment

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100 120 140

0.
5

0.
6

0.
7

0.
8

Number of order lines, ALNS

lo
g(

lin
es

) p
ic

ke
r m

od
el

 c
oe

ffi
ci

en
t

(b) ALNS

Figure 6.9. The average number of order lines in a batch assigned to a picker vs. the
corresponding ln(Lines) forecasting model coefficient of that picker, for two
different ways of solving the BatchGAP.

98

Assigning Orders and Batches to Pickers of Varying Skill

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

800 1000 1200 1400 1600

0.
05

0.
10

0.
15

0.
20

Total traveled distance when picking a batch [m], fastest−first

lo
g(

tra
ve

l)
pi

ck
er

 m
od

el
 c

oe
ffi

ci
en

t

(a) VNS batching and fastest-first assignment

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

800 1000 1200 1400 1600

0.
05

0.
10

0.
15

0.
20

Total traveled distance when picking a batch [m], ALNS

lo
g(

tra
ve

l)
pi

ck
er

 m
od

el
 c

oe
ffi

ci
en

t

(b) ALNS

Figure 6.10. The travel distance to pick a batch assigned to a picker vs. the correspond-
ing ln(Travel) forecasting model coefficient of that picker, for two different
ways of solving the BatchGAP.

99

Assigning Orders and Batches to Pickers of Varying Skill

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Total batch mass [kg], fastest−first

lo
g(

m
as

s)
 p

ic
ke

r m
od

el
 c

oe
ffi

ci
en

t

(a) VNS batching and fastest-first assignment

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

100 200 300 400

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Total batch mass [kg], ALNS

lo
g(

m
as

s)
 p

ic
ke

r m
od

el
 c

oe
ffi

ci
en

t

(b) ALNS

Figure 6.11. The average mass of a batch assigned to a picker vs. the corresponding
ln(Mass) forecasting model coefficient of that picker, for two different ways
of solving the BatchGAP.

100

Assigning Orders and Batches to Pickers of Varying Skill

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35

−1
.0

−0
.5

0.
0

Mean pick level of a batch, fastest−first

lo
g(

lv
l)

pi
ck

er
 m

od
el

 c
oe

ffi
ci

en
t

(a) VNS batching and fastest-first assignment

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35

−1
.0

−0
.5

0.
0

Mean pick level of a batch, ALNS

lo
g(

lv
l)

pi
ck

er
 m

od
el

 c
oe

ffi
ci

en
t

(b) ALNS

Figure 6.12. The mean pick level of a batch assigned to a picker vs. the corresponding
ln(Level) forecasting model coefficient of that picker, for two different ways
of solving the BatchGAP.

101

Assigning Orders and Batches to Pickers of Varying Skill

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.6 0.8 1.0 1.2 1.4 1.6

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

Total volume of a batch, fastest−first

Vo
lu

m
e

pi
ck

er
 m

od
el

 c
oe

ffi
ci

en
t

(a) VNS batching and fastest-first assignment

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.6 0.8 1.0 1.2 1.4 1.6

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

Total volume of a batch, ALNS

Vo
lu

m
e

pi
ck

er
 m

od
el

 c
oe

ffi
ci

en
t

(b) ALNS

Figure 6.13. The average volume of a batch assigned to a picker vs. the corresponding
V ol forecasting model coefficient of that picker, for two different ways of
solving the BatchGAP.

102

Assigning Orders and Batches to Pickers of Varying Skill

6.5 Discussion

This chapter introduces a method to model and solve the combined batch-

ing, routing, and picker assignment problem, based on properties of the

batches to be executed. The method consists of two parts: first the batch

execution times are estimated with multilevel analysis based on prop-

erties of historical batches, such as total number of lines, distance be-

tween items, total mass and volume, and pick level. Second, the inte-

grated batching, routing, and picker assignment problem is solved using

an ALNS heuristic.

The method is tested for a large retail warehouse for which three months

of complete pick data could be obtained. In Chapter 5, multilevel model-

ing of the pickers shows that 13.1% of the variance in batch execution

time can be explained by differences among pickers. Subsequent applica-

tion of the ALNS heuristic shows that improvements of 9% in total batch

execution time can be achieved compared to state-of-the art batching with

VNS, but ignoring picker skills. Compared to the current picker assign-

ment, 12% is saved depending on the instance (see figures 6.1 and 6.2).

The presented method is generally applicable in picker-to-parts ware-

houses, independent of the layout. However, the choice of the routing

heuristic should be made according to the case. The main requirement

for applying the method is the availability of historical pick data to build

the forecasting models of the pickers. These data are gathered in most

modern warehouses, by pick-by-voice, pick-by-light, and pick-by-terminal

systems. Using these data, warehouse management systems can easily be

extended by including forecast pick times in the batching and assignment

of batches.

Although the method was tested in only one warehouse, it is expected

that savings can be achieved in other picker-to-parts picking facilities.

The magnitude of the savings will depend on several factors, such as the

number of order lines in a batch (more lines yield a higher saving opportu-

nity), the size of the pick force (more workers means more opportunity for

savings), the product characteristics (larger variety in sizes and volume

requires more stacking skills of the workers and potentially larger sav-

ing opportunities), and variation in the height levels at which the picking

takes place.

This approach has some limitations. The data obtained are extensive,

but they do not contain the departure times of trucks shipping the orders.

103

Assigning Orders and Batches to Pickers of Varying Skill

Therefore, there is no information about time windows for the orders,

which are to some extent included in the real batch data. This means the

calculated savings slightly overestimate the real savings as the search

space for selecting the next orders to the batch shrinks. However, this

only affects savings compared to the original batching and allocation.

The results presented here suggest that the impact of the right worker

is over 9% in execution time, or 6% if picker productivity is taken into ac-

count when assigning work. Furthermore, it is also shown that the skill of

a picker in a particular category influences the type of batches he or she is

assigned: more skilled pickers tend to get more challenging batches to ex-

ecute. These results imply that managers should consider employee skills

and capabilities during the decision making process. Currently worker

to work assignment is primarily based on qualifications. However, when

multiple workers qualify for the job, individual differences might still be

exploited. Currently in most warehouses, when workers are qualified for

the same work, the next job is assigned to the first available worker. It

may pay off to select the right job from the stack to be executed by the

best skilled worker. In addition, when hiring a flex workforce and past

performance data are available, the warehouse manager can use them to

hire the best performing pickers given a set of orders.

104

7. Conclusions

This thesis has two main contributions to the current state-of-the-art

in warehousing and operations research. First, precedence-constrained

routing is considered in conjunction with the order batching problem.

This type of routing introduces new requirements for the order batch-

ing algorithm, as it is computationally heavy. It is possible to estimate

savings of batches composed of precedence-constrained customer orders

quite accurately. In other words, the estimate is able to predict how

beneficial it is to combine sets of cities into a larger Traveling Salesman

Problem. This is the key contribution of Chapter 3, as it leads to a dra-

matic reduction in calls to routing algorithms, which are integral subrou-

tines of most batching algorithms. The algorithm proposed in Chapter 3,

Precedence-Constrained Estimated Savings-based batching, compares fa-

vorably in solution quality and execution time to state-of-the-art batching

algorithms and to optimal solutions for small instances. As seen in Chap-

ter 4, it is also possible to swap the routing algorithm used for another

one.

The second main contribution is the study of modeling pickers and as-

signing the right orders and batches to the right pickers, presented in

Chapters 5 and 6. To the author’s knowledge, it is the first work that

models directly how job parameters affect workers’ job execution times

(the worker skills) and exploits this knowledge directly when assigning

work. The main goal of this study is to show that it is beneficial to consider

picker skills in order picking models. A simulation experiment shows that

a total of 9% in total order picking can be saved if the order pickers’ skills

are taken into account in conjunction with batching orders.

This study presents multiple opportunities for further research. First,

the results should be further validated in warehouses of different types,

with varying layouts, order, batch and product properties, and those that

105

Conclusions

use incentives for pickers as motivation. To form realistic picker profiles,

data logs need to be obtained, which can be difficult to obtain from com-

panies. The data can be noisy and contain outliers. Additionally, as is

the case with this study, the data can have multiple picking modes, which

may need to be handled separately.

Second, a straightforward extension to this method can be done with the

inclusion of time windows. This would require the inclusion of additional

constraints in the model and modifications to the neighborhood search

heuristics. Another way of extending the method is to consider a rolling

horizon setting, where orders and batches are assigned online to pickers.

Third, although the models of the pickers explain 86% of the variance,

the forecasts might be made more accurate by including other behavioral

variables. Based on previous studies (Bendoly et al., 2006, De Koster

et al., 2011, De Vries et al., 2013), it is likely that also behavioral variables

may have an additional effect. These can include motivational variables

such as prevention and promotion focus, or personality traits.

Fourth, insights obtained from this study can be applied to other ar-

eas in addition to picker-to-parts order picking. Parts-to-picker systems,

where products are picked by machines and delivered to the right picker

for further processing, are a natural extension. In general, any job type

that can be parameterized and for which the execution times can be accu-

rately forecast based on these parameters for the different workers, qual-

ifies for careful assignment. The classical vehicle routing problem is an

example. Parcel carriers have to make many deliveries in different types

of areas, urban as well as rural. Based on the types of deliveries, neigh-

borhood, number of parcels, distances, and weight, etc., it might pay off to

select the best driver to fit the job circumstances.

106

Bibliography

Ahuja, R. K., Orlin, J. B., Sharma, D., et al. (1998). New neighborhood search
structures for the capacitated minimum spanning tree problem. Sloan School
of Management, Massachusetts Institute of Technology.

Albareda-Sambola, M., Alonso-Ayuso, A., Molina, E., and De Blas, C. (2009).
Variable neighborhood search for order batching in a warehouse. Asia-Pacific
Journal of Operational Research, 26(05):655–683.

Bartholdi, J. J. and Eisenstein, D. D. (1996). A production line that balances
itself. Operations Research, 44(1):21–34.

Bartholdi, J. J., Eisenstein, D. D., and Foley, R. D. (2001). Performance of bucket
brigades when work is stochastic. Operations Research, 49(5):710–719.

Baumann, H. (2013). Order picking supported by mobile computing. PhD thesis,
University of Bremen.

Beamon, B. M. (1998). Supply chain design and analysis: Models and methods.
International journal of production economics, 55(3):281–294.

Bendoly, E., Donohue, K., and Schultz, K. L. (2006). Behavior in operations man-
agement: Assessing recent findings and revisiting old assumptions. Journal
of Operations Management, 24(6):737–752.

Berger, S. M. and Ludwig, T. D. (2007). Reducing warehouse employee errors
using voice-assisted technology that provided immediate feedback. Journal of
Organizational Behavior Management, 27(1):1–31.

Bliese, P. D. (2002). Multilevel random coefficient modeling in organizational
research: Examples using SAS and S-PLUS. Jossey-Bass.

Bowersox, D. J. (2011). Supply chain logistics management. Tata McGraw-Hill
Education.

Bryk, A. S. and Raudenbush, S. W. (1992). Hierarchical linear models: Applica-
tions and data analysis methods. Sage Publications, Inc.

Campbell, G. M. and Diaby, M. (2002). Development and evaluation of an as-
signment heuristic for allocating cross-trained workers. European Journal of
Operational Research, 138(1):9–20.

Cattrysse, D. G. and Van Wassenhove, L. N. (1992). A survey of algorithms for the
generalized assignment problem. European Journal of Operational Research,
60(3):260–272.

107

Bibliography

Chan, F. and Kumar, V. (2008). A TSSA algorithm based approach to enhance the
performance of warehouse system. In 10th IEEE International Conference on
Control, Automation, Robotics and Vision, 2008. ICARCV 2008., pages 1696–
1701.

Clarke, G. and Wright, J. (1964). Scheduling of vehicles from a central depot to
a number of delivery points. Operations Research, 12(4):568–581.

Cohn, H. and Fielding, M. (1999). Simulated annealing: Searching for an optimal
temperature schedule. SIAM Journal on Optimization, 9(3):779.

Cordeau, J.-F., Laporte, G., Pasin, F., and Ropke, S. (2010). Scheduling tech-
nicians and tasks in a telecommunications company. Journal of Scheduling,
13(4):393–409.

Cornuéjols, G., Fonlupt, J., and Naddef, D. (1985). The traveling salesman prob-
lem on a graph and some related integer polyhedra. Mathematical Program-
ming, 33(1):1–27. Available from: http://dx.doi.org/10.1007/BF01582008.

Coyle, J., Bardi, E., and Langley, C. (1996). The Management of Business Logis-
tics. West Publishing Company.

De Koster, R., Le-Duc, T., and Roodbergen, K. (2007). Design and control of ware-
house order picking: A literature review. European Journal of Operational
Research, 182(2):481–501.

De Koster, R., Stam, D., and Balk, B. M. (2011). Accidents happen: The influ-
ence of safety-specific transformational leadership, safety consciousness, and
hazard reducing systems on warehouse accidents. Journal of Operations Man-
agement, 29(7):753–765.

De Koster, R. and Van der Poort, E. (1998). Routing order pickers in a ware-
house: a comparison between optimal and heuristic solutions. IIE Transac-
tions, 30(5):469–480.

De Koster, R., Van der Poort, E., and Wolters, M. (1999). Efficient orderbatch-
ing methods in warehouses. International Journal of Production Research,
37(7):1479–1504.

De Vries, J., De Koster, R., and Stam, D. (2013). Safety does not happen by acci-
dent: How to manage a safe warehouse? Working paper, Erasmus University,
Rotterdam.

Dekker, R., De Koster, R., Roodbergen, K., and Van Kalleveen, H. (2004). Improv-
ing order-picking response time at Ankor’s warehouse. Interfaces, 34(4):303–
313.

Doerr, K. H. and Arreola-Risa, A. (2000). A worker-based approach for modeling
variability in task completion times. IIE Transactions, 32(7):625–636.

Drury, J. (1988). Towards more efficient order picking. IMM Monograph 1, The
Institute of Materials Management, Cranfield, U.K.

Duan, N. (1983). Smearing estimate: a nonparametric retransformation method.
Journal of the American Statistical Association, 78(383):605–610.

Escudero, L. (1988). An inexact algorithm for the sequential ordering problem.
European Journal of Operational Research, 37(2):236–249.

108

Bibliography

Fisher, M. L., Jaikumar, R., and Van Wassenhove, L. N. (1986). A multiplier ad-
justment method for the generalized assignment problem. Management Sci-
ence, 32(9):1095–1103.

Gademann, N. and Van de Velde, S. (2005). Order batching to minimize total
travel time in a parallel-aisle warehouse. IIE Transactions, 37(1):63–75.

Gelman, A. and Hill, J. (2007). Data analysis using regression and multi-
level/hierarchical models. Cambridge University Press.

Gharehgozli, A., Laporte, G., Yu, Y., and De Koster, R. (2013). Scheduling twin
yard cranes in a container block. Transportation Science, forthcoming.

Goetschalckx, M. and Ashayeri, J. (1989). Classification and design of order pick-
ing. Logistics Information Management, 2(2):99–106.

Gu, J., Goetschalckx, M., and McGinnis, L. F. (2007). Research on warehouse op-
eration: A comprehensive review. European Journal of Operational Research,
177(1):1–21.

Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107.

Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling
salesman heuristic. European Journal of Operational Research, 126(1):106–
130.

Henn, S. and Wäscher, G. (2012). Tabu search heuristics for the order batching
problem in manual order picking systems. European Journal of Operational
Research.

Hong, S., Johnson, A., and Peters, B. (2012a). Batch picking in narrow-aisle order
picking systems with consideration for picker blocking. European Journal of
Operational Research.

Hong, S., Johnson, A., and Peters, B. (2012b). Large-scale order batching in
parallel-aisle picking systems. IIE Transactions, 44(2):88–106.

Hsieh, L. and Huang, Y. (2011). New batch construction heuristics to optimise
the performance of order picking systems. International Journal of Production
Economics, 131(2):618–630.

Juran, D. C. and Schruben, L. W. (2004). Using worker personality and demo-
graphic information to improve system performance prediction. Journal of
Operations Management, 22(4):355–367.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE,
78(9):1464–1480.

Kreft, I. and De Leeuw, J. D. (1998). Introducing Multilevel Modeling. Sage,
London, UK.

Kubo, M. and Kasugai, H. (1991). The precedence constrained traveling sales-
man problem. Journal of the Operations Research Society of Japan, 34(2):152–
172.

109

Bibliography

Kuijt-Evers, L., Bosch, T., Huysmans, M., De Looze, M., and Vink, P. (2007).
Association between objective and subjective measurements of comfort and
discomfort in hand tools. Applied Ergonomics, 38(5):643–654.

Larco Martinelli, J. (2010). Incorporating Worker-Specific Factors in Operations
Management Models. PhD thesis, Erasmus Research Institute of Manage-
ment, Erasmus University Rotterdam. Available from: http://hdl.handle.
net/1765/21527.

Lundy, M. and Mees, A. (1986). Convergence of an annealing algorithm. Mathe-
matical Programming, 34(1):111–124.

MacQueen, J. (1967). Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathemat-
ical statistics and probability, volume 1, page 14. California, USA.

Matusiak, M., de Koster, R., Kroon, L., and Saarinen, J. (2014). A fast sim-
ulated annealing method for batching precedence-constrained customer or-
ders in a warehouse. European Journal of Operational Research, 236(3):968
– 977. Vehicle Routing and Distribution Logistics. Available from: http:
//www.sciencedirect.com/science/article/pii/S0377221713004670.

Miller, C., Tucker, A., and Zemlin, R. (1960). Integer programming Formulation
of Traveling Salesman Problems. Journal of the A.C.M., 7:326–329.

Nakagawa, S. and Schielzeth, H. (2013). A general and simple method for ob-
taining R2 from generalized linear mixed-effects models. Methods in Ecology
and Evolution, 4(2):133–142. Available from: http://dx.doi.org/10.1111/j.
2041-210x.2012.00261.x.

Pentico, D. W. (2007). Assignment problems: A golden anniversary survey. Eu-
ropean Journal of Operational Research, 176(2):774–793.

Pisinger, D. and Ropke, S. (2010). Large neighborhood search. In Handbook of
metaheuristics, pages 399–419. Springer.

Powell, S. G. and Schultz, K. L. (2004). Throughput in serial lines with state-
dependent behavior. Management Science, 50(8):1095–1105.

Psaraftis, H. (1980a). A dynamic programming approach for sequencing groups
of identical jobs. Operations Research, 28(6):1347–1359.

Psaraftis, H. (1980b). Dynamic programming solution to the single vehicle
many-to-many immediate request dial-a-ride problem. Transportation Sci-
ence, 14(2):130–154.

Psaraftis, H. (1983). An exact algorithm for the single vehicle many-to-many
dial-a-ride problem with time windows. Transportation Science, 17(3):351–
357.

Randolph, W. (1993). Distance approximations for routing manual pickers in a
warehouse. IIE Transactions, 25(4):76–87.

Ratliff, H. and Rosenthal, A. (1983). Order-picking in a rectangular warehouse:
a solvable case of the traveling salesman problem. Operations Research,
31(3):507–521.

110

Bibliography

Roodbergen, K. and De Koster, R. (2001a). Routing methods for warehouses
with multiple cross aisles. International Journal of Production Research,
39(9):1865–1883. Available from: www.tandfonline.com.

Roodbergen, K. and De Koster, R. (2001b). Routing order pickers in a warehouse
with a middle aisle. European Journal of Operational Research, 133(1):32–43.

Ropke, S. and Pisinger, D. (2006a). An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows. Transporta-
tion Science, 40(4):455–472.

Ropke, S. and Pisinger, D. (2006b). A unified heuristic for a large class of vehicle
routing problems with backhauls. European Journal of Operational Research,
171(3):750–775.

Shaw, P. (1997). A new local search algorithm providing high quality solutions to
vehicle routing problems. APES Group, Dept of Computer Science, University
of Strathclyde, Glasgow, Scotland, UK.

Theys, C., Braysy, O., Dullaert, W., and Raa, B. (2010). Using a TSP heuristic
for routing order pickers in warehouses. European Journal of Operational
Research, 200(3):755–763.

Tompkins, J., White, J., Bozer, Y., and Tanchoco, J. (2003). Facilities Planning,
3rd ed. John Wiley & Sons.

Vaughan, T. (1999). The effect of warehouse cross aisles on order picking effi-
ciency. International Journal of Production Research, 37(4):881–897.

Weaver, K. A., Baumann, H., Starner, T., Iben, H., and Lawo, M. (2010). An em-
pirical task analysis of warehouse order picking using head-mounted displays.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1695–1704. ACM.

Whittley, I. and Smith, G. (2004). The attribute based hill climber. Journal of
Mathematical Modelling and Algorithms, 3(2):167–178.

111

9HSTFMG*afgheg+

ISBN 978-952-60-5674-6
ISBN 978-952-60-5675-3 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934
ISSN 1799-4942 (pdf)

Aalto University
School of Electrical Engineering
School of Electrical Engineering
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 6

2
/2

014

M
arek M

atusiak
O

ptim
izing W

arehouse O
rder B

atching w
hen R

outing Is P
recedence C

onstrained and P
ickers H

ave
V

arying Skills
A

alto
 U

n
ive

rsity

School of Electrical Engineering

Optimizing Warehouse
Order Batching when
Routing Is Precedence
Constrained and Pickers
Have Varying Skills

Marek Matusiak

DOCTORAL
DISSERTATIONS

